WorldWideScience

Sample records for ha-coated tapered titanium

  1. Adhesive strength of hydroxyl apatite(HA) coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    OpenAIRE

    Tian-yang ZHANG; Yong-hong DUAN; Shu ZHU; Jin-yu ZHU; Qing-sheng ZHU

    2011-01-01

    Objective To explore the influence of adhesive strength of hydroxyapatite(HA) coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti)-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01).Hist...

  2. Investigation of morphology and bioactive properties of composite coating of HA/vinyl acetate on pure titanium

    International Nuclear Information System (INIS)

    Afshar, Abdollahe; Yousefpour, Mardali; Xiudong, Yang; Li Xudong; Yang Bangcheng; Wu Yao; Chen Jiyong; Zhang Xingdong

    2006-01-01

    Electrochemical co-deposition approach was expanded to prepare composite bio-ceramic coating of hydroxyapatite (HA)/polyvinyl acetate on the surface of titanium. The role is to improve the bioactive and crystallization properties. The results of XRD, XPS, SEM and TEM characterization showed that by increasing amount of vinyl acetate in the composite bio-ceramic coating before and after immersing in the simulated body fluid (SBF), an oriented growth of HA planes on the (0 0 2) direction had been observed on titanium substrate. Also significant surface morphology changes were obtained

  3. Mechanical properties of titanium-hydroxyapatite (Ti-HA) composite coating on stainless steel prepared by thermal spraying

    Science.gov (United States)

    Rosmamuhamadani, R.; Azhar, N. H.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.

    2017-09-01

    Addition of hydroxyapatite (HA) can enhance the bioactivity of the common metallic implant due to its similarity with natural bones and teeth. In this investigation, high velocity oxy-fuel (HVOFT) technique was used to deposit titanium-hydroxyapatite (Ti-HA) composite on stainless steel substrate plate with different percentage of HA for biomedical applications. The aim of this research is to investigate the mechanical properties of Ti-HA coating such as hardness, adhesion strength and wear behaviour. The hardness and strength was determined by using SHIMADZU-microhardness Vickers tester and PosiTest AT portable adhesion tester respectively. The wear test was performed by using pin-on-disk equipment and field emission scanning electron microscope (FESEM) used to determine the extent of surface damage. From the results obtained, mechanical properties such as hardness and adhesion strength of titanium (Ti) coating decreased with the increased of HA contents. Meanwhile, the coefficient of friction of Ti-10% HA coating shows the highest value compare to others as three-body abrasion had occurred during the test.

  4. Adhesive strength of hydroxyl apatite(HA coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    Directory of Open Access Journals (Sweden)

    Tian-yang ZHANG

    2011-05-01

    Full Text Available Objective To explore the influence of adhesive strength of hydroxyapatite(HA coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01.Histopathological examination and bone morphometry showed that,at the early stage of prosthesis implantation,the bony growth around HA-coated prosthesis was significantly higher than that around Ti-coated prosthesis(P < 0.01,but the ultimate shear strength of HA-coated prosthesis was much lower than that of Ti-coated prosthesis(P < 0.01.After the push-out test with prosthesis,histopathological observation showed that there were accumulations of clump-and strip-like granular residues on the surface of bones that newly grew around the HA-coated prosthesis,and surface energy-dispersive X-ray spectroscopy(EDX analysis also confirmed that the shear stress induced HA decohesion from the substrate of prosthesis.Conclusions Although HA coating showed a satisfactory effect on early bone formation and prosthetic stability,due to the deficiencies of adhesive strength,the early stability of prosthesis may be gradually destroyed by the shear loads of human body and coating degradation.

  5. Formation of Biomimetic Hydroxyapatite Coating on Titanium Plates

    Directory of Open Access Journals (Sweden)

    Ievgen Volodymyrovych PYLYPCHUK

    2014-09-01

    Full Text Available Hydroxyapatite (HA has long been used as a coating material in the implant industry for orthopedic implant applications. HA is the natural inorganic constituent of bone and teeth. By coating titanium (base material of implant engineering because of its lightness and durability with hydroxyapatite, we can provide higher biocompatibility of titanium implants, according to HA ability to form a direct biochemical bond with living tissues. This article reports a biomimetic approach for coating hydroxyapatite with titanium A method of modifying the surface of titanium by organic modifiers (for creating functional groups on the surface, followed by formation "self-assembled" layer of biomimetic hydroxyapatite in simulated body fluid (SBF. FTIR and XPS confirmed the formation of hydroxyapatite coatings on titanium surface. Comparative study of the formation of HA on the surface of titanium plates modified by different functional groups: Ti(≡OH, Ti/(≡Si-OH and Ti/(≡COOH is conducted. It was found that the closest to natural stoichiometric hydroxyapatite Ca/P ratio was obtained on Ti/(≡COOH samples. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4974

  6. Osteoblast interaction with laser cladded HA and SiO2-HA coatings on Ti-6Al-4V

    International Nuclear Information System (INIS)

    Yang Yuling; Serpersu, Kaan; He Wei; Paital, Sameer R.; Dahotre, Narendra B.

    2011-01-01

    In order to improve the bioactivity and biocompatibility of titanium endosseous implants, the morphology and composition of the surfaces were modified. Polished Ti-6Al-4V substrates were coated by a laser cladding process with different precursors: 100 wt.% HA and 25 wt.% SiO 2 -HA. X-ray diffraction of the laser processed samples showed the presence of CaTiO 3 , Ca 3 (PO 4 ) 2 , and Ca 2 SiO 4 phases within the coatings. From in vitro studies, it was observed that compared to the unmodified substrate all laser cladded samples presented improved cellular interactions and bioactivity. The samples processed with 25 wt.% SiO 2 -HA precursor showed a significantly higher HA precipitation after immersion in simulated body fluid than 100 wt.% HA precursor and titanium substrates. The in vitro biocompatibility of the laser cladded coatings and titanium substrate was investigated by culturing of mouse MC3T3-E1 pre-osteoblast cell line and analyzing the cell viability, cell proliferation, and cell morphology. A significantly higher cell attachment and proliferation rate were observed for both laser cladded 100 wt.% HA and 25 wt.% SiO 2 -HA samples. Compared to 100 wt.% HA sample, 25 wt.% SiO 2 -HA samples presented a slightly improved cellular interaction due to the addition of SiO 2 . The staining of the actin filaments showed that the laser cladded samples induced a normal cytoskeleton and well-developed focal adhesion contacts. Scanning electron microscopic image of the cell cultured samples revealed better cell attachment and spreading for 25 wt.% SiO 2 -HA and 100 wt.% HA coatings than titanium substrate. These results suggest that the laser cladding process improves the bioactivity and biocompatibility of titanium. The observed biological improvements are mainly due to the coating induced changes in surface chemistry and surface morphology. Highlights: → Laser cladding of Ti alloys with bioceramics creates new phases. → Laser cladded samples with SiO 2 -doped

  7. Osteoblast interaction with laser cladded HA and SiO{sub 2}-HA coatings on Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yuling [Department of Physics, Northeastern University, Shenyang 110004 (China); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Serpersu, Kaan [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); He Wei, E-mail: whe5@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Paital, Sameer R. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Dahotre, Narendra B. [Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207 (United States)

    2011-12-01

    In order to improve the bioactivity and biocompatibility of titanium endosseous implants, the morphology and composition of the surfaces were modified. Polished Ti-6Al-4V substrates were coated by a laser cladding process with different precursors: 100 wt.% HA and 25 wt.% SiO{sub 2}-HA. X-ray diffraction of the laser processed samples showed the presence of CaTiO{sub 3}, Ca{sub 3}(PO{sub 4}){sub 2}, and Ca{sub 2}SiO{sub 4} phases within the coatings. From in vitro studies, it was observed that compared to the unmodified substrate all laser cladded samples presented improved cellular interactions and bioactivity. The samples processed with 25 wt.% SiO{sub 2}-HA precursor showed a significantly higher HA precipitation after immersion in simulated body fluid than 100 wt.% HA precursor and titanium substrates. The in vitro biocompatibility of the laser cladded coatings and titanium substrate was investigated by culturing of mouse MC3T3-E1 pre-osteoblast cell line and analyzing the cell viability, cell proliferation, and cell morphology. A significantly higher cell attachment and proliferation rate were observed for both laser cladded 100 wt.% HA and 25 wt.% SiO{sub 2}-HA samples. Compared to 100 wt.% HA sample, 25 wt.% SiO{sub 2}-HA samples presented a slightly improved cellular interaction due to the addition of SiO{sub 2}. The staining of the actin filaments showed that the laser cladded samples induced a normal cytoskeleton and well-developed focal adhesion contacts. Scanning electron microscopic image of the cell cultured samples revealed better cell attachment and spreading for 25 wt.% SiO{sub 2}-HA and 100 wt.% HA coatings than titanium substrate. These results suggest that the laser cladding process improves the bioactivity and biocompatibility of titanium. The observed biological improvements are mainly due to the coating induced changes in surface chemistry and surface morphology. Highlights: {yields} Laser cladding of Ti alloys with bioceramics creates new

  8. Osteogenesis of bone marrow mesenchymal stem cells on strontium-substituted nano-hydroxyapatite coated roughened titanium surfaces

    OpenAIRE

    Yang, Hua-Wei; Lin, Mao-Han; Xu, Yuan-Zhi; Shang, Guang-Wei; Wang, Rao-Rao; Chen, Kai

    2015-01-01

    Objective: To investigate osteogenesis of bone marrow mesenchymal stem cells (BMSCs) on strontium-substituted nano-hydroxyapatite (Sr-HA) coated roughened titanium surfaces. Methods: Sr-HA coating and HA coating were fabricated on roughened titanium surfaces by electrochemical deposition technique and characterized by field emission scanning electron microscope (FESM). BMSCs were cultured on Sr-HA coating, HA coating and roughened titanium surfaces respectively. Cell proliferation, alkaline p...

  9. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    Directory of Open Access Journals (Sweden)

    Suzuki T

    2012-02-01

    Full Text Available Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA-coated titanium promotes bone–implant integration is largely unknown. Furthermore, refining the fabrication of nanostructured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone–implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone–implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone–implant contact and bone volume within 50 µm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 µm border was lower around HA-coated implants. Thus, this study

  10. Biomimetically-mineralized composite coatings on titanium functionalized with gelatin methacrylate hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guoxin, E-mail: tanguoxin@126.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Zhou, Lei [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China); Tan, Ying [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Ni, Guoxin [Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 (China); Liao, Jingwen; Yu, Peng; Chen, Xiaofeng [College of Materials Science and Technology, South China University of Technology, Guangzhou, 510641 (China)

    2013-08-15

    Immobilizing organic–inorganic hybrid composites onto the implant surface is a promising strategy to improve host acceptance of the implant. The objective of this present study was to obtain a unique macroporous titanium-surface with the organic–mineral composite coatings consisting of gelatin methacrylate hydrogel (GelMA) and hydroxyapatite (HA). A 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) layer was first coated onto the titanium surface, and surface was then covalently functionalized with GelMA using a photochemical method. Mineralization of the GelMA coating on the titanium surface was subsequently carried out by a biomimetic method. After 3-day mineralization, a large number of mineral phases comprising spherical amorphous nanoparticles were found randomly deposited inside GelMA matrix. The resulting mineralized hydrogel composites exhibited a unique rough surface of macroporous structure. The structure of the prepared GelMA/HA composite coating was studied by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectra (EDS), attenuated total refraction Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Water contact angle measurement revealed the hydrophilicity properties of composite coatings. GelMA/HA on titanium after the TMSPMA treatment is very stable when tested in vitro with a PBS solution at 37 °C, due to the role of TMSPMA as a molecular bridge. It was expected that the macroporous GelMA/HA composite coatings might potentially promote and accelerate titanium (Ti)-based implants osseointegration for bone repair and regeneration.

  11. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yong [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Nan Kaihui [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Han Yong [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-09-15

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and {beta}-glycerol phosphate disodium salt pentahydrate ({beta}-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 {mu}m, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  12. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.

    Science.gov (United States)

    Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong

    2007-09-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  13. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Huang Yong; Wang Yingjun; Ning Chengyun; Nan Kaihui; Han Yong

    2007-01-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 μm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints

  14. Surface microstructure and cell biocompatibility of silicon-substituted hydroxyapatite coating on titanium substrate prepared by a biomimetic process

    International Nuclear Information System (INIS)

    Zhang Erlin; Zou Chunming; Yu Guoning

    2009-01-01

    Silicon-substituted hydroxyapatite (Si-HA) coatings with 0.14 to 1.14 at.% Si on pure titanium were prepared by a biomimetic process. The microstructure characterization and the cell compatibility of the Si-HA coatings were studied in comparison with that of hydroxyapatite (HA) coating prepared in the same way. The prepared Si-HA coatings and HA coating were only partially crystallized or in nano-scaled crystals. The introduction of Si element in HA significantly reduced P and Ca content, but densified the coating. The atom ratio of Ca to (P + Si) in the Si-HA coatings was in a range of 1.61-1.73, increasing slightly with an increase in the Si content. FTIR results displayed that Si entered HA in a form of SiO 4 unit by substituting for PO 4 unit. The cell attachment test showed that the HA and Si-HA coatings exhibited better cell response than the uncoated titanium, but no difference was observed in the cell response between the HA coating and the Si-HA coatings. Both the HA coating and the Si-HA coatings demonstrated a significantly higher cell growth rate than the uncoated pure titanium (p < 0.05) in all incubation periods while the Si-HA coating exhibited a significantly higher cell growth rate than the HA coating (p < 0.05). Si-HA with 0.42 at.% Si presented the best cell biocompatibility in all of the incubation periods. It was suggested that the synthesis mode of HA and Si-HA coatings in a simulated body environment in the biomimetic process contribute significantly to good cell biocompatibility

  15. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    Science.gov (United States)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  16. Enhanced biocompatibility and osseointegration of calcium titanate coating on titanium screws in rabbit femur.

    Science.gov (United States)

    Wang, Zi-Li; He, Rong-Zhen; Tu, Bin; Cao, Xu; He, Jin-Shen; Xia, Han-Song; Liang, Chi; Zou, Min; Wu, Song; Wu, Zhen-Jun; Xiong, Kun

    2017-06-01

    This study aimed to examine the biocompatibility of calcium titanate (CaTiO 3 ) coating prepared by a simplified technique in an attempt to assess the potential of CaTiO 3 coating as an alternative to current implant coating materials. CaTiO 3 -coated titanium screws were implanted with hydroxyapatite (HA)-coated or uncoated titanium screws into medial and lateral femoral condyles of 48 New Zealand white rabbits. Imaging, histomorphometric and biomechanical analyses were employed to evaluate the osseointegration and biocompatibility 12 weeks after the implantation. Histology and scanning electron microscopy revealed that bone tissues surrounding the screws coated with CaTiO 3 were fully regenerated and they were also well integrated with the screws. An interfacial fibrous membrane layer, which was found in the HA coating group, was not noticeable between the bone tissues and CaTiO 3 -coated screws. X-ray imaging analysis showed in the CaTiO 3 coating group, there was a dense and tight binding between implants and the bone tissues; no radiation translucent zone was found surrounding the implants as well as no detachment of the coating and femoral condyle fracture. In contrast, uncoated screws exhibited a fibrous membrane layer, as evidenced by the detection of a radiation translucent zone between the implants and the bone tissues. Additionally, biomechanical testing revealed that the binding strength of CaTiO 3 coating with bone tissues was significantly higher than that of uncoated titanium screws, and was comparable to that of HA coating. The study demonstrated that CaTiO 3 coating in situ to titanium screws possesses great biocompatibility and osseointegration comparable to HA coating.

  17. Designing, preparing and evaluation of novel HA/Ti composite coating for endodontic dental implant

    Directory of Open Access Journals (Sweden)

    Fathi MH.

    2002-08-01

    Full Text Available Nowadays, application of implants as a new method for replacing extracted teeth have been improved. So, many researches have been performed for improving the characteristics of implants. The aim of this study was to design and produce a desired coating in order to obtaining two goals including; improvement of the corrosion behavior of metallic endodontic implant and the bone osseointegration simultaneously. Stainless steel 316L (SS, cobalt-chromium alloy (Vit and commercial pure titanium (cpTi were chosen as metallic substrates and hydroxyapatite coating (HAC were performed by plasma-spraying (PS process on three different substrates. A novel double layer Hydroxyapatite/Titanium (HA/Ti composite coating composed of a HA top layer and a Ti under layer was prepared using PS and physical vapor deposition (PVD process respectively on SS. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure, morpholgy and crystallinity of the coatings. Electrochemical potentiodynamic tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens behavior as an indication of biocmpatibility. Results indicated that the cpTi possesses the highest and SS the lowest corrosion resistance (highest corrosion current density between uncoated substrates. This trend was independent to the type of physiological environment. The HA coating decreased the corrosion current density of HA coated metallic implants but did not change that trend. HAC acted as a mechanical barrier on the metallic substrate but could not prevent the interaction between metallic substrate and environment completely. The HA/Ti composite coating improved the corrosion behavior of SS. The corrosion current density of HA/Ti coated SS decreased and was exactly similar to single HA coated cpTi in physiological solutions. The results indicated that HA/Ti composite coated SS

  18. Effects of nacre-coated titanium surfaces on cell proliferation and ...

    African Journals Online (AJOL)

    Titanium is widely used for dental implants because of its superior mechanical properties, low modulus, excellent corrosion resistance, and good biocompatibility. However, even when they are used in combination with a protective coating, such as hydroxyapatite (HA), titanium implants have been reported to have several ...

  19. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    International Nuclear Information System (INIS)

    Pei, Xibo; Zeng, Yongxiang; He, Rui; Li, Zhongjie; Tian, Lingyang; Wang, Jian; Wan, Qianbing; Li, Xiaoyu; Bao, Hong

    2014-01-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants

  20. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xibo; Zeng, Yongxiang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); He, Rui [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Stomatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015 (China); Li, Zhongjie; Tian, Lingyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Jian, E-mail: fero@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wan, Qianbing, E-mail: pxb1024@hotmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Bao, Hong [Department of Stomatology, Hospital of Chengdu Office of People' s Government of Tibetan Autonomous Region, Chengdu 610000 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  1. Sol-Gel-Derived Hydroxyapatite-Carbon Nanotube/Titania Coatings on Titanium Substrates

    Directory of Open Access Journals (Sweden)

    Chuantong Liu

    2012-04-01

    Full Text Available In this paper, hydroxyapatite-carbon nanotube/titania (HA-CNT/TiO2 double layer coatings were successfully developed on titanium (Ti substrates intended for biomedical applications. A TiO2 coating was firstly developed by anodization to improve bonding between HA and Ti, and then the layer of HA and CNTs was coated on the surface by the sol-gel process to improve the biocompatibility and mechanical properties of Ti. The surfaces of double layer coatings were uniform and crack-free with a thickness of about 7 μm. The bonding strength of the HA-CNT/TiO2 coating was higher than that of the pure HA and HA-CNT coatings. Additionally, in vitro cell experiments showed that CNTs promoted the adhesion of preosteoblasts on the HA-CNT/TiO2 double layer coatings. These unique surfaces combined with the osteoconductive properties of HA exhibited the excellent mechanical properties of CNTs. Therefore, the developed HA-CNT/TiO2 coatings on Ti substrates might be a promising material for bone replacement.

  2. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Zhou-Shan [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Zhou, Wan-Shu [Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medical University, Guizhou 550001 (China); He, Xing-Wen [Department of Orthopaedic Surgery, Hangzhou Bay Hospital of Ningbo, 315000 (China); Liu, Wei [Department of Orthopaedic Surgery, Jingmen No. 1 People' s Hospital, Jingmen 44800, Hubei (China); Bai, Bing-Li; Zhou, Qiang; Huang, Zheng-Liang; Tu, Kai-kai; Li, Hang; Sun, Tao [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Lv, Yang-Xun [Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000 (China); Cui, Wei [Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Chengdu, Sichuan 610000 (China); Yang, Lei, E-mail: tzs19900327@163.com [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China)

    2016-05-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), magnesium (Mg), and strontium (Sr) present a beneficial effect on bone growth, and positively affect bone regeneration. The aim of this study was to confirm the different effects of the fixation strength of Zn, Mg, Sr-substituted hydroxyapatite-coated (Zn-HA-coated, Mg-HA-coated, Sr-HA-coated) titanium implants via electrochemical deposition in the osteoporotic condition. Female Sprague–Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group Zn-HA; group Mg-HA and group Sr-HA. Afterwards, all rats from groups HA, Zn-HA, Mg-HA and Sr-HA received implants with hydroxyapatite containing 0%, 10% Zn ions, 10% Mg ions, and 10% Sr ions. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, there are significant differences in bone formation and push-out force was observed between groups Zn-HA and Mg-HA. This finding suggests that Zn, Mg, Sr-substituted hydroxyapatite coatings can improve implant osseointegration, and the 10% Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats. - Highlights: • Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. • However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), Magnesium(Mg), Strontium (Sr) present a benificial effect on bone

  3. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate.

    Science.gov (United States)

    El-Wassefy, N A; Reicha, F M; Aref, N S

    2017-08-13

    Titanium is an inert metal that does not induce osteogenesis and has no antibacterial properties; it is proposed that hydroxyapatite coating can enhance its bioactivity, while zinc can contribute to antibacterial properties and improve osseointegration. A nano-sized hydroxyapatite-zinc coating was deposited on commercially pure titanium using an electro-chemical process, in order to increase its surface roughness and enhance adhesion properties. The hydroxyapatite-zinc coating was attained using an electro-chemical deposition in a solution composed of a naturally derived calcium carbonate, di-ammonium hydrogen phosphate, with a pure zinc metal as the anode and titanium as the cathode. The applied voltage was -2.5 for 2 h at a temperature of 85 °C. The resultant coating was characterized for its surface morphology and chemical composition using a scanning electron microscope (SEM), energy dispersive x-ray spectroscope (EDS), and Fourier transform infrared (FT-IR) spectrometer. The coated specimens were also evaluated for their surface roughness and adhesion quality. Hydroxyapatite-zinc coating had shown rosette-shaped, homogenous structure with nano-size distribution, as confirmed by SEM analysis. FT-IR and EDS proved that coatings are composed of hydroxyapatite (HA) and zinc. The surface roughness assessment revealed that the coating procedure had significantly increased average roughness (Ra) than the control, while the adhesive tape test demonstrated a high-quality adhesive coat with no laceration on tape removal. The developed in vitro electro-chemical method can be employed for the deposition of an even thickness of nano HA-Zn adhered coatings on titanium substrate and increases its surface roughness significantly.

  4. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Herath, H.M.T.U. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Premachandra, T.N. [Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Ranasinghe, C.S.K. [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.P.V.J. [Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Postgraduate Institute of Science, University of Peradeniya, 20400 Peradeniya (Sri Lanka); Edirisinghe, Mohan; Mahalingam, S. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Bandara, I.M.C.C.D. [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia); Singh, Sanjleena [Central Analytical Research Facility, Institute of Future Environments, Queensland University of Technology, 2 George Street, Brisbane 4001, QLD (Australia)

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO{sub 2} thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO{sub 2} thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  5. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces

    International Nuclear Information System (INIS)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Chathuranga Senarathna, K.G.; Herath, H.M.T.U.; Premachandra, T.N.; Ranasinghe, C.S.K.; Rajapakse, R.P.V.J.; Rajapakse, R.M.G.; Edirisinghe, Mohan; Mahalingam, S.; Bandara, I.M.C.C.D.; Singh, Sanjleena

    2016-01-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO_2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. - Highlights: • Colloidal hydroxyapatite nanorods are prepared by a novel method. • Surfaces of titanium metal plates are modified by self-forming TiO_2 thin-films. • Prostheses are prepared by coating hydroxyapatite on surface modified Ti metal. • Bioactivity and noncytotoxicity are increased with surface modifications.

  6. In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Kyoung-A. [Department of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bio Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Il Song, E-mail: ilsong@chonbuk.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Sook Jeong [Neural Injury Research Lab, Department of Neurology, Asan life Science Institute, University, of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Bae, Tae Sung [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Min Ho, E-mail: mh@jbnu.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} HA/TiO{sub 2} coating were prepared by a MAO and EPD technique. {center_dot} The NaOH electrolyte solution containing HA particles is employed. {center_dot} MAO and EPD treatment enhances the corrosion resistance and bioactivity of titanium. - Abstract: In situ composite coating of hydroxyapatite (HA)/TiO{sub 2} were produced on titanium (Ti) substrate by micro-arc oxidation coupled with electrophoretic deposition (MAO and EPD) technique with different concentrations of HA particles in the 0.2 M NaOH electrolyte solution. The surface morphology and chemical composition of the hybrid coating were effected by HA concentration. The amount of HA particles incorporated into coating layer increased with increasing HA concentration used in the electrolyte solution. The corrosion behavior of the coating layer in simulated body fluids (SBF) was evaluated using a potentiodynamic polarization test. The corrosion resistance of the coated sample was increased compared to the untreated Ti sample. The in vitro bioactivity assessment showed that the MAO and EPD treated Ti substrate possessed higher apatite-forming ability than the untreated Ti. Moreover, the apatite-forming ability had a positive correlation with HA concentration. In addition, the cell behavior was also examined using cell proliferation assay and alkaline phosphatase ability. The coating formed at HA concentration of 5 g/L exhibited the highest cell ability.

  7. [Shaping ability of multi-taper nickel-titanium files in simulated resin curved root canal].

    Science.gov (United States)

    Luo, Hong-Xia; Huang, Ding-Ming; Jia, Liu-He; Luo, Shi-Gao; Gao, Xiao-Jie; Tan, Hong; Zhou, Xue-Dong

    2006-08-01

    To compare the shaping ability of ISO standard stainless steel K files and multi-taper ProTaper nickel-titanium files in simulated resin curved root canals. METHODS Thirty simulated resin root canals were randomly divided into three groups and prepared by stainless steel K files, hand ProTaper, rotary ProTaper, respectively. The amount of material removed from inner and outer wall and canal width after canal preparation was measured, while the canal curvature before and after canal preparation and canals aberrations were recorded. The stainless steel K files removed more material than hand ProTaper and rotary ProTaper at the outer side of apex and inner side of curvature (P ProTaper group (P ProTaper had no evident aberration. The shaping ability of ProTaper is better than stainless steel K files.

  8. High Sensitivity Refractometer Based on TiO2-Coated Adiabatic Tapered Optical Fiber via ALD Technology

    Science.gov (United States)

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun

    2016-01-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO2) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO2 nanofilm compared to that of silica, an asymmetric Fabry–Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO2 nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO2 on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373–1.3500. Due to TiO2’s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field. PMID:27537885

  9. Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings.

    Science.gov (United States)

    Khor, K A; Gu, Y W; Pan, D; Cheang, P

    2004-08-01

    Plasma sprayed hydroxyapatite (HA) coatings on titanium alloy substrate have been used extensively due to their excellent biocompatibility and osteoconductivity. However, the erratic bond strength between HA and Ti alloy has raised concern over the long-term reliability of the implant. In this paper, HA/yttria stabilized zirconia (YSZ)/Ti-6Al-4V composite coatings that possess superior mechanical properties to conventional plasma sprayed HA coatings were developed. Ti-6Al-4V powders coated with fine YSZ and HA particles were prepared through a unique ceramic slurry mixing method. The so-formed composite powder was employed as feedstock for plasma spraying of the HA/YSZ/Ti-6Al-4V coatings. The influence of net plasma energy, plasma spray standoff distance, and post-spray heat treatment on microstructure, phase composition and mechanical properties were investigated. Results showed that coatings prepared with the optimum plasma sprayed condition showed a well-defined splat structure. HA/YSZ/Ti-6Al-4V solid solution was formed during plasma spraying which was beneficial for the improvement of mechanical properties. There was no evidence of Ti oxidation from the successful processing of YSZ and HA coated Ti-6Al-4V composite powders. Small amount of CaO apart from HA, ZrO(2) and Ti was present in the composite coatings. The microhardness, Young's modulus, fracture toughness, and bond strength increased significantly with the addition of YSZ. Post-spray heat treatment at 600 degrees C and 700 degrees C for up to 12h was found to further improve the mechanical properties of coatings. After the post-spray heat treatment, 17.6% increment in Young's modulus (E) and 16.3% increment in Vicker's hardness were achieved. The strengthening mechanisms of HA/YSZ/Ti-6Al-4V composite coatings were related to the dispersion strengthening by homogeneous distribution of YSZ particles in the matrix, the good mechanical properties of Ti-6Al-4V and the formation of solid solution among HA

  10. 钛基表面TiO2-HA生物陶瓷膜层的血液相容性研究%Blood Compatibility of TiO2-HA Bioceramic Coating on Titanium

    Institute of Scientific and Technical Information of China (English)

    徐琳; 丁建宁; 许晓静; 何远清; 雷小春

    2017-01-01

    采用微弧氧化法及微弧氧化-水热法对纯钛进行改性,制备了TiO2与TiO2-HA生物陶瓷膜层,通过溶血率实验、动态凝血时间实验和血小板黏附实验等方面评价其血液相容性.结果表明:各试样的溶血率都远小于5%,均符合医用材料的溶血率要求,不会产生溶血作用.与钛基TiO2生物陶瓷膜层和钛基材相比,钛基TiO2-HA生物陶瓷膜层的溶血率更低,动态凝血时间曲线变化更为缓慢,黏附的血小板更少,且变形程度更轻,具有更好的抑制血小板的聚集与变形的性能,血液相容性更优.%Biological surface modification of titanium was conducted by micro-arc oxidation (MAO) and hydrothermal synthesis (HS) methods to prepare TiO2 bioceramic coating and TiO2-HA bioceramic coating.The blood compatibility of modified coatings was evaluated by hemolysis rate test,dynamic clotting time and platelet adhesion test.The results demonstrate that hemolysis rates of all samples are less than 5%,and no hemolysis is observed.Compared with titanium and TiO2 bioceramic coating of titanium,TiO2-HA bioceramic coating of titanium exhibits better blood compatibility,with lower hemolysis rate,longer dynamic clotting time,fewer adhered platelets and slighter formation of platelets,which could better prevent platelet shape change and aggregation.

  11. Dynamics of Gradient Bioceramic Composite Coating on Surface of Titanium Alloy by Wide-Band Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Qi-bin; ZOU Long-jiang; ZHU Wei-dong; LI Hai-tao; DONG Chuang

    2004-01-01

    The gradient bioceramic coating was prepared on the surface of titanium alloy using wide-band laser cladding. The dynamics of gradient bioceramic composite coating containing hydroxyapatite (HA) prepared with mixture of CaHPO4*2H2O and CaCO3 under the condition of wide-band laser was studied theoretically. The corresponding mathematical model and its numerical solution were presented. The examination experiment showed that HA bioceramic composite coatings can be obtained by appropriately choosing wide-band laser cladding parameters. The microstructure and surface morphology of HA bioceramic coating were observed by SEM and X-ray diffraction. The experimental results showed that the bioceramic coating is composed of HA, β-TCP, CaO, CaTiO3 and TiO2. The surface of bioceramic coating takes coral-shaped structure or short-rod piled structure, which helps osteoblast grow into bioceramic and improves the biocompatibility.

  12. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    Science.gov (United States)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-05-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  13. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    Science.gov (United States)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-04-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  14. New titanium and titanium/hydroxyapatite coatings on ultra-high-molecular-weight polyethylene-in vitro osteoblastic performance

    International Nuclear Information System (INIS)

    Silva, M A; Lopes, M A; Santos, J D; Fernandes, M H; Gomes, P S; Vila, M; Silva, R F

    2010-01-01

    The development of optimized hip joint materials is one of the most challenging opportunities in prosthetic technologies. In current approaches, ultra-high-molecular-weight polyethylene (UHMWPE) has been a favorite material for the acetabular component and, regarding the cementless technique, several coating options may be considered to contain and stabilize bearing surfaces and establish an improved interface with bone. In this work, newly developed constructs of UHMWPE coated with either commercially pure titanium (cpTi-UHMWPE), by DC magnetron sputtering, or with commercially pure titanium and hydroxyapatite (cpTi/HA-UHMWPE), by DC/RF magnetron co-sputtering, have been prepared and biologically characterized with human bone marrow-derived osteoblastic cultures. The cpTi-UHMWPE samples allowed a high cell growth and the expression of the complete osteoblastic phenotype, with high alkaline phosphatase activity, expression of osteogenic-associated genes and evident cell-mediated mineralization of the extracellular matrix. In comparison, the cpTi/HA-UHMWPE samples reported lower cell proliferation but earlier cell-mediated matrix mineralization. Accordingly, these newly developed systems may be suitable candidates to improve the osteointegration process in arthroplastic devices; nevertheless, further biological evaluation should be conducted.

  15. Effect of autoclaving on the surfaces of TiN -coated and conventional nickel-titanium rotary instruments.

    Science.gov (United States)

    Spagnuolo, G; Ametrano, G; D'Antò, V; Rengo, C; Simeone, M; Riccitiello, F; Amato, M

    2012-12-01

    To evaluate the effects of repeated autoclave sterilization cycles on surface topography of conventional nickel-titanium ( NiTi ) and titanium nitride ( TiN )-coated rotary instruments. A total of 60 NiTi rotary instruments, 30 ProTaper (Dentsply Maillefer) and 30 TiN -coated AlphaKite (Komet/Gebr. Brasseler), were analysed. Instruments were evaluated in the as-received condition and after 1, 5 and 10 sterilization cycles. After sterilization, the samples were observed using scanning electron microscope (SEM), and surface chemical analysis was performed on each instrument with energy dispersive X-ray spectroscopy (EDS). Moreover, the samples were analysed by atomic force microscopy (AFM), and roughness average (Ra) and the root mean square value (RMS) of the scanned surface profiles were recorded. Data were analysed by means of anova followed by Tukey's test. Scanning electron microscope observations revealed the presence of pitting and deep milling marks in all instruments. EDS analysis confirmed that both types of instruments were composed mainly of nickel and titanium, whilst AlphaKite had additional nitride. After multiple autoclave sterilization cycles, SEM examinations revealed an increase in surface alterations, and EDS values indicated changes in chemical surface composition in all instruments. Ra and RMS values of ProTaper significantly increased after 5 (P = 0.006) and 10 cycles (P = 0.002) with respect to the as-received instruments, whilst AlphaKite showed significant differences compared with the controls after 10 cycles (P = 0.03). Multiple autoclave sterilization cycles modified the surface topography and chemical composition of conventional and TiN -coated NiTi rotary instruments. © 2012 International Endodontic Journal.

  16. Anticorrosive effects and in vitro cytocompatibility of calcium silicate/zinc-doped hydroxyapatite composite coatings on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong, E-mail: xfpang@aliyun.com [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Honglei [College of Chemistry Environmental Science, Hebei University, Baoding 071000 (China); Qiao, Haixia; Nian, Xiaofeng [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Zhang, Xuejiao, E-mail: 527238610@qq.com [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Wang, Wendong; Zhang, Xiaoyun; Chang, Xiaotong [College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Han, Shuguang [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); International Centre for Materials Physics, Chinese Academy of Science, Shenyang 110015 (China)

    2015-12-01

    Highlights: • We developed a ZnHA/CS-coated Ti implant by using an ED method. • The obtained ZnHA/CS coatings presented a net-like micro-porous. • The ZnHA/CS coating possessed an excellent corrosion protection ability. • The composite coated CP-Ti possesses favourable cytocompatibility. - Abstract: This work elucidated the corrosion resistance and cytocompatibility of electroplated Zn- and Si-containing bioactive calcium silicate/zinc-doped hydroxyapatite (ZnHA/CS) ceramic coatings on commercially pure titanium (CP-Ti). The formation of ZnHA/CS coating was investigated through Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray and inductively coupled plasma analyses. The XRD image showed that the reaction layer was mainly composed of HA and CaSiO{sub 3}. The fabricated ZnHA/CS coatings presented a porous structure and appropriate thickness for possible applications in orthopaedic surgery. Potentiodynamic polarization tests showed that ZnHA/CS coatings exhibited higher corrosion resistance than CP-Ti. Dissolution tests on the coating also revealed that Si{sup 4+} and Zn{sup 2+} were leached at low levels. Moreover, MC3T3-E1 cells cultured on ZnHA/CS featured improved cell morphology, adhesion, spreading, proliferation and expression of alkaline phosphatase than those cultured on HA. The high cytocompatibility of ZnHA/CS could be mainly attributed to the combination of micro-porous surface effects and ion release (Zn{sup 2+} and Si{sup 4+}). All these results indicate that ZnHA/CS composite-coated CP-Ti may be a potential material for orthopaedic applications.

  17. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    Science.gov (United States)

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

    OpenAIRE

    Ogawa, Takahiro; Yamada,Masahiro; Ueno,; Tsukimura,Naoki; Ikeda,; Nakagawa,; Hori,; Suzuki,

    2012-01-01

    Masahiro Yamada*, Takeshi Ueno*, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro OgawaLaboratory of Bone and Implant Sciences, The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA *These authors contributed equally to this workAbstract: The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone–implant integratio...

  19. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Parcharoen, Yardnapar [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Kajitvichyanukul, Puangrat [Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok (Thailand); Sirivisoot, Sirinrath [Department of Biological Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Termsuksawad, Preecha, E-mail: preecha.ter@kmutt.ac.th [Division of Materials Technology, School of Energy, Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, ThungKhru, Bangkok 10140 (Thailand)

    2014-08-30

    Highlights: • We found that different anodization time of titanium significantly effects on nanotube length which further impacts adhesion strength of hydroxyapatite coating layers. • Adhesion strength of Hydroxyapatite (HA) coated on titanium dioxide nanotubes is better than that of HA coated on titanium plate. • Hydroxyapatite coated on titanium dioxide nanotubes showed higher cell density and better spreading of MC3T3-E1 cells (bone-forming cells) than that coated on titanium plate surface. - Abstract: Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO{sub 2}) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO{sub 2} nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH{sub 4}F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO{sub 2} nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO{sub 2} nanotubes were found when high viscous electrolyte, NH{sub 4}F in glycerol, was used. Negative voltage (−4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO{sub 2} nanotubes was significantly increased by times. The TiO{sub 2} nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO{sub 2} nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that

  20. Wear Behavior of Plasma Spray Deposited and Post Heat-Treated Hydroxyapatite (HA)-Based Composite Coating on Titanium Alloy (Ti-6Al-4V) Substrate

    Science.gov (United States)

    Kumari, Renu; Majumdar, Jyotsna Dutta

    2018-04-01

    The present study concerns a detailed evaluation of wear resistance property of plasma spray deposited composite hydroxyapatite (HA)-based (HA-50 wt pct TiO2 and HA-10 wt pct ZrO2) bioactive coatings developed on Ti-6Al-4V substrate and studying the effect of heat treatment on it. Heat treatment of plasma spray deposited samples has been carried out at 650 °C for 2 hours (for HA-50 wt pct TiO2 coating) and at 750 °C for 2 hours (for HA-10 wt pct ZrO2 coating). There is significant deterioration in wear resistance for HA-50 wt pctTiO2 coating and a marginal deterioration in wear resistance for HA-10 wt pct ZrO2 coating in as-sprayed state (as compared to as-received Ti-6Al-4V) which is, however, improved after heat treatment. The coefficient of friction is marginally increased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings in as-sprayed condition as compared to Ti-6Al-4V substrate. However, coefficient of friction is decreased for both HA-50 wt pct TiO2 and HA-10 wt pct ZrO2 coatings after heat-treated condition as compared to Ti-6Al-4V substrate. The maximum improvement in wear resistance property is, however, observed for HA-10 wt pct ZrO2 sample after heat treatment. The mechanism of wear has been investigated.

  1. The effects of autoclave sterilization on the cyclic fatigue resistance of ProTaper Universal, ProTaper Next, and ProTaper Gold nickel-titanium instruments.

    Science.gov (United States)

    Özyürek, Taha; Yılmaz, Koray; Uslu, Gülşah

    2017-11-01

    It was aimed to compare the cyclic fatigue resistances of ProTaper Universal (PTU), ProTaper Next (PTN), and ProTaper Gold (PTG) and the effects of sterilization by autoclave on the cyclic fatigue life of nickel-titanium (NiTi) instruments. Eighty PTU, 80 PTN, and 80 PTG were included to the present study. Files were tested in a simulated canal. Each brand of the NiTi files were divided into 4 subgroups: group 1, as received condition; group 2, pre-sterilized instruments exposed to 10 times sterilization by autoclave; group 3, instruments tested were sterilized after being exposed to 25%, 50%, and 75% of the mean cycles to failure, then cycled fatigue test was performed; group 4, instruments exposed to the same experiment with group 3 without sterilization. The number of cycles to failure (NCF) was calculated. The data was statistically analyzed by using one-way analysis of variance and post hoc Tukey tests. PTG showed significantly higher NCF than PTU and PTN in group 1 ( p Autoclaving increased the cyclic fatigue resistances of PTN and PTG.

  2. Calcium phosphate-based coatings on titanium and its alloys.

    Science.gov (United States)

    Narayanan, R; Seshadri, S K; Kwon, T Y; Kim, K H

    2008-04-01

    Use of titanium as biomaterial is possible because of its very favorable biocompatibility with living tissue. Titanium implants having calcium phosphate coatings on their surface show good fixation to the bone. This review covers briefly the requirements of typical biomaterials and narrowly focuses on the works on titanium. Calcium phosphate ceramics for use in implants are introduced and various methods of producing calcium phosphate coating on titanium substrates are elaborated. Advantages and disadvantages of each type of coating from the view point of process simplicity, cost-effectiveness, stability of the coatings, coating integration with the bone, cell behavior, and so forth are highlighted. Taking into account all these factors, the efficient method(s) of producing these coatings are indicated finally.

  3. Endodontic Shaping Performance Using Nickel–Titanium Hand and Motor ProTaper Systems by Novice Dental Students

    OpenAIRE

    Tu, Ming-Gene; Chen, San-Yue; Huang, Heng-Li; Tsai, Chi-Cheng

    2008-01-01

    Preparing a continuous tapering conical shape and maintaining the original shape of a canal are obligatory in root canal preparation. The purpose of this study was to compare the shaping performance in simulated curved canal resin blocks of the same novice dental students using hand-prepared and engine-driven nickel–titanium (NiTi) rotary ProTaper instruments in an endodontic laboratory class. Methods: Twenty-three fourth-year dental students attending China Medical University Dental Schoo...

  4. HVOF-Sprayed Nano TiO2-HA Coatings Exhibiting Enhanced Biocompatibility

    Science.gov (United States)

    Lima, R. S.; Dimitrievska, S.; Bureau, M. N.; Marple, B. R.; Petit, A.; Mwale, F.; Antoniou, J.

    2010-01-01

    Biomedical thermal spray coatings produced via high-velocity oxy-fuel (HVOF) from nanostructured titania (n-TiO2) and 10 wt.% hydroxyapatite (HA) (n-TiO2-10wt.%HA) powders have been engineered as possible future alternatives to HA coatings deposited via air plasma spray (APS). This approach was chosen due to (i) the stability of TiO2 in the human body (i.e., no dissolution) and (ii) bond strength values on Ti-6Al-4V substrates more than two times higher than those of APS HA coatings. To explore the bioperformance of these novel materials and coatings, human mesenchymal stem cells (hMSCs) were cultured from 1 to 21 days on the surface of HVOF-sprayed n-TiO2 and n-TiO2-10 wt.%HA coatings. APS HA coatings and uncoated Ti-6Al-4V substrates were employed as controls. The profiles of the hMSCs were evaluated for (i) cellular proliferation, (ii) biochemical analysis of alkaline phosphatase (ALP) activity, (iii) cytoskeleton organization (fluorescent/confocal microscopy), and (iv) cell/substrate interaction via scanning electron microscopy (SEM). The biochemical analysis indicated that the hMSCs cultured on n-TiO2-10 wt.%HA coatings exhibited superior levels of bioactivity than hMSCs cultured on APS HA and pure n-TiO2 coatings. The cytoskeleton organization demonstrated a higher degree of cellular proliferation on the HVOF-sprayed n-TiO2-10wt.%HA coatings when compared to the control coatings. These results are considered promising for engineering improved performance in the next generation of thermally sprayed biomedical coatings.

  5. Characterization, Corrosion Resistance, and Cell Response of High-Velocity Flame-Sprayed HA and HA/TiO2 Coatings on 316L SS

    Science.gov (United States)

    Singh, Tejinder Pal; Singh, Harpreet; Singh, Hazoor

    2012-09-01

    The main aim of this study is to evaluate corrosion and biocompatibility behavior of thermal spray hydroxyapatite (HA) and hydroxyapatite/titania bond (HA/TiO2)-coated 316L stainless steel (316L SS). In HA/TiO2 coatings, TiO2 was used as a bond coat between HA top coat and 316L SS substrate. The coatings were characterized by x-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy, and corrosion resistance determined for the uncoated substrate and the two coatings. The biological behavior was investigated by the cell culture studies using osteosarcoma cell line KHOS-NP (R-970-5). The corrosion resistance of the steel was found to increase after the deposition of the HA and HA/TiO2 bond coatings. Both HA, as well as, HA/TiO2 coatings exhibit excellent bond strength of 49 and 47 MPa, respectively. The cell culture studies showed that HA-coated 316L SS specimens appeared more biocompatible than the uncoated and HA/TiO2-coated 316L SS specimens.

  6. Nickel and titanium nanoboride composite coating

    International Nuclear Information System (INIS)

    Efimova, K A; Galevsky, G V; Rudneva, V V; Kozyrev, N A; Orshanskaya, E G

    2015-01-01

    Electrodeposition conditions, structural-physical and mechanical properties (microhardness, cohesion with a base, wear resistance, corrosion currents) of electroplated composite coatings on the base of nickel with nano and micro-powders of titanium boride are investigated. It has been found out that electro-crystallization of nickel with boride nanoparticles is the cause of coating formation with structural fragments of small sizes, low porosity and improved physical and mechanical properties. Titanium nano-boride is a component of composite coating, as well as an effective modifier of nickel matrix. Nano-boride of the electrolyte improves efficiency of the latter due to increased permissible upper limit of the cathodic current density. (paper)

  7. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation

    Directory of Open Access Journals (Sweden)

    Indu Bajpai

    2016-01-01

    Full Text Available Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass was coated on sintered hydroxyapatite (HA and HA-TCP (TCP stands for tricalcium phosphate samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs. Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs.

  8. Recent Developments in Suspension Plasma Sprayed Titanium Oxide and Hydroxyapatite Coatings

    Science.gov (United States)

    Jaworski, R.; Pawlowski, L.; Pierlot, C.; Roudet, F.; Kozerski, S.; Petit, F.

    2010-01-01

    The paper aims at reviewing of the recent studies related to the development of suspension plasma sprayed TiO2 and Ca5(PO4)3OH (hydroxyapatite, HA) coatings as well as their multilayer composites obtained onto stainless steel, titanium and aluminum substrates. The total thickness of the coatings was in the range 10 to 150 μm. The suspensions on the base of distilled water, ethanol and their mixtures were formulated with the use of fine commercial TiO2 pigment crystallized as rutile and HA milled from commercial spray-dried powder or synthesized from calcium nitrate and ammonium phosphate in an optimized reaction. The powder was crystallized as hydroxyapatite. Pneumatic and peristaltic pump liquid feeders were applied. The injection of suspension to the plasma jet was studied carefully with the use of an atomizer injector or a continuous stream one. The injectors were placed outside or inside of the anode-nozzle of the SG-100 plasma torch. The stream of liquid was tested under angle right or slightly backwards with regard to the torch axis. The sprayed deposits were submitted to the phase analysis by the use of x-ray diffraction. The content of anatase and rutile was calculated in the titanium oxide deposits as well as the content of the decomposition phases in the hydroxyapatite ones. The micro-Raman spectroscopy was used to visualize the area of appearance of some phases. Scratch test enabled to characterize the adhesion of the deposits, their microhardness and friction coefficient. The electric properties including electron emission, impedance spectroscopy, and dielectric properties of some coatings were equally tested.

  9. Hydroxyapatite coating by biomimetic method on titanium alloy ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 6. Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF. S Bharati M K Sinha ... Optical microscopic and SEM observations revealed the deposition of Ca–P layer on the titanium alloy by both the methods. Thickness of coating ...

  10. Effect of dissolution/precipitation on the residual stress redistribution of plasma-sprayed hydroxyapatite coating on titanium substrate in simulated body fluid (SBF).

    Science.gov (United States)

    Rakngarm Nimkerdphol, Achariya; Otsuka, Yuichi; Mutoh, Yoshiharu

    2014-08-01

    The residual stress distributions in hydroxyapatite (HAp) coating with and without mixed hydroxyapatite/titanium (HAp/Ti) bond coating on commercially pure Titanium substrate (cp-Ti) were evaluated by Raman piezo-spectroscopy analysis. The Raman shifted position 962cm(-1), which is the symmetrical stretching of surrounded oxygen atoms with phosphorous atom ( [Formula: see text] ), was referred to analyses of stress dependency. The piezo-spectroscopic coefficient, which is a Raman shift value per stress (cm(-1)/GPa), was fitted from the result of four-points bending test of rectangular HAp bar and as-sprayed HAp on Zn plate. The calculated values were 3.89cm(-1)/GPa for the former and 7.11cm(-1)/GPa for the latter. By using these calibrations, the compressive residual stress in HAp coating with HAp/Ti bond coating (HA-B) has been found to be distributed in the range of -137MPa to -75MPa. For the heat-treated HAp coating (HA-B-HT) specimen, the compressive residual stresses placed in the range of -40--22MPa. The changes in the values of residual stress of the HAp coating after immersion in SBF were also evaluated. The residual stress in HA-WB specimens tend to change from compressive to tensile after 30 days immersion. The HA-B-HT specimens exhibited similar behavior and reached to zero stress after the immersion. The mechanism of the changes in residual stress would be the effect of stress redistribution around melted calcium phosphate particles to remained HAp splats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Design and fabrication of carbon fibers with needle-like nano-HA coating to reinforce granular nano-HA composites.

    Science.gov (United States)

    Wang, Xudong; Zhao, Xueni; Zhang, Li; Wang, Wanying; Zhang, Jing; He, Fuzhen; Yang, Jianjun

    2017-08-01

    Carbon fibers (CFs) with needle-like nano-hydroxyapatite (nHA) coating were first used as reinforcing materials named nHA-CFs to improve the mechanical properties of pure HA. A powder mixture containing nHA-CFs and granular nano-HA (gHA) was directly sintered by hot pressing at appropriate sintering pressure and temperature. A three-phase nHA-CFs/gHA composite was designed, fabricated, and used as an artificial bone. Results show that the bending strengths of the nHA-CFs/gHA composite are approximately 41.1% and 59.2% higher than those of CFs/gHA composite and pure HA, respectively. The possible reinforcing mechanism of nHA-CFs in the composite is also proposed at the end. When nHA-CFs are applied for preparation of nHA-CFs/gHA composites, the internal stress on its phase boundary with gHA matrix generated during cooling of sintered is significantly reduced due to the presence of the nHA coatings. It infers that nHA coatings on CFs might act as a bridge to control the forming of interfacial gaps between the gHA matrix and the CFs effectively. Our work provides additional insights into the feasibility of nHA-CFs/gHA composites as load-bearing implant materials in clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Enhanced osteoblast adhesion to drug-coated anodized nanotubular titanium surfaces

    Directory of Open Access Journals (Sweden)

    George E Aninwene II

    2008-06-01

    Full Text Available George E Aninwene II1, Chang Yao2, Thomas J Webster21Department of Biochemical Engineering, University of Maryland, Baltimore, MD; 2Division of Engineering, Brown University, Providence, RI, USAAbstract: Current orthopedic implants have functional lifetimes of only 10–15 years due to a variety of reasons including infection, extensive inflammation, and overall poor osseointegration (or a lack of prolonged bonding of the implant to juxtaposed bone. To improve properties of titanium for orthopedic applications, this study anodized and subsequently coated titanium with drugs known to reduce infection (penicillin/streptomycin and inflammation (dexamethasone using simple physical adsorption and the deposition of such drugs from simulated body fluid (SBF. Results showed improved drug elution from anodized nanotubular titanium when drugs were coated in the presence of SBF for up to 3 days. For the first time, results also showed that the simple physical adsorption of both penicillin/streptomycin and dexamethasone on anodized nanotubular titanium improved osteoblast numbers after 2 days of culture compared to uncoated unanodized titanium. In addition, results showed that depositing such drugs in SBF on anodized titanium was a more efficient method to promote osteoblast numbers compared to physical adsorption for up to 2 days of culture. In addition, osteoblast numbers increased on anodized titanium coated with drugs in SBF for up to 2 days of culture compared to unanodized titanium. In summary, compared to unanodized titanium, this preliminary study provided unexpected evidence of greater osteoblast numbers on anodized titanium coated with either penicillin/streptomycin or dexamethasone using simple physical adsorption or when coated with SBF; results which suggest the need for further research on anodized titanium orthopedic implants possessing drug-eluting nanotubes.Keywords: anodization, titanium, adhesion, simulated body fluid, nanotubes

  13. Modeling and optimization of kerf taper and surface roughness in laser cutting of titanium alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Arun Kumar; Dubey, Avanish Kumar [Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh (India)

    2013-07-15

    Laser cutting of titanium and its alloys is difficult due to it's poor thermal conductivity and chemical reactivity at elevated temperatures. But demand of these materials in different advanced industries such as aircraft, automobile and space research, require accurate geometry with high surface quality. The present research investigates the laser cutting process behavior of titanium alloy sheet (Ti-6Al-4V) with the aim to improve geometrical accuracy and surface quality by minimizing the kerf taper and surface roughness. The data obtained from L{sub 27} orthogonal array experiments have been used for developing neural network (NN) based models of kerf taper and surface roughness. A hybrid approach of neural network and genetic algorithm has been proposed and applied for the optimization of different quality characteristics. The optimization results show considerable improvements in both the quality characteristics. The results predicted by NN models are well in agreement with the experimental data.

  14. Corrosion Behavior of Titanium Based Ceramic Coatings Deposited on Steels

    OpenAIRE

    Ali, Rania

    2016-01-01

    Titanium based ceramic films are increasingly used as coating materials because of their high hardness, excellent wear resistance and superior corrosion resistance. Using electrochemical and spectroscopic techniques, the electrochemical properties of different coatings deposited on different steels under different conditions were examined in this study. Thin films of titanium nitride (TiN), titanium diboride (TiB2), and titanium boronitride with different boron concentrations (TiBN-1&2) w...

  15. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    International Nuclear Information System (INIS)

    Veronesi, Francesca; Giavaresi, Gianluca; Fini, Milena; Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Panzini, Gianluca; Misiano, Carlo; Palattella, Alberto; Selleri, Paolo; Di Girolamo, Nicola; Garbarino, Viola; Politi, Laura; Scandurra, Roberto

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm 2 /μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C gr , TiC and TiO x . • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  16. Laser treatment of plasma sprayed HA coatings

    NARCIS (Netherlands)

    Khor, KA; Vreeling, A; Dong, ZL; Cheang, P

    1999-01-01

    Laser treatment was conducted on plasma sprayed hydroxyapatite (HA) coatings using a Nd-YAG pulse laser. Various laser parameters were investigated. The results showed that the HA surface melted when an energy level of greater than or equal to 2 J and a spot size of 2 mm was employed during

  17. Electrochemical surface modification of titanium in dentistry.

    Science.gov (United States)

    Kim, Kyo-Han; Ramaswamy, Narayanan

    2009-01-01

    Titanium and its alloys have good biocompatibility with body cells and tissues and are widely used for implant applications. However, clinical procedures place more stringent and tough requirements on the titanium surface necessitating artificial surface treatments. Among the many methods of titanium surface modification, electrochemical techniques are simple and cheap. Anodic oxidation is the anodic electrochemical technique while electrophoretic and cathodic depositions are the cathodic electrochemical techniques. By anodic oxidation it is possible to obtain desired roughness, porosity and chemical composition of the oxide. Anodic oxidation at high voltages can improve the crystallinity of the oxide. The chief advantage of this technique is doping of the coating of the bath constituents and incorporation of these elements improves the properties of the oxide. Electrophoretic deposition uses hydroxyapatite (HA) powders dispersed in a suitable solvent at a particular pH. Under these operating conditions these particles acquire positive charge and coatings are obtained on the cathodic titanium by applying an external electric field. These coatings require a post-sintering treatment to improve the coating properties. Cathodic deposition is another type of electrochemical method where HA is formed in situ from an electrolyte containing calcium and phosphate ions. It is also possible to alter structure and/or chemistry of the obtained deposit. Nano-grained HA has higher surface energy and greater biological activity and therefore emphasis is being laid to produce these coatings by cathodic deposition.

  18. Dense and porous titanium substrates with a biomimetic calcium phosphate coating

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.A., E-mail: aantunesr@yahoo.com.br [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil); Balestra, R.M. [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil); Rocha, M.N. [Metallurgical and Materials Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Peripolli, S.B. [Materials Metrology Division, National Institute of Metrology, Normalization and Quality, No. 50 Nossa Senhora das Gracas Street, Building 3, 25250-020 Duque de Caxias, RJ (Brazil); Andrade, M.C. [Polytechnic Institute of Rio de Janeiro, Rio de Janeiro State University, s/n, Alberto Rangel Street, 28630-050 Nova Friburgo, RJ (Brazil); Pereira, L.C. [Metallurgical and Materials Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, M.V. [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer A biomimetic coating method with simplified solution is proposed. Black-Right-Pointing-Pointer Titanium substrates are submitted to chemical and heat treatments. Black-Right-Pointing-Pointer Titanium substrates are coated with biocompatible calcium phosphate phases. Black-Right-Pointing-Pointer The simplified solution shows potential to be applied as a coating technique. - Abstract: The present work studied a biomimetic method using a simplified solution (SS) with calcium and phosphorus ions for coating titanium substrates, in order to improve their bioactivity. Commercially pure titanium dense sheet, microporous and macroporous titanium samples, both produced by powder metallurgy, were treated in NaOH solution followed by heat-treating and immersed in SS for 7, 14 or 21 days. The samples characterization was performed by quantitative metallographic analysis, confocal scanning optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and low angle X-ray diffraction. The results showed coatings with calcium phosphate precipitation in all samples, with globular or plate-like morphology, typical of hydroxyapatite and octacalcium phosphate, respectively, indicating that the solution (SS) has potential for coating titanium substrates. In addition, the different surfaces of substrates had an effect on the formed calcium phosphate phase and thickness of coatings, depending on the substrate type and imersion time in the simplified solution.

  19. Biological and immunotoxicity evaluation of antimicrobial peptide-loaded coatings using a layer-by-layer process on titanium

    Science.gov (United States)

    Shi, Jue; Liu, Yu; Wang, Ying; Zhang, Jing; Zhao, Shifang; Yang, Guoli

    2015-11-01

    The prevention and control of peri-implantitis is a challenge in dental implant surgery. Dental implants with sustained antimicrobial coating are an ideal way of preventing peri-implantitis. This study reports development of a non- immunotoxicity multilayered coating on a titanium surface that had sustained antimicrobial activity and limited early biofilm formation. In this study, the broad spectrum AMP, Tet213, was linked to collagen IV through sulfo-SMPB and has been renamed as AMPCol. The multilayer AMPCol coatings were assembled on smooth titanium surfaces using a LBL technique. Using XPS, AFM, contact angle analysis, and QCM, layer-by-layer accumulation of coating thickness was measured and increased surface wetting compared to controls was confirmed. Non-cytotoxicity to HaCaT and low erythrocyte hemolysis by the AMPCol coatings was observed. In vivo immunotoxicity assays showed IP administration of AMPCol did not effect serum immunoglobulin levels. This coating with controlled release of AMP decreased the growth of both a Gram-positive aerobe (Staphylococcus aureus) and a Gram-negative anaerobe (Porphyromonas gingivalis) up to one month. Early S. aureus biofilm formation was inhibited by the coating. The excellent long-term sustained antimicrobial activity of this multilayer coating is a potential method for preventing peri-implantitis through coated on the neck of implants before surgery.

  20. The osteogenic capacity of biomimetic hierarchical micropore/nanorod-patterned Sr-HA coatings with different interrod spacings.

    Science.gov (United States)

    Zhou, Jianhong; Li, Bo; Han, Yong; Zhao, Lingzhou

    2016-07-01

    Advanced titanium based bone implant with fast established, rigid and stable osseointegration is stringently needed in clinic. Here the hierarchical micropore/nanorod-patterned strontium doped hydroxyapatite (Ca9Sr1(PO4)6(OH)2, Sr1-HA) coatings (MNRs) with different interrod spacings varying from about 300 to 33nm were developed. MNRs showed dramatically differential biological performance closely related to the interrod spacing. Compared to micropore/nanogranule-patterned Sr1-HA coating (MNG), MNRs with an interrod spacing of larger than 137nm resulted in inhibited in vitro mesenchymal stem cell functions and in vivo osseointegration, while those of smaller than 96nm gave rise to dramatically enhanced the biological effect, especially those of mean 67nm displayed the best effect. The differential biological effect of MNRs was related to their modulation on the focal adhesion mediated mechanotransduction. These results suggest that MNRs with a mean interrod spacing of 67nm may give rise to an advanced implant of improved clinical performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effect of amorphous fluorinated coatings on photocatalytic properties of anodized titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Persico, Federico [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Sansotera, Maurizio, E-mail: maurizio.sansotera@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy); Diamanti, Maria Vittoria [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Magagnin, Luca; Venturini, Francesco; Navarrini, Walter [Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131, Milano (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2013-10-31

    The photocatalytic activity promoted by anodized titanium surfaces coated with different amorphous perfluoropolymers was evaluated. A copolymer between tetrafluoroethylene and perfluoro-4-trifluoromethoxy-1,3-dioxole and two perfluoropolyethers containing ammonium phosphate and triethoxysilane functionalities, respectively, were tested as coating materials. These coatings revealed good adhesion to the anodized titanium substrate and conferred to it both hydrophobicity and oleophobicity. The photocatalytic activity of the coating on anodized titanium was evaluated by monitoring the degradation of stearic acid via Infrared spectroscopy. The degradation rate of stearic acid was reduced but not set to zero by the presence of the fluorinated coatings, leading to the development of advanced functional coatings. The morphological variations of the coatings as a result of photocatalysis were also determined by atomic force microscopy. - Highlights: • Coated anodized titanium surfaces show a decreased wettability. • Evaluation of the stability of perfluorinated coatings towards photocatalysis. • Amorphous perfluorinated coatings do not hinder photocatalytic activity.

  2. Al2O3 coating fabricated on titanium by cathodic microarc electrodeposition

    International Nuclear Information System (INIS)

    Jin Qian; Xue Wenbin; Li Xijin; Zhu Qingzhen; Wu Xiaoling

    2009-01-01

    A Al 2 O 3 coating was prepared on titanium substrate by cathodic microarc electrodeposition method in Al(NO 3 ) 3 ethanol solution. The coating thickness was about 80 μm when a 400 V cathodic potential was applied. The morphology and phase constituent of the Al 2 O 3 coating were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The isothermal oxidation at 700 deg. C and electrochemical corrosion behavior of the coated titanium were analyzed. The coating was composed of γ-Al 2 O 3 and little α-Al 2 O 3 phases. The oxidation resistance of the titanium subjected to cathodic microarc treatment was obviously improved. The polarization test indicated that the coated titanium has better corrosion resistance.

  3. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Veronesi, Francesca [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Giavaresi, Gianluca; Fini, Milena [Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute, Via Di Barbiano 1/10, Bologna 40136 (Italy); Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Department Rizzoli RIT, Via Di Barbiano 1/10, Bologna 40136 (Italy); Longo, Giovanni [CNR Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Roma (Italy); Ioannidu, Caterina Alexandra; Scotto d' Abusco, Anna [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Superti, Fabiana; Panzini, Gianluca [Dept. of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 Roma (Italy); Misiano, Carlo [Romana Film Sottili, Anzio, Roma (Italy); Palattella, Alberto [Dept. of Clinical Sciences and Translational Medicine, Tor Vergata University, Via Montpellier 1, 00133 Roma (Italy); Selleri, Paolo; Di Girolamo, Nicola [Exotic Animals Clinic, Via S. Giovannini 53, 00137 Roma (Italy); Garbarino, Viola [Dept. of Radiology, S.M. Goretti Hospital, Via G. Reni 2, 04100 Latina (Italy); Politi, Laura [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy); Scandurra, Roberto, E-mail: roberto.scandurra@uniroma1.it [Dept. of Biochemical Sciences, Sapienza University of Roma, Ple A. Moro 5, 00185 Roma (Italy)

    2017-01-01

    Titanium implants coated with a 500 nm nanostructured layer, deposited by the Ion Plating Plasma Assisted (IPPA) technology, composed of 60% graphitic carbon, 25% titanium oxides and 15% titanium carbide were implanted into rabbit femurs whilst into the controlateral femurs uncoated titanium implants were inserted as control. At four time points the animals were injected with calcein green, xylenol orange, oxytetracycline and alizarin. After 2, 4 and 8 weeks femurs were removed and processed for histology and static and dynamic histomorphometry for undecalcified bone processing into methylmethacrylate, sectioned, thinned, polished and stained with Toluidine blue and Fast green. The overall bone-implant contacts rate (percentage of bone-implant contacts/weeks) of the TiC coated implant was 1.6 fold than that of the uncoated titanium implant. The histomorphometric analyses confirmed the histological evaluations. More precisely, higher Mineral Apposition Rate (MAR, μm/day) (p < 0.005) and Bone Formation Rate (BFR, μm{sup 2}/μm/day) (p < 0.0005) as well as Bone Implant Contact (Bic) and Bone Ingrowth values (p < 0.0005) were observed for the TiC coated implants compared to uncoated implants. In conclusion the hard nanostructured TiC layer protects the bulk titanium implant against the harsh conditions of biological tissues and in the same time, stimulating adhesion, proliferation and activity of osteoblasts, induces a better bone-implant contacts of the implant compared to the uncoated titanium implant. - Highlights: • Ti implants were coated with a nanostructured film composed of C{sub gr}, TiC and TiO{sub x}. • The TiC layer stimulates adhesion, proliferation and activity of osteoblasts. • Uncoated and TiC coated titanium implants were implanted in rabbit femurs. • Bone-implant contacts of TiC coated implants were higher than that of uncoated. • Mineral Apposition Rate of TiC coated implants were higher than that of uncoated.

  4. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Zhen [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Renfeng [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Zhuo, Xianglong, E-mail: doctorzhuo@139.com [Department of Spinal Surgery, Liuzhou Worker' s Hospital, Liuzhou 545001 (China); Li, Zhaoyang, E-mail: zyli@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Huang, Yongcan [Orthopedics Research Center, Peking University Shenzhen Hospital, Shenzhen 518036 (China); Ma, Lili; Cui, Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhu, Shengli [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Liang, Yanqin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Yunde; Bao, Huijing; Li, Xue; Huo, Qianyu; Liu, Zhili [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Yang, Xianjin, E-mail: xjyang@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2017-02-01

    Implant-related infection in primary total joint prostheses has attracted considerable research attention. As a measure to improve the antimicrobial properties of implant materials, silver (Ag) was incorporated into calcium phosphate (CaP) coatings on Titanium (Ti) via a hydrothermal method. Further, strontium (Sr) was added as a binary dopant to reduce the cytotoxicity of Ag in the coatings. Results showed that the CaP coatings were uniformly deposited on Ti with enhanced hydrophilicity and nanoscale surface roughness. Moreover, cell adhesion, proliferation, and differentiation were improved after the CaP coating deposition. The antibacterial properties of the coatings were distinctly improved by the incorporation of Ag, but the cell proliferation and differentiation were significantly decreased. Owing to the incorporation of Sr, the Ag-CaP coatings were able to effectively counteract the negative effects of Ag while maintaining good antibacterial properties. In summary, hydrothermally deposited CaP coatings doped with Ag and Sr exhibit excellent biocompatibility and antimicrobial activity. Thus, such co-doped CaP coatings have considerable potential for orthopaedic implant modification. - Highlights: • Ag- and Sr-substituted HA coating is deposited on titanium by hydrothermal method. • This coating shows a remarkable antibacterial activity and good biocompatibility. • The coating process is simple and suitable for large-scale fabrication. • The possible mechanism of Sr{sup 2+} is proposed.

  5. Endodontic shaping performance using nickel-titanium hand and motor ProTaper systems by novice dental students.

    Science.gov (United States)

    Tu, Ming-Gene; Chen, San-Yue; Huang, Heng-Li; Tsai, Chi-Cheng

    2008-05-01

    Preparing a continuous tapering conical shape and maintaining the original shape of a canal are obligatory in root canal preparation. The purpose of this study was to compare the shaping performance in simulated curved canal resin blocks of the same novice dental students using hand-prepared and engine-driven nickel-titanium (NiTi) rotary ProTaper instruments in an endodontic laboratory class. Twenty-three fourth-year dental students attending China Medical University Dental School prepared 46 simulated curved canals in resin blocks with two types of NiTi rotary systems: hand and motor ProTaper files. Composite images were prepared for estimation. Material removed, canal width and canal deviation were measured at five levels in the apical 4 mm of the simulated curved canals using AutoCAD 2004 software. Data were analyzed using Wilcoxon's rank-sum test. The hand ProTaper group cut significantly wider than the motor rotary ProTaper group in the outer wall, except for the apical 0 mm point. The total canal width was cut significantly larger in the hand group than in the motor group. There was no significant difference between the two groups in centering canal shape, except at the 3 mm level. These findings show that the novice students prepared the simulated curved canal that deviated more outwardly from apical 1 mm to 4 mm using the hand ProTaper. The ability to maintain the original curvature was better in the motor rotary ProTaper group than in the hand ProTaper group. Undergraduate students, if following the preparation sequence carefully, could successfully perform canal shaping by motor ProTaper files and achieve better root canal geometry than by using hand ProTaper files within the same teaching and practicing sessions.

  6. Porous Structure Characterization in Titanium Coating for Surgical Implants

    Directory of Open Access Journals (Sweden)

    M.V. Oliveira

    2002-09-01

    Full Text Available Powder metallurgy techniques have been used to produce controlled porous structures, such as the porous coatings applied for dental and orthopedic surgical implants, which allow bony tissue ingrowth within the implant surface improving fixation. This work presents the processing and characterization of titanium porous coatings of different porosity levels, processed through powder metallurgy techniques. Pure titanium sponge powders were used for coating and Ti-6Al7Nb powder metallurgy rods were used as substrates. Characterization was made through quantitative metallographic image analysis using optical light microscope for coating porosity data and SEM analysis for evaluation of the coating/substrate interface integrity. The results allowed optimization of the processing parameters in order to obtain porous coatings that meet the requirements for use as implants.

  7. A new method for production of titanium vapor and synthesis of titanium nitride coatings

    Science.gov (United States)

    Grigoriev, Sergey N.; Melnik, Yury A.; Metel, Alexander S.; Volosova, Marina A.

    2018-03-01

    It is proposed to synthesize on machine parts and cutting tools wear-resistant titanium nitride coatings with the help of the hollow-cathode glow discharge, a molybdenum crucible for titanium evaporation being used as the anode of the discharge and a process vacuum chamber being used as the hollow cathode. The research revealed that at the anode surface area less than a critical value S* = (2m/M)1/2S, where S is the area of the chamber walls, m is the mass of electrons and M is the mass of ions, the anode fall of potential is positive and grows from ˜50 V at argon pressure p = 0.2 Pa to ˜2 kV at p = 0.02 Pa. At the discharge current I = 0.6 A electrons accelerated by the anode fall of 0.9 kV transport into the crucible with the inner diameter of 12 mm the power of ˜0.54 kW, which allows the titanium evaporation and the coating deposition rate of 5 µm·h-1 on a substrate distanced from the crucible at 100 mm. After the argon is replaced with the nitrogen, titanium nitride coating without titanium droplets is synthesized the deposition rate amounting to about the same value.

  8. Mechanical stability of titanium and plasma polymer nanoclusters in nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Palesch, E. [Institute of Materials Chemistry, Brno University of Technology, Brno (Czech Republic); Marek, A. [HVM Plasma, spol. s r.o., Prague (Czech Republic); Solar, P.; Kylian, O. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Vyskocil, J. [HVM Plasma, spol. s r.o., Prague (Czech Republic); Biederman, H. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Cech, V., E-mail: cech@fch.vutbr.cz [Institute of Materials Chemistry, Brno University of Technology, Brno (Czech Republic)

    2013-10-01

    The mechanical stability of nanoclusters embedded in nanocomposite coatings was investigated by scratch and wear tests supported by atomic force microscopy using surface topography mode. Titanium and plasma polymer nanoclusters were deposited on planar substrates (glass, titanium) using a magnetron-based gas aggregation cluster source. The deposited clusters were overcoated with a thin titanium film of different thicknesses to stabilize the position of the clusters in the nanocomposite coating. Nanotribological measurements were carried out to optimize the thickness of the overcoating film for sufficient interfacial adhesion of the cluster/film system. - Highlights: ► Titanium and plasma polymer nanoclusters were overcoated with thin titanium film. ► The mechanical stability of nanoclusters was characterized by nanotribological tests. ► The film thickness was optimized to stabilize the position of the clusters in coating.

  9. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    Science.gov (United States)

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Thermo-mechanical modeling of laser treatment on titanium cold-spray coatings

    Science.gov (United States)

    Paradiso, V.; Rubino, F.; Tucci, F.; Astarita, A.; Carlone, P.

    2018-05-01

    Titanium coatings are very attractive to several industrial fields, especially aeronautics, due to the enhanced corrosion resistance and wear properties as well as improved compatibility with carbon fiber reinforced plastic (CFRP) materials. Cold sprayed titanium coatings, among the others deposition processes, are finding a widespread use in high performance applications, whereas post-deposition treatments are often used to modify the microstructure of the cold-sprayed layer. Laser treatments allow one to noticeably increase the superficial properties of titanium coatings when the process parameters are properly set. On the other hand, the high heat input required to melt titanium particles may result in excessive temperature increase even in the substrate. This paper introduces a thermo-mechanical model to simulate the laser treatment effects on a cold sprayed titanium coating as well as the aluminium substrate. The proposed thermo-mechanical finite element model considers the transient temperature field due to the laser source and applied boundary conditions using them as input loads for the subsequent stress-strain analysis. Numerical outcomes highlighted the relevance of thermal gradients and thermally induced stresses and strains in promoting the damage of the coating.

  11. DEVELOPMENT OF LASER CLADDING WEAR-RESISTANT COATING ON TITANIUM ALLOYS

    OpenAIRE

    RUILIANG BAO; HUIJUN YU; CHUANZHONG CHEN; BIAO QI; LIJIAN ZHANG

    2006-01-01

    Laser cladding is an advanced surface modification technology with broad prospect in making wear-resistant coating on titanium alloys. In this paper, the influences of laser cladding processing parameters on the quality of coating are generalized as well as the selection of cladding materials on titanium alloys. The microstructure characteristics and strengthening mechanism of coating are also analyzed. In addition, the problems and precaution measures in the laser cladding are pointed out.

  12. Effect of cathodic polarization on coating doxycycline on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no

    2016-06-01

    Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. - Highlights: • Titanium hydride was found not to be involved in immobilization of doxycycline. • Doxycycline coating was strongly bound to a modified surface oxide layer. • Effect of coatings tested using a dynamic bacteria assay based on bioluminescence. • Topmost layer of adsorbed doxycycline was shown to have strong antibacterial effect.

  13. An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating.

    Science.gov (United States)

    Dong, Ying; Yang, Jingxin; Wang, Liqiang; Ma, Xiao; Huang, Yifei; Qiu, Zhiye; Cui, Fuzhai

    2014-03-01

    Titanium framework keratoprosthesis has been commonly used in the severe corneal blindness, but the tissue melting occurred frequently around titanium. Since hydroxyapatite has been approved to possess a good tissue integration characteristic, nanostructured hydroxyapatite was coated on the surface of titanium through the aerosol deposition method. In this study, nanostructured hydroxyapatite coating was characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and auger electronic spectrometer. Biological evaluations were performed with rabbit cornea fibroblast in vitro and an animal model in vivo. The outcomes showed the coating had a grain-like surface topography and a good atomic mixed area with substrate. The rabbit cornea fibroblasts appeared a good adhesion on the surface of nanostructured hydroxyapatite in vitro. In the animal model, nanostructured hydroxyapatite-titanium implants were stably retained in the rabbit cornea, and by contrast, the corneal stroma became thinner anterior to the implants in the control. Therefore, our findings proved that nanostructured hydroxyapatite-titanium could not only provide an improved bond for substrate but also enhance the tissue integration with implants in host. As a promising material, nanostructured hydroxyapatite-titanium-based keratoprosthesis prepared by the aerosol deposition method could be utilized for the corneal blindness treatment.

  14. Hydroxyapatite in total hip arthroplasty. Our experience with a plasma spray porous titanium alloy/hydroxyapatite double-coated cementless stem.

    Science.gov (United States)

    Castellini, Iacopo; Andreani, Lorenzo; Parchi, Paolo Domenico; Bonicoli, Enrico; Piolanti, Nicola; Risoli, Francesca; Lisanti, Michele

    2016-01-01

    titanium alloy/hydroxyapatite double coating, this study reported an excellent implant survival rate in a mid-term period with a rate of 1,64% of subsidence in patients with type C of femoral canal but with an optimal HHS and Womac Score results. Regarding this stem, primary stability is guaranteed by trapezoid shape of proximal region and tapering in frontal plane through press-fit technique. Radiological absence of pedestal has been accepted as sign of no excessive stress transmission to distal cortex due to its tapered diaphyseal region. Thanks to the reported data, Authors can consider this double coating a valid choice with an excellent medium-term survival and encouraging subsidence results. Further studies are needed to ensure these results can be replicated.

  15. Carbon nanotube-based coatings on titanium

    Indian Academy of Sciences (India)

    Administrator

    mon method is the deposition of bioactive ceramic mate- rials on the metal ... tion of nanoparticle layer, including carbon nanoparti- ... Coatings made of CNTs provide implants with .... reaches composite of CNT built into titanium oxide formed.

  16. Fabrication and in vitro evaluation of the collagen/hyaluronic acid PEM coating crosslinked with functionalized RGD peptide on titanium.

    Science.gov (United States)

    Huang, Ying; Luo, Qiaojie; Li, Xiaodong; Zhang, Feng; Zhao, Shifang

    2012-02-01

    Surface modification of titanium (Ti) using biomolecules has attracted much attention recently. In this study, a new strategy has been employed to construct a stable and bioactive coating on Ti. To this end, a derivative of hyaluronic acid (HA), i.e. HA-GRGDSPC-(SH), was synthesized. The disulfide-crosslinked Arg-Gly-Asp (RGD)-containing collagen/hyaluronic acid polyelectrolyte membrane (PEM) coating was then fabricated on Ti through the alternate deposition of collagen and HA-GRGDSPC-(SH) with five assembly cycles and subsequent crosslinking via converting free sulphydryl groups into disulfide linkages (RGD-CHC-Ti group). The assembly processes for PEM coating and the physicochemical properties of the coating were carefully characterized. The stability of PEM coating in phosphate-buffered saline solution could be adjusted by the crosslinking degree, while its degradation behaviors in the presence of glutathione were glutathione concentration dependent. The adhesion and proliferation of MC3T3-E1 cells were significantly enhanced in the RGD-CHC-Ti group. Up-regulated bone specific genes, enhanced alkaline phosphatase activity and osteocalcin production, the increased areas of mineralization were also observed in the RGD-CHC-Ti group. These results indicate that the strategy employed herein may function as an effective way to construct stable, RGD-containing bioactive coatings on Ti. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    International Nuclear Information System (INIS)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-01-01

    Highlights: • a-C:Ti nanocomposite coatings were prepared on 316L stainless steel by using R.F. magnetron sputtering method. • Properties of the nanocomposite coatings were analyzed with respect to titanium content. • Corrosion resistance, biocompatibility and hydrophobicity of nanocomposite coating were enhanced with increasing titanium content. • Coating with 2.33 at.% titanium showed superior tribological properties compared to other coatings. - Abstract: Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp"2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  18. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells.

    Science.gov (United States)

    Crosera, Matteo; Prodi, Andrea; Mauro, Marcella; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Pietro; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Filon, Francesca Larese

    2015-08-07

    Titanium dioxide nanoparticles (TiO2NPs) suspensions (concentration 1.0 g/L) in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue(®) and propidium iodide, PI, uptake assays) was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm(2)) while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm(2)). Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10(-4) M (MTT assay), 3.8 × 10(-5) M (AlamarBlue(®) assay), and 7.6 × 10(-4) M (PI uptake, index of a necrotic cell death). Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.

  19. Bone response to a titanium aluminium nitride coating on metallic implants.

    Science.gov (United States)

    Freeman, C O; Brook, I M

    2006-05-01

    The design, surface characteristics and strength of metallic implants are dependant on their intended use and clinical application. Surface modifications of materials may enable reduction of the time taken for osseointegration and improve the biological response of bio-mechanically favourable metals and alloys. The influence of a titanium aluminium nitride (TAN) coating on the response of bone to commercially pure titanium and austenitic 18/8 stainless steel wire is reported. TAN coated and plain rods of stainless steel and commercially pure titanium were implanted into the mid-shaft of the femur of Wistar rats. The femurs were harvested at four weeks and processed for scanning electron and light microscopy. All implants exhibited a favourable response in bone with no evidence of fibrous encapsulation. There was no significant difference in the amount of new bone formed around the different rods (osseoconduction), however, there was a greater degree of shrinkage separation of bone from the coated rods than from the plain rods (p = 0.017 stainless steel and p = 0.0085 titanium). TAN coating may result in reduced osseointegration between bone and implant.

  20. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    International Nuclear Information System (INIS)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-01-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA) 2− and (NH 4 ) 2 HPO 4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method

  1. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Suchanek, Katarzyna, E-mail: Katarzyna.Suchanek@ifj.edu.pl [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Bartkowiak, Amanda [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Gdowik, Agnieszka [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Perzanowski, Marcin [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Kąc, Sławomir [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewica 30, 30-059 Krakow (Poland); Szaraniec, Barbara [Department of Biomaterials, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Suchanek, Mateusz [Department of Chemistry and Physics, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow (Poland); Marszałek, Marta [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland)

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA){sup 2−} and (NH{sub 4}){sub 2}HPO{sub 4} solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method.

  2. Titanium Nitride and Nitrogen Ion Implanted Coated Dental Materials

    Directory of Open Access Journals (Sweden)

    David W. Berzins

    2012-07-01

    Full Text Available Titanium nitride and/or nitrogen ion implanted coated dental materials have been investigated since the mid-1980s and considered in various applications in dentistry such as implants, abutments, orthodontic wires, endodontic files, periodontal/oral hygiene instruments, and casting alloys for fixed restorations. Multiple methodologies have been employed to create the coatings, but detailed structural analysis of the coatings is generally lacking in the dental literature. Depending on application, the purpose of the coating is to provide increased surface hardness, abrasion/wear resistance, esthetics, and corrosion resistance, lower friction, as well as greater beneficial interaction with adjacent biological and material substrates. While many studies have reported on the achievement of these properties, a consensus is not always clear. Additionally, few studies have been conducted to assess the efficacy of the coatings in a clinical setting. Overall, titanium nitride and/or nitrogen ion implanted coated dental materials potentially offer advantages over uncoated counterparts, but more investigation is needed to document the structure of the coatings and their clinical effectiveness.

  3. Obtaining hydroxyapatite coatings on titanium by the biomimetic method

    International Nuclear Information System (INIS)

    Paz, A.; Martin, Y.; Pazos, L. M.; Parodi, M. B.; Ybarra, G. O.; Gonzalez, J. E.

    2011-01-01

    In this work, a study about the deposition of hydroxyapatite on a titanium substrate employing the biomimetic method is presented. A solution with high content of calcium and phosphorus (SCS) was used. In addition, activation of titanium with hydrogen peroxide and hydrochloric acid and a subsequent heat treatment was performed. The characterization of materials used and the coating obtained was carried out by Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). As a result of the activation processes a hydrated titanium oxide was formed. On the active surface, a coating of hydroxyapatite was obtained after a period of 24 h, which has a thickness of about 2-4 μm. (Author) 21 refs.

  4. Titanium-silicon films prepared by spin and dip-coating

    International Nuclear Information System (INIS)

    Nassar, Eduardo J.; Ciuffi, Katia J.; Goncalves, Rogeria R.; Messaddeq, Younes; Ribeiro, Sidney J.L.

    2003-01-01

    The conditions for the preparation of luminescent materials, consisting of Eu 3+ ions entrapped in a titanium matrix, in the form of a thin film, using the sol-gel process, are described. The films were obtained from sols prepared with TEOS and TEOT, in the presence of acetylacetone as the hydrolysis-retarding agent, using the dip-coating and spin-coating techniques. The influence of these techniques on the films based on titanium and silicon are presented. The Eu 3+ was used as a luminescent probe. The films have been characterized by luminescence, reflection and transmittance. The thickness of the films could be related to the preparation procedure. Transparent thin films have been prepared by dip-coating technique. (author)

  5. Coating of the orthopaedic titanium alloys with sol-gel derived hydroxyapatite

    International Nuclear Information System (INIS)

    Milev, A.; Green, D.; Chai, C.S.; Ben-Nissan, B.

    1999-01-01

    Hydroxyapatite (HAp) is known to be both biocompatible and bioactive material, however, due to its poor mechanical properties and design limitations is not suitable for applying as a load bearing implant. This could be overcome by using appropriate metallic substrates covered with HAp, derived via different techniques. These coatings allow improved adhesion strength of the load bearing substrate to the bone, resulting in shorter healing periods as well as predictable behaviour of the implant for longer periods of time. There are different techniques of producing HAp appropriate for coating purposes. Due to the small particle size of the grains derived, sol-gel route is preferable where lower sintering temperatures are of primary importance. For better adhesion between substrate and hydroxyapatite coating, the surface of titanium substrate, in this study, was converted to titanium nitride and/or oxynitride. Sintering temperatures of 900 deg C have been used for producing crystalline HAp coatings. The control of sol-gel solutions and the analysis of the coatings were carried out using XRD, SEM and DTA techniques. Results obtained indicate high quality HAp coatings can be produced on titanium substrates especially with complex shapes that benefits over the other coating methods

  6. Titanium Carbides Coatings for Wear Resistant Biomedical Devices: Manufacturing and Modeling

    International Nuclear Information System (INIS)

    Contro, R.; Vena, P.; Gastaldi, D.; Masante, S.; Cavallotti, P. L.; Nobili, L.; Bestetti, M.

    2008-01-01

    Deposition of Titanium Carbide coatings on Ti6Al4V substrate, through the reactive magnetron sputtering technique is here presented. The mechanical characterization of the coatings has been carried out through a set of indentation tests at different maximum applied loads. The elastic stiffness as well as the hardness of the coating-substrate system indicate that these coatings are suitable candidates for wear resistance applications in the orthopaedic field. Numerical simulation of the indentation tests allowed the identification of the constitutive parameters of the titanium carbide. Good agreement was achieved between experimental and numerical results

  7. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Matteo Crosera

    2015-08-01

    Full Text Available Titanium dioxide nanoparticles (TiO2NPs suspensions (concentration 1.0 g/L in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2 while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2. Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay, 3.8 × 10−5 M (AlamarBlue® assay, and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death. Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.

  8. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    Science.gov (United States)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. [The cytotoxicity of N48 NdFeB magnets coated with titanium-nitride].

    Science.gov (United States)

    Cao, Xiao-Ming; Hou, Zhi-Ming; Chu, Ming

    2008-04-01

    To evaluate the effect of N48 NdFeB magnets coated with titanium-nitride on the growth and apoptosis of L929 mouse fibroblast cells, and to determine the material biocompatibility. The NdFeB magnets coated with titanium-nitride, bare NdFeB magnets and ordinary brackets were put into RPMI-1640 to prepare fusions. L929 mouse fibroblast cells were cultivated in the negative control liquid, positive control liquid, 100%, 50% and 25% sample fusions, respectively. The cell proliferation vitality was detected by MTT assay and the relative growth rate was calculated.Cell scatter diagrams of the negative control liquid, 100% titanium-nitride coated magnets fusion and bare magnets fusion were detected by flow cytometry Annexin V/PI double staining method. The ratios of normal cells, early apoptosis, advanced apoptosis and necrosis cells were calculated. The results were analyzed for paired t test using SPSS11.5 software package. The toxic levels of N48 NdFeB coated with titanium-nitride were ranked as 0-1. The toxic levels of bare magnets were ranked as 2. The cell scatter diagrams showed that there was no significant difference in living cell, early apoptosis and necrosis between magnets coated with titanium-nitride and control group. But there was significant difference between the bare magnets group and control group. The N48 NdFeB magnets coated with titanium-nitride have good biocompatibility.

  10. Microstructure, mechanical properties, and biological response to functionally graded HA coatings

    International Nuclear Information System (INIS)

    Rabiei, Afsaneh; Blalock, Travis; Thomas, Brent; Cuomo, Jerry; Yang, Y.; Ong, Joo

    2007-01-01

    Hydroxyapatite (HA) [Ca 10 (PO 4 ) 6 (OH) 2 ] is the primary mineral content, representing 43% by weight, of bone. Applying a thin layer of HA, to the surface of a metal implant, can promote osseointegration and increase the mechanical stability of the implant. In this study, a biocompatible coating comprising an HA film with functionally graded crystallinity is being deposited on a heated substrate in an Ion Beam Assisted Deposition (IBAD) system. The microstructure of the film was studied using Transmission Electron Microscopy techniques. Finally, initial cell adhesion and cell differentiation on the coating was evaluated using ATCC CRL 1486 human embryonic palatal mesenchymal cell, an osteoblast precursor cell line. The results have shown superior mechanical properties and biological response to the functionally graded HA film

  11. The study of behavior titanium pure commercially coated with hydroxyapatite and zirconia

    Science.gov (United States)

    Aneed, Shaymaa Hashim; Salih, Ayad Ahmed; Khazaal, Ahlam Rashid; Hasan, Aqeel F.; Hamodi, Jamal Fadhil; Jasim, Kareem Ali; Mahdi, Shatha H.; AL-Maiyaly, Bushra K. H.; Hassun, Hanan K.

    2018-05-01

    In this research was studied the effect of adding zirconia to hydroxyapatite in the coting of commercially pure titanium (cpTi), by using electrophoretic deposition (EPD) when using micron particle (waves) size limit (0.25-0.5) micron, and deposition was effected with different coating periods(2,4,6) mints, and annealing at 500 °C, it founded there was an improvement in the corrosion properties, as the value of the open circuit potential (OCP) for coated titanium was reach to (-0.262) volt compared with to uncoated titanium was reach to (-0.528)volt. Note that the coating process is perfectly homogeneous to the entire area of the metal used.

  12. Comparison of biological characteristics of mesenchymal stem cells grown on two different titanium implant surfaces

    International Nuclear Information System (INIS)

    Wang Chengyue; Zhao Baohong; Ai Hongjun; Wang Yiwei

    2008-01-01

    This study examined the biological characteristics of mesenchymal stem cells (MSCs) grown on sand-blasted, large-grit, acid-etched (SLA) surface and hydroxyapatite (HA) coating on the SLA (HA/SLA) surface of titanium dental implants. The HA/SLA surfaces of titanium dental implants were formed by the ion beam assisted deposition (IBAD) method. Rabbit bone marrow derived mesenchymal stem cells cultured in vitro were seeded onto the surface of SLA and HA/SLA; the growth states of MSCs on the two samples were observed by a scanning electron microscope; the proliferation index, alkaline phosphatase (ALP) activity, osteocalcin (OCN) content of MSCs and mRNA relative expression level of osteopontin (opn) were compared between two groups. MSCs were found to be easier to adhere to the HA/SLA surface compared to the SLA surface. At the same time, the ALP activity and the OCN content of MSCs grown on the HA/SLA surface were obviously higher, and the relative expression level of opn mRNA was 4.78 times higher than that on the SLA surface. The HA coating formed by the IBAD method on the SLA surface of titanium dental implants significantly improves proliferation and well-differentiated osteoblastic phenotype of MSCs, which indicates a promising method for the surface modification of titanium dental implants

  13. Bacterial Stress and Osteoblast Responses on Graphene Oxide-Hydroxyapatite Electrodeposited on Titanium Dioxide Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Yardnapar Parcharoen

    2017-01-01

    Full Text Available To develop bone implant material with excellent antibacterial and biocompatible properties, nanotubular titanium surface was coated with hydroxyapatite (HA and graphene oxide (GO. Layer-by-layer deposition was achieved by coating HA on an anodic-grown titanium dioxide nanotube array (ATi with electrolytic deposition, followed by coating with GO using anodic-electrophoretic deposition. The antibacterial activity against both Gram-negative (Escherichia coli and Gram-positive (Staphylococcus aureus bacteria was determined based on the percentage of surviving bacteria and the amount of ribonucleic acid (RNA leakage and correlated with membrane disruption. The oxidative stress induced in both strains of bacteria by GO was determined by cyclic voltammetry and is discussed. Importantly, the antibacterial GO coatings on HA-ATi were not cytotoxic to preosteoblasts and promoted osteoblast proliferation after 5 days and calcium deposition after 21 days in standard cell culture conditions.

  14. Corrosion performance of some titanium-based hard coatings

    International Nuclear Information System (INIS)

    Matthes, B.; Broszeit, E.; Aromaa, J.; Ronkainen, H.; Hannula, S.P.; Leyland, A.; Matthews, A.

    1991-01-01

    Tools and machine parts which could benefit from wear-resistant titanium-based hard films are often subject to corrosive environments. Physically vapour-deposited coatings frequently exhibit porosity and even small defects, which can cause rapid local corrosion of the substrate material; there is therefore a requirement for dense and chemically inert coatings. This paper presents corrosion data for titanium-based hard coatings such as TiN, (Ti, Al)N, Ti(B, N) and TiB 2 and also for multilayered structures where additional aluminium-based insulating surface layers (AlN and Al 2 O 3 ) were deposited. The corrosion resistance and porosity of the films were analysed by electrochemical techniques. The degree of metallic bonding can play a significant role in influencing the corrosion resistance of refractory transition-metal-based ceramic coatings. Here we demonstrate that, under potentiodynamic corrosion test conditions, resistance to corrosive attack was relatively poor for TiB 2 , better for (Ti, Al)N and Ti(B, N) and best for TiN. It is also shown that applying the additional protective aluminium-based insulating surface layers on the coating can further improve corrosion resistance. (orig.)

  15. Hydroxyapatite coating by biomimetic method on titanium alloy ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. This article reports a biomimetic approach for coating hydroxyapatite on titanium alloy at ambient temperature. In the present study, coating was obtained by soaking the substrate in a 5 times concentrated simulated body fluid (5XSBF) solution for different periods of time with and without the use of CaO–SiO2.

  16. An in vivo study on the effect of coating stability on osteointegration performance of collagen/hyaluronic acid multilayer modified titanium implants.

    Science.gov (United States)

    Ao, Haiyong; Zong, Jiajia; Nie, Yanjiao; Wan, Yizao; Zheng, Xiebin

    2018-03-01

    Aseptic loosening of implant is one of the main causes of Ti-based implant failure. In our previous work, a novel stable collagen/hyaluronic acid (Col/HA) multilayer modified titanium coatings (TCs) was developed by layer-by-layer (LBL) covalent immobilization technique, which showed enhanced biological properties compared with TCs that were physically absorbed with Col/HA multilayer in vitro . In this study, a rabbit model with femur condyle defect was employed to compare the osteointegration performance of them. Results indicated that Col/HA multilayer with favourable stability could better facilitate osteogenesis around implants and bone-implant contact. The Col/HA multilayer covalent-immobilized TC may reduce aseptic loosening of implant.

  17. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    Science.gov (United States)

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  18. The Technology and Properties of Digital Double Pulse Electrodepositing Ni-HA Composite Coating of Bioceramics

    Institute of Scientific and Technical Information of China (English)

    DONG He-yan; WANG Zhou; SHI Gu-guizhi; FU Chuan-qi; CHEN Wei-rong; JIN Zhong-hong; LI Yan

    2004-01-01

    This article discusses and analyses the technology, the surface image, microstructure and ability of digital double pulse electrodepositing Ni-HA composite coatings of bioceramics made on 1Crl8Ni9Ti substrate by SEM ,XRD and so on. The results shows that ( 1 ) the HA particles exit in substrate uniformly; (2) XRD result shows that there are HA peaks at 78. 023 ° ,43. 246°and 73. 120°differently; (3) The microhardnees of the composite coatings is increased with the rise of content of HA particles, and on the same conditions the microhardnees value is greater than that of common non-pulse electrodepositing Ni-HA composite coatings of bioceramics. (4) The grain size of digital double pulse electrodepositing Ni-HA composite coatings of bioceramics is much thinner than that of common D. C.

  19. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  20. Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg-Zn-Ca alloy.

    Science.gov (United States)

    Feng, Yashan; Zhu, Shijie; Wang, Liguo; Chang, Lei; Yan, Bingbing; Song, Xiaozhe; Guan, Shaokang

    2017-06-01

    The poor corrosion resistance of biodegradable magnesium alloys is the dominant factor that limits their clinical application. In this study, to deal with this challenge, fluoride coating was prepared on Mg-Zn-Ca alloy as the inner coating and then hydroxyapatite (HA) coating as the outer coating was deposited on fluoride coating by pulse reverse current electrodeposition (PRC-HA/MgF 2 ). As a comparative study, the microstructure and corrosion properties of the composite coating with the outer coating fabricated by traditional constant current electrodeposition (TED-HA/MgF 2 ) were also investigated. Scanning electron microscopy (SEM) images of the coatings show that the morphology of PRC-HA/MgF 2 coating is dense and uniform, and presents nano-rod-like structure. Compared with that of TED-HA/MgF 2 , the corrosion current density of Mg alloy coated with PRC-HA/MgF 2 coatings decreases from 5.72 × 10 -5 A/cm 2 to 4.32 × 10 -7 A/cm 2 , and the corrosion resistance increases by almost two orders of magnitude. In immersion tests, samples coated with PRC-HA/MgF 2 coating always show the lowest hydrogen evolution amount, and could induce deposition of the hexagonal structure-apatite on the surface rapidly. The results show that the corrosion resistance and the bioactivity of the coatings have been improved by adopting double-pulse current mode in the process of preparing HA on fluoride coating, and the PRC-HA/MgF 2 coating is worth of further investigation.

  1. Polycrystalline Diamond Coating of Additively Manufactured Titanium for Biomedical Applications.

    Science.gov (United States)

    Rifai, Aaqil; Tran, Nhiem; Lau, Desmond W; Elbourne, Aaron; Zhan, Hualin; Stacey, Alastair D; Mayes, Edwin L H; Sarker, Avik; Ivanova, Elena P; Crawford, Russell J; Tran, Phong A; Gibson, Brant C; Greentree, Andrew D; Pirogova, Elena; Fox, Kate

    2018-03-14

    Additive manufacturing using selective laser melted titanium (SLM-Ti) is used to create bespoke items across many diverse fields such as medicine, defense, and aerospace. Despite great progress in orthopedic implant applications, such as for "just in time" implants, significant challenges remain with regards to material osseointegration and the susceptibility to bacterial colonization on the implant. Here, we show that polycrystalline diamond coatings on these titanium samples can enhance biological scaffold interaction improving medical implant applicability. The highly conformable coating exhibited excellent bonding to the substrate. Relative to uncoated SLM-Ti, the diamond coated samples showed enhanced mammalian cell growth, enriched apatite deposition, and reduced microbial S. aureus activity. These results open new opportunities for novel coatings on SLM-Ti devices in general and especially show promise for improved biomedical implants.

  2. Titanium tungsten coatings for bioelectrochemical applications

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Amato, Letizia; Łopacińska, J.

    2011-01-01

    This paper presents an assessment of titanium tungsten (TiW) coatings and their applicability as components of biosensing systems. The focus is put on using TiW as an electromechanical interface layer between carbon nanotube (CNT) forests and silicon nanograss (SiNG) cell scaffolds. Cytotoxicity......, applicability to plasma-enhanced chemical vapor deposition (PECVD) of aligned CNT forests, and electrochemical performance are investigated. Experiments include culturing of NIH3T3 mouse embryonic fibroblast cells on TiW coated silicon scaffolds, CNT growth on TiW substrates with nickel catalyst, and cyclic...

  3. Titanium nitride coatings synthesized by IPD method with eliminated current oscillations

    Directory of Open Access Journals (Sweden)

    Chodun Rafał

    2016-09-01

    Full Text Available This paper presents the effects of elimination of current oscillations within the coaxial plasma accelerator during IPD deposition process on the morphology, phase structure and properties of synthesized TiN coatings. Current observations of waveforms have been made by use of an oscilloscope. As a test material for experiments, titanium nitride TiN coatings synthesized on silicon and high-speed steel substrates were used. The coatings morphology, phase composition and wear resistance properties were determined. The character of current waveforms in the plasma accelerator electric circuit plays a crucial role during the coatings synthesis process. Elimination of the current oscillations leads to obtaining an ultrafine grained structure of titanium nitride coatings and to disappearance of the tendency to structure columnarization. The coatings obtained during processes of a non-oscillating character are distinguished by better wear-resistance properties.

  4. Can the Hydroxyapatite-Coated Skin-Penetrating Abutment for Bone Conduction Hearing Implants Integrate with the Surrounding Skin?

    Science.gov (United States)

    van Hoof, Marc; Wigren, Stina; Duimel, Hans; Savelkoul, Paul H M; Flynn, Mark; Stokroos, Robert Jan

    2015-01-01

    Percutaneous implants, such as bone conduction hearing implants, suffer from complications that include inflammation of the surrounding skin. A sealed skin-abutment interface can prevent the ingress of bacteria, which should reduce the occurrence of peri-abutment dermatitis. It was hypothesized that a hydroxyapatite (HA)-coated abutment in conjunction with soft tissue preservation surgery should enable integration with the adjacent skin. Previous research has confirmed that integration is never achieved with as-machined titanium abutments. Here, we investigate, in vivo, if skin integration is achievable in patients using a HA-coated abutment. One titanium abutment (control) and one HA-coated abutment (case) together with the surrounding skin were surgically retrieved from two patients who had a medical indication for this procedure. Histological sections of the skin were investigated using light microscopy. The abutment was qualitatively analyzed using scanning electron microscopy. The titanium abutment only had a partial and thin layer of attached amorphous biological material. The HA-coated abutment was almost fully covered by a pronounced thick layer of organized skin, composed of different interconnected structural layers. Proof-of-principle evidence that the HA-coated abutment can achieve integration with the surrounding skin was presented for the first time.

  5. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO 2 anatase, TiO 2 rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I corr than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO 2 , HA, and Ca 5 (PO 4 ) 2 SiO 4 . • Polarization resistance of the coating was increased by Si substitution in HA

  6. Titanium dioxide antireflection coating for silicon solar cells by spray deposition

    Science.gov (United States)

    Kern, W.; Tracy, E.

    1980-01-01

    A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.

  7. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  8. Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications

    Science.gov (United States)

    Haywood, Talisha M.

    Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.

  9. Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding

    International Nuclear Information System (INIS)

    Zheng Min; Fan Ding; Li Xiukun; Li Wenfei; Liu Qibin; Zhang Jianbin

    2008-01-01

    To construct a bioactive interface between metal implant and the surrounding bone tissue, the gradient calcium phosphate bioceramic coating on titanium alloy (Ti-6Al-4V) was designed and fabricated by laser cladding. The results demonstrated that the gradient bioceramic coating was metallurgically bonded to the titanium alloy substrate. The appearance of hydroxyapatite and β-tricalcium phosphate indicated that the bioactive phases were synthesized on the surface of coating. The microhardness gradually decreased from the coating to substrate, which could help stress relaxation between coating and bone tissue. Furthermore, the methyl thiazolyl tetrazolium (MTT) assay of cell proliferation revealed that the laser-cladded bioceramic coating had more favorable osteoblast response compared with the surface of untreated titanium alloy substrate

  10. Microstructure and osteoblast response of gradient bioceramic coating on titanium alloy fabricated by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Min [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China)], E-mail: zhminmin@sina.com; Fan Ding; Li Xiukun [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); Li Wenfei; Liu Qibin [College of Materials Science and Engineering, Guizhou University, Guiyang 550003 (China); Zhang Jianbin [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China)

    2008-11-15

    To construct a bioactive interface between metal implant and the surrounding bone tissue, the gradient calcium phosphate bioceramic coating on titanium alloy (Ti-6Al-4V) was designed and fabricated by laser cladding. The results demonstrated that the gradient bioceramic coating was metallurgically bonded to the titanium alloy substrate. The appearance of hydroxyapatite and {beta}-tricalcium phosphate indicated that the bioactive phases were synthesized on the surface of coating. The microhardness gradually decreased from the coating to substrate, which could help stress relaxation between coating and bone tissue. Furthermore, the methyl thiazolyl tetrazolium (MTT) assay of cell proliferation revealed that the laser-cladded bioceramic coating had more favorable osteoblast response compared with the surface of untreated titanium alloy substrate.

  11. Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents

    Directory of Open Access Journals (Sweden)

    Eli Fine

    2009-04-01

    Full Text Available Eli Fine1, Lijie Zhang1, Hicham Fenniri2, Thomas J Webster1 1Department of Engineering, Brown University, Providence, RI, USA; 2National Institute for Nanotechnology and Department of Chemistry, University of Alberta, Edmonton, AB, CanadaAbstract: One of the main problems with current vascular stents is a lack of endothelial cell interactions, which if sufficient, would create a uniform healthy endothelium masking the underlying foreign metal from inflammatory cell interference. Moreover, if endothelial cells from the arterial wall do not adhere to the stent, the stent can become loose and dislodge. Therefore, the objective of this in vitro study was to design a novel biomimetic nanostructured coating (that does not contain drugs on conventional vascular stent materials (specifically, titanium for improving vascular stent applications. Rosette nanotubes (RNTs are a new class of biomimetic nanotubes that self-assemble from DNA base analogs and have been shown in previous studies to sufficiently coat titanium and enhance osteoblast cell functions. RNTs have many desirable properties for use as vascular stent coatings including spontaneous self-assembly in body fluids, tailorable surface chemistry for specific implant applications, and nanoscale dimensions similar to those of the natural vascular extracellular matrix. Importantly, the results of this study provided the first evidence that RNTs functionalized with lysine (RNT–K, even at low concentrations, significantly increase endothelial cell density over uncoated titanium. Specifically, 0.01 mg/mL RNT–K coated titanium increased endothelial cell density by 37% and 52% compared to uncoated titanium after 4 h and three days, respectively. The excellent cytocompatibility properties of RNTs (as demonstrated here for the first time for endothelial cells suggest the need for the further exploration of these novel nanostructured materials for vascular stent applications.Keywords: stents

  12. Effect of modification substrate on the microstructure of hydroxyapatite coating

    International Nuclear Information System (INIS)

    Realpe-Jaramillo, J; Morales-Morales, J A; González-Sánchez, J A; Cabanzo, R; Mejía-Ospino, E; Rodríguez-Pereira, J

    2017-01-01

    Bioactive hydroxyapatite (HA) coatings were fabricated by a precipitation, sol-gel and dip-coating method. The effects of the aging time and the base used to adjust pH and substrate materials on the phases and microstructures of HA coatings were studied by field emission scanning electron microscopy FESEM, energy dispersive spectroscopy EDS, X-ray photoelectron spectroscopy XPS, and the vibrations of the phosphate groups were determined by Raman spectroscopy. The results showed that all the films were composed of the phases of TiO 2 and HA. With coated titanium substrate with TiO 2 , the crystallinity of the HA coating increases, the structure became more compact and the Ca/P ratio increased because of the loss of P in the films. The addition of sodium hydroxide (adjusting the pH level to about 10) can increase the HA content in the coating. XPS and EDS results for steel substrate and titanium showed poor calcium content as obtained with a Ca/P ratio of 1.38 and 1.58, respectively, composition is similar to that of natural apatite. However, spectroscopic results suggest the presence of a mixture of hydroxyapatite and octacalcium phosphate. The different substrate materials have a high influence on the microstructure of the separated double films. However, hydroxyapatite nanopowders coatings were obtained using a simple method, with potential biomedical applications. (paper)

  13. Effect of modification substrate on the microstructure of hydroxyapatite coating

    Science.gov (United States)

    Realpe-Jaramillo, J.; Morales-Morales, J. A.; González-Sánchez, J. A.; Cabanzo, R.; Mejía-Ospino, E.; Rodríguez-Pereira, J.

    2017-01-01

    Bioactive hydroxyapatite (HA) coatings were fabricated by a precipitation, sol-gel and dip-coating method. The effects of the aging time and the base used to adjust pH and substrate materials on the phases and microstructures of HA coatings were studied by field emission scanning electron microscopy FESEM, energy dispersive spectroscopy EDS, X-ray photoelectron spectroscopy XPS, and the vibrations of the phosphate groups were determined by Raman spectroscopy. The results showed that all the films were composed of the phases of TiO2 and HA. With coated titanium substrate with TiO2, the crystallinity of the HA coating increases, the structure became more compact and the Ca/P ratio increased because of the loss of P in the films. The addition of sodium hydroxide (adjusting the pH level to about 10) can increase the HA content in the coating. XPS and EDS results for steel substrate and titanium showed poor calcium content as obtained with a Ca/P ratio of 1.38 and 1.58, respectively, composition is similar to that of natural apatite. However, spectroscopic results suggest the presence of a mixture of hydroxyapatite and octacalcium phosphate. The different substrate materials have a high influence on the microstructure of the separated double films. However, hydroxyapatite nanopowders coatings were obtained using a simple method, with potential biomedical applications.

  14. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    International Nuclear Information System (INIS)

    Charlena; Sukaryo, S.G.; Fajar, M.

    2016-01-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO 3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed. (paper)

  15. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    Science.gov (United States)

    Charlena; Sukaryo, S. G.; Fajar, M.

    2016-11-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed.

  16. Bioceramic coating of hydroxyapatite on titanium substrate with Nd-YAG laser

    International Nuclear Information System (INIS)

    Cheng, Gary J.; Pirzada, Daniel; Cai, M.; Mohanty, Pravansu; Bandyopadhyay, Amit

    2005-01-01

    The ability to bond to bone tissue is a unique property of bioactive ceramics. Hydroxyapatite (HAp) is one of the potential bioceramics candidates due to its superior bio-compatibility. Significant effort has been devoted to coat HAp ceramics on metallic substrates. Most of these processes, such as ion-beam sputter coating, thermal spraying, and flame spraying, are high temperature line of sight processes, which suffer from undesirable phase formation and weak metal/HAP bonding strength. This paper presents a unique process to coat HAp powders on titanium substrates at low temperature and enhance the coating/substrate interface by laser surface engineering. Nd-YAG laser transmits HAp powders and the laser power is absorbed by titanium substrate to produce a thin layer of molten region. During coating process, HAp powders are kept at low temperature before they are entrapped in metallic layer. Scanning electron microscope (SEM) was used to investigate the microstructure of coating; the chemical composition of the coating is determined by energy dispersive spectrometry (EDS). Mechanical properties of the interface between coating and Ti substrate were investigated by nanoindentation

  17. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications

    International Nuclear Information System (INIS)

    Nagarajan, S.; Rajendran, N.

    2009-01-01

    Porous titanium dioxide was coated on surgical grade 316L stainless steel (SS) and its role on the corrosion protection and enhanced biocompatibility of the materials was studied. X-ray diffraction analysis (XRD), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were carried out to characterise the surface morphology and also to understand the structure of the as synthesised coating on the substrates. The corrosion behaviour of titanium dioxide coated samples in simulated body fluid was evaluated using polarisation and impedance spectroscopy studies. The results reveal that the titanium dioxide coated 316L SS exhibit a higher corrosion resistance than the uncoated 316L SS. The titanium dioxide coated surface is porous, uniform and also it acts as a barrier layer to metallic substrate and the porous titanium dioxide coating induces the formation of hydroxyapatite layer on the metal surface.

  18. Sol-gel prepared active ternary oxide coating on titanium in cathodic protection

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2007-12-01

    Full Text Available The characteristics of a ternary oxide coating, on titanium, which consisted of TiO2, RuO2 and IrO2 in the molar ratio 0.6:0.3:0.1, calculated on the metal atom, were investigated for potential application for cathodic protection in a seawater environment. The oxide coatings on titanium were prepared by the sol gel procedure from a mixture of inorganic oxide sols, which were obtained by forced hydrolysis of metal chlorides. The morphology of the coating was examined by scanning electron microscopy. The electrochemical properties of activated titanium anodes were investigated by cyclic voltammetry and polarization measurements in a H2SO4- and NaCl-containing electrolyte, as well as in seawater sampled on the Adriatic coast in Tivat, Montenegro. The anode stability during operation in seawater was investigated by the galvanostatic accelerated corrosion stability test. The morphology and electrochemical characteristics of the ternary coating are compared to that of a sol-gel-prepared binary Ti0.6Ru0.4O2 coating. The activity of the ternary coating was similar to that of the binary Ti0.6Ru0.4O2 coating in the investigated solutions. However, the corrosion stability in seawater is found to be considerably greater for the ternary coating.

  19. Self-cleaning glass coating containing titanium oxide and silicon

    International Nuclear Information System (INIS)

    Araujo, A.O. de; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2009-01-01

    Using the electro spinning technique nano fibers of titanium oxide doped with silicon were synthesized. As precursor materials, titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone were used. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in ethanol, the glass coatings were made by dip-coating methodology. The influence of the removal velocity, the solution composition and the glass surface preparation were evaluated. The film was characterized by the contact angle of a water droplet in its surface. (author)

  20. Silicon-substituted hydroxyapatite coating with Si content on the nanotube-formed Ti–Nb–Zr alloy using electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States); Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, 305 W. 12th Ave., Columbus, OH (United States)

    2013-11-01

    The purpose of this study was to investigate the electrochemical characteristics of silicon-substituted hydroxyapatite coatings on the nanotube-formed Ti–35Nb–10Zr alloy. The silicon-substituted hydroxyapatite (Si–HA) coatings on the nanotube structure were deposited by electron beam-physical vapor deposition and anodization methods, and biodegradation properties were analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy measurement. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction (XRD). The Si–HA layers were deposited with rough features having highly ordered nanotube structures on the titanium alloy substrate. The thickness of the Si–HA coating was less than that of the HA coating. The XRD results confirmed that the Si–HA coating on the nanotube structure consisted of TiO{sub 2} anatase, TiO{sub 2} rutile, hydroxyapatite, and calcium phosphate silicate. The Si–HA coating surface exhibited lower I{sub corr} than the HA coating, and the polarization resistance was increased by substitution of silicon in hydroxyapatite. - Highlights: • Silicon substituted hydroxyapatite (Si–HA) was coated on nanotubular titanium alloy. • The Si–HA coating thickness was less than single hydroxyapatite (HA) coating. • Si–HA coatings consisted of TiO{sub 2}, HA, and Ca{sub 5}(PO{sub 4}){sub 2}SiO{sub 4}. • Polarization resistance of the coating was increased by Si substitution in HA.

  1. Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Zia ur; Shabib, Ishraq [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States); Haider, Waseem, E-mail: haide1w@cmich.edu [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2016-10-01

    In the realm of biomaterials, metallic materials are widely used for load bearing joints due to their superior mechanical properties. Despite the necessity for long term metallic implants, there are limitations to their prolonged use. Naturally, oxides of titanium have low solubilities and form passive oxide film spontaneously. However, some inclusion and discontinuity spots in oxide film make implant to adopt the decisive nature. These defects heighten the dissolution of metal ions from the implant surface, which results in diminishing bio-integration of titanium implant. To increase the long-term metallic implant stability, surface modifications of titanium alloys are being carried out. In the present study, biomimetic coatings of plasma sprayed hydroxyapatite and titanium were applied to the surface of commercially pure titanium and Ti6Al4V. Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy were carried out in order to study their electrochemical behavior. Moreover, cytotoxicity analysis was conducted for osteoblast cells by performing MTS assay. It is concluded that both hydroxyapatite and titanium coatings enhance corrosion resistance and improve cytocompatibility. - Highlights: • Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy. • The cyclic polarization tests revealed noticeable improvement towards the positive potentials for both Tip coatings. • CpTi-Hap and Ti6Al4V-Hap both demonstrate similar corrosion rate. • High cytotoxicity was observed for Mp when compared with Tip and Hap after 21 days of immersion. • Both Tip and Hap coatings promoted the osteoblast cell adhesion and exhibited stellar morphology.

  2. Wear characterization of nano-hydroxyapatite with addition of titanium (HA-Ti)

    Science.gov (United States)

    Rosmamuhamadani, R.; Arawi, A. Z. O.; Talari, M. K.; Mahat, M. M.; Bonnia, N. N.; Sabrina; Yahaya, M.; Sulaiman, S.; Ismail, M. I. S.

    2018-04-01

    Hydroxyapatite (Ca10 (PO4)6(OH)2, HA), is an attractive material of an inorganic compound whose chemical composition and crystallographic structures are similar to the composition of the bone. A natural source such as egg shells is composed of 94 wt. % of calcium carbonate (CaCO3), which can be calcined as calcium oxide (CaO) by the calcinations process. The efficient temperature to produce CaO is 900 °C for 2 hours. The synthesis of nano-HA was done by the mixing the diammonium phosphate (DAP) and calcium hydroxide (Ca(OH)2) and subjected into a microwave for 30 minutes at 1100 W irradiation power. Ball milling process was used for 30 minutes to mix the nano-HA with different compositions of titanium. These were pressed to form pallets by hand hydraulic pump (force=2300 psi). The pallets then were sintered at 1200 °C with the heating rate of 3 °C/min for 2 hours. The pallets were tested by several mechanical testing including hardness, compression strength and wear. From the results, HA-25wt. %Ti composite gave the highest hardness, compression and coefficient of friction for wear test values which were 89.6 Hv, 82.5MPa and 0.76μ respectively. It showed that by adding Ti to nano-HA, the mechanical properties of nano-HA could be enhanced. The microstructure analyses by optical micrograph showed that nano-HA-Ti particles displayed shape likes needle morphology. The particles showed the high tendency to form the agglomerations.

  3. Development and evaluation of two PVD-coated β-titanium orthodontic archwires for fluoride-induced corrosion protection.

    Science.gov (United States)

    Krishnan, Vinod; Krishnan, Anand; Remya, R; Ravikumar, K K; Nair, S Asha; Shibli, S M A; Varma, H K; Sukumaran, K; Kumar, K Jyothindra

    2011-04-01

    The present research was aimed at developing surface coatings on β titanium orthodontic archwires capable of protection against fluoride-induced corrosion. Cathodic arc physical vapor deposition PVD (CA-PVD) and magnetron sputtering were utilized to deposit thin films of titanium aluminium nitride (TiAlN) and tungsten carbide/carbon (WC/C) coatings on β titanium orthodontic archwires. Uncoated and coated specimens were immersed in a high fluoride ion concentration mouth rinse, following a specially designed cycle simulating daily use. All specimens thus obtained were subjected to critical evaluation of parameters such as electrochemical corrosion behaviour, surface analysis, mechanical testing, microstructure, element release, and toxicology. The results confirm previous research that β titanium archwires undergo a degradation process when in contact with fluoride mouth rinses. The study confirmed the superior nature of the TiAlN coating, evident as many fewer changes in properties after fluoride treatment when compared with the WC/C coating. Thus, coating with TiAlN is recommended in order to reduce the corrosive effects of fluorides on β titanium orthodontic archwires. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Bio-inspired citrate functionalized apatite coating on rapid prototyped titanium scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peng [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Lu, Fang [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Guang Dong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Wang, Di [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Zhu, Xiaojing [Department of Prosthodontics, Guanghua School of Stomatology, Guang Dong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Tan, Guoxin, E-mail: tanguoxin@126.com [Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Wang, Xiaolan [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Zhang, Yu; Li, Lihua [General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China)

    2014-09-15

    Highlights: • Designed and reproducible porous titanium scaffolds were produced. • Hydrophilic nanoporous film was built on scaffold. • Apatite coating was deposited on scaffold under the modulation of citrate ions. • Citrate ions could affect CO{sub 3}{sup 2−} incorporation in apatite coatings. - Abstract: Scaffold functionalized with appropriate osteogenic coatings can significantly improve implant-bone response. In this study, with designed model and optimized manufacture parameters, reproducible and precise titanium scaffolds were produced. Reconstructed three-dimensional image and sectional structure of the scaffold were examined by micro-computed tomography and relative software. Alkali treatment was carried out on these manufactured porous scaffolds to produce nanoporous hydrophilic film. After 6 days deposition in simulated body fluid (SBF) containing sodium citrate (SC-SBF), plate-like amorphous calcium phosphate (ACP) coating was deposited on scaffold surface. Ultrasonication tests qualitatively indicated an enhanced adhesion force of apatite coatings deposited in SC-SBF compared to that deposited in SBF. And the effect of citrate ions on the CO{sub 3}{sup 2−} incorporation rate in apatite coating was quantitatively examined by bending vibration of CO{sub 3}{sup 2−} at ∼874 cm{sup −1}. Results indicated the highest carbonate content was obtained at the citrate ion concentration of 6 × 10{sup −5} mol/L in SC-SBF. These three-dimensional porous titanium-apatite hybrid scaffolds are expected to find application in bone tissue regeneration.

  5. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: bonding to titanium and scanning electron microscopy.

    Science.gov (United States)

    Tredwin, Christopher J; Georgiou, George; Kim, Hae-Won; Knowles, Jonathan C

    2013-05-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) production has been characterised and optimised by the sol-gel method and the dissolution and biological properties of these materials were investigated. It was the objective of this study to investigate the potential bond strength and interaction of these materials with titanium. HA, FHA and FA were synthesised by a sol-gel method. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride (NH4F) were incorporated for the preparation of the FHA and FA sol-gels. Using a spin coating technique the sol-gels were coated onto commercially pure titanium disks and crystallised at various temperatures. Using scanning electron microscopy (SEM) and elemental analysis, the surface characteristics, coating thickness and interaction of the Ti substrate and coating were investigated. The bond strengths of the coating to the Ti were investigated using an Instron Universal Load Testing Machine. Statistical analysis was performed with a two-way analysis of variance and post hoc testing with a Bonferroni correction. (1) Coating speed inversely influenced the coating thickness. (2) Increasing fluoride ion substitution and heating temperature significantly increased bond strength and (3) increasing fluoride ion substitution increased the coating thickness. FHA and FA synthesised using the sol-gel technique may offer a superior alternative to coating titanium implants with HA and plasma spraying. HA, FHA and FA materials synthesised by the sol-gel method may also have a use as bone grafting materials. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Fabrication and oxidation resistance of titanium carbide-coated carbon fibres by reacting titanium hydride with carbon fibres in molten salts

    International Nuclear Information System (INIS)

    Dong, Z.J.; Li, X.K.; Yuan, G.M.; Cong, Y.; Li, N.; Jiang, Z.Y.; Hu, Z.J.

    2009-01-01

    Using carbon fibres and titanium hydride as a reactive carbon source and a metal source, respectively, a protective titanium carbide (TiC) coating was formed on carbon fibres in molten salts, composed of LiCl-KCl-KF, at 750-950 o C. The structure and morphology of the TiC coatings were characterised by X-ray diffraction and scanning electron microscopy, respectively. The oxidation resistance of the TiC-coated carbon fibres was measured by thermogravimetric analysis. The results reveal that control of the coating thickness is very important for improvement of the oxidation resistance of TiC-coated carbon fibres. The oxidative weight loss initiation temperature for the TiC-coated carbon fibres increases significantly when an appropriate coating thickness is used. However, thicker coatings lead to a decrease of the carbon fibres' weight loss initiation temperature due to the formation of cracks in the coating. The TiC coating thickness on carbon fibres can be controlled by adjusting the reaction temperature and time of the molten salt synthesis.

  7. Behavior of Human Bone Marrow-Derived Mesenchymal Stem Cells on Various Titanium-Based Coatings

    Directory of Open Access Journals (Sweden)

    Chengjuan Qu

    2016-10-01

    Full Text Available The chemical composition and texture of titanium coatings can influence the growth characteristics of the adhered cells. An enhanced proliferation of the human mesenchymal stem cells (hMSCs would be beneficial. The present study was aimed to investigate whether titanium deposited at different atmospheres would affect the cell growth properties, cellular morphology, and expression of surface markers of hMSCs. Titanium-based coatings were deposited on silicon wafers under oxygen, nitrogen, or argon atmospheres by ultra-short pulsed laser deposition using two different gas pressures followed by heating at 400 °C for 2 h. The characteristics of the coated surfaces were determined via contact angle, zeta potential, and scanning electron microscopy (SEM techniques. Human MSCs were cultivated on differently coated silicon wafers for 48 h. Subsequently, the cell proliferation rates were analyzed with an MTT assay. The phenotype of hMSCs was checked via immunocytochemical stainings of MSC-associated markers CD73, CD90, and CD105, and the adhesion, spreading, and morphology of hMSCs on coated materials via SEM. The cell proliferation rates of the hMSCs were similar on all coated silicon wafers. The hMSCs retained the MSC phenotype by expressing MSC-associated markers and fibroblast-like morphology with cellular projections. Furthermore, no significant differences could be found in the size of the cells when cultured on all various coated surfaces. In conclusion, despite certain differences in the contact angles and the zeta potentials of various titanium-based coatings, no single coating markedly improved the growth characteristics of hMSCs.

  8. Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate.

    Science.gov (United States)

    Göncü, Yapıncak; Geçgin, Merve; Bakan, Feray; Ay, Nuran

    2017-10-01

    In this study, commercial pure titanium samples were coated with nano hydroxyapatite-nano hexagonal boron nitride (nano HA-nano hBN) composite by electrophoretic deposition (EPD). The effect of process parameters (applied voltage, deposition time and solid concentration) on the coating morphology, thickness and the adhesion behavior were studied systematically and crack free nano hBN-nano HA composite coating production was achieved for developing bioactive coatings on titanium substrates for orthopedic applications. For the examination of structural and morphological characteristics of the coating surfaces, various complementary analysis methods were performed. For the structural characterization, XRD and Raman Spectroscopy were used while, Scanning Electron Microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) and Transmission Electron Microscopy (TEM) techniques were carried out for revealing the morphological characterization. The results showed that nano HA-nano hBN were successfully deposited on Ti surface with uniform, crack-free coating by EPD. The amounts of hBN in suspension are considered to have no effect on coating thickness. By adding hBN into HA, the morphology of HA did not change and hBN has no significant effect on porous structure. These nanostructured surfaces are expected to be suitable for proliferation of cells and have high potential for bioactive materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Impaction durability of porous polyether-ether-ketone (PEEK) and titanium-coated PEEK interbody fusion devices.

    Science.gov (United States)

    Torstrick, F Brennan; Klosterhoff, Brett S; Westerlund, L Erik; Foley, Kevin T; Gochuico, Joanna; Lee, Christopher S D; Gall, Ken; Safranski, David L

    2018-05-01

    Various surface modifications, often incorporating roughened or porous surfaces, have recently been introduced to enhance osseointegration of interbody fusion devices. However, these topographical features can be vulnerable to damage during clinical impaction. Despite the potential negative impact of surface damage on clinical outcomes, current testing standards do not replicate clinically relevant impaction loading conditions. The purpose of this study was to compare the impaction durability of conventional smooth polyether-ether-ketone (PEEK) cervical interbody fusion devices with two surface-modified PEEK devices that feature either a porous structure or plasma-sprayed titanium coating. A recently developed biomechanical test method was adapted to simulate clinically relevant impaction loading conditions during cervical interbody fusion procedures. Three cervical interbody fusion devices were used in this study: smooth PEEK, plasma-sprayed titanium-coated PEEK, and porous PEEK (n=6). Following Kienle et al., devices were impacted between two polyurethane blocks mimicking vertebral bodies under a constant 200 N preload. The posterior tip of the device was placed at the entrance between the polyurethane blocks, and a guided 1-lb weight was impacted upon the anterior face with a maximum speed of 2.6 m/s to represent the strike force of a surgical mallet. Impacts were repeated until the device was fully impacted. Porous PEEK durability was assessed using micro-computed tomography (µCT) pre- and postimpaction. Titanium-coating coverage pre- and postimpaction was assessed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy. Changes to the surface roughness of smooth and titanium-coated devices were also evaluated. Porous PEEK and smooth PEEK devices showed minimal macroscopic signs of surface damage, whereas the titanium-coated devices exhibited substantial visible coating loss. Quantification of the porous PEEK deformation

  10. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.

    Science.gov (United States)

    Pareta, Rajesh; Yang, Lei; Kothari, Abhishek; Sirinrath, Sirivisoot; Xiao, Xingcheng; Sheldon, Brian W; Webster, Thomas J

    2010-10-01

    Diamond coatings with superior chemical stability, antiwear, and cytocompatibility properties have been considered for lengthening the lifetime of metallic orthopedic implants for over a decade. In this study, an attempt to tailor the surface properties of diamond films on titanium to promote osteoblast (bone forming cell) adhesion was reported. The surface properties investigated here included the size of diamond surface features, topography, wettability, and surface chemistry, all of which were controlled during microwave plasma enhanced chemical-vapor-deposition (MPCVD) processes using CH4-Ar-H2 gas mixtures. The hardness and elastic modulus of the diamond films were also determined. H2 concentration in the plasma was altered to control the crystallinity, grain size, and topography of the diamond coatings, and specific plasma gases (O2 and NH3) were introduced to change the surface chemistry of the diamond coatings. To understand the impact of the altered surface properties on osteoblast responses, cell adhesion tests were performed on the various diamond-coated titanium. The results revealed that nanocrystalline diamond (grain sizes diamond and, thus, should be further studied for improving orthopedic applications. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  11. In situ synthesis of hydroxyapatite coating by laser cladding.

    Science.gov (United States)

    Wang, D G; Chen, C Z; Ma, J; Zhang, G

    2008-10-15

    HA bioceramic coatings were synthesized on titanium substrate by laser cladding using cheap calcium carbonate and calcium hydrogen phosphate. The thermodynamic condition for synthesizing HA was calculated by software Matlab 5.0, the microstructure and phase analysis of laser clad HA bioceramic coatings were studied by electron probe microanalyser (EPMA), X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The theoretical results show that the Gibbs free enthalpy for the synthesis of HA phase is satisfied, and the presence of HA phase in the clad coatings was then further verified by XRD and the selected area diffraction patterns. When the laser power is 600W and the scanning speed is 3.5mm/s, the compact HA bioceramic coatings were obtained, which have cellular dendritic structure and consist of the phases of HA, alpha-Ca(2)P(2)O(7), CaO and CaTiO(3).

  12. Growth behavior of rat bone marrow cells on RF magnetron sputtered hydroxyapatite and dicalcium pyrophosphate coatings.

    NARCIS (Netherlands)

    Yan, Y.; Wolke, J.G.C.; Ruijter, A. De; Yubao, L.; Jansen, J.A.

    2006-01-01

    The aim of this study was to evaluate the osteogenic properties of magnetron sputtered dicalcium pyrophaosphate (DCPP) and hydroxylapatite (HA) coatings. Therefore, DCPP and HA coatings were deposited on grit-blasted titanium discs. The substrates were used as-prepared or received an additional heat

  13. Mg-containing hydroxyapatite coatings produced by plasma electrolytic oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cesar Augusto; Rangel, Elidiane Cipriano; Durrant, Steven Frederick; Cruz, Nilson Cristino da, E-mail: cesar.augustoa@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Delgado-Silva, Adriana de Oliveira [Universidade Federal de Sao Carlos (UFSCar), Sorocaba, SP (Brazil); Tabacniks, Manfredo H. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Plasma Electrolytic Oxidation (PEO) is promising for the processing of biomaterials because it enables the production of surfaces with adjustable composition and structure. In this work, aimed at the improvement of the bioactivity of titanium, PEO has been used to grow calcium phosphide coatings on titanium substrates. The effects of the addition of magnesium acetate to the electrolytes on the composition of the coatings produced during 120 s on Ti disks using bipolar voltage pulses and solutions of calcium and magnesium acetates and sodium glycerophosphate as electrolytes have been studied. Scanning electron microscopy, X-ray energy dispersive spectroscopy, Rutherford backscattering spectroscopy, X-ray diffractometry with Rietveld refinement and profilometry were used to characterize the modified samples. Coatings composed of nearly 50 % of Mg-doped hydroxyapatite have been produced. In certain conditions up to 4% Mg can be incorporated into the coating without any observable significant structural modifications of the hydroxyapatite. (author)

  14. Elaboration of titanium nitride coatings by activated reactive evaporation

    International Nuclear Information System (INIS)

    Granier, Jean

    1978-01-01

    As titanium nitride is a very interesting and promising material for the protection against wear and corrosion of metals and alloys with a low fusion point, and notably steels, this research thesis reports the study of the elaboration of a TiN coating by activated reactive evaporation. In a first part, the author describes deposition processes based on evaporation and their characteristics. He explains the choice of the studied process. He discusses published data and results related to the titanium-nitrogen system. He describes the apparatus and reports the operation mode adjustment, and reports the study of the influence of operating conditions (substrate temperature, nitrogen pressure, evaporation rate, possible use of a discharge) on growth kinetics and on coating properties. A reaction mechanism is then proposed to describe and explain the obtained results [fr

  15. Quantification of the Contact Area at the Head-Stem Taper Interface of Modular Hip Prostheses.

    Science.gov (United States)

    Witt, Florian; Gührs, Julian; Morlock, Michael M; Bishop, Nicholas E

    2015-01-01

    Corrosion of modular taper junctions of hip implants may be associated with clinical failure. Taper design parameters, as well as the intraoperatively applied assembly forces, have been proposed to affect corrosion. Fretting corrosion is related to relative interface shear motion and fluid ingress, which may vary with contact force and area. It was hypothesised in this study that assembly forces modify the extent and distribution of the surface contact area at the taper interface between a cobalt chrome head and titanium stem taper with a standard threaded surface profile. Local abrasion of a thin gold coating applied to the stem taper prior to assembly was used to determine the contact area after disassembly. Profilometry was then used to assess permanent deformation of the stem taper surface profile. With increasing assembly force (500 N, 2000 N, 4000 N and 8000 N) the number of stem taper surface profile ridges in contact with the head taper was found to increase (9.2±9.3%, 65.4±10.8%, 92.8±6.0% and 100%) and the overall taper area in contact was also found to increase (0.6±0.7%, 5.5±1.0%, 9.9±1.1% and 16.1±0.9%). Contact was inconsistently distributed over the length of the taper. An increase in plastic radial deformation of the surface ridges (-0.05±0.14 μm, 0.1±0.14 μm, 0.21±0.22 μm and 0.96±0.25 μm) was also observed with increasing assembly force. The limited contact of the taper surface ridges at lower assembly forces may influence corrosion rates, suggesting that the magnitude of the assembly force may affect clinical outcome. The method presented provides a simple and practical assessment of the contact area at the taper interface.

  16. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants.

    Science.gov (United States)

    Fathi, M H; Salehi, M; Saatchi, A; Mortazavi, V; Moosavi, S B

    2003-05-01

    The most common metals and alloys used in dentistry may be exposed to a process of corrosion in vivo that make them cytotoxic. The biocompatibility of dental alloys is primarily related to their corrosion behavior. The aim of this work was to evaluate the corrosion behavior and thus the biocompatibility of the uncoated and coated stainless steels and compare the effect of type of coatings on corrosion behavior. Three types of coatings, hydroxyapatite (HA), titanium (Ti), and a double-layer HA/Ti on AISI 316L stainless steel were made. HA coating was produced using plasma-spraying technique and Ti coating was made using physical vapor deposition process. In order to perform a novel double-layer composite coating, a top layer of HA was plasma-sprayed over a physical vapor deposited Ti layer on AISI 316L stainless steel. Structural characterization techniques including XRD, SEM and EDX were used to investigate the microstructure, morphology and crystallinity of the coatings. Electrochemical potentiodynamic tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Double-layer HA/Ti coating on AISI 316L SS had a positive effect on improvement of corrosion behavior. The decrease in corrosion current densities was significant for these coated specimens and was much lower than the values obtained for uncoated and single HA coated specimens. Ti coating on AISI 316L SS also has a beneficial effect on corrosion behavior. The results were compared with the results of corrosion behavior of HA coated commercially pure titanium (cpTi) and uncoated cpTi. These results demonstrated that the double-layer HA/Ti coated 316L SS can be used as an endodontic implant and two goals including improvement of corrosion resistance and bone osteointegration can be obtained simultaneously.

  17. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws.

    Science.gov (United States)

    Rizzi, Manuela; Gatti, Giorgio; Migliario, Mario; Marchese, Leonardo; Rocchetti, Vincenzo; Renò, Filippo

    2014-11-01

    Titanium has long been used to produce dental implants. Problems related to its manufacturing, casting, welding, and ceramic application for dental prostheses still limit its use, which highlights the need for technologic improvements. The aim of this in vitro study was to evaluate the biologic performance of titanium dental implants coated with zirconium nitride in a murine preosteoblast cellular model. The purpose of this study was to evaluate the chemical and morphologic characteristics of titanium implants coated with zirconium nitride by means of physical vapor deposition. Chemical and morphologic characterizations were performed by scanning electron microscopy and energy dispersive x-ray spectroscopy, and the bioactivity of the implants was evaluated by cell-counting experiments. Scanning electron microscopy and energy dispersive x-ray spectroscopy analysis found that physical vapor deposition was effective in covering titanium surfaces with zirconium nitride. Murine MC-3T3 preosteoblasts were seeded onto titanium-coated and zirconium nitride-coated screws to evaluate their adhesion and proliferation. These experiments found a significantly higher number of cells adhering and spreading onto zirconium nitride-coated surfaces (Pzirconium nitride surfaces were completely covered with MC-3T3 cells. Analysis of these data indicates that the proposed zirconium nitride coating of titanium implants could make the surface of the titanium more bioactive than uncoated titanium surfaces. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition.

    Science.gov (United States)

    Fathyunes, Leila; Khalil-Allafi, Jafar; Sheykholeslami, Seyed Omid Reza; Moosavifar, Maryam

    2018-06-01

    In this study, the ultrasound-assisted pulse electrodeposition was introduced to fabricate the graphene oxide (GO)-hydroxyapatite (HA) coating on TiO 2 nanotubes. The results of the X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR), Transmission Electron Microscope (TEM) and micro-Raman spectroscopy showed the successful synthesis of GO. The Scanning Electron Microscope (SEM) images revealed that in the presence of ultrasonic waves and GO sheets a more compact HA-based coating with refined microstructure could be formed on the pretreated titanium. The results of micro-Raman analysis confirmed the successful incorporation of the reinforcement filler of GO into the coating electrodeposited by the ultrasound-assisted method. The FTIR analysis showed that the GO-HA coating was consisted predominantly of the B-type carbonated HA (CHA) phase. The pretreatment of the substrate and incorporation of the GO sheets into the HA coating had a significant effect on improving the bonding strength at the coating-substrate interface. Moreover, the results of the fibroblast cell culture and 3‑(4,5‑dimethylthiazolyl‑2)‑2, 5‑diphenyltetrazolium bromide (MTT) assay after 2 days demonstrated a higher percentage of cell activity for the GO-HA coated sample. Finally, the 7-day exposure to simulated body fluid (SBF) showed a faster rate of apatite precipitation on the GO-HA coating, as compared to the HA coating and pretreated titanium. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2016-12-01

    The deposition characteristics of titanium coating on SiC fiber using TiCl{sub 4}-H{sub 2}-Ar gas mixture in a cold-wall chemical vapor deposition were studied by the combination of thermodynamic analysis and experimental studies. The thermodynamic analysis of the reactions in the TiCl{sub 4}-H{sub 2}-Ar system indicates that TiCl{sub 4} transforms to titanium as the following paths: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. The experimental results show that typical deposited coating contains two distinct layers: a TiC reaction layer close to SiC fiber and titanium coating which has an atomic percentage of titanium more than 70% and that of carbon lower than 30%. The results illustrate that a carbon diffusion barrier coating needs to be deposited if pure titanium is to be prepared. The deposition rate increases with the increase of temperature, but higher temperature has a negative effect on the surface uniformity of titanium coating. In addition, appropriate argon gas flow rate has a positive effect on smoothing the surface morphology of the coating. - Highlights: • Both thermodynamic analysis and experimental studies were adopted in this work. • The transformation paths of TiCl{sub 4} to Ti is: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. • Typical deposited Ti coating on SiC fiber contained two distinct layers. • Deposition temperature is important on deposition rate and morphologies. • Appropriate argon gas flow rate has a positive effect on smoothing of the coating.

  20. Formation mechanism and adhesive strength of a hydroxyapatite/TiO{sub 2} composite coating on a titanium surface prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shimin, E-mail: lshm1216@163.com [Department of Gem and Material Technique, Tianjin University of Commerce, Tianjin 300134 (China); Li, Baoe; Liang, Chunyong; Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Qiao, Zhixia [School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134 (China)

    2016-01-30

    Graphical abstract: - Highlights: • Hydroxyapatite/TiO{sub 2} composite coating was prepared by one-step micro-arc oxidation. • The formation mechanism of composite coating was investigated. • Higher bonding strength between hydroxyapatite and TiO{sub 2} layer was obtained. - Abstract: A hydroxyapatite (HA)/TiO{sub 2} composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca–P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca{sup 2+} ions which diffused into the coating decreased more rapidly than that of PO{sub 4}{sup 3−} or HPO{sub 4}{sup 2−}. The adhesive strength between the apatite and TiO{sub 2} coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO{sub 2} layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.

  1. Formation of titanium diboride coatings during the anodic polarization of titanium in a chloride melt with a low boron oxide content

    Science.gov (United States)

    Elshina, L. A.; Malkov, V. B.; Molchanova, N. G.

    2015-02-01

    The corrosion-electrochemical behavior of titanium in a molten eutectic mixture of cesium and sodium chlorides containing up to 1 wt % boron oxide is studied in the temperature range 810-870 K in an argon atmosphere. The potential, the current, and the rate of titanium corrosion are determined. The optimum conditions of forming a dense continuous titanium diboride coating on titanium with high adhesion to the metallic base are found for the anodic activation of titanium in the molten electrolyte under study.

  2. Titanium oxynitrate (TiNxOy) coating for use in thermal solar energy converters

    International Nuclear Information System (INIS)

    Lasorsa, C; Dilalla, N; Perillo, P; Morando, P.J; Versaci, R; Lucio, R

    2008-01-01

    This work deals with the production of titanium oxynitrate (TiN x O y ) coatings on metallic substrates. Because of its high resistance to high temperatures, titanium oxynitrate (TiN xO y) is a good material for the production of thermal solar energy converters. The surfaces should possess such qualities as high absorbance (α) of solar radiation (range 0.3 μm ≤λ≤2 μm) and low thermal emittance (ε) in the range of λ≥ 2 μm. The coatings should retain optical qualities temperatures greater than 300 o C. These coatings were made using the PECVD (Plasma Enhanced Chemical Vapor Deposition) technique in a single layer coating, with a gaseous mixture using titanium isopropoxide with an air contribution of reactive gas. The process is developed in one stage, with the substrate thermalized at 750 o C and without y BIAS potential. The coatings were carried out on AISI 410 stainless steel and AISI M2 steel substrates. This work presents the preliminary results of the coating's chemical composition, structure and optical and mechanical properties. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS/ESCA) and scanning electron microscopy were used in these studies

  3. Characterization for rbs of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide

    International Nuclear Information System (INIS)

    Pedrero, E.; Vigil, E.; Zumeta, I.

    1999-01-01

    The depth of Titanium Oxide thin films grown by Dip Coating in a coloidal suspension of nano structured Titanium Oxide was characterized using Rutherford Backscattering Spectrometry. Film depths are compared in function of bath and suspension parameters

  4. Composition and Performance of Nanostructured Zirconium Titanium Conversion Coating on Aluminum-Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-xue Yu

    2013-01-01

    Full Text Available Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF6 0.75 g·L−1, NaF 1.25 g·L−1, MgSO4 1.0 g/L, and tetra-n-butyl titanate (TBT 0.08 g·L−1. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM and scanning electron microscopy (SEM. Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS. Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is 9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.

  5. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique.

    Science.gov (United States)

    Onder, Sakip; Kok, Fatma Nese; Kazmanli, Kursat; Urgen, Mustafa

    2013-10-01

    In this study, formation of magnesium substituted hydroxyapatite (Ca10-xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1-x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. © 2013.

  6. Effect of applied voltage on phase components of composite coatings prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fang, Yu-Jing [Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060 (China); Zheng, Huade [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Tan, Guoxin [Guangdong University of Technology, Guangdong Province 510006 (China); Cheng, Haimei [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2013-10-01

    In this report, we present results from our experiments on composite coatings formed on biomedical titanium substrates by micro-arc oxidation (MAO) in constant-voltage mode. The coatings were prepared on the substrates in an aqueous electrolyte containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). We analyzed the element distribution and phase components of the coatings prepared at different voltages by X-ray diffraction, thin-coating X-ray diffraction, electron-probe microanalysis, and Fourier-transform infrared spectroscopy. The results show that the composite coatings formed at 500 V consist of titania (TiO{sub 2}), hydroxylapatite (HA), and calcium carbonate (CaCO{sub 3}). Furthermore, the concentration of Ca, P, and Ti gradually changes with increasing applied voltage, and the phase components of the composite coatings gradually change from the bottom of the coating to the top: the bottom layer consists of TiO{sub 2}, the middle layer consists of TiO{sub 2} and HA, and the top layer consists of HA and a small amount of CaCO{sub 3}. The formation of HA directly on the coating surface by MAO technique can greatly enhance the surface bioactivity. - Highlights: • Coatings prepared on biomedical titanium substrate by micro-arc oxidation • Coatings composed of titania, hydroxyapatite and calcium carbonate • Hydroxyapatite on the coating surface can enhance the surface bioactivity.

  7. Evaluation of the attachment, proliferation, and differentiation of osteoblast on a calcium carbonate coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yi; Jiang Tao; Zhou Yi; Zhang Zhen; Wang Zhejun [Key Laboratory for Oral Biomedical Engineering, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Tong Hua; Shen Xinyu [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Wang Yining, E-mail: wang.yn@whu.edu.cn [Key Laboratory for Oral Biomedical Engineering, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2011-07-20

    Titanium has been reported to have some limitations in dental and orthopaedic clinical application. This study described a coating process using a simple chemical method to prepare calcium carbonate coatings on smooth titanium (STi) and sandblasted and acid-etched titanium (SATi), and evaluated the biological response of the materials in vitro. The surfaces of STi, SATi, calcium carbonate coated STi (CC-STi) and calcium carbonate coated SATi (CC-SATi) were characterized for surface roughness, contact angles, surface morphology and surface chemistry. The morphology of MG63 cells cultured on the surfaces was observed by SEM and Immuno-fluorescence staining. Cell attachment/proliferation was assessed by MTT assay, and cell differentiation was evaluated by alkaline phosphatase (ALP) activity. MG63 was found to attach favorably to calcium carbonate crystals with longer cytoplasmic extensions on CC-STi and CC-SATi, resulting in lower cell proliferation but higher ALP activity when compared to STi and SATi respectively. Moreover, CC-SATi is more favorable than CC-STi in terms of biological response. In conclusion, the calcium carbonate coatings on titanium were supposed to improve the osteointegration process and stimulate osteoblast differentiation, especially in early stage. And this method could possibly be a feasible alternative option for future clinical application. Highlights: {yields} Calcium carbonate coatings were prepared on titanium substrates. {yields} The coating process is simple and cost-effective. {yields} Calcium carbonate coating could induce differentiation toward an osteoblastic phenotype. {yields} Calcium carbonate coating could enhance the osteointegration process especially in early stage.

  8. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants

    International Nuclear Information System (INIS)

    Rigo, E.C.S.; Boschi, A.O.; Yoshimoto, M.; Allegrini, S.; Konig, B.; Carbonari, M.J.

    2004-01-01

    Among several materials used as dental implants, metals present relatively high tensile strengths. Although metals are biotolerable, they do not adhere to bone tissues. On the other hand, bioactive ceramics are known to chemically bind to bone tissues, but they are not enough mechanically resistant to tension stresses. To overcome this drawback, biotolerable metals can be coated with bioactive ceramics. Various methods can be employed for coating ceramic layers on metal substrates, among them ion sputtering, plasma spray, sol-gel, electrodeposition and a biomimetic process [E.C.S. Rigo, L.C. Oliveira, L.A. Santos, A.O. Boschi, R.G. Carrodeguas. Implantes metalicos recobertos com hidroxiapatita. Revista de Engenharia Biomedica, vol. 15 (1999), numeros 1-2, 21-29. Rio de Janeiro]. The aim of this work was to study the effect of the substitution of G glass, employed in the conventional biomimetic method during the nucleation stage, by a solution of sodium silicate (SS) on the chemical and morphological characteristics, and the adhesion of biomimetic coatings deposited on Ti implants. The obtained coatings were analyzed by diffuse reflectance FTIR spectroscopy (DRIFT) and scanning electron microscopy (SEM). Titanium implants were immersed in synthetic body fluid (SBF) and SS. All implants were left inside an incubator at 37 deg. C for 7 days, followed by immersion in 1.5 SBF and taken back to the incubator for additional 6 days at 37 deg. C. The 1.5 SBF were refreshed every 2 days. At the end of the treatment, the implants were washed in distilled and deionized water and dried at room temperature. To check the osseointegration, titanium implants coated with biomimetic method were inserted in rabbit's tibia, remaining there for 8 weeks. During the healing period, polyfluorochrome sequential labeling was inoculated in the rabbits to determine the period of bone remodeling. Results from DRIFT and SEM showed that, for all processing variants employed, a HA coating was

  9. Effect of Amelogenin Coating of a Nano-Modified Titanium Surface on Bioactivity

    Directory of Open Access Journals (Sweden)

    Chisato Terada

    2018-04-01

    Full Text Available The interactions between implants and host tissues depend on several factors. In particular, a growing body of evidence has demonstrated that the surface texture of an implant influences the response of the surrounding cells. The purpose of this study is to develop new implant materials aiming at the regeneration of periodontal tissues as well as hard tissues by coating nano-modified titanium with amelogenin, which is one of the main proteins contained in Emdogain®. We confirmed by quartz crystal microbalance evaluation that amelogenin is easy to adsorb onto the nano-modified titanium surface as a coating. Scanning electron microscopy, scanning probe microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy analyses confirmed that amelogenin coated the nano-modified titanium surface following alkali-treatment. In vitro evaluation using rat bone marrow and periodontal ligament cells revealed that the initial adhesion of both cell types and the induction of hard tissue differentiation such as cementum were improved by amelogenin coating. Additionally, the formation of new bone in implanted surrounding tissues was observed in in vivo evaluation using rat femurs. Together, these results suggest that this material may serve as a new implant material with the potential to play a major role in the advancement of clinical dentistry.

  10. Characterization and Mineralization of Strontium Doped Nano Hydroxyapatite Coating on Titanium Rods

    Directory of Open Access Journals (Sweden)

    Chuang WANG

    2017-08-01

    Full Text Available Pure nano hydroxyapatite (nHA and strontium doped nano hydroxyapatite (Sr-nHA, Sr/(Ca+Sr =10% were prepared by a one-step method which mainly used the principle of homogeneous phase co-precipitation. Fourier transform infrared spectroscopy (FT-IR revealed that the intensity of absorption was decreased with Sr doping. X-ray diffraction (XRD showed that special peak position of Sr-nHA shifted to a smaller 2θ angle compared with the pure nHA. Both the pure nHA (39.46±11.19nm in length and 15.90±3.65 nm in width and Sr-nHA (32.95±10.21 nm in length and 13.18±3.18 nm in width samples showed a tiny nano-rod feature. Moreover, Tc4 (Ti-6Al-4V rods (1 mm in diameter and 20 mm in length coated with pure nHA or Sr-nHA were prepared by high-energy plasma spraying. Elements of calcium (Ca, phosphorus (P, oxygen (O and Sr were detected on the Sr-nHA coating surface by Energy Dispersive Spectrometry (EDS. XRD result also indicates the chemical composition almost did not change significantly after spraying. By immersion in the simulated body fluid (SBF, in vitro mineralization ability was estimated and the superficial coats were evaluated by scanning electron microscopy (SEM and XRD. The results showed that Sr-nHA spraying surface has a better mineralization ability than the pure nHA coating. Therefore, the synthesized Sr-nHA would have potential for biological prostheses and other implantable materials.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.17254

  11. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  12. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants for improved osteointegration.

    Science.gov (United States)

    Carradò, A; Perrin-Schmitt, F; Le, Q V; Giraudel, M; Fischer, C; Koenig, G; Jacomine, L; Behr, L; Chalom, A; Fiette, L; Morlet, A; Pourroy, G

    2017-03-01

    The aim of this study was to improve the strength and quality of the titanium-hydroxyapatite interface in order to prevent long-term failure of the implanted devices originating from coating delamination and to test it in an in-vivo model. Ti disks and dental commercial implants were etched in Kroll solution. Thermochemical treatments of the acid-etched titanium were combined with sol-gel hydroxyapatite (HA) coating processes to obtain a nanoporous hydroxyapatite/sodium titanate bilayer. The sodium titanate layer was created by incorporating sodium ions onto the Ti surface during a NaOH alkaline treatment and stabilized using a heat treatment. HA layer was added by dip-coating in a sol-gel solution. The bioactivity was assessed in vitro with murine MC3T3-E1 and human SaOs-2 cells. Functional and histopathological evaluations of the coated Ti implants were performed at 22, 34 and 60days of implantation in a dog lower mandible model. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants was sensitive neither to crack propagation nor to layer delamination. The in vitro results on murine MC3T3-E1 and human SaOs-2 cells confirm the advantage of this coating regarding the capacity of cell growth and differentiation. Signs of progressive bone incorporation, such as cancellous bone formed in contact with the implant over the existing compact bone, were notable as early as day 22. Overall, osteoconduction and osteointegration mean scores were higher for test implants compared to the controls at 22 and 34 days. Nanoporous hydroxyapatite/sodium titanate bilayer improves the in-vivo osteoconduction and osteointegration. It prevents the delamination during the screwing and it could increase HA-coated dental implant stability without adhesive failures. The combination of thermochemical treatments with dip coating is a low-cost strategy. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  14. Characterization and properties of shock and corrosion resistant of titanium based coatings

    International Nuclear Information System (INIS)

    Motoiu, P.; Rosso, M.

    2001-01-01

    Thermal spraying technologies are an effective way to ensure surface protection against destructive effects of wear, corrosion and oxidizing phenomena. These technologies can be applied in majority of industrial sectors in order to improve properties of new parts or for reconditioning worn out parts technology. Ideally, it would be comfortable to have a material able to resist to all type of wear, but the work condition intricacy combined with economic reason have lead to the development of a big number of powder materials that are used in thermal spraying technologies. The titanium powders are suitable for coating layers which have a good behavior in 'metal on metal friction', toughness, shock and corrosion resistance. In particular, titanium layers obtained by plasma spraying are used in different aerospace and non aerospace applications due to the combination of low density, very good mechanical properties and high corrosion resistance. The accomplishment of new titanium thermal layers is effectively used in order to increase the lifetime of different engine parts securing the thermal protection in use, resistance to high corrosion and oxidizing phenomena. This paper deals about the mechanical properties of Ti based coatings applied by plasma spray process on steel substrates, the obtained results show the possibility to apply titanium coatings where special and high performance materials are needed. (author)

  15. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    Science.gov (United States)

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  16. Titanium tritide radioisotope heat source development: palladium-coated titanium hydriding kinetics and tritium loading tests

    International Nuclear Information System (INIS)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  17. Laser beam welding of titanium nitride coated titanium using pulse-shaping

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2005-09-01

    Full Text Available A new welding method which allows the assembly of two titanium nitride coated titanium parts is proposed. The welding procedure utilizes the possibility for pulse-shaping in order to change the energy distribution profile during the laser pulse. The pulse-shaping is composed of three elements: a a short high power pulse for partial ablation at the surface; b a long pulse for thermal penetration; and c a quenching slope for enhanced weldability. The combination of these three elements produces crack-free welds. The weld microstructure is changed in comparison to normal welding, i.e. with a rectangular pulse, as the nitrogen and the microhardness are more homogenously distributed in the weld under pulse-shaping conditions. This laser pulse dissolves the TiN layer and allows nitrogen to diffuse into the melt pool, also contributing to an enhanced weldability by providing suitable thermal conditions.

  18. The Morse taper junction in modular revision hip replacement--a biomechanical and retrieval analysis.

    Science.gov (United States)

    Schramm, M; Wirtz, D C; Holzwarth, U; Pitto, R P

    2000-04-01

    All biomaterials used for total joint surgery are subjected to wear mechanisms. Morse taper junctions of modular hip revision implants are predilection sites for both fretting and crevice corrosion, dissociation and breakage of the components. The aim of this study is to quantify wear and study metallurgical changes of Morse taper junctions of in-vitro and in-vivo loaded modular revision stems. Three modular revision stems (MRP-Titan, Peter Brehm GmbH, Germany) were loaded by a servohydraulic testing machine. The loads and conditions used exceeded by far the values required by ISO-standard 7206. The tests were performed with maximum axial loads of 3,500 N to 4,000 N over 10-12 x 10(6) cycles at 2 Hz. Additionally, the female part of the taper junctions were coated with blood and bone debris. The free length of the implant was set to 200 mm. One other MRP stem was investigated after retrieval following 5.5 years of in-vivo use. All contact surfaces of the modular elements were assessed by visual inspection, optical microscopy and scanning electron microscopy (SEM). The degree of plastic deformation of the male part of the morse taper junction was determined by contouroscopy. None of the morse taper junctions broke or failed mechanically. Corrosion and wear affected all tapers, especially at the medial side. The retrieved implant showed no cracks and the amount of debris measured only one third of that for the stems tested in-vitro. The present retrieval and laboratory investigations have proven, that the morse taper junctions of the MRP-titanium stem are stable and resistant to relevant wear mechanisms. The longevity of the junctions for clinical use is given. If an optimal taper design is selected, the advantages of modular femoral components in total hip revision arthroplasty will outweigh the possible risks.

  19. Preparation and in vitro evaluation of plasma-sprayed bioactive akermanite coatings

    International Nuclear Information System (INIS)

    Yi, Deliang; Wu, Chengtie; Chang, Jiang; Ma, Xubing; Ji, Heng; Zheng, Xuebin

    2012-01-01

    Bioactive ceramic coatings on titanium (Ti) alloys play an important role in orthopedic applications. In this study, akermanite (Ca 2 MgSi 2 O 7 ) bioactive coatings are prepared through a plasma spraying technique. The bonding strength between the coatings and Ti-6Al-4V substrates is around 38.7–42.2 MPa, which is higher than that of plasma sprayed hydroxyapatite (HA) coatings reported previously. The prepared akermanite coatings reveal a distinct apatite-mineralization ability in simulated body fluid. Furthermore, akermanite coatings support the attachment and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs). The proliferation rate of BMSCs on akermanite coatings is obviously higher than that on HA coatings. (paper)

  20. Appearance of cell-adhesion factor in osteoblast proliferation and differentiation of apatite coating titanium by blast coating method.

    Science.gov (United States)

    Umeda, Hirotsugu; Mano, Takamitsu; Harada, Koji; Tarannum, Ferdous; Ueyama, Yoshiya

    2017-08-01

    We have already reported that the apatite coating of titanium by the blast coating (BC) method could show a higher rate of bone contact from the early stages in vivo, when compared to the pure titanium (Ti) and the apatite coating of titanium by the flame spraying (FS) method. However, the detailed mechanism by which BC resulted in satisfactory bone contact is still unknown. In the present study, we investigated the importance of various factors including cell adhesion factor in osteoblast proliferation and differentiation that could affect the osteoconductivity of the BC disks. Cell proliferation assay revealed that Saos-2 could grow fastest on BC disks, and that a spectrophotometric method using a LabAssay TM ALP kit showed that ALP activity was increased in cells on BC disks compared to Ti disks and FS disks. In addition, higher expression of E-cadherin and Fibronectin was observed in cells on BC disks than Ti disks and FS disks by relative qPCR as well as Western blotting. These results suggested that the expression of cell-adhesion factors, proliferation and differentiation of osteoblast might be enhanced on BC disks, which might result higher osteoconductivity.

  1. Novel Bioactive Antimicrobial Lignin Containing Coatings on Titanium Obtained by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Sanja Erakovic

    2014-07-01

    Full Text Available Hydroxyapatite (HAP is the most suitable biocompatible material for bone implant coatings; its brittleness, however, is a major obstacle, and the reason why research focuses on creating composites with biopolymers. Organosolv lignin (Lig is used for the production of composite coatings, and these composites were examined in this study. Titanium substrate is a key biomedical material due to its well-known properties, but infections of the implantation site still impose a serious threat. One approach to prevent infection is to improve antimicrobial properties of the coating material. Silver doped hydroxyapatite (Ag/HAP and HAP coatings on titanium were obtained by an electrophoretic deposition method in order to control deposited coating mass and morphology by varying applied voltage and deposition time. The effect of lignin on microstructure, morphology and thermal behavior of biocomposite coatings was investigated. The results showed that higher lignin concentrations protect the HAP lattice during sintering, improving coating stability. The corrosion stability was evaluated in simulated body fluid (SBF at 37 °C. Newly formed plate-shaped carbonate-HAP was detected, indicating enhanced bioactive performance. The antimicrobial efficiency of Ag/HAP/Lig was confirmed by its higher reduction of bacteria Staphylococcus aureus TL (S. aureus TL than of HAP/Lig coating. Cytotoxicity assay revealed that both coatings can be classified as non-toxic against healthy immunocompetent peripheral blood mononuclear cells (PBMC.

  2. Nanomechanical properties of hydroxyapatite (HAP) with DAB dendrimers (poly-propylene imine) coatings onto titanium surfaces

    International Nuclear Information System (INIS)

    Charitidis, Costas A.; Skarmoutsou, Amalia; Tsetsekou, Athena; Brasinika, Despina; Tsiourvas, Dimitris

    2013-01-01

    Highlights: ► The synthesis of hydroxyapatite (HAP) nanoparticles in the presence of a cationic fourth generation diaminobutane poly(propylene imine) dendrimer (DAB). ► The nanomechanical properties of different HAP-DAB coatings onto titanium surfaces. ► Wear resistance and adhesion properties of the synthesized coatings quantified by nanoindentation data analysis. -- Abstract: Coatings of hydroxyapatite (HAP) nanorods onto titanium surfaces were synthesized with the aim to improve coatings’ mechanical properties and adhesion to the substrate. The coatings are consisting of HAP nanorods synthesized in the presence of a cationic fourth generation diaminobutane poly(propylene imine) dendrimer (DAB) bearing 32 amine end groups employing varying calcium: dendrimer ratios and varying hydrothermal treatments. The quality, surface morphology and structure of the coatings were characterized with X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and energy dispersive microanalysis. Wear resistance and adhesion properties of the coatings onto titanium substrates were studied through nanoindentation analysis. The experimental conditions, namely the calcium: dendrimer molar ratio and the hydrothermal treatment temperature were carefully selected; thus, it was possible to produce coatings of high hardness and elastic modulus values (ranging between 1–4.5 GPa and 40–150 GPa, respectively) and/or high wear resistance and plastic deformation values

  3. Nanomechanical properties of hydroxyapatite (HAP) with DAB dendrimers (poly-propylene imine) coatings onto titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Charitidis, Costas A., E-mail: charitidis@chemeng.ntua.gr [School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou, Zografou, 15780 Athens (Greece); Skarmoutsou, Amalia [School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou, Zografou, 15780 Athens (Greece); Tsetsekou, Athena; Brasinika, Despina [School of Mining Engineering and Metallurgy, National Technical University of Athens, Iroon Polytechniou, Zografou, 15780 Athens (Greece); Tsiourvas, Dimitris [National Centre for Scientific Research “Demokritos”, Institute of Physical Chemistry, Agia Paraskevi, 15310 Athens (Greece)

    2013-04-20

    Highlights: ► The synthesis of hydroxyapatite (HAP) nanoparticles in the presence of a cationic fourth generation diaminobutane poly(propylene imine) dendrimer (DAB). ► The nanomechanical properties of different HAP-DAB coatings onto titanium surfaces. ► Wear resistance and adhesion properties of the synthesized coatings quantified by nanoindentation data analysis. -- Abstract: Coatings of hydroxyapatite (HAP) nanorods onto titanium surfaces were synthesized with the aim to improve coatings’ mechanical properties and adhesion to the substrate. The coatings are consisting of HAP nanorods synthesized in the presence of a cationic fourth generation diaminobutane poly(propylene imine) dendrimer (DAB) bearing 32 amine end groups employing varying calcium: dendrimer ratios and varying hydrothermal treatments. The quality, surface morphology and structure of the coatings were characterized with X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and energy dispersive microanalysis. Wear resistance and adhesion properties of the coatings onto titanium substrates were studied through nanoindentation analysis. The experimental conditions, namely the calcium: dendrimer molar ratio and the hydrothermal treatment temperature were carefully selected; thus, it was possible to produce coatings of high hardness and elastic modulus values (ranging between 1–4.5 GPa and 40–150 GPa, respectively) and/or high wear resistance and plastic deformation values.

  4. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Science.gov (United States)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  5. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  6. CVD diamond coatings on titanium : Characterisation by XRD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cappuccio, G [CNR, Frascati, Rome (Italy). Istituto di Strutturistica Chimica; [INFN-LNF, Frascati, Rome (Italy). Laboratorio Dafne Luce

    1996-09-01

    Here, the authors report an analysis carried out on diamond coatings on titanium substrates to show the potentially of x-ray diffraction techniques in the structural characterisation both of diamond thin films and of the other phases (TiC and TiH{sub 2}) present in the interfacial layer. It should be noted that the composition and microstructure of the interface layers strongly affect the characteristics of the diamond films, particularly adhesion, which is one of the most important elements determining the final quality of the coating.

  7. Development of novel titanium nitride-based decorative coatings by calcium addition

    Energy Technology Data Exchange (ETDEWEB)

    Hodroj, A. [Institut Jean Lamour, CNRS UMR 7198, Departement CP2S, Ecole des Mines, Parc de Saurupt, CS 14234, 54042 Nancy cedex (France); Pierson, J.F., E-mail: jean-francois.pierson@ijl.nancy-universite.fr [Institut Jean Lamour, CNRS UMR 7198, Departement CP2S, Ecole des Mines, Parc de Saurupt, CS 14234, 54042 Nancy cedex (France)

    2011-08-01

    Calcium was added into titanium nitride coatings deposited using a hybrid magnetron sputtering-arc evaporation process. The calcium content in the films was adjusted by the variation of the pulsed DC current applied to the Ca sputtering target. X-ray diffraction analyses suggested that the increase of the calcium content induced the partial substitution of titanium atoms by calcium ones in the TiN lattice and a refinement of the grain size. Optical reflectance investigations showed that the absorption band of TiN was shifted towards higher wavelengths and that (Ti,Ca)N coatings may be suitable for decorative applications. Finally, the decrease of the film reflectivity was interpreted as a consequence of a free electron concentration decrease as confirmed from electrical resistivity measurements.

  8. Development of novel titanium nitride-based decorative coatings by calcium addition

    International Nuclear Information System (INIS)

    Hodroj, A.; Pierson, J.F.

    2011-01-01

    Calcium was added into titanium nitride coatings deposited using a hybrid magnetron sputtering-arc evaporation process. The calcium content in the films was adjusted by the variation of the pulsed DC current applied to the Ca sputtering target. X-ray diffraction analyses suggested that the increase of the calcium content induced the partial substitution of titanium atoms by calcium ones in the TiN lattice and a refinement of the grain size. Optical reflectance investigations showed that the absorption band of TiN was shifted towards higher wavelengths and that (Ti,Ca)N coatings may be suitable for decorative applications. Finally, the decrease of the film reflectivity was interpreted as a consequence of a free electron concentration decrease as confirmed from electrical resistivity measurements.

  9. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    Science.gov (United States)

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants. © The Author(s) 2015.

  10. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes.

    Science.gov (United States)

    Chu, Chenyu; Deng, Jia; Man, Yi; Qu, Yili

    2017-09-01

    Collagen is the main component of extracellular matrix (ECM) with desirable biological activities and low antigenicity. Collagen materials have been widely utilized in guided bone regeneration (GBR) surgery due to its abilities to maintain space for hard tissue growth. However, pure collagen lacks optimal mechanical properties. In our previous study, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, with better biological activities and enhanced mechanical properties, may promote osteoblast proliferation, but their effect on osteoblast differentiation is not very significant. Nanohydroxyapatite (nano-HA) is the main component of mineral bone, which possesses exceptional bioactivity properties including good biocompatibility, high osteoconductivity and osteoinductivity, non-immunogenicity and non-inflammatory behavior. Herein, by analyzing the physical and chemical properties as well as the effects on promoting bone regeneration, we have attempted to present a novel EGCG-modified collagen membrane with nano-HA coating, and have found evidence that the novel collagen membrane may promote bone regeneration with a better surface morphology, without destroying collagen backbone. To evaluate the surface morphologies, chemical and mechanical properties of pure collagen membranes, epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes, nano-HA coated collagen membranes, nano-HA coated EGCG-collagen membranes, (ii) to evaluate the bone regeneration promoted by theses membranes. In the present study, collagen membranes were divided into 4 groups: (1) untreated collagen membranes (2) EGCG cross-linked collagen membranes (3) nano-HA modified collagen membranes (4) nano-HA modified EGCG-collagen membranes. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to evaluate surface morphologies and chemical properties, respectively. Mechanical properties were determined by differential scanning calorimeter (DSC

  11. Fracture resistance of dental nickel-titanium rotary instruments with novel surface treatment: Thin film metallic glass coating.

    Science.gov (United States)

    Chi, Chih-Wen; Deng, Yu-Lun; Lee, Jyh-Wei; Lin, Chun-Pin

    2017-05-01

    Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure. Copyright © 2016. Published by Elsevier B.V.

  12. Alkaline corrosion properties of laser-clad aluminum/titanium coatings

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Herbreteau, Alexis; Rombouts, Marleen

    2015-01-01

    Purpose - The purpose of this paper is to study the use of titanium as a protecting element for aluminum in alkaline conditions. Design/methodology/approach - Aluminum coatings containing up to 20 weight per cent Ti6Al4V were produced using laser cladding and were investigated using light optical...... microscope, scanning electron microscope - energy-dispersive X-ray spectroscopy and X-Ray Diffraction, together with alkaline exposure tests and potentiodynamic measurements at pH 13.5. Findings - Cladding resulted in a heterogeneous solidification microstructure containing an aluminum matrix...... with supersaturated titanium ( (1 weight per cent), Al3Ti intermetallics and large partially undissolved Ti6Al4V particles. Heat treatment lowered the titanium concentration in the aluminum matrix, changed the shape of the Al3Ti precipitates and increased the degree of dissolution of the Ti6Al4V particles. Corrosion...

  13. HA-Coated Implant

    DEFF Research Database (Denmark)

    Daugaard, Henrik; Søballe, Kjeld; Bechtold, Joan E

    2014-01-01

    of improving the fixation of implants. Of these, hydroxyapatite (HA) is the most widely used and most extensively investigated. HA is highly osseoconductive, and the positive effect is well documented in both basic and long-term clinical research [1–6]. This chapter describes experimental and clinical studies...

  14. [Influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Yao, Jiang-wu; Xu, De-wen

    2010-10-01

    The aim of this study was to observed the influence of deposition time on chromatics during nitrogen-doped diamond like carbon coating (N-DLC) on pure titanium by multi impulse are plasma plating machine. Applying multi impulse are plasma plating machine to produce TiN coatings on pure titanium in nitrogen atmosphere, then filming with nitrogen-doped DLC on TiN in methane (10-80 min in every 5 min). The colors of N-DLC were evaluated in the CIE1976 L*a*b* uniform color scale and Mussell notation. The surface morphology of every specimen was analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). When changing the time of N-DLC coating deposition, N-DLC surface showed different color. Golden yellow was presented when deposition time was 30 min. SEM showed that crystallization was found in N-DLC coatings, the structure changed from stable to clutter by varying the deposition time. The chromatics of N-DLC coatings on pure titanium could get golden yellow when deposition time was 30 min, then the crystallized structure was stable.

  15. The evaluation of hydroxyapatite (HA) coated and uncoated porous tantalum for biomedical material applications

    International Nuclear Information System (INIS)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-01-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  16. The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications

    Science.gov (United States)

    Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni

    2014-04-01

    Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.

  17. Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks' Solution

    Science.gov (United States)

    Gnanavel, S.; Ponnusamy, S.; Mohan, L.; Radhika, R.; Muthamizhchelvan, C.; Ramasubramanian, K.

    2018-03-01

    Biomedical implants in the knee and hip are frequent failures because of corrosion and stress on the joints. To solve this important problem, metal implants can be coated with diamond carbon, and this coating plays a critical role in providing an increased resistance to implants toward corrosion. In this study, we have employed diamond carbon coating over Ti-6Al-4V and Ti-13Nb-13Zr alloys using hot filament chemical vapor deposition method which is well-established coating process that significantly improves the resistance toward corrosion, wears and hardness. The diamond carbon-coated Ti-13Nb-13Zr alloy showed an increased microhardness in the range of 850 HV. Electrochemical impedance spectroscopy and polarization studies in SBF solution (simulated body fluid solution) were carried out to understand the in vitro behavior of uncoated as well as coated titanium alloys. The experimental results showed that the corrosion resistance of Ti-13Nb-13Zr alloy is relatively higher when compared with diamond carbon-coated Ti-6Al-4V alloys due to the presence of β phase in the Ti-13Nb-13Zr alloy. Electrochemical impedance results showed that the diamond carbon-coated alloys behave as an ideal capacitor in the body fluid solution. Moreover, the stability in mechanical properties during the corrosion process was maintained for diamond carbon-coated titanium alloys.

  18. Electrochemical behaviour of titanium coated stainless steel by r.f. sputtering in synthetic sweat solutions for electrode applications

    International Nuclear Information System (INIS)

    Fonseca, C.; Vaz, F.; Barbosa, M.A.

    2004-01-01

    The r.f. sputtering technique was used to deposit titanium thin films on stainless steel substrates, aiming at the application of the coated samples as skin contact materials for 'dry' active electrodes. In this work the electrochemical behaviour of the coated samples was investigated in synthetic sweat solutions and their performance was compared with that of uncoated stainless steel and bulk titanium. The characterisation of the samples was carried out by electrochemical techniques and scanning electron microscopy. The coated samples displayed corrosion resistance values in synthetic sweat solutions much higher than stainless steel samples and of the same order of the values measured for bulk titanium in the same conditions

  19. Cellulose acetate propionate coated titanium: characterization and biotechnological application

    Directory of Open Access Journals (Sweden)

    Guilherme da Silva Gomes

    2007-12-01

    Full Text Available Surfaces of pure titanium and Ti coated with cellulose acetate propionate (CAP have been characterized by means of scanning electron microscopy X ray coupled with elemental microanalysis (SEM-EDS, ellipsometry, atomic force microscopy (AFM and contact angle measurements. Coating Ti surfaces with CAP ultrathin films reduced original surface roughness. Surface energy and wettability of CAP covered Ti surfaces pure Ti surfaces were similar. The adsorption of lysozyme (LYZ, an antibacterial protein, onto Ti and CAP-coated Ti surfaces has been studied by means of ellipsometry and atomic force microscopy (AFM. The adsorption of LYZ was mainly driven by hydrophobic interaction between protein hydrophobic residues and CAP propyl groups. Pure Ti and CAP coated Ti surfaces presented no cytotoxicity effect and proved to be adequate substrates for cell adhesion. The biocompatibility of CAP coated Ti surfaces was attributed to the surface enrichment in glucopyranosyl residues and short alkyl side groups.

  20. Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: a promising candidate for medical applications

    International Nuclear Information System (INIS)

    Behzadi, Shahed; Simchi, Abdolreza; Imani, Mohammad; Yousefi, Mohammad; Galinetto, Pietro; Amiri, Houshang; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses. (paper)

  1. Laser fabrication of Ag-HA nanocomposites on Ti6Al4V implant for enhancing bioactivity and antibacterial capability

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangmei; Man, H.C., E-mail: mfhcman@polyu.edu.hk

    2017-01-01

    For titanium alloy implants, both surface bioactivity and antibacterial infection are the two critical factors in determining the success of clinical implantation of these metallic implants. In the present work, a novel nanocomposite layer of nano-silver-containing hydroxyapatite (Ag-HA) was prepared on the surface of biomedical Ti6Al4V by laser processing. Analysis using SEM, EDS and XRD shows the formation of an Ag-HA layer of about 200 μm fusion bonded to the substrate. Mineralization tests in simulated body fluid (SBF) showed that laser fabricated Ag-HA nanocomposite layer favors the deposition of apatite on the surface of the implants. Antibacterial tests confirmed that all Ag-HA nanocomposite layers can kill bacteria while a higher Ag content would lower the cytocompatibility of these coatings. Cell viability decreases when the Ag content reaches 5% in these coatings, due to the larger amount of Ag leached out, as confirmed by ion release evaluation. Our results reveal that laser fabricated Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability. - Highlights: • Silver-containing hydroxyapatite (Ag-HA) nanocomposite layer was fabricated on Ti6Al4V by laser technique. • Both bioactivity and antibacterial capability were significantly enhanced compared with bare Ti6Al4V. • Ag-HA nanocomposite coatings containing 2% Ag show both excellent cytocompatibility and antibacterial capability.

  2. Cytocompatibility and antibacterial properties of zirconia coatings with different silver contents on titanium

    International Nuclear Information System (INIS)

    Huang, Heng-Li; Chang, Yin-Yu; Chen, Ya-Chi; Lai, Chih-Ho; Chen, Michael Y.C.

    2013-01-01

    This study used a twin-gun magnetron sputtering system to deposit ZrO 2 -silver (Ag) coatings on biograde pure-titanium implant materials, and the Ag content in the deposited coatings was controlled by the magnetron power. The films were then annealed using rapid thermal annealing at 350 °C for 2 min to induce the nucleation and growth of nanoparticles on the film surface. Staphylococcus aureus (S. aureus) and Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) were used for in vitro antibacterial analyses. The cytocompatibility, mRNA expression, and adhesive morphology of human gingival fibroblast (HGF) cells on the coatings were also determined. The obtained results suggest that ZrO 2 -Ag composite coatings containing less than 10.6 at.% Ag show hydrophobicity, good viability and proliferation of HGF cells, and antibacterial effects on S. aureus and A. actinomycetemcomitans. Moreover, the antibacterial performance of ZrO 2 -Ag coatings is superior to that pure-titanium whilst maintaining biological compatibility. - Highlights: • The annealed ZrO 2 -Ag coatings showed a tetragonal-and-monoclinic structure. • Nanoparticles were well distributed in the annealed ZrO 2 -Ag composite coatings. • The ZrO 2 -Ag coated Ti showed hydrophobic feature. • The ZrO 2 -Ag showed good antibacterial performance. • The ZrO 2 -Ag showed good human gingival fibroblast cell viability

  3. Characterization of electrolytic HA/ZrO{sub 2} double layers coatings on Ti-6Al-4V implant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yen, S.K. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)]. E-mail: skyen@dragon.nchu.edu.tw; Chiou, S.H. [Graduate Institute of Veterinary Microbiology, National Chung Hsing University, Taichung 40227, Taiwan (China); Wu, S.J. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Chang, C.C. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Lin, S.P. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Lin, C.M. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2006-01-15

    Hydroxyapatite (HA) coating was proved having bioactive property and hence improving the bonding strength on bone tissue without inducing the growth of fiber tissue. However, the weak adhesion between HA and metal implants is still the major problem. In this study, a novel method of electrolytic HA/ZrO{sub 2} double layers coating was successfully conducted on F-136 Ti-6Al-4V implant alloy in ZrO{sub 2}(NO{sub 3}){sub 2} aqueous solution and subsequently in the mixed solution of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4}. After annealing at 400 deg. C, 500 deg. C and 600 deg. C for 4 h in air, the coated specimens were evaluated by X-ray diffraction analyses, surface morphology observations, scratch tests, dynamic polarization tests, immersion tests and cell culture assays. In addition to corrosion resistance, the adhesion strength of electrolytic deposited HA on Ti alloy was dramatically improved from the critical scratch load 2 N to 32 N by adding the intermediate electrolytic deposition of ZrO{sub 2}, which showed the strong bonding effects between Ti alloy substrate and HA coating. Based on the cell morphology and cell proliferation data, HA/ZrO{sub 2} double layers coating revealed the better substrate for the adhesion and proliferation of osteoblasts than the others. It was also found that the crystallization of HA had positive effect on the proliferation of osteoblasts.

  4. [Effect of sintering gold paste coating on the bonding strength of pure titanium and three low-fusing porcelains].

    Science.gov (United States)

    Zhang, Ya-li; Luo, Xiao-ping; Zhou, Li

    2012-05-01

    To study the effect of sintering gold paste coating of pure titanium on the adhesion of three porcelains following the protocol ISO 9693, and to investigate the titanium-porcelains interfaces. Sixty machined pure titanium samples were prepared in a rectangular shape according to ISO 9693 and divided equally into six groups. Half of the strips were coated with gold paste (Deckgold) and sintered. Three ultra-low-fusing dental porcelains (I: Initial Ti, S: Super porcelain Ti-22, T: TitanKeramik) were fused onto the titanium surfaces. A thin layer of bonding agent was only applied on the surfaces of uncoated gold specimens. The interface of the porcelain and titanium was observed with a field emission scanning electron microscope (FE-SEM) after metallographic preparation and sputtered with a very thin carbon layer of the embedded titanium-porcelain interface. After three-point bending test was performed, optical stereomicroscope was used to characterize the titanium-porcelains adhesion and determine the mode of failure. FE-SEM illustrated intermetallic compounds of Au-Ti formed with some visible microcracks in the gold layer and the interface of gold layer and ceramic. All the uncoated gold titanium-porcelain system showed predominately adhesive fracture at the titanium oxidation, whereas the failure modes in all gold coated systems were cohesive and adhesive, mainly cohesive. The three-point-bending test showed that the bonding strength of GS and GI groups [(37.08 ± 4.32) and (36.20 ± 2.40) MPa] were higher than those in uncoated groups [(31.56 ± 3.74) and (30.88 ± 2.60) MPa, P 0.05). The gold paste intermediate coatings can improve bond strengths of Super porcelain Ti-22 system and Initial Ti system, which have potential applications in clinical fields.

  5. Plastohydrodynamic drawing and coating of stainless steel wire using a tapered bore die of no metal to metal contact

    Science.gov (United States)

    Hasan, S.; Basmage, O.; Stokes, J. T.; Hashmi, M. S. J.

    2018-05-01

    A review of wire coating studies using plasto-hydrodynamic pressure shows that most of the works were carried out by conducting experiments simultaneously with simulation analysis based upon Bernoulli's principle and Euler and Navier-Stokes (N-S) equations. These characteristics relate to the domain of Computational Fluid Dynamics (CFD) which is an interdisciplinary topic (Fluid Mechanics, Numerical Analysis of Fluid flow and Computer Science). This research investigates two aspects: (i) simulation work and (ii) experimentation. A mathematical model was developed to investigate the flow pattern of the molten polymer and pressure distribution within the wire-drawing dies, assessment of polymer coating thickness on the coated wires and speed of coating on the wires at the outlet of the drawing dies, without deploying any pressurizing pump. In addition to a physical model which was developed within ANSYS™ environment through the simulation design of ANSYS™ Workbench. The design was customized to simulate the process of wire-coating on the fine stainless-steel wires using drawing dies having different bore geometries such as: stepped parallel bore, tapered bore and combined parallel and tapered bore. The convergence of the designed CFD model and numerical and physical solution parameters for simulation were dynamically monitored for the viscous flow of the polypropylene (PP) polymer. Simulation results were validated against experimental results and used to predict the ideal bore shape to produce a thin coating on stainless wires with different diameter. Simulation studies confirmed that a specific speed should be attained by the stainless-steel wires while passing through the drawing dies. It has been observed that all the speed values within specific speed range did not produce a coating thickness having the desired coating characteristic features. Therefore, some optimization of the experimental set up through design of experiments (Stat-Ease) was applied to

  6. In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2018-04-01

    Full Text Available To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA. Coating was confirmed by scanning electron microscopy (SEM and scanning probe microscopy (SPM, while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.

  7. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique

    International Nuclear Information System (INIS)

    Onder, Sakip; Kok, Fatma Nese; Kazmanli, Kursat; Urgen, Mustafa

    2013-01-01

    In this study, formation of magnesium substituted hydroxyapatite (Ca 10−x Mg x (PO 4 ) 6 (OH) 2 ) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti 1−x ,Mg x )N (x = 0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. - Highlights: • Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase • Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation • (Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF

  8. Structure and phase composition of titanium nitride coating on austenitic steel

    International Nuclear Information System (INIS)

    Dubovitskaya, N.V.; Kolenchenko, L.D.; Larikov, L.N.

    1989-01-01

    Structure and phase composition of titanium nitride coating deposited on 08Kh18N10T steel substrate using ''Bulat'' device are studied. Use of complex investigation methods permitted despite small coating thickness (1μm) to aquire information on hardness, porosity, to study phase composition in all coating thickness. The surface layer (∼0.1 μm) consists of ε-Ti 2 N, TiN 0.6 , TiC 0.35 , that is formed with carbon participation from oil vacuum. In more deeper layers beside ε-Ti 2 N TiC 0.14 N 0.77 is present. Effect of carbon diffusion from substrate to forming coating is stated. Gradient of element concentrations in the substrate-coating interface causes recrystallization of austenite

  9. Multifunctional zirconium nitride/copper multilayer coatings on medical grade 316L SS and titanium substrates for biomedical applications.

    Science.gov (United States)

    Kumar, D Dinesh; Kaliaraj, Gobi Saravanan

    2018-01-01

    Protecting from wear and corrosion of many medical devices in the biomedical field is an existing scientific challenge. Surface modification with multilayer ZrN/Cu coating was deposited on medical grade stainless steel (SS) and titanium substrates to enhance their surface properties. Structural results revealed that the ZrN/Cu coatings are highly crystalline and uniform microstructure on both the substrates. Dry and wet tribological measurements of the coated titanium substrate exhibit enhanced wear resistance and low friction coefficient due to the improved microstructure. Similarly, the corrosion resistance was exceptionally improved on titanium substrates, resulting from the high inertness of coating to the SBF electrolyte solution. Antibacterial activity and epifluorescence results signify the effective killing of pathogens by means of ion release killing as well as contact killing mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats.

    Science.gov (United States)

    Diefenbeck, M; Schrader, C; Gras, F; Mückley, T; Schmidt, J; Zankovych, S; Bossert, J; Jandt, K D; Völpel, A; Sigusch, B W; Schubert, H; Bischoff, S; Pfister, W; Edel, B; Faucon, M; Finger, U

    2016-09-01

    Implant related infection is one of the most feared and devastating complication associated with the use of orthopaedic implant devices. Development of anti-infective surfaces is the main strategy to prevent implant contamination, biofilm formation and implant related osteomyelitis. A second concern in orthopaedics is insufficient osseointegration of uncemented implant devices. Recently, we reported on a macroporous titanium-oxide surface (bioactive TiOB) which increases osseointegration and implant fixation. To combine enhanced osseointegration and antibacterial function, the TiOB surfaces were, in addition, modified with a gentamicin coating. A rat osteomyelitis model with bilateral placement of titanium alloy implants was employed to analyse the prophylactic effect of gentamicin-sodiumdodecylsulfate (SDS) and gentamicin-tannic acid coatings in vivo. 20 rats were randomly assigned to four groups: (A) titanium alloy; PBS inoculum (negative control), (B) titanium alloy, Staphylococcus aureus inoculum (positive control), (C) bioactive TiOB with gentamicin-SDS and (D) bioactive TiOB plus gentamicin-tannic acid coating. Contamination of implants, bacterial load of bone powder and radiographic as well as histological signs of implant-related osteomyelitis were evaluated after four weeks. Gentamicin-SDS coating prevented implant contamination in 10 of 10 tibiae and gentamicin-tannic acid coating in 9 of 10 tibiae (infection prophylaxis rate 100% and 90% of cases, respectively). In Group (D) one implant showed colonisation of bacteria (swab of entry point and roll-out test positive for S. aureus). The interobserver reliability showed no difference in the histologic and radiographic osteomyelitis scores. In both gentamicin coated groups, a significant reduction of the histological osteomyelitis score (geometric mean values: C = 0.111 ± 0.023; D = 0.056 ± 0.006) compared to the positive control group (B: 0.244 ± 0.015; p < 0.05) was observed. The

  11. Mechanical property, degradation rate, and bone cell growth of chitosan coated titanium influenced by degree of deacetylation of chitosan.

    Science.gov (United States)

    Yuan, Youling; Chesnutt, Betsy M; Wright, Lee; Haggard, Warren O; Bumgardner, Joel D

    2008-07-01

    Chitosan has shown promise as a coating for dental/craniofacial and orthopaedic implants. However, the effects of degree of deacetylation (DDA) of chitosan on coating bond strength, degradation, and biological performance is not known. The aim of this project was to evaluate bonding, degradation, and bone cell growth on titanium coated with chitosans of different DDA and from different manufacturers. Three different chitosans, 80.6%, 81.7%, and 92.3% DDA were covalently bonded to titanium coupons via silane-glutaraldehyde molecules. Bond strengths were evaluated in mechanical tensile tests, and degradation, over 5 weeks, was conducted in cell culture medium with and without 100 microg/mL lysozyme. Cytocompatibility was evaluated for 10 days using UMR 106 osteoblastic cells. Results showed that mean chitosan coating bond strengths ranged from 2.2-3.8 MPa, and that there was minimal affect of DDA on coating bond strengths. The coatings exhibited little dissolution over 5 weeks in medium with or without lysozyme. However, the molecular weight (MW) of the chitosan coatings remaining on the titanium samples after 5 weeks decreased by 69-85% with the higher DDA chitosan coatings exhibiting less percent change in MW than the lower DDA materials. The growth of the UMR 106 osteoblast cells on the 81.7% DDA chitosan coating was lower on days 3 and 5, as compared with the other two coatings, but by day 10, there were no differences in growth among three coatings or to the uncoated titanium controls. Differences in growth were attributed to differences in manufacturer source material, though all coatings were judged to be osteocompatible in vitro. 2007 Wiley Periodicals, Inc.

  12. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates.

    Science.gov (United States)

    Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong

    2017-01-01

    Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces.

    Science.gov (United States)

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D3, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Electroless Ni–B Coating of Pure Titanium Surface for Enhanced Tribocorrosion Performance in Artificial Saliva and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    F. Mindivan

    2017-05-01

    Full Text Available In the present study, the surface of commercial pure (Grade 2 titanium was coated with electroless Ni–B. The surface morphology, microstructure and phase identification were analysed by X-Ray Diffraction (XRD and Field Emission Gun Scanning Electron Microscope (FEG-SEM equipped with Energy Dispersive X-ray Spectroscopy (EDS. The tribocorrosion performance in a laboratory simulated artificial saliva was investigated using a reciprocating ball-on-plate tribometer coupled to an electrochemical cell. The antibacterial property of the electroless Ni–B film coated on pure titanium was basically investigated. From this study, it may be concluded that this electroless Ni–B coating process cannot only improve the hardness and tribocorrosion performance of the pure titanium, but can also provide antimicrobial activity.

  15. Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials

    NARCIS (Netherlands)

    Habibovic, Pamela; van der Valk, C.M.; van Blitterswijk, Clemens; de Groot, K.

    2004-01-01

    In this study, we investigated the influence of octacalcium phosphate (OCP) coating on osteoinductive behaviour of the biomaterials. Porous titanium alloy (Ti6Al4V), hydroxyapatite (HA), biphasic calcium phosphate (BCP) and polyethylene glyco terephtalate/polybuthylene terephtalate (PEGT–PBT)

  16. In vivo bioactivity of titanium and fluorinated apatite coatings for orthopaedic implants: a vibrational study

    Science.gov (United States)

    Taddei, Paola; Tinti, Anna; Reggiani, Matteo; Monti, Patrizia; Fagnano, Concezio

    2003-06-01

    The bone integration of implants is a complex process which depends on chemical composition and surface morphology. To accelerate osteointegration, metal implants are coated with porous metal or apatites which have been reported to increase mineralisation, improving prosthesis fixation. To study the influence of composition and morphology on the in vivo bioactivity, titanium screws coated by Plasma Flame Spraying (PFS) with titanium or fluorinated apatite (K690) were implanted in sheep tibia and femur for 10 weeks and studied by micro-Raman and IR spectroscopy. The same techniques, together with thermogravimetry, were used for characterising the pre-coating K690 powder. Contrary to the manufacturer report, the K690 pre-coating revealed to be composed of a partially fluorinated apatite containing impurities of Ca(OH) 2 and CaCO 3. By effect of PFS, the impurities were decomposed and the crystallinity degree of the coating was found to decrease. The vibrational spectra recorded on the implanted screws revealed the presence of newly formed bone; for the K690-coated screws at least, a high level of osteointegration was evidenced.

  17. No clinical benefit of titanium nitride coating in cementless mobile-bearing total knee arthroplasty

    NARCIS (Netherlands)

    van Hove, R.P.; Brohet, R.M.; van Royen, B.J.; Nolte, P.A.

    2015-01-01

    Purpose: Titanium nitride (TiN) coating of cobalt–chromium–molybdenum (CoCrMo) implants has shown to improve the biomechanical properties of the implant surface and to reduce adhesive wear in vitro. It is yet unknown whether TiN coating of total knee prosthesis (TKP) affects the postoperative

  18. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy

    NARCIS (Netherlands)

    Stigter, M.; Bezemer, J.M.; de Groot, K.; Layrolle, P.

    2004-01-01

    Carbonated hydroxyapatite (CHA) coatings were applied onto titanium implants by using a biomimetic precipitation method. Different antibiotics were incorporated into the CHA coatings and their release and efficacy against bacteria growth were studied in vitro. The following antibiotics were used

  19. Hardness and Elastic Modulus of Titanium Nitride Coatings Prepared by Pirac Method

    Science.gov (United States)

    Wu, Siyuan; Wu, Shoujun; Zhang, Guoyun; Zhang, Weiguo

    In the present work, hardness and elastic modulus of a titanium nitride coatings prepared on Ti6Al4V by powder immersion reaction-assisted coating (PIRAC) are tested and comparatively studied with a physical vapor deposition (PVD) TiN coating. Surface hardness of the PIRAC coatings is about 11GPa, much lower than that of PVD coating of 22GPa. The hardness distribution profile from surface to substrate of the PVD coatings is steeply decreased from ˜22GPa to ˜4.5GPa of the Ti6Al4V substrate. The PIRAC coatings show a gradually decreasing hardness distribution profile. Elastic modulus of the PVD coating is about 426GPa. The PIRAC coatings show adjustable elastic modulus. Elastic modulus of the PIRAC coatings prepared at 750∘C for 24h and that at 800∘C for 8h is about 234 and 293GPa, respectively.

  20. Tapered Fiber Coated with Hydroxyethyl Cellulose/Polyvinylidene Fluoride Composite for Relative Humidity Sensor

    Directory of Open Access Journals (Sweden)

    M. Z. Muhammad

    2013-01-01

    Full Text Available A simple relative humidity (RH sensor is demonstrated using a tapered fiber coated with hydroxyethyl cellulose/polyvinylidene fluoride (HEC/PVDF composite as a probe. This coating acts as an inner cladding whose refractive index decreases with the rise in humidity and thus allows more light to be transmitted in humid state. A difference of up to 0.89 dB of the transmitted optical power is observed when RH changes from 50% to 80% in case of the silica fiber probe. The proposed sensor has a sensitivity of about 0.0228 dB/%RH with a slope linearity of more than 99.91%. In case of the plastic optical fiber (POF probe, the output voltage of the sensor increases linearly with a sensitivity of 0.0231 mV/%RH and a linearity of more than 99.65% as the relative humidity increases from 55% to 80%.

  1. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL

    Science.gov (United States)

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Teske, Michael; Beyerbach, Martin; Kampmann, Andreas; Escobar, Hugo Murua; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2015-01-01

    Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating. PMID:26068455

  2. Examination of tapered plastic multimode fiber-based sensor performance with silver coating for different concentrations of calcium hypochlorite by soft computing methodologies--a comparative study.

    Science.gov (United States)

    Zakaria, Rozalina; Sheng, Ong Yong; Wern, Kam; Shamshirband, Shahaboddin; Wahab, Ainuddin Wahid Abdul; Petković, Dalibor; Saboohi, Hadi

    2014-05-01

    A soft methodology study has been applied on tapered plastic multimode sensors. This study basically used tapered plastic multimode fiber [polymethyl methacrylate (PMMA)] optics as a sensor. The tapered PMMA fiber was fabricated using an etching method involving deionized water and acetone to achieve a waist diameter and length of 0.45 and 10 mm, respectively. In addition, a tapered PMMA probe, which was coated by silver film, was fabricated and demonstrated using a calcium hypochlorite (G70) solution. The working mechanism of such a device is based on the observation increment in the transmission of the sensor that is immersed in solutions at high concentrations. As the concentration was varied from 0 to 6 ppm, the output voltage of the sensor increased linearly. The silver film coating increased the sensitivity of the proposed sensor because of the effective cladding refractive index, which increases with the coating and thus allows more light to be transmitted from the tapered fiber. In this study, the polynomial and radial basis function (RBF) were applied as the kernel function of the support vector regression (SVR) to estimate and predict the output voltage response of the sensors with and without silver film according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf were used in an attempt to minimize the generalization error bound so as to achieve generalized performance. An adaptive neuro-fuzzy interference system (ANFIS) approach was also investigated for comparison. The experimental results showed that improvements in the predictive accuracy and capacity for generalization can be achieved by the SVR_poly approach in comparison to the SVR_rbf methodology. The same testing errors were found for the SVR_poly approach and the ANFIS approach.

  3. Silica–polyethylene glycol hybrids synthesized by sol–gel: Biocompatibility improvement of titanium implants by coating

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Ferrara, C.; Mustarelli, P. [Department of Chemistry, University of Pavia and INSTM, Via Taramelli 12, 27100 Pavia (Italy)

    2015-10-01

    Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol–gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol–gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO{sub 2}/PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Hybrid coating of titanium substrate with dip-coating technology • Chemical and morphological characterization of hybrids and coating • Biocompatibility improvement of coated titanium with high

  4. Acute and Subacute Toxicity In Vivo of Thermal-Sprayed Silver Containing Hydroxyapatite Coating in Rat Tibia

    Science.gov (United States)

    Tsukamoto, Masatsugu; Miyamoto, Hiroshi; Ando, Yoshiki; Eto, Shuichi; Akiyama, Takayuki; Yonekura, Yutaka; Mawatari, Masaaki

    2014-01-01

    To reduce the incidence of implant-associated infection, we previously developed a novel coating technology using hydroxyapatite (HA) containing silver (Ag). This study examined in vivo acute and subacute toxicity associated with the Ag-HA coating in rat tibiae. Ten-week-old rats received implantation of HA-, 2% Ag-HA-, or 50% Ag-HA-coated titanium rods. Concentrations of silver in serum, brain, liver, kidneys, and spleen were measured in the acute phase (2–4 days after treatment) and subacute phase (4–12 weeks after treatment). Biochemical and histological examinations of those organs were also performed. Mean serum silver concentration peaked in the acute phase and then gradually decreased. Mean silver concentrations in all examined organs from the 2% Ag-HA coating groups showed no significant differences compared with the HA coating group. No significant differences in mean levels of glutamic-oxaloacetic transaminase, glutamic-pyruvic transaminase, lactate dehydrogenase, creatinine, or blood urea nitrogen were seen between the three groups and controls. Histological examinations of all organs revealed no abnormal pathologic findings. No acute or subacute toxicity was seen in vivo for 2% Ag-HA coating or HA coating. Ag-HA coatings on implants may represent biologically safe antibacterial biomaterials and may be of value for reducing surgical-site infections related to implantation. PMID:24779019

  5. Bioactivity and Osseointegration of PEEK Are Inferior to Those of Titanium: A Systematic Review.

    Science.gov (United States)

    Najeeb, Shariq; Bds, Zohaib Khurshid; Bds, Sana Zohaib; Bds, Muhammad Sohail Zafar

    2016-12-01

    Polyetheretherketone (PEEK) has been suggested as an alternative to replace titanium as a dental implant material. However, PEEK's bioactivity and osseointegration are debatable. This review has systematically analyzed studies that have compared PEEK (or PEEK-based) implants with titanium implants so that its feasibility as a possible replacement for titanium can be determined. The focused question was: "Are the bioactivity and osseointegration of PEEK implants comparable to or better than titanium implants?" Using the key words "dental implant," "implant," "polyetheretherketone," "PEEK," and "titanium" in various combinations, the following databases were searched electronically: PubMED/MEDLINE, Embase, Google Scholar, ISI Web of Knowledge, and Cochrane Database. 5 in vitro and 4 animal studies were included in the review. In 4 out of 5 in vitro studies, titanium exhibited more cellular proliferation, angiogenesis, osteoblast maturation, and osteogenesis compared to PEEK; one in vitro study observed comparable outcomes regardless of the implant material. In all animal studies, uncoated and coated titanium exhibited a more osteogenic behavior than did uncoated PEEK, while comparable bone-implant contact was observed in HA-coated PEEK and coated titanium implants. Unmodified PEEK is less osseoconductive and bioactive than titanium. Furthermore, the majority of studies had multiple sources of bias; hence, in its unmodified form, PEEK is unsuitable to be used as dental implant. Significantly more research and long-term trials must focus on improving the bioactivity of PEEK before it can be used as dental implant. More comparative animal and clinical studies are warranted to ascertain the potential of PEEK as a viable alternative to titanium.

  6. DEVELOPMENT OF TITANIUM NITRIDE COATING FOR SNS RING VACUUM CHAMBERS

    International Nuclear Information System (INIS)

    HE, P.; HSEUH, H.C.; MAPES, M.; TODD, R.; WEISS, D.

    2001-01-01

    The inner surface of the ring vacuum chambers of the US Spallation Neutron Source (SNS) will be coated with ∼100 nm of Titanium Nitride (TiN). This is to minimize the secondary electron yield (SEY) from the chamber wall, and thus avoid the so-called e-p instability caused by electron multipacting as observed in a few high-intensity proton storage rings. Both DC sputtering and DC-magnetron sputtering were conducted in a test chamber of relevant geometry to SNS ring vacuum chambers. Auger Electron Spectroscopy (AES) and Rutherford Back Scattering (RBS) were used to analyze the coatings for thickness, stoichiometry and impurity. Excellent results were obtained with magnetron sputtering. The development of the parameters for the coating process and the surface analysis results are presented

  7. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir

    2013-09-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon (Ar) are utilized to establish the flame, whereas titanium tetraisopropoxide is used as the precursor for TiO2. The nanoparticles are characterized using high-resolution transmission electron microscopy, with elemental mapping (of C, O, and Ti), X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The growth of pure anatase TiO2 nanoparticles occurs when Ar and H2 are used as the precursor carrier gas, while the growth of carbon-coated nanoparticles ensues when Ar and ethylene (C2H4) are used as the precursor carrier gas. A uniform coating of 3-5nm of carbon is observed around TiO2 particles. The growth of highly crystalline TiO2 nanoparticles is dependent on the gas flow rate of the precursor carrier and amorphous particles are observed at high flow rates. Carbon coating occurs only on crystalline nanoparticles, suggesting a possible growth mechanism of carbon-coated TiO2 nanoparticles. © 2013 The Combustion Institute.

  8. [Torque resistance of three different types of nickel-titanium rotary instruments].

    Science.gov (United States)

    Sun, Wei; Hou, Ben-xiang

    2010-10-01

    To compare torsional fracture of three different types of nickel-titanium rotary instruments ProTaper, Hero642 and Mtwo by making a stimulate models in vitro. Through the establishment of model in vitro, compared the different time with 3 kinds of nickel titanium file in cutting-edge bound occurs, and to observe the section of fractured instruments by scanning electron microscope. The resistence to torque was different from three types of nickel titanium instruments. The time to fracture of Mtwo was significantly longer than ProTaper's and Hero642's, but ProTaper's and Hero642's had no significant difference. Three kinds cross-sectional design were different, a lot of toughness nests were seen in broken surface. Most of them were ductile fracture. Time to fracture was influenced by the quality disfigurement. The resistance to torque of Mtwo was better than ProTaper and Hero642. The lifespan was influenced by the design of cross-section. The quality disfigurement of the files reduced the resistance to flexual fatigue.

  9. The influence of simulated clinical use on the flexibility of rotary ProTaper Universal, K3 and EndoSequence nickel-titanium instruments.

    Science.gov (United States)

    Viana, A C D; Pereira, E S J; Bahia, M G A; Buono, V T L

    2013-09-01

    To investigate the influence of cyclic flexural and torsional loading on the flexibility of ProTaper Universal, K3 and EndoSequence nickel-titanium instruments, in view of the hypothesis that these types of loading would decrease the flexibility of the selected NiTi rotary files. The instruments evaluated were S2 and F1 ProTaper Universal, sizes 20 and 25, .06 taper K3, and sizes 20 and 25, .06 taper EndoSequence. Flexibility was determined by 45° bending tests according to ISO 3630-1 specification. Values of the bending moment (MB ) obtained with new instruments were considered as the control group (CG). Bending tests were then conducted in instruments previously fatigued to one-fourth and three-fourths of their average fatigue life (fatigue groups, FG¼ and FG¾), as well as after cyclic torsional loading (torsional group, TG). Fatigue tests were carried out in a bench device that allowed the files to rotate freely inside an artificial canal with an angle of curvature of 45° and a radius of 5 mm. Cyclic torsional loading tests were performed that entailed rotating the instrument from zero angular deflection to 180° and then returning to zero applied torque in 20 cycles. Data were analysed using one-way analysis of variance at a significance level of 5%. Simulated clinical use by means of flexural fatigue tests did not affect the flexibility of the instruments, except for a significant increase in flexibility observed in a few instruments (P instruments and after cyclic torsional loading showed no significant differences between them (P > 0.05). The flexibility of rotary ProTaper Universal, K3 and EndoSequence NiTi instruments, measured in bending tests, was not adversely affected by simulated clinical use in curved root canals. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  10. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yansheng [Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Tu, Rong, E-mail: turong@whut.edu.cn [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Goto, Takashi [Institute for Materials Research, Tohoku University, Aoba-ku, 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-08-01

    Graphical abstract: - Highlights: • A semiconductor laser was first used to prepare wide-area LCVD-TiC{sub x} coatings. • The effect of laser power for the deposition of TiC{sub x} coatings was discussed. • TiC{sub x} coatings showed a columnar cross section and a dense surface texture. • TiC{sub x} coatings had a 1–4 order lower laser density than those of previous reports. • This study gives the possibility of LCVD applying on the preparation of TiC{sub x} coating. - Abstract: A semiconductor laser-assisted chemical vapor deposition (LCVD) of titanium carbide (TiC{sub x}) coatings on Al{sub 2}O{sub 3} substrate using tetrakis (diethylamido) titanium (TDEAT) and C{sub 2}H{sub 2} as source materials were investigated. The influences of laser power (P{sub L}) and pre-heating temperature (T{sub pre}) on the microstructure and deposition rate of TiC{sub x} coatings were examined. Single phase of TiC{sub x} coatings were obtained at P{sub L} = 100–200 W. TiC{sub x} coatings had a cauliflower-like surface and columnar cross section. TiC{sub x} coatings in the present study had the highest R{sub dep} (54 μm/h) at a relative low T{sub dep} than those of conventional CVD-TiC{sub x} coatings. The highest volume deposition rate (V{sub dep}) of TiC{sub x} coatings was about 4.7 × 10{sup −12} m{sup 3} s{sup −1}, which had 3–10{sup 5} times larger deposition area and 1–4 order lower laser density than those of previous LCVD using CO{sub 2}, Nd:YAG and argon ion laser.

  11. Sputtered titanium oxynitride coatings for endosseous applications: Physical and chemical evaluation and first bioactivity assays

    Energy Technology Data Exchange (ETDEWEB)

    Banakh, Oksana, E-mail: oksana.banakh@he-arc.ch [Institute of Applied Microtechnologies, Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Moussa, Mira, E-mail: mira.moussa@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland); Matthey, Joel, E-mail: joel.matthey@he-arc.ch [Institute of Applied Microtechnologies, Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Pontearso, Alessandro, E-mail: alessandro.pontearso@he-arc.ch [Institute of Applied Microtechnologies, Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Cattani-Lorente, Maria, E-mail: maria.cattani-lorente@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland); Sanjines, Rosendo, E-mail: rosendo.sanjines@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Condensed Matter Physics, Station 3, CH-1015 Lausanne (Switzerland); Fontana, Pierre, E-mail: Pierre.Fontana@hcuge.ch [Haemostasis laboratory, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, CH-1205 Geneva (Switzerland); Wiskott, Anselm, E-mail: anselm.wiskott@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland); Durual, Stephane, E-mail: stephane.durual@unige.ch [Laboratory of Biomaterials, University of Geneva, 19, rue Barthelemy Menn, CH-1205 Geneva (Switzerland)

    2014-10-30

    Highlights: • Titanium oxynitride coatings (TiN{sub x}O{sub y}) with chemical composition ranging from TiN to TiO{sub 2} were deposited by magnetron sputtering from a metallic Ti target using a mixture of O{sub 2} + N{sub 2}. • The coatings structure as well as physical, chemical and mechanical properties progressively changes as a function of oxygen content in the TiN{sub x}O{sub y.} • All TiN{sub x}O{sub y} coatings show a significantly higher level of bioactivity as compared to bare Ti substrates (1.2 to 1.4 fold increase in cell proliferation). Despite variations in surface chemistry, topography and surface tension observed on films as a function of chemical composition, no significant differences in the films’ biological activity were observed after 3 days of testing. - Abstract: Titanium oxynitride coatings (TiN{sub x}O{sub y}) are considered a promising material for applications in dental implantology due to their high corrosion resistance, their biocompatibility and their superior hardness. Using the sputtering technique, TiN{sub x}O{sub y} films with variable chemical compositions can be deposited. These films may then be set to a desired value by varying the process parameters, that is, the oxygen and nitrogen gas flows. To improve the control of the sputtering process with two reactive gases and to achieve a variable and controllable coating composition, the plasma characteristics were monitored in-situ by optical emission spectroscopy. TiN{sub x}O{sub y} films were deposited onto commercially pure (ASTM 67) microroughened titanium plates by reactive magnetron sputtering. The nitrogen gas flow was kept constant while the oxygen gas flow was adjusted for each deposition run to obtain films with different oxygen and nitrogen contents. The physical and chemical properties of the deposited films were analyzed as a function of oxygen content in the titanium oxynitride. The potential application of the coatings in dental implantology was assessed by

  12. [The change of bacterial adhesion during deposition nitrogen-diamond like carbon coating on pure titanium].

    Science.gov (United States)

    Yin, Lu; Xiao, Yun

    2011-10-01

    The aim of this study was to observe the change of bacterial adhesion on pure titanium coated with nitrogen-diamond like carbon (N-DLC) films and to guide the clinical application. N-DLC was deposited on titanium using ion plating machine, TiN film, anodic oxide film and non-deposition were used as control, then made specimens adhering on the surface of resin denture base for 6 months. The adhesion of Saccharomyces albicans on the titanium surface was observed using scanning electron microscope, and the roughness was tested by roughness detector. The number of Saccharomyces albicans adhering on diamond-like carbon film was significantly less than on the other groups (P DLC film was less than other group (P coated with N-DLC film reduced the adhesion of Saccharomyces albicans after clinical application, thereby reduced the risk of denture stomatitis.

  13. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C.M. [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Faria, Amanda N. [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Departamento de Bioquímica e Imunologia-Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Ramos, Ana P., E-mail: anapr@ffclrp.usp.br [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil)

    2016-05-01

    Graphical abstract: - Highlights: • CaCO{sub 3} continuous films were deposited on titanium discs using a biomimetic approach. • The coatings origin hydroxyapatite when immersed in simulated body fluid. • The wettability and the free energy of the surfaces were increased after the treatment. • The coated titanium discs are bioactive and non-toxic to osteoblasts. - Abstract: CaCO{sub 3} particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO{sub 3} deposited as thin films for this propose is unknown. Here, we report the growth of CaCO{sub 3} continuous films on Langmuir–Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca{sup 2+}, exposed to CO{sub 2} (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO{sub 3} film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γ{sub s}) were accessed. The presence of HAp increased the wettability and γ{sub s} of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO{sub 3} thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  14. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    International Nuclear Information System (INIS)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C.M.; Faria, Amanda N.; Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro; Ramos, Ana P.

    2016-01-01

    Graphical abstract: - Highlights: • CaCO 3 continuous films were deposited on titanium discs using a biomimetic approach. • The coatings origin hydroxyapatite when immersed in simulated body fluid. • The wettability and the free energy of the surfaces were increased after the treatment. • The coated titanium discs are bioactive and non-toxic to osteoblasts. - Abstract: CaCO 3 particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO 3 deposited as thin films for this propose is unknown. Here, we report the growth of CaCO 3 continuous films on Langmuir–Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca 2+ , exposed to CO 2 (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO 3 film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γ s ) were accessed. The presence of HAp increased the wettability and γ s of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO 3 thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  15. Influence of nickel-titanium rotary systems with varying tapers on the biomechanical behaviour of maxillary first premolars under occlusal forces: a finite element analysis study.

    Science.gov (United States)

    Askerbeyli Örs, S; Serper, A

    2018-05-01

    To evaluate the effect of three nickel-titanium (Ni-Ti) rotary systems with varying tapers on stress distribution and to analyse potential fracture patterns as well as the volume of fracture-susceptible regions in two-rooted maxillary premolars. The root canals of three single-rooted premolars were prepared with either HeroShaper (Micro-Mega, Besançon, France) to (size 30, .04 taper), Revo-S (Micro-Mega) to AS30 (size 30, .06 taper) or ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland) to F3 (size 30, .09 taper) Ni-Ti files. The three root canals were scanned using micro-computed tomography (μCT) (Skyscan 1174, Skyscan, Kontich, Belgium) and modelled according to the μCT data. An intact tooth model with a root length of 16 mm was also constructed based on μCT images of an extracted maxillary premolar with two roots. New models were constructed by replacing both of the original canals of the intact two-rooted premolar model with the modelled canals prepared with the HeroShaper, Revo-S or ProTaper Universal system. Occlusal forces of 200 N were applied in oblique and vertical directions. Finite element analysis was performed using Abaqus FEA software (Abaqus 6.14, ABAQUS Inc., Providence, RI, USA). Upon the application of oblique occlusal forces, the palatal external cervical root surface and the bifurcation (palatal side of the buccal root) in tooth models experienced the highest maximum principal (Pmax) stresses. The application of vertical forces resulted in minor Pmax stress values. Models prepared using the ProTaper system exhibited the highest Pmax stress values. The intact models exhibited the lowest Pmax stress values followed by the models prepared with the HeroShaper system. The differences in Pmax stress values amongst the different groups of models were mathematically minimal under normal occlusal forces. Rotary systems with varying tapers might predispose the root fracture on the palatal side of the buccal root and cervical palatal

  16. Additive manufacturing of Ti-Si-N ceramic coatings on titanium

    International Nuclear Information System (INIS)

    Zhang, Yanning; Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2015-01-01

    Highlights: • 3D Printing or additive manufacturing of hard Ti-Si-N based ceramics coating on Ti metal substrate. • Understanding of phase transformation as a function of compositional variation. • Evaluation of influence of processing parameters and composition on wear resistance. - Abstract: In this study, Laser Engineered Net Shaping (LENS TM ) was employed towards Additive Manufacturing/3D Printing of Ti-Si-N coatings with three different Ti-Si ratios on commercially pure titanium (cp-Ti) substrate. Microstructural analysis, phase analysis using X-ray diffraction, wear resistance and hardness measurements were done on LENS™ processed 3D printed coatings. Coatings showed graded microstructures and in situ formed phases. Results showed that microstructural variations and phase changes influence coating's hardness and wear resistance directly. High hardness values were obtained from all samples’ top surface where the hardness of coatings can be ranked as 90% Ti-10% Si-N coating (2093.67 ± 144 HV 0.2 ) > 100% Ti-N coating (1846 ± 68.5 HV 0.2 ) > 75% Ti-25% Si-N coating (1375.3 ± 61.4 HV 0.2 ). However, wear resistance was more dependent on inherent Si content, and samples with higher Si content showed better wear resistance

  17. Additive manufacturing of Ti-Si-N ceramic coatings on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanning; Sahasrabudhe, Himanshu; Bandyopadhyay, Amit, E-mail: amitband@wsu.edu

    2015-08-15

    Highlights: • 3D Printing or additive manufacturing of hard Ti-Si-N based ceramics coating on Ti metal substrate. • Understanding of phase transformation as a function of compositional variation. • Evaluation of influence of processing parameters and composition on wear resistance. - Abstract: In this study, Laser Engineered Net Shaping (LENS{sup TM}) was employed towards Additive Manufacturing/3D Printing of Ti-Si-N coatings with three different Ti-Si ratios on commercially pure titanium (cp-Ti) substrate. Microstructural analysis, phase analysis using X-ray diffraction, wear resistance and hardness measurements were done on LENS™ processed 3D printed coatings. Coatings showed graded microstructures and in situ formed phases. Results showed that microstructural variations and phase changes influence coating's hardness and wear resistance directly. High hardness values were obtained from all samples’ top surface where the hardness of coatings can be ranked as 90% Ti-10% Si-N coating (2093.67 ± 144 HV{sub 0.2}) > 100% Ti-N coating (1846 ± 68.5 HV{sub 0.2}) > 75% Ti-25% Si-N coating (1375.3 ± 61.4 HV{sub 0.2}). However, wear resistance was more dependent on inherent Si content, and samples with higher Si content showed better wear resistance.

  18. Electrochemical behavior of hydroxyapatite/TiN multi-layer coatings on Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Ju [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    The electrochemical behavior of hydroxyapatite (HA) and titanium nitride (TiN) multi-layer coatings on Ti–Nb–Zr alloys was investigated by a variety of surface analytical methods. The HA/TiN layers were deposited using a magnetron sputtering system. The HA target was made of human tooth-ash sintered at 1300 °C for 1 h and had an average Ca/P ratio of 1.9. From X-ray diffraction patterns, the Ti–29Nb–5Zr alloy was composed entirely of equiaxed β-phase exhibiting the principal (110) reflection, and the coating exhibited the (111) and (200) reflections for TiN and the (112) and (202) reflections for HA. At the coating surface the HA films consisted of granular particles, and the surface roughness was 4.22 nm. The thickness of the coating layers increased in the order of HA/TiN (lowest), TiN, and HA (highest). Potentiodynamic polarization measurements revealed that the corrosion current density was the lowest, and the corrosion potential and polarization resistance the highest, when the Ti–29Nb–5Zr surface was covered by the HA/TiN film, compared to solely HA or TiN films. - Highlights: • HA/TiN films were deposited by magnetron sputtering on a Ti–29Nb–5Zr biomedical alloy. • The corrosion current density for the HA/TiN films was lower than that of the non-coated alloy. • The polarization resistance of the HA/TiN films was higher than that of the non-coated alloy.

  19. Electrochemical behavior of hydroxyapatite/TiN multi-layer coatings on Ti alloys

    International Nuclear Information System (INIS)

    Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    The electrochemical behavior of hydroxyapatite (HA) and titanium nitride (TiN) multi-layer coatings on Ti–Nb–Zr alloys was investigated by a variety of surface analytical methods. The HA/TiN layers were deposited using a magnetron sputtering system. The HA target was made of human tooth-ash sintered at 1300 °C for 1 h and had an average Ca/P ratio of 1.9. From X-ray diffraction patterns, the Ti–29Nb–5Zr alloy was composed entirely of equiaxed β-phase exhibiting the principal (110) reflection, and the coating exhibited the (111) and (200) reflections for TiN and the (112) and (202) reflections for HA. At the coating surface the HA films consisted of granular particles, and the surface roughness was 4.22 nm. The thickness of the coating layers increased in the order of HA/TiN (lowest), TiN, and HA (highest). Potentiodynamic polarization measurements revealed that the corrosion current density was the lowest, and the corrosion potential and polarization resistance the highest, when the Ti–29Nb–5Zr surface was covered by the HA/TiN film, compared to solely HA or TiN films. - Highlights: • HA/TiN films were deposited by magnetron sputtering on a Ti–29Nb–5Zr biomedical alloy. • The corrosion current density for the HA/TiN films was lower than that of the non-coated alloy. • The polarization resistance of the HA/TiN films was higher than that of the non-coated alloy

  20. Color stability of esthetic coatings applied to nickel-titanium archwires

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Neiva Nunes do REGO

    Full Text Available Abstract Introduction Color stability is an important feature to be considered when using esthetic coated archwires. Objective To evaluate color changes on the surface of esthetic nickel-titanium archwires coated with Teflon (Ortho Organizers, USA or epoxy resin (Tecnident, Brazil after immersion in staining solution. Material and method Twelve 20-mm-long wire segments were used for each type of coating, which were mounted as two test specimens with a width of 7 mm each. The buccal surface of the archwires was evaluated for fluorescence and color measurements both at baseline and after immersion in a staining solution for 21 days using the VITA Easyshade® Compact spectrophotometer (Model DEASYC220. Differences in total color change according to coating type were compared using an independent samples t-test (p<0.05. The surface characteristics of as-received coated archwires were assessed using scanning electron microscopy. Result Color changes were observed on the esthetic coatings, with a significant difference between the two brands analyzed. Surface analysis revealed flaws such as wear, pitting, elevations, lack of material, granulation, grooves, cracks, and lack of standardization in the coating process in all as-received archwires, but flaws were less evident in epoxy-resin coatings. Conclusion The two esthetic coatings did not show color stability, but Teflon coatings showed a more intense color change than epoxy-resin coatings.

  1. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    Science.gov (United States)

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Coatings of titanium substrates with xCaO·(1 − x)SiO{sub 2} sol–gel materials: characterization, bioactivity and biocompatibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it; Papale, F.; Bollino, F.

    2016-01-01

    The objective of this study has been to develop low temperature sol–gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO·(1 − x)SiO{sub 2} (0.0 < x < 0.60) have been prepared by means of the sol–gel route starting from tetraethyl orthosilicate and calcium nitrate tetrahydrate. Those materials, still in the sol phase, have been used to coat titanium substrates by means of the dip-coating technique. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) allowed the materials to be characterized and a microstructural analysis of the coatings obtained was performed using scanning electron microscopy (SEM). The potential applications of the coatings in the biomedical field were evaluated by bioactivity and biocompatibility tests. The coated titanium was immersed in simulated body fluid (SBF) for 21 days and the hydroxyapatite deposition on its surface was subsequently evaluated via SEM–EDXS analysis, as an index of bone-bonding capability. To investigate cell-material interactions, mouse embryonic fibroblast cells (3 T3) were seeded onto the specimens and the cell viability was evaluated by a WST-8 assay. - Highlights: • CaO/SiO{sub 2} biomaterials synthesized by sol–gel method at various molar ratio • Coating of titanium substrate with dip-coating technology • Chemical and morphological characterization of materials and coating • Biocompatibility and bioactivity improvement of coated titanium.

  3. Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis.

    Science.gov (United States)

    Popkov, Arnold V; Gorbach, Elena N; Kononovich, Natalia A; Popkov, Dmitry A; Tverdokhlebov, Sergey I; Shesterikov, Evgeniy V

    2017-08-01

    A lot of research was conducted on the use of various biomaterials in orthopedic surgery. Our study investigated the effects of nanostructured calcium-phosphate coating on metallic implants introduced into the bone marrow canal. Stainless steel or titanium 2-mm wires (groups 1 and 2, respectively), and hydroxyapatite-coated stainless steel or titanium wires of the same diameter (groups 3 and 4, respectively) were introduced into the tibial bone marrow canal of 20 dogs (each group = 5 dogs). Hydroxyapatite coating was deposited on the wires with the method of microarc oxidation. Light microscopy to study histological diaphyseal transverse sections, scanning electron microscopy to study the bone marrow area around the implant and an X-ray electron probe analyzer to study the content of calcium and phosphorus were used to investigate bioactivity and osteointegration after a four weeks period. Osteointegration was also assessed by measuring wires' pull-off strength with a sensor dynamometer. Bone formation was observed round the wires in the bone marrow canal in all the groups. Its intensity depended upon the features of wire surfaces and implant materials. Maximum percentage volume of trabecular bone was present in the bone marrow canals of group 4 dogs that corresponded to a mean of 27.1 ± 0.14%, while it was only 6.7% in group 1. The coating in groups 3 and 4 provided better bioactivity and osteointegration. Hydroxyapatite-coated titanium wires showed the highest degree of bone formation around them and greater pull-off strength. Nanostructured hydroxyapatite coating of metallic wires induces an expressed bone formation and provides osteointegration. Hydroxyapatite-coated wires could be used along with external fixation for bone repair enhancement in diaphyseal fractures, management of osteogenesis imperfecta and correction of bone deformities in phosphate diabetes.

  4. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications

    Science.gov (United States)

    Li, Ming; Xiong, Pan; Mo, Maosong; Cheng, Yan; Zheng, Yufeng

    2016-09-01

    The combination of graphene oxide (GO) with robust mechanical property, silk fibroin (SF) with fascinating biological effects and hydroxyapatite (HA) with superior osteogenic activity is a competitive approach to make novel coatings for orthopedic applications. Herein, the feasibility of depositing ternary SF/GO/HA nanocomposite coatings on Ti substrate was firstly verified by exploiting electrophoretic nanotechnology, with SF being used as both a charging additive and a dispersion agent. The surface morphology, microstructure and composition, in vitro hemocompatibility and in vitro cytocompatibility of the resulting coatings were investigated by SEM, Raman, FTIR spectra and biocompatibility tests. Results demonstrated that GO, HA and SF could be co-deposited with a uniform, smooth thin-film morphology. The hemolysis rate analysis and the platelet adhesion test indicated good blood compatibility of the coatings. The human osteosarcoma MG63 cells displayed well adhesion and proliferation behaviors on the prepared coatings, with enhanced ALP activities. The present study suggested that SF/GO/HA nanocomposite coatings could be a promising candidate for the surface functionalization of biomaterials, especially as orthopedic implant coating.

  5. Double Pulse LIBS of Titanium-Based PVD-Coatings with Submicron Resolution

    Directory of Open Access Journals (Sweden)

    K. Ermalitskaia

    2016-01-01

    Full Text Available The possibility for double pulse LIBS in the process of a direct layer-by-layer analysis of the titanium-based PVD-coatings on polished flat blank samples of steel and silicon and also of the TiAlN/TiN-coating on a milling cutter is considered. A method is proposed to control thickness of the radiation evaporated layer by defocusing the laser beam with respect to the surface, making it possible to attain the depth resolution of 0.1 μm. The Ti and Ti-Zr-coatings produced using the ion-assisted condensation method and subjected to streams of the nitrogen plasma in a magnetic-plasma compressor are studied.

  6. A comparative physico-chemical study of chlorapatite and hydroxyapatite: from powders to plasma sprayed thin coatings.

    Science.gov (United States)

    Demnati, I; Grossin, D; Combes, C; Parco, M; Braceras, I; Rey, C

    2012-10-01

    Due to their bioactivity and osteoconductivity, hydroxyapatite (HA) plasma sprayed coatings have been widely developed for orthopedic uses. However, the thermodynamic instability of HA leads frequently to a mixture of phases which limit the functional durability of the coating. This study investigates the plasma spraying of chlorapatite (ClA) powder, known to melt without decomposition, onto pure titanium substrates using a low energy plasma spray system (LEPS). Pure ClA powder was prepared by a solid gas reaction at 950 °C and thermogravimetric analysis showed the good thermal stability of ClA powder in the range 30-1400 °C compared to that of the HA powder. Characterization of ClA coating showed that ClA had a very high crystalline ratio and no other crystalline phase was detected in the coating. HA and ClA coatings composition, microstructure and in vitro bioactivity potential were studied, compared and discussed. In vitro SBF test on HA and ClA coatings revealed the formation of a poorly crystalline apatite on the coating surface suggesting that we could expect a good osteoconductivity especially for the ClA coating prepared by the LEPS system.

  7. Manufacture of nanosized apatite coatings on titanium with different surface treatments using a supersaturated calcification solution

    Directory of Open Access Journals (Sweden)

    Adrian Paz Ramos

    Full Text Available The biomimetic method is used for the deposition of calcium phosphate coatings (Ca - P on the surface of different biomaterials. However, the application of this method requires long exposure times in order to obtain a suitable layer thickness for its use in medical devices. In this paper, we present a fast approach to obtain apatite coatings on titanium, using a combination of supersaturated calcification solution (SCS with chemical modification of the titanium surface. Also, it was evaluated the effect of four different surface treatments on the apatite deposition rate. Commercially pure titanium plates were activated by chemical or thermochemical treatments. Then, the activated samples were immersed in a solution with high content of calcium and phosphate ions at 37 ºC for 24 h, mimicking the physiological conditions. The coatings were studied by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDX. The use of SCS solutions allowed the formation of crystalline hydroxyapatite coatings within a period of 24 h with a thickness between 1 and 5.3 µm. Besides, precipitates of hydroxyapatite nanoparticles with a globular configuration, forming aggregates with submicrometer size, were found in SCS solutions.

  8. Biofilm formation on titanium alloy and anatase-Bactercline® coated titanium healing screws: an in vivo human study

    Directory of Open Access Journals (Sweden)

    Antonio Scarano

    2013-03-01

    Full Text Available Aim Bacterial adherence to implants is considered to be an important event in the pathogenesis of bacterial infections. In fact, this infection process is a first stage of peri-implant mucositis and peri-implantitis, and a positive correlation has been found between oral hygiene and marginal bone loss around implants in the edentulous mandible. Surface properties of transgingival implant components are important determinants in bacterial adhesion. The purpose of this study was to characterize the biofilm formation, in vivo, on healing screws made of titanium alloy or coated with a combination of anatase and Bactercline® product. Materials and methods Twenty-five patients, between 21- 37 years, in excellent systemic health, participated in this study. In each of the 25 participants, one anatase-Bactercline® coated healing screw (Test and one titanium alloy (TI6Al4V healing screw (Control were adapted to two different implants. Quantitative and qualitative biofilm formation on healing abutments was analyzed by culture method.Results Bacterial adherence to the two different healing screws used in this study were compared. Statistically significant differences were found between the Control and the Test group for both aerobic and anaerobic bacterial counts (p<0,05. The microflora consisted both of Gram-positive and Gram-negative bacteria, and displayed a high variability. The anaerobic S. intermedius, potentially “pathogenic”, was isolated only from the Control group. Both healing screws harbored primarily Gram-positive rods as Actinomyces spp, A. naeslundii, A. viscosus and the Gram-negative rods (Fusobacterium spp, Prevotella spp, Capnocythophaga spp were mostly found on the Control healing screws.Conclusion Anatase-Bactercline® coated healing screws reduce the number of initially adhering bacteria, formed mainly of Gram-positive microorgnisms, while, on the contrary, the microflora covering the titanium alloy healing screws was, for the

  9. Passivation of Titanium Oxide in Polyethylene Matrices using Polyelectrolytes as Titanium Dioxide Surface Coating

    Directory of Open Access Journals (Sweden)

    Javier Vallejo-Montesinos

    2017-05-01

    Full Text Available One of the major challenges of the polyolefins nowadays is the ability of those to resist weathering conditions, specially the photodegradation process that suffer any polyolefin. A common way to prevent this, is the use of hindered amine light stabilizers (HALS are employed. An alternative route to avoid photodegradation is using polyelectrolites as coating of fillers such as metal oxides. Composites of polyethylene were made using titanium dioxide (TiO2 as a filler with polyelectrolytes (polyethylenimine and sodium polystyrene sulfonate attached to its surface, to passivate its photocatalytic activity. We exposed the samples to ultraviolet-visible (UV-Vis light to observe the effect of radiation on the degradation of coated samples, compared to those without the polyelectrolyte coating. From the experimental results, we found that polyethylenimine has a similar carbonyl signal area to the sample coated with hindered amine light stabilizers (HALS while sodium polystyrene sulfonate exhibit more degradation than the HALS coated samples, but it passivates the photocatalytic effect when compared with the non-coated TiO2 samples. Also, using AFM measurements, we confirmed that the chemical nature of polyethylenimine causes the TiO2 avoid the migration to the surface during the extrusion process, inhibiting the photodegradation process and softening the sample. On this basis, we found that polyethylenimine is a good choice for reducing the degradation caused by TiO2 when it is exposed to UV-Vis light.

  10. Silver-Containing Hydroxyapatite Coating Reduces Biofilm Formation by Methicillin-Resistant Staphylococcus aureus In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Masaya Ueno

    2016-01-01

    Full Text Available Biofilm-producing bacteria are the principal causes of infections associated with orthopaedic implants. We previously reported that silver-containing hydroxyapatite (Ag-HA coatings exhibit high antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA. In the present study, we evaluated the effects of Ag-HA coating of implant surfaces on biofilm formation. Titanium disks (14-mm diameter, 1-mm thickness, one surface of which was coated with HA or 0.5%–3.0% Ag-HA with a thermal spraying technique, were used. In vitro, the disks were inoculated with an MRSA suspension containing 4×105 CFU and incubated for 1-2 weeks. In vivo, MRSA-inoculated HA and 3% Ag-HA disks (8.8–10.0 × 108 CFU were implanted subcutaneously on the back of rats for 1–7 days. All disks were subsequently stained with a biofilm dye and observed under a fluorescence microscope, and biofilm coverage rates (BCRs were calculated. The BCRs on the Ag-HA coating were significantly lower than those on the HA coating at all time points in vitro (p<0.05. Similar results were observed in vivo (p<0.001 without argyria. Ag-HA coating reduced biofilm formation by MRSA in vitro and in vivo; therefore, Ag-HA coating might be effective for reducing implant-associated infections.

  11. Deposition and Characterization of the Titanium-Based Coating by a Multi-Chamber Detonation Sprayer

    Directory of Open Access Journals (Sweden)

    Arseenko M.Yu.

    2015-01-01

    Full Text Available This work introduces some of the aspects of the deposition of titanium-based coating (80-120 μm thick on aluminium samples using a multi-chamber detonation sprayer (MCDS. The characteristic feature of MCDS is that the powder is accelerated by using combustion products that are formed in MCDS chambers and are converged before entering the nozzle, where they interact with the two-phase gas-powder cloud. The microstructures and properties of the coating were characterized with the use of scanning electronic microscopes (SEM, optical microscope (OM, X-ray Diffraction (XRD techniques, and Vickers hardness tester with a 50 g test load. Wear tests were carried out using a computer controlled pin-on-disc type tribometer. It was established that MCDS has provided the conditions for formation of a dense titanium-based coating with a porosity of less than 1.0%, microhardness 810±250 HV0.05 and a specific wear rate of 2.077∙10-4 mm3(m∙N-1.

  12. Effect of fibronectin- and collagen I-coated titanium fiber mesh on proliferation and differentiation of osteogenic cells.

    NARCIS (Netherlands)

    Dolder, J. van den; Bancroft, G.N.; Sikavitsas, V.I.; Spauwen, P.H.M.; Mikos, A.G.; Jansen, J.A.

    2003-01-01

    The objective of this study was to evaluate the effects of fibronectin and collagen I coatings on titanium fiber mesh on the proliferation and osteogenic differentiation of rat bone marrow cells. Three main treatment groups were investigated in addition to uncoated titanium fiber meshes: meshes

  13. Novel surface coating materials for endodontic dental implant

    International Nuclear Information System (INIS)

    Fathi, M.H.; Mortazavi, V.; Moosavi, S.B.

    2003-01-01

    The aim of this study was to design and produce novel coating materials in order to obtain two goals including; improvement of the corrosion behavior of metallic dental endodontic implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel Hydroxyapatite/Titanium (HA/Ti) composite coating was prepared on it. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure and morphology of the coating. Electrochemical tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Two types of endodontic implants including; SS with and without (HA/Ti) composite coating were prepared and subsequently implanted in the mandibular canine of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, osteointegration evaluation and histopathological interpretation was carried out using SEM and optical microscopy. Results indicate that the novel HA/Ti composite coating improves the corrosion behavior and biocompatibility of SS endodontic dental implant. The clinical evaluation (in vivo test) results showed that there was significant difference in osteointegration between coated and uncoated endodontic dental implants and average bone osteointegration of coated implants were more than uncoated implants. The histopathological results and bone tissue response to the coated implants was acceptable and it was concluded that HA/Ti composite coated SS could be used as well as an endodontic dental implant. (author)

  14. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.

    Science.gov (United States)

    Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C

    2013-04-01

    A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. In Vitro Evaluation of PCL and P(3HB) as Coating Materials for Selective Laser Melted Porous Titanium Implants.

    Science.gov (United States)

    Grau, Michael; Matena, Julia; Teske, Michael; Petersen, Svea; Aliuos, Pooyan; Roland, Laura; Grabow, Niels; Murua Escobar, Hugo; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2017-11-23

    Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young's modulus differs from bone tissue, the resulting "stress shielding" could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young's modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL) and the biopolymer poly(3-hydroxybutyrate) (P(3HB)) were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM) and coated with PCL or P(3HB) via dip coating. To test the biocompatibility, Live Cell Imaging (LCI) as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM) and energy-dispersive X-ray (EDX) analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB). Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB) in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL coating ensured the

  16. In Vitro Evaluation of PCL and P(3HB as Coating Materials for Selective Laser Melted Porous Titanium Implants

    Directory of Open Access Journals (Sweden)

    Michael Grau

    2017-11-01

    Full Text Available Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young’s modulus differs from bone tissue, the resulting “stress shielding” could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young’s modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL and the biopolymer poly(3-hydroxybutyrate (P(3HB were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM and coated with PCL or P(3HB via dip coating. To test the biocompatibility, Live Cell Imaging (LCI as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM and energy-dispersive X-ray (EDX analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB. Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL

  17. Biomolecule-coated metal nanoparticles on titanium.

    Science.gov (United States)

    Christensen, Stephen L; Chatt, Amares; Zhang, Peng

    2012-02-07

    Immobilizations of nanoparticles and biomolecules on biocompatible substrates such as titanium are two promising approaches to bringing new functionalities to Ti-based biomaterials. Herein, we used a variety of X-ray spectroscopic techniques to study and better understand metal-thiolate interactions in biofunctionalized metal nanoparticle systems supported on Ti substrates. Using a facile one-step procedure, a series of Au nanoparticle samples with varied biomolecule coatings ((2-mercatopropionyl)glycine (MPG) and bovine serum albumin (BSA)) and biomolecule concentrations are prepared. Ag and Pd systems are also studied to observe change with varying metal composition. The structure and properties of these biomolecule-coated nanoparticles are investigated with scanning electron microscopy (SEM) and element-specific X-ray techniques, including extended X-ray absorption fine structure (Au L(3)-edge), X-ray absorption near-edge structure (Au L(3), Ag L(3), Pd L(3), and S K-edge), and X-ray photoelectron spectroscopy (Au 4f, Ag 3d, Pd 3d, and S 2p core level). It was found that, by comparison of SEM and X-ray spectroscopy results, the coating of metal nanoparticles with varying model biomolecule systems can have a significant effect on both surface coverage and organization. This work offers a facile chemical method for bio- and nanofunctionalization of Ti substrates as well as provides a physical picture of the structure and bonding of biocoated metal nanoparticles, which may lead to useful applications in orthopedics and biomedicine.

  18. Porous SiO2/HAp Coatings on Cp-Titanium Grade 1 Surfaces Produced by Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Moskalewicz T.

    2016-12-01

    Full Text Available Porous hydroxyapatite doped SiO2 coatings were electrophoretically deposited (EPD on commercially pure titanium. The influence of EPD parameters on coatings quality was investigated. Microstructural observation was done using transmission and scanning electron microscopy as well as X-ray diffractometry.

  19. Fabrication, characterization, and in vitro study of zinc substituted hydroxyapatite/silk fibroin composite coatings on titanium for biomedical applications.

    Science.gov (United States)

    Zhong, Zhenyu; Ma, Jun

    2017-09-01

    Zinc substituted hydroxyapatite/silk fibroin composite coatings were deposited on titanium substrates at room temperature by electrophoretic deposition. Microscopic characterization of the synthesized composite nanoparticles revealed that the particle size ranged 50-200 nm, which increased a little after zinc substitution. The obtained coatings maintained the phase of hydroxyapatite and they could induce fast apatite formation in simulated body fluid, indicating high bone activity. The cell culturing results showed that the biomimetic hydroxyapatite coatings could regulate adhesion, spreading, and proliferation of osteoblastic cells. Furthermore, the biological behavior of the zinc substituted hydroxyapatite coatings was found to be better than the bare titanium without coatings and hydroxyapatite coatings without zinc, increasing MC3T1-E1 cell differentiation in alkaline phosphatase expression.

  20. Sustained release vancomycin-coated titanium alloy using a novel electrostatic dry powder coating technique may be a potential strategy to reduce implant-related infection.

    Science.gov (United States)

    Han, Jing; Yang, Yi; Lu, Junren; Wang, Chenzhong; Xie, Youtao; Zheng, Xuebin; Yao, Zhenjun; Zhang, Chi

    2017-07-24

    In order to tackle the implant-related infection, a novel way was developed in this study to coat vancomycin particles mixed with controlled release coating materials onto the surface of titanium alloy by using an electrostatic dry powder coating technique. To characterize this sustained release antibacterial coating, surface morphology, in vitro and in vivo drug release were sequentially evaluated. In vitro cytotoxicity was tested by Cell Counting Kit-8 (CCK-8) assay and cytological changes were observed by inverted microscope. The antibacterial properties against MRSA, including a bacterial growth inhibition assay and a colony-counting test by spread plate method were performed. Results indicated that the vancomycin-coated sample was biocompatible for Human osteoblast cell line MG-63 and displayed effective antibacterial ability against MRSA. The coating film was revealed uniform by scanning electron microscopy. Both the in vitro and in vivo drug release kinetics showed an initially high release rate, followed by an extended period of sustained drug release over 7 days. These results suggest that with good biocompatibility and antibacterial ability, the sustained release antibacterial coating of titanium alloy using our novel electrostatic dry powder coating process may provide a promising candidate for the treatment of orthopedic implant-related infection.

  1. Innovative coatings and surface modification of titanium for sea water condenser applications

    International Nuclear Information System (INIS)

    George, R.P.; Anandkumar, B.; Vanithakumari, S.C.; Kamachi Mudali, U.

    2016-01-01

    Effectiveness of cooling water systems in various power plants to maintain highest electrical energy output per tonne of fuel is important as part of good energy management. Cooling water systems of nuclear power plants using seawater for cooling comes under constant attack from the marine and sea water environment. Many metallic components and civil structures in the cooling water systems like bridges, intake wells, intake pipes, pump house wells, water boxes, condenser pipes are subjected to severe fouling and corrosion which limits the service life and availability of power plants. The experience with a coastal water cooled power plant at Kalpakkam (MAPS), India, showed that chlorination and screening control macrofouling to a great extend by controlling protozoans, invertebrates, algae and fungi. However 90% of marine bacteria are resistant to such control measures, and they cause microfouling of condenser pipes leading to poor heat transfer and microbially influenced corrosion (MIC) failures. Titanium is used as condenser for Indian nuclear power plants employing sea water cooling, including the PFBR at Kalpakkam. Though titanium is excellent with respect to corrosion behavior under sea water conditions, its biocompatible nature results in biofouling and MIC during service. Therefore innovative antifouling coatings and surface modification techniques for titanium condenser applications in seawater and marine environments are the need of the hour. Extensive investigations were carried out by different methods including nanostructuring of surfaces for making them antibacterial. The microroughness of titanium was produced by repeated pickling and polishing which by itself reduced microbial adhesion. To utilize photocatalytic activity for antibacterial property, anodization of titanium surfaces followed by heat treatment was adopted and this also has controlled microbial fouling. Electroless plating of nanofilm of copper-nickel alloy decreased biofouling of

  2. Generation of amorphous ceramic capacitor coatings on titanium using a continuous sol-gel process

    International Nuclear Information System (INIS)

    Dixon, B.G.; Walsh, M.A. III; Phillips, P.G.; Morris, R.S.

    1995-01-01

    Thin amorphous films of ceramic capacitor materials were successfully deposited using sol-gel chemistry onto titanium wire using a continuous, computer controlled process. By repeatedly depositing and calcining very thin layers of material, smooth and even coats can be produced. Surface analyses revealed the layered nature of these thin coats, as well as the amorphous nature of the ceramic. The electrical properties of the better coatings, all composed of niobium, bismuth, zinc oxides, were then evaluated. copyright 1995 Materials Research Society

  3. Titanium diboride coatings and their interaction with the substrates

    International Nuclear Information System (INIS)

    Pierson, H.O.; Randich, E.

    1978-01-01

    An experimental investigation of the chemical vapor deposition (CVD) of titanium diboride (TiB 2 ) on metallic substrates, using the hydrogen reduction of TiCl 4 and BCl 3 at 1 atmosphere and at temperatures between 850 0 C and 1050 0 C is described. To be coated, the substrate had to meet the following requirements: (1) ability to withstand the deposition temperature without detrimental transformation, (2) chemical inertness to the by-products of the reaction (mostly HCl), (3) reasonable matching of its thermal expansion with that of TiB 2 . The latter requirement may be partially circumvented by using a ductile intermediate coating such as Cu or Ni. Substrates meeting these requirements were W, Ta, Ni, WC, TiC, Kovar and some high chrome steels. Coatings on these substrates were examined by metallographic techniques, scanning electron microscope, x-ray diffraction and electron microprobe. The structures and the degree of interdiffusion were determined. In most cases, intermediate borides of the type M 3 B and M 2 B were formed. The hardness of the coatings was 3330 +- 310 kg/mm 2 (VHN 50 ). Coatings of TiB 2 have already been used successfully on letdown valves in a bench scale coal liquefaction reactor at Sandia Laboratories

  4. Multifunctional hybrid coating on titanium towards hydroxyapatite growth: Electrodeposition of tantalum and its molecular functionalization with organophosphonic acids films

    International Nuclear Information System (INIS)

    Arnould, Christelle; Delhalle, Joseph; Mekhalif, Zineb

    2008-01-01

    Titanium and its alloys are base materials used in the dental and orthopaedic fields owing to suitable intrinsic properties: good biocompatibility, high corrosion resistance and excellent mechanical properties. However, the bonding between titanium and bone tissue is not always strong enough and can become a critical problem. In this context, the two main objectives of this paper are the increase of the corrosion resistance and the improvement of the hydroxyapatite (HAp) growth. The surface modification considered here is achieved in three main steps and consists in the elaboration of different inorganic and organic coatings. The first step is the elaboration of electrodeposition of tantalum on the titanium oxide film of a titanium substrate. The second step is the modification of the tantalum oxide coating with organophosphonic acids. The last step is the nucleation and growth of HAP on the outermost layer of the system by immersion in a simulated body fluid. The hybrid coating tantalum oxide/organophosphonic acids/molecular layer is shown to be promising for orthopaedic implants

  5. Assessment of antibacterial and cytotoxic effects of orthodontic stainless steel brackets coated with different phases of titanium oxide: An in-vitro study.

    Science.gov (United States)

    Baby, Roshen Daniel; Subramaniam, Siva; Arumugam, Ilakkiya; Padmanabhan, Sridevi

    2017-04-01

    Our objective was to assess the antibacterial and cytotoxic effects of orthodontic stainless steel brackets coated with different phases of photocatalytic titanium oxide. From a total sample of 115 brackets, 68 orthodontic stainless steel brackets were coated with titanium oxide using a radiofrequency magnetron sputtering machine. The coated brackets were then converted into 34 each of the anatase and rutile phases of titanium oxide. These brackets were subdivided into 4 groups for antibacterial study and 3 groups for cytotoxicity study. Brackets for the antibacterial study were assessed against the Streptococcus mutans species using microbiologic tests. Three groups for the cytotoxicity study were assessed using the thiazolyl tetrazolium bromide assay. The antibacterial study showed that both phases were effective, but the rutile phase of photocatalytic titanium oxide had a greater bactericidal effect than did the anatase phase. The cytotoxicity study showed that the rutile phase had a greater decrease in viability of cells compared with the anatase phase. It is recommended that orthodontic brackets be coated with the anatase phase of titanium oxide since they exhibited a significant antibacterial property and were only slightly cytotoxic. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  6. The Effect of Root Coating with Titanium on Prevention of Root Resorption in Avulsed Teeth: An Animal Study

    Science.gov (United States)

    Heydari, Azar; Tahmasbi, Soodeh; Badiee, Mohammadreza; Izadi, SeyedSadra; Mashhadi Abbas, Fatemeh; Mokhtari, Sepideh

    2016-01-01

    Introduction: Tooth avulsion is a real dental emergency. If immediate replantation is not performed, the avulsed tooth may be lost due to inflammatory or replacement resorption. This animal study aimed to evaluate the bone response to the titanium coating of the root surface as an artificial barrier, and prevention of resorption of avulsed teeth. Methods and Materials: This experimental study was conducted on four male dogs. The dogs were randomly divided into two groups for assessment at two and eight weeks. Four teeth were extracted in each animal. The root surfaces of the test group were coated with a titanium layer using the Electron Beam Deposition system. After 24 h, replantation of the teeth was performed. Two animals were sacrificed after two weeks and the remaining dogs were killed after eight weeks. The presence of inflammation, inflammatory resorption, replacement resorption, periodontal regeneration, periapical granuloma and ankylosis were evaluated through histological analyses. Results: Inflammatory root resorption was not present in any tooth except one tooth in the coated group after eight weeks. Replacement resorption was noted just in three of the non-coated teeth after two weeks and two teeth after eight weeks. The McNemar's test revealed that the frequency of replacement resorption in the non-coated group was significantly higher than the coated group (P=0.031). Conclusion: Based on the results of this study, it seems that coating the root surfaces of avulsed teeth with titanium may control the replacement root resorption. PMID:27790261

  7. Crystallization of modified hydroxyapatite on titanium implants

    International Nuclear Information System (INIS)

    Golovanova, O A; Izmailov, R R; Zaits, A V; Ghyngazov, S A

    2016-01-01

    Carbonated-hydroxyapatite (CHA) and Si-hydroxyapatite (Si-HA) precipitation have been synthesized from the model bioliquid solutions (synovial fluid and SBF). It is found that all the samples synthesized from the model solutions are single-phase and represent hydroxyapatite. The crystallization of the modified hydroxyapatite on alloys of different composition, roughness and subjected to different treatment techniques was investigated. Irradiation of the titanium substrates with the deposited biomimetic coating can facilitate further growth of the crystal and regeneration of the surface. (paper)

  8. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings

    International Nuclear Information System (INIS)

    Aliasghari, S.; Skeldon, P.; Thompson, G.E.

    2014-01-01

    Highlights: • Plasma electrolytic oxidation performed of titanium in silicate/phosphate electrolyte. • Range of duty cycle, current density, positive-to-negative current ratio studied. • Coatings contain anatase, rutile, Ti 3 O 5 , and amorphous silica. • Ptfe incorporated into coatings by addition of ptfe emulsion to the electrolyte. • Fiction reduced but wear life relatively short due to porosity of coatings. - Abstract: Plasma electrolytic oxidation of titanium has been investigated using a phosphate/silicate electrolyte with a square waveform and a frequency of 50 Hz. A range of constant rms current densities, duty cycles and negative-to-positive current ratios was employed. The resultant coatings were examined by analytical scanning and transmission electron microscopies and X-ray diffraction. The coatings, which were limited in thickness to ∼40 to 50 μm, contained anatase, rutile, Ti 2 O 5 and silicon-rich, amorphous material. The tribological behaviour was investigated using a ball-on-disc test, revealing a coefficient of friction against steel of ∼0.8, which reduced to ∼0.4 by incorporation of ptfe particles from the electrolyte. However, due to the composition and morphology of the coatings, their wear life was relatively short

  9. Friction and wear performance of diamond-like carbon, boron carbide, and titanium carbide coatings against glass

    International Nuclear Information System (INIS)

    Daniels, B.K.; Brown, D.W.; Kimock, F.M.

    1997-01-01

    Protection of glass substrates by direct ion beam deposited diamond-like carbon (DLC) coatings was observed using a commercial pin-on-disk instrument at ambient conditions without lubrication. Ion beam sputter-deposited titanium carbide and boron carbide coatings reduced sliding friction, and provided tribological protection of silicon substrates, but the improvement factor was less than that found for DLC. Observations of unlubricated sliding of hemispherical glass pins at ambient conditions on uncoated glass and silicon substrates, and ion beam deposited coatings showed decreased wear in the order: uncoated glass>uncoated silicon>boron carbide>titanium carbide>DLC>uncoated sapphire. Failure mechanisms varied widely and are discussed. Generally, the amount of wear decreased as the sliding friction decreased, with the exception of uncoated sapphire substrates, for which the wear was low despite very high friction. There is clear evidence that DLC coatings continue to protect the underlying substrate long after the damage first penetrates through the coating. The test results correlate with field use data on commercial products which have shown that the DLC coatings provide substantial extension of the useful lifetime of glass and other substrates. copyright 1997 Materials Research Society

  10. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite

    DEFF Research Database (Denmark)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its...... fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants...

  11. Mechanical and tribological property of single layer graphene oxide reinforced titanium matrix composite coating

    Science.gov (United States)

    Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale

    2018-04-01

    Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.

  12. Microstructure of yttric calcium phosphate bioceramic coatings synthesized by laser cladding

    International Nuclear Information System (INIS)

    Wang Diangang; Chen Chuanzhong; Ma Jie; Lei Tingquan

    2007-01-01

    The yttric calcium phosphate (CaP) coatings were in situ prepared on pure titanium substrate by laser cladding. The morphologies and phases constitution of CaP coatings were studied by electron probe microanalysis, X-ray diffraction and so on. The bonding state between the coating and the substrate is fine metallurgical combination, and the addition of yttria can fine the structure and increase the tensile strength of the coatings. The X-ray result shows that the coating is composed of the phases of HA, α-Ca 2 P 2 O 7 , β-Ca 2 P 2 O 7 and CaTiO 3

  13. RF magnetron sputtering of a hydroxyapatite target: A comparison study on polytetrafluorethylene and titanium substrates

    Science.gov (United States)

    Surmenev, Roman A.; Surmeneva, Maria A.; Grubova, Irina Yu.; Chernozem, Roman V.; Krause, Bärbel; Baumbach, Tilo; Loza, Kateryna; Epple, Matthias

    2017-08-01

    A pure hydroxyapatite (HA) target was used to prepare the biocompatible coating of HA on the surface of a polytetrafluorethylene (PTFE) substrate, which was placed on the same substrate holder with technically pure titanium (Ti) in the single deposition runs by radio-frequency (RF) magnetron sputtering. The XPS, XRD and FTIR analyses of the obtained surfaces showed that for all substrates, instead of the HA coating deposition, the coating of a mixture of calcium carbonate and calcium fluoride was grown. According to SEM investigations, the surface of PTFE was etched, and the surface topography of uncoated Ti was preserved after the depositions. The FTIR results reveal no phosphate bonds; only calcium tracks were observed in the EDX-spectra on the surface of the coated PTFE substrates. Phosphate oxide (V), which originated from the target, could be removed using a vacuum pump system, or no phosphate-containing bonds could be formed on the substrate surface because of the severe substrate bombardment process, which prevented the HA coating deposition. The observed results may be connected with the surface re-sputtering effect of the growing film by high-energy negatively charged ions (most probably oxygen or fluorine), which are accelerated in the cathode dark sheath.

  14. Microstructure Analysis of Laser Remelting for Thermal Barrier Coatings on the Surface of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Lu Bin

    2016-01-01

    Full Text Available In this paper, the preparation and organization performance of thermal barrier coatings (TCBs on the surface of titanium were studied experimentally. Nanostructured 8 wt% yttria partially stabilized zirconia coatings were deposited by air plasma spraying. The microstructure of nanostructured and the conventional coating was studied after laser remelting. It has shown that formed a network of micro-cracks and pits after laser remelting on nanostructured coatings. With the decrease of the laser scanning speed, mesh distribution of micro cracks was gradually thinning on nanostructured coatings. Compared with conventional ceramic layers, the mesh cracks of nanostructured coating is dense and the crack width is small.

  15. Influence of laser cladding regimes on structural features and mechanical properties of coatings on titanium substrates

    International Nuclear Information System (INIS)

    Malyutina, Yulia N.; Lazurenko, Daria V.; Bataev, Ivan A.; Movtchan, Igor A.

    2015-01-01

    In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenched fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers

  16. Influence of laser cladding regimes on structural features and mechanical properties of coatings on titanium substrates

    Science.gov (United States)

    Malyutina, Yulia N.; Lazurenko, Daria V.; Bataev, Ivan A.; Movtchan, Igor A.

    2015-10-01

    In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenched fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers.

  17. Influence of laser cladding regimes on structural features and mechanical properties of coatings on titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Malyutina, Yulia N., E-mail: iuliiamaliutina@gmail.ru; Lazurenko, Daria V., E-mail: pavlyukova-87@mail.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Movtchan, Igor A., E-mail: igor.movtchan@enise.fr [National Engineering School in Saint-Etienne, Saint-Etienne, 42000 France (France)

    2015-10-27

    In this paper an influence of the tantalum content on the structure and properties of surface layers of the titanium alloy doped using a laser treatment technology was investigated. It was found that an increase of a quantity of filler powder per one millimeter of a track length contributed to a rise of the content of undissolved particles in coatings. The maximum thickness of a cladded layer was reached at the mass of powder per the length unit equaled to 5.5 g/cm. Coatings were characterized by the formation of a dendrite structure with attributes of segregation. The width of a quenched fusion zone grew with an increase in the rate of powder feed to the treated area. Significant strengthening of the titanium surface layer alloyed with tantalum was not observed; however, the presence of undissolved tantalum particles can decrease the hardness of titanium surface layers.

  18. Effect of titanium nitride coating on physical properties of three-dimensional graphene

    Energy Technology Data Exchange (ETDEWEB)

    Dabir, Fatemeh, E-mail: f.dabir@modares.ac.ir [Materials Eng. Department, Tarbiat Modares University, 1411713116, Tehran (Iran, Islamic Republic of); Sarraf-Mamoory, Rasoul, E-mail: rsarrafm@modares.ac.ir [Materials Eng. Department, Tarbiat Modares University, 1411713116, Tehran (Iran, Islamic Republic of); Loeblein, Manuela, E-mail: manuela001@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 (Singapore); CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, 637553 (Singapore); Tsang, Siu Hon, E-mail: shtsang@ntu.edu.sg [CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, 637553 (Singapore); Teo, Edwin Hang Tong, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 (Singapore)

    2015-11-30

    Graphical abstract: - Highlights: • TiN was coated on 3D graphene by chemical method, followed by annealing at NH{sub 3}. • Effect of TiN coating on physical properties of 3DG was investigated. • TiN coating modified surface properties of 3DG, while retaining its skeleton. • Average number of graphene layers increased after annealing of 3DG at NH{sub 3}. • Annealing of 3DG at NH{sub 3} resulted in locally nitrogen doping. - Abstract: In this paper, titanium nitride (TiN) was applied on the surface and into the porous structure of three-dimensional graphene (3DG) by chemical method. This method consists of immersing 3DG into a solution containing Ti ions and annealing under ammonia atmosphere at 850 °C. The effects of TiN coating and high temperature annealing under NH{sub 3} on the physical properties of 3DG were investigated. For this purpose, the 3DG samples, with and without TiN coating, were characterized via XRD, SEM, XPS, and Raman spectroscopy. Then, the electrical resistivity, work function, and wettability of samples were determined by Van der Pauw method, contact angle meter, and UV photoelectron spectroscopy (UPS), respectively. The results showed that an almost pure and very crystalline TiN phase with titanium/nitrogen atomic ratio of 1.09 was formed on the 3DG network. Annealing of 3DG under NH{sub 3} resulted in locally doping of graphene with nitrogen and generation of defects in its structure. After TiN coating, the work function value of 3DG (5 eV) was reduced to 4.68 eV, while its initial water contact angle decreased from 127° to 83°.

  19. Deposition of titanium coating on SiC fiber by chemical vapor deposition with Ti-I{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2017-06-01

    Highlights: • The transformation paths of (Ti + I{sub 2}) powder to Ti coating is: Ti + I{sub 2} → (TiI{sub 2}, TiI{sub 3}) → Ti. • Uniform coating was obtained on SiC fiber, but it contained Si and C elements. • Deposition rate of the coating increased with the increase of temperature. • Deposition thickness increased with time and achieved the maximum at 90 min. - Abstract: Titanium coating was prepared on SiC fiber using titanium-iodine (Ti-I{sub 2}) mixture by hot-wall chemical vapor deposition. Thermodynamic analysis and experimental observation were carried out in this work. The thermodynamic analysis of the reactions in the Ti-I{sub 2} system indicates that Ti and I{sub 2} raw powder materials transform to titanium coating as follows: Ti + I{sub 2} → (TiI{sub 2}, TiI{sub 3}), and (TiI{sub 2}, TiI{sub 3}) → Ti. In theory, the conversions of TiI{sub 3} and TiI{sub 2} reach the maximum when Ti:I{sub 2} is 1:1.5, while in actual experiment that reached the maximum when Ti:I{sub 2} was 1:2, as there existed the waste of I{sub 2} due to sublimation. Typical deposited coating is relatively flat and uniform. However, as SiC is prone to react with Ti at high temperatures, the obtained coating contained some Si and C elements except for Ti. So the coating was not a pure Ti coating but contained some carbides and silicides. Deposition rate of the coating increased with the increase of temperature. The deposited thickness increased with the increase of heat preservation time, and achieved the maximum thickness at 90 min.

  20. SOL-GEL SILICA-BASED Ag–Ca–P COATINGS WITH AGRESSIVE PRETREATMENT OF TITANIUM SUBSTRATE

    Directory of Open Access Journals (Sweden)

    ELENA BORSHCHEVA

    2011-12-01

    Full Text Available The aim of the experiment was the obtaining of thin silica coatings on titanium by sol-gel method, using mechanical (SiC - paper No.180 and chemical (leaching in HF pretreatments of the titanium substrates. The solutions were based on TEOS. For the sol-gel dipping process 4 different solutions were prepared: silica, silica with AgNO3 and silica + AgNO3 with brushite (CaHPO4·2H2O or monetite (CaHPO4 powders. The solutions were aged for 7 and 14 days at laboratory temperature. After sol-gel dip-coating process the samples were dried and fired. The adhesion of fired coatings was measured by tape test according to ASTM procedure and the bioactivity of the coatings was tested using in vitro test. The surfaces of the samples after firing, tape test and in vitro test were observed with the optical and electron microscopes. The firing results showed that silica-silver coatings did not change, brushite sol-gel coatings have cracked and the monetite sol-gel coatings have cracked also, but less than brushite ones. In spite of coating´s crackings, the square’s frames made on the surfaces were without any breakdowns after tape tests and the adhesion of all coatings was very good, classified by the highest grade 5. The results of in vitro tests showed that all coatings interacted with simulated body fluid (SBF. After exposition in SBF the new layer formed on substrates. In case of 7 days aged coatings containing brushite the new layer was uniform and compact. In case of 7 days aged coatings containing monetite the new layer was formed by crystals aggregated tightly together. The monetite and brushite coatings prepared from 14 days aged sol were the same as previous ones, but they were thicker. X-ray analyses after in vitro test confirmed dellaite, titanate and hydroxyapatite phases.

  1. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir; Anjum, Dalaver H.; Chung, Suk-Ho

    2013-01-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon

  2. Clinical and histomorphometrical study on titanium dioxide-coated external fixation pins

    Directory of Open Access Journals (Sweden)

    Koseki H

    2013-02-01

    Full Text Available Hironobu Koseki,1 Tomohiko Asahara,1 Takayuki Shida,1 Itaru Yoda,1 Hidehiko Horiuchi,1 Koumei Baba,2 Makoto Osaki11Department of Orthopedic Surgery, Graduate School of Medicine, Nagasaki University, 2Industrial Technology Center of Nagasaki, Nagasaki, JapanBackground: Pin site infection is the most common and significant complication of external fixation. In this work, the efficacy of pins coated with titanium dioxide (TiO2 for inhibition of infection was compared with that of stainless steel control pins in an in vivo study.Methods: Pins contaminated with an identifiable Staphylococcus aureus strain were inserted into femoral bone in a rat model and exposed to ultraviolet A light for 30 minutes. On day 14, the animals were sacrificed and the bone and soft tissue around the pin were retrieved. The clinical findings and histological findings were evaluated in 60 samples.Results: Clinical signs of infection were present in 76.7% of untreated pins, but in only 36.7% of TiO2-coated pins. The histological bone infection score and planimetric rate of occupation for bacterial colonies and neutrophils in the TiO2-coated pin group were lower than those in the control group. The bone-implant contact ratio of the TiO2-coated pin group was significantly higher (71.4% than in the control pin group (58.2%. The TiO2 was successful in decreasing infection both clinically and histomorphometrically.Conclusion: The photocatalytic bactericidal effect of TiO2 is thought to be useful for inhibiting pin site infection after external fixation.Keywords: titanium dioxide, external fixation, bactericidal activity, Staphylococcus aureus

  3. Endodontic Shaping Performance Using Nickel–Titanium Hand and Motor ProTaper Systems by Novice Dental Students

    Directory of Open Access Journals (Sweden)

    Ming-Gene Tu

    2008-05-01

    Conclusion: These findings show that the novice students prepared the simulated curved canal that deviated more outwardly from apical 1 mm to 4 mm using the hand ProTaper. The ability to maintain the original curvature was better in the motor rotary ProTaper group than in the hand ProTaper group. Undergraduate students, if following the preparation sequence carefully, could successfully perform canal shaping by motor ProTaper files and achieve better root canal geometry than by using hand ProTaper files within the same teaching and practicing sessions.

  4. Nanosized Hydroxyapatite Coating on PEEK Implants Enhances Early Bone Formation: A Histological and Three-Dimensional Investigation in Rabbit Bone

    Directory of Open Access Journals (Sweden)

    Pär Johansson

    2015-06-01

    Full Text Available Polyether ether ketone (PEEK has been frequently used in spinal surgery with good clinical results. The material has a low elastic modulus and is radiolucent. However, in oral implantology PEEK has displayed inferior ability to osseointegrate compared to titanium materials. One idea to reinforce PEEK would be to coat it with hydroxyapatite (HA, a ceramic material of good biocompatibility. In the present study we analyzed HA-coated PEEK tibial implants via histology and radiography when following up at 3 and 12 weeks. Of the 48 implants, 24 were HA-coated PEEK screws (test and another 24 implants served as uncoated PEEK controls. HA-coated PEEK implants were always osseointegrated. The total bone area (BA was higher for test compared to control implants at 3 (p < 0.05 and 12 weeks (p < 0.05. Mean bone implant contact (BIC percentage was significantly higher (p = 0.024 for the test compared to control implants at 3 weeks and higher without statistical significance at 12 weeks. The effect of HA-coating was concluded to be significant with respect to early bone formation, and HA-coated PEEK implants may represent a good material to serve as bone anchored clinical devices.

  5. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: an in vitro study.

    Science.gov (United States)

    Abrishamchian, Alireza; Hooshmand, Tabassom; Mohammadi, Mohammadreza; Najafi, Farhood

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti-6Al-4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol-gel method. The structural characterization and electron microscopy results confirmed well crystallized HA-MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol-gel-derived HA/MWCNT composite coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications.

    Science.gov (United States)

    Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng

    2013-10-01

    Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aliasghari, S.; Skeldon, P., E-mail: p.skeldon@manchester.ac.uk; Thompson, G.E.

    2014-10-15

    Highlights: • Plasma electrolytic oxidation performed of titanium in silicate/phosphate electrolyte. • Range of duty cycle, current density, positive-to-negative current ratio studied. • Coatings contain anatase, rutile, Ti{sub 3}O{sub 5}, and amorphous silica. • Ptfe incorporated into coatings by addition of ptfe emulsion to the electrolyte. • Fiction reduced but wear life relatively short due to porosity of coatings. - Abstract: Plasma electrolytic oxidation of titanium has been investigated using a phosphate/silicate electrolyte with a square waveform and a frequency of 50 Hz. A range of constant rms current densities, duty cycles and negative-to-positive current ratios was employed. The resultant coatings were examined by analytical scanning and transmission electron microscopies and X-ray diffraction. The coatings, which were limited in thickness to ∼40 to 50 μm, contained anatase, rutile, Ti{sub 2}O{sub 5} and silicon-rich, amorphous material. The tribological behaviour was investigated using a ball-on-disc test, revealing a coefficient of friction against steel of ∼0.8, which reduced to ∼0.4 by incorporation of ptfe particles from the electrolyte. However, due to the composition and morphology of the coatings, their wear life was relatively short.

  8. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    Science.gov (United States)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  9. Synthesis and Characterization of Hydroxyapatite-Collagen-Chitosan (HA/Col/Chi) Composite Coated on Ti6Al4V

    Science.gov (United States)

    Charlena; Bikharudin, Ahmad; Wahyudi, Setyanto Tri

    2018-01-01

    HA-collagen-chitosan (HA/col/chi) composite is developed to increase bioactivity adhesiveness between the metal and the material composite and to improve corrosion resistance. The Ti6Al4V alloy was coated by soaking in HA/col/chi composite at room temperature and then allowed to stand for 5, 6, and 7 days. Diffraction pattern analysis of the coated Ti6Al4V alloy showed that the dominant phase were HA and Ti6Al4V alloy. Corrosion resistance test in media by using 0.9% NaCl showed the corrosion rate at the level of 0.3567 mpy, which was better than that of the uncoated Ti6Al4V alloy (0.4152 mpy). In vitro cytocompatibility assay on endothelial cell of calf pulmonary artery endothelium (CPAE) (ATCC-CCL 209) showed there was no toxicity in the cell culture with the percent inhibition of 33.33% after 72 hours of incubation.

  10. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating

    Science.gov (United States)

    Qingfeng Sun; Haipeng Yu; Yixing Liu; Jian Li; Yun Lu; John F. Hunt

    2010-01-01

    Moisture absorption and dimensional distortion are the major drawbacks of wood utilization as building material. In this study, poplar wood coated with a thin layer of titanium dioxide (TiO2) was prepared by the cosolvent-controlled hydrothermal method. Subsequently, its moisture absorption and dimensional stability were examined. Scanning...

  11. Microstructure of yttric calcium phosphate bioceramic coatings synthesized by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Wang Diangang [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Chen Chuanzhong [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)]. E-mail: czchen@sdu.edu.cn; Ma Jie [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Lei Tingquan [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2007-02-15

    The yttric calcium phosphate (CaP) coatings were in situ prepared on pure titanium substrate by laser cladding. The morphologies and phases constitution of CaP coatings were studied by electron probe microanalysis, X-ray diffraction and so on. The bonding state between the coating and the substrate is fine metallurgical combination, and the addition of yttria can fine the structure and increase the tensile strength of the coatings. The X-ray result shows that the coating is composed of the phases of HA, {alpha}-Ca{sub 2}P{sub 2}O{sub 7}, {beta}-Ca{sub 2}P{sub 2}O{sub 7} and CaTiO{sub 3}.

  12. Anodisation of sputter deposited aluminium–titanium coatings: Effect of microstructure on optical characteristics

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Junker-Holst, Andreas; Vestergaard Nielsen, Daniel

    2014-01-01

    Magnetron sputtered coatings of aluminium containing up to 18 wt.% titanium were deposited on aluminium substrates to study the effect of microstructure on the optical appearance of the anodised layer. The microstructure and morphology were studied using transmission electron microscopy (TEM), X......-ray diffraction (XRD), and glow discharge optical emission spectroscopy (GDOES), while the optical appearance was investigated using photospectrometry. The microstructure of the coatings was varied by heat treatment, resulting in the precipitation of Al3Ti phases. The reflectance of the anodised surfaces...

  13. Oxidation Behavior of Titanium Carbonitride Coating Deposited by Atmospheric Plasma Spray Synthesis

    Science.gov (United States)

    Zhu, Lin; He, Jining; Yan, Dianran; Liao, Hanlin; Zhang, Nannan

    2017-10-01

    As a high-hardness and anti-frictional material, titanium carbonitride (TiCN) thick coatings or thin films are increasingly being used in many industrial fields. In the present study, TiCN coatings were obtained by atmospheric plasma spray synthesis or reactive plasma spray. In order to promote the reaction between the Ti particles and reactive gases, a home-made gas tunnel was mounted on a conventional plasma gun to perform the spray process. The oxidation behavior of the TiCN coatings under different temperatures in static air was carefully investigated. As a result, when the temperature was over 700 °C, the coatings suffered from serious oxidation, and finally they were entirely oxidized to the TiO2 phase at 1100 °C. The principal oxidation mechanism was clarified, indicating that the oxygen can permeate into the defects and react with TiCN at high temperatures. In addition, concerning the use of a TiCN coating in high-temperature conditions, the microhardness of the oxidized coatings at different treatment temperatures was also evaluated.

  14. Investigation of photocatalytic activity of titanium dioxide coating deposited on aluminium alloy substrate by plasma technique

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Soyama, Juliano; Dirscherl, Kai

    2011-01-01

    . Literature consists of large number of publications on titanium dioxide coating for self-cleaning applications, with glass as the main substrate. Only little work is available on TiO2 coating of metallic alloys used for engineering applications. Engineering materials, such as light-weight aluminium and steel...... have wide spread technological applications, where a combination of self-cleaning properties has a huge business potential. The results presented in this paper demonstrate superior photocatalytic properties of TiO2 coated aluminium compared to nano-scale TiO2 coating on glass substrate. The thickness...

  15. X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings

    International Nuclear Information System (INIS)

    McLeod, K.; Kumar, S.; Dutta, N.K.; Smart, R.St.C.; Voelcker, N.H.; Anderson, G.I.

    2010-01-01

    Hydroxyapatite (HA) thin-film coatings grown biomimetically using simulated body fluid (SBF) are desirable for a range of applications such as improved fixation of fine- and complex-shaped orthopedic and dental implants, tissue engineering scaffolds and localized and sustained drug delivery. There is a dearth of knowledge on two key aspects of SBF-grown HA coatings: (i) the growth kinetics over short deposition periods, hours rather than weeks; and (ii) possible difference between the coatings deposited with and without periodic SBF replenishment. A study centred on these aspects is reported. X-ray photoelectron spectroscopy (XPS) has been used to study the growth kinetics of SBF-grown HA coatings for deposition periods ranging from 0.5 h to 21 days. The coatings were deposited with and without periodic replenishment of SBF. The XPS studies revealed that: (i) a continuous, stable HA coating fully covered the titanium substrate after a growth period of 13 h without SBF replenishment; (ii) thicker HA coatings about 1 μm in thickness resulted after a growth period of 21 days, both with and without SBF replenishment; and (iii) the Ca/P ratio at the surface of the HA coating was significantly lower than that in its bulk. No significant difference between HA grown with and without periodic replenishment of SBF was found. The coatings were determined to be carbonated, a characteristic desirable for improved implant fixation. The atomic force and scanning electron microscopies results suggested that heterogeneous nucleation and growth are the primary deposition mode for these coatings. Primary osteoblast cell studies demonstrated the biocompatibility of these coatings, i.e., osteoblast colony coverage of approximately 80%, similar to the control substrate (tissue culture polystyrene).

  16. X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, K. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Kumar, S., E-mail: sunil.kumar@unisa.edu.au [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Dutta, N.K. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Smart, R.St.C. [Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes, SA 5095 (Australia); Voelcker, N.H. [School of Chemistry, Physics and Earth Sciences, Flinders University of South Australia, GPO Box 2100, Adelaide 5001 (Australia); Anderson, G.I. [School of Veterinary Science, University of Adelaide, Adelaide, SA 5005 (Australia)

    2010-09-15

    Hydroxyapatite (HA) thin-film coatings grown biomimetically using simulated body fluid (SBF) are desirable for a range of applications such as improved fixation of fine- and complex-shaped orthopedic and dental implants, tissue engineering scaffolds and localized and sustained drug delivery. There is a dearth of knowledge on two key aspects of SBF-grown HA coatings: (i) the growth kinetics over short deposition periods, hours rather than weeks; and (ii) possible difference between the coatings deposited with and without periodic SBF replenishment. A study centred on these aspects is reported. X-ray photoelectron spectroscopy (XPS) has been used to study the growth kinetics of SBF-grown HA coatings for deposition periods ranging from 0.5 h to 21 days. The coatings were deposited with and without periodic replenishment of SBF. The XPS studies revealed that: (i) a continuous, stable HA coating fully covered the titanium substrate after a growth period of 13 h without SBF replenishment; (ii) thicker HA coatings about 1 {mu}m in thickness resulted after a growth period of 21 days, both with and without SBF replenishment; and (iii) the Ca/P ratio at the surface of the HA coating was significantly lower than that in its bulk. No significant difference between HA grown with and without periodic replenishment of SBF was found. The coatings were determined to be carbonated, a characteristic desirable for improved implant fixation. The atomic force and scanning electron microscopies results suggested that heterogeneous nucleation and growth are the primary deposition mode for these coatings. Primary osteoblast cell studies demonstrated the biocompatibility of these coatings, i.e., osteoblast colony coverage of approximately 80%, similar to the control substrate (tissue culture polystyrene).

  17. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Covarrubias, Cristian, E-mail: ccovarrubias@odontologia.uchile.cl [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Mattmann, Matías [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Von Marttens, Alfredo [Department of Prosthesis, Faculty of Dentistry, University of Chile, Santiago (Chile); Caviedes, Pablo; Arriagada, Cristián [Laboratory of Cell Therapy, ICBM, Faculty of Medicine, University of Chile (Chile); Valenzuela, Francisco [Laboratory of Nanobiomaterials, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago (Chile); Rodríguez, Juan Pablo [Laboratory of Cell Biology, INTA, University of Chile, Santiago (Chile); Corral, Camila [Department of Restorative Dentistry, Faculty of Dentistry, University of Chile, Santiago (Chile)

    2016-02-15

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  18. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    International Nuclear Information System (INIS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-01-01

    Graphical abstract: - Highlights: • The fabrication of a coating for osseointegration of titanium implant is presented. • The coating consists of nanoporous silica loaded with bioactive glass nanoparticles. • Coating accelerates the in vitro formation of apatite in simulated body fluid. • Coating promotes the osteogenic differentiation of stem cells. • Coating accelerates the formation of bone tissue in the periphery of the implant. - Abstract: The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol–gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  19. Characterization of a biomimetic coating on dense and porous titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.N. da; Pereira, L.C. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEMM/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Ribeiro, A.A.; Oliveira, M.V. de, E-mail: marize.varella@int.gov.b [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil); Andrade, M.C. de [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2010-07-01

    Bioactive materials have been studied as coatings on bioinert subtracts. Thus, it is possible to combine the bioactivity of materials such as calcium phosphate with the excellent mechanical properties of metals. Titanium (Ti) implants can be bioactivated by a biomimetic precipitation method. This study introduces a biomimetic method under a simplified solution (SS) with calcium and phosphorus ions. As substrates, commercially pure Ti sheet and micro-porous Ti samples produced by powder metallurgy were used. The substrates were submitted to chemical and heat treating and then immersed in the SS for 7, 14, 21 days. Surface roughness was evaluated by confocal scanning optical microscopy. Coating characterization was performed by scanning electron microscopy and high resolution X-ray diffraction (XRD). The results showed calcium phosphate crystal morphologies observed in all samples, which was confirmed by XRD phase identifications. These results reveal the solution potential for coating Ti substrates. (author)

  20. Characterization of a biomimetic coating on dense and porous titanium substrates

    International Nuclear Information System (INIS)

    Rocha, M.N. da; Pereira, L.C.; Andrade, M.C. de

    2010-01-01

    Bioactive materials have been studied as coatings on bioinert subtracts. Thus, it is possible to combine the bioactivity of materials such as calcium phosphate with the excellent mechanical properties of metals. Titanium (Ti) implants can be bioactivated by a biomimetic precipitation method. This study introduces a biomimetic method under a simplified solution (SS) with calcium and phosphorus ions. As substrates, commercially pure Ti sheet and micro-porous Ti samples produced by powder metallurgy were used. The substrates were submitted to chemical and heat treating and then immersed in the SS for 7, 14, 21 days. Surface roughness was evaluated by confocal scanning optical microscopy. Coating characterization was performed by scanning electron microscopy and high resolution X-ray diffraction (XRD). The results showed calcium phosphate crystal morphologies observed in all samples, which was confirmed by XRD phase identifications. These results reveal the solution potential for coating Ti substrates. (author)

  1. Measurement of partial coefficients of sputtering of titanium atoms from TiC and TiN coatings

    International Nuclear Information System (INIS)

    Vychegzhanin, G.A.; Gribanov, Yu.A.; Dikij, N.P.; Zhmurin, P.N.; Letuchij, A.N.; Matyash, P.P.; Sidokur, P.I.; Shono, D.A.

    1989-01-01

    Method of laser fluorescent spectroscopy was used to measure partial coefficients of sputtering of titanium atoms from TiC and TiN coatings under irradiation by 1 keV hydrogen ions. Irradiation was conducted in a plant with reflective discharge. Investigation of damaged layer in irradiated samples was conducted. The presence of near-the-surface layer enrichment with titanium atoms was revealed both in TiC and TiN samples. 12 refs.; 4 figs

  2. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Gabriela, E-mail: gciobanu03@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Prof. dr. docent Dimitrie Mangeron Rd., no. 63, zip: 700050, Iasi (Romania); Ciobanu, Octavian [“Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Universitatii Str., no. 16, zip: 700115, Iasi (Romania)

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D{sub 3}, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. - Highlights: ► Hydroxyapatite was grown on Ti using a modified supersaturated calcification solution (M-SCS). ► Vitamins (A and D3) and collagen in M-SCS have a significant effect on apatite precipitation. ► M-SCS stimulates a biomimetic apatite deposition with 0.5–1 μm thickness in a short time. ► Hydroxyapatite crystallites have thin plate morphologies and size below 1 μm.

  3. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-01-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D 3 , and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. - Highlights: ► Hydroxyapatite was grown on Ti using a modified supersaturated calcification solution (M-SCS). ► Vitamins (A and D3) and collagen in M-SCS have a significant effect on apatite precipitation. ► M-SCS stimulates a biomimetic apatite deposition with 0.5–1 μm thickness in a short time. ► Hydroxyapatite crystallites have thin plate morphologies and size below 1 μm

  4. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong-Hoon [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Moon, Byung-Hak [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2013-12-31

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H{sub 3}PO{sub 4} + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition

  5. Surface characteristics of hydroxyapatite-coated layer prepared on nanotubular Ti–35Ta–xHf alloys by EB-PVD

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Moon, Byung-Hak; Choe, Han-Cheol; Brantley, William A.

    2013-01-01

    In this study, we investigated the surface characteristics of hydroxyapatite (HA)-coated layers prepared by electron-beam physical vapor deposition (EB-PVD) on nanotubular Ti–35Ta–xHf alloys (x = 3, 7, and 15 wt.%). Ti–35Ta–xHf alloys were first prepared by arc melting. Formation of a nanotube structure on these alloys was achieved by an electrochemical method in 1 M H 3 PO 4 + 0.8 wt.% NaF electrolytes. The HA coatings were then deposited on the nanotubular surface by an EB-PVD method. The surface characteristics were analyzed by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The electrochemical behavior was examined using a potentiodynamic polarization test in 0.9% NaCl solution. The Ti–35Ta–xHf alloys had an equiaxed grain structure with α″ + β phases, and the α″ phase disappeared with increases in Hf content. The Ti–35Ta–15Hf alloy showed higher β-phase peak intensity in the XRD patterns than that for the lower Hf-content alloys. A highly ordered nanotubular oxide layer was formed on the Ti–35Ta–15Hf alloy, and the tube length depended on Hf content. The HA coating surface formed at traces of the nanotubular titanium oxide layer and completely covered the tips of the nanotubes with a cluster shape. From the potentiodynamic polarization tests, the incorporation of Hf element and formation of the nanotubular structure were the main factors for achieving lower current density. In particular, the surface of the HA coating on the nanotubular structure exhibited higher corrosion resistance than that of the nanotubular titanium oxide structure without an HA coating. - Highlights: • Hydroxyapatite (HA) was coated on nanotubular Ti–35Ta–xHf alloys, using EB-PVD. • Increasing the Hf content reduced the relative proportion of α″ martensite to β-Ti in the microstructures. • The detailed nanotubular structure formed by anodization depended on alloy composition. • The

  6. Study on Modified Water Glass Used in High Temperature Protective Glass Coating for Ti-6Al-4V Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Shuang Yang

    2018-04-01

    Full Text Available Sodium silicate water glass was modified with sodium polyacrylate as the binder, the composite slurry used for high-temperature oxidation-resistant coating was prepared by mixing glass powder with good lubrication properties in the binder. The properties of the modified binder and high-temperature oxidation resistance of Ti-6Al-4V titanium alloy coated with composite glass coating were studied by XRD, SEM, EDS, TG-DSC and so on. Results showed that sodium polyacrylate modified water glass could obviously improve the suspension stability of the binder, the pyrolytic carbon in the binder at high temperature could increase the surface tension in the molten glass system, and the composite glass coating could be smooth and dense after heating. Pyrolytic carbon diffused and combined with oxygen in the coating under the heating process to protect the titanium alloy from oxidation. The thickness of the oxide layer was reduced 51% after applying the high-temperature oxidation-resistant coating. The coating also showed a nearly 30% reduction in friction coefficient due to the boundary lubricant regime. During cooling, the coating could be peeled off easily because of the mismatched CTE between the coating and substrate.

  7. Effect of coating on properties of esthetic orthodontic nickel-titanium wires.

    Science.gov (United States)

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William; Choe, Han-Cheol; Nakagaki, Susumu; Alapati, Satish B; Mizoguchi, Itaru

    2012-03-01

    To determine the effect of coating on the properties of two esthetic orthodontic nickel-titanium wires. Woowa (polymer coating; Dany Harvest) and BioForce High Aesthetic Archwire (metal coating; Dentsply GAC) with cross-section dimensions of 0.016 × 0.022 inches were selected. Noncoated posterior regions of the anterior-coated Woowa and uncoated Sentalloy were used for comparison. Nominal coating compositions were determined by x-ray fluorescence (JSX-3200, JOEL). Cross-sectioned and external surfaces were observed with a scanning electron microscope (SEM; SSX-550, Shimadzu) and an atomic force microscope (SPM-9500J2, Shimadzu). A three-point bending test (12-mm span) was carried out using a universal testing machine (EZ Test, Shimadzu). Hardness and elastic modulus of external and cross-sectioned surfaces were obtained by nanoindentation (ENT-1100a, Elionix; n  =  10). Coatings on Woowa and BioForce High Aesthetic Archwire contained 41% silver and 14% gold, respectively. The coating thickness on Woowa was approximately 10 µm, and the coating thickness on BioForce High Aesthetic Archwire was much smaller. The surfaces of both coated wires were rougher than the noncoated wires. Woowa showed a higher mean unloading force than the noncoated Woowa, although BioForce High Aesthetic Archwire showed a lower mean unloading force than Sentalloy. While cross-sectional surfaces of all wires had similar hardness and elastic modulus, values for the external surface of Woowa were smaller than for the other wires. The coating processes for Woowa and BioForce High Aesthetic Archwire influence bending behavior and surface morphology.

  8. Microstructural studies and wear assessments of Ti/TiC surface composite coatings on commercial pure Ti produced by titanium cored wires and TIG process

    Energy Technology Data Exchange (ETDEWEB)

    Monfared, A., E-mail: amirmonfared25@yahoo.com [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Kokabi, A.H.; Asgari, S. [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Tungsten Inert Gas (TIG) process and titanium cored wires filled with micro size TiC particles were employed to produce surface composite coatings on commercial pure Ti substrate for wear resistance improvement. Wire drawing process was utilized to produce several cored wires from titanium strips and titanium carbide powders. Subsequently, these cored wires were melted and coated on commercial pure Ti using TIG process. This procedure was repeated at different current intensities and welding travel speeds. Composite coating tracks were found to be affected by TIG heat input. The microstructural studies using optical and scanning electron microscopy supported by X-ray diffraction showed that the surface composite coatings consisted of {alpha} Prime -Ti, spherical and dendritic TiC particles. Also, greater volume fractions of TiC particles in the coatings were found at lower heat input. A maximum microhardness value of about 1100 HV was measured which is more than 7 times higher than the substrate material. Pin-on-disk wear tests exhibited a better performance of the surface composite coatings than the untreated material which was attributed to the presence of TiC particles in the microstructure. -- Highlights: Black-Right-Pointing-Pointer Ti/TiC composite coatings were produced on the CP-Ti. Black-Right-Pointing-Pointer Titanium cored wire and TIG process were employed for production of the coatings. Black-Right-Pointing-Pointer Decreasing heat input, increased the volume fraction of TiC in the coatings. Black-Right-Pointing-Pointer The maximum microhardness obtained in the lowest heat input. Black-Right-Pointing-Pointer The wear resistance of the coatings improved due to the formation of TiC particles.

  9. Biological Activity of Mesoporous Dendrimer-Coated Titanium Dioxide: Insight on the Role of the Surface-Interface Composition and the Framework Crystallinity.

    Science.gov (United States)

    Milowska, Katarzyna; Rybczyńska, Aneta; Mosiolek, Joanna; Durdyn, Joanna; Szewczyk, Eligia M; Katir, Nadia; Brahmi, Younes; Majoral, Jean-Pierre; Bousmina, Mosto; Bryszewska, Maria; El Kadib, Abdelkrim

    2015-09-16

    Hitherto, the field of nanomedicine has been overwhelmingly dominated by the use of mesoporous organosilicas compared to their metal oxide congeners. Despite their remarkable reactivity, titanium oxide-based materials have been seldom evaluated and little knowledge has been gained with respect to their "structure-biological activity" relationship. Herein, a fruitful association of phosphorus dendrimers (both "ammonium-terminated" and "phosphonate-terminated") and titanium dioxide has been performed by means of the sol-gel process, resulting in mesoporous dendrimer-coated nanosized crystalline titanium dioxide. A similar organo-coating has been reproduced using single branch-mimicking dendrimers that allow isolation of an amorphous titanium dioxide. The impact of these materials on red blood cells was evaluated by studying cell hemolysis. Next, their cytotoxicity toward B14 Chinese fibroblasts and their antimicrobial activity were also investigated. Based on their variants (cationic versus anionic terminal groups and amorphous versus crystalline titanium dioxide phase), better understanding of the role of the surface-interface composition and the nature of the framework has been gained. No noticeable discrimination was observed for amorphous and crystalline material. In contrast, hemolysis and cytotoxicity were found to be sensitive to the nature of the interface composition, with the ammonium-terminated dendrimer-coated titanium dioxide being the most hemolytic and cytotoxic material. This surface-functionalization opens the door for creating a new synergistic machineries mechanism at the cellular level and seems promising for tailoring the biological activity of nanosized organic-inorganic hybrid materials.

  10. Comparative study of titanium carbide and nitride coatings grown by cathodic vacuum arc technique

    International Nuclear Information System (INIS)

    Devia, D.M.; Restrepo-Parra, E.; Arango, P.J.

    2011-01-01

    Titanium nitride (TiN), titanium carbide (TiC) thin films and TiC/TiN bilayers have been deposited on AISI 304 stainless steel substrates by plasma assisted physical vapor deposition technique - reactive pulsed vacuum arc method. The coatings were characterized in terms of crystalline structure, microstructure and chemical nature by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. Tribological behavior was investigated using ball on disc technique. The average coefficient of friction was measured, showing lower values for the TiN/TiC bilayer. Dynamic wear curves were performed for each coating, observing a better wear resistance for TiN/TiC bilayers, compared to TiN and TiC monolayers. On the other hand, the TiCN formation in the TiN/TiC bilayer was observed, being attributed to the interdiffusion between TiN and TiC at the interface. Moreover, the substrate temperature influence was analysing observing a good behavior at T S = 115 °C.

  11. Obtaining hydroxyapatite coatings on titanium by the biomimetic method; Obtencion de recubrimientos de hidroxiapatita sobre titanio mediante el metodo biomimetico

    Energy Technology Data Exchange (ETDEWEB)

    Paz, A.; Martin, Y.; Pazos, L. M.; Parodi, M. B.; Ybarra, G. O.; Gonzalez, J. E.

    2011-07-01

    In this work, a study about the deposition of hydroxyapatite on a titanium substrate employing the biomimetic method is presented. A solution with high content of calcium and phosphorus (SCS) was used. In addition, activation of titanium with hydrogen peroxide and hydrochloric acid and a subsequent heat treatment was performed. The characterization of materials used and the coating obtained was carried out by Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). As a result of the activation processes a hydrated titanium oxide was formed. On the active surface, a coating of hydroxyapatite was obtained after a period of 24 h, which has a thickness of about 2-4 {mu}m. (Author) 21 refs.

  12. Optical properties of titanium di-oxide thin films prepared by dip coating method

    Science.gov (United States)

    Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar

    2018-05-01

    Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.

  13. Coating of hydroxyapatite doped Ag on commercially pure titanium surface

    International Nuclear Information System (INIS)

    Vieira, Jonas de Oliveira; Vercik, Luci Cristina de Oliveira; Rigo, Eliana Cristina da Silva

    2012-01-01

    This paper presents results of bioactive coating on commercially pure titanium surface (CpTi) doped with Ag ions. The coating consists of 3 steps, in step 1- surface chemical treatment of the samples with NaOH, step 2 - immersing the substrate in question in a sodium silicate solution (SS) to the nucleation and step 3 - reimmersion these substrates in synthetic solution that simulates the blood serum for precipitation and growth of apatite layer. After the coating step the AgNO 3 substrates were immersed in solutions with concentrations of 20 ppm and 100 ppm at 37 ° C for 48h. The substrates were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). By the results verified the formation of an apatite layer with aspects of cells, on the surface of CpTi. The increase in Ag concentration causes an increase in Ag amount doped in apatite layer. With the results we concluded that it is possible to obtain an apatite layer on a metal surface as the CpTi doped with Ag ions

  14. Titanium composite conversion coating formation on CRS In the presence of Mo and Ni ions: Electrochemical and microstructure characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Eivaz Mohammadloo, H.; Sarabi, A.A., E-mail: Sarabi@aut.ac.ir

    2016-11-30

    Highlights: • Eco-friendly protective thin films for covering the CRS substrates were presented. • Comprehensive analyses were performed to evaluate the surface characteristics. • Promising approach for the surface modification of CRS substrate by Ti-based conversion coatings. - Abstract: There have been an increasing interest in finding a replacement for the chromating process due to environmental and health concerns. Hence, in this study Chrome-free chemical conversion coatings were deposited on the surface of cold-rolled steel (CRS) on the basis of Titanium (TiCC), Titanium-Nickel (TiNiCC) and titanium-molybdate (TiMoCC) based conversion coating solutions. The surface characterization was performed by field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measuring device. Also, the corrosion behavior was assessed by the means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. FESEM and AFM study show that the TiNiCC is denser and more uniform than that TiCC and TiMoCC since, TiMoCC conversion coating presents network feature, and there were abundant micro-cracks on the surface of the coating. XPS results confirmed the precipitation of Ti and Ni oxide/hydroxide, Mn dioxide/trioxide on the surface of different Ti-based conversion coatings. Electrochemical results revealed that all Ti-based conversion coatings have better anti-corrosion properties than bare CRS. Moreover, TiNiCC treatment inhibited the corrosion of CRS to a significant degree (polarization resistance (R{sub p}) = 5510 Ω cm{sup 2}) in comparison with TiCC (R{sub p} = 2705 Ω cm{sup 2}) and TiMoCC (R{sub p} = 805 Ω cm{sup 2}).

  15. Comparison of titanium mesh implants with PLA-hydroxyapatite coatings for maxillofacial cancer reconstruction

    Science.gov (United States)

    Tverdokhlebov, S. I.; Choinzonov, E. L.; Kolokolova, O. V.; Cherdyntseva, N. V.

    2016-08-01

    Since 2013 physics of TPU and oncologists from the TCRI with participation of the "ConMet" company (Moscow) and the "Sintel" company (Tomsk Special Economic Zone resident) have been working on the theme entitled "Development of the composite implants for reconstructive surgery of a craniofacial areas of the traumatological and oncological patients" supported with the Federal Program "R&D, part 1.3". The goal was to develop the maxillo-facial implants on the basis of the transformable titanium mesh with PLA & hydroxyapatite coating. According to the Contract No. 14.578.21.0031, the team of developers had to start supplying these advanced implants to the industrial partners up to 2017. This research was supported with the preliminary market researches by the ISPMS SB RAS and the TP "MF". The stages of preliminary market researches were: 1) research of the Worldwide CMF market; 2) forecasting the BRIC CMF market up to 2020; 3) the total Russian market (epidemiology) estimation as a sum of official calculations and statistics; 4) looking for the best foreign analogue prices, comparing their and our implant properties; 5) search for the best Russian analogues; 6) the investigation of the world patent database Espacenet for the last years, and finding the owners and applicants of patents of CMF osteosynthesis plates on the basis of titanium coated with PLA & hydroxyapatite; 7) comparison of the domestic implants, and making conclusions. Several variants of the meshes have got the equal quality with the best foreign and Russian implants. The closest analogues were titanium, polyethylene, PEEK composite meshes suited to the patient shape by the Synthes company in 2014, and the only hybrid titanium "Grey" implant with layers of gelatin, dextran, collagen, HAP & BMP-2 was found. This implant was produced by Russian institution, and it was mentioned in the report on clinical trials by L.A. Pavlova et al., 2014 [1]. There are no manufacturers of the coated implants in Russia

  16. Hydroxyapatite coating affects the Wnt signaling pathway during peri-implant healing in vivo.

    Science.gov (United States)

    Thorfve, A; Lindahl, C; Xia, W; Igawa, K; Lindahl, A; Thomsen, P; Palmquist, A; Tengvall, P

    2014-03-01

    Owing to its bio- and osteoconductivity, hydroxyapatite (HA) is a widely used implant material, but its osteogenic properties are only partly evaluated in vitro and in vivo. The present study focused on bone healing adjacent to HA-coated titanium (Ti) implants, with or without incorporated lithium ions (Li(+)). Special attention was given to the Wnt signaling pathway. The implants were inserted into rat tibia for 7 or 28 days and analyzed ex vivo, mainly by histomorphometry and quantitative real-time polymerase chain reaction (qPCR). HA-coated implants showed, irrespective of Li(+) content, bone-implant contact (BIC) and removal torque values significantly higher than those of reference Ti. Further, the expression of OCN, CTSK, COL1A1, LRP5/6 and WISP1 was significantly higher in implant-adherent cells of HA-coated implants, with or without Li(+). Significantly higher β-catenin expression and significantly lower COL2A1 expression were observed in peri-implant bone cells from HA with 14 ng cm(-2) released Li(+). Interestingly, Ti implants showed a significantly larger bone area (BA) in the threads than HA with 39 ng cm(-2) released Li(+), but had a lower BIC than any HA-coated implant. This study shows that HA, with or without Li(+), is a strong activator of the Wnt signaling pathway, and may to some degree explain its high bone induction capacity. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Impedance study on the corrosion of PVD and CVD titanium nitride coatings

    International Nuclear Information System (INIS)

    Elsener, B.; Rota, A.; Boehni, H.

    1989-01-01

    Titanium nitride (TiN) coatings, produced by physical (PVD) or chemical (CVD) vapor deposition techniques are used routinely to improve the wear and corrosion resistance of a surface. The main problem in using TiN as a protective coating in aggressive environements are pores and pinholes in the coating where the substrate is exposed to the electrolyte. In this work, the electrochemical and corrosion behaviour of TiN films on quartz glass, carbon steel, 304 and 316 stainless steel is studied by polarization curves and electrochemical impedance spectroscopy (EIS) in hydrochloric acid. It is shown that the TiN coating can be used successfully only on substrates that passivate easily. On mild steel rapid corrosion takes place at pores in the coating due to the very noble steady state potential of the TiN coating. The interaction of the metallic substrate with the TiN coating is discussed for the two limiting cases mild steel (active) and 316SS (passive). It is shown that the determination of the coating porosity is possible for the active substrate only. On the passive substrate the occurence of an additional time constant in the high frequency region of the spectrum qualitatively indicates the presence of pores. A quality control of the coatings based on this fact might be possible. (author) 15 refs., 6 figs., 2 tabs

  18. Antimicrobial effect, frictional resistance, and surface roughness of stainless steel orthodontic brackets coated with nanofilms of silver and titanium oxide: a preliminary study.

    Science.gov (United States)

    Ghasemi, Tania; Arash, Valiollah; Rabiee, Sayed Mahmood; Rajabnia, Ramazan; Pourzare, Amirhosein; Rakhshan, Vahid

    2017-06-01

    Nano-silver and nano-titanium oxide films can be coated over brackets in order to reduce bacterial aggregation and friction. However, their antimicrobial efficacy, surface roughness, and frictional resistance are not assessed before. Fifty-five stainless-steel brackets were divided into 5 groups of 11 brackets each: uncoated brackets, brackets coated with 60 µm silver, 100 µm silver, 60 µm titanium, and 100 µm titanium. Coating was performed using physical vapor deposition method. For friction test, three brackets from each group were randomly selected and tested. For scanning electron microscopy and atomic-force microscopy assessments, one and one brackets were selected from each group. For antibacterial assessment, six brackets were selected from each group. Of them, three were immediately subjected to direct contact with S. mutans. Colonies were counted 3, 6, 24, and 48 h of contact. The other three were stored in water for 3 months. Then were subjected to a similar direct contact test. Results pertaining to both subgroups were combined. Groups were compared statistically. Mean (SD) friction values of the groups 'control, silver-60, silver-100, titanium-60, and titanium-100' were 0.55 ± 0.14, 0.77 ± 0.08, 0.82 ± 0.11, 1.52 ± 0.24, and 1.57 ± 0.41 N, respectively (p = .0004, Kruskal-Wallis). Titanium frictions were significantly greater than control (p  .05, Dunn). In the uncoated group, colony count increased exponentially within 48 h. The coated groups showed significant reductions in colony count (p < .05, two-way-repeated-measures ANOVA). In conclusions, all four explained coatings reduce surface roughness and bacterial growth. Nano-titanium films are not suitable for friction reduction. Nano-silver results were not conclusive and need future larger studies. © 2016 Wiley Periodicals, Inc.

  19. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects.

    Science.gov (United States)

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-12-22

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  20. Improvement in Microstructure Performance of the NiCrBSi Reinforced Coating on TA15 Titanium Alloy

    Science.gov (United States)

    Peng, Li

    2012-10-01

    This work is based on the dry sliding wear of NiCrBSi reinforced coating deposited on TA15 titanium alloy using the laser cladding technique, the parameters of which were such as to provide almost crack-free coatings with minimum dilution and very low porosity. SEM results indicated that a laser clad coating with metallurgical joint to the substrate was formed. Compared with TA15 substrate, an improvement of the micro-hardness and wear resistance was observed for this composite coating. Rare earth oxide Y2O3 was beneficial in producing of the amorphous phases in laser clad coating. With addition of Y2O3, more amorphous alloys were produced, which increased the micro-hardness and wear resistance of the coating.

  1. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    International Nuclear Information System (INIS)

    Anandan, C.; Mohan, L.; Babu, P. Dilli

    2014-01-01

    Highlights: • Titanium alloy β21S was coated with Mo doped DLC. • XRD, XPS and micro Raman show that Mo is present in the form of carbide. • Mo doping facilitates apatite growth on DLC during immersion in Hanks’ solution. • Mo doped DLC sample shows better passivation behavior in Hanks’ solution. - Abstract: Titanium alloy β-21S (Ti–15Mo–3Nb–3Al–0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks’ solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks’ solution

  2. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    Energy Technology Data Exchange (ETDEWEB)

    Anandan, C., E-mail: canandan@nal.res.in; Mohan, L.; Babu, P. Dilli

    2014-03-01

    Highlights: • Titanium alloy β21S was coated with Mo doped DLC. • XRD, XPS and micro Raman show that Mo is present in the form of carbide. • Mo doping facilitates apatite growth on DLC during immersion in Hanks’ solution. • Mo doped DLC sample shows better passivation behavior in Hanks’ solution. - Abstract: Titanium alloy β-21S (Ti–15Mo–3Nb–3Al–0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks’ solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks’ solution.

  3. The effect of Al intermediate layer on thermal resistance of EB-PVD yttria-stabilized zirconia coatings on titanium substrate

    Science.gov (United States)

    Panin, Alexey; Panin, Victor; Kazachenok, Marina; Shugurov, Artur; Sinyakova, Elena; Martynov, Sergey; Rusyaev, Andrey; Kasterov, Artur

    2017-12-01

    The yttria-stabilized zirconia coatings sprayed on titanium substrates by the electron beam physical vapor deposition were subjected to thermal annealing in air at 1000°C for 1, 30 and 60 min. The delamination and fracture of the coatings are studied by the scanning electron microscopy and X-ray diffraction. It is shown that a magnetron sputtered Al interlayer between the coating and the substrate considerably improves the thermal resistance of ceramic coatings.

  4. Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating

    Directory of Open Access Journals (Sweden)

    G Subbiahdoss

    2010-05-01

    Full Text Available Biomaterials-associated-infections (BAI are serious complications in modern medicine. Although non-adhesive coatings, like polymer-brush coatings, have been shown to prevent bacterial adhesion, they do not support cell growth. Bi-functional coatings are supposed to prevent biofilm formation while supporting tissue integration. Here, bacterial and cellular responses to poly(ethylene glycol (PEG brush-coatings on titanium oxide presenting the integrin-active peptide RGD (arginine-glycine-aspartic acid (bioactive “PEG-RGD” were compared to mono-functional PEG brush-coatings (biopassive “PEG” and bare titanium oxide (TiO2 surfaces under flow. Staphylococcus epidermidis ATCC 35983 was deposited on the surfaces under a shear rate of 11 s-1 for 2 h followed by seeding of U2OS osteoblasts. Subsequently, both S. epidermidis and U2OS cells were grown simultaneously on the surfaces for 48 h under low shear (0.14 s-1. After 2 h, staphylococcal adhesion was reduced to 3.6±1.8 × 103 and 6.0±3.9 × 103 cm-2 on PEG and PEG-RGD coatings respectively, compared to 1.3±0.4 × 105 cm-2 for the TiO2 surface. When allowed to grow for 48 h, biofilms formed on all surfaces. However, biofilms detached from the PEG and PEG-RGD coatings when exposed to an elevated shear (5.6 s-1 U2OS cells neither adhered nor spread on PEG brush-coatings, regardless of the presence of biofilm. In contrast, in the presence of biofilm, U2OS cells adhered and spread on PEG-RGD coatings with a significantly higher surface coverage than on bare TiO2. The detachment of biofilm and the high cell surface coverage revealed the potential significance of PEG-RGD coatings in the context of the “race for the surface” between bacteria and mammalian cells.

  5. Preparation and characterization of enamel coating on pure titanium as a hydrogen penetration barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jie, E-mail: taojie@nuaa.edu.cn [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Guo, Xunzhong [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Huang, Zhendong [Graduate School of Human and Environmental Studies, Kyoto University, oshida-Nihonmatsu-Cho, Sakyo-Ku, Kyoto shi 606-8501 (Japan); Liu, Hongbing [Shanghai Aircraft Manufacturing Co,. Ltd, Shanghai 200436 (China); Wang, Tao [College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China)

    2013-06-15

    Highlights: ► The enamel coating was prepared by spin-coating and enameling method. ► The dense enamel coatings were chemically bonded with TA1 substrate. ► The coatings possessed better thermal shock resistance property. ► The coatings had excellent ball-dropping impact properties. ► The enamel coating exhibited a good barrier effect to hydrogen isotope penetration. -- Abstract: The enamel coating with a thickness of 90–110 × 10{sup −6} m was prepared on TA1 substrate by spin-coating and enameling to solve the problems of hydrogen isotope penetration for commercial pure titanium TA1. The microstructure and the interfacial morphology of the samples were characterized respectively by X-ray diffraction, optical and scanning electron microscopy. The profiles of main elements at the interface were analyzed by EDS line-scanning. The experimental results indicated that the dense enamel coatings were chemically bonded with TA1 substrate, and possessed better thermal shock resistance and ball-dropping impact properties. It was concluded from the results of hydrogen charging test with Vickers microhardness measurement and deuterium penetration experiments that the as-prepared dense enamel coating exhibited a good barrier effect to hydrogen isotope penetration.

  6. Characterization of hard nitride and carbide titanium and zirconium coatings on high-speed steel cutting tool inserts

    International Nuclear Information System (INIS)

    Fenske, G.; Kaufherr, N.; Albertson, C.; Mapalo, G.; Nielsen, R.; Kaminsky, M.

    1986-01-01

    Hard nitride and carbide coatings of titanium and zirconium deposited by reactive evaporation and reactive sputtering techniques were characterized by electron microscopy and Auger spectroscopy to determine the effect of coating process on coating composition and microstructure. Analysis of the chemical composition by Auger spectroscopy revealed the coatings were of high purity with slight differences in stoichiometry depending on the coating technique. Both techniques produced coatings with a columnar microstructure. However, the reactive sputtering technique produced coarser (shorter and wider) columnar grains than the reactive evaporation technique. Furthermore, selected area diffraction analysis of reactively sputtered ZrN coatings showed a two-phased zone (hcp Zr and fcc ZrN) near the substrate/coating interface, while TiC coatings deposited by reactive sputtering and evaporation only showed a single-phase region of fcc TiC

  7. Mg substituted apatite coating from alkali conversion of acidic calcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Navarro da Rocha, Daniel, E-mail: dnr.navarro@gmail.com [Military Institute of Engineering-IME, Pça. Gen. Tiburcio, 80, P. Vermelha, Urca, Rio de Janeiro, R.J. (Brazil); Cruz, Leila Rosa de Oliveira [Military Institute of Engineering-IME, Pça. Gen. Tiburcio, 80, P. Vermelha, Urca, Rio de Janeiro, R.J. (Brazil); Campos, José Brant de [Rio de Janeiro State University - UERJ, Rio de Janeiro, R.J. (Brazil); Marçal, Rubens L. Santana Blazutti [Military Institute of Engineering-IME, Pça. Gen. Tiburcio, 80, P. Vermelha, Urca, Rio de Janeiro, R.J. (Brazil); Mijares, Dindo Q.; Coelho, Paulo G. [Department of Biomaterials and Biomimetics, New York University College of Dentistry (NYU), New York, NY (United States); Prado da Silva, Marcelo H. [Military Institute of Engineering-IME, Pça. Gen. Tiburcio, 80, P. Vermelha, Urca, Rio de Janeiro, R.J. (Brazil)

    2017-01-01

    In this work, two solutions were developed: the first, rich in Ca{sup 2+}, PO{sub 4}{sup 3−} ions and the second, rich in Ca{sup 2+}, PO{sub 4}{sup 3−} and Mg{sup 2+}, defined as Mg-modified precursor solution. For each Mg-modified precursor solution, the concentrations of Mg{sup 2+} ions were progressively increased by 5%, 10% and 15%wt. The aims of this research were to investigate the influence of magnesium ions substitution in calcium phosphate coatings on titanium surface and to evaluate these coatings by bioactivity assay in McCoy culture medium. The obtained coatings were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis, and the presence of Mg ions was confirmed by the inductively coupled plasma atomic emission spectroscopy (ICP) analysis. In vitro bioactivity assay in McCoy culture medium showed bioactivity after 14 days in incubation for the HA and 10% Mg-monetite coatings. The high chemical stability of Mg-HA coatings was verified by the bioactivity assays, and no bone-like apatite deposition, characteristic of bioactivity, was observed for Mg-HA coatings, for the time period used in this study. - Highlights: • The presence of Mg ions influenced the final apatite phase present in the produced coatings. • A lower efficiency in heterogeneous deposition and an exposure of Ti substrate in 5% Mg-monetite coatings was soon verified. • McCoy culture medium was effective in predicting the coatings bioactivity.

  8. The relationship between diameter and taper of nickel-titanium rotary instruments on the torsional resistance to fracture

    Directory of Open Access Journals (Sweden)

    Erick Miranda Souza

    Full Text Available Objective: To evaluate the resistance to fracture of rotary Ni-Ti files of various diameters and tapers after torsional stress simulation. Methods: Profile (Dentsply Maillerfer, Ballaigues, Suíça instruments sizes 15 to 40, taper 0.04 and 0.06 were used. Ten instruments of each size and taper were tested, totaling 120 files. The maximum torque (Tmax until fracture was determined in accordance with the ANSI / ADA Protocol Nº 28 . The maximum force was converted into maximum torque using the formula: Tmax = Loadmax x RadiusResults: The diameter (p<0.001 and taper (p<0.001 influenced the maximum torque to fracture. With the increase in diameter and taperthere was a gradual increase in the maximum torque. Using the multiple regression method an equation relating the maximum torque to the diameter (D and the taper (T was found: Tmax = -1.4 + 0.08D + 10.5T. Conclusion: The increase in diameter and taper promoted an increase in resistance to torsion. The variation of the taper from 0.04 to 0.06 in instruments with the same diameter increased resistance to fracture by torsion by around 25%.

  9. In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding

    International Nuclear Information System (INIS)

    Savalani, M.M.; Ng, C.C.; Li, Q.H.; Man, H.C.

    2012-01-01

    Titanium metal matrix composite coatings are considered to be important candidates for high wear resistance applications. In this study, TiC reinforced Ti matrix composite layers were fabricated by laser cladding with 5, 10, 15 and 20 wt% carbon-nanotube. The effects of the carbon-nanotube content on phase composition, microstructure, micro-hardness and dry sliding wear resistance of the coating were studied. Microstructural observation using scanning electron microscopy showed that the coatings consisted of a matrix of alpha-titanium phases and the reinforcement phase of titanium carbide in the form of fine dendrites, indicating that titanium carbide was synthesized by the in situ reaction during laser irradiation. Additionally, measurements on the micro-hardness and dry sliding wear resistance of the coatings indicated that the mechanical properties were affected by the amount of carbon-nanotube in the starting precursor materials and were enhanced by increasing the carbon-nanotube content. Results indicated that the composite layers exhibit high hardness and excellent wear resistance.

  10. In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Savalani, M.M., E-mail: mmfsmm@inet.polyu.edu.hk [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University (Hong Kong); Ng, C.C.; Li, Q.H.; Man, H.C. [Department of Industrial and Systems Engineering, Hong Kong Polytechnic University (Hong Kong)

    2012-01-15

    Titanium metal matrix composite coatings are considered to be important candidates for high wear resistance applications. In this study, TiC reinforced Ti matrix composite layers were fabricated by laser cladding with 5, 10, 15 and 20 wt% carbon-nanotube. The effects of the carbon-nanotube content on phase composition, microstructure, micro-hardness and dry sliding wear resistance of the coating were studied. Microstructural observation using scanning electron microscopy showed that the coatings consisted of a matrix of alpha-titanium phases and the reinforcement phase of titanium carbide in the form of fine dendrites, indicating that titanium carbide was synthesized by the in situ reaction during laser irradiation. Additionally, measurements on the micro-hardness and dry sliding wear resistance of the coatings indicated that the mechanical properties were affected by the amount of carbon-nanotube in the starting precursor materials and were enhanced by increasing the carbon-nanotube content. Results indicated that the composite layers exhibit high hardness and excellent wear resistance.

  11. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study

    International Nuclear Information System (INIS)

    Abrishamchian, Alireza; Hooshmand, Tabassom; Mohammadi, Mohammadreza; Najafi, Farhood

    2013-01-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings. - Highlights: ► Carbon nanotube/hydroxyapatite composite was successfully dip-coated on Ti by sol–gel. ► Well-crystallized HA–MWCNT and homogenous dispersion of nanotubes were obtained. ► Low concentration of CNTs improved the mechanical properties of composite coating. ► Biocompatibility of the prepared sol–gel-derived HA/MWCNT films was ascertained

  12. Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti–6Al–4V by sol–gel method for biomedical applications: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Abrishamchian, Alireza [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hooshmand, Tabassom, E-mail: hoshmand@sina.tums.ac.ir [Department of Dental Biomaterials, School of Dentistry/Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohammadi, Mohammadreza [Department of Materials Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Farhood [Department of Resin and Additives, Institute for Color Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-05-01

    In the present research, the introduction of multi-walled carbon nanotubes (MWCNTs) into the hydroxyapatite (HA) matrix and dip coating of nanocomposite on titanium alloy (Ti–6Al–4V) plate was conducted in order to improve the performance of the HA-coated implant via the sol–gel method. The structural characterization and electron microscopy results confirmed well crystallized HA–MWCNT coating and homogenous dispersion of carbon nanotubes in the ceramic matrix at temperatures as low as 500 °C. The evaluation of the mechanical properties of HA and HA/MWCNT composite coatings with different weight percentages of MWCNTs showed that the addition of low concentrations of MWCNTs (0.5 and 1 wt.%) had improved effect on the mechanical properties of nanocomposite coatings. Moreover, this in vitro study ascertained the biocompatibility of the prepared sol–gel-derived HA/MWCNT composite coatings. - Highlights: ► Carbon nanotube/hydroxyapatite composite was successfully dip-coated on Ti by sol–gel. ► Well-crystallized HA–MWCNT and homogenous dispersion of nanotubes were obtained. ► Low concentration of CNTs improved the mechanical properties of composite coating. ► Biocompatibility of the prepared sol–gel-derived HA/MWCNT films was ascertained.

  13. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate.

    Science.gov (United States)

    Molaei, A; Amadeh, A; Yari, M; Reza Afshar, M

    2016-02-01

    In this study chitosan/halloysite nanotube composite (CS/HNT) coatings were deposited by electrophoretic deposition (EPD) on titanium substrate. Using HNT particles were investigated as new substituents for carbon nanotubes (CNTs) in chitosan matrix coatings. The ability of chitosan as a stabilizing, charging, and blending agent for HNT particles was exploited. Furthermore, the effects of pH, electrophoretic bath, and sonicating duration were studied on the deposition of suspensions containing HNT particles. Microstructure properties of coatings showed uniform distribution of HNT particles in chitosan matrix to form smooth nanocomposite coatings. The zeta potential results revealed that at pH around 3 there is an isoelectric point for HNT and it would have cathodic and anionic states at pH values less and more than 3, respectively. Therefore, CS/HNT composite deposits were produced in the pH range of 2.5 to 3. The apatite inducing ability of chitosan-HNT composite coating assigned that HNT particles were biocompatible because they formed carbonated hydroxyapatite particles on CS/HNT coating in corrected simulated body fluid (C-SBF). Finally, electrochemical corrosion characterizations determined that corrosion resistance in CS/HNT coating has been improved compared to bare titanium substrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine Grained Titanium Substrate: Structure Analysis

    Science.gov (United States)

    Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.

    2018-02-01

    Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  15. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine-Grained Titanium Substrate: Structure Analysis

    Directory of Open Access Journals (Sweden)

    Konstantin A. Prosolov

    2018-02-01

    Full Text Available Nanocrystalline Zn-substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross-section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn-substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8-nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P–O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn-substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  16. Cleaning capacity promoted by motor-driven or manual instrumentation using ProTaper Universal system: Histological analysis

    OpenAIRE

    da Frota, Matheus Franco; Filho, Idomeo Bonetti; Berbert, F?bio Luiz Camargo Villela; Sponchiado, Emilio Carlos; Marques, Andr? Augusto Franco; Garcia, Lucas da Fonseca Roberti

    2013-01-01

    Aim: The aim of this study was to assess the cleaning capacity of the Protaper system using motor-driven or manual instrumentation. Materials and Methods: Ten mandibular molars were randomly separated into 2 groups (n = 5) according to the type of instrumentation performed, as follows: Group 1 - instrumentation with rotary nickel-titanium (Ni-Ti) files using ProTaper Universal System (Dentsply/Maillefer); and, Group 2 - instrumentation with Ni-Ti hand files using ProTaper Universal (Den...

  17. Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants.

    Science.gov (United States)

    Mishra, Sandeep K; Ferreira, J M F; Kannan, S

    2015-05-05

    Bionanocomposite coatings with antimicrobial activity comprising polyvinyl alcohol (PVA)-capped silver nanoparticles embedded in chitosan (CS) matrix were developed by a green soft chemistry synthesis route. Colloidal sols of PVA-capped silver nanoparticles (AgNPs) were synthesized by microwave irradiating an aqueous solution comprising silver nitrate and PVA. The bionanocomposites were prepared by adding an aqueous solution of chitosan to the synthesized PVA-capped AgNPs sols in appropriate ratios. Uniform bionanocomposite coatings with different contents of PVA-capped AgNPs were deposited onto titanium substrates by "spread casting" followed by solvent evaporation. Nanoindentation and antimicrobial activity tests performed on CS and bionanocomposites revealed that the incorporation of PVA-capped AgNPs enhanced the overall functional properties of the coatings, namely their mechanical stability and bactericidal activity against Escherichia coli and Staphylococcus aureus. The coated specimens maintained their antimicrobial activity for 8h due to the slow sustained release of silver ions. The overall benefits for the relevant functional properties of the coatings were shown increase with increasing contents of PVA-capped AgNPs in the bionanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Gentamicin coating of nanotubular anodized titanium implant reduces implant-related osteomyelitis and enhances bone biocompatibility in rabbits

    Directory of Open Access Journals (Sweden)

    Liu D

    2017-07-01

    Full Text Available Denghui Liu,1,* Chongru He,2,* Zhongtang Liu,2 Weidong Xu2 1Department of Orthopedics, the 113 Military Hospital, Ningbo, 2Department of Orthopedics, Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Titanium and titanium alloy are widely used as orthopedic implants for their favorable mechanical properties and satisfactory biocompatibility. The aim of the present study was to investigate the antibacterial effect and bone cell biocompatibility of a novel implant made with nanotubular anodized titanium coated with gentamicin (NTATi-G through in vivo study in ­rabbits. The animals were divided into four groups, each receiving different kinds of implants, that is, NTATi-G, titanium coated with gentamicin (Ti-G, nanotubular anodized titanium uncoated with gentamicin (NTATi and titanium uncoated with gentamicin (Ti. The results showed that NTATi-G implant prevented implant-related osteomyelitis and enhanced bone biocompatibility in vivo. Moreover, the body temperature of rabbits in NTATi-G and Ti-G groups was lower than those in Ti groups, while the weight of rabbits in NTATi-G and Ti-G groups was heavier than those in NTATi and Ti groups, respectively. White blood cell counts in NTATi-G group were lower than NTATi and Ti groups. Features of myelitis were observed by X-ray films in the NTATi and Ti groups, but not in the NTATi-G and Ti-G groups. The radiographic scores, which assessed pathology and histopathology in bone tissues, were significantly lower in the NTATi-G and Ti-G groups than those in the NTATi and Ti groups, respectively (P<0.05. Meanwhile, explants and bone tissue culture demonstrated significantly less bacterial growth in the NTATi-G and Ti-G groups than in the NTATi and Ti groups, respectively (P<0.01. The bone volume in NTATi-G group was greater than Ti-G group, and little bone formation was seen in NTATi and Ti

  19. Histomorphometric Assessment of Implant Coating with A Mixture of Strontium Chloride and Hydroxyapatite at Different Concentration

    Directory of Open Access Journals (Sweden)

    Jani Ghasak H

    2018-01-01

    Full Text Available Background/purpose: Surface properties are one of the major keys of successful implant osseointegration in addition to mechanical strength and excellent biocompatibility of implant material. The purpose of this study is to make histological and histomorphometric analysis of an implant coated with strontium chloride (SrCl2 mixed with hydroxyapatite (HA at different concentrations, in rabbit tibia at 2 and 6 weeks of implantation time. Method: 48 commercially pure titanium screw shaped implants were placed in 24 healthy adult New Zeeland rabbits, each rabbit received 2 implants; one coated with mixture 1 (25% HA and 75% SrCl2 and the other coated with mixture 2 (75% HA and 25% SrCl2. Twelve rabbits were sacrificed at 2 weeks of healing and other twelve after 6 weeks. The new bone area and number of cells (osteoblast and osteoclast were assessed by light microscope. Result: Statistical analysis showed significant differences in new bone formation ratio after 2 weeks of healing and non-significant differences after 6 weeks of healing. Data also suggested that osteoblast was increased, and osteoclast was decreased in mixture 2 (75% HA and 25% SrCl2 more than mixture 1 (25% HA and 75% SrCl2. Conclusion: There was a significantly higher new bone formation ratio of mix 2 (25%Sr-75%HA coated Cp-Ti implants than mix 1 (75% Sr- 25% HA coated Cp-Ti implant at 2 weeks healing period, also there was an increase in new bone formation ratio with time for both coated materials (SrCl2 implants.

  20. Influence of the reuse of the electrolytic solution on the properties of hydroxyapatite coatings produced by plasma electrolytic oxidation of grade 4 titanium

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cesar A.; Rangel, Elidiane Cipriano; Cruz, Nilson Cristino, E-mail: cesar.augustoa@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil)

    2016-07-01

    Full text: Plasma electrolytic oxidation (PEO) is a process able to produce oxide coatings on light metals, such as Al, Ti, V, Mg, Ta and Nb. In this technique, the application of a voltage, in the range of hundreds of volts, between the sample and a cathode immersed in an electrolyte solution produces electrical fields intense enough to breakdown the insulating oxide layer on the sample surface giving rise to micro electric sparks[1]. These micro-arcs can locally melt the substrate alloying it with elements in the electrolyte solution [2]. In this work PEO has been used to produce coatings with high concentration of hydroxyapatite on Grade 4 titanium disks. The treatments were performed in a 1 liter stainless steel tank. The tank wall was used as the cathode and the coatings were produced during 120 s using calcium acetate and sodium glycerophosphate water solutions as electrolyte. The samples were biased with 480 V pulses with frequency and duty cycle of 100 Hz and 60%, respectively. Using profilometry, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction it has been evaluated the influence of the number of reuses of the solution on the coating properties. The coating produced contains around 85% of HA and it has not been observed any significant changes in their properties when the same solution was reused up to 5 times. [1] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Surf. Coat. Technol. 130 (2000) 195 206. [2] C. A. Antonio, N. C. Cruz, et al. Materials Research. 17(6) 2014; 1427-1433. (author)

  1. Study of PVD AlCrN Coating for Reducing Carbide Cutting Tool Deterioration in the Machining of Titanium Alloys.

    Science.gov (United States)

    Cadena, Natalia L; Cue-Sampedro, Rodrigo; Siller, Héctor R; Arizmendi-Morquecho, Ana M; Rivera-Solorio, Carlos I; Di-Nardo, Santiago

    2013-05-24

    The manufacture of medical and aerospace components made of titanium alloys and other difficult-to-cut materials requires the parallel development of high performance cutting tools coated with materials capable of enhanced tribological and resistance properties. In this matter, a thin nanocomposite film made out of AlCrN (aluminum-chromium-nitride) was studied in this research, showing experimental work in the deposition process and its characterization. A heat-treated monolayer coating, competitive with other coatings in the machining of titanium alloys, was analyzed. Different analysis and characterizations were performed on the manufactured coating by scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDXS), and X-ray diffraction (XRD). Furthermore, the mechanical behavior of the coating was evaluated through hardness test and tribology with pin-on-disk to quantify friction coefficient and wear rate. Finally, machinability tests using coated tungsten carbide cutting tools were executed in order to determine its performance through wear resistance, which is a key issue of cutting tools in high-end cutting at elevated temperatures. It was demonstrated that the specimen (with lower friction coefficient than previous research) is more efficient in machinability tests in Ti6Al4V alloys. Furthermore, the heat-treated monolayer coating presented better performance in comparison with a conventional monolayer of AlCrN coating.

  2. Influence of Electrolyte Composition on the Calcium-Phosphorus compound Coating on Titanium Substrate by Micro-arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiu-hong; WANG Cong-zeng; KOU Bin-da; SU Xue-kuan; ZHANG Wen-quan

    2004-01-01

    The compound bioceramic coating containing calcium (Ca) and phosphorus (P) on titanium alloy substrate was prepared by means of micro-arc oxidation (MAO) treatment. The results show that under the different electrolyte the coating with the color of gray or black and surface morphology of cauliflower or honeycomb, where Ca content and P contain can attain 30% and 20% respectively, can be obtained. Meanwhile, the influences of electrolyte temperature, current density and discharge time on morphology and thickness of coating are also discussed here.

  3. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2015-12-01

    Full Text Available For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL and poly-(3-hydroxybutyrate/poly-(4-hydroxybutyrate (P(3HB/P(4HB. As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB. Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI with Green fluorescent protein (GFP-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  4. Development of carbon nanotubes reinforced hydroxyapatite composite coatings on titanium by electrodeposition method

    International Nuclear Information System (INIS)

    Gopi, D.; Shinyjoy, E.; Sekar, M.; Surendiran, M.; Kavitha, L.; Sampath Kumar, T.S.

    2013-01-01

    Highlights: •Successful development of CNTs reinforced HAP coating on Ti by electrodeposition. •CNTs as a reinforcing material imparts strength and toughness to HAP. •Incorporating CNTs improves crystallinity, morphology, biological properties of HAP. •CNTs–HAP coating on Ti is bioresistive, better candidate for implant applications. -- Abstract: Carbon nanotubes (CNTs) are outstanding reinforcement material for imparting strength and toughness to brittle hydroxyapatite (HAP). This work reports the electrodeposition of CNTs reinforced HAP on titanium substrate at −1.4 V vs. SCE during 30 min with the functionalised CNTs concentration ranging from 0 to 2 wt.%. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX), high resolution transmission electron microscopy (HRTEM), mechanical and biological studies were used to characterise the coatings. Also, the corrosion resistance of the coatings was evaluated by electrochemical techniques in simulated body fluid (SBF) solution

  5. Mechanical failure of hydroxyapatite-coated titanium and cobalt-chromium-molybdenum alloy implants. An animal study

    DEFF Research Database (Denmark)

    Nimb, L; Gotfredsen, K; Steen Jensen, J

    1993-01-01

    Defects in the hydroxyapatite (HA) ceramic coatings applied to metallic implant systems may occur at the time of insertion or at the time of in vivo loading. However, defects may also occur with time because of interaction with physiological fluids. A canine study was performed to make a histolog......Defects in the hydroxyapatite (HA) ceramic coatings applied to metallic implant systems may occur at the time of insertion or at the time of in vivo loading. However, defects may also occur with time because of interaction with physiological fluids. A canine study was performed to make...

  6. Effect of Coating and Packaging Materials on Photocatalytic and Antimicrobial Activities of Titanium Dioxide Nanoparticles

    Science.gov (United States)

    Food safety or foodborne pathogen contamination is a major concern in food industry. Titanium dioxide (TiO2) is a photocatalyst and can inactivate a wide spectrum of microorganisms under UV illumination. There is significant interest in the development of TiO2-coated or –incorporated food packaging ...

  7. In vitro characterization of two different atmospheric plasma jet chemical functionalizations of titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mussano, F., E-mail: federico.mussano@unito.it [CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126, Turin (Italy); Genova, T. [CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126, Turin (Italy); Department of Life Sciences and Systems Biology, UNITO, via Accademia Albertina 13, 10123, Turin (Italy); Verga Falzacappa, E. [Department of Molecular Science and Nanosystems, UNIVE, Via Torino 155, 30170, Venezia (Italy); Nadir srl, Via Torino 155, 30170 Venezia (Italy); Scopece, P. [Nadir srl, Via Torino 155, 30170 Venezia (Italy); Munaron, L. [Department of Life Sciences and Systems Biology, UNITO, via Accademia Albertina 13, 10123, Turin (Italy); Centre for Nanostructured Interfaces and Surfaces (NIS) (Italy); Rivolo, P.; Mandracci, P. [Politecnico di Torino, Department of Applied Science and Technology, Materials and Microsoystems Laboratory (ChiLab), Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Benedetti, A. [Department of Molecular Science and Nanosystems, UNIVE, Via Torino 155, 30170, Venezia (Italy); Carossa, S. [CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126, Turin (Italy); Patelli, A. [Department of Physics and Astronomy, UNIPD, via Marzolo 8, 35122 Padova (Italy)

    2017-07-01

    Highlights: • NH{sub 2}-Ti and COOH/R-Ti obtained via atmospheric plasma jet RF-APPJ portable equipment. • Higher quantity of adsorbed proteins and improved cell adhesion on treated surfaces. • More tapered and elongated cells on NH{sub 2}-Ti compared to COOH/R-Ti. • Higher osteocalcin expression on NH{sub 2}-Ti. - Abstract: Plasma surface activation and plasma polymers deposition are promising technologies capable to modulate biologically relevant surface features of biomaterials. The purpose of this study was to evaluate the biological effects of two different surface modifications, i.e. amine (NH{sub 2}-Ti) and carboxylic/esteric (COOH/R-Ti) functionalities obtained from 3-aminopropyltriethoxysilane (3-APTES) and methylmethacrylate (MMA) precursors, respectively, through an atmospheric plasma jet RF-APPJ portable equipment. The coatings were characterized by Scanning Electron Microscopy, FT-IR spectroscopy, XPS and surface energy calculations. Stability in water and after UV sterilization were also verified. The pre-osteoblastic murine cell line MC3T3-E1 was used to perform the in-vitro tests. The treated samples showed a higher quantity of adsorbed proteins and improved osteoblast cells adhesion on the surfaces compared to the pristine titanium, in particular the COOH/R-Ti led to a nearly two-fold improvement. Cell proliferation on coated samples was initially (at 24 h) lower than on titanium control, while, at 48 h, COOH/R-Ti reached the proliferation rate of pristine titanium. Cells grown on NH{sub 2}-Ti were more tapered and elongated in shape with lower areas than on COOH/R-Ti enriched surfaces. Finally, NH{sub 2}-Ti significantly enhanced osteocalcin production, starting from 14 days, while COOH/R-Ti had this effect only from 21 days. Notably, NH{sub 2}-Ti was more efficient than COOH/R-Ti at 21 days. The amine functionality elicited the most relevant osteogenic effect in terms of osteocalcin expression, thus establishing an interesting correlation

  8. A high-throughput electrochemical impedance spectroscopy evaluation of bioresponsibility of the titanium microelectrode array integrated with hydroxyapatite and silver

    International Nuclear Information System (INIS)

    Zhang Fan; Lin Longxiang; Wang Guowei; Hu Ren; Lin Changjian; Chen Yong

    2012-01-01

    Highlights: ► The EIS of living MG63 cells on the Ti MEA chip with Ag, HA, and Ag–HA was monitored. ► The R cell can be related to the bioresponsibility of the coatings. ► The bioactivity order was evaluated as follows: Ti–Ag–HA > Ti–HA ≈ Ti–Ag > Ti. - Abstract: This paper reports a transparent Ti microelectrode array (MEA) system for a high-throughput evaluation of bioresponsibility using electrochemical impedance spectroscopy (EIS). The MEA chip integrated with hydroxyapatite (HA) and Ag coatings was selectively prepared by electrochemical deposition based on a novel procedure of multichannel current control. The EIS measurement of living MG63 osteosarcoma cells in the integrated MEA chip was conducted, and the result was analyzed using an equivalent circuit corresponding to a titanium oxide film, protein adsorption layer, cell adhesion layer, and medium. It is shown that the bioresponsibility of Ti–Ag–HA on the MEA chip can be improved, compared with the Ti, Ti–HA, and Ti–Ag coatings. The system was further used for real-time EIS monitoring during continuous cell culture for a long period (12 days). The effect of the long-term cell proliferation on the EIS behavior was discussed. This integrated system is valuable to significantly simplify the operation procedures and quickly evaluate the bioresponsibility of biomaterials.

  9. Investigation of silver impact on hydroxyapatite/lignin coatings electrodeposited on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Eraković, Sanja; Janković, Ana [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Matić, Ivana Z.; Juranić, Zorica D. [Institute of Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade (Serbia); Vukašinović-Sekulić, Maja [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Stevanović, Tatjana [Département des sciences du bois et de la forêt, Université Laval, 2425 rue de la Terrasse, Québec (Canada); Mišković-Stanković, Vesna, E-mail: vesna@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia)

    2013-11-01

    Silver doped hydroxyapatite (HAP) [Ca{sub 9.95}Ag{sub 0.05}(PO{sub 4}){sub 6}(OH){sub 2}] composite coatings with natural polymer organosolv lignin (Lig) were produced by electrophoretic deposition (EPD) on titanium. Coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The corrosion stability of electrodeposited coatings was evaluated in vitro in Kokubo's simulated body fluid (SBF) at 37 °C using electrochemical impedance spectroscopy (EIS). Antimicrobial properties are directly proportional to the rate of silver ions release from the coatings, determined from inductively coupled plasma spectrometry (ICP-AES). The obtained results are in good agreement with viability of pathogenic bacteria strain Staphylococcus aureus TL in suspension, which had completely disappeared after 24 h. Composite Ag/HAP/Lig coatings were confirmed as non-toxic for healthy immunocompetent peripheral blood mononuclear cells (PBMC). - Highlights: • Biocompatibility and antimicrobial properties of Ag/HAP/Lig were investigated. • Ag ions embedded into HAP lattice are released from material upon immersion in SBF. • Strong antibactericidal effect against Staphylococcus aureus. • Non-toxic properties of nanocomposite confirmed against PBMC cells. • Promising result for the future developments of bioactive implant materials.

  10. Osseoconductivity of a Specific Streptavidin-Biotin-Fibronectin Surface Coating of Biotinylated Titanium Implants - A Rabbit Animal Study.

    Science.gov (United States)

    Kämmerer, Peer W; Lehnert, Michael; Al-Nawas, Bilal; Kumar, Vinay V; Hagmann, Sebastien; Alshihri, Abdulmonem; Frerich, Bernhard; Veith, Michael

    2015-10-01

    Biofunctionalized implant surfaces may accelerate bony integration and increase long-term stability. The aim of the study was to evaluate the osseous reaction toward biomimetic titanium implants surfaces coated with quasicovalent immobilized fibronectin in an in vivo animal model. A total of 84 implants (uncoated [control 1, n = 36], streptavidin-biotin coated [test 1, n = 24], streptavidin-biotin-fibronectin coated [test 2, n = 24]) were inserted 1 mm supracortically in the proximal tibia of 12 rabbits. The samples were examined after 3 and 6 weeks. Total bone-implant contact (tBIC; %), bone-implant contact in the cortical (cBIC; %) and in the spongious bone (sBIC; %) as well as the percentage of linear bone fill (PLF; %) were evaluated. After 3 weeks, streptavidin-biotin-fibronectin implants had a significant higher sBIC (p = .043) and PLF (p = .007) compared with the uncoated samples. After 6 weeks, this difference was significant for tBIC (p = .016) and cBIC (p biotin-coated implants showed less bone growth at both time points of all examined parameters when compared with their counterparts (all p biotin-fibronectin system on smooth surface titanium shows a beneficial faster osseous healing in vivo. Besides, an antifouling effect of the streptavidin-biotin coating was proven. © 2015 Wiley Periodicals, Inc.

  11. Friction and wear of stainless steel, titanium and aluminium with various surface treatments, ion implantation and overlay hard coatings

    International Nuclear Information System (INIS)

    Bunshah, R.F.

    1979-01-01

    This paper deals with the evaluation of the wear properties of 304 stainless steel, commercial grade titanium and commercial grade aluminium without and with different surface treatments, i.e., ion implantation of boron and nitrogen, and overlay coating of superhard materials, titanium carbide and nitride by the Biased Activated Reactive Evaporation (BARE) process. Wear properties were evaluated in adhesive, erosive and abrasive modes of wear. In the case of adhesive wear, ion implantation resulted in an improved wear behaviour in lubricated conditions but had no beneficial effect in dry wear conditions. Overlay coatings on the other hand resulted in improved wear behaviour for both the dry and lubricating conditions. In the case of erosive wear with SiC particles at high velocities, overlay coatings showed higher erosion rates (typical of brittle materials in normal impingement) whereas ion implanted materials behaved similarly as untreated materials; i.e., a lower wear rate than the specimens with overlay coatings. In the case of abrasive wear, it was again observed that the wear rates of overlay coatings is far lower than the wear rates of untreated or ion implanted materials. (author)

  12. A novel simple one-step air jet spinning approach for deposition of poly(vinyl acetate)/hydroxyapatite composite nanofibers on Ti implants

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla, E-mail: abda_55@jbnu.ac.kr [Dept. of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley of University, Qena 83523 (Egypt); Dept. of Computer Science, Faculty of Engineering, Universidad de Cuenca, Cuenca 01.01.168 (Ecuador); Dept. of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Hamdy, Abdel Salam [Dept. of Manufacturing Engineering, College of Engineering and Computer Science, University of Texas Pan-American, 1201 West University Dr., Edinburg, TX 78541-2999 (United States); Khalil, Khalil Abdelrazek [Dept. of Mechanical Engineering, College of Engineering King Saud University, P.O. Box 800, Riyadh 11421 (Saudi Arabia); Department of Mechanical Engineering, Faculty of Energy Engineering, Aswan University, Aswan (Egypt); Lim, Ju Hyun, E-mail: jhlim@gnah.co.kr [Dept. of Urology, Gangneung Asan Hospital, University of Ulsan, College of Medicine, Gangneung (Korea, Republic of)

    2015-04-01

    A biocompatible coating consists of a poly(vinyl acetate)/hydroxyapatite (PVAc/HA) composite nanofiber mat was applied to NaOH-treated titanium metal by means of a novel, facile and efficient air jet spinning (AJS) approach. Results showed that HA nanoparticles (NPs) strongly embedded onto the AJS single fiber surface resulting in a strong chemical interfacial bonding between the two phases due to the difference in kinetic energies. It was proven that AJS membrane coatings can provide significant improvement in the corrosion resistance of titanium substrate. Interestingly, the biocompatibility using MC3T3-E1 osteoblast to the PVAc/HA fiber composite layer coated on Ti was significantly higher than pure titanium-substrates. - Highlights: • A novel PVAc/HA composite nanofiber mat layer has been fabricated. • PVAc/HA nanocomposites coated on Ti substrates by means of air jet spinning • AJS method enabled the formation of well-adherent and uniform coatings. • Coatings of PVAc/HA on Ti surfaces definitely favored cell proliferation.

  13. Effect of humic acid (HA) on sulfonamide sorption by biochars

    International Nuclear Information System (INIS)

    Lian, Fei; Sun, Binbin; Chen, Xi; Zhu, Lingyan; Liu, Zhongqi; Xing, Baoshan

    2015-01-01

    Effect of quantity and fractionation of loaded humic acid (HA) on biochar sorption for sulfonamides was investigated. The HA was applied in two different modes, i.e. pre-coating and co-introduction with sorbate. In pre-coating mode, the polar fractions of HA tended to interact with low-temperature biochars via H-bonding, while the hydrophobic fractions were likely to be adsorbed by high-temperature biochars through hydrophobic and π-π interactions, leading to different composition and structure of the HA adlayers. The influences of HA fractionation on biochar sorption for sulfonamides varied significantly, depending on the nature of interaction between HA fraction and sorbate. Meanwhile, co-introduction of HA with sulfonamides revealed that the effect of HA on sulfonamide sorption was also dependent on HA concentration. These findings suggest that the amount and fractionation of adsorbed HA are tailored by the surface properties of underlying biochars, which differently affect the sorption for organic contaminants. - Highlights: • Effect of quantity and fractionation of coated HA on sorption of sulfonamides by BC was studied. • Fractionation of coated HA is tailored by surface properties of BC. • Roles of HA in BC sorption depend on interaction between HA adlayer and sorbate. • Roles of HA in sulfonamide sorption by BC also depend on HA aqueous concentration. - The quantity and fractionation of adsorbed HA play a major role in sulfonamide sorption by biochars

  14. Development of an environmentally friendly protective coating for the depleted uranium-0.75 wt% titanium alloy

    International Nuclear Information System (INIS)

    Roeper, Donald F.; Chidambaram, Devicharan; Clayton, Clive R.; Halada, Gary P.; Derek Demaree, J.

    2006-01-01

    Molybdenum oxide-based conversion coatings have been formed on the surface of the depleted uranium-0.75 wt% titanium alloy using either concentrated nitric acid or fluorides for surface activation prior to coating formation. The acid-activated surface forms a coating that offers corrosion protection after a period of aging, when uranium species have migrated to the surface. X-ray photoelectron spectroscopy (XPS) revealed that the protective coating is primarily a polymolybdate bound to a uranyl ion. Rutherford backscattering spectroscopy (RBS) on the acid-activated coatings also shows uranium dioxide migrating to the surface. The fluoride-activated surface does not form a protective coating and there are no uranium species on the surface as indicated by XPS. The coating on the fluoride-activated samples has been found to contain a mixture of molybdenum oxides of which the main component is molybdenum trioxide and a minor component of an Mo(V) oxide

  15. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    International Nuclear Information System (INIS)

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther; Eblenkamp, Markus; Wintermantel, Erich

    2010-01-01

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  16. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther [Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Eblenkamp, Markus; Wintermantel, Erich, E-mail: Guenther.Eissner@med.uni-muenchen.d [Chair of Medical Engineering, Technische Universitaet Muenchen, Boltzmannstrasse 15, 85748 Garching (Germany)

    2010-12-15

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  17. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    Science.gov (United States)

    Zhong, Xue; Song, Yunjia; Yang, Peng; Wang, Yao; Jiang, Shaoyun; Zhang, Xu; Li, Changyi

    2016-01-01

    The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti) surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL), on which multilayer coatings can incorporate silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates. The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration. The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections in the

  18. Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance

    Science.gov (United States)

    Belka, R.; Kowalski, S.; Żórawski, W.

    2017-08-01

    Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.

  19. Self-cleaning glass coating containing titanium oxide and silicon; Revestimentos autolimpantes para vidros contendo oxido de titanio e silicio

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, A.O. de; Alves, A.K.; Berutti, F.A.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (LACER/UFRGS), Porto Alegre, RS (Brazil). Lab. de Materiais Ceramicos

    2009-07-01

    Using the electro spinning technique nano fibers of titanium oxide doped with silicon were synthesized. As precursor materials, titanium propoxide, silicon tetra propoxide and a solution of polyvinylpyrrolidone were used. The non-tissue material obtained was characterized by X-ray diffraction to determine the phase and crystallite size, BET method to determine the surface and SEM to analyze the microstructure of the fibers. After ultrasound dispersion of this material in ethanol, the glass coatings were made by dip-coating methodology. The influence of the removal velocity, the solution composition and the glass surface preparation were evaluated. The film was characterized by the contact angle of a water droplet in its surface. (author)

  20. Tantalum, Niobium and Titanium Coatings for Biocompatibility Improvement of Dental Implants

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2007-01-01

    Full Text Available Introduction: Metals have a wide range of applications in implant and prosthetic materials in dentistry.Corrosion resistance and biocompatibility of metals should be improved in order to utilizethem as biomaterials. The aim of this work was to prepare metallic coatings on 316L stainless steel dental implants, to evaluate the corrosion characteristics of the uncoated and metallic coated dentalimplants as an indication of biocompatibility and, to compare the effect of the type of the coatings on biocompatibility.Materials and Methods: In this in vitro evaluation, three types of metallic coatings including tantalum, niobium and titanium coatings were compared using a physical vapor deposition process on 316L stainless steel dental implants. Structural characterization techniques including X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis were utilized to investigatethe microstructure and morphology of the coatings. Electrochemical potentiodynamic tests were performed in two types of physiological solutions at 37±1°C in order to determine and compare the corrosioncurrent density and corrosion potential characteristics. The mean values were statistically compared by ANOVA at a 95% level of confidence.Results: the findings showed that all of the three types of metallic coatings had a positive effect on improvement of the corrosion behavior. The coatings could increase the corrosion resistance of 316L stainless steel and this trend was independent of the type of physiological environment.Conclusion: The biocompatible metallic coatings could decrease the corrosion current density and is a distinct advantage for prevention of ion release. Decreasing ion release can improve the biocompatibility of the dental implant, and consequently can prevent tissue damage, tissue inflammation and irritation, and can also lead to obtaining a desirable histopathological response.

  1. In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying.

    Science.gov (United States)

    Gokcekaya, Ozkan; Webster, Thomas J; Ueda, Kyosuke; Narushima, Takayuki; Ergun, Celaletdin

    2017-08-01

    Bacterial infection of implanted materials is a significant complication that might require additional surgical operations for implant retrieval. As an antibacterial biomaterial, Ag-containing hydroxyapatite (HA) may be a solution to reduce the incidences of implant associated infections. In this study, pure, 0.2mol% and 0.3mol% Ag incorporated HA powders were synthesized via a precipitation method. Colloidal precursor dispersions prepared from these powders were used to deposit porous coatings onto titanium and stainless steel substrates via electrostatic spraying. The porous coating layers obtained with various deposition times and heat treatment conditions were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Scratch tests were conducted to assess the adhesion strength of the coating. Antibacterial activity of Ag-incorporated HA was tested towards Escherichia coli (E. coli) at various incubation times. Osteoblast adhesion on Ag-incorporated HA was evaluated to assess biocompatibility. Improvement in adhesion strength of the coating layer was observed after the heat treatment process due to mutual ionic diffusion at the interface. The Ag-incorporated HA killed all viable E. coli after 24h of incubation, whereas no antibacterial activity was detected with pure HA. In addition, in vitro cell culture tests demonstrated osteoblast adhesion similar to pure HA, which indicated good cytocompatibility. In summary, results of this study provided significant promise for the future study of Ag-incorporated HA for numerous medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. In situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase microextraction fiber

    International Nuclear Information System (INIS)

    Cao Dandan; Lue Jianxia; Liu Jingfu; Jiang Guibin

    2008-01-01

    Nanostructured titania-based solid-phase microextraction (SPME) fibers were fabricated through the in situ oxidation of titanium wires with H 2 O 2 (30%, w/w) at 80 deg. C for 24 h. The obtained SPME fibers possess a ∼1.2 μm thick nanostructured coating consisting of ∼100 nm titania walls and 100-200 nm pores. The use of these fibers for headspace SPME coupled with gas chromatography with electron capture detection (GC-ECD) resulted in improved analysis of dichlorodiphenyltrichloroethane (DDT) and its degradation products. The presented method to detect DDT and its degradation products has high sensitivity (0.20-0.98 ng L -1 ), high precision (relative standard deviation R.S.D. = 9.4-16%, n = 5), a wide linear range (5-5000 ng L -1 ), and good linearity (coefficient of estimation R 2 = 0.991-0.998). As the nanostructured titania was in situ formed on the surface of a titanium wire, the coating was uniformly and strongly adhered on the titanium wire. Because of the inherent chemical stability of the titania coating and the mechanical durability of the titanium wire substrate, this new SPME fiber exhibited long life span (over 150 times)

  3. Titanium oxide fever

    International Nuclear Information System (INIS)

    De Jonge, D.; Visser, J.

    2012-01-01

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [nl

  4. Clinical and histomorphometrical study on titanium dioxide-coated external fixation pins.

    Science.gov (United States)

    Koseki, Hironobu; Asahara, Tomohiko; Shida, Takayuki; Yoda, Itaru; Horiuchi, Hidehiko; Baba, Koumei; Osaki, Makoto

    2013-01-01

    Pin site infection is the most common and significant complication of external fixation. In this work, the efficacy of pins coated with titanium dioxide (TiO(2)) for inhibition of infection was compared with that of stainless steel control pins in an in vivo study. Pins contaminated with an identifiable Staphylococcus aureus strain were inserted into femoral bone in a rat model and exposed to ultraviolet A light for 30 minutes. On day 14, the animals were sacrificed and the bone and soft tissue around the pin were retrieved. The clinical findings and histological findings were evaluated in 60 samples. Clinical signs of infection were present in 76.7% of untreated pins, but in only 36.7% of TiO(2)-coated pins. The histological bone infection score and planimetric rate of occupation for bacterial colonies and neutrophils in the TiO(2)-coated pin group were lower than those in the control group. The bone-implant contact ratio of the TiO(2)-coated pin group was significantly higher (71.4%) than in the control pin group (58.2%). The TiO(2) was successful in decreasing infection both clinically and histomorphometrically. The photocatalytic bactericidal effect of TiO(2) is thought to be useful for inhibiting pin site infection after external fixation.

  5. Corrosion behaviour in saline environments of single-layer titanium and aluminium coatings, and of Ti/Al alternated multi-layers elaborated by a multi-beam PVD technique

    International Nuclear Information System (INIS)

    Merati, Abdenacer

    1994-01-01

    This research thesis reports the characterization of anti-corrosion titanium and aluminium coatings deposited on a 35CD4 steel under the form of mono-metallic layers or alternated Ti/Al multi-layers, and obtained by a multibeam PVD technique. The influence of different parameters is studied: single-layer thickness (5, 15 or 30 micro-metres), multi-layer distribution (5 to 6) and substrate (smooth or threaded). Layer nature and microstructure are studied by optical microscopy and scanning electron microscopy (SEM), as well as corrosion toughness in aqueous saline environments. Coated threaded samples have been studied after tightening tests. It appears that titanium layers are denser and more uniform than aluminium layers, and that multi-layer coatings provide a better protection than single-layer coatings. The best behaviour is obtained when titanium is in contact with steel, and aluminium is the outer layer in contact with the corroding environment [fr

  6. The effects of titanium dioxide coatings on light-derived heating and transdermal heat transfer in bovine skin

    Science.gov (United States)

    Bartle, S. J.; Thomson, D. U.; Gehring, R.; van der Merwe, D.

    2017-11-01

    The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas, and three from the white areas. Samples were randomized and assigned to four coating treatments: (1) white hide with no coating (White), (2) black hide with no coating (Black), (3) black hide with 50% coating (Mid), and (4) black hide with 100% coating (High). Coatings were applied to the black hide samples using a hand sprayer. Lux measurements were taken using a modified lux meter at three light intensities generated with a broad spectrum, cold halogen light source. Reflectance over a wavelength range of 380 to 900 nm was measured using a spectroradiometer. The transdermal transfer of heat derived from absorbed light was measured by applying a broad spectrum, cold halogen light source to the stratum corneum (coated) side of the sample and recording the temperature of the dermis-side using a thermal camera for 10 min at 30-s intervals. At the high light level, the White, Black, Mid, and High coating treatments had different ( P 400 to 750 nm), Black hides reflected 10 to 15% of the light energy, hides with the Mid coating treatment reflected 35 to 40%, and hides with the High coating treatment reflected 70 to 80% of the light energy. The natural White hide samples reflected 60 to 80% of the light energy. The average maximum temperatures at the dermis-side of the hides due to transferred heat were 34.5, 70.1, 55.0, and 31.7, for the White, Black, Mid, and High treatments, respectively. Reflective coatings containing titanium dioxide on cattle hides were effective in reducing light energy absorption and reduced light-derived heat transfer from the skin surface to deeper skin layers.

  7. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    Science.gov (United States)

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2018-06-08

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  8. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone.

    Science.gov (United States)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito; Kjellin, Per; Currie, Fredrik; Wennerberg, Ann

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone-implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential.

  9. Generation of an electromotive force by hydrogen-to-water oxidation with Pt-coated oxidized titanium foils

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, Klaus; El Achhab, Mhamed [Department of Materials Science, Institute for Experimental Condensed Matter Physics, Heinrich-Heine University, 40225 Duesseldorf, Universitaetsstrasse 1 (Germany)

    2011-12-15

    We show that chemically induced current densities up to 20 mA cm{sup -2} and an electromotive force (EMF) up to 465 mV are generated during the hydrogen-to-water-oxidation over Pt/TiO{sub 2}/Ti devices. We prepare the samples by plasma electrolytic oxidation (PEO) of titanium foils and deposition of Pt contact paste. This process yields porous structures and, depending on the anodization voltage, Schottky diode-type current-voltage curves of various ideality parameters. Our experiments demonstrate that Pt coated anodized titanium can also be utilized as hydrogen sensor; the system offers a number of advantages such as a wide temperature range of operation from -40 to 80 C, quick response and decay times of signals, and good electrical stability. Idealized sketch of the Pt coated anodized Ti foil and application as hydrogen sensor and electric generator. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Adhesion of Porphyromonas gingivalis and Tannerella forsythia to dentin and titanium with sandblasted and acid etched surface coated with serum and serum proteins - An in vitro study.

    Science.gov (United States)

    Eick, Sigrun; Kindblom, Christian; Mizgalska, Danuta; Magdoń, Anna; Jurczyk, Karolina; Sculean, Anton; Stavropoulos, Andreas

    2017-03-01

    To evaluate the adhesion of selected bacterial strains incl. expression of important virulence factors at dentin and titanium SLA surfaces coated with layers of serum proteins. Dentin- and moderately rough SLA titanium-discs were coated overnight with human serum, or IgG, or human serum albumin (HSA). Thereafter, Porphyromonas gingivalis, Tannerella forsythia, or a six-species mixture were added for 4h and 24h. The number of adhered bacteria (colony forming units; CFU) was determined. Arg-gingipain activity of P. gingivalis and mRNA expressions of P. gingivalis and T. forsythia proteases and T. forsythia protease inhibitor were measured. Coating specimens never resulted in differences exceeding 1.1 log10 CFU, comparing to controls, irrespective the substrate. Counts of T. forsythia were statistically significantly higher at titanium than dentin, the difference was up to 3.7 log10 CFU after 24h (p=0.002). No statistically significant variation regarding adhesion of the mixed culture was detected between surfaces or among coatings. Arg-gingipain activity of P. gingivalis was associated with log10 CFU but not with the surface or the coating. Titanium negatively influenced mRNA expression of T. forsythia protease inhibitor at 24h (p=0.026 uncoated, p=0.009 with serum). The present findings indicate that: a) single bacterial species (T. forsythia) can adhere more readily to titanium SLA than to dentin, b) low expression of T. forsythia protease inhibitor may influence the virulence of the species on titanium SLA surfaces in comparison with teeth, and c) surface properties (e.g. material and/or protein layers) do not appear to significantly influence multi-species adhesion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. [Shaping ability of two nickel-titanium rotary systems in simulated S-shaped canals].

    Science.gov (United States)

    Luo, Hong-xia; Huang, Ding-ming; Zhang, Fu-hua; Tan, Hong; Zhou, Xue-dong

    2008-01-01

    To evaluate the shaping ability of two nickel-titanium rotary systems (ProTaper and Hero642) in simulated S-shaped canals. Thirty simulated S-shaped canals were randomly divided into three groups and prepared by ProTaper, Hero642, ProTaper combined with Hero642 respectively. All the canals were scanned before and after instrumentation, and the amount of material removed in the inner and outer wall and the canal width after instrumentation were measured with a computer image analysis program. There was significant difference in the amount of material removed at the inner side of apical curvature and outer side of apex between ProTaper combined with Hero642 and ProTaper files (P Hero642, and the taper of canals were better than those prepared by Hero642. ProTaper combined with Hero 642 had better shaping ability to maintain the original shape and could create good taper canals in the simulated S-shaped canal model.

  12. Preparation and characterization of laser cladding wollastonite derived bioceramic coating on titanium alloy.

    Science.gov (United States)

    Li, Huan-cai; Wang, Dian-gang; Chen, Chuan-zhong; Weng, Fei; Shi, Hua

    2015-09-25

    The bioceramic coating is fabricated on titanium alloy (Ti6Al4V) by laser cladding the preplaced wollastonite (CaSiO3) powders. The coating on Ti6Al4V is characterized by x-ray diffraction, scanning electron microscopy coupled with energy dispersive spectroscopy, and attenuated total reflection Fourier-transform infrared. The interface bonding strength is measured using the stretching method using an RGD-5-type electronic tensile machine. The microhardness distribution of the cross-section is determined using an indentation test. The in vitro bioactivity of the coating on Ti6Al4V is evaluated using the in vitro simulated body fluid (SBF) immersion test. The microstructure of the laser cladding sample is affected by the process parameters. The coating surface is coarse, accidented, and microporous. The cross-section microstructure of the ceramic layer from the bottom to the top gradually changes from cellular crystal, fine cellular-dendrite structure to underdeveloped dendrite crystal. The coating on Ti6Al4V is composed of CaTiO3, CaO, α-Ca2SiO4, SiO2, and TiO2. After soaking in the SBF solution, the calcium phosphate layer is formed on the coating surface.

  13. Mechanical reduction of the intracanal Enterococcus faecalis population by Hyflex CM, K3XF, ProTaper Next, and two manual instrument systems: an in vitro comparative study.

    Science.gov (United States)

    Tewari, Rajendra K; Ali, Sajid; Mishra, Surendra K; Kumar, Ashok; Andrabi, Syed Mukhtar-Un-Nisar; Zoya, Asma; Alam, Sharique

    2016-05-01

    In the present study, the effectiveness of three rotary and two manual nickel titanium instrument systems on mechanical reduction of the intracanal Enterococcus faecalis population was evaluated. Mandibular premolars with straight roots were selected. Teeth were decoronated and instrumented until 20 K file and irrigated with physiological saline. After sterilization by ethylene oxide gas, root canals were inoculated with Enterococcus faecalis. The specimens were randomly divided into five groups for canal instrumentation: Manual Nitiflex and Hero Shaper nickel titanium files, and rotary Hyflex CM, ProTaper Next, and K3XF nickel titanium files. Intracanal bacterial sampling was done before and after instrumentation. After serial dilution, samples were plated onto the Mitis Salivarius agar. The c.f.u. grown were counted, and log10 transformation was calculated. All instrumentation systems significantly reduced the intracanal bacterial population after root canal preparation. ProTaper Next was found to be significantly more effective than Hyflex CM and manual Nitiflex and Hero Shaper. However, ProTaper Next showed no significant difference with K3XF. Canal instrumentation by all the file systems significantly reduced the intracanal Enterococcus faecalis counts. ProTaper Next was found to be most effective in reducing the number of bacteria than other rotary or hand instruments. © 2014 Wiley Publishing Asia Pty Ltd.

  14. In Situ Laser Coating of Calcium Phosphate on TC4 Surface for Enhancing Bioactivity

    Institute of Scientific and Technical Information of China (English)

    DENG Chi; WANG Yong; ZHANG Ya-ping; GAO Jia-cheng

    2007-01-01

    Titanium alloy has been a successful implant material owing to its excellent ratio of strength to weight,toughness, and bio-inert oxide surface. Significant progress has been made in improving the bioactivity of titanium alloy by coating its oxide surface with calcium phosphates. In the present study, in situ coating was reported on Ti6Al4V(TC4) surface with calcium phosphate (Ca-P) bioceramics synthesized and synchronously cladded by laser beam. This coating was grown by first preplacing directly the raw powders, which contain 80% of CaHPO4 ·2H2O, 20% of CaCO3, and dram of rare earth (RE), on the TC4 surfaces, and then exposing the surfaces to the laser beam with a power density of 12. 73-15.27 MW · m-2 and a scanning velocity of 10. 5 m/s. The resultant coating was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis and Different-thermal Scanning (TG-DSC), and Energy Dispersive X-ray Detection (EDX). The results show that these laser ceramics include hydroxyapatite (HA), tricalcium phosphate (TCP), Ca2P2O7, and other Ca-P phases, and the interface between the coating and the TC4 substrate has tighter fixation, in which the chemical bonding is approved. These laser hybrid coatings are useful in enhancing the bioactivity of titanium alloy surfaces.

  15. Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Prosthodontics and Restorative Science, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    The purpose of this study was to investigate hydroxyapatite formation on Ti-25Ta-xZr titanium alloys resulting from radio-frequency magnetron sputtering and electrochemical deposition. Electrochemical deposition of hydroxyapatite (HA) was first carried out using a cyclic voltammetry (CV) method at 80 °C in 5 mM Ca (NO{sub 3}){sub 2} + 3 mM NH{sub 4}H{sub 2}PO{sub 4}. Then a physical vapor deposition (PVD) coating was obtained by a radio-frequency (RF) magnetron sputtering technique. The microstructures, phase transformations, and morphologies of the hydroxyapatite films deposited on the titanium alloys were analyzed by optical microscopy (OM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). The morphologies of electrochemically deposited HA showed plate-like shapes on the titanium alloys, and the morphologies of the RF-sputtered HA coating had the appearance droplet particles on the plate-like precipitates that had formed by electrochemical deposition. For the RF-sputtered HA coatings, the Ca/P ratio was increased, compared to that for the electrochemically deposited HA surface. Moreover, the RF-sputtered HA coating, consisting of agglomerated droplet particles on the electrochemically deposited HA surface, had better wettability compared to the bulk titanium alloy surface. - Highlights: • Hydroxyapatite (HA) was deposited on Ti–Ta–Zr alloys by radio-frequency (RF) magnetron sputtering and a cyclic voltammetry. • The morphologies of the RF-sputtered HA coating on electrochemical deposits presented plate-like shapes with a droplet particle. • The Ca/P ratio for RF-sputtered HA coatings was greater than that for electrochemical deposited HA coatings. • The RF-sputtered and electrochemical HA coatings had superior wettability compared to the electrochemically deposited coatings.

  16. Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition

    International Nuclear Information System (INIS)

    Kim, Hyun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    The purpose of this study was to investigate hydroxyapatite formation on Ti-25Ta-xZr titanium alloys resulting from radio-frequency magnetron sputtering and electrochemical deposition. Electrochemical deposition of hydroxyapatite (HA) was first carried out using a cyclic voltammetry (CV) method at 80 °C in 5 mM Ca (NO 3 ) 2 + 3 mM NH 4 H 2 PO 4 . Then a physical vapor deposition (PVD) coating was obtained by a radio-frequency (RF) magnetron sputtering technique. The microstructures, phase transformations, and morphologies of the hydroxyapatite films deposited on the titanium alloys were analyzed by optical microscopy (OM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). The morphologies of electrochemically deposited HA showed plate-like shapes on the titanium alloys, and the morphologies of the RF-sputtered HA coating had the appearance droplet particles on the plate-like precipitates that had formed by electrochemical deposition. For the RF-sputtered HA coatings, the Ca/P ratio was increased, compared to that for the electrochemically deposited HA surface. Moreover, the RF-sputtered HA coating, consisting of agglomerated droplet particles on the electrochemically deposited HA surface, had better wettability compared to the bulk titanium alloy surface. - Highlights: • Hydroxyapatite (HA) was deposited on Ti–Ta–Zr alloys by radio-frequency (RF) magnetron sputtering and a cyclic voltammetry. • The morphologies of the RF-sputtered HA coating on electrochemical deposits presented plate-like shapes with a droplet particle. • The Ca/P ratio for RF-sputtered HA coatings was greater than that for electrochemical deposited HA coatings. • The RF-sputtered and electrochemical HA coatings had superior wettability compared to the electrochemically deposited coatings

  17. In situ fabrication of nanostructured titania coating on the surface of titanium wire: A new approach for preparation of solid-phase microextraction fiber

    Energy Technology Data Exchange (ETDEWEB)

    Cao Dandan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Environmental Science Division, School of Earth and Space Science, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Lue Jianxia [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Liu Jingfu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: jfliu@rcees.ac.cn; Jiang Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2008-03-17

    Nanostructured titania-based solid-phase microextraction (SPME) fibers were fabricated through the in situ oxidation of titanium wires with H{sub 2}O{sub 2} (30%, w/w) at 80 deg. C for 24 h. The obtained SPME fibers possess a {approx}1.2 {mu}m thick nanostructured coating consisting of {approx}100 nm titania walls and 100-200 nm pores. The use of these fibers for headspace SPME coupled with gas chromatography with electron capture detection (GC-ECD) resulted in improved analysis of dichlorodiphenyltrichloroethane (DDT) and its degradation products. The presented method to detect DDT and its degradation products has high sensitivity (0.20-0.98 ng L{sup -1}), high precision (relative standard deviation R.S.D. = 9.4-16%, n = 5), a wide linear range (5-5000 ng L{sup -1}), and good linearity (coefficient of estimation R{sup 2} = 0.991-0.998). As the nanostructured titania was in situ formed on the surface of a titanium wire, the coating was uniformly and strongly adhered on the titanium wire. Because of the inherent chemical stability of the titania coating and the mechanical durability of the titanium wire substrate, this new SPME fiber exhibited long life span (over 150 times)

  18. A Modified Porous Titanium Sheet Prepared by Plasma-Activated Sintering for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yukimichi Tamaki

    2010-01-01

    Full Text Available This study aimed to develop a contamination-free porous titanium scaffold by a plasma-activated sintering within an originally developed TiN-coated graphite mold. The surface of porous titanium sheet with or without a coated graphite mold was characterized. The cell adhesion property of porous titanium sheet was also evaluated in this study. The peak of TiC was detected on the titanium sheet processed with the graphite mold without a TiN coating. Since the titanium fiber elements were directly in contact with the carbon graphite mold during processing, surface contamination was unavoidable event in this condition. The TiC peak was not detectable on the titanium sheet processed within the TiN-coated carbon graphite mold. This modified plasma-activated sintering with the TiN-coated graphite mold would be useful to fabricate a contamination-free titanium sheet. The number of adherent cells on the modified titanium sheet was greater than that of the bare titanium plate. Stress fiber formation and the extension of the cells were observed on the titanium sheets. This modified titanium sheet is expected to be a new tissue engineering material in orthopedic bone repair.

  19. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    Science.gov (United States)

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  20. The Mechanical and Tribology Properties of Sputtered Titanium Aluminum Nitride Coating on the Tungsten Carbide Insert Tool in the Dry Turning of Tool Steel

    Directory of Open Access Journals (Sweden)

    Esmar Budi

    2015-02-01

    Full Text Available The effect of the sputtering parameters on the mechanical tribology properties of Titanium Aluminum Nitride coating on the tungsten cabide insert tool in the dry turning of tool steel has been investigated. The coating was deposited using a Direct Current magnetron sputtering system with various substrate biases (-79 to -221 V and nitrogen flow rates (30 to 72 sccm. The dry turning test was carried out on a Computer Numeric Code machine using an optimum cutting parameter setting. The results show that the lowest flank wear (~0.4 mm was achieved using a Titanium Aluminum Nitride-coated tool that was deposited at a high substrate bias (-200 V and a high nitrogen flow rate (70 sccm. The lowest flank wear was attributed to high coating hardness.

  1. A bioactive coating with submicron-sized titania crystallites fabricated by induction heating of titanium after tensile deformations.

    Science.gov (United States)

    Li, Ning-Bo; Xu, Wen-Hua; Xiao, Gui-Yong; Zhao, Jun-Han; Lu, Yu-Peng

    2017-11-01

    Thermal oxidation technology was widely investigated as one of effective surface modification method for improving the bioactivity and biocompatibility of titanium and its alloys. In this work, the induction heat oxidization method, a fast, efficient, economical and environmental protective technology, was applied to prepare the submicron-morphological oxide coating with variable rutile TiO 2 equiaxed crystallites on the surface of pure Ti substrates after cold-drawing with 10-20% deformations. The results showed the plastic-deformed Ti cylinders recrystallized during induction heating treatment (IHT) for 10-20s which resulted in evolution of microstructures as well as slight improvement of microhardness. The surface characteristics of TiO 2 crystallites in oxidation layers were determined by the microstructural evolutions of Ti substrate in terms of the nucleation and growth of TiO 2 crystallites. Specially, the oxidized surface with 50-75nm roughness and more uniform and finer equiaxed oxide grains remarkablely improved the apatite deposition after bioactive evaluation in 1.5 × SBF for 7 days. This work provided a potential method to create controlled bioactive oxide coatings with submicro-/nano-scaled TiO 2 crystallites on titanium substrate in terms of the role of metallographic microstructure in the formation process of titanium oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Construction of a multifunctional coating consisting of phospholipids and endothelial progenitor cell-specific peptides on titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huiqing; Li, Xiaojing [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhao, Yuancong, E-mail: zhaoyc7320@163.com [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Li, Jingan; Chen, Jiang [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Yang, Ping, E-mail: yangping8@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Maitz, Manfred F. [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Max Bergmann Center of Biomaterials Dresden, Leibniz of Polymer Research Dresden, 01069 Dresden (Germany); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2015-08-30

    Graphical abstract: The phospholipid groups of PMMDP can inhibit platele adhesion, and the EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. The catechol groups of PMMDP play a critical role as molecular anchor for balancing the binding between the coating and the substrate. - Highlights: • The uniform coating of PMMDP can be constructed on titanium surface successfully through the catechol groups. • The phospholipid groups of PMMDP can inhibit platele adhesion, fibrinogen denaturation and improve the hydrophilicity of substrate. • The EPCs-specific peptide of the PMMDP showed special recognition and capture for EPCs. - Abstract: A phospholipid/peptide polymer (PMMDP) with phosphorylcholine groups, endothelial progenitor cell (EPC)-specific peptides and catechol groups was anchored onto a titanium (Ti) surface to fabricate a biomimetic multifunctional surface. The PMMDP coating was characterized by X-ray photoelectron spectroscopy (XPS), water contact angle measurements and atomic force microscopy (AFM), respectively. The amount of PMMDP coating on the Ti surface was quantified by using the quartz crystal microbalance with dissipation (QCM-D). Interactions between blood components and the coated and bare Ti substrates were evaluated by platelet adhesion and activation assays and fibrinogen denaturation test using platelet rich plasma (PRP). The results revealed that the PMMDP-modified surface inhibited fibrinogen denaturation and reduced platelet adhesion and activation. EPC cell culture on the PMMDP-modified surface showed increased adhesion and proliferation of EPCs when compared to the cells cultured on untreated Ti surface. The inhibition of fibrinogen denaturation and platelet adhesion and support of EPCs attachment and proliferation indicated that this coating might be beneficial for future applications in blood-contacting implants, such as vascular stents.

  3. Fabrication and anisotropic wettability of titanium-coated microgrooves

    Science.gov (United States)

    Gui, N.; Xu, W.; Tian, J.; Rosengarten, G.; Brandt, M.; Qian, M.

    2018-03-01

    Surface wettability plays a critical role in a variety of key areas including orthopaedic implants and chemical engineering. Anisotropy in wettability can arise from surface grooves, which are of particular relevance to orthopaedic implants because they can mimic collagen fibrils that are the basic components of the extracellular matrix. Titanium (Ti) and its alloys have been widely used for orthopaedic and dental implant applications. This study is concerned with the fabrication of Ti-coated microgrooves with different groove widths and the characterisation of the anisotropy in wettability through measuring water contact angles, compared with both the Wenzel and Cassie models. Experimental results revealed that there existed significant anisotropy in the wettability of Ti-coated microgrooves, and the degree of anisotropy (Δθ) increased with an increasing groove width from 5 μm to 20 μm. On average, the contact angle measured parallel to the groove direction (θ//) was about 50°-60° smaller than that measured perpendicular to the groove direction (θ⊥). In general, the Wenzel model predicted the contact angles along the surface groove direction reasonably, and so did the Cassie model for the contact angles perpendicular to the groove direction. Osteoblast spreading was affected by the anisotropy in wettability, which occurred preferably along, rather than perpendicular to, the groove direction. These findings are informative for the design of Ti implant surfaces when anisotropy in wettability matters.

  4. Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits

    DEFF Research Database (Denmark)

    Gotfredsen, K; Wennerberg, A; Johansson, C

    1995-01-01

    The purpose of this study was to evaluate the histometrical and biomechanical anchorage of TiO2-blasted implants and TiO2-blasted implants coated with hydroxyapatite. The control implants were machined. Twenty-six rabbits had a total of 156 implants placed in the proximal part of the tibia. Each...... rabbit had a machined, a TiO2-blasted, and a TiO2-blasted, HA-coated implant placed in each tibia. After a healing period of 3 and 12 weeks, respectively, the implants placed in the right tibia were used for removal torque test, and the implants placed in the left tibia were used for histomorphometrical...

  5. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles.

    Science.gov (United States)

    Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji

    2012-01-01

    A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Development of HA/Ag-NPs Composite Coating from Green Process for Hip Applications.

    Science.gov (United States)

    Lozoya-Rodríguez, Denisse A; de Lima, Renata; Fraceto, Leonardo F; Ledezma Pérez, Antonio; Bazaldua Domínguez, Mercedes; Gómez Batres, Roberto; Reyes Rojas, Armando; Orozco Carmona, Víctor

    2017-08-08

    In the present study, biological hydroxyapatite (HA) was obtained from bovine bones through a thermal process. A total of 0% and 1% of silver nanoparticles (Ag-NPs) synthesized from Opuntia ficus (nopal) were added to the biological hydroxyapatite coatings using an atmospheric plasma spray (APS) on a Ti6Al4V substrate. Following this, its antimicrobial efficiency was evaluated against the following bacterial strains: Escherichia coli , Staphylococcus aureus , and Pseudomonas aeruginosa . This was conducted according to the Japanese Industrial Standard (JIS) Z2801:2000 "Antimicrobial Product-Test for Antimicrobial Activity and Efficacy". Scanning electron microscopy (SEM) showed that the silver nanoparticles (Ag-NPs) were evenly distributed on the coating surface. Energy dispersive X-ray spectroscopy (EDX) shows that apatite deposition occurs on a daily basis, maintaining a Ca/P rate between 2.12 and 1.45. Biocompatibility properties were evaluated with osteoblast-like cells (MC3T3-E1) by single-cell gel electrophoresis assay and Tali image cytometry.

  7. Mechanical properties of ProTaper Gold nickel-titanium rotary instruments.

    Science.gov (United States)

    Elnaghy, A M; Elsaka, S E

    2016-11-01

    To evaluate and compare the resistance to cyclic fatigue and torsional stress, flexibility and surface microhardness of ProTaper Gold (PTG; Dentsply, Tulsa Dental Specialties, Tulsa, OK, USA) system with ProTaper Universal (PTU; Dentsply Maillefer, Ballaigues, Switzerland). PTG and PTU instruments were rotated in simulated canals and the number of cycles to failure was recorded to assess their cyclic fatigue resistance. Torsional strength was measured using a torsiometer after fixing firmly the apical 3 mm of the instrument. A scanning electron microscope was used to characterize the topographic features of the fracture surfaces of the broken instruments. The instruments were tested for bending resistance using cantilever-bending test. Vickers microhardness was measured on the cross section of instruments with 300 g load and 15 s dwell time. Data were analysed statistically using independent t-tests. Statistical significance was set at P hand, PTU instruments were associated with higher resistance to torsional stress and microhardness than PTG instruments (P < 0.001). After torsional tests, the fractured cross-sectional surfaces revealed skewed dimples near the centre of the fracture surfaces and circular abrasion streaks. The PTG instrument had improved resistance to cyclic fatigue and flexibility compared with PTU. PTU instruments had improved resistance to torsional stress and microhardness compared with PTG. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Bi-functionalization of a calcium phosphate-coated titanium surface with slow-release simvastatin and metronidazole to provide antibacterial activities and pro-osteodifferentiation capabilities

    NARCIS (Netherlands)

    Liu, Y.; Zhang, X.; Jin, X.; Fan, C.; Ye, H.; Ou, M.; Lv, L.; Wu, G.; Zhou, Y.

    2014-01-01

    Coating the surface of titanium implants or other bone graft substitute materials with calcium phosphate (Ca-P) crystals is an effective way to enhance the osteoconduction of the implants. Ca-P coating alone cannot confer pro-osteodifferentiation and antibacterial capabilities on implants; however,

  9. A decomposable silica-based antibacterial coating for percutaneous titanium implant

    Directory of Open Access Journals (Sweden)

    Wang J

    2017-01-01

    antibacterial titanium coating continuously released gentamycin and inhibited S. aureus growth. In vitro investigation showed that the obtained nanodelivery system has good biocompatibility. Therefore, this design can be further investigated as a method to prevent infection around percutaneous implants. Keywords: silica nanoparticles, microarc oxidation, gentamycin, control release, fibroblasts

  10. Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants.

    Science.gov (United States)

    Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E

    2007-01-01

    Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications. 2006 Wiley Periodicals, Inc.

  11. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    Science.gov (United States)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  12. Comparison of the fracture resistance of dental implants with different abutment taper angles.

    Science.gov (United States)

    Wang, Kun; Geng, Jianping; Jones, David; Xu, Wei

    2016-06-01

    To investigate the effects of abutment taper angles on the fracture strength of dental implants with TIS (taper integrated screwed-in) connection. Thirty prototype cylindrical titanium alloy 5.0mm-diameter dental implants with different TIS-connection designs were divided into six groups and tested for their fracture strength, using a universal testing machine. These groups consisted of combinations of 3.5 and 4.0 mm abutment diameter, each with taper angles of 6°, 8° or 10°. 3-Dimensional finite element analysis (FEA) was also used to analyze stress states at implant-abutment connection areas. In general, the mechanical tests found an increasing trend of implant fracture forces as the taper angle enlarged. When the abutment diameter was 3.5 mm, the mean fracture forces for 8° and 10° taper groups were 1638.9 N ± 20.3 and 1577.1 N ± 103.2, respectively, both larger than that for the 6° taper group of 1475.0 N ± 24.4, with the largest increasing rate of 11.1%. Furthermore, the difference between 8° and 6° taper groups was significant, based on Tamhane's multiple comparison test (Pabutment groups, as the taper angle was enlarged from 6° to 8° and 10°, the mean fracture value was increased from 1066.7 N ± 56.1 to 1241.4 N ± 6.4 and 1419.3 N ± 20.0, with the largest increasing rate of 33.1%, and the differences among the three groups were significant (Pabutment taper angles and supported the findings of the static tests. In conclusion, increases of the abutment taper angle could significantly increase implant fracture resistance in most cases established in the study, which is due to the increased implant wall thickness in the connection part resulting from the taper angle enlargement. The increasing effects were notable when a thin implant wall was present to accommodate wide abutments. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    Science.gov (United States)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-05-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity.

  14. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding

    International Nuclear Information System (INIS)

    Zhu, Yizhi; Liu, Qibin; Xu, Peng; Li, Long; Jiang, Haibing; Bai, Yang

    2016-01-01

    There were always strong expectations for suitable biomaterials used for bone regeneration. In this study, to improve the biocompatiblity of titanium alloy, calcium phosphate bioceramic coating was obtained by laser cladding technology. The microstructure, phases, bioactivity, cell differentiation, morphology and resorption lacunae were investigated by optical microscope (OM), x-ray diffraction (XRD), methyl thiazolyl tetrazolium (MTT) assay, tartrate-resistant acid phosphatase (TRAP) staining and scanning electronic microscope (SEM), respectively. The results show that bioceramic coating consists of three layers, which are a substrate, an alloyed layer and a ceramic layer. Bioactive phases of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) were found in ceramic coating. Osteoclast precursors have excellent proliferation on the bioceramic surface. The bioceramics coating could be digested by osteoclasts, which led to the resorption lacunae formed on its surface. It revealed that the gradient bioceramic coating has an excellent bioactivity. (letter)

  15. Experimental Verification of Statistically Optimized Parameters for Low-Pressure Cold Spray Coating of Titanium

    Directory of Open Access Journals (Sweden)

    Damilola Isaac Adebiyi

    2016-06-01

    Full Text Available The cold spray coating process involves many process parameters which make the process very complex, and highly dependent and sensitive to small changes in these parameters. This results in a small operational window of the parameters. Consequently, mathematical optimization of the process parameters is key, not only to achieving deposition but also improving the coating quality. This study focuses on the mathematical identification and experimental justification of the optimum process parameters for cold spray coating of titanium alloy with silicon carbide (SiC. The continuity, momentum and the energy equations governing the flow through the low-pressure cold spray nozzle were solved by introducing a constitutive equation to close the system. This was used to calculate the critical velocity for the deposition of SiC. In order to determine the input temperature that yields the calculated velocity, the distribution of velocity, temperature, and pressure in the cold spray nozzle were analyzed, and the exit values were predicted using the meshing tool of Solidworks. Coatings fabricated using the optimized parameters and some non-optimized parameters are compared. The coating of the CFD-optimized parameters yielded lower porosity and higher hardness.

  16. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    Science.gov (United States)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  17. Effect of Silicon Addition on Microstructure and Mechanical Properties of Chromium and Titanium Based Coatings

    Directory of Open Access Journals (Sweden)

    Luis Carlos Ardila-Téllez

    2014-07-01

    Full Text Available The changes in the microstructure, mechanical properties and residual stresses of AlTiN, AlTiSiN, AlCrN and AlCrSiN coatings, has been studied before and after annealing at 900 ºC and 1100 ºC, using scanning and transmission electron microscopy, along with nano-indentation and X-ray diffraction techniques. The As-deposited coatings show a columnar structure, with a crystallite size between 18 nm and 28 nm. Despite the silicon addition, no effect on the crystallite size refinement was observed.However, the addition of silicon increases hardness, elastic modulus and compressive residual stresses. After annealing at 900 ºC, the crystallite size growth and the residual stress relaxes; therefore, the coating hardness decreases. At 1100 ºC, the oxide layers formed in AlTiN and AlTiSiN, which act as protective layers enhancing oxidation resistance; meanwhile, a complete oxidation of AlCrN and AlCrSiN coatings take place. The Titanium based coatings present some superior mechanical properties and oxidation resistance than the chromium based coatings at 900 ºC and 1100 ºC.

  18. The effects of titanium dioxide coatings on light-derived heating and transdermal heat transfer in bovine skin

    NARCIS (Netherlands)

    Bartle, S J; Thomson, D U; Gehring, R; van der Merwe, B. D.

    2017-01-01

    The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas,

  19. Biological response to titanium implants coated with nanocrystals calcium phosphate or type 1 collagen in a dog model

    NARCIS (Netherlands)

    Alghamdi, H.S.A.; Oirschot, B.A. van; Bosco, R.; Beucken, J.J. van den; Aldosari, A.A.; Anil, S.; Jansen, J.A.

    2013-01-01

    OBJECTIVE: The current study aimed to evaluate the osteogenic potential of electrosprayed organic and non-organic surface coatings in a gap-implant model over 4 and 12 weeks of implantation into the dog mandible. MATERIAL AND METHODS: Sixteen Beagle dogs received experimental titanium implants in

  20. Doxycycline-loaded coaxial nanofiber coating of titanium implants enhances osseointegration and inhibits Staphylococcus aureus infection.

    Science.gov (United States)

    Song, Wei; Seta, Joseph; Chen, Liang; Bergum, Christopher; Zhou, Zhubin; Kanneganti, Praveen; Kast, Rachel E; Auner, Gregory W; Shen, Ming; Markel, David C; Ren, Weiping; Yu, Xiaowei

    2017-07-05

    Few studies have been reported that focus on developing implant surface nanofiber (NF) coating to prevent infection and enhance osseointegration by local drug release. In this study, coaxial doxycycline (Doxy)-doped polycaprolactone/polyvinyl alcohol (PCL/PVA) NFs were directly deposited on a titanium (Ti) implant surface during electrospinning. The interaction of loaded Doxy with both PVA and PCL NFs was characterized by Raman spectroscopy. The bonding strength of Doxy-doped NF coating on Ti implants was confirmed by a stand single-pass scratch test. The improved implant osseointegration by PCL/PVA NF coatings in vivo was confirmed by scanning electron microscopy, histomorphometry and micro computed tomography (μCT) at 2, 4 and 8 weeks after implantation. The bone contact surface (%) changes of the NF coating group (80%) is significantly higher than that of the no NF group (coating effectively inhibited bacterial infection and enhanced osseointegration in an infected (Staphylococcus aureus) tibia implantation rat model. Doxy released from NF coating inhibited bacterial growth up to 8 weeks in vivo. The maximal push-in force of the Doxy-NF coating (38 N) is much higher than that of the NF coating group (6.5 N) 8 weeks after implantation (p coating doped with Doxy and/or other drugs have great potential in enhancing implant osseointegration and preventing infection.

  1. The ceramic SiO2 and SiO2-TiO2 coatings on biomedical Ti6Al4VELI titanium alloy

    International Nuclear Information System (INIS)

    Surowska, B.; Walczak, M.; Bienias, J.

    2004-01-01

    The paper presents the study of intermediate SiO 2 and SiO 2 -TiO 2 sol-gel coatings and dental porcelain coatings on Ti6Al4VELI titanium alloy. Surface microstructures and wear behaviour by pin-on-disc method of the ceramic coatings were investigated. The analysis revealed: (1) a compact, homogeneous SiO 2 and SiO 2 -TiO 2 coating and (2) that intermediate coatings may provide a durable joint between metal and porcelain, and (3) that dental porcelain on SiO 2 and TiO 2 coatings shows high wear resistance. (author)

  2. Evaluation of debris extruded apically during the removal of root canal filling material using ProTaper, D-RaCe, and R-Endo rotary nickel-titanium retreatment instruments and hand files.

    Science.gov (United States)

    Topçuoğlu, Hüseyin Sinan; Aktı, Ahmet; Tuncay, Öznur; Dinçer, Asiye Nur; Düzgün, Salih; Topçuoğlu, Gamze

    2014-12-01

    The aim of this study was to evaluate the amount of debris extruded apically during the removal of root canal filling material using ProTaper (Dentsply Maillefer, Ballaigues, Switzerland), D-RaCe (FKG Dentaire, La Chaux-de-Fonds, Switzerland), and R-Endo (Micro-Mega, Besançon, France) nickel-titanium (NiTi) rotary retreatment instruments and hand files. Sixty extracted single-rooted mandibular premolar teeth were prepared with K-files and filled with gutta-percha and AH Plus sealer (Dentsply DeTrey, Konstanz, Germany). The teeth were then randomly assigned to 4 groups (n = 15 for each group) for retreatment. The removal of canal filling material was performed as follows: hand files, ProTaper, D-RaCe, and R-Endo retreatment instruments. Debris extruded apically during the removal of canal filling material was collected into preweighed Eppendorf tubes. The tubes were then stored in an incubator at 70°C for 5 days. The weight of the dry extruded debris was established by subtracting the preretreatment and postretreatment weight of the Eppendorf tubes for each group. The data obtained were analyzed using 1-way analysis of variance and Tukey post hoc tests. All retreatment techniques caused the apical extrusion of debris. Hand files produced significantly more debris when compared with ProTaper, D-RaCe, and R-Endo rotary systems (P ProTaper, D-RaCe, and R-Endo retreatment systems (P > .05). The findings showed that during the removal of root canal filling material, rotary NiTi retreatment instruments used in this study caused less apical extrusion of debris compared with hand files. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    Directory of Open Access Journals (Sweden)

    Xue Zhong

    Full Text Available The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL, on which multilayer coatings can incorporate silver nanoparticles (AgNP using chitosan (CS and hyaluronic acid (HA via a layer-by-layer (LbL self-assembly technique.In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethylphosphine (TCEP to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates.The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration.The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections

  4. Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein.

    Directory of Open Access Journals (Sweden)

    Andreas Baranowski

    Full Text Available Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES, and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants

  5. Bone Morphogenetic Protein Coating on Titanium Implant Surface: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Haim Haimov

    2017-06-01

    Full Text Available Objectives: The purpose of the study is to systematically review the osseointegration process improvement by bone morphogenetic protein coating on titanium implant surface. Material and Methods: An electronic literature search was conducted through the MEDLINE (PubMed and EMBASE databases. The search was restricted for articles published during the last 10 years from October 2006 to September 2016 and articles were limited to English language. Results: A total of 41 articles were reviewed, and 8 of the most relevant articles that are suitable to the criteria were selected. Articles were analysed regarding concentration of bone morphogenetic protein (BMP, delivery systems, adverse reactions and the influence of the BMP on the bone and peri-implant surface in vivo. Finally, the present data included 340 implants and 236 models. Conclusions: It’s clearly shown from most of the examined studies that bone morphogenetic protein increases bone regeneration. Further studies should be done in order to induce and sustain bone formation activity. Osteogenic agent should be gradually liberated and not rapidly released with priority to three-dimension reservoir (incorporated titanium implant surface in order to avoid following severe side effects: inflammation, bleeding, haematoma, oedema, erythema, and graft failure.

  6. Study of different biocomposite coatings on Ti alloy by a subsonic thermal spraying technique

    Energy Technology Data Exchange (ETDEWEB)

    Li Muqin [Provincial Key Laboratory of Biomaterials, Jiamusi University, Heilongjiang Province, 154007 (China); Zhang Rui [College of Stomatology, Jiamusi University, Heilongjiang Province, 154003 (China); Wang Jianping [College of Stomatology, Jiamusi University, Heilongjiang Province, 154003 (China); Yang Shiqin [State Key Laboratory Advanced Welding Production Technology, Harbin Institute of Technology, 150001 (China)

    2007-03-01

    A subsonic thermal spraying technique (STS) was used to make different biocomposite coatings on titanium alloys for preparing three kinds of implants: 8Ti2G, HA and 8H2B, respectively. The implants were embedded in a region of jaw of dogs whose teeth were pulled out three months previously. The dogs, in two groups, were killed 30 days and 90 days, respectively, after they were operated on. Osteointegration between the implants and host bone was investigated by x-ray, histology and the SEM technique. The results showed that the three kinds of coatings all exhibited good biocompatibility and synostosis, but their osteointegration capability showed a difference and decreased in the sequence of 8H2B, HA and 8Ti2G. The activity of coating, which promoted the reactions between implants and bone tissue, was further increased by the addition of bioglass in the 8H2B coating. Subsequently, chemical bonding was formed, and the osteointegration strength was increased. The study provided a new approach to prepare biocomposite coatings. The 8H2B implants, which formed an integral functional biocomposite coating on Ti alloys, showed a better osteointegration capability with bioactivity and pore gradient variation. A theoretical base was provided for the biocomposite coating application.

  7. Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Zhen; Cui, Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Li, Zhaoyang, E-mail: zyli@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Zhu, Shengli [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Liang, Yanqin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Yunde; Li, Xue; He, Xin; Yu, Xiaoxu; Wang, Renfeng [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Yang, Xianjin, E-mail: xjyang@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2016-01-01

    Infection in primary total joint prostheses is attracting considerable attention. In this study, silver (Ag) was incorporated into hydroxyapatite (HA) using a hydrothermal method in order to improve its antimicrobial properties. Strontium (Sr) was added as a second binary element to improve the biocompatibility. The substituted HA samples were fixed on titanium (Ti) substrates by dopamine-assisted immobilization in order to evaluate their antibacterial and biological properties. The results showed that Ag and Sr were successfully incorporated into HA without affecting their crystallinity. Further, the antibacterial tests showed that all the Ag-substituted samples had good anti-bacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Despite their good antibacterial ability, the Ag-substituted samples showed evidence of cytotoxicity on MG63 cells, characterized by low cell density and poor spreadability. The addition of Sr to the Ag-substituted samples considerably reduced the cytotoxicity of Ag. Although the viability of the cells grown on the surfaces of co-substituted HA was not as high as that of the cells grown on the HA surfaces, it is believed that excellent antibacterial properties and good biological activity can be achieved by balancing the dosage of Sr and Ag. - Highlights: • Ag- and Sr-substituted HA was prepared by hydrothermal method. • Ag- and Sr-substituted HA coating was deposited on dopamine functionalized titanium. • Ag-substituted HA biofilm showed a remarkable antibacterial activity. • Sr could offset the side effects of Ag.

  8. Anodic growth of titanium dioxide nanostructures

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a method of producing nanostructures of titanium dioxide (TiO 2 ) by anodisation of titanium (Ti) in an electrochemical cell, comprising the steps of: immersing a non-conducting substrate coated with a layer of titanium, defined as the anode, in an electrolyte solution...... an electrical contact to the layer of titanium on the anode, where the electrical contact is made in the electrolyte solution...

  9. Hydroxyapatite coatings on titanium dioxide thin films prepared by pulsed laser deposition method

    International Nuclear Information System (INIS)

    Suda, Yoshiaki; Kawasaki, Hiroharu; Ohshima, Tamiko; Nakashima, Shouta; Kawazoe, Syuichi; Toma, Tetsuya

    2006-01-01

    Hydroxyapatite (HAp) coated on titanium dioxide (TiO 2 ) thin films has been developed to supplement the defects of both TiO 2 and HAp. Thin films have been prepared by pulsed laser deposition (PLD) method using HAp and HAp(10%) + TiO 2 targets. X-ray diffraction (XRD) shows that there are many small peaks of Ca 1 0(PO 4 ) 6 (OH) 2 crystal, and no impurity other than HAp is detected in HAp films prepared using pure HAp target. The composition ratio of the film was analyzed by X-ray photoelectron spectroscopy (XPS). HAp coatings on TiO 2 thin films have been prepared using HAp(10%) + TiO 2 targets. XRD and XPS measurements suggest that crystalline HAp + TiO 2 thin films are obtained by the PLD method using HAp(10%) + TiO 2 target

  10. Intrinsic Osteoinductivity of Porous Titanium Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Maryam Tamaddon

    2017-01-01

    Full Text Available Large bone defects and nonunions are serious complications that are caused by extensive trauma or tumour. As traditional therapies fail to repair these critical-sized defects, tissue engineering scaffolds can be used to regenerate the damaged tissue. Highly porous titanium scaffolds, produced by selective laser sintering with mechanical properties in range of trabecular bone (compressive strength 35 MPa and modulus 73 MPa, can be used in these orthopaedic applications, if a stable mechanical fixation is provided. Hydroxyapatite coatings are generally considered essential and/or beneficial for bone formation; however, debonding of the coatings is one of the main concerns. We hypothesised that the titanium scaffolds have an intrinsic potential to induce bone formation without the need for a hydroxyapatite coating. In this paper, titanium scaffolds coated with hydroxyapatite using electrochemical method were fabricated and osteoinductivity of coated and noncoated scaffolds was compared in vitro. Alizarin Red quantification confirmed osteogenesis independent of coating. Bone formation and ingrowth into the titanium scaffolds were evaluated in sheep stifle joints. The examinations after 3 months revealed 70% bone ingrowth into the scaffold confirming its osteoinductive capacity. It is shown that the developed titanium scaffold has an intrinsic capacity for bone formation and is a suitable scaffold for bone tissue engineering.

  11. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ping [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2015-08-15

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications.

  12. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    International Nuclear Information System (INIS)

    Yang, Shih-Ping; Lee, Tzer-Min; Lui, Truan-Sheng

    2015-01-01

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications

  13. Tribological coating of titanium alloys by laser processing

    Science.gov (United States)

    Pang, Wang

    Titanium-based alloys have been used for aerospace materials for many years. Recently, these alloys are now being increasingly considered for automotive, industrial and consumer applications. Their excellent creep resistance, corrosion resistance and relative higher specific strength ratio are attractive for many applications. However, the main obstacle for the wide adoption of Ti alloys in various industries is their poor tribological properties. In slide wear, Ti deforms and adhesive wear readily occurs. Their poor tribological properties are mainly due to low hardness and absolute values of tensile and shear strength. Different surface modification techniques have been studied in order to improve the tribological characteristics of Ti alloys, i.e. PVD, nitrding, carburizing, boriding, plating etc. Coatings produced by these techniques have their own limitations such as thermal distortion and grain growth. A different approach is to introduce hard particles in the Ti alloy matrix to form a MMC coating, which has tailor-made hardness and wear resistance properties. Laser cladding or laser alloying techniques facilitate the fabrication of surface MMC on Ti alloys without thermal distortion to the substrate. In this project, the fabrication of hard and wear resistant layers of metal matrix composite on titanium alloys substrate by laser surface alloying was investigated. Powder mixtures of Mo and WC were used to form the MMC layer. By optimizing the processing parameters and pre-placed powder mixture compositions, surface MMC of different properties have been successfully fabricated on CP-Ti and Ti6A14V respectively. The structure and characteristics of the MMC surface were investigated by metallography, SEM, XRD, and E-DAX. It was found that the hardness of the laser alloyed Mo/WC MMC surface was 300% higher than that of the CP-Ti substrate Excellent metallurgical bonding with the MMC layer of the substrate has been achieved. The relative kinetic frictional tests

  14. [Comparison of effectiveness and safety between Twisted File technique and ProTaper Universal rotary full sequence based on micro-computed tomography].

    Science.gov (United States)

    Chen, Xiao-bo; Chen, Chen; Liang, Yu-hong

    2016-02-18

    To evaluate the efficacy and security of two type of rotary nickel titanium system (Twisted File and ProTaper Universal) for root canal preparation based on micro-computed tomography(micro-CT). Twenty extracted molars (including 62 canals) were divided into two experimental groups and were respectively instrumented using Twisted File rotary nickel titanium system (TF) and ProTaper Universal rotary nickel titanium system (PU) to #25/0.08 following recommended protocol. Time for root canal instrumentation (accumulation of time for every single file) was recorded. The 0-3 mm root surface from apex was observed under an optical stereomicroscope at 25 × magnification. The presence of crack line was noted. The root canals were scanned with micro-CT before and after root canal preparation. Three-dimensional shape images of canals were reconstructed, calculated and evaluated. The amount of canal central transportation of the two groups was calculated and compared. The shorter preparation time [(0.53 ± 0.14) min] was observed in TF group, while the preparation time of PU group was (2.06 ± 0.39) min (Pvs. (0.097 ± 0.084) mm, P<0.05]. No instrument separation was observed in both the groups. Cracks were not found in both the groups either based in micro-CT images or observation under an optical stereomicroscope at 25 × magnification. Compared with ProTaper Universal, Twisted File took less time in root canal preparation and exhibited better shaping ability, and less canal transportation.

  15. Microstructure and mechanical properties of nanostructure multilayer CrN/Cr coatings on titanium alloy

    International Nuclear Information System (INIS)

    Wiecinski, Piotr; Smolik, Jerzy; Garbacz, Halina; Kurzydlowski, Krzysztof J.

    2011-01-01

    Five different nanostructured, multilayer coatings (CrN/Cr)x8 with different thickness ratio of Cr and CrN layers were deposited by PAPVD (Plasma Assisted Physical Vapour Deposition) vacuum arc method on Ti6Al4V titanium alloy. The microstructure, chemical and phase composition of the CrN and Cr sub-layers were characterized by SEM with EDX and Cs-corrected dedicated STEM on cross-sections prepared by focus ion beam. Besides, hardness and Young's modulus of the (Cr/CrN)x8 coatings has been measured. The adhesion has been tested by scratch test method. The obtained (CrN/Cr) multilayer coatings, 5-6 μm in thickness, have homogeneous and nanocrystalline structure, free of pores and cracks. The microstructures of Cr and CrN layers consist of columnar grains below 100 nm in diameter. The hardness and Young's modulus of these coatings depend linearly on thickness ratio of Cr and CrN layers. The decrease of the thickness ratio Cr/CrN 0.81 to 0.15 results in the increase of hardness from 1275 HV to 1710 HV and Young's modulus from 260 GPa to 271 GPa.

  16. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  17. Modal demultiplexing properties of tapered and nanostructured optical fibers for in vivo optogenetic control of neural activity.

    Science.gov (United States)

    Pisanello, Marco; Della Patria, Andrea; Sileo, Leonardo; Sabatini, Bernardo L; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-10-01

    Optogenetic approaches to manipulate neural activity have revolutionized the ability of neuroscientists to uncover the functional connectivity underlying brain function. At the same time, the increasing complexity of in vivo optogenetic experiments has increased the demand for new techniques to precisely deliver light into the brain, in particular to illuminate selected portions of the neural tissue. Tapered and nanopatterned gold-coated optical fibers were recently proposed as minimally invasive multipoint light delivery devices, allowing for site-selective optogenetic stimulation in the mammalian brain [Pisanello , Neuron82, 1245 (2014)]. Here we demonstrate that the working principle behind these devices is based on the mode-selective photonic properties of the fiber taper. Using analytical and ray tracing models we model the finite conductance of the metal coating, and show that single or multiple optical windows located at specific taper sections can outcouple only specific subsets of guided modes injected into the fiber.

  18. Microstructure and properties of TiB2-TiB reinforced titanium matrix composite coating by laser cladding

    Science.gov (United States)

    Lin, Yinghua; Yao, Jianhua; Lei, Yongping; Fu, Hanguang; Wang, Liang

    2016-11-01

    TiB2 particle and TiB short fiber reinforced titanium matrix composite coatings were prepared utilizing in situ synthesized technique by laser cladding on the surface of Ti6Al4V alloy. Through the experiment, it was found that the surface of the single-track coatings appeared in the depression, but it can be improved by laser track overlapping. With the increase of laser power density, the amount of TiB short fiber was increased, and the distribution of TiB2 and TiB became more uniform from the top to bottom. The micro-hardness of TiB2/TiB coating showed a gradient decreasing trend, and the average micro-hardness of the coatings was two-fold higher than that of the substrate. Due to the strengthening effect of TiB2 particle and TiB short fiber, the wear volume loss of the center of the coating was approximately 30% less than that of the Ti-6Al-4V substrate, and the wear mechanism of the coating was mild fatigue particle detachment.

  19. Coating of Titanium Nitride on Stainless Steel Targets by a 4 kJ Plasma Focus Device

    Science.gov (United States)

    Omrani, M.; Habibi, M.; Amrollahi, R.

    2012-08-01

    Titanium nitride thin films were deposited on stainless steel (SS316L) targets by using a 4 kJ plasma focus device. The corresponding energy flux delivered to SS316L surface is estimated to be 2.69 × 1013 kev cm-3 ns-1. X-ray diffraction analysis reveals the formation of a nanocrystalline titanium nitride coating on the surface of targets. Thickness of the elements found on the surface of treated samples which are obtained by Rutherford backscattering spectrometry analysis (RBS) were (×1015 at/cm2) .45% Ti, 50% N and 5% Fe. Scanning electron microscopy was used to indicate changes in surface morphology. Existence of grains in different size confirms the formation of TiN crystals on the surface of targets.

  20. Electrospun Porous PDLLA Fiber Membrane Coated with nHA

    Directory of Open Access Journals (Sweden)

    Linhui Qiang

    2018-05-01

    Full Text Available Porous poly- D, L-lactic acid (PDLLA electrospinning fiber membrane was prepared, and nano-hydroxyapatite (nHA was adsorbed and wrapped into it during the unique shrinking process of the PDLLA fiber membrane to fabricate the PDLLA/nHA composite membrane scaffold for tissue engineering. Compare with the composite fibers prepared by blend electrospinning, most of nHA particles are observed to distribute on the surface of new type composite fibers, which could significantly improve the water wettability and induce the cellular adherence. FTIR analysis indicated that the PDLLA/nHA composite fibrous membrane was formed by physical adsorption. The combination was probed by scanning electron microscope, thermo-gravimetric, water contact angle and mechanical property analysis. It was proved that the nHA particles’ content and distribution, surface wettability, modulus and tensile strength of PDLLA/nHA composite fibrous membrane were influenced by the concentration of nHA dispersion and pores on the PDLLA fiber surface. The 10.6 wt % PDLLA/nHA composite fibrous membrane exhibits a more balanced tensile strength (3.28 MPa and surface wettability (with a water contact angle of 0° of the composite mats. Scanning electron microscope and confocal laser scanning microscopy images of chondrocyte proliferation further showed that the composite scaffold is non-toxic. The adherence and proliferation of chondrocytes on the 10.6 wt % PDLLA/nHA fibrous membrane was significantly improved, compared with PDLLA mat. The 10.6 wt % PDLLA/nHA composite fibrous membrane has potential application value as scaffold material in tissue engineering.

  1. Analyses of antibacterial activity and cell compatibility of titanium coated with a Zr-C-N film.

    Directory of Open Access Journals (Sweden)

    Yin-Yu Chang

    Full Text Available The purpose of this study was to verify the antibacterial performance and cell proliferation activity of zirconium (Zr-carbon (C-nitride (N coatings on commercially pure titanium (Ti with different C contents.Reactive nitrogen gas (N(2 with and without acetylene (C(2H(2 was activated by Zr plasma in a cathodic-arc evaporation system to deposit either a zirconium nitride (ZrN or a Zr-C-N coating onto Ti plates. The bacterial activity of the coatings was evaluated against Staphylococcus aureus with the aid of SYTO9 nucleic acid staining and scanning electron microscopy (SEM. Cell compatibility, mRNA expression, and morphology related to human gingival fibroblasts (HGFs on the coated samples were also determined by using the MTT assay, reverse transcriptase-polymerase chain reaction, and SEM.The Zr-C-N coating with the highest C content (21.7 at% exhibited the lowest bacterial preservation (P<0.001. Biological responses including proliferation, gene expression, and attachment of HGF cells to ZrN and Zr-C-N coatings were comparable to those of the uncoated Ti plate.High-C-content Zr-C-N coatings not only provide short-term antibacterial activity against S. aureus but are also biocompatible with HGF cells.

  2. Osteogenetic property of a biodegradable three-dimensional macroporous hydrogel coating on titanium implants fabricated via EPD

    International Nuclear Information System (INIS)

    Ma, Kena; Cai, Xinjie; Zhou, Yi; Jiang, Tao; Wang, Yining; Zhang, Zhen

    2014-01-01

    The potential for a successful integration of implants with surrounding tissue may be jeopardized in a number of compromised conditions. Biochemical surface modification is one of the choices to extend the spectrum of indications. We have previously successfully fabricated chitosan–gelatin (CS/G) coatings on a titanium surface via electrophoretic deposition, which may be promising candidates for further loading of functional agents. In this study, we have identified the microstructure, physicochemical properties and biological performance of CS/G coatings in vitro and in vivo. The in vitro degradation test indicated that CS/G coatings in the presence of lysozyme showed a significant weight loss after 28 days. The results of the cell culture exhibited that CS/G coatings could sustain MC3T3-E1 cell attachment, proliferation and migration. In vivo osteogenetic behavior evaluated by Micro-CT and histomorphometrical analysis revealed significant new bone formation around CS/G implants at 8 and 12 weeks, compared to sandblasted/acid-etched implants. Moreover, histological evaluation suggested the majority of CS/G coatings were degraded at 12 weeks. Therefore, we have concluded that the three-dimensional porous structure of scaffold-like CS/G coatings may facilitate osteogenesis and that such coatings can be biodegraded in the early bone healing process. (paper)

  3. Improving the Tribological Properties of Spark-Anodized Titanium by Magnetron Sputtered Diamond-Like Carbon

    Directory of Open Access Journals (Sweden)

    Zhaoxiang Chen

    2018-02-01

    Full Text Available Spark-anodization of titanium can produce adherent and wear-resistant TiO2 film on the surface, but the spark-anodized titanium has lots of surface micro-pores, resulting in an unstable and high friction coefficient against many counterparts. In this study, the diamond-like carbon (DLC was introduced into the micro-pores of spark-anodized titanium by the magnetron sputtering technique and a TiO2/DLC composite coating was fabricated. The microstructure and tribological properties of TiO2/DLC composite coating were investigated and compared with the anodic TiO2 mono-film and DLC mono-film. Results show that the DLC deposition significantly decreased the surface roughness and porosity of spark-anodized titanium. The fabricated TiO2/DLC composite coating exhibited a more stable and much lower friction coefficient than anodic TiO2 mono-film. Although the friction coefficient of the composite coating and the DLC mono-film was similar under both light load and heavy load conditions, the wear life of the composite coating was about 43% longer than that of DLC mono-film under heavy load condition. The wear rate of titanium with protective composite coating was much lower than that of titanium with DLC mono-film. The superior low friction coefficient and wear rate of the TiO2/DLC composite coating make it a good candidate as protective coating on titanium alloys.

  4. Titanium fasteners. [for aircraft industry

    Science.gov (United States)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  5. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.M. [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of); Lee, J.I. [Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Lim, Y.J., E-mail: limdds@snu.ac.kr [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of)

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  6. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    International Nuclear Information System (INIS)

    Lee, J.M.; Lee, J.I.; Lim, Y.J.

    2010-01-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  7. Surface characteristics of hydroxyapatite/titanium composite layer on the Ti-35Ta-xZr surface by RF and DC sputtering

    International Nuclear Information System (INIS)

    Kim, Won-Gi; Choe, Han-Cheol

    2011-01-01

    The purpose of this study was to investigate the surface characteristics of hydroxyapatite (HA)/titanium (Ti) composite layer on the Ti-35Ta-xZr alloy surface by radio frequency (RF) and direct current (DC) sputtering for dental application. The magnetron sputtered deposition for the HA was performed in the RF mode and for the Ti in the DC mode. Microstructures of the alloys were examined by optical microscopy (OM) and x-ray diffractometer (XRD). Surface characteristics of coated film was investigated by field-emission scanning electron microscope (FE-SEM) equipped with an energy dispersive x-ray spectrometer (EDS), and XRD. Microstructures of the Ti-35Ta-xZr alloys were changed from α'' phase to β phase, and changed from a needle-like structure to an equiaxed structure with increasing Zr content. From the results of polarization behavior in the Ti-35Ta-15Zr alloy, HA/Ti composite layer showed the good corrosion resistance compared to Ti single layer. The results of alternating current (AC) impedance test indicated that the presence of ha coating acted as a stable barrier in increasing the corrosion resistance.

  8. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  9. Preparation of bioactive porous HA/PCL composite scaffolds

    International Nuclear Information System (INIS)

    Zhao, J.; Guo, L.Y.; Yang, X.B.; Weng, J.

    2008-01-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications

  10. Comparative evaluation of dentinal crack formation after root canal preparation using ProTaper Next, OneShape, and Hyflex EDM.

    Science.gov (United States)

    Das, Sanjib; Pradhan, Prasanti Kumari; Lata, S; Sinha, Sachidananda Prasad

    2018-01-01

    The purpose of this study was to compare the incidence of dentinal crack formation after root canal preparation using ProTaper Next, OneShape, and Hyflex electrodischarge machining (HEDM). A total of 75 extracted mandibular premolars were selected. The root canals were instrumented using ProTaper Next, OneShape, and HEDM rotary files. All roots were horizontally sectioned at 3, 6, and 9 mm from apex with slow-speed saw under water cooling. The sections were observed under a stereomicroscope at ×25 to determine the absence or presence of crack. Data were analyzed using post hoc test and one-way ANOVA. ProTaper Next and HEDM produced significantly less cracks than OneShape. Within the limitation of this in vitro study, it can be concluded that nickel-titanium instruments may cause cracks on the root surface. ProTaper Next and HEDM tend to produce less number of cracks as compared to OneShape.

  11. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    International Nuclear Information System (INIS)

    Rodrigues, D.; Teixeira, P.; Tavares, C.J.; Azeredo, J.

    2013-01-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO 2 ) and, more recently, nitrogen-doped titanium dioxide (N-TiO 2 ) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO 2 coating on glass and stainless steel under two different sources of visible light – fluorescent and incandescent – and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO 2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 10 6 CFU/ml on glass and 2.37 × 10 7 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO 2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne

  12. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    Science.gov (United States)

    Rodrigues, D.; Teixeira, P.; Tavares, C. J.; Azeredo, J.

    2013-04-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO2) and, more recently, nitrogen-doped titanium dioxide (N-TiO2) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO2 coating on glass and stainless steel under two different sources of visible light - fluorescent and incandescent - and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 106 CFU/ml on glass and 2.37 × 107 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne pathogens and

  13. Carbon nanotubes/pectin/minerals substituted apatite nanocomposite depositions on anodized titanium for hard tissue implant: In vivo biological performance"†

    International Nuclear Information System (INIS)

    Govindaraj, Dharman; Rajan, Mariappan; Munusamy, Murugan A.; Alarfaj, Abdullah A.; Higuchi, Akon; Suresh Kumar, S.

    2017-01-01

    A surface deposition approach enveloping the use of biocompatible trace components and strengthening materials will affect the physicochemical and osseointegration properties of nanocomposite deposited implants. The current work is aimed at the development of functionalized carbon nanotubes (f-CNT)/Pectin (P)/mineralized hydroxyapatite (M-HA) ((f-CNT/P/M-HA)) nanocomposite depositions by electrophoretic deposition on anodized titanium (TiO_2) implant. The capacity of f-CNT manages the cost of mechanical strength, while pectin (extracted from pomegranate peel) and minerals (strontium, magnesium, and zinc) enhance the biocompatibility of the HA deposition was investigate utilizing different methods. The functional and morphological analyses were done by FTIR, XRD, XPS, SEM-EDX and TEM. The mechanical depiction results show improved adherence quality for the nanocomposite deposition. Additionally, an enhanced viability of osteoblast cells (MG63 (HOS)) was monitored in vitro on the f-CNT/P/M-HA nanocomposite deposition. The capacity of the nanocomposite deposited TiO_2 implant to encourage bone development was assessed in vivo. Hence, the as-synthesized nanocomposite deposited TiO_2 that joins the comfort osteoconductivity of mineralized hydroxyapatite, pectin collectively with the compressive strength of f-CNT can have numerous uses in orthopaedics since it could enhance implant fixation in human bone. - Highlights: • Successful development of CNTs–Pectin reinforced M-HA nanocomposite coating on TiO_2 by electrodeposition. • The success of nanocomposite coatings was evidenced with FTIR, XRD, XPS, SEM-EDX, and TEM. • Nanocomposite coating on TiO_2 is bio-resistive, better candidate for implant applications. • The fabricate nanocomposite coatings showed good biocompatibility and no adverse effect from in vitro and in vivo tests.

  14. Determination of the Titanium Contents in the Winter Oilseed Rape Plants (Brassica napus L. by the Application of Fertilizer Containing Titanium

    Directory of Open Access Journals (Sweden)

    Peter Kováčik

    2016-01-01

    Full Text Available In order to obtain the information about changes of titanium contents in the phytomass during the growing season of winter oilseed rape and about the titanium contents drawn by the rape yield during two farming years the small plot field trial was established. In the trial the fertilizer Mg-Titanit (MgTi containing 8.5 g of titanium in 1 liter was used. The experiment consisted of 5 treatments. 0 – control treatment without MgTi fertilizer; 2xTi0.2 – two applications of MgTi in the dose of 0.2 l/ha; 3xTi0.2 – three applications of MgTi in the dose of 0.2 l/ha; 2xTi0.4 – two applications of MgTi in the dose of 0.4 l/ha; 3xTi0.4 – three applications of MgTi in the dose of 0.4 l/ha. The fertilizer was applied in spring during two, or three different growth stages: BBCH 50, BBCH 59, BBCH 66. The first plant sampling was carried out shortly before the first application of fertilizer (BBCH 50. The second, third and fourth sampling was taken 2–3 weeks after the application of Mg-Titanitu (BBCH 59, BBCH 66, BBCH 71. The obtained results showed that the titanium content in the phytomass of rape was falling during the monitored period. The titanium content in the rape aboveground phytomass varied in the interval from 16.81 to 67.6 mg/kg and in the root in the interval from 56.6 to 258.81 mg/kg. The titanium application on plant leaves in the quantities from 3.4 to 10.2 g per hectare of soil did not have the unambiguous impact on the titanium content in the rape phytomass. In the yield of one tonne of seed and appropriate quantity of rape straw on average 20 grams of titanium was taken in.

  15. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV.

    Science.gov (United States)

    Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen

    2016-10-01

    An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Segmental stability in orthognathic surgery: hydroxyapatite/Poly-l-lactide osteoconductive composite versus titanium miniplate osteosyntheses.

    Science.gov (United States)

    Landes, Constantin A; Ballon, Alexander; Tran, Andreas; Ghanaati, Shahram; Sader, Robert

    2014-09-01

    Hydroxyapatite was included into F-u-HA/PLLA (unsintered hydroxyapatite - Poly l-lactide) composite osteosynthesis material for its documented osteoconductive capacity. This study investigates segmental retention capacities and outcome stability using F-u-HA/PLLA composite osteosyntheses in orthognathic surgery. Of fifty patients in total, 25 patients were osteofixated with F-u-HA/PLLA osteoconductive bioabsorbable osteosyntheses and compared to a group of 25 patients treated with titanium miniplates. The F-u-HA/PLLA group included 14 maxillary advancements, 4 setbacks, 13 impactions, 5 elongations at A-point; the titanium group included 20 maxillary advancements, 2 setbacks, 11 impactions and 11 elongations. In the mandible the F-u-HA/PLLA group included 13 advancements at B-point, 11 setbacks, 16 clockwise rotations and 8 counterclockwise rotations at the Gonial angle (Ar-Go-Gn); the titanium group included 9 mandibular advancements, 5 setbacks, 8 clockwise rotations and 6 counterclockwise rotations at Ar-Go-Gn. Segmental stability and relapse were assessed comparing preoperative, postoperative and follow-up roentgen cephalometrics at 22 ± 11 months on average in F-u-HA/PLLA cases, 24 ± 22 months on average in the titanium group. All absolute operative movements were nonsignificant in the F-u-HA/PLLA cases compared to the titanium osteosynthesis cases. Relapses were nonsignificant but there was greater vertical relapse in maxillary impactions with titanium osteosyntheses. Throughout this study, F-u-HA/PLLA composite osteosyntheses appeared as stable as titanium miniplates. It can therefore be concluded, although from a limited number of patients, that the investigated osteoconductive osteosynthesis can be used in a similar way to titanium miniplates in orthognathic surgery. Compared to earlier studies using other bioabsorbable polymers in the literature, F-u-HA/PLLA proved to be more stable in segmental retention. Copyright © 2014 European Association for

  17. A Study on Kaolin and Titanium dioxide affecting Physical Properties of Electrocoating

    International Nuclear Information System (INIS)

    Yang, Wonseog; Hwang, Woonsuk

    2013-01-01

    The electrocoating for automotive bodies is pigmented with a mixture of titanium dioxide and kaolin. In this study, the effects of titanium dioxide and kaolin contents in coating on electrodeposition process, drying, and surface properties such as surface roughness, gloss, impact resistance and corrosion resistance were investigated. Titanium dioxide and kaolin in coating do not have a decisive effect on curing reaction during drying and corrosion resistance but on gloss, surface roughness, impact resistance and electrodeposition process of coating. According to its size and shape on coating surface, pigment contents increased during drying process. However, the contents of kaolin and TiO 2 in coating didn't affect the corrosion resistance on zinc phosphated substrate, and the curing properties

  18. Experimental Measurement of the Static Coefficient of Friction at the Ti-Ti Taper Connection in Total Hip Arthroplasty.

    Science.gov (United States)

    Bitter, T; Khan, I; Marriott, T; Schreurs, B W; Verdonschot, N; Janssen, D

    2016-03-01

    The modular taper junction in total hip replacements has been implicated as a possible source of wear. The finite-element (FE) method can be used to study the wear potential at the taper junction. For such simulations it is important to implement representative contact parameters, in order to achieve accurate results. One of the main parameters in FE simulations is the coefficient of friction. However, in current literature, there is quite a wide spread in coefficient of friction values (0.15 - 0.8), which has a significant effect on the outcome of the FE simulations. Therefore, to obtain more accurate results, one should use a coefficient of friction that is determined for the specific material couple being analyzed. In this study, the static coefficient of friction was determined for two types of titanium-on-titanium stem-adaptor couples, using actual cut-outs of the final implants, to ensure that the coefficient of friction was determined consistently for the actual implant material and surface finish characteristics. Two types of tapers were examined, Biomet type-1 and 12/14, where type-1 has a polished surface finish and the 12/14 is a microgrooved system. We found static coefficients of friction of 0.19 and 0.29 for the 12/14 and type-1 stem-adaptor couples, respectively.

  19. Preparation of micro/nano-fibrous brushite coating on titanium via chemical conversion for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China); Guo, Yong-yuan [Orthopedic Department, Qilu Hospital of Shandong University, Ji’nan, 250012 (China); Xiao, Gui-yong [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China); Lu, Yu-peng, E-mail: biosdu@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan 250061 (China); School of Materials Science and Engineering, Shandong University, Ji’nan, 250061 (China); Suzhou Institute, Shandong University, Suzhou, 215123 (China)

    2017-03-31

    Highlights: • A chemical conversion brushite coating was prepared on titanium. • The coating exhibits fibrous morphology in micro/nano-scale. • The surface of the coating shows high hydrophilicity and corrosion resistance in the simulated body fluid. • An improvement of cell response was observed on the surface of coated Ti compared to that of the uncoated. - Abstract: Calcium phosphate coatings have been applied on the surface of Ti implants to realize better osseointegration. The formation of dicalcium phosphate dihydrate (CaHPO{sub 4}·2H{sub 2}O), mineralogically named brushite on pure Ti substrate has been investigated via chemical conversion method. Coating composition and microstructure have been investigated by X-ray diffractometer, Fourier transform infrared spectrometer and field emission scanning electron microscope. The results reveal that the coatings are composed of high crystalline brushite with minor scholzite (CaZn{sub 2}(PO{sub 4}){sub 2}·2H{sub 2}O). A micro/nano-scaled fibrous morphology can be produced in the acidic chemical conversion bath with pH 5.00. The surface of the fibrous brushite coating exhibits high hydrophilicity and corrosion resistance in the simulated body fluid. The osteoblast cells grow and spread actively on the coated samples and the proliferation numbers and alkaline phosphate activities of the cells improve significantly compared to the uncoated Ti. It is suggested that the micro/nano-fibrous brushite coating can be a potential approach to improve the osteoinductivity and osteoconductivity of Ti implant, due to its similarity in morphology and dimension to inorganic components of biological hard tissues, and favorable responses to the osteoblasts.

  20. Mechanics and complications of reverse shoulder arthroplasty: morse taper failure analysis and prospective rectification

    International Nuclear Information System (INIS)

    Hoskin, HLD; Furie, E; Ganey, TM; Schlatterer, DR; Collins, W

    2017-01-01

    Since Sir John Charnley began his monumental hip arthroplasty work in 1958, clinical researchers have been incrementally improving longevity and functionality of total joint systems, although implant failure occurs on occasion. The purpose of this study is to report the fracture of the humeral tray Morse taper of a reverse total shoulder system (RTSS), which to date has not been reported with metallurgic analysis for any RTSS. There was no reported antecedent fall, motor vehicle collision, or other traumatic event prior to implant fracture in this case. Analysis was performed on the retrieved failed implant by Scanning Electron Microscopy (SEM) and Electron Dispersion Spectroscopy (EDS) in an attempt to determine the failure method, as well as to offer improvements for future implants. At the time of revision surgery all explants were retained from the left shoulder of a 61-year old male who underwent a non-complicated RTSS 4 years prior. The explants, particularly the cracked humeral tray, were processed as required for SEM and EDS. Analysis was performed on the failure sites in order to determine the chemical composition of the different parts of the implant, discover the chemical composition of the filler metal used during the electron beam welding process, and to detect any foreign elements that could suggest corrosion or other evidence of failure etiology. Gross visual inspection of all explants revealed that implant failure was a result of dissociation of the taper from the humeral tray at the weld, leaving the Morse taper embedded in the humeral stem while the tray floated freely in the patient’s shoulder. SEM further confirmed the jagged edges noted grossly at the weld fracture site, both suggesting failure due to torsional forces. EDS detected elevated levels of carbon and oxygen at the fracture site on the taper only and not on the humeral tray. In order to determine the origin of the high levels of C and O, it was considered that in titanium alloys, C

  1. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Boudot, Cécile, E-mail: cecile.boudot@tum.de [Technical University of Munich, Department of Mechanical Engineering, Boltzmannstraße 15, D-85748 Garching bei München (Germany); Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen [Institute for Plasma Technology and Mathematics, University of Federal Armed Forces Munich, Werner-Heisenberg-Weg 39, D-85577 Neubiberg (Germany)

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO{sub 2}) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150 nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO{sub 2} layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO{sub 2}-coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68 days and the coating's resistance to several sterilization methods. - Highlights: • Vacuum arc plasma was applied to deposit titanium dioxide films onto silicone. • Thickness, roughness and composition of the films were determined. • Cytocompatibility of coated silicone elastomer is greatly improved. • Films have good adhesion to the substrate and are stable, non-toxic and sterilizable.

  2. A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy

    Science.gov (United States)

    Lu, C.; Yao, J. W.; Wang, Y. X.; Zhu, Y. D.; Guo, J. H.; Wang, Y.; Fu, H. Y.; Chen, Z. B.; Yan, M. F.

    2018-02-01

    The heat treatment (consisting of solid solution and aging), is integrated with the nitriding process of titanium coated ZL205A aluminum alloy to improve the surface and matrix mechanical properties simultaneously. Two-step duplex treatment is adopted to prepare the gradient multiphase layer on a magnesium-free ZL205A aluminum-copper based alloy. Firstly, pure titanium film is deposited on the aluminum alloy substrate using magnetron sputtering. Secondly, the Ti-coated specimen is nitrided at the solid solution temperature of the substrate alloying elements in a gas mixture of N2 and H2 and aged at 175 °C. The microstructure evolution, microhardness as well as the wear resistance of obtained multiphase layers are investigated by means of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), microhardness tester and pin-on-disc tribometer. The multiphase layer, dominated by TiN0.3 or Al3Ti, is prepared with significantly increased layer depth after duplex treatment. The surface hardness of multiphase layer is remarkably improved from 23.7HV to 457HV. The core matrix hardness is also increased to 65HV after aging. The wear rate of the multiphase layer decreases about 55.22% and 49.28% in comparison with the aged and Ti coated specimens, respectively. The predominant wear mechanism for the multiphase layer is abrasive and oxidation, but severe adhesive wear for the aged and Ti coated specimens.

  3. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release.

    Science.gov (United States)

    Zou, Qin; Li, Junfeng; Niu, Lulu; Zuo, Yi; Li, Jidong; Li, Yubao

    2017-09-01

    The dipping-drying procedure and cross-linking method were used to make drug-loaded chitosan (CS) coating on nano-hydroxyapatite/polyamide66 (nHA/PA66) composite porous scaffold, endowing the scaffold controlled drug release functionality. The prefabricated scaffold was immersed into an aqueous drug/CS solution in a vacuum condition and then crosslinked by vanillin. The structure, porosity, composition, compressive strength, swelling ratio, drug release and cytocompatibility of the pristine and coating scaffolds were investigated. After coating, the scaffold porosity and pore interconnection were slightly decreased. Cytocompatibility performance was observed through an in vitro experiment based on cell attachment and the MTT assay by MG63 cells which revealed positive cell viability and increasing proliferation over the 11-day period in vitro. The drug could effectively release from the coated scaffold in a controlled fashion and the release rate was sustained for a long period and highly dependent on coating swelling, suggesting the possibility of a controlled drug release. Our results demonstrate that the scaffold with drug-loaded crosslinked CS coating can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to be a promising high performance biomaterial in bone tissue engineering.

  4. Functionally graded bioactive coatings: From fabrication to testing

    Science.gov (United States)

    Foppiano, Silvia

    Every year about half a million Americans undergo total joint replacement surgery of some kind. This number is expected to steadily increase in the future. About 20% of these patients will need a revision surgery because of implant failure, with a significant increase in health care cost. Current implant materials for load bearing applications must be strong enough to support the loads involved in daily activities, and bioinert, to limit reactivity in the body that may cause inflammatory and other adverse reactions. Metal alloys are typically used as materials for load bearing implants and rely on mechanical interlocking to achieve fixation which can be improved by using bone cements. To improve implant osteointegration, metal implants have been coated with a bone-like mineral: hydroxyapatite (HA). The plasma spray technique is commonly used to apply the HA coating. Such implants do not require the use of bone cement. Plasma sprayed HA coated implants are FDA approved and currently on the market, but their properties are not reproducible or reliable. Thus, coating delamination can occur. Our research group developed a novel family of bioactive glasses which were enameled onto titanium alloy using a functionally graded approach. We stratified the coating with different glass compositions to fulfill different functions. We coupled a first glass layer, with a good CTE match to the alloy, with a second layer of bioactive glass obtaining a functionally graded bioactive coating (FGC). In this thesis for the first time the cytocompatibility of novel bioactive glasses, and their functionally graded coatings on Ti6Al4V, was studied with an in vitro bone model (MC3T3-E1.4 mouse preosteblast cells). The novel bioactive glasses are cytocompatible and no compositional change is required. The fabrication process is reproducible, introduces a small (average 6 vol%) amount of crystallization, which does not significantly affect bioactivity in SBF as tested. The coatings are

  5. Imbalance of morphofunctional responses of Jurkat T lymphoblasts at short-term culturing with relief zinc- or copper-containing calcium phosphate coating on titanium.

    Science.gov (United States)

    Litvinova, L S; Shupletsova, V V; Dunets, N A; Khaziakhmatova, O G; Yurova, K A; Khlusova, M Yu; Slepchenko, G B; Cherempey, E G; Sharkeev, Yu P; Komarova, E G; Sedelnikova, M B; Khlusov, I A

    2017-01-01

    Morphofunctional response of Jurkat T cells that were cultured for 24 h on substrates prepared from commercially pure titanium with relief microarc bilateral calcium phosphate coating containing copper or zinc was studied. Changes in the concentration of essential trace elements contained in this coating can cause significant imbalance of molecular processes of differentiation, secretion, apoptosis, and necrosis and reduce tumor cell survival.

  6. Biopolymer Doped with Titanium Dioxide Superhydrophobic Photocatalysis as Self-Clean Coating for Lightweight Composite

    Directory of Open Access Journals (Sweden)

    Anika Zafiah M. Rus

    2013-01-01

    Full Text Available The development of a lightweight composite (LC based on Portland cement concrete with waste lightweight aggregate (WLA additive was carried out to improve the sustainability and environmental impact and to offer potential cost savings without sacrificing strength. Treatment of the surface of the LC exposed to environmental attack by coating with biopolymer based on waste cooking oil doped with titanium dioxide photocatalysis (TOP with superhydrophilic property was found to affect the mechanical properties of the LC in a systematic way. The results of compressive strength showed that the composite achieved the minimum required strength for lightweight construction materials of 17.2 MPa. Scratch resistance measurements showed that the highest percentages loading of superhydrophilic particles (up to 2.5% of biomonomer weight for LC's surface coating gave the highest scratch resistance while the uncoated sample showed the least resistances. Scanning electron microscope (SEM pictures revealed the difference between the surface roughness for LC with and without TOP coating. TOP is also formulated to provide self-cleaning LC surfaces based on two principal ways: (1 the development by coating the LC with a photocatalytic superhydrophilic, (2 if such a superhydrophilic is illuminated by light, the grease, dirt, and organic contaminants will be decomposed and can easily be swept away by rain.

  7. ANTIMICROBIAL PROPERTIES OF HYDROXYAPATITE COATINGS CONTAINING OF CHITOSAN AND SILVER ON TITANIUM SUBSTRATES IN RELATION TO MICROORGANISMS E.COLI ATCC 25922

    Directory of Open Access Journals (Sweden)

    Sukhodub LB

    2013-03-01

    Full Text Available In this work it was studied the antibacterial properties of coatings based on HA, with Chitosan and silver ions additions, produced by substrates termodeposition method from aqueous solutions with varying concentrations of Chitosan (0.025 and 0.1 g/l and silver (1 mg/l as the antimicrobial components as well as three-part cover, consisting of a film of Chitosan, HA and silver. Study on antibacterial properties of composite coatings on the pathogen E.coli ATCC 25922 was held by Spectrophotometric measurement and analysis of optical density of suspensions, containing samples. 3 series of measurements data were averaged. The results showed that the concentration of antimicrobial components have indicated a bacteriostatic effect of coatings on the culture of E. coli AS ATCC 25922 in physiological solution at a temperature of 37 °C. The most effective was the three-part cover consisting of a film of chitosan, HA and silver.

  8. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone

    Directory of Open Access Journals (Sweden)

    Johansson P

    2016-04-01

    Full Text Available Pär Johansson,1 Ryo Jimbo,1 Yoshihito Naito,2 Per Kjellin,3 Fredrik Currie,3 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Oral Implant Center, Tokushima University Hospital, Tokushima, Japan; 3Promimic AB, Stena Center, Göteborg, Sweden Abstract: Polyether ether ketone (PEEK possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test, and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05. The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01. With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential. Keywords: HA, PEEK, osseointegration, histology, orthopedics, in vivo

  9. Deposition of titanium nitride layers by electric arc – Reactive plasma spraying method

    International Nuclear Information System (INIS)

    Şerban, Viorel-Aurel; Roşu, Radu Alexandru; Bucur, Alexandra Ioana; Pascu, Doru Romulus

    2013-01-01

    Highlights: ► Titanium nitride layers deposited by electric arc – reactive plasma spraying method. ► Deposition of titanium nitride layers on C45 steel at different spraying distances. ► Characterization of the coatings hardness as function of the spraying distances. ► Determination of the corrosion behavior of titanium nitride layers obtained. - Abstract: Titanium nitride (TiN) is a ceramic material which possesses high mechanical properties, being often used in order to cover cutting tools, thus increasing their lifetime, and also for covering components which are working in corrosive environments. The paper presents the experimental results on deposition of titanium nitride coatings by a new combined method (reactive plasma spraying and electric arc thermal spraying). In this way the advantages of each method in part are combined, obtaining improved quality coatings in the same time achieving high productivity. Commercially pure titanium wire and C45 steel as substrate were used for experiments. X-ray diffraction analysis shows that the deposited coatings are composed of titanium nitride (TiN, Ti 2 N) and small amounts of Ti 3 O. The microstructure of the deposited layers, investigated both by optical and scanning electron microscopy, shows that the coatings are dense, compact, without cracks and with low porosity. Vickers microhardness of the coatings presents maximum values of 912 HV0.1. The corrosion tests in 3%NaCl solution show that the deposited layers have a high corrosion resistance compared to unalloyed steel substrate.

  10. Bi-functionalization of a calcium phosphate-coated titanium surface with slow-release simvastatin and metronidazole to provide antibacterial activities and pro-osteodifferentiation capabilities.

    Directory of Open Access Journals (Sweden)

    Yunsong Liu

    Full Text Available Coating the surface of titanium implants or other bone graft substitute materials with calcium phosphate (Ca-P crystals is an effective way to enhance the osteoconduction of the implants. Ca-P coating alone cannot confer pro-osteodifferentiation and antibacterial capabilities on implants; however, it can serve as a carrier for biological agents which could improve the performance of implants and bone substitutes. Here, we constructed a novel, bi-functional Ca-P coating with combined pro-osteodifferentiation and antibacterial capabilities. Different concentrations of metronidazole (MNZ and simvastatin (SIM were integrated into biomimetic Ca-P coatings on the surface of titanium disks. The biological effects of this bi-functional biomimetic coating on human bone marrow mesenchymal stem cells (hBMMSCs, human adipose derived stromal cells (hASCs, and Porphyromonas gingivalis were assessed in vitro. We observed that Ca-P coatings loaded with both SIM and MNZ display favorable release kinetics without affecting cell proliferation or attachment. In the inhibition zone test, we found that the bi-functional coating showed lasting antibacterial effects when incubated with Porphyromonas gingivalis for 2 and 4 days. Moreover, the osteodifferentiation of hBMMSCs and hASCs were increased when cultured on this bi-functional coating for 7 and 14 days. Both drugs were loaded onto the Ca-P coating at specific concentrations (10(-5 M SIM; 10(-2 M MNZ to achieve optimal release kinetics. Considering the safety, stability and low cost of SIM and MNZ, this novel bi-functional Ca-P coating technique represents a promising method to improve the performance of metal implants or other bone substitute materials, and can theoretically be easily translated to clinical applications.

  11. Analysis of Minimum Quantity Lubrication (MQL for Different Coating Tools during Turning of TC11 Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Sheng Qin

    2016-09-01

    Full Text Available The tool coating and cooling strategy are two key factors when machining difficult-to-cut materials such as titanium alloy. In this paper, diamond coating was deposited on a commercial carbide insert as an attempt to increase the machinability of TC11 alloy during the turning process. An uncoated carbide insert and a commercial Al2O3/TiAlN-coated tool were also tested as a comparison. Furthermore, MQL was applied to improve the cutting condition. Cutting performances were analyzed by cutting force, cutting temperate and surface roughness measurements. Tool wears and tool lives were evaluated to find a good matchup between the tool coating and cooling strategy. According to the results, using MQL can slightly reduce the cutting force. By applying MQL, cutting temperatures and tool wears were reduced by a great amount. Besides, MQL can affect the tool wear mechanism and tool failure modes. The tool life of an Al2O3/TiAlN-coated tool can be prolonged by 88.4% under the MQL condition. Diamond-coated tools can obtain a good surface finish when cutting parameters and lubrication strategies are properly chosen.

  12. Characterization and coating stability evaluation of nickel-titanium orthodontic esthetic wires: an in vivo study.

    Science.gov (United States)

    Argalji, Nina; Silva, Eduardo Moreira da; Cury-Saramago, Adriana; Mattos, Claudia Trindade

    2017-08-21

    The objective of this study was to compare coating dimensions and surface characteristics of two different esthetic covered nickel-titanium orthodontic rectangular archwires, as-received from the manufacturer and after oral exposure. The study was designed for comparative purposes. Both archwires, as-received from the manufacturer, were observed using a stereomicroscope to measure coating thickness and inner metallic dimensions. The wires were also exposed to oral environment in 11 orthodontic active patients for 21 days. After removing the samples, stereomicroscopy images were captured, coating loss was measured and its percentage was calculated. Three segments of each wire (one as-received and two after oral exposure) were observed using scanning electron microscopy for a qualitative analysis of the labial surface of the wires. The Lilliefors test and independent t-test were applied to verify normality of data and statistical differences between wires, respectively. The significance level adopted was 0.05. The results showed that the differences between the wires while comparing inner height and thickness were statistically significant (p wire presented a coating thickness twice that of the control wire, which was also a statistically significant difference. The coating loss percentage was also statistically different (p = 0.0346) when the latest launched wire (13.27%) was compared to the control (29.63%). In conclusion, the coating of the most recent wire was thicker and more uniform, whereas the control had a thinner coating on the edges. After oral exposure, both tested wires presented coating loss, but the most recently launched wire exhibited better results.

  13. The Interface Structure of High-Temperature Oxidation-Resistant Aluminum-Based Coatings on Titanium Billet Surface

    Science.gov (United States)

    Xu, Zhefeng; Rong, Ju; Yu, Xiaohua; Kun, Meng; Zhan, Zhaolin; Wang, Xiao; Zhang, Yannan

    2017-10-01

    A new type of high-temperature oxidation-resistant aluminum-based coating, on a titanium billet surface, was fabricated by the cold spray method, at a high temperature of 1050°C, for 8 h, under atmospheric pressure. The microstructure of the exposed surface was analyzed via optical microscopy, the microstructure of the coating and elemental diffusion was analyzed via field emission scanning electron microscopy, and the interfacial phases were identified via x-ray diffraction. The Ti-Al binary phase diagram and Gibbs free energy of the stable phase were calculated by Thermo-calc. The results revealed that good oxidation resistant 50-μm-thick coatings were successfully obtained after 8 h at 1050°C. Two layers were obtained after the coating process: an Al2O3 oxidation layer and a TiAl3 transition layer on the Ti-based substrate. The large and brittle Al2O3 grains on the surface, which can be easily spalled off from the surface after thermal processing, protected the substrate against oxidation during processing. In addition, the thermodynamic calculation results were in good agreement with the experimental data.

  14. Effects of palladium coatings on oxygen sensors of titanium dioxide thin films

    International Nuclear Information System (INIS)

    Castaneda, L.

    2007-01-01

    Titanium dioxide (TiO 2 -anatase phase) thin films were deposited by the ultrasonic spray pyrolysis technique employing titanium (IV) oxide acetylacetonate (TiO(acac) 2 ) dissolved in pure methanol as a source material. In order to prepare oxygen sensors, TiO 2 thin films were deposited on interdigitated gold electrodes with contacted alumina substrates. Palladium (Pd) coatings were carried out by vacuum thermal evaporation through a metallic mask. The effect of the surface additive (Pd) on the response of the thin film TiO 2 oxygen sensors was monitored in a mixture with zero-grade air. The electrical characterization (monitoring of the electrical surface resistance with the operation temperature) of the sensors in an atmosphere of oxygen (diluted in zero-grade air) was performed in a vacuum chamber (10 -6 Torr), where the gas pressure can be controlled. The films sensitivity was estimated by the following relation: s=R gas -R 0 /R 0 . The response time of the sensor is defined to be the time needed to reach a 0.9R 0 value when the oxygen excess is removed. The gas-sensing properties of TiO 2 sensors in an atmosphere of 10 4 ppm of oxygen were measured between 100 and 450 deg. C. Experimental results obtained using palladium as a surface additive show that the sensitivity reaches a stationary value of 1.18 for O 2 concentration of 100ppm in zero-grade air at 300 deg. C, which is as high as those reported for oxygen sensors prepared with more expensive and complex techniques. The role and activity of palladium coatings incorporated on solid-state oxygen sensors are determined by their chemical state, aggregation form and interaction with the metal-oxide semiconductor

  15. Characterization of Porous Phosphate Coatings Enriched with Magnesium or Zinc on CP Titanium Grade 2 under DC Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Krzysztof Rokosz

    2018-02-01

    Full Text Available The aim of the paper is to study and determine the effect of voltage increasing from 500 up to 650 VDC on chemical and electrochemical properties of the obtained porous coatings with plasma electrolytic oxidation (PEO processes, known also as micro arc oxidation (MAO. In the present paper, the chemical and electrochemical characterization of porous phosphate coatings enriched with magnesium or zinc on commercially pure (CP Titanium Grade 2 under DC-PEO obtained in electrolytes based on concentrated 85% analytically pure H3PO4 (98 g/mole acid with additions of 500 g·L−1 of zinc nitrate Zn(NO32∙6H2O or magnesium nitrate Mg(NO32∙6H2O, are described. These materials were characterized using scanning electron microscope (SEM with energy-dispersive X-ray spectroscopy (EDS, X-ray photoelectron spectroscopy (XPS and glow discharge optical emission spectroscopy (GDOES. It was found that the voltage of PEO process has influence on the chemical composition and thickness of the obtained porous coatings as well as on their electrochemical behavior. The higher the potential of PEO treatment, the higher the amount of zinc-to-phosphorus ratio for zinc enriched coatings was obtained, whereas in magnesium enriched coatings, the average amount of magnesium detected in PEO coating is approximately independent of the PEO voltages. Based on XPS studies, it was found out that most likely the top 10 nm of porous coatings is constructed of titanium (Ti4+, magnesium (Mg2+, zinc (Zn2+, and phosphates PO43− and/or HPO42− and/or H2PO4− and/or P2O74−. On the basis of GDOES studies, a four-sub-layer model of PEO coatings is proposed. Analysis of the potentiodynamic corrosion curves allowed to conclude that the best electrochemical repeatability was noted for magnesium and zinc enriched coatings obtained at 575 VDC.

  16. Carbon nanotubes/pectin/minerals substituted apatite nanocomposite depositions on anodized titanium for hard tissue implant: In vivo biological performance{sup †}

    Energy Technology Data Exchange (ETDEWEB)

    Govindaraj, Dharman [Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Rajan, Mariappan, E-mail: rajanm153@gmail.com [Biomaterials in Medicinal Chemistry Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Munusamy, Murugan A.; Alarfaj, Abdullah A. [Department of Botany and Microbiology, College of Science, King Saud University, Riyadh (Saudi Arabia); Higuchi, Akon [Department of Chemical and Materials Engineering, National Central University, Jhong-li, Taoyuan, 32001 Taiwan (China); Suresh Kumar, S. [Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang (Malaysia)

    2017-06-15

    A surface deposition approach enveloping the use of biocompatible trace components and strengthening materials will affect the physicochemical and osseointegration properties of nanocomposite deposited implants. The current work is aimed at the development of functionalized carbon nanotubes (f-CNT)/Pectin (P)/mineralized hydroxyapatite (M-HA) ((f-CNT/P/M-HA)) nanocomposite depositions by electrophoretic deposition on anodized titanium (TiO{sub 2}) implant. The capacity of f-CNT manages the cost of mechanical strength, while pectin (extracted from pomegranate peel) and minerals (strontium, magnesium, and zinc) enhance the biocompatibility of the HA deposition was investigate utilizing different methods. The functional and morphological analyses were done by FTIR, XRD, XPS, SEM-EDX and TEM. The mechanical depiction results show improved adherence quality for the nanocomposite deposition. Additionally, an enhanced viability of osteoblast cells (MG63 (HOS)) was monitored in vitro on the f-CNT/P/M-HA nanocomposite deposition. The capacity of the nanocomposite deposited TiO{sub 2} implant to encourage bone development was assessed in vivo. Hence, the as-synthesized nanocomposite deposited TiO{sub 2} that joins the comfort osteoconductivity of mineralized hydroxyapatite, pectin collectively with the compressive strength of f-CNT can have numerous uses in orthopaedics since it could enhance implant fixation in human bone. - Highlights: • Successful development of CNTs–Pectin reinforced M-HA nanocomposite coating on TiO{sub 2} by electrodeposition. • The success of nanocomposite coatings was evidenced with FTIR, XRD, XPS, SEM-EDX, and TEM. • Nanocomposite coating on TiO{sub 2} is bio-resistive, better candidate for implant applications. • The fabricate nanocomposite coatings showed good biocompatibility and no adverse effect from in vitro and in vivo tests.

  17. Performance of an elliptically tapered neutron guide

    International Nuclear Information System (INIS)

    Muehlbauer, Sebastian; Stadlbauer, Martin; Boeni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe

    2006-01-01

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics

  18. Fabrication of titanium removable dental prosthesis frameworks with a 2-step investment coating method.

    Science.gov (United States)

    Koike, Mari; Hummel, Susan K; Ball, John D; Okabe, Toru

    2012-06-01

    Although pure titanium is known to have good biocompatibility, a titanium alloy with better strength is needed for fabricating clinically acceptable, partial removable dental prosthesis (RDP) frameworks. The mechanical properties of an experimental Ti-5Al-5Cu alloy cast with a 2-step investment technique were examined for RDP framework applications. Patterns for tests for various properties and denture frameworks for a preliminary trial casting were invested with a 2-step coating method using 2 types of mold materials: a less reactive spinel compound (Al(2)O(3)·MgO) and a less expensive SiO(2)-based material. The yield and tensile strength (n=5), modulus of elasticity (n=5), elongation (n=5), and hardness (n=8) of the cast Ti-5Al-5Cu alloy were determined. The external appearance and internal porosities of the preliminary trial castings of denture frameworks (n=2) were examined with a conventional dental radiographic unit. Cast Ti-6Al-4V alloy and commercially pure titanium (CP Ti) were used as controls. The data for the mechanical properties were statistically analyzed with 1-way ANOVA (α=.05). The yield strength of the cast Ti-5Al-5Cu alloy was 851 MPa and the hardness was 356 HV. These properties were comparable to those of the cast Ti-6Al-4V and were higher than those of CP Ti (PAl-5Cu frameworks was found to have been incompletely cast. The cast biocompatible experimental Ti-5Al-5Cu alloy exhibited high strength when cast with a 2-step coating method. With a dedicated study to determine the effect of sprue design on the quality of castings, biocompatible Ti-5Al-5Cu RDP frameworks for a clinical trial can be produced. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    International Nuclear Information System (INIS)

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-01-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH) 2 ). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum/carbon nanotube

  20. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maho, Anthony [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Fonds pour la Formation à la Recherche dans l' Industrie et dans l' Agriculture (FRIA), Rue d' Egmont 5, B-1000 Bruxelles (Belgium); Detriche, Simon; Delhalle, Joseph [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Zineb, E-mail: zineb.mekhalif@fundp.ac.be [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH){sub 2}). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum

  1. Do Bone Graft and Cracking of the Sclerotic Cavity Improve Fixation of Titanium and Hydroxyapatite-coated Revision Implants in an Animal Model?

    Science.gov (United States)

    Elmengaard, Brian; Baas, Joergen; Jakobsen, Thomas; Kold, Soren; Jensen, Thomas B; Bechtold, Joan E; Soballe, Kjeld

    2017-02-01

    We previously introduced a manual surgical technique that makes small perforations (cracks) through the sclerotic bone shell that typically forms during the process of aseptic loosening ("crack" revision technique). Perforating just the shell (without violating the proximal cortex) can maintain overall bone continuity while allowing marrow and vascular elements to access the implant surface. Because many revisions require bone graft to fill defects, we wanted to determine if bone graft could further increase implant fixation beyond what we have experimentally shown with the crack technique alone. Also, because both titanium (Ti6Al4V) and hydroxyapatite (HA) implant surfaces are used in revisions, we also wanted to determine their relative effectiveness in this model. We hypothesized that both (1) allografted plasma-sprayed Ti6Al4V; and (2) allografted plasma-sprayed HA-coated implants inserted with a crack revision technique have better fixation compared with a noncrack revision technique in each case. Under approval from our Institutional Animal Care and Use Committee, a female canine animal model was used to evaluate the uncemented revision technique (crack, noncrack) using paired contralateral implants while implant surface (Ti6Al4V, HA) was qualitatively compared between the two (unpaired) series. All groups received bone allograft tightly packed around the implant. This revision model includes a cylindrical implant pistoning 500 μm in a 0.75-mm gap, with polyethylene particles, for 8 weeks. This engenders a bone and tissue response representative of the metaphyseal cancellous region of an aseptically loosened component. At 8 weeks, the original implants were revised and followed for an additional 4 weeks. Mechanical fixation was assessed by load, stiffness, and energy to failure when loaded in axial pushout. Histomorphometry was used to determine the amount and location of bone and fibrous tissue in the grafted gap. The grafted crack revision improved

  2. Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium

    Science.gov (United States)

    Cai, Feng; Gao, Feng; Pant, Shashank; Huang, Xiao; Yang, Qi

    2016-01-01

    Rotor blades of Bell CH-146 Griffon helicopter experience excessive solid particle erosion at low altitudes in desert environment. The rotor blade is made of an advanced light-weight composite which, however, has a low resistance to solid particle erosion. Coatings have been developed and applied to protect the composite blade. However, due to the influence of coating process on composite material, the compatibility between coating and composite base, and the challenges of repairing damaged coatings as well as the inconsistency between the old and new coatings, replaceable thin metal shielding is an alternative approach; and titanium, due to its high-specific strength and better formability, is an ideal candidate. This work investigates solid particle erosion behaviors of carbon-fiber epoxy composite and titanium in order to assess the feasibility of titanium as a viable candidate for erosion shielding. Experiment results showed that carbon-fiber epoxy composite showed a brittle erosion behavior, whereas titanium showed a ductile erosion mode. The erosion rate on composite was 1.5 times of that on titanium at impingement angle 15° and increased to 5 times at impact angle 90°.

  3. Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating

    Science.gov (United States)

    Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin

    2017-08-01

    In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.

  4. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    Science.gov (United States)

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Assessment of apically extruded debris produced by the single-file ProTaper F2 technique under reciprocating movement.

    Science.gov (United States)

    De-Deus, Gustavo; Brandão, Maria Claudia; Barino, Bianca; Di Giorgi, Karina; Fidel, Rivail Antonio Sergio; Luna, Aderval Severino

    2010-09-01

    This study was designed to quantitatively evaluate the amount of dentin debris extruded from the apical foramen by comparing the conventional sequence of the ProTaper Universal nickel-titanium (NiTi) files with the single-file ProTaper F2 technique. Thirty mesial roots of lower molars were selected, and the use of different instrumentation techniques resulted in 3 groups (n=10 each). In G1, a crown-down hand-file technique was used, and in G2 conventional ProTaper Universal technique was used. In G3, ProTaper F2 file was used in a reciprocating motion. The apical finish preparation was equivalent to ISO size 25. An apparatus was used to evaluate the apically extruded debris. Statistical analysis was performed using 1-way analysis of variance and Tukey multiple comparisons. No significant difference was found in the amount of the debris extruded between the conventional sequence of the ProTaper Universal NiTi files and the single-file ProTaper F2 technique (P>.05). In contrast, the hand instrumentation group extruded significantly more debris than both NiTi groups (P<.05). The present results yielded favorable input for the F2 single-file technique in terms of apically extruded debris, inasmuch as it is the most simple and cost-effective instrumentation approach. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  6. Titanium oxide fever; De titaniumoxidekoorts

    Energy Technology Data Exchange (ETDEWEB)

    De Jonge, D.; Visser, J. [Afdeling Luchtkwaliteit, GGD Amsterdam, Amsterdam (Netherlands)

    2012-02-15

    One measure to improve air quality is to apply photo-catalytic substances that capture NOx onto the road surface or onto baffle boards alongside the roads. The effect of titanium oxide containing clinkers with coating was discussed in the report 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands' that was published in May 2011. This article examines the way in which the effectiveness of this study was determined. Can titanium oxide containing clinkers and coatings indeed capture NOx?. [Dutch] Een van de maatregelen om de luchtkwaliteit te verbeteren is het aanbrengen van fotokatalytische stoffen waarmee NOx kan worden afgevangen op bijvoorbeeld wegdek of op geluidsschermen langs wegen. Over het effect van titaniumoxidehoudende straatklinkers en hierop aangebrachte coatings verscheen in mei 2011 het rapport 'Demonstration project of air-purifying pavement in Hengelo, The Netherlands'. Dit artikel gaat over de manier waarop de effectiviteit in het hiervoor genoemde onderzoek is bepaald. Kunnen titaniumoxidehoudende klinkers en coatings inderdaad NOx afvangen?.

  7. Evaluation of the incidence of microcracks caused by Mtwo and ProTaper Next rotary file systems versus the self-adjusting file: A scanning electron microscopic study.

    Science.gov (United States)

    Saha, Suparna Ganguly; Vijaywargiya, Neelam; Saxena, Divya; Saha, Mainak Kanti; Bharadwaj, Anuj; Dubey, Sandeep

    2017-01-01

    To evaluate the incidence of microcrack formation canal preparation with two rotary nickel-titanium systems Mtwo and ProTaper Next along with the self-adjusting file system. One hundred and twenty mandibular premolar teeth were selected. Standardized access cavities were prepared and the canals were manually prepared up to size 20 after coronal preflaring. The teeth were divided into three experimental groups and one control group ( n = 30). Group 1: The canals were prepared using Mtwo rotary files. Group 2: The canals were prepared with ProTaper Next files. Group 3: The canals were prepared with self-adjusting files. Group 4: The canals were unprepared and used as a control. The roots were sectioned horizontally 3, 6, and 9 mm from the apex and examined under a scanning electron microscope to check for the presence of microcracks. The Pearson's Chi-square test was applied. The highest incidence of microcracks were associated with the ProTaper Next group, 80% ( P = 0.00), followed by the Mtwo group, 70% ( P = 0.000), and the least number of microcracks was noted in the self-adjusting file group, 10% ( P = 0.068). No significant difference was found between the ProTaper Next and Mtwo groups ( P = 0.368) while a significant difference was observed between the ProTaper Next and self-adjusting file groups ( P = 0.000) as well as the Mtwo and self-adjusting file groups ( P = 0.000). All nickel-titanium rotary instrument systems were associated with microcracks. However, the self-adjusting file system had significantly fewer microcracks when compared with the Mtwo and ProTaper Next.

  8. Influence of multiple clinical use on fatigue resistance of ProTaper rotary nickel-titanium instruments.

    Science.gov (United States)

    Vieira, E P; França, E C; Martins, R C; Buono, V T L; Bahia, M G A

    2008-02-01

    To examine the influence of clinical use on the occurrence of deformation and fracture and on the fatigue resistance of ProTaper rotary instruments. Root canal treatments were performed on patients using the ProTaper rotary system. Ten sets of instruments were used by an experienced endodontist, each set in five molars. Another 10 sets of instruments were used by the same operator, each set in eight molars. In addition, 10 sets of instruments were used, each set in five molars, by undergraduate students with no clinical experience with the system. After clinical use, S1, S2, F1 and F2 instruments were analysed for damage by optical and scanning electron microscopy. The used sets, along with a control group of 12 sets of new instruments, were then tested in a bench device for fatigue resistance. The use of the ProTaper rotary instruments by an experienced endodontist allowed for the cleaning and shaping of the root canal system of up to eight molars without fracture. During the students work, six instruments fractured. Fatigue resistance decreased upon clinical use for all instruments analysed. Fatigue resistance of used instruments was reduced, but no significant change was observed amongst the instruments used for shaping the canals of five and eight molars. Operator experience affected the occurrence of fracture and plastic deformation during shaping.

  9. Laser cladding Ni-base composite coating on titanium alloy with pre-placed B4C+NiCoCrAlY

    International Nuclear Information System (INIS)

    Qingwu Meng; Lin Geng; Zhenzhu Zheng

    2005-01-01

    Using a CO 2 laser, a process of cladding Ni-base composite coating on Ti6Al4V with pre-placed B 4 C and NiCoCrAlY was studied. A good metallurgical bonding coating without cracks and pores was obtained in reasonable ratio of components and low energy laser process. Morphology and microstructure of the coating were analyzed with OM, XRD, SEM and EDS. It is certain that there was a reaction between B 4 C and Ti during in-situ producing TiB 2 and TiC. The Ni-base composite coating is strengthened with TiB 2 and TiC reinforcement phases. Vickers hardness tester measured that the average microhardness of the coating is HV1200 and it is 3.5 times of the Ti6Al4V substrate. The high hard coating containing several reinforcement phases greatly enhances wear resistance of titanium alloy. (orig.)

  10. Characterization and coating stability evaluation of nickel-titanium orthodontic esthetic wires: an in vivo study

    Directory of Open Access Journals (Sweden)

    Nina ARGALJI

    2017-08-01

    Full Text Available Abstract The objective of this study was to compare coating dimensions and surface characteristics of two different esthetic covered nickel-titanium orthodontic rectangular archwires, as-received from the manufacturer and after oral exposure. The study was designed for comparative purposes. Both archwires, as-received from the manufacturer, were observed using a stereomicroscope to measure coating thickness and inner metallic dimensions. The wires were also exposed to oral environment in 11 orthodontic active patients for 21 days. After removing the samples, stereomicroscopy images were captured, coating loss was measured and its percentage was calculated. Three segments of each wire (one as-received and two after oral exposure were observed using scanning electron microscopy for a qualitative analysis of the labial surface of the wires. The Lilliefors test and independent t-test were applied to verify normality of data and statistical differences between wires, respectively. The significance level adopted was 0.05. The results showed that the differences between the wires while comparing inner height and thickness were statistically significant (p < 0.0001. In average, the most recently launched wire presented a coating thickness twice that of the control wire, which was also a statistically significant difference. The coating loss percentage was also statistically different (p = 0.0346 when the latest launched wire (13.27% was compared to the control (29.63%. In conclusion, the coating of the most recent wire was thicker and more uniform, whereas the control had a thinner coating on the edges. After oral exposure, both tested wires presented coating loss, but the most recently launched wire exhibited better results.

  11. Electrodeposition of niobium and titanium in molten salts

    International Nuclear Information System (INIS)

    Sartori, A.F.; Chagas, H.C.

    1988-01-01

    The electrodeposition of niobium and titanium in molten fluorides from the additions of fluorine niobates and fluorine titanates of potassium is described in laboratory and pilot scale. The temperature influence, the current density and the time deposition over the current efficiency, the deposits structure and the deposits purity are studied. The conditions for niobium coating over copper and carbon steel and for titanium coating over carbon steel are also presented. (C.G.C.) [pt

  12. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, D.; Teixeira, P. [Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Tavares, C.J. [Center of Physics, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Azeredo, J., E-mail: jazeredo@deb.uminho.pt [Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-04-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO{sub 2}) and, more recently, nitrogen-doped titanium dioxide (N-TiO{sub 2}) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO{sub 2} coating on glass and stainless steel under two different sources of visible light – fluorescent and incandescent – and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO{sub 2} coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 10{sup 6} CFU/ml on glass and 2.37 × 10{sup 7} on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO{sub 2} coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly

  13. Anodized porous titanium coated with Ni-CeO{sub 2} deposits for enhancing surface toughness and wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaowei, E-mail: zhouxiaowei901@163.com; Ouyang, Chun

    2017-05-31

    Highlights: • Structural design of anodized nanoporous Ti was introduced for bonding pinholes to achieve a metallurgical bonding interface. • Anodized porous Ti substrate was activated by electroless Ni-P film to be acted as transitional layer to deposit Ni-CeO{sub 2} nanocomposite coatings. • An analytical model was validated for predicting the Ce-rich worn products as a self-lubricant phase for monitoring wear mechanisms. - Abstract: In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO{sub 2} nanocomposite coatings. Regarding TiO{sub 2} barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO{sub 2} deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO{sub 2} nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO{sub 2} nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO{sub 2} coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO{sub 2} deposits, showing the existing Ce-rich worn products to be acted as a

  14. Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2016-01-01

    Full Text Available Novel protein sensors based on tapered optical fibres modified with Au coatings deposited using two different procedures are proposed. Au-based coatings are deposited onto a nonadiabatic tapered optical fibre using (i a novel facile method composed of layer-by-layer deposition consisting of polycation (poly(allylamine hydrochloride, PAH and negatively charged SiO2 nanoparticles (NPs followed by the deposition of the charged Au NPs and (ii the sputtering technique. The Au NPs and Au thin film surfaces are then modified with biotin in order to bind streptavidin (SV molecules and detect them. The sensing principle is based on the sensitivity of the transmission spectrum of the device to changes in the refractive index of the coatings induced by the SV binding to the biotin. Both sensors showed high sensitivity to SV, with the lowest measured concentration levels below 2.5 nM. The calculated binding constant for the biotin-SV pair was 2.2×10-11 M−1 when a tapered fibre modified with the LbL method was used, with a limit of detection (LoD of 271 pM. The sensor formed using sputtering had a binding constant of 1.01×10-10 M−1 with a LoD of 806 pM. These new structures and their simple fabrication technique could be used to develop other biosensors.

  15. On the development of a dual-layered diamond-coated tool for the effective machining of titanium Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Srinivasan, Balaji; Rao, Balkrishna C; Ramachandra Rao, M S

    2017-01-01

    This work is focused on the development of a dual-layered diamond-coated tungsten carbide tool for machining titanium Ti-6Al-4V alloy. A hot-filament chemical vapor deposition technique was used to synthesize diamond films on tungsten carbide tools. A boron-doped diamond interlayer was added to a microcrystalline diamond layer in an attempt to improve the interface adhesion strength. The dual-layered diamond-coated tool was employed in machining at cutting speeds in the range of 70 to 150 m min −1 with a lower feed and a lower depth of cut of 0.5 mm rev −1 and 0.5 mm, respectively, to operate in the transition from adhesion- to diffusion-tool-wear and thereby arrive at suitable conditions for enhancing tool life. The proposed tool was then compared, on the basis of performance under real-time cutting conditions, with commercially available microcrystalline diamond, nanocrystalline diamond, titanium nitride and uncoated tungsten carbide tools. The life and surface finish of the proposed dual-layered tool and uncoated tungsten carbide were also investigated in interrupted cutting such as milling. The results of this study show a significant improvement in tool life and finish of Ti-6Al-4V parts machined with the dual-layered diamond-coated tool when compared with its uncoated counterpart. These results pave the way for the use of a low-cost tool, with respect to, polycrystalline diamond for enhancing both tool life and machining productivity in critical sectors fabricating parts out of titanium Ti-6Al-4V alloy. The application of this coating technology can also be extended to the machining of non-ferrous alloys owing to its better adhesion strength. (paper)

  16. Thermoexpanded graphite modification by titanium dioxide

    International Nuclear Information System (INIS)

    Semko, L.S.; Gorbik, P.P.; Chujko, O.O.; Kruchek, Ya.Yi.; Dzyubenko, L.S.; Orans'ka, O.Yi.

    2006-01-01

    A method of the synthesis of thermoexpanded graphite (TEG) powders coated by titanium dioxide is developed. The conversion of n-buthylorthotitanate into TiO 2 on the TEG surface is investigated. The optimal parameters of the synthesis and the structure of titanium dioxide clusters on the TEG surface are determined

  17. Evaluation of Osseointegration of Titanium Alloyed Implants Modified by Plasma Polymerization

    Directory of Open Access Journals (Sweden)

    Carolin Gabler

    2014-02-01

    Full Text Available By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V coated with plasma-polymerized allylamine (PPAAm and plasma-polymerized ethylenediamine (PPEDA versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%. Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5% and implants with PPEDA a significantly increased BIC (63.7%. In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces.

  18. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities

    OpenAIRE

    Jianhong Zhou; Lingzhou Zhao

    2016-01-01

    Advanced multifunction titanium (Ti) based bone implant with antibacterial, angiogenic and osteogenic activities is stringently needed in clinic, which may be accomplished via incorporation of proper inorganic bioactive elements. In this work, microporous TiO2/calcium-phosphate coating on Ti doped with strontium, cobalt and fluorine (SCF-TiCP) was developed, which had a hierarchical micro/nano-structure with a microporous structure evenly covered with nano-grains. SCF-TiCP greatly inhibited t...

  19. Development and in vitro examination of materials for osseointegration

    Science.gov (United States)

    Jalota, Sahil

    Bone is a connective tissue with nanosized particles of carbonated apatitic calcium phosphate dispersed in a hydrated collagen matrix. With the ageing of the baby boomer population, an increasing number of people sustain bone fractures and defects. Hence, efforts are underway to develop materials to hasten the healing and repairing of such defects. These materials are termed as artificial bone substitutes. This study represents innovative techniques for development of bone implant materials and improving the existing substitute materials. Emphasis was on three different kinds of materials: Metals (titanium and alloys), Ceramics (calcium phosphates), and Polymers (collagen). The bioactivity of titanium and alloys, resorptivity of calcium phosphates and biocompatibility of collagen were the major issues with these materials. These issues are appropriately addressed in this dissertation. For titanium and alloys, biomimetic coating methodology was developed for uniformly and evenly coating 3-D titanium structures. Cracks were observed in these coatings and a protocol was developed to form crack-free biomimetic coatings. In calcium phosphates, increasing the resorption rate of HA (hydroxyapatite) and decreasing the resorption rate of beta-TCP (beta-tricalcium phosphate) were studied. HA-based ceramics were synthesized with Na+ and CO32- ions dopings, and development of biphasic mixtures of HA-beta-TCP and HA-Rhenanite was performed. Similarly, beta-TCP ceramics were synthesized with Zn 2+ ion doping and development of beta-TCP-HA biphasic mixtures was performed. In case of collagen, a biomimetic coating process was developed that decreased the time to coat the collagen substrates and also increased biocompatibility, as determined by the response of mouse osteoblasts.

  20. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants.

    Science.gov (United States)

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs' mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (Pmicroscope observation and histological examination showed that more new bone was formed on the surface of the experimental and positive control groups. It can be concluded that the antibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage.

  1. Osteoblastic response to pectin nanocoating on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gurzawska, Katarzyna, E-mail: kagu@sund.ku.dk [Research Center for Ageing and Osteoporosis, Departments of Medicine and Diagnostics, Copenhagen University Hospital Glostrup, Ndr. Ringvej 57, 2600 Glostrup (Denmark); Institute of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen N (Denmark); Svava, Rikke [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N (Denmark); Yihua, Yu; Haugshøj, Kenneth Brian [Microtechnology and Surface Analysis, Danish Technological Institute, Gregersensvej 8, 2630 Taastrup (Denmark); Dirscherl, Kai [Dansk Fundamental Metrologi A/S, Matematiktorvet 307, 2800 Lyngby (Denmark); Levery, Steven B. [Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N (Denmark); Byg, Inge [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Damager, Iben [Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd (Denmark); Nielsen, Martin W. [Department of Systems Biology, Technical University of Denmark, Matematiktorvet, Building 301, Kgs. Lyngby DK-2800 (Denmark); Jørgensen, Bodil [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Jørgensen, Niklas Rye [Research Center for Ageing and Osteoporosis, Departments of Medicine and Diagnostics, Copenhagen University Hospital Glostrup, Ndr. Ringvej 57, 2600 Glostrup (Denmark); and others

    2014-10-01

    Osseointegration of titanium implants can be improved by organic and inorganic nanocoating of the surface. The aim of our study was to evaluate the effect of organic nanocoating of titanium surface with unmodified and modified pectin Rhamnogalacturonan-Is (RG-Is) isolated from potato and apple with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. The effect of coated RG-Is on cell adhesion, cell viability, bone matrix formation and mineralization was tested using SaOS-2 cells. Nanocoating with pectin RG-Is affected surface properties and in consequence changed the environment for cellular response. The cells cultured on surfaces coated with RG-Is from potato with high content of linear 1.4-linked galactose produced higher level of mineralized matrix compared with control surfaces and surfaces coated with RG-I with low content of linear 1.4-linked galactose. The study showed that the pectin RG-Is nanocoating not only changed chemical and physical titanium surface properties, but also specific coating with RG-Is containing high amount of galactan increased mineralized matrix formation of osteoblastic cells in vitro. - Highlights: • Surface nanocoating with plant-derived Rhamnogalacturonan-I (RG-I) is proposed. • Titanium surface became more hydrophilic after RG-Is nanocoating. • RG-Is with high galactose content resulted in high level of mineralized matrix. • RG-I is a new candidate for improvement of bone healing and osseointegration.

  2. Improvement of the titanium implant biological properties by coating with poly (ε-caprolactone)-based hybrid nanocomposites synthesized via sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy)

    2016-05-18

    When bioactive coatings are applied to medical implants by means of sol-gel dip coating technique, the biological proprieties of the implant surface can be modified to match the properties of the surrounding tissues. In this study organo-inorganic nanocomposites materials were synthesized via sol-gel. They consisted of an inorganic zirconium-based and silica-based matrix, in which a biodegradable polymer (the poly-ε-caprolactone, PCL) was incorporated in different weight percentages. The synthesized materials, in sol phase, were used to dip-coat a substrate of commercially pure titanium grade 4 (CP Ti gr. 4) in order to improve its biological properties. A microstructural analysis of the obtained films was carried out by scanning electron microscopy (SEM) and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR). Biological proprieties of the coated substrates were investigated by means of in vitro tests.

  3. Electrochemical deposition of carbon films on titanium in molten LiCl–KCl–K2CO3

    International Nuclear Information System (INIS)

    Song, Qiushi; Xu, Qian; Wang, Yang; Shang, Xujing; Li, Zaiyuan

    2012-01-01

    Electrodeposition of carbon films on the oxide-scale-coated titanium has been performed in a LiCl–KCl–K 2 CO 3 melt, which are characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis. The electrochemical process of carbon deposition is investigated by cyclic voltammetry on the graphite, titanium and oxide-scale-coated titanium electrodes. The particle-size-gradient carbon films over the oxide-scale-coated titanium can be achieved by electrodeposition under the controlled potentials for avoiding codeposition of lithium carbide. The deposited carbon films are comprised of micron-sized ‘quasi-spherical’ carbon particles with graphitized and amorphous phases. The cyclic voltammetry behavior on the graphite, titanium and oxide-scale-coated titanium electrodes shows that CO 3 2− ions are reduced most favorably on the graphite for the three electrodes. Lithium ions can discharge under the less negative potential on the electrode containing carbon compared with titanium electrode because of the formation of lithium carbide from the reaction between lithium and carbon. - Highlights: ► Carbon films are prepared on oxide-scale-coated titanium in a LiCl–KCl–K 2 CO 3 melt. ► The films comprise micron-size ‘quasi-spherical’ carbon particles. ► The films present particle-size-gradient. ► The particles contain graphitized and amorphous phases. ► The prepared carbon films are more electrochemically active than graphite.

  4. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method.

    Science.gov (United States)

    Ning, Congqin; Zhou, Yu

    2008-11-01

    Ti/HA composites were successfully prepared by a powder metallurgy method and the effect of phase composition on the in vitro and in vivo bioactivity of the Ti/HA composites was investigated in the present study. The correlations between the in vitro and in vivo biological behaviors were highlighted. The results showed that the in vitro and in vivo bioactivity of the Ti/HA composites was dependent on their phase composition. The in vitro bioactivity of the Ti/HA composites was evaluated in simulated body fluid with ion concentrations similar to those of human plasma. After immersion in the simulated body fluid for a certain time, apatite precipitations formed on the surface of the composites with an initial titanium content of 50 and 70 wt.%, and no apatite was found on the surface of the composite with 30% titanium. Ti(2)O was responsible for the apatite formation on the surfaces of the composites. For in vivo analysis, Ti/HA cylinders were implanted in the metaphases of the rabbit femur. At the early stage of implantation, the new bone formed on the surface of the composite with 30% titanium was much less than that on the surfaces of the composites with 50% and 70% titanium. All the Ti/HA composites formed a chemical bone-bonding interface with the host bone by 6 months after implantation. The Ti/HA composites formed the bone-bonding interface with the surrounding bone through an apatite layer. The results in the present study suggested that the in vivo results agreed well with the in vitro results.

  5. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density

    Directory of Open Access Journals (Sweden)

    Balasundaram G

    2015-01-01

    Full Text Available Ganesan Balasundaram,1 Daniel M Storey,1 Thomas J Webster2,3 1Chameleon Scientific, Longmont, CO, USA; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA and coat it on titanium (Ti using molecular plasma deposition (MPD. NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. Keywords: hydroxyapatite, anodization, nanotechnology

  6. Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline-Treated Titanium Surface

    Directory of Open Access Journals (Sweden)

    Xiaohua Yu

    2013-01-01

    Full Text Available The influence of biomimetic calcium phosphate coating on osteoblasts behavior in vitro is not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8 on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT and biomimetic calcium phosphate coated ATT (CaP. The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surface in vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation.

  7. Hydroxyapatite coating on the titanium substrate modulated by a recombinant collagen-like protein

    International Nuclear Information System (INIS)

    Pan Mingli; Kong Xiangdong; Cai Yurong; Yao Juming

    2011-01-01

    Research highlights: → Hydroxyapatite was deposited on alkali-heat treated Ti substrate by immersing in 1.5 x SBF solution containing the recombinant collagen-like protein. → The recombinant collagen-like protein accelerated the preferential nucleation and growth of hydroxyapatite along c axis on the Ti substrate. → Hydroxyapatite-collagen composite on the Ti substrate promoted the attachment, subsequently proliferation and differentiation of MG-63 cells. - Abstract: Plenty of techniques have been developed to modify the surface character of titanium (Ti) and its alloys in order to realize their biological bond to natural bone. In this work, a biomimetic process was employed to form a hydroxyapatite (HAp) coating on the alkali-heat treated Ti substrate in 1.5 times simulated body fluid (1.5 x SBF) with the addition of a recombinant collagen-like protein. The coating was characterized using SEM-EDX, FESEM, and XRD. Results showed that the recombinant collagen-like protein could accelerate the preferential nucleation and directional growth along c axis of HAp on the pretreated Ti substrates. The investigation of in vitro cell cultivation showed that the existence of recombinant collagen-like protein in coating could improve the initial cell adhesion, proliferation and differentiation of MG-63 cells, which implied the materials possessed excellent biocompatibility and had a wide potential in biomedical application.

  8. Hydroxyapatite coating on the titanium substrate modulated by a recombinant collagen-like protein

    Energy Technology Data Exchange (ETDEWEB)

    Pan Mingli [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kong Xiangdong [College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yao Juming, E-mail: yaoj@zstu.edu.cn [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2011-04-15

    Research highlights: {yields} Hydroxyapatite was deposited on alkali-heat treated Ti substrate by immersing in 1.5 x SBF solution containing the recombinant collagen-like protein. {yields} The recombinant collagen-like protein accelerated the preferential nucleation and growth of hydroxyapatite along c axis on the Ti substrate. {yields} Hydroxyapatite-collagen composite on the Ti substrate promoted the attachment, subsequently proliferation and differentiation of MG-63 cells. - Abstract: Plenty of techniques have been developed to modify the surface character of titanium (Ti) and its alloys in order to realize their biological bond to natural bone. In this work, a biomimetic process was employed to form a hydroxyapatite (HAp) coating on the alkali-heat treated Ti substrate in 1.5 times simulated body fluid (1.5 x SBF) with the addition of a recombinant collagen-like protein. The coating was characterized using SEM-EDX, FESEM, and XRD. Results showed that the recombinant collagen-like protein could accelerate the preferential nucleation and directional growth along c axis of HAp on the pretreated Ti substrates. The investigation of in vitro cell cultivation showed that the existence of recombinant collagen-like protein in coating could improve the initial cell adhesion, proliferation and differentiation of MG-63 cells, which implied the materials possessed excellent biocompatibility and had a wide potential in biomedical application.

  9. Low temperature sol-gel process for optical coatings based on magnesium fluoride and titanium dioxide; Niedertemperatur Sol-Gel Verfahren fuer optische Schichtsysteme auf Basis von Magnesiumfluorid und Titandioxid

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Hannes

    2009-09-24

    This work deals with the development of a low temperature sol-gel spincoating process for thin films with thicknesses in the nanometer range based on metal oxides and metal fluorides. Optical films such as anti-reflective (AR) or high reflective coatings are of much interest and consist of alternating dielectric layers of low and high refractive index materials. Regarding the general procedure for the metal fluorides a novel nonaqueous sol-gel synthesis starting from metal alkoxides and alcohol-dissolved HF was used. The coatings were dried and calcined at 100 C. The morphology of these films was characterised with REM, TEM and AFM. EDX and XPS were used to identify the chemical composition and ellipsometry and UV-vis spectroscopy to determine the optical properties of the films. This new process allows the preparation of homogeneous magnesium fluoride and titanium dioxide layers with low roughness (R{sub a} {<=} 1,9 nm) on silicon and quartz substrates. The magnesium fluoride layers are partially amorphous or microcrystalline with crystallite sizes from 2 nm to 10 nm. The titanium dioxide layers are predominantly amorphous. The thicknesses of the magnesium fluoride and titanium dioxide single layers were adjustable between 25 nm and 500 nm depending on the number of coating steps and on the concentration of the used sols. The magnesium fluoride layers had a refractive index of n{sub 500} = 1,36 and the titanium dioxide layers a refraction index of n{sub 500} = 2,05. For the first time, an alternating metal fluoride and oxide multilayer system was produced with a low temperature sol-gel method (consisting of magnesium fluoride and titanium dioxide). Based on the determined optical constants of the magnesium fluoride and titanium dioxide single layers, AR and HR multilayer systems were calculated and fabricated. The transmission spectra of the designs and the corresponding multilayer were in good agreement. Similar results were obtained with the reflection spectra

  10. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6Al-4V components of a Stirling engine space power system

    Science.gov (United States)

    Sliney, Harold E.; Lukaszewicz, Victor; Dellacorte, Christopher

    1994-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6Al-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is the possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'back-up', self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212-coated Ti6-4, and PS212-coated Ti6-4/PM212.

  11. The efficacy of ProTaper Universal rotary retreatment instrumentation to remove single gutta-percha cones cemented with several endodontic sealers.

    Science.gov (United States)

    Ersev, H; Yilmaz, B; Dinçol, M E; Dağlaroğlu, R

    2012-08-01

    To evaluate residual root filling material following removal of three newly developed root canal sealers used with a matched-taper single-cone root filling technique and to compare the efficacy of ProTaper Universal rotary retreatment instruments with that of a conventional manual technique. The canals of 120 palatal roots in maxillary molar teeth were instrumented with EndoWave nickel-titanium rotary instruments and filled using Hybrid Root SEAL, EndoSequence BC Sealer, Activ GP system or AH Plus with matched-taper single gutta-percha cones. The root fillings were then removed with ProTaper Universal retreatment rotary instruments or a manual technique. Buccolingual and proximal digital radiographs of the roots were exposed to determine the area of remaining filling material in the coronal, middle and apical thirds. The area percentages of remaining filling material in each third and total canal area were calculated. Data were analysed statistically with Kruskal-Wallis and Mann-Whitney U-tests. The level of significance was set at PProTaper groups. When using gross radiographic criteria, the Activ GP was more effectively removed from root canals than AH Plus with hand instrumentation. Hybrid Root SEAL, EndoSequence BC Sealer and AH Plus were removed to a similar extent. ProTaper Universal retreatment instruments were as safe and effective as hand instruments in reaching the working length. © 2012 International Endodontic Journal.

  12. Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces

    Science.gov (United States)

    Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao

    2014-07-01

    A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of cells, and redundant Ca ion was detected in the titanate layer. The concentration distribution of Ti, O, Ca and Na in the coating showed a compositional gradient from the intermediate layer toward the outer surface. These compositional gradients indicate that the coating bonded to Ti substrate without a distinct interface. After immersion into the SBF solution for 3 days, a bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.

  13. Effects of type I collagen coating on titanium osseointegration: histomorphometric, cellular and molecular analyses

    International Nuclear Information System (INIS)

    Sverzut, Alexander Tadeu; Crippa, Grasiele Edilaine; Tambasco de Oliveira, Paulo; Beloti, Marcio Mateus; Rosa, Adalberto Luiz; Morra, Marco

    2012-01-01

    The investigation of titanium (Ti) surface modifications aiming to increase implant osseointegration is one of the most active research areas in dental implantology. This study was carried out to evaluate the benefits of coating Ti with type I collagen on the osseointegration of dental implants. Acid etched Ti implants (AETi), either untreated or coated with type I collagen (ColTi), were placed in dog mandibles for three and eight weeks for histomorphometric, cellular and molecular evaluations of bone tissue response. While the histological aspects were essentially the same with both implants being surrounded by lamellar bone trabeculae, histomorphometric analysis showed more abundant bone formation in ColTi, mainly at three weeks. Cellular evaluation showed that cells harvested from bone fragments in close contact with ColTi display lower proliferative capacity and higher alkaline phosphatase activity, phenotypic features associated with more differentiated osteoblasts. Confirming these findings, molecular analyses showed that ColTi implants up-regulates the expression of a panel of genes well known as osteoblast markers. Our results present a set of evidences that coating AETi with collagen fastens the osseointegration by stimulating bone formation at the cellular and molecular levels, making this combination of morphological and biochemical modification a promising approach to treat Ti surfaces. (paper)

  14. Demineralized bone matrix and human cancellous bone enhance fixation of porous-coated titanium implants in sheep

    DEFF Research Database (Denmark)

    Babiker, Hassan; Ding, Ming; Overgaard, Søren

    2016-01-01

    matrix (DBM), alone or in combination with allograft or commercially available human cancellous bone (CB), may replace allografts, as they have the capability of inducing new bone and improving implant fixation through enhancing bone ongrowth. The purpose of this study was to investigate the effect...... of DBM alone, DBM with CB, or allograft on the fixation of porous-coated titanium implants. DBM100 and CB produced from human tissue were included. Both materials are commercially available. DBM granules are placed in pure DBM and do not contain any other carrier. Titanium alloy implants, 10 mm long × 10...... mm diameter, were inserted bilaterally into the femoral condyles of eight skeletally mature sheep. Thus, four implants with a concentric gap of 2 mm were implanted in each sheep. The gap was filled with: (a) DBM; (b) DBM:CB at a ratio of 1:3; (c) DBM:allograft at a ratio of 1:3; or (d) allograft...

  15. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinzhuo; Ou-Yang, Wei, E-mail: ouyangwei@phy.ecnu.edu.cn; Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Xu, Peng; Wang, Miao [Department of Physics, Zhejiang University, 38 ZheDa Road, Hangzhou 310027 (China); Li, Jun [Department of Electronic Science and Technology, Tongji University, 4800 Caoan Road, Shanghai 201804 (China)

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  16. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants

    International Nuclear Information System (INIS)

    Tsai, Ming-Tzu; Chang, Yin-Yu; Huang, Heng-Li; Hsu, Jui-Ting; Chen, Ya-Chi; Wu, Aaron Yu-Jen

    2013-01-01

    Titanium (Ti)-based materials have been used for dental and orthopedic implants because of their excellent biological compatibility, superior mechanical strength, and high corrosion resistance. The hypothesis of this present study was to manufacture the Zn-doped TiO 2 layer possessing the biocompatibility and antibacterial ability on the surface of Ti specimens. TiO 2 , ZnO, and Ti(Zn)O 2 coatings were deposited on polished pure Ti substrates using a cathodic arc deposition system. Murine osteoblasts (MC3T3-E1) and human Staphylococcus aureus (S. aureus) were cultured onto the surface with different deposited coatings, respectively. The biocompatibility was examined by cell viability and osteogenic gene expression. The antibacterial ability was determined by SYTO9 nucleic acid staining. A porous Zn-doped TiO 2 coating was successfully produced. The ZnO exhibited a fibrous structure with nanorods showing a hydrophobic feature (contact angle approximately 89°). These material properties affected the following biological performance. The antibacterial testing found no apparent difference between the uncoated Ti plate and the TiO 2 coating. However, significantly lower numbers of S. aureus were observed on ZnO and Ti(Zn)O 2 coatings compared to that on the uncoated Ti. The biocompatible testing exhibited that TiO 2 and Ti(Zn)O 2 coatings enhanced greater cell viability and proliferation than the uncoated Ti plate and ZnO coating. The osteogenic gene expression of Dlx-5 and osterix also improved for the TiO 2 and Ti(Zn)O 2 coatings. However, a significant inhibition of cell viability was found for the ZnO coating. These findings suggested that the composite Ti(Zn)O 2 coating with a lower content of Zn (7.6 ± 1.3 at.%) not only improved antibacterial activity, but also maintained the biocompatibility to bone cells. - Highlights: ► TiO 2 , Ti(Zn)O 2 and ZnO coatings were deposited by cathodic arc evaporation. ► Zn may incorporated with Ti to form Zn-doped TiO 2 .

  17. Characterization and antibacterial performance of bioactive Ti–Zn–O coatings deposited on titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Tzu [Department of Biomedical Engineering, Hungkuang University, Taichung 433, Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@nfu.edu.tw [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 632, Taiwan (China); Huang, Heng-Li; Hsu, Jui-Ting [School of Dentistry, College of Medicine China Medical University, Taichung 404, Taiwan (China); Chen, Ya-Chi [Department of Materials Science and Engineering, Mingdao University, Changhua 523, Taiwan (China); Wu, Aaron Yu-Jen [Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan (China)

    2013-01-01

    Titanium (Ti)-based materials have been used for dental and orthopedic implants because of their excellent biological compatibility, superior mechanical strength, and high corrosion resistance. The hypothesis of this present study was to manufacture the Zn-doped TiO{sub 2} layer possessing the biocompatibility and antibacterial ability on the surface of Ti specimens. TiO{sub 2}, ZnO, and Ti(Zn)O{sub 2} coatings were deposited on polished pure Ti substrates using a cathodic arc deposition system. Murine osteoblasts (MC3T3-E1) and human Staphylococcus aureus (S. aureus) were cultured onto the surface with different deposited coatings, respectively. The biocompatibility was examined by cell viability and osteogenic gene expression. The antibacterial ability was determined by SYTO9 nucleic acid staining. A porous Zn-doped TiO{sub 2} coating was successfully produced. The ZnO exhibited a fibrous structure with nanorods showing a hydrophobic feature (contact angle approximately 89°). These material properties affected the following biological performance. The antibacterial testing found no apparent difference between the uncoated Ti plate and the TiO{sub 2} coating. However, significantly lower numbers of S. aureus were observed on ZnO and Ti(Zn)O{sub 2} coatings compared to that on the uncoated Ti. The biocompatible testing exhibited that TiO{sub 2} and Ti(Zn)O{sub 2} coatings enhanced greater cell viability and proliferation than the uncoated Ti plate and ZnO coating. The osteogenic gene expression of Dlx-5 and osterix also improved for the TiO{sub 2} and Ti(Zn)O{sub 2} coatings. However, a significant inhibition of cell viability was found for the ZnO coating. These findings suggested that the composite Ti(Zn)O{sub 2} coating with a lower content of Zn (7.6 ± 1.3 at.%) not only improved antibacterial activity, but also maintained the biocompatibility to bone cells. - Highlights: ► TiO{sub 2}, Ti(Zn)O{sub 2} and ZnO coatings were deposited by cathodic arc

  18. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  19. Hybrid biocomposites based on titania nanotubes and a hydroxyapatite coating deposited by RF-magnetron sputtering: Surface topography, structure, and mechanical properties

    Science.gov (United States)

    Chernozem, Roman V.; Surmeneva, Maria A.; Krause, Bärbel; Baumbach, Tilo; Ignatov, Viktor P.; Tyurin, Alexander I.; Loza, Kateryna; Epple, Matthias; Surmenev, Roman A.

    2017-12-01

    In this study, biocomposites based on porous titanium oxide structures and a calcium phosphate (CaP) or hydroxyapatite (HA) coating are described and prepared. Nanotubes (NTs) with different pore dimensions were processed using anodic oxidation of Ti substrates in a NH4F-containing electrolyte solution at anodization voltages of 30 and 60 V with a DC power supply. The external diameters of the nanotubes prepared at 30 V and 60 V were 53 ± 10 and 98 ± 16 nm, respectively. RF-magnetron sputtering of the HA target in a single deposition run was performed to prepare a coating on the surface of TiO2 NTs prepared at 30 and 60 V. The thickness of the CaP coating deposited on the mirror-polished Si substrate in the same deposition run with TiO2 NTs was determined by optical ellipsometry (SE) 95 ± 5 nm. Uncoated and CaP-coated NTs were annealed at 500 °C in air. Afterwards, the presence of TiO2 (anatase) was observed. The scanning electron microscopy (SEM), X-ray diffraction (XRD), photoelectron spectroscopy (XPS) and nanoindentation results revealed the influence that the NT dimensions had on the CaP coating deposition process. The tubular surfaces of the NTs were completely coated with the HA coating when prepared at 30 V, and no homogeneous CaP coating was observed when prepared at 60 V. The XRD patterns show peaks assigned to crystalline HA only for the coated TiO2 NTs prepared at 30 V. High-resolution XPS spectra show binding energies (BE) of Ca 2p, P 2p and O 1s core-levels corresponding to HA and amorphous calcium phosphate on TiO2 NTs prepared at 30 V and 60 V, respectively. Fabrication of TiO2 NTs results in a significant decrease to the elastic modulus and nanohardness compared to the Ti substrate. The porous structure of the NTs causes an increase in the elastic strain to failure of the coating (H/E) and the parameter used to describe the resistance of the material to plastic deformation (H3/E2) at the nanoscale level compared to the Ti substrate. Furthermore

  20. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper.

    Science.gov (United States)

    Rafieerad, A R; Ashra, M R; Mahmoodian, R; Bushroa, A R

    2015-12-01

    In recent years, calcium phosphate-base composites, such as hydroxyapatite (HA) and carbonate apatite (CA) have been considered desirable and biocompatible coating layers in clinical and biomedical applications such as implants because of the high resistance of the composites. This review focuses on the effects of voltage, time and electrolytes on a calcium phosphate-base composite layer in case of pure titanium and other biomedical grade titanium alloys via the plasma electrolytic oxidation (PEO) method. Remarkably, these parameters changed the structure, morphology, pH, thickness and crystallinity of the obtained coating for various engineering and biomedical applications. Hence, the structured layer caused improvement of the biocompatibility, corrosion resistance and assignment of extra benefits for Osseo integration. The fabricated layer with a thickness range of 10 to 20 μm was evaluated for physical, chemical, mechanical and tribological characteristics via XRD, FESEM, EDS, EIS and corrosion analysis respectively, to determine the effects of the applied parameters and various electrolytes on morphology and phase transition. Moreover, it was observed that during PEO, the concentration of calcium, phosphor and titanium shifts upward, which leads to an enhanced bioactivity by altering the thickness. The results confirm that the crystallinity, thickness and contents of composite layer can be changed by applying thermal treatments. The corrosion behavior was investigated via the potentiodynamic polarization test in a body-simulated environment. Here, the optimum corrosion resistance was obtained for the coating process condition at 500 V for 15 min in Ringer solution. This review has been summarized, aiming at the further development of PEO by producing more adequate titanium-base implants along with desired mechanical and biomedical features. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Pre-post evaluation of effects of a titanium dioxide coating on environmental contamination of an intensive care unit: the TITANIC study.

    Science.gov (United States)

    de Jong, B; Meeder, A M; Koekkoek, K W A C; Schouten, M A; Westers, P; van Zanten, A R H

    2018-07-01

    Among patients admitted to European hospitals or intensive care units (ICUs), 5.7% and 19.5% will encounter healthcare-associated infections (HAIs), respectively, and antimicrobial resistance is emerging. As hospital surfaces are contaminated with potentially pathogenic bacteria, environmental cleanliness is an essential aspect to reduce HAIs. To address the efficacy of a titanium dioxide coating in reducing the microbial colonization of environmental surfaces in an ICU. A prospective, controlled, single-centre pilot study was conducted to examine the effect of a titanium dioxide coating on the microbial colonization of surfaces in an ICU. During the pre- and post-intervention periods, surfaces were cultured with agar contact plates (BBL RODAC plates). Factors that were potentially influencing the bacterial colonization of surfaces were recorded. A repeated measurements analysis within a hierarchic multi-level framework was used to analyse the effect of the intervention, controlling for the explanatory variables. The mean ratio for the total number of colony-forming units (cfus) in a room between the pre- and post-intervention periods was 0.86 (standard deviation 0.57). The optimal model included the following explanatory variables: intervention (P=0.065), week (P=0.002), culture surfaces (P<0.001), ICU room (P=0.039), and interaction between intervention and week (P=0.002) and between week and culture surfaces (P=0.031). The effect of the intervention on the number of cfus from all culture plates in Week 4 between the pre- and post-intervention periods was -0.47 (95% confidence interval -0.24 to - 0.70). This study found that a titanium dioxide coating had no effect on the microbial colonization of surfaces in an ICU. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    Metalorganic chemical vapor deposition (MOCVD) was used in the present work. Un-doped and Al-doped ZnO films were developed using two reactors: Halogen Lamp Reactor (HLR) (a type of Cold Wall Reactor) and Hot Wall Reactor (HWR), and a comparison was made between them in terms of the film properties. Zinc acetylacetonate was used as precursor for ZnO films while aluminum acetylacetonate was used for doping. The amount of Al doping can be controlled by varying the gas flow rate. Well ordered films with aluminum content between 0 and 8 % were grown on borosilicate glass and silicon. The films obtained are 0.3 to 0.5 {mu}m thick, highly transparent and reproducible. The growth rate of ZnO films deposited using HLR is less than HWR. In HLR, the ZnO films are well oriented along c-axis ((002) plane). ZnO films are commonly oriented along the c-axis due to its low surface free energy. On the other hand, the HWR films are polycrystalline and with Al doping these films aligned along the a-axis ((100) plane) which is less commonly observed. The best films were obtained with the HLR method showing a minimum electrical resistivity of 2.4 m{omega}cm and transmittance of about 80 % in the visible range. The results obtained for Al-doped films using HLR are promising to be used as TCOs. The second material investigated in this work was un-doped and doped titanium dioxide (TiO{sub 2}) films- its preparation and characterization. It is well known that thermographic phosphors can be used as an optical method for the surface temperature measurement. For this application, the temperature-dependent luminescence properties of europium (III)-doped TiO{sub 2} thin films were studied. It was observed that only europium doped anatase films show the phosphorescence. Rutile phase do not show phosphorescence. The films were prepared by the sol-gel method using the dip coating technique. The structures of the films were determined by X-ray diffraction (XRD). The excitation and the emission

  3. Effect of porous titanium coating thickness on in vitro osteoblast phenotype expression

    Directory of Open Access Journals (Sweden)

    Antonio Canabarro

    2011-03-01

    Full Text Available Aim: This study aimed at determining the effect of different thickness of porous titanium (Ti coating, 0.5, 1.0 and 1.5 mm thick (PC-0.5, PC-1.0 and PC-1.5, on osteoblast phenotype expression. Materials and methods: Dense Ti discs coated with 0.5, 1.0 and 1.5 mm of porous Ti (PC-0.5, PC-1.0 and PC-1.5, respectively were fabricated by powder metallurgy process with pore size typically between 50 and 400 μm and porosity of 60%. Osteoblastic cells obtained from human alveolar bone were cultured on dense Ti (D-Ti and PC-Ti discs for periods of up to 17 days. Results: Cultures grown on PC-Ti exhibited higher cell proliferation rate than on D-Ti. By comparing PC-Ti groups, it was observed statistical differences on culture grown only at day 10 (PC-0.5coating (PC-1.5. Therefore, further in vivo evaluations should be done in order to investigate whether this structure should be considered for clinical implant applications.

  4. Laboratory comparison of the mechanical properties of TRUShape with several nickel-titanium rotary instruments.

    Science.gov (United States)

    Elnaghy, A M; Elsaka, S E

    2017-08-01

    To assess and compare the mechanical properties of TRUShape (TRS) with several nickel-titanium rotary instruments. Cyclic fatigue, torsional resistance, flexibility and surface microhardness of TRS (size 25, 0.06v taper), ProTaper Next X2 (PTN X2, size 25, 0.06 taper), ProTaper Gold (PTG F2; size 25, 0.08 taper) and ProTaper Universal (PTU F2; size 25, 0.08 taper) instruments were evaluated. The topographical structures of the fracture surfaces of instruments were assessed using a scanning electron microscope. The cyclic fatigue resistance, torsional resistance and microhardness data were analysed using one-way analysis of variance (anova) and Tukey's post hoc tests. The fragment length and bending resistance data were analysed statistically with the Kruskal-Wallis H-test and Mann-Whitney U-tests. The statistical significance level was set at P instruments revealed significantly higher resistance to cyclic fatigue than TRS and PTU instruments (P instruments revealed significantly higher torsional resistance compared with the other instruments (P instrument had significantly higher flexibility than the other tested brands (P instruments had lower resistance to cyclic fatigue and lower flexibility compared with PTG and PTN instruments. TRS, PTG and PTU instruments had lower resistance to torsional stress than PTN instruments. TRS and PTG instruments had comparable surface microhardness. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Characteristics of laser clad α-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy

    Science.gov (United States)

    Zhai, Yong-Jie; Liu, Xiu-Bo; Qiao, Shi-Jie; Wang, Ming-Di; Lu, Xiao-Long; Wang, Yong-Guang; Chen, Yao; Ying, Li-Xia

    2017-03-01

    TiC reinforced Ti matrix composite coating with Ti2SC/TiS lubricant phases in-situ synthesized were prepared on TA2 titanium alloy by laser cladding with different powder mixtures: 40%Ti-19.5%TiC-40.5%WS2, 40%Ti-25.2%TiC-34.8%WS2, 40%Ti-29.4%TiC-30.6%WS2 (wt%). The phase compositions, microstructure, microhardness and tribological behaviors and wear mechanisms of coatings were investigated systematically. Results indicate that the main phase compositions of three coatings are all continuous matrix α-Ti, reinforced phases of (Ti,W)C1-x and TiC, lubricant phases of Ti2SC and TiS. The microhardness of the three different coatings are 927.1 HV0.5, 1007.5 HV0.5 and 1052.3 HV0.5, respectively. Compared with the TA2 titanium alloy (approximately 180 HV0.5), the microhardness of coatings have been improved dramatically. The coefficients of friction and the wear rates of those coatings are 0.41 and 30.98×10-5 mm3 N-1 m-1, 0.30 and 18.92×10-5 mm3 N-1 m-1, 0.34 and 15.98×10-5 mm3 N-1 m-1, respectively. Comparatively speaking, the coating fabricated with the powder mixtures of 40%Ti-25.2%TiC-34.8%WS2 presents superior friction reduction and anti-wear properties and the main wear mechanisms of that are slight plastic deformation and adhesive wear.

  6. Comparison of cyclic fatigue resistance of novel nickel-titanium rotary instruments.

    Science.gov (United States)

    Capar, Ismail Davut; Ertas, Huseyin; Arslan, Hakan

    2015-04-01

    New files (ProTaper Next/HyFlex/OneShape) are made from novel nickel-titanium (NiTi) alloys/treatments. The purpose of this study was to compare the cyclic fatigue resistance of these new instruments with that of Revo-S instruments. Four groups of 20 NiTi endodontic instruments were tested in steel canals with a 3 mm radius and a 60° angle of curvature. The cyclic fatigue of the following NiTi instruments with a tip size 25 and 0.06 taper that were manufactured with different alloys was tested: ProTaper Next X2 (M-Wire), OneShape (conventional NiTi), Revo-S Shaping Universal (conventional NiTi) and HyFlex 25/0.6 (controlled memory NiTi wire). A one-way anova and post-hoc Tukey's test (α = 0.05) revealed that the HyFlex files had the highest fatigue resistance and the Revo-S had the least fatigue resistance among the groups (P < 0.001). © 2014 Australian Society of Endodontology.

  7. Laser processing of in situ TiN/Ti composite coating on titanium.

    Science.gov (United States)

    Sahasrabudhe, Himanshu; Soderlind, Julie; Bandyopadhyay, Amit

    2016-01-01

    Laser remelting of commercially pure titanium (CP-Ti) surface was done in a nitrogen rich inert atmosphere to form in situ TiN/Ti composite coating. Laser surface remelting was performed at two different laser powers of 425 W and 475 W. At each power, samples were fabricated with one or two laser scans. The resultant material was a nitride rich in situ coating that was created on the surface. The cross sections revealed a graded microstructure. There was presence of nitride rich dendrites dispersed in α-Ti matrix at the uppermost region. The structure gradually changed with lesser dendrites and more heat affected α-Ti phase maintaining a smooth interface. With increasing laser power, the dendrites appeared to be larger in size. Samples with two laser scans showed discontinuous dendrites and more α-Ti phase as compared to the samples with one laser scan. The resultant composite of TiN along with Ti2N in α-Ti showed substantially higher hardness and wear resistance than the untreated CP-Ti substrate. Coefficient of friction was also found to reduce due to surface nitridation. Leaching of Ti(4+) ions during wear test in DI water medium was found to reduce due to laser surface nitriding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6A1-4V components of a Stirling engine space power system

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher; Lukaszewicz, Victor

    1995-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6A1-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is a possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'backup,' self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212 coated Ti6-4, and Ps212 coated Ti6-4/PM212

  9. Neutral particle balance in GDT with fast titanium coating of the first wall

    International Nuclear Information System (INIS)

    Bagryansky, P.A.; Bender, E.D.; Ivanov, A.A.; Krahl, S.; Noack, K.; Karpushov, A.N.; Murakhtin, S.V.; Shikhovtsev, I.V.

    1995-01-01

    The GDT is an axisymmetric open trap with a high mirror ratio for confinement of a collisional plasma. The experimental program of the GDT was focused on the generation of plasma physics database necessary for a GDT-based neutron source. A distinct feature of both GDT and the GDT-based neutron source is that the Larmor radius of the fast sloshing ions is comparable to plasma radius. In this case, the sloshing ions can not be well shielded by the plasma halo from penetration of the neutral gas from periphery that results in high charge exchange losses. The plasma parameters are then very sensitive to gas pressure near the plasma boundary. To reduce the gas pressure to desured value during the beam heating, the authors have used arc-type evaporators developed at the Budker INP for fast titanium coating of the GDT first wall. If needed, the coating can be done a few seconds before each shot. They investigated the neutral particle balance in presence of NB-heating. The inverted magnetron gauges were used to study the temporal dependence of gas pressure inside the central cell. Pyroelectric bolometers were employed to measure the flux of charge exchange neutrals. Neutral particle balance has also been studied numerically by using a gas-transport code. The results of the investigations are the following: (1) sloshing ion lifetime was increased about 10 times compared to that without the coating of the first wall; and (2) wall recycling coefficient of the Ti-coated wall does not exceed 1 for 8 keV mean energy of the neutral hydrogen atoms striking the wall

  10. Hydroxyapatite growth on multiwall carbon nanotubes grown on titanium fibers from a titanium sheet

    KAUST Repository

    Chetibi, Loubna

    2013-09-27

    Nano-hydroxyapatite (HA) was grown on functionalized multiwalled carbon nanotubes (MWCNTs) deposited on TiO2 nanofibers (NFs) that were hydrothermally grown on Ti metal sheets. The HA was electrochemically grown on the MWCNTs/TiO2 porous layer. It was found that the HA grows on the MWCNTs/TiO2 NFs in the form of dense coating with nanorice grain-shaped. The incorporation of MWCNTs between HA and TiO2 NFs has led to higher adhesion strength as measured by micro-scratching test indicating the benefit of MWCNTs on the improving the bonding strength of HA layer. The obtained coatings exhibit excellent corrosion resistance in simulated body fluid. It is expected that this simple route for preparing the new HA/MWCNTs/TiO2/Ti-layered structure might be used not only in the biomedical field, but also in catalysis and biological sensing among others. © 2013 Springer Science+Business Media New York.

  11. Hydroxyapatite growth on multiwall carbon nanotubes grown on titanium fibers from a titanium sheet

    KAUST Repository

    Chetibi, Loubna; Achour, Amine; Peszke, Jerzy; Hamana, Djamel; Achour, Slimane

    2013-01-01

    Nano-hydroxyapatite (HA) was grown on functionalized multiwalled carbon nanotubes (MWCNTs) deposited on TiO2 nanofibers (NFs) that were hydrothermally grown on Ti metal sheets. The HA was electrochemically grown on the MWCNTs/TiO2 porous layer. It was found that the HA grows on the MWCNTs/TiO2 NFs in the form of dense coating with nanorice grain-shaped. The incorporation of MWCNTs between HA and TiO2 NFs has led to higher adhesion strength as measured by micro-scratching test indicating the benefit of MWCNTs on the improving the bonding strength of HA layer. The obtained coatings exhibit excellent corrosion resistance in simulated body fluid. It is expected that this simple route for preparing the new HA/MWCNTs/TiO2/Ti-layered structure might be used not only in the biomedical field, but also in catalysis and biological sensing among others. © 2013 Springer Science+Business Media New York.

  12. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    Science.gov (United States)

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  13. In vitro evaluation of the effectiveness of ProTaper universal rotary retreatment system for gutta-percha removal with or without a solvent.

    Science.gov (United States)

    Takahashi, Cristiane Midori; Cunha, Rodrigo Sanches; de Martin, Alexandre Sigrist; Fontana, Carlos Eduardo; Silveira, Cláudia Fernandes M; da Silveira Bueno, Carlos Eduardo

    2009-11-01

    Effective removal of gutta-percha in endodontic retreatment is a significant factor to ensure a favorable outcome from failed procedures. The purpose of this study was to evaluate the efficacy of a nickel-titanium rotary instrument system with or without a solvent versus stainless steel hand files for gutta-percha removal. Forty extracted human maxillary anterior teeth were prepared and filled. They were divided into 4 groups: Gates-Glidden and K-files, Gates-Glidden and K-files with chloroform, ProTaper Universal rotary retreatment system, and ProTaper Universal rotary retreatment system with chloroform. The operating time was recorded. The teeth were longitudinally sectioned and photographed. The images were analyzed and the filling remnants were quantified by using the IMAGE TOOL software. With Kruskall-Wallis test, statistical analysis showed that there was no significant difference between the techniques in regard to the amount of the endodontic filling remnants (P ProTaper Universal rotary retreatment system was faster than the hand files (P ProTaper Universal rotary retreatment system without chloroform was faster.

  14. Layered titanium disilicide stabilized by oxide coating for highly reversible lithium insertion and extraction.

    Science.gov (United States)

    Zhou, Sa; Simpson, Zachary I; Yang, Xiaogang; Wang, Dunwei

    2012-09-25

    The discovery of new materials has played an important role in battery technology development. Among the newly discovered materials, those with layered structures are often of particular interest because many have been found to permit highly repeatable ionic insertion and extraction. Examples include graphite and LiCoO(2) as anode and cathode materials, respectively. Here we report C49 titanium disilicide (TiSi(2)) as a new layered anode material, within which lithium ions can react with the Si-only layers. This result is enabled by the strategy of coating a thin (lithium-ion storage capacity of TiSi(2) is a result of its layered structure is expected to have major fundamental and practical implications.

  15. Fabrication, ultra-structure characterization and in vitro studies of RF magnetron sputter deposited nano-hydroxyapatite thin films for biomedical applications

    Science.gov (United States)

    Surmeneva, Maria A.; Surmenev, Roman A.; Nikonova, Yulia A.; Selezneva, Irina I.; Ivanova, Anna A.; Putlyaev, Valery I.; Prymak, Oleg; Epple, Matthias

    2014-10-01

    A series of nanostructured low-crystalline hydroxyapatite (HA) coatings averaging 170, 250, and 440 nm in thickness were deposited onto previously etched titanium substrates through radio-frequency (RF) magnetron sputtering. The HA coatings were analyzed using infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM and TEM). Cross sections of the thin specimens were prepared by FIB to study the microstructure of the coatings by TEM. The deposition process formed nano-scale grains, generating an amorphous layer at the substrate/coating interface and inducing the growth of a columnar grain structure perpendicular to the substrate surface. A microstructural analysis of the film confirmed that the grain size and crystallinity increased when increasing the deposition time. The nanostructured HA coatings were not cytotoxic, as proven by in vitro assays using primary dental pulp stem cells and mouse fibroblast NCTC clone L929 cells. Low-crystallinity HA coatings with different thicknesses stimulated cells to attach, proliferate and form mineralized nodules on the surface better than uncoated titanium substrates.

  16. Chemical changes in DMP1-null murine bone & silica based pecvd coatings for titanium implant osseoapplications

    Science.gov (United States)

    Maginot, Megen

    In order to improve clinical outcomes in bone-implant systems, a thorough understanding of both local bone chemistry and implant surface chemistry is necessary. This study consists, therefore, of two main parts: one focused on determining the nature of the changes in bone chemistry in a DMP1-null transgenic disease model and the other on the development of amorphous silica-based coatings for potential use as titanium bone implant coatings. For the study of bone mineral in the DMP1 transgenic model, which is known to have low serum phosphate levels, transgenic DMP1-null and wild type mice were fed a high phosphate diet, sacrificed, and had their long bone harvested. This bone was characterized using SEM, FTIR, microCT and XANES and compared to DMP1-null and wild type control groups to assess the therapeutic effect of high Pi levels on the phenotype and the role of DMP1 in mineralization in vivo. Findings suggest that though the high phosphate diet results in restoring serum phosphate levels, it does not completely rescue the bone mineral phenotype at an ultrastructural level and implicates DMP1 in phosphate nucleation. Since plasma enhanced chemical vapor deposition (PECVD) silica like coatings have not previously been fabricated for use in oessoapplications, the second part of this study initially focused on the characterization of novel SiOx chemistries fabricated via a chemical vapor deposition process that were designed specifically to act as bioactive coatings with a loose, hydrogenated structure. These coatings were then investigated for their potential initial stage response to bone tissue through immersion in a simulated body fluid and through the culture of MC3T3 cells on the coating surfaces. Coating surfaces were characterized by SEM, FTIR, contact angle measurements, and XANES. Coating dissolution and ionic release were also investigated by ICP-OES. Findings suggest that some SiOx chemistries may form a bioactive coating while more highly substituted

  17. Diamondlike carbon coating as a galvanic corrosion barrier between dental implant abutments and nickel-chromium superstructures.

    Science.gov (United States)

    Ozkomur, Ahmet; Erbil, Mehmet; Akova, Tolga

    2013-01-01

    The objectives of this study were to evaluate the galvanic corrosion behavior between titanium and nickel-chromium (Ni-Cr) alloy, to investigate the effect of diamondlike carbon (DLC) coating over titanium on galvanic corrosion behavior between titanium and Ni-Cr alloy, and to evaluate the effect of DLC coating over titanium abutments on the fit and integrity of prosthetic assemblies by scanning electron microcopy (SEM). Five Ni-Cr and 10 titanium disks with a diameter of 5 mm and thickness of 3 mm were prepared. DLC coating was applied to five titanium disks. Electrode samples were prepared, and open circuit potential measurements, galvanic current measurements over platinum electrodes, and potentiodynamic polarization tests were carried out. For the SEM evaluation, 20 Ni-Cr alloy and 10 gold alloy superstructures were cast and prepared over 30 abutments. DLC coating was applied to 10 of the abutments. Following the fixation of prosthetic assemblies, the samples were embedded in acrylic resin and cross sectioned longitudinally. Internal fit evaluations were carried out through examination of the SEM images. Titanium showed more noble and electrochemically stable properties than Ni-Cr alloy. DLC coating over the cathode electrode served as an insulating film layer over the surface and prevented galvanic coupling. Results of the SEM evaluations indicated that the DLC-coated and titanium abutments showed no statistically significant difference in fit. Hence, no adverse effects on the adaptation of prosthetic components were found with the application of DLC coating over abutment surfaces. DLC coating might serve as a galvanic corrosion barrier between titanium abutments and Ni-Cr superstructures.

  18. The wild tapered block bootstrap

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    In this paper, a new resampling procedure, called the wild tapered block bootstrap, is introduced as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on dependent heterogeneous data. The method consists in tapering each overlapping block...... of the series first, the applying the standard wild bootstrap for independent and heteroscedastic distrbuted observations to overlapping tapered blocks in an appropriate way. Its perserves the favorable bias and mean squared error properties of the tapered block bootstrap, which is the state-of-the-art block......-order asymptotic validity of the tapered block bootstrap as well as the wild tapered block bootstrap approximation to the actual distribution of the sample mean is also established when data are assumed to satisfy a near epoch dependent condition. The consistency of the bootstrap variance estimator for the sample...

  19. Improving osteointegration and osteogenesis of three-dimensional porous Ti6Al4V scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating.

    Science.gov (United States)

    Li, Yong; Yang, Wei; Li, Xiaokang; Zhang, Xing; Wang, Cairu; Meng, Xiangfei; Pei, Yifeng; Fan, Xiangli; Lan, Pingheng; Wang, Chunhui; Li, Xiaojie; Guo, Zheng

    2015-03-18

    Titanium alloys with various porous structures can be fabricated by advanced additive manufacturing techniques, which are attractive for use as scaffolds for bone defect repair. However, modification of the scaffold surfaces, particularly inner surfaces, is critical to improve the osteointegration of these scaffolds. In this study, a biomimetic approach was employed to construct polydopamine-assisted hydroxyapatite coating (HA/pDA) onto porous Ti6Al4V scaffolds fabricated by the electron beam melting method. The surface modification was characterized with the field emission scanning electron microscopy, energy dispersive spectroscopy, water contact angle measurement, and confocal laser scanning microscopy. Attachment and proliferation of MC3T3-E1 cells on the scaffold surface were significantly enhanced by the HA/pDA coating compared to the unmodified surfaces. Additionally, MC3T3-E1 cells grown on the HA/pDA-coated Ti6Al4V scaffolds displayed significantly higher expression of runt-related transcription factor-2, alkaline phosphatase, osteocalcin, osteopontin, and collagen type-1 compared with bare Ti6Al4V scaffolds after culture for 14 days. Moreover, microcomputed tomography analysis and Van-Gieson staining of histological sections showed that HA/pDA coating on surfaces of porous Ti6Al4V scaffolds enhanced osteointegration and significantly promoted bone regeneration after implantation in rabbit femoral condylar defects for 4 and 12 weeks. Therefore, this study provides an alternative to biofunctionalized porous Ti6Al4V scaffolds with improved osteointegration and osteogenesis functions for orthopedic applications.

  20. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites

    International Nuclear Information System (INIS)

    Yi, Danqing; Yu, Pengchao; Hu, Bin; Liu, Huiqun; Wang, Bin; Jiang, Yong

    2013-01-01

    Highlights: • Ni-coated TiC composite powders were prepared by electroless plating. • Iron-based composites reinforced by TiC particles was prepared by HIP. • Mechanical and wear properties were improved with the addition of Ni-coated TiC. • The nickel coating promotes the formation and growth of sintering neck. - Abstract: Ni-coated titanium carbide (TiC) composite powders were prepared by electroless plating (EP). Further, using hot isostatic pressing (HIP), iron matrix composites reinforced with 4 wt% Ni-coated TiC particulates with relative density close to 100% were prepared. The microstructure and phase composition of the Ni-coated powders and the composites were analyzed using X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results showed that the TiC particles were distributed uniformly in the matrix and were free of segregation or coarsening. Compared to the TiC particles without Ni coating, the reinforced iron-based composites containing the Ni-coated particles showed higher relative densities and better mechanical properties. The density, hardness, tensile strength, and elongation were enhanced to 99.98%, 243 HV, 565 MPa, and 11.7%, respectively in composites containing Ni-coated TiC particles from 99.70%, 210 HV, 514 MPa, and 10.3%, respectively in composites that were prepared using particles without Ni coating. In addition, the mass losses in the composites containing the Ni-coated particles were reduced by 32–75% in the abrasive wear test with various vertical loads. We propose that the nickel coatings on the particulates had a beneficial effect on the microstructure and properties of the reinforced iron-based composites is due to promotion of neck formation and growth between TiC and iron powders during sintering, which enhanced the density of the sintered compact and the bonding strength between the TiC particles and the iron matrix