WorldWideScience

Sample records for h9c2 cells enhances

  1. [Protective effect of taxifolin on H2O2-induced 
H9C2 cell pyroptosis].

    Science.gov (United States)

    Ye, Yanqiong; Wang, Xiaoli; Cai, Qian; Zhuang, Jian; Tan, Xiaohua; He, Wei; Zhao, Mingyi

    2017-12-28

    To explore the effect of taxifolin on H2O2-induced pyroptosis in H9C2 cells and the possible mechanisms.
 Methods: The H9C2 cells was divided into 3 groups: a control group, a hydrogen peroxide (H2O2)group and a taxifolin group. The morphology of H9C2 cells was observed by inverted phase contrast microscope. The mitochondrial membrane potential was measured by JC-1 staining and flow cytometry. The alteration of the level of reactive oxygen species (ROS) was detected by specific mitochondrial probe. The protein levels of cysteinyl aspartate specific proteinase-1 (caspase-1)was determined by Western blot. The mRNA levels of interleukin-18 (IL-18), interleukin-1a (IL-1a), interleukin-1b (IL-1b), absent in melanoma 2 (AIM2), apoptosis-associated apeck-like protein (ASC), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)and nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain-containing protein 4 (NLRC4) were determined by reverse transcription-polymerase chain reaction (RT-PCR).
 Results: Compared with the control group, the morphology of H9C2 cells obviously changed in the H2O2-treated group, which was guadually improved in the presence of taxifolin. Compared with the control group, the mitochondrial membrane potential was markedly decreased in the H2O2-treated cells, accompanied by the increase ofROS (both PH2O2 group, the mitochondrial membrane potential changes in the taxifolin group was increased while the ROS was decreased, with significant difference (both PH2O2-treated group were significantly increased (all PH2O2-induced H9C2 cell pyroptosis through inhibition of AIM2, NLRP3 and NLRC4 in flammasome.

  2. Vitamin C and sodium bicarbonate enhance the antioxidant ability of H9C2 cells and induce HSPs to relieve heat stress.

    Science.gov (United States)

    Yin, Bin; Tang, Shu; Sun, Jiarui; Zhang, Xiaohui; Xu, Jiao; Di, Liangjiao; Li, Zhihong; Hu, Yurong; Bao, Endong

    2018-02-13

    Heat stress is exacerbated by global warming and affects human and animal health, leading to heart damage caused by imbalances in reactive oxygen species (ROS) and the antioxidant system, acid-base chemistry, electrolytes and respiratory alkalosis. Vitamin C scavenges excess ROS, and sodium bicarbonate maintains acid-base and electrolyte balance, and alleviates respiratory alkalosis. Herein, we explored the ability of vitamin C alone and in combination with equimolar sodium bicarbonate (Vitamin C-Na) to stimulate endogenous antioxidants and heat shock proteins (HSPs) to relieve heat stress in H9C2 cells. Control, vitamin C (20 μg/ml vitamin C for 16 h) and vitamin C-Na (20 μg/ml vitamin C-Na for 16 h) groups were heat-stressed for 1, 3 or 5 h. Granular and vacuolar degeneration, karyopyknosis and damage to nuclei and mitochondria were clearly reduced in treatment groups, as were apoptosis, lactate dehydrogenase activity and ROS and malondialdehyde levels, while superoxide dismutase activity was increased. Additionally, CRYAB, Hsp27, Hsp60 and Hsp70 mRNA levels were upregulated at 3 h (p < 0.01), and protein levels were increased for CRYAB at 0 h (p < 0.05) and 1 h (p < 0.01), and for Hsp70 at 3 and 5 h (p < 0.01). Thus, pre-treatment with vitamin C or vitamin C-Na might protect H9C2 cells against heat damage by enhancing the antioxidant ability and upregulating CRYAB and Hsp70.

  3. Overexpression of MIP2, a novel WD-repeat protein, promotes proliferation of H9c2 cells

    International Nuclear Information System (INIS)

    Wei, Xing; Song, Lan; Jiang, Lei; Wang, Guiliang; Luo, Xinjing; Zhang, Bin; Xiao, Xianzhong

    2010-01-01

    WD40 repeat proteins have a wide range of diverse biological functions including signal transduction, cell cycle regulation, RNA splicing, and transcription. Myocardial ischemic preconditioning up-regulated protein 2 (MIP2) is a novel member of the WD40 repeat proteins superfamily that contains five WD40 repeats. Little is known about its biological role, and the purpose of this study was to determine the role of MIP2 in regulating cellular proliferation. Transfection and constitutive expression of MIP2 in the rat cardiomyoblast cell line H9c2 results in enhanced growth of those cells as measured by cell number and is proportional to the amount of MIP2 expressed. Overexpression of MIP2 results in a shorter cell cycle, as measured by flow cytometry. Collectively, these data suggest that MIP2 may participate in the progression of cell proliferation in H9c2 cells.

  4. Glibenclamide Mimics Metabolic Effects of Metformin in H9c2 Cells.

    Science.gov (United States)

    Salani, Barbara; Ravera, Silvia; Fabbi, Patrizia; Garibaldi, Silvano; Passalacqua, Mario; Brunelli, Claudio; Maggi, Davide; Cordera, Renzo; Ameri, Pietro

    2017-01-01

    Sulfonylureas, such as glibenclamide, are antidiabetic drugs that stimulate beta-cell insulin secretion by binding to the sulfonylureas receptors (SURs) of adenosine triphosphate-sensitive potassium channels (KATP). Glibenclamide may be also cardiotoxic, this effect being ascribed to interference with the protective function of cardiac KATP channels for which glibenclamide has high affinity. Prompted by recent evidence that glibenclamide impairs energy metabolism of renal cells, we investigated whether this drug also affects the metabolism of cardiac cells. The cardiomyoblast cell line H9c2 was treated for 24 h with glibenclamide or metformin, a known inhibitor of the mitochondrial respiratory chain. Cell viability was evaluated by sulforodhamine B assay. ATP and AMP were measured according to the enzyme coupling method and oxygen consumption by using an amperometric electrode, while Fo-F1 ATP synthase activity assay was evaluated by chemiluminescent method. Protein expression was measured by western blot. Glibenclamide deregulated energy balance of H9c2 cardiomyoblasts in a way similar to that of metformin. It inhibited mitochondrial complexes I, II and III with ensuing impairment of oxygen consumption and ATP synthase activity, ATP depletion and increased AMPK phosphorylation. Furthermore, glibenclamide disrupted mitochondrial subcellular organization. The perturbation of mitochondrial energy balance was associated with enhanced anaerobic glycolysis, with increased activity of phosphofructo kinase, pyruvate kinase and lactic dehydrogenase. Interestingly, some additive effects of glibenclamide and metformin were observed. Glibenclamide deeply alters cell metabolism in cardiac cells by impairing mitochondrial organization and function. This may further explain the risk of cardiovascular events associated with the use of this drug, alone or in combination with metformin. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

    International Nuclear Information System (INIS)

    Zhao Yuqin; Xue Tao; Yang Xiaochun; Zhu Hong; Ding Xiaofei; Lou Liming; Lu Wei; Yang Bo; He Qiaojun

    2010-01-01

    Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

  6. Microfluidic system for monitoring of cardiac (H9C2) cell proliferation

    Science.gov (United States)

    Kobuszewska, A.; Cwik, P.; Jastrzebska, E.; Brzozka, Z.; Chudy, M.; Renaud, P.; Dybko, A.

    2017-05-01

    The paper presents the application of electrical impedance spectroscopy (EIS) analysis for investigation of cardiac cell (H9C2 - rat cardiomyoblast) proliferation after verapamil hydrochloride exposure. For this purpose, two different PDMS/glass microsystems with circular microchamber and longitudinal microchannel integrated with Pt/Al electrodes were used. The microchambers were fabricated in PDMS using photolithography and replica moulding techniques. Pt/Al electrodes were fabricated on a 4-inch glass substrate using Physical Vapor Deposition (PVD). Solution of verapamil hydrochloride was continuously introduced into the microsystems with H9C2 cell culture (a flow rate of 1 μl/min) for 72 h. The impedance spectra were recorded from 100 Hz to 1 MHz. We confirmed that impedance spectroscopy can be used for non-invasive, label-free and real-time analysis of cardiac cells proliferation based on cells dielectric properties and biological structure.

  7. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    International Nuclear Information System (INIS)

    Yang, Chuen-Mao; Lee, I-Ta; Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der

    2013-01-01

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47 phox , p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNF-α induces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNF-α induces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNF-α induces

  8. Cardiomyocyte H9c2 cells present a valuable alternative to fish lethal testing for azoxystrobin

    International Nuclear Information System (INIS)

    Rodrigues, Elsa T.; Pardal, Miguel Â.; Laizé, Vincent; Cancela, M. Leonor; Oliveira, Paulo J.; Serafim, Teresa L.

    2015-01-01

    The present study aims at identifying, among six mammalian and fish cell lines, a sensitive cell line whose in vitro median inhibitory concentration (IC_5_0) better matches the in vivo short-term Sparus aurata median lethal concentration (LC_5_0). IC_5_0_s and LC_5_0 were assessed after exposure to the widely used fungicide azoxystrobin (AZX). Statistical results were relevant for most cell lines after 48 h of AZX exposure, being H9c2 the most sensitive cells, as well as the ones which provided the best prediction of fish toxicity, with a LC_5_0_,_9_6_h/IC_5_0_,_4_8_h = 0.581. H9c2 cell proliferation upon 72 h of AZX exposure revealed a LC_5_0_,_9_6_h/IC_5_0_,_7_2_h = 0.998. Therefore, identical absolute sensitivities were attained for both in vitro and in vivo assays. To conclude, the H9c2 cell-based assay is reliable and represents a suitable ethical alternative to conventional fish assays for AZX, and could be used to get valuable insights into the toxic effects of other pesticides. - Highlights: • Fish toxicity data are still considered standard information in ecotoxicology. • Alternatives to animal testing have become an important topic of research. • Cell-based assays are currently a promising in vitro alternative. • Comparative studies to accelerate the validation of cell-based methods are required. • H9c2 cell line proved to produce in vitro reliable toxicity results for azoxystrobin. - The application of cell-based assays for environmental toxicity studies would greatly reduce the number of fish needed for toxicity testing without any loss of reliability.

  9. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.

    Science.gov (United States)

    Ebata, Kevin T; Mesh, Kathryn; Liu, Shichong; Bilenky, Misha; Fekete, Alexander; Acker, Michael G; Hirst, Martin; Garcia, Benjamin A; Ramalho-Santos, Miguel

    2017-01-01

    Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes. We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in naïve ES cells. Vitamin C treatment reduces global levels of H3K9me2, but not other histone methylation marks analyzed, as measured by western blot, immunofluorescence and mass spectrometry. Vitamin C leads to widespread loss of H3K9me2 at large chromosomal domains as well as gene promoters and repeat elements. Vitamin C-induced loss of H3K9me2 occurs rapidly within 24 h and is reversible. Importantly, we found that the histone demethylases Kdm3a and Kdm3b are required for vitamin C-induced demethylation of H3K9me2. Moreover, we show that vitamin C-induced Kdm3a/b-mediated H3K9me2 demethylation and Tet-mediated DNA demethylation are independent processes at specific loci. Lastly, we document Kdm3a/b are partially required for the upregulation of germline genes by vitamin C. These results reveal a specific role for vitamin C in histone demethylation in ES cells and document that DNA methylation and H3K9me2 cooperate to silence germline genes in pluripotent cells.

  10. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis.

    Science.gov (United States)

    Yu, Bang-Wei; Li, Jin-Long; Guo, Bin-Bin; Fan, Hui-Min; Zhao, Wei-Min; Wang, He-Yao

    2016-11-01

    Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1-9) isolated from the leaves of Gynura nepalensis for their protective effect against H 2 O 2 -induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. H9c2 cardiomyoblasts were exposed to H 2 O 2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H 2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Exposure to H 2 O 2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H 2 O 2 -induced cell death. Pretreatment with compound 6 (1.56-100 μmol/L) dose-dependently alleviated all the H 2 O 2 -induced detrimental effects. Moreover, exposure to H 2 O 2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H 2 O 2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H 2 O 2 -induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H 2 O 2 -induced phosphorylation of JNK and ERK but not that of p38. Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2

  11. Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes.

    Science.gov (United States)

    Zhao, Xiaoyan; Dou, Mengmeng; Zhang, Zhihao; Zhang, Duoduo; Huang, Chengzhi

    2017-10-01

    The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H 2 O 2 -induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H 2 O 2 -induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H 2 O 2 -induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. The Metabolic Effects of Traditional Chinese Medication Qiliqiangxin on H9C2 Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Shenghui Lin

    2015-11-01

    Full Text Available Background/Aims: A traditional Chinese medicine, Qiliqiangxin (QLQX has been identified to perform protective effects on myocardium energy metabolism in mice with acute myocardial infarction, though the effects of QLQX on myocardial mitochondrial biogenesis under physiological condition is still largely elusive. Methods: H9C2 cells were treated with different concentrations of QLQX (0.25, 0.5, and 1.0 µg/mL from 6 to 48 hours. Oxidative metabolism and glycolysis were measured by oxygen consumption and extracellular acidification with XF96 analyzer (SeaHorse. Mitochondrial content and ultrastructure were assessed by Mitotracker staining, confocal microscopy, flow cytometry, and transmission electron microscopy. Mitochondrial biogenesis-related genes were measured by qRT-PCR and Western blot. Results: H9C2 cells treated with QLQX exhibited increased glycolysis at earlier time points (6, 12, and 24 hours, while QLQX could enhance oxidative metabolism and mitochondrial uncoupling in H9C2 cells with longer duration of treatment (48 hours. QLQX also increased mitochondrial content and mitochondrial biogenesis-related gene expression levels, including 16sRNA, SSBP1, TWINKLE, TOP1MT and PLOG, with an activation of peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α and its downstream effectors. Silencing PGC-1α could abolish the increased mitochondrial content in H9C2 cells treated with QLQX. Conclusion: Our study is the first to document enhanced metabolism in cardiomyocytes treated with QLQX, which is linked to increased mitochondrial content and mitochondrial biogenesis via activation of PGC-1α.

  13. MicroRNA-145 Aggravates Hypoxia-Induced Injury by Targeting Rac1 in H9c2 Cells.

    Science.gov (United States)

    Wang, Ximing; Zhang, Yanxia; Wang, Hongshan; Zhao, Genshang; Fa, Xianen

    2017-01-01

    Myocardial infarction (MI) is a leading cause of morbidity and mortality. Here, we sought to explore the potential role and underlying mechanism of miR-145 in MI. H9c2 cells were cultured under persistent hypoxia to simulate MI. The hypoxia-induced injury was assessed on the basis of cell viability, migration, invasion and apoptosis. The expression of miR-145 was evaluated by qRT-PCR and the influence of aberrantly expressed miR-145 on H9c2 cells under hypoxia was also estimated. Utilizing bioinformatics methods, the target genes of miR-145 were verified by luciferase reporter assay. Then, effects of abnormally expressed target gene on miR-145 silenced H9c2 cells were assessed. Finally, the phosphorylation levels of key kinases in the phosphatidylinositol-3-kinase (PI3K)/AKT and the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways were detected by Western blot analysis. Hypoxia remarkably lowered viability, migration and invasion but promoted cell apoptosis. Meantime, the miR-145 level was up-regulated in H9c2 cells under hypoxia. Following experiments suggested that hypoxia-induced injury was exacerbated by miR-145 overexpression while was alleviated by miR-145 silence. Rac1 was predicted and further validated to be a target gene of miR-145. The influence of miR-145 silencing on H9c2 cells under hypoxia could be reversed by down-regulation of Rac1. Additionally, the phosphorylation levels of PI3K, AKT, MAPK and ERK were all elevated in miR-145 silenced cells and these alterations were reversed by down-regulation of Rac1. miR-145 silencing could protect H9c2 cells against hypoxia-induced injury by targeting Rac1, in which PI3K/AKT and MAPK/ERK pathways might be involved. © 2017 The Author(s). Published by S. Karger AG, Basel.

  14. Luteolin Prevents H2O2-Induced Apoptosis in H9C2 Cells through Modulating Akt-P53/Mdm2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hong Chang

    2016-01-01

    Full Text Available Introduction. Luteolin, a falconoid compound in many Chinese herbs and formula, plays important roles in cardiovascular diseases. The underlying mechanism of luteolin remains to be further elaborated. Methods. A model of hydrogen peroxide- (H2O2- induced H9C2 cells apoptosis was established. Cell viabilities were examined with an MTT assay. 2′,7′-Dichlorofluorescin diacetate (DCFH-DA and flow cytometry were used to detect ROS level and apoptosis rate, respectively. The expressions of signaling proteins related to apoptosis were analyzed by western blot and mRNA levels were detected by real-time polymerase chain reaction (PCR. Quercetin was applied as positive drug. Results. Incubation with various concentrations of H2O2 (0, 50, 100, and 200 μM for 1 h caused dose-dependent loss of cell viability and 100 μM H2O2 reduced the cell viability to approximately 50%. Treatments with luteolin and quercetin protected cells from H2O2-induced cytotoxicity and reduced cellular ROS level and apoptosis rate. Moreover, luteolin could downregulate the expressions of Bax, caspase-8, cleaved-caspase-3, and p53 in apoptotic signaling pathway. Further study showed that the expressions of Akt, Bcl-2, and Mdm2 were upregulated by luteolin. Conclusion. Luteolin protects H9C2 cells from H2O2-induced apoptosis. The protective and antiapoptotic effects of luteolin could be mediated by regulating the Akt-P53/Mdm2 apoptotic pathway.

  15. Protective Effect of Hibiscus Sabdariffa on Doxorubicin-induced Cytotoxicity in H9c2 Cardiomyoblast Cells.

    Science.gov (United States)

    Hosseini, Azar; Bakhtiari, Elham; Mousavi, Seyed Hadi

    2017-01-01

    Doxorubicin (DOX) is an effective anticancer drug. But its clinical application is limited, because DOX induces apoptosis in cardiomyocytes and it leads to permanent degenerative cardiomyopathy and heart failure. Recent trainings showed that Hibiscus sabdariffa exhibit pharmacological actions such as potent antioxidant. So, in this study we explored the protective effect of H. sabdariffa extract on doxorubicin-induced cytotoxicity in H9c2 cells. Cell viability was quantified by MTT assay. Apoptotic cells were determined using PI staining of DNA fragmentation by flowcytometry (sub-G1 peak). Cells were cultured with 5 μM DOX for 24 h to create the cell damage. H9c2 cells were pretreated with different concentrations (7.81-500 μg/mL) of H. sabdariffa extract (HSE) for 2 h before DOX treatment in all trials. Pretreatment with HSE increased cell viability at concentration of 31.25-500 μg/mL. Compared to control cells, apoptosis was induced in DOX treated cells after 24 h, (sabdariffa could exert the cardioprotective effects on DOX-induced toxicity partly by antiapoptotic activity.

  16. Protective effect of p-coumaric acid against doxorubicin induced toxicity in H9c2 cardiomyoblast cell lines

    Directory of Open Access Journals (Sweden)

    Sunitha M. Chacko

    2015-01-01

    Full Text Available Doxorubicin (Dox has been used for more than four decades to treat cancer, particularly solid tumours and haematological malignancies. However, the administration of this drug is a matter of concern in the clinical community, since Dox therapy is commonly associated with dose-dependent cardiotoxicity. Attempts at alleviating drug generated cardiac damage using naturally occurring compounds with radical scavenging property are a promising area of research. p-Coumaric acid (pCA is one such compound which has significant antiradical scavenging effect. This study aims to investigate the effect of pre and co-administration of pCA on mitigating or preventing Dox induced cardiotoxicity in vitro using H9c2 cardiomyoblast cell lines. Addition of pCA and Dox were performed for both treatment and control sets on H9c2 cells. Sulphorhodamine B assay was used to study the cytotoxic effect of pCA and Dox. The effect of the drug on cell morphology, cell viability and nuclear damage was studied using AO/EB and DAPI staining. ROS production was studied using DCFH-DA staining. Mitochondrial membrane potential and intracellular calcium levels were assessed by rhodamine 123 and Fura 2AM staining. pCA showed strong ABTS cation radical scavenging activity and FRAP activity in a dose dependent manner. The results showed that Dox has significant cytotoxic effect in a dose dependent manner while pCA, even at higher concentrations did not display any significant cytotoxicity on H9c2 cells. Both pre treatment and co- administration of pCA reduced the drug induced toxic effects on cell morphology and enhanced the number of viable cells in comparison to the Dox treated cells as evident from the AO/EB and DAPI staining images. The Dox induced ROS production was found to be significantly reduced in pCA pre-treated and co-administered cells. Dox induced changes in mitochondrial membrane potential and intracellular calcium levels were remarkably improved following pre and co

  17. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    International Nuclear Information System (INIS)

    Si, Lina; Shi, Jin; Gao, Wenqun; Zheng, Min; Liu, Lingjuan; Zhu, Jing; Tian, Jie

    2014-01-01

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  18. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Si, Lina; Shi, Jin; Gao, Wenqun [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Zheng, Min [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Liu, Lingjuan; Zhu, Jing [Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Tian, Jie, E-mail: jietian@cqmu.edu.cn [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China)

    2014-07-18

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  19. Endocytosis‒Mediated Invasion and Pathogenicity of Streptococcus agalactiae in Rat Cardiomyocyte (H9C2).

    Science.gov (United States)

    Pooja, Sharma; Pushpanathan, Muthuirulan; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2015-01-01

    Streptococcus agalactiae infection causes high mortality in cardiovascular disease (CVD) patients, especially in case of setting prosthetic valve during cardiac surgery. However, the pathogenesis mechanism of S. agalactiae associate with CVD has not been well studied. Here, we have demonstrated the pathogenicity of S. agalactiae in rat cardiomyocytes (H9C2). Interestingly, both live and dead cells of S. agalactiae were uptaken by H9C2 cells. To further dissect the process of S. agalactiae internalization, we chemically inhibited discrete parts of cellular uptake system in H9C2 cells using genistein, chlorpromazine, nocodazole and cytochalasin B. Chemical inhibition of microtubule and actin formation by nocodazole and cytochalasin B impaired S. agalactiae internalization into H9C2 cells. Consistently, reverse‒ transcription PCR (RT‒PCR) and quantitative real time‒PCR (RT-qPCR) analyses also detected higher levels of transcripts for cytoskeleton forming genes, Acta1 and Tubb5 in S. agalactiae‒infected H9C2 cells, suggesting the requirement of functional cytoskeleton in pathogenesis. Host survival assay demonstrated that S. agalactiae internalization induced cytotoxicity in H9C2 cells. S. agalactiae cells grown with benzyl penicillin reduced its ability to internalize and induce cytotoxicity in H9C2 cells, which could be attributed with the removal of surface lipoteichoic acid (LTA) from S. agalactiae. Further, the LTA extracted from S. agalactiae also exhibited dose‒dependent cytotoxicity in H9C2 cells. Taken together, our data suggest that S. agalactiae cells internalized H9C2 cells through energy‒dependent endocytic processes and the LTA of S. agalactiae play major role in host cell internalization and cytotoxicity induction.

  20. Modulation of transglutaminase 2 activity in H9c2 cells by PKC and PKA signalling: a role for transglutaminase 2 in cytoprotection

    Science.gov (United States)

    Almami, Ibtesam; Dickenson, John M; Hargreaves, Alan J; Bonner, Philip L R

    2014-01-01

    BACKGROUND AND PURPOSE Tissue transglutaminase (TG2) has been shown to mediate cell survival in many cell types. In this study, we investigated whether the role of TG2 in cytoprotection was mediated by the activation of PKA and PKC in cardiomyocyte-like H9c2 cells. EXPERIMENTAL APPROACH H9c2 cells were extracted following stimulation with phorbol-12-myristate-13-acetate (PMA) and forskolin. Transglutaminase activity was determined using an amine incorporating and a protein crosslinking assay. The presence of TG isoforms (TG1, 2, 3) was determined using Western blot analysis. The role of TG2 in PMA- and forskolin-induced cytoprotection was investigated by monitoring H2O2-induced oxidative stress in H9c2 cells. KEY RESULTS Western blotting showed TG2 >> TG1 protein expression but no detectable TG3. The amine incorporating activity of TG2 in H9c2 cells increased in a time and concentration-dependent manner following stimulation with PMA and forskolin. PMA and forskolin-induced TG2 activity was blocked by PKC (Ro 31-8220) and PKA (KT 5720 and Rp-8-Cl-cAMPS) inhibitors respectively. The PMA- and forskolin-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Immunocytochemistry revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (β-tubulin) and novel (α-actinin) protein substrates for TG2. Pretreatment with PMA and forskolin reversed H2O2-induced decrease in MTT reduction and release of LDH. TG2 inhibitors R283 and Z-DON blocked PMA- and forskolin-induced cytoprotection. CONCLUSIONS AND IMPLICATIONS TG2 activity was stimulated via PKA- and PKC-dependent signalling pathways in H9c2 cells These results suggest a role for TG2 in cytoprotection induced by these kinases. PMID:24821315

  1. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds

    International Nuclear Information System (INIS)

    Ricotti, Leonardo; Genchi, Giada G; Menciassi, Arianna; Polini, Alessandro; Iandolo, Donata; Pisignano, Dario; Ciofani, Gianni; Mattoli, Virgilio; Vazão, Helena; Ferreira, Lino

    2012-01-01

    This study aims at investigating the behavior in terms of the proliferation and skeletal muscle differentiation capability of two myoblastic cell lines, C2C12 and H9c2, on both isotropic and anisotropic electrospun nanofibrous poly(hydroxybutyrate) (PHB) scaffolds, as well as on PHB films and polystyrene controls. After a careful characterization of the matrices in terms of surface morphology, surface roughness and mechanical properties, the proliferation rate and the capability of the two cell lines to form skeletal myotubes were evaluated. Genetic analyses were also performed in order to assess the differentiation level of the cells on the different substrates. We demonstrated that the aligned nanofibrous mesh decreases the proliferation activity and provides a higher differentiative stimulus. We also clarified how the nanofibrous substrate influences myotube formation, and quantified a series of myotube-related parameters for both C2C12 and H9c2 cells. (paper)

  2. Fluoride induces apoptosis in H9c2 cardiomyocytes via the mitochondrial pathway.

    Science.gov (United States)

    Yan, Xiaoyan; Wang, Lu; Yang, Xia; Qiu, Yulan; Tian, Xiaolin; Lv, Yi; Tian, Fengjie; Song, Guohua; Wang, Tong

    2017-09-01

    Numerous studies have shown that chronic excessive fluoride intake can adversely affect different organ systems. In particular, the cardiovascular system is susceptible to disruption by a high concentration of fluoride. The objectives of this study were to explore the mechanism of apoptosis by detecting the toxic effects of different concentrations of sodium fluoride (NaF) in H9c2 cells exposed for up to 96 h. NaF not only inhibited H9c2 cell proliferation but also induced apoptosis and morphological damage. With increasing NaF concentrations, early apoptosis of H9c2 cells was increased while the mitochondrial membrane potential was decreased. Compared with the control group, the mRNA levels of caspase-3, caspase-9, and cytochrome c all increased with increasing concentrations of NaF. In summary, these data suggest that apoptosis is involved in NaF-induced H9c2 cell toxicity and that activation of the mitochondrial pathway may occur. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    Science.gov (United States)

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Long non-coding RNA TUG1 inhibits apoptosis and inflammatory response in LPS-treated H9c2 cells by down-regulation of miR-29b.

    Science.gov (United States)

    Zhang, Haifang; Li, Hui; Ge, Ang; Guo, Enyu; Liu, Shuxia; Zhang, Lijuan

    2018-05-01

    Myocarditis is an important cause for cardiovascular morbidity and mortality in children and adults. The lncRNA taurine up-regulated gene 1 (TUG1) plays important roles in cell apoptosis and inflammation in tumor and liver injury. The present study aimed to investigate the role of TUG1 in LPS-injured H9c2 cells and explore the underlying molecular mechanism. H9c2 cells were stimulated with LPS to induce inflammatory injury. The expression of TUG1 was altered by transient transfections. Cell viability and apoptotic cell rates were detected by CCK-8 assay and flow cytometry assay, respectively. Inflammatory response was determined by detecting levels of inflammatory cytokines using qRT-PCR and ELISA. Furthermore, western blot analysis was conducted to assess the expression levels of core factors related with apoptosis and activations of NF-κB and JAK/STAT signaling pathways. LPS exposure reduced cell viability but enhanced cell apoptosis and inflammation in H9c2 cells. Moreover, TUG1 expression was down-regulated in LPS-injured H9c2 cells. TUG1 overexpression attenuated LPS-induced injuries in H9c2 cells, evidenced by augmented cell viability, declined apoptotic cell rates and decreased levels of pro-apoptotic factors and inflammatory cytokines. Inversely, TUG1 inhibition exerted the opposite effects. More importantly, TUG1 negatively modulated the expression of miR-29b and miR-29b mimic blocked the effect of TUG1 overexpression on cell viability, apoptosis, inflammation and inactivation of NF-κB and JAK/STAT signaling pathways in LPS-stimulated H9c2 cells. This study demonstrated that TUG1 played the anti-apoptotic and anti-inflammatory roles in LPS-injured H9c2 cells via down-regulating miR-29b and inhibiting NF-κB and JAK/STAT pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Mitochondrial dysfunction in H9c2 cells during ischemia and amelioration with Tribulus terrestris L.

    Science.gov (United States)

    Reshma, P L; Sainu, Neethu S; Mathew, Anil K; Raghu, K G

    2016-05-01

    The present study investigates the protective effect of partially characterized Tribulus terrestris L. fruit methanol extract against mitochondrial dysfunction in cell based (H9c2) myocardial ischemia model. To induce ischemia, the cells were maintained in an ischemic buffer (composition in mM -137 NaCl, 12 KCl, 0.5 MgCl2, 0.9 CaCl2, 20 HEPES, 20 2-deoxy-d-glucose, pH-6.2) at 37°C with 0.1% O2, 5% CO2, and 95% N2 in a hypoxia incubator for 1h. Cells were pretreated with various concentrations of T. terrestris L. fruit methanol extract (10 and 25μg/ml) and Cyclosporin A (1μM) for 24h prior to the induction of ischemia. Different parameters like lactate dehydrogenase release, total antioxidant capacity, glutathione content and antioxidant enzymes were investigated. Studies were conducted on mitochondria by analyzing alterations in mitochondrial membrane potential, integrity, and dynamics (fission and fusion proteins - Mfn1, Mfn2, OPA1, Drp1 and Fis1). Various biochemical processes in mitochondria like activity of electron transport chain (ETC) complexes, oxygen consumption and ATP production was measured. Ischemia for 1h caused a significant (p≤0.05) increase in LDH leakage, decrease in antioxidant activity and caused mitochondrial dysfunction. T. terrestris L. fruit methanol extract pretreatment was found effective in safeguarding mitochondria via its antioxidant potential, mediated through various bioactives. HPLC of T. terrestris L. fruit methanol extract revealed the presence of ferulic acid, phloridzin and diosgenin. T. terrestris L. fruit ameliorate ischemic insult in H9c2 cells by safeguarding mitochondrial function. This validates the use of T. terrestris L. against heart disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Live imaging of H3K9 acetylation in plant cells

    Science.gov (United States)

    Kurita, Kazuki; Sakamoto, Takuya; Yagi, Noriyoshi; Sakamoto, Yuki; Ito, Akihiro; Nishino, Norikazu; Sako, Kaori; Yoshida, Minoru; Kimura, Hiroshi; Seki, Motoaki; Matsunaga, Sachihiro

    2017-01-01

    Proper regulation of histone acetylation is important in development and cellular responses to environmental stimuli. However, the dynamics of histone acetylation at the single-cell level remains poorly understood. Here we established a transgenic plant cell line to track histone H3 lysine 9 acetylation (H3K9ac) with a modification-specific intracellular antibody (mintbody). The H3K9ac-specific mintbody fused to the enhanced green fluorescent protein (H3K9ac-mintbody-GFP) was introduced into tobacco BY-2 cells. We successfully demonstrated that H3K9ac-mintbody-GFP interacted with H3K9ac in vivo. The ratio of nuclear/cytoplasmic H3K9ac-mintbody-GFP detected in quantitative analysis reflected the endogenous H3K9ac levels. Under chemically induced hyperacetylation conditions with histone deacetylase inhibitors including trichostatin A, Ky-2 and Ky-14, significant enhancement of H3K9ac was detected by H3K9ac-mintbody-GFP dependent on the strength of inhibitors. Conversely, treatment with a histone acetyltransferase inhibitor, C646 caused a reduction in the nuclear to cytoplasmic ratio of H3K9ac-mintbody-GFP. Using this system, we assessed the environmental responses of H3K9ac and found that cold and salt stresses enhanced H3K9ac in tobacco BY-2 cells. In addition, a combination of H3K9ac-mintbody-GFP with 5-ethynyl-2′-deoxyuridine labelling confirmed that H3K9ac level is constant during interphase. PMID:28418019

  7. Sodium Ferulate Prevents Daunorubicin - Induced Apoptosis in H9c2 Cells via Inhibition of the ERKs Pathway

    Directory of Open Access Journals (Sweden)

    Zhi-Juan Wu

    2015-07-01

    Full Text Available Background: Daunorubicin (DNR-induced cardiotoxicity, which is closely associated with cardiomyocyte apoptosis, limits the drug's clinical application. The activation of the extracellular regulated protein kinases (ERKs pathway is responsible for the pro-apoptosis effect of DNR Sodium ferulate (SF has recently been found to attenuate both DNR-induced cardiotoxicity and mitochondrial apoptosis in juvenile rats. Nonetheless, the precise mechanism underlying SF-induced cardio-protection remains unclear. Methods: The DNR-injured H9c2 cell model was prepared by incubating the cells in 1 µM DNR for 24 h. Amounts of 15.6, 31.3 or 62.5 µM SF were simultaneously added to the cells. The effect of SF on the cytotoxic and apoptotic parameters of the cells was studied by monitoring apoptosis regulation via the ERKs pathway. Results: SF attenuated DNR-induced cell death (particularly apoptotic death, cTnI and β-tubulin degradation, and cellular morphological changes. SF reduced mitochondrial membrane potential depolarization, cytochrome c leakage, and caspase-9 and caspase-3 activation. SF also decreased ERK1/2, phospho-ERK1/2, p53 and Bax expression and increased Bcl-2 expression. These effects were similar to the results observed when using the pharmacological ERKs phosphorylation inhibitor, AZD6244. Conclusion: We determined that SF protects H9c2 cells from DNR-induced apoptosis through a mechanism that involves the interruption of the ERKs signaling pathway.

  8. Acetylcholine Attenuates Hypoxia/ Reoxygenation-Induced Mitochondrial and Cytosolic ROS Formation in H9c2 Cells via M2 Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Yi Miao

    2013-02-01

    Full Text Available Background: The anti-infammatory and cardioprotective effect of acetylcholine (ACh has been reported; nevertheless, whether and how ACh exhibits an antioxidant property against ischemia/reperfusion (I/R-induced oxidative stress remains obscure. Methods: In the present study, H9c2 rat cardiomyocytes were exposed to hypoxia/reoxygenation (H/R to mimic I/R injury. We estimated intracellular different sources of reactive oxygen species (ROS by measuring mitochondrial ROS (mtROS, mitochondrial DNA (mtDNA copy number, xanthine oxidase (XO and NADPH oxidase (NOX activity and expression of rac 1. Cell injury was determined by lactate dehydrogenase (LDH release and cleaved caspase-3 expression. The siRNA transfection was performed to knockdown of M2 acetylcholine receptor (M2 AChR expression. Results: 12-h hypoxia followed by 2-h reoxygenation resulted in an abrupt burst of ROS in H9c2 cells. Administration of ACh reduced the levels of ROS in a concentration-dependent manner. Compared to the H/R group, ACh decreased mtROS, recovered mtDNA copy number, diminished XO and NOX activity, rac 1 expression as well as cell injury. Co- treatment with atropine rather than hexamethonium abolished the antioxidant and cardioprotective effect of ACh. Moreover, knockdown of M2 AChR by siRNA showed the similar trends as atropine co-treatment group. Conclusions: ACh inhibits mitochondria-, XO- and NOX-derived ROS production thus protecting H9c2 cells against H/R-induced oxidative stress, and these benefcial effects are mainly mediated by M2 AChR. Our findings suggested that increasing ACh release could be a potential therapeutic strategy for treatment and prevention of I/R injury.

  9. Cyclic mechanical stretch enhances BMP9-induced osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Song, Yang; Tang, Yinhong; Song, Jinlin; Lei, Mingxing; Liang, Panpan; Fu, Tiwei; Su, Xudong; Zhou, Pengfei; Yang, Li; Huang, Enyi

    2018-04-01

    The purpose of this study was to investigate whether mechanical stretch can enhance the bone morphogenetic protein 9 (BMP9)-induced osteogenic differentiation in MSCs. Recombinant adenoviruses were used to overexpress the BMP9 in C3H10T1/2 MSCs. Cells were seeded onto six-well BioFlex collagen I-coated plates and subjected to cyclic mechanical stretch [6% elongation at 60 cycles/minute (1 Hz)] in a Flexercell FX-4000 strain unit for up to 12 hours. Immunostaining and confocal microscope were used to detect cytoskeleton organization. Cell cycle progression was checked by flow cytometry. Alkaline phosphatase activity was measured with a Chemiluminescence Assay Kit and was quantified with a histochemical staining assay. Matrix mineralization was examined by Alizarin Red S Staining. Mechanical stretch induces cytoskeleton reorganization and inhibits cell proliferation by preventing cells entry into S phase of the cell cycle. Although mechanical stretch alone does not induce the osteogenic differentiation of C3H10T1/2 MSCs, co-stimulation with mechanical stretch and BMP9 enhances alkaline phosphatase activity. The expression of key lineage-specific regulators (e.g., osteocalcin (OCN), SRY-related HMG-box 9, and runt-related transcription factor 2) is also increased after the co-stimulation, compared to the mechanical stretch stimulation along. Furthermore, mechanical stretch augments the BMP9-mediated bone matrix mineralization of C3H10T1/2 MSCs. Our results suggest that mechanical stretch enhances BMP9-induced osteoblastic lineage specification in C3H10T1/2 MSCs.

  10. TanshinoneIIA and cryptotanshinone protect against hypoxia-induced mitochondrial apoptosis in H9c2 cells.

    Directory of Open Access Journals (Sweden)

    Hyou-Ju Jin

    Full Text Available Mitochondrial apoptosis pathway is an important target of cardioprotective signalling. Tanshinones, a group of major bioactive compounds isolated from Salvia miltiorrhiza, have been reported with actions against inflammation, oxidative stress, and myocardial ischemia reperfusion injury. However, the actions of these compounds on the chronic hypoxia-related mitochondrial apoptosis pathway have not been investigated. In this study, we examined the effects and molecular mechanisms of two major tanshonones, tanshinone IIA (TIIA and cryptotanshinone (CT on hypoxia induced apoptosis in H9c2 cells. Cultured H9c2 cells were treated with TIIA and CT (0.3 and 3 μΜ 2 hr before and during an 8 hr hypoxic period. Chronic hypoxia caused a significant increase in hypoxia inducible factor 1α expression and the cell late apoptosis rate, which was accompanied with an increase in caspase 3 activity, cytochrome c release, mitochondria membrane potential and expression of pro-apoptosis proteins (Bax and Bak. TIIA and CT (0.3 and 3 μΜ, in concentrations without affecting the cell viability, significantly inhibited the late apoptosis and the changes of caspase 3 activity, cytochrome c release, and mitochondria membrane potential induced by chronic hypoxia. These compounds also suppressed the overexpression of Bax and reduced the ratio of Bax/Bcl-2. The results indicate that TIIA and CT protect against chronic hypoxia induced cell apoptosis by regulating the mitochondrial apoptosis signaling pathway, involving inhibitions of mitochondria hyperpolarization, cytochrome c release and caspase 3 activity, and balancing anti- and pro-apoptotic proteins in Bcl-2 family proteins.

  11. A1 adenosine receptor-induced phosphorylation and modulation of transglutaminase 2 activity in H9c2 cells: A role in cell survival.

    Science.gov (United States)

    Vyas, Falguni S; Hargreaves, Alan J; Bonner, Philip L R; Boocock, David J; Coveney, Clare; Dickenson, John M

    2016-05-01

    The regulation of tissue transglutaminase (TG2) activity by the GPCR family is poorly understood. In this study, we investigated the modulation of TG2 activity by the A1 adenosine receptor in cardiomyocyte-like H9c2 cells. H9c2 cells were lysed following stimulation with the A1 adenosine receptor agonist N(6)-cyclopentyladenosine (CPA). Transglutaminase activity was determined using an amine incorporating and a protein cross linking assay. TG2 phosphorylation was assessed via immunoprecipitation and Western blotting. The role of TG2 in A1 adenosine receptor-induced cytoprotection was investigated by monitoring hypoxia-induced cell death. CPA induced time and concentration-dependent increases in amine incorporating and protein crosslinking activity of TG2. CPA-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Responses to CPA were blocked by PKC (Ro 31-8220), MEK1/2 (PD 98059), p38 MAPK (SB 203580) and JNK1/2 (SP 600125) inhibitors and by removal of extracellular Ca(2+). CPA triggered robust increases in the levels of TG2-associated phosphoserine and phosphothreonine, which were attenuated by PKC, MEK1/2 and JNK1/2 inhibitors. Fluorescence microscopy revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (Histone H4) and novel (Hexokinase 1) protein substrates for TG2. CPA pre-treatment reversed hypoxia-induced LDH release and decreases in MTT reduction. TG2 inhibitors R283 and Z-DON attenuated A1 adenosine receptor-induced cytoprotection. TG2 activity was stimulated by the A1 adenosine receptor in H9c2 cells via a multi protein kinase dependent pathway. These results suggest a role for TG2 in A1 adenosine receptor-induced cytoprotection. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Effects of Downregulation of MicroRNA-181a on H2O2-Induced H9c2 Cell Apoptosis via the Mitochondrial Apoptotic Pathway

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available Glutathione peroxidase-1 (GPx1 is a pivotal intracellular antioxidant enzyme that enzymatically reduces hydrogen peroxide to water to limit its harmful effects. This study aims to identify a microRNA (miRNA that targets GPx1 to maintain redox homeostasis. Dual luciferase assays combined with mutational analysis and immunoblotting were used to validate the bioinformatically predicted miRNAs. We sought to select miRNAs that were responsive to oxidative stress induced by hydrogen peroxide (H2O2 in the H9c2 rat cardiomyocyte cell line. Quantitative real-time PCR (qPCR demonstrated that the expression of miR-181a in H2O2-treated H9c2 cells was markedly upregulated. The downregulation of miR-181a significantly inhibited H2O2-induced cellular apoptosis, ROS production, the increase in malondialdehyde (MDA levels, the disruption of mitochondrial structure, and the activation of key signaling proteins in the mitochondrial apoptotic pathway. Our results suggest that miR-181a plays an important role in regulating the mitochondrial apoptotic pathway in cardiomyocytes challenged with oxidative stress. MiR-181a may represent a potential therapeutic target for the treatment of oxidative stress-associated cardiovascular diseases.

  13. Molecular and crystal structure of nido-9-C5H5N-11-I-7,8-C2B9H10: supramolecular architecture via hydrogen bonding X-H...I (X = B, C)

    International Nuclear Information System (INIS)

    Polyanskaya, T.M.

    2006-01-01

    A monocrystal X-ray diffraction study of a new iodine-containing cluster compound 9-(pyridine)-11-iodo-decahydro-7,8-dicarba-nido-undecaborane [9-C 5 H 5 N-11-I-7,8-C 2 B 9 H 10 ] has been performed. Crystal data: C 7 H 15 B 9 NI, M = 337.39, monoclinic, space group P2 1 /c, unit cell parameters: a=9.348(1) A, b=11.159(1) A, c=13.442(2) A, β=98.13(1) deg, V=1388.1(5) A 3 , Z=4, d calc = 1.614 g/cm 3 , T = 295 K, F(000)=648, μ=2.276 mm -1 . The structure was solved by a direct method and refined in the full-matrix anisotropic approximation (isotropic for hydrogen atoms) to final agreement factors R 1 = 0.0254, wR 2 = 0.0454 for 2437 I hkl >2σ I from 3590 measured I hkl (an Enraf-Nonius CAD-4 diffractometer, λMoK α , graphite monochromator, θ/2θ-scanning). The molecules are joined into a supramolecular assembly by hydrogen bonds X-H...I (X = B, C) [ru

  14. Ursolic Acid-enriched herba cynomorii extract induces mitochondrial uncoupling and glutathione redox cycling through mitochondrial reactive oxygen species generation: protection against menadione cytotoxicity in h9c2 cells.

    Science.gov (United States)

    Chen, Jihang; Wong, Hoi Shan; Ko, Kam Ming

    2014-01-27

    Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used 'Yang-invigorating' tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increased mitochondrial ATP generation capacity (ATP-GC) and induced mitochondrial uncoupling as well as a cellular glutathione response, thereby protecting against oxidant injury in H9c2 cells. In this study, we demonstrated that pre-incubation of H9c2 cells with HCY2 increased mitochondrial reactive oxygen species (ROS) generation in these cells, which is likely an event secondary to the stimulation of the mitochondrial electron transport chain. The suppression of mitochondrial ROS by the antioxidant dimethylthiourea abrogated the HCY2-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, and also protected against menadione-induced cytotoxicity. Studies using specific inhibitors of uncoupling protein and GR suggested that the HCY2-induced mitochondrial uncoupling and glutathione redox cycling play a determining role in the cytoprotection against menadione-induced oxidant injury in H9c2 cells. Experimental evidence obtained thus far supports the causal role of HCY2-induced mitochondrial ROS production in eliciting mitochondrial uncoupling and glutathione antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells.

  15. Polysaccharide from Angelica sinensis protects H9c2 cells against oxidative injury and endoplasmic reticulum stress by activating the ATF6 pathway.

    Science.gov (United States)

    Niu, Xiaowei; Zhang, Jingjing; Ling, Chun; Bai, Ming; Peng, Yu; Sun, Shaobo; Li, Yingdong; Zhang, Zheng

    2018-01-01

    Objectives Angelica sinensis exerts various pharmacological effects, such as antioxidant and anti-apoptotic activity. This study aimed to investigate the active ingredients in A. sinensis with antioxidant properties and whether A. sinensis polysaccharide (ASP) protects H9c2 cells against oxidative and endoplasmic reticulum (ER) stress. Methods The ingredients of A. sinensis and their targets and related pathways were determined using web-based databases. Markers of oxidative stress, cell viability, apoptosis, and ER stress-related signalling pathways were measured in H9c2 cells treated with hydrogen peroxide (H 2 O 2 ) and ASP. Results The ingredient-pathway-disease network showed that A. sinensis exerted protective effects against oxidative injury through its various active ingredients on regulation of multiple pathways. Subsequent experiments showed that ASP pretreatment significantly decreased H 2 O 2 -induced cytotoxicity and apoptosis in H9c2 cells. ASP pretreatment inhibited H 2 O 2 -induced reactive oxygen species generation, lactic dehydrogenase release, and malondialdehyde production. ASP exerted beneficial effects by inducing activating transcription factor 6 (ATF6) and increasing ATF6 target protein levels, which in turn attenuated ER stress and increased antioxidant activity. Conclusions Our findings indicate that ASP, a major water-soluble component of A. sinensis, exerts protective effects against H 2 O 2 -induced injury in H9c2 cells by activating the ATF6 pathway, thus ameliorating ER and oxidative stress.

  16. Synthesis of binuclear rhodacarboranes from dianions 1,4- and 1,3-C6H4(CH2-9-C2H2B9H9-7,8-nido)22- and (Ph3P)3RhCl

    International Nuclear Information System (INIS)

    Zakharkin, L.I.; Zhigareva, G.G.

    1996-01-01

    Dianions 1,4 and 1,3-C 6 H 4 (CH 2 -9-C 2 H 2 B 9 H 9 -7,8-nido) 2 2- obtained from nido 7,8-dicarbollide-ion and 1,4-bis(bromomethyl) and 1,3-bis(bromomethyl)benzenes react with (Ph 3 P) 3 RhCl to give binuclear rhodacarboranes, 1,4- and 1,3-[3,3-(Ph 3 P) 2 -3-H-3,1,2-RhC 2 B 9 H 10 -4-CH 2 ] 2 C 6 H 6 with chemical reaction yield 85% and 87% respectively. 7 refs., 1 fig., 1 tab

  17. Sandwich iridium complexes with the monoanionic carborane ligand [9-SMe2-7,8-C2B9H10]-

    International Nuclear Information System (INIS)

    Loginov, D.A.; Vinogradov, M.M.; Perekalin, D.S.; Starikova, Z.A.; Lysenko, K.A.; Petrovskij, P.V.; Kudinov, A.R.

    2006-01-01

    The reaction of the [(η-9-SMe 2 -7,8-C 2 B 9 H 10 )IrBr 2 ] 2 complex with Tl[Tl(η-7,8-C 2 B 9 H 11 )] afforded the iridacarborane compound (η-9-SMe 2 -7,8-C 2 B 9 H 10 )Ir(η-7,8-C 2 B 9 H 11 ). The cationic complex [Cp*Ir(η-9-SMe 2 -7,8-C 2 B 9 H 10 )] + PF 6 - (Cp* is pentamethylcyclopentadienyl) was synthesized by the reaction of [Cp*IrCl 2 ] 2 with Na[9-SMe 2 -7,8-C 2 B 9 H 10 ]. The structures of (η-9-SMe 2 -7,8-C 2 B 9 H 10 )Ir(η-cod) (cod is 1,5-cyclooctadiene) and [Cp*Ir(η-9-SMe 2 -7,8-C 2 B 9 H 10 ]PF 6 were established by X-ray diffraction [ru

  18. Antiapoptotic effect of novel compound from Herba leonuri - leonurine (SCM-198): a mechanism through inhibition of mitochondria dysfunction in H9c2 cells.

    Science.gov (United States)

    Liu, Xin Hua; Pan, Li Long; Gong, Qi Hai; Zhu, Yi Zhun

    2010-12-01

    Apoptosis of cardiomyocytes induced by oxidative stress play a critical role in cardiac dysfunction associated with ventricular remodeling and heart failure. We recently reported that leonurine attenuated hypoxia-induced cardiomyocyte damage. In this study, we investigated the mechanism of leonurine (originally from Herba leonuri but we synthesized it chemically it as also called SCM-198) (H₂O₂)-induced rat embryonic heart-derived H9c2 cells from apoptosis. Exposing H9c2 cells to H₂O₂ significantly decreased cell viability, and this was attenuated by pretreatment with leonurine for 4 h in a concentration-dependent manner. Meanwhile, leonurine was found to reduce intracellular reactive oxygen species (ROS) generation in H₂O₂-stimulated cell. Moreover, H9c2 cells stimulated by H₂O₂ was accompanied with apparent apoptotic characteristics, including fragmentation of DNA, apoptotic body formation, release of cytochrome c, translocation of Bax to mitochondria, loss of mitochondrial membrane potential (ΔΨ(m)) and activation of caspase 3. Furthermore, H₂O₂ also induced rapid and significant phosphorylation of the c-Jun-N-terminal kinase 1/2 (JNK1/2), which was inhibited SP600125 (a JNK1/2 inhibitor). All of these events were attenuated by leonurine pretreatment. Taken together, these results demonstrated that leonurine could protect H9c2 cells from H₂O₂-induced apoptosis via modulation of mitochondrial dysfunction associated with blocking the activation of JNK1/2.

  19. Endocytosis‒Mediated Invasion and Pathogenicity of Streptococcus agalactiae in Rat Cardiomyocyte (H9C2)

    OpenAIRE

    Pooja, Sharma; Pushpanathan, Muthuirulan; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2015-01-01

    Streptococcus agalactiae infection causes high mortality in cardiovascular disease (CVD) patients, especially in case of setting prosthetic valve during cardiac surgery. However, the pathogenesis mechanism of S. agalactiae associate with CVD has not been well studied. Here, we have demonstrated the pathogenicity of S. agalactiae in rat cardiomyocytes (H9C2). Interestingly, both live and dead cells of S. agalactiae were uptaken by H9C2 cells. To further dissect the process of S. agalactiae int...

  20. Role of transglutaminase 2 in A1 adenosine receptor- and β2-adrenoceptor-mediated pharmacological pre- and post-conditioning against hypoxia-reoxygenation-induced cell death in H9c2 cells.

    Science.gov (United States)

    Vyas, Falguni S; Nelson, Carl P; Dickenson, John M

    2018-01-15

    Pharmacologically-induced pre- and post-conditioning represent attractive therapeutic strategies to reduce ischaemia/reperfusion injury during cardiac surgery and following myocardial infarction. We have previously reported that transglutaminase 2 (TG2) activity is modulated by the A 1 adenosine receptor and β 2 -adrenoceptor in H9c2 cardiomyoblasts. The primary aim of this study was to determine the role of TG2 in A 1 adenosine receptor and β 2 -adrenoceptor-induced pharmacological pre- and post-conditioning in the H9c2 cells. H9c2 cells were exposed to 8h hypoxia (1% O 2 ) followed by 18h reoxygenation, after which cell viability was assessed by monitoring mitochondrial reduction of MTT, lactate dehydrogenase release and caspase-3 activation. N 6 -cyclopentyladenosine (CPA; A 1 adenosine receptor agonist), formoterol (β 2 -adrenoceptor agonist) or isoprenaline (non-selective β-adrenoceptor agonist) were added before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following hypoxia (post-conditioning). Pharmacological pre- and post-conditioning with CPA and isoprenaline significantly reduced hypoxia/reoxygenation-induced cell death. In contrast, formoterol did not elicit protection. Pre-treatment with pertussis toxin (G i/o -protein inhibitor), DPCPX (A 1 adenosine receptor antagonist) or TG2 inhibitors (Z-DON and R283) attenuated the A 1 adenosine receptor-induced pharmacological pre- and post-conditioning. Similarly, pertussis toxin, ICI 118,551 (β 2 -adrenoceptor antagonist) or TG2 inhibition attenuated the isoprenaline-induced cell survival. Knockdown of TG2 using small interfering RNA (siRNA) attenuated CPA and isoprenaline-induced pharmacological pre- and post-conditioning. Finally, proteomic analysis following isoprenaline treatment identified known (e.g. protein S100-A6) and novel (e.g. adenine phosphoribosyltransferase) protein substrates for TG2. These results have shown that A 1 adenosine receptor and β 2 -adrenoceptor

  1. 5-AIQ inhibits H{sub 2}O{sub 2}-induced apoptosis through reactive oxygen species scavenging and Akt/GSK-3β signaling pathway in H9c2 cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun-Seok; Kang, Jun Chul; Kang, Do-Hyun; Jang, Yong Chang [Department of Applied Biochemistry, Konkuk University, Chungju, Chungbuk, 380-701 (Korea, Republic of); Yi, Kyu Yang [Bio-Organic Science Division, Korea Research Institute of Chemical Technology, Daejeon, Chungnam, 305-600 (Korea, Republic of); Chung, Hun-Jong [Industrial Medicine Department, Chungju Hospital, Konkuk Medical School, Konkuk University, Chungju, Chungbuk, 380-701 (Korea, Republic of); Park, Jong Seok [Department of Biomedical Laboratory Science, Taegu Health College, Taegu 702-722 (Korea, Republic of); Kim, Bokyung [Department of Physiology, Konkuk Medical School, Konkuk University, Chungju, Chungbuk, 380-701 (Korea, Republic of); Feng, Zhong-Ping [Department of Physiology, College of Medicine, University of Toronto, Toronto, Ont., Canada M5S 1A8 (Canada); Shin, Hwa-Sup, E-mail: hsshin@kku.ac.kr [Department of Applied Biochemistry, Konkuk University, Chungju, Chungbuk, 380-701 (Korea, Republic of)

    2013-04-01

    Poly(adenosine 5′-diphosphate ribose) polymerase (PARP) is a nuclear enzyme activated by DNA strand breaks and plays an important role in the tissue injury associated with ischemia and reperfusion. The aim of the present study was to investigate the protective effect of 5-aminoisoquinolinone (5-AIQ), a PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cardiomyocytes. 5-AIQ pretreatment significantly protected against H{sub 2}O{sub 2}-induced cell death, as determined by the XTT assay, cell counting, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and Western blot analysis of apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. Upregulation of antioxidant enzymes such as manganese superoxide dismutase and catalase accompanied the protective effect of 5-AIQ on H{sub 2}O{sub 2}-induced cell death. Our data also showed that 5-AIQ pretreatment protected H9c2 cells from H{sub 2}O{sub 2}-induced apoptosis by triggering activation of Akt and glycogen synthase kinase-3β (GSK-3β), and that the protective effect of 5-AIQ was diminished by the PI3K inhibitor LY294002 at a concentration that effectively abolished 5-AIQ-induced Akt and GSK-3β activation. In addition, inhibiting the Akt/GSK-3β pathway by LY294002 significantly attenuated the 5-AIQ-mediated decrease in cleaved caspase-3 and Bax activation and H9c2 cell apoptosis induction. Taken together, these results demonstrate that 5-AIQ prevents H{sub 2}O{sub 2}-induced apoptosis in H9c2 cells by reducing intracellular reactive oxygen species production, regulating apoptosis-related proteins, and activating the Akt/GSK-3β pathway. - Highlights: ► 5-AIQ, a PARP inhibitor, decreased H{sub 2}O{sub 2}-induced H9c2 cell death and apoptosis. ► 5-AIQ upregulated antioxidant Mn-SOD and catalase, while decreasing ROS production. ► 5-AIQ decreased H{sub 2}O{sub 2}-induced increase in cleaved caspase-3 and Bax and decrease in Bcl2. ► 5-AIQ activated Akt and GSK-3

  2. 4-Guanidino-n-butyl syringate (Leonurine, SCM 198) protects H9c2 rat ventricular cells from hypoxia-induced apoptosis.

    Science.gov (United States)

    Liu, Xin-hua; Chen, Pei-fang; Pan, Li-long; Silva, Ranil De; Zhu, Yi-zhun

    2009-11-01

    In the present study, we examined the ability of a chemically synthesized compound based on the structure of leonurine, a phytochemical component of Herba leonuri, to protect H9c2 rat ventricular cells from apoptosis induced by hypoxia and serum deprivation, as a model of ischemia. The results revealed a concentration-dependent increase in cell viability associated with leonurine treatment, accompanied by a consistent decline in lactate dehydrogenase leakage into the culture medium. The fraction of annexin V-fluorescein isothiocyanate-positive cells was increased by hypoxia but reduced by leonurine. These changes were associated with increased expression of the antiapoptotic gene, Bcl-2, and reduced expression of the proapoptotic gene, Bax. Leonurine also reduced the cytosolic Ca overload induced by hypoxia. These results suggest that leonurine elicits potent cardioprotective effects in H9c2 cells, and these effects may be mediated by inhibition of intracellular Ca overload and apoptosis during hypoxia.

  3. The effect of Astragalus polysaccharides on attenuation of diabetic cardiomyopathy through inhibiting the extrinsic and intrinsic apoptotic pathways in high glucose -stimulated H9C2 cells.

    Science.gov (United States)

    Sun, Shuqin; Yang, Shuo; Dai, Min; Jia, Xiujuan; Wang, Qiyan; Zhang, Zheng; Mao, Yongjun

    2017-06-13

    Apoptosis plays a critical role in the progression of diabetic cardiomyopathy (DC). Astragalus polysaccharides (APS), an extract of astragalus membranaceus (AM), is an effective cardioprotectant. Currently, little is known about the detailed mechanisms underlying cardioprotective effects of APS. The aims of this study were to investigate the potential effects and mechanisms of APS on apoptosis employing a model of high glucose induction of apoptosis in H9C2 cells. A model of high glucose induction of H9C2 cell apoptosis was adopted in this research. The cell viabilities were analyzed by MTT assay, and the apoptotic response was quantified by flow cytometry. The expression levels of the apoptosis related proteins were determined by Real-time PCR and western blotting. Incubation of H9C2 cells with various concentrations of glucose (i.e., 5.5, 12.5, 25, 33 and 44 mmol/L) for 24 h revealed that cell viability was reduced by high glucose dose-dependently. Pretreatment of cells with APS could inhibit high glucose-induced H9C2 cell apoptosis by decreasing the expressions of caspases and the release of cytochrome C from mitochondria to cytoplasm. Further experiments also showed that APS could modulate the ratio of Bcl-2 to Bax in mitochondria. APS decreases high glucose-induced H9C2 cell apoptosis by inhibiting the expression of pro-apoptotic proteins of both the extrinsic and intrinsic pathways and modulating the ratio of Bcl-2 to Bax in mitochondria.

  4. 3'-Azido-2',3'-dideoxythymidine induced deficiency of thymidine kinases 1, 2 and deoxycytidine kinase in H9 T-lymphoid cells.

    Science.gov (United States)

    Gröschel, Bettina; Kaufmann, Andreas; Höver, Gerold; Cinatl, Jaroslav; Doerr, Hans Wilhelm; Noordhuis, Paul; Loves, Willem J P; Peters, Godefridus J; Cinatl, Jindrich

    2002-07-15

    Continuous cultivation of T-lymphoid H9 cells in the presence of 3'-azido-2',3'-dideoxythymidine (AZT) resulted in a cell variant cross-resistant to both thymidine and deoxycytidine analogs. Cytotoxic effects of AZT, 2',3'-didehydro-3'-deoxythymidine as well as different deoxycytidine analogs such as 2',3'-dideoxycytidine, 2',2'-difluoro-2'-deoxycytidine (dFdC) and 1-ss-D-arabinofuranosylcytosine (Ara-C) were strongly reduced in H9 cells continuously exposed to AZT when compared to parental cells (>8.3-, >6.6-, >9.1-, 5 x 10(4)-, 5 x 10(3)-fold, respectively). Moreover, anti-HIV-1 effects of AZT, d4T, ddC and 2',3'-dideoxy-3'-thiacytidine (3TC) were significantly diminished (>222-, >25-, >400-, >200-fold, respectively) in AZT-resistant H9 cells. Study of cellular mechanisms responsible for cross-resistance to pyrimidine analogs in AZT-resistant H9 cells revealed decreased mRNA levels of thymidine kinase 1 (TK1) and lack of deoxycytidine kinase (dCK) mRNA expression. The loss of dCK gene expression was confirmed by western blot analysis of dCK protein as well as dCK enzyme activity assay. Moreover, enzyme activity of TK1 and TK2 was reduced in AZT-resistant cells. In order to determine whether lack of dCK affected the formation of the active triphosphate of the deoxycytidine analog dFdC, dFdCTP accumulation and retention was measured in H9 parental and AZT-resistant cells after exposure to 1 and 10 microM dFdC. Parental H9 cells accumulated about 30 and 100 pmol dFdCTP/10(6) cells after 4hr, whereas in AZT-resistant cells no dFdCTP accumulation was detected. These results demonstrate that continuous treatment of H9 cells in the presence of AZT selected for a thymidine analog resistant cell variant with cross-resistance to deoxycytidine analogs, due to deficiency in TK1, TK2, and dCK.

  5. Astragaloside IV Inhibits Oxidative Stress-Induced Mitochondrial Permeability Transition Pore Opening by Inactivating GSK-3β via Nitric Oxide in H9c2 Cardiac Cells

    Directory of Open Access Journals (Sweden)

    Yonggui He

    2012-01-01

    Full Text Available Objective. This study aimed to investigate whether astragaloside IV modulates the mitochondrial permeability transition pore (mPTP opening through glycogen synthase kinase 3β (GSK-3β in H9c2 cells. Methods. H9c2 cells were exposed to astragaloside IV for 20 min. GSK-3β (Ser9, Akt (Ser473, and VASP (Ser239 activities were determined with western blot. The mPTP opening was evaluated by measuring mitochondrial membrane potential (ΔΨm. Nitric oxide (NO generation was measured by 4-amino-5-methylamino-2′, 7′-difluorofluorescein (DAF-FM diacetate. Fluorescence images were obtained with confocal microscopy. Results. Astragaloside IV significantly enhanced GSK-3β phosphorylation and prevented H2O2-induced loss of ΔΨm. These effects of astragaloside IV were reversed by the phosphatidylinositol 3-kinase (PI3K inhibitor LY294002, the NO sensitive guanylyl cyclase selective inhibitor ODQ, and the PKG inhibitor KT5823. Astragaloside IV activated Akt and PKG. Astragaloside IV was also shown to increase NO production, an effect that was reversed by L-NAME and LY294002. Astragaloside IV applied at reperfusion reduced cell death caused by simulated ischemia/reperfusion, indicating that astragaloside IV can prevent reperfusion injury. Conclusions. These data suggest that astragaloside IV prevents the mPTP opening and reperfusion injury by inactivating GSK-3β through the NO/cGMP/PKG signaling pathway. NOS is responsible for NO generation and is activated by the PI3K/Akt pathway.

  6. Triosmium cluster compounds containing isocyanide and hydride ligands. Crystal and molecular structures of (μ-H)(H)Os3(CO)10(CN-t-C4H9) and (μ-H)2Os3(CO)9(CN-t-C4H9)

    International Nuclear Information System (INIS)

    Adams, R.D.; Golembski, N.M.

    1979-01-01

    The structures of the compounds (μ-H)(H)Os 3 (CO) 10 (CN-t-C 4 H 9 ) and (μ-H) 2 Os 3 (CO) 9 (CN-t-C 4 H 9 ) have been revealed by x-ray crystallographic techniques. For (μ-H)(H)Os 3 (CO) 10 (CN-t-C 4 H 9 ): a = 9.064 (3), b = 12.225 (3), c = 20.364 (4) A; β = 98.73 (3) 0 ; space group P2 1 /c[C/sub 2h/ 5 ], No. 14; Z = 4; d/sub calcd/ = 2.79 g cm -3 . This compound contains a triangular cluster of three osmium atoms; Os(1)--Os(2) = 2.930 (1) A, Os(1)--Os(3) = 2.876 (1) A, and Os(2)--Os(3) = 3.000 (1) A. There are ten linear terminal carbonyl groups and one linear terminal isocyanide ligand which occupies an axial coordination site. The hydrogen atoms were not observed crystallographically, but their positions are strongly inferred from considerations of molecular geometry. For (μ-H) 2 Os 3 (CO) 9 (CN-t-C 4 H 9 ): a = 15.220 (8), b = 12.093 (6), c = 23.454 (5) A; space group Pbcn [D/sub 2h/ 14 ], No. 60; Z = 8; d/sub calcd/ = 2.79 g cm -3 . The compound is analogous to the parent carbonyl (μ-H) 2 Os 3 (CO) 10 and has two normal and one short osmium--osmium bonds: Os(1)--Os(2) = 2.827 (1) A, Os(1)--Os(3) = 2.828 (1) A, Os(2)--Os(3) = 2.691 (1) A. The isocyanide ligand resides in an equatorial coordination site on osmium Os(2). The hydrogen atoms were not observed but are believed to occupy bridging positions as in the parent carbonyl complex. 2 figures, 7 tables

  7. Activated Integrin-Linked Kinase Negatively Regulates Muscle Cell Enhancement Factor 2C in C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Zhenguo Dong

    2015-01-01

    Full Text Available Our previous study reported that muscle cell enhancement factor 2C (MEF2C was fully activated after inhibition of the phosphorylation activity of integrin-linked kinase (ILK in the skeletal muscle cells of goats. It enhanced the binding of promoter or enhancer of transcription factor related to proliferation of muscle cells and then regulated the expression of these genes. In the present investigation, we explored whether ILK activation depended on PI3K to regulate the phosphorylation and transcriptional activity of MEF2C during C2C12 cell proliferation. We inhibited PI3K activity in C2C12 with LY294002 and then found that ILK phosphorylation levels and MEF2C phosphorylation were decreased and that MCK mRNA expression was suppressed significantly. After inhibiting ILK phosphorylation activity with Cpd22 and ILK-shRNA, we found MEF2C phosphorylation activity and MCK mRNA expression were increased extremely significantly. In the presence of Cpd22, PI3K activity inhibition increased MEF2C phosphorylation and MCK mRNA expression indistinctively. We conclude that ILK negatively and independently of PI3K regulated MEF2C phosphorylation activity and MCK mRNA expression in C2C12 cells. The results provide new ideas for the study of classical signaling pathway of PI3K-ILK-related proteins and transcription factors.

  8. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart

    Directory of Open Access Journals (Sweden)

    Dinender Singla

    2016-01-01

    Full Text Available We hypothesized that fibroblast growth factor-9 (FGF-9 would enhance angiogenesis via activating c-kit positive stem cells in the infarcted nondiabetic and diabetic heart. In brief, animals were divided into three groups: Sham, MI, and MI+FGF-9. Two weeks following MI or sham surgery, our data suggest that treatment with FGF-9 significantly diminished vascular apoptosis compared to the MI group in both C57BL/6 and db/db mice (p<0.05. Additionally, the number of c-kit+ve/SM α-actin+ve cells and c-kit+ve/CD31+ve cells were greatly enhanced in the MI+FGF-9 groups relative to the MI suggesting FGF-9 enhances c-Kit cell activation and their differentiation into vascular smooth muscle cells and endothelial cells, respectively (p<0.05. Histology shows that the total number of vessels were quantified for all groups and our data suggest that the FGF-9 treated groups had significantly more vessels than their MI counterparts (p<0.05. Finally, echocardiographic data suggests a significant improvement in left ventricular output, as indicated by fractional shortening and ejection fraction in both nondiabetic and diabetic animals treated with FGF-9 (p<0.05. Overall, our data suggests FGF-9 has the potential to attenuate vascular cell apoptosis, activate c-Kit progenitor cells, and enhance angiogenesis and neovascularization in C57BL/6 and db/db mice leading to improved cardiac function.

  9. Therapeutic concentrations of mitoxantrone elicit energetic imbalance in H9c2 cells as an earlier event.

    Science.gov (United States)

    Rossato, Luciana Grazziotin; Costa, Vera Marisa; Vilas-Boas, Vânia; de Lourdes Bastos, Maria; Rolo, Anabela; Palmeira, Carlos; Remião, Fernando

    2013-12-01

    Mitoxantrone (MTX) is a chemotherapeutic agent that emerged as an alternative to anthracycline therapy. However, MTX also causes late cardiotoxicity, being oxidative stress and mitochondrial-impaired function proposed as possible mechanisms. This work aimed to investigate the relevance of these mechanisms to the MTX toxicity in H9c2 cells, using therapeutic concentrations. The observed cytotoxicity of MTX was time and concentration dependent in both lactate dehydrogenase leakage assay and MTT reduction assay. Two therapeutic concentrations (100 nM and 1 μM) and three time points were selected (24, 48, and 96 h) for further studies. Both MTX concentrations caused a significant increase in caspase-3 activity, which was not prevented by inhibiting MTX CYP450-metabolism. Significant decreases were observed in the total and reduced glutathione levels only in MTX 100 nM at 96 h; however, neither alterations in oxidized glutathione nor increases in the malondialdehyde levels were observed at any time or concentrations tested. On the other hand, changes in the intracellular ATP levels, mitochondrial membrane potential, and intracellular calcium levels were observed in both concentrations and all time tested. Noteworthy, decreased levels of ATP-synthase expression and activity and increases in the reactive species generation were observed at 96 h in both working concentrations. However, the radical scavenger N-acetylcysteine or the mitochondrial function enhancer L-carnitine did not prevent MTX cytotoxicity. Thus, this work evidenced the early MTX-induced energetic crisis as a possible key factor in the cell injury.

  10. New triarylamine organic dyes containing the 9-hexyl-2-(hexyloxy)-9H-carbazole for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Su, Jianyang; Chen, Yu; Wu, Yungen; Ghimire, Raju Prasad; Xu, Yingjun; Liu, Xiujie; Wang, Zhihui; Liang, Mao

    2017-01-01

    Highlights: •9-hexyl-2-(hexyloxy)-9H-carbazole (HHCBZ) was synthesized for organic dyes. •Three new triarylamine sensitizers based on the HHCBZ unit were synthesized. •The HHCBZ unit outperforms the HCBZ when used as an electron donor. •An efficiency of 8.67% was achieved by M92 with the HHCBZ donor. -- Abstract: Developing carbazole derivatives as the electron donor for organic dyes have attracted extensive interest recently. Three organic dyes M92-94 based on the 9-hexyl-2-(hexyloxy)-9H-carbazole (HHCBZ) electron donor have been successfully designed and synthesized for dye-sensitized solar cells. M95 with the 9-hexyl-9H-carbazole (HCBZ) unit has also been synthesized for comparison. An introduction of the HHCBZ unit in triarylamine brings several advantages: (i) red shifting the absorption peak and increasing the maximum molar absorption coefficient of absorption bands; (ii) decreasing the charge recombination in cobalt cells as well as iodine cells; (iii) enhancing photocurrent/photovoltage and thus the power conversion efficiencies of cobalt cells as well as iodine cells. Devices prepared with M92 show consistently higher light-to-electric energy conversion efficiencies, with the champion device reaching 8.67%, surpassing M93-95.

  11. Disruption of dopamine D1/D2 receptor complex is involved in the function of haloperidol in cardiac H9c2 cells.

    Science.gov (United States)

    Lencesova, L; Szadvari, I; Babula, P; Kubickova, J; Chovancova, B; Lopusna, K; Rezuchova, I; Novakova, Z; Krizanova, O; Novakova, M

    2017-12-15

    Haloperidol is an antipsychotic agent and acts as dopamine D2 receptor (D2R) antagonist, as a prototypical ligand of sigma1 receptors (Sig1R) and it increases expression of type 1 IP 3 receptors (IP 3 R1). However, precise mechanism of haloperidol action on cardiomyocytes through dopaminergic signaling was not described yet. This study investigated a role of dopamine receptors in haloperidol-induced increase in IP 3 R1 and Sig1R, and compared physiological effect of melperone and haloperidol on basic heart parameters in rats. We used differentiated NG-108 cells and H9c2 cells. Gene expression, Western blot and immunofluorescence were used to evaluate haloperidol-induced differences; proximity ligation assay (PLA) and immunoprecipitation to determine interactions of D1/D2 receptors. To evaluate cardiac parameters, Wistar albino male rats were used. We have shown that antagonism of D2R with either haloperidol or melperone results in upregulation of both, IP 3 R1 and Sig1R, which is associated with increased D2R, but reduced D1R expression. Immunofluorescence, immunoprecipitation and PLA support formation of heteromeric D1/D2 complexes in H9c2 cells. Treatment with haloperidol (but not melperone) caused decrease in systolic and diastolic blood pressure and significant increase in heart rate. Because D1R/D2R complexes can engage Gq-like signaling in other experimental systems, these results are consistent with the possibility that disruption of D1R/D2R complex in H9c2 cells might cause a decrease in IP 3 R1 activity, which in turn may account for the increase expression of IP 3 R and Sig1R. D2R is probably not responsible for changes in cardiac parameters, since melperone did not have any effect. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    Science.gov (United States)

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  13. Synthesis of iridacarborane halide complexes [(η-9-SMe2-7,8-C2B9H10)IrX2]2 (X=Cl, Br, I)

    International Nuclear Information System (INIS)

    Kudinov, A.R.; Perekalin, D.S.; Petrovskij, P.V.

    2001-01-01

    By interaction between Na[9-SMe 2 -7,8-C 2 B 9 H 10 ] and [(Cod)IrCl] 2 (Cod - cycloocta-1,5-diene) iridium complex (η-9-SMe 2 -7,8-C 2 B 9 H 10 )Ir(Cod), which under the action of anhydrous hydrohalogenic acids HX (X=Cl, Br, I) yields iridacarborane halide complexes [(η-9-SMe 2 -7,8-C 2 B 9 H 10 )IrX 2 ] 2 , being analogs of cyclopentadienyl complexes [(C 5 Me 5 )IrX 2 ] 2 . The complexes prepared were characterized on the basis of data of elementary analysis and 1 H, 11 B NMR spectra [ru

  14. Volume properties and refraction of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids lysine, threonine, and oxyproline (C60(C6H13N2O2)2, C60(C4H8NO3)2, and C60(C5H9NO2)2) at 25°C

    Science.gov (United States)

    Semenov, K. N.; Ivanova, N. M.; Charykov, N. A.; Keskinov, V. A.; Kalacheva, S. S.; Duryagina, N. N.; Garamova, P. V.; Kulenova, N. A.; Nabieva, A.

    2017-02-01

    Concentration dependences of the density of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids are studied by pycnometry. Concentration dependences of the average molar volumes and partial volumes of components (H2O and corresponding bisadducts) are calculated for C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems at 25°C. Concentration dependences of the indices of refraction of C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems are determined at 25°C. The concentration dependences of specific refraction and molar refraction of bisadducts and aqueous solutions of them are calculated.

  15. Sensitization of rat 9L gliosarcoma cells to low dose rate irradiation by long duration 41 degrees C hyperthermia.

    Science.gov (United States)

    Armour, E P; Wang, Z H; Corry, P M; Martinez, A

    1991-06-15

    Modification of survival by long duration, 41 degrees C hyperthermia in combination with low dose rate radiation (0.5 Gy/h) was determined in rat 9L gliosarcoma cells. Cells were exposed to radiation in a manner that simulated continuous irradiation at a dose rate relevant to clinical brachytherapy. High dose rate X-irradiation was fractionated in 1.0-Gy fractions at 2-h intervals (FLDRI). Previous studies had demonstrated that 9L cells exposed to FLDRI with these parameters have survival characteristics that are equivalent to continuous low dose rate irradiation. Cells exposed to 41 degrees C throughout FLDRI were sensitized significantly (thermal enhancement ratio of 2.07) compared with cells irradiated at 37 degrees C. Incubation for 24 h at 41 degrees C before and/or after FLDRI at either 37 degrees C or 41 degrees C did not increase the slope of the radiation survival curves but did reduce the shoulder. Similarly, heating at 43 degrees C for 30 or 60 min before and/or after irradiation at 0.5 Gy/h also did not enhance cell sensitivity. Survival of cells after irradiation at high dose rate (60 Gy/h) was independent of the temperature during irradiation. Preheat at 41 degrees C for 24 h did not sensitize cells to high dose rate irradiation by increasing the slope of the survival curve, although a loss of shoulder was observed. Sensitization of cells heated at 43 degrees C for 30 or 60 min before high dose rate irradiation was expressed as classical slope modification. Our results demonstrate that 41 degrees C heating during FLDRI greatly sensitizes cells to radiation-induced killing for exposure durations up to 36 h. Heating 9L cells at 41 degrees C or 43 degrees C adjacent to FLDRI at 0.5 Gy/h resulted in no additional enhancement of terminal sensitivity, although shoulder modification was observed. The sensitization by simultaneous heating described above occurred even though thermotolerance developed during extended incubation at 41 degrees C. These in vitro

  16. TSA protects H9c2 cells against thapsigargin-induced apoptosis related to endoplasmic reticulum stress-mediated mitochondrial injury.

    Science.gov (United States)

    Li, Zhiping; Liu, Yan; Dai, Xinlun; Zhou, Qiangqiang; Liu, Xueli; Li, Zeyu; Chen, Xia

    2017-05-01

    Endoplasmic reticulum stress (ERS) activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. Recently, TSA has shown protective effects on ERS and its mechanisms related to ER pathway has been previously characterized. However, whether TSA exerts its protective role via metabolic events remain largely undefined. Objectives : To explore the possible involvement of the metabolic changes during ERS and to better understand how TSA influence mitochondrial function to facilitate cellular adaptation. Results : TSA is an inhibitor of histone deacetylase which could significantly inhibit H9c2 cell apoptosis induced by Thapsigargin (TG). It also intervene the decrease of mitochondrial membrane potential. By immunofluorescence staining, we have shown that GRP78 was concentrated in the perinuclear region and co-localized with ER. However, treatments with TG and TSA could let it overlap with the mitochondrial marker MitoTracker. Cellular fractionation also confirmed the location of GRP78 in mitochondrion. TSA decreases ERS-induced cell apoptosis and mitochondrial injury may related to enhance the location of GRP78 in mitochondrion.

  17. Araloside C Prevents Hypoxia/Reoxygenation-Induced Endoplasmic Reticulum Stress via Increasing Heat Shock Protein 90 in H9c2 Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yuyang Du

    2018-04-01

    Full Text Available Araloside C (AsC is a cardioprotective triterpenoid compound that is mainly isolated from Aralia elata. This study aims to determine the effects of AsC on hypoxia-reoxygenation (H/R-induced apoptosis in H9c2 cardiomyocytes and its underlying mechanisms. Results demonstrated that pretreatment with AsC (12.5 μM for 12 h significantly suppressed the H/R injury in H9c2 cardiomyocytes, including improving cell viability, attenuating the LDH leakage and preventing cardiomyocyte apoptosis. AsC also inhibited H/R-induced ER stress by reducing the activation of ER stress pathways (PERK/eIF2α and ATF6, and decreasing the expression of ER stress-related apoptotic proteins (CHOP and caspase-12. Moreover, AsC greatly improved the expression level of HSP90 compared with that in the H/R group. The use of HSP90 inhibitor 17-AAG and HSP90 siRNA blocked the above suppression effect of AsC on ER stress-related apoptosis caused by H/R. Taken together, AsC could reduce H/R-induced apoptosis possibly because it attenuates ER stress-dependent apoptotic pathways by increasing HSP90 expression.

  18. Niclosamide enhances ROS-mediated cell death through c-Jun activation.

    Science.gov (United States)

    Lee, Sae-lo-oom; Son, A-Rang; Ahn, Jiyeon; Song, Jie-Young

    2014-06-01

    Radiotherapy is an effective treatment modality in the clinical treatment of cancers, and has been combined with chemotherapy in order to improve therapeutic efficacy. Therefore, we aimed to develop small molecules that enhance the cytotoxic effects of radiotherapy. In this study, we provide evidence that niclosamide is an effective radiosensitizer in non-small cell lung cancer cells. Using a cell-based high-throughput viability screen of 1040 compounds in combination with γ-ionizing radiation (IR), we found niclosamide, an FDA-approved antihelminthic agent, had a radiosensitizing effect on H1299 human lung cancer cells. Pretreatment with niclosamide enhanced IR- induced cell death of H1299 in a dose-dependent manner via apoptosis compared with IR or niclosamide alone. The combined treatment induced significantly more phosphorylation of p38 MAPK and c-Jun in H1299 cells than IR or niclosamide alone. Since IR induces apoptosis through generation of reactive oxygen species (ROS), hydrogen peroxide (H2O2) was employed as another ROS generator and we found that niclosamide also sensitized cells to H2O2. Niclosamide pretreatment also induced c-Jun and its phosphorylation in the presence of H2O2, thereby enhancing apoptosis. N-acetyl-L-cysteine (NAC) treatment abolished both cell death and c-Jun activation induced by the combination treatments. Knockdown of c-Jun also decreased PARP cleavage and clonogenic cell survival in niclosamide- and IR-treated H1299 cells. Our findings suggest that niclosamide could be a promising radiosensitizer in lung cancer patients through activation of the p38 MAPK-c-Jun axis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Mechanochemical synthesis of 1-stanna-2,3-dicarba-closo-dodecaborane SnB9C2H11

    International Nuclear Information System (INIS)

    Volkov, V.V.; Myakishev, K.G.; Solomatina, L.Ya.

    1990-01-01

    The possibility of synthesis of 1-stanna-2, 3-dicarba-dodecaborane (2), SnB 9 C 2 H 11 by the mechanical activation of solid mixtures of CsB 9 C 2 H 12 , NaH and SnCl 2 has been studied. These solid phase mechano-chemical reactions were performed in vacuum vibration mills without any liquid solvents at room temperature. Crystalline SnB 9 C 2 H 11 was produced by sublimation in vacuum at 140 deg C. Yioeld of the sublimate was 3-6%

  20. Interaction between exo-nido-ruthenacarborane [Cl(Ph3P)2Ru]-5,6,10-(μ-H)3-10-H-7,8-C2B9H8 and bromine

    International Nuclear Information System (INIS)

    Timofeev, S.V.; Lobanova, I.A.; Petrovskij, P.V.; Starikova, Z.A.; Bregadze, V.I.

    2001-01-01

    Interaction between exo-nido-ruthenacarborane [Cl(Ph 3 P) 2 Ru]-5,6,10-(μ-H) 3 -10-H-7,8-C 2 B 9 H 8 with bromine in CH 2 Cl 2 solutions at 0 deg C studied using the methods of elementary analysis, NMR, IR spectroscopy and X-ray diffraction analysis. It was ascertained that the reaction gives rise to bromine atom substitution for chlorine atom in octahedral surrounding of ruthenium atom with formation of complex [Br(Ph 3 P) 2 Ru]-5,6,10-(μ-H) 3 -10-H-7,8-C 2 B 9 H 8 . The complex is crystallized in monoclinic crystal system with the following unit cell parameters a = 12.592 (1), b = 20.687 (2), c = 16.628 (2) A, β = 94.372 (3) deg, sp. gr. P2 1 /n, Z = 4. Coordination octahedron of ruthenium atom is formed by three hydrogen atoms bound with boron atoms in one triangular face of carborane, two phosphorus atoms and one bromine atom [ru

  1. Morphometric studies with attached mouse C3H/10T 1/2 cells

    International Nuclear Information System (INIS)

    Geard, C.R.; Harding, T.

    1981-01-01

    Studies of in vitro transformation using the Syrian hamster embryo cell system and the mouse C3H/10T 1/2 cell system form an integral part of this laboratory's activities. As part of the studies with the mouse cell line we have monitored the behavior of these cells in culture in order to ascertain those variables which might influence the expression of transformation. The study of transformed cells versus normal cells could lead to insight into an earlier definition of transformation that the clonal morphological change currently in use. This present report details the changes in cellular morphology with time in culture of normal mouse C3H/10T 1/2 cells from early passages (9 to 13) and x-ray transformed cells which have been maintained in culture for three years

  2. Odanacatib Inhibits Resistin-induced Hypertrophic H9c2 Cardiomyoblast Cells Through LKB1/AMPK Pathway

    Directory of Open Access Journals (Sweden)

    Xian Zheng

    2017-08-01

    Full Text Available ABSTRACT Odanacatib (ODN is a selective inhibitor of cathepsin K. The cysteine protease cathepsin K has been implicated in cardiac hypertrophy. Resistine is an adipokine which is identified to promote cardiac hypertrophy. Here, we hypothesize that ODN mitigates resistin-induced myocyte hypertrophy. Cell surface area and protein synthesis were measured after treatment with resistin and ODN in H9c2 cells. The expression of cardiomyocyte hypertrophy marker BNP and β-MHC was detected by RT-qPCR. The expression and phosphorylation of AMPK and LKB1 were analyzed with Western blot. Resistin could significantly increase cardiomyocyte cell surface area, protein synthesis, and embryonic gene BNP and β-MHC expression, inhibit phosphorylation of AMPK and LKB1. ODN could significantly reverse the effects of resistin. Collectively, our data suggest that ODN can inhibit cardiomyocyte hypertrophy induced by resistin and the underlying mechanism may be involved in LKB1/AMPK pathway.

  3. Tunable Robust pacs-MOFs: a Platform for Systematic Enhancement of the C2H2 Uptake and C2H2/C2H4 Separation Performance.

    Science.gov (United States)

    Chen, Di-Ming; Sun, Chun-Xiao; Zhang, Nan-Nan; Si, Huan-Huan; Liu, Chun-Sen; Du, Miao

    2018-03-05

    As a modulatable class of porous crystalline materials, metal-organic frameworks (MOFs) have gained intensive research attention in the domain of gas storage and separation. In this study, we report on the synthesis and gas adsorption properties of two robust MOFs with the general formula [Co 3 (μ 3 -OH)(cpt) 3 Co 3 (μ 3 -OH)(L) 3 (H 2 O) 9 ](NO 3 ) 4 (guests) n [L = 3-amino-1,2,4-triazole (1) and 3,5-diamino-1,2,4-triazole (2); Hcpt = 4-(4-carboxyphenyl)-1,2,4-triazole], which show the same pacs topology. Both MOFs are isostructural to each other and show MIL-88-type frameworks whose pore spaces are partitioned by different functionlized trinuclear 1,2,4-triazolate-based clusters. The similar framework components with different amounts of functional groups make them an ideal platform to permit a systematic gas sorption/separation study to evaluate the effects of distinctive parameters on the C 2 H 2 uptake and separation performance. Because of the presence of additional amido groups, the MOF 2 equipped with a datz-based cluster (Hdatz = 3,5-diamino-1,2,4-triazole) shows a much improved C 2 H 2 uptake capacity and separation performance over that of the MOF 1 equipped with atz-based clusters (Hatz = 3-amino-1,2,4-triazole), although the surface area of the MOF 1 is almost twice than that of the MOF 2. Moreover, the high density of open metal sites, abundant free amido groups, and charged framework give the MOF 2 an excellent C 2 H 2 separation performance, with ideal adsorbed solution theory selectivity values reaching up to 11.5 and 13 for C 2 H 2 /C 2 H 4 (1:99) and C 2 H 2 /CO 2 (50:50) at 298 K and 1 bar, showing potential for use in natural gas purification.

  4. Enhancement of SV40 transformation by treatment of C3H2K cells with uv light and caffeine. I. Combined effect of uv light and caffeine

    International Nuclear Information System (INIS)

    Ide, T.; Anzai, K.; Andoh, T.

    1975-01-01

    Treatment of cultured mouse cells, C3H2K, with uv light and/or caffeine enhanced the frequency of SV40-induced transformation. This enhancement depends upon the doses of uv and caffeine and the mode of combination of these agents. Irradiation of cells with increasing doses of uv just before infection resulted in approximately 2-fold enhancement of the transformation frequency up to a dose of 90 ergs/mm 2 and 3.3-fold at 150 ergs/mm 2 . Addition of 1 mM caffeine to the medium for 4 days subsequent to infection brought about a 2-fold enhancement. When cells were irradiated and treated with 1 mM caffeine, the enhancement was approximately 4-fold up to a uv dose of 90 ergs/mm 2 and 5.9-fold at 150 ergs/mm 2 . When 0.1 to 4 mM caffeine was added for 4 days postinfection, the absolute number of transformations increased, and an enhancement ratio of 1.3 to 6.8 resulted. After the addition of the same increasing doses of caffeine to uv-irradiated cells (75 ergs/mm 2 ), the enhancement of transformation frequency was even higher ranging 2.0 to 13.3. The transformation frequencies thus obtained by the double treatment were always higher than those predicted if uv and caffeine acted additively. The transformation frequency was little affected by the addition of dibutyrylcyclic AMP and theophylline

  5. Comprehensive benchmarking reveals H2BK20 acetylation as a distinctive signature of cell-state-specific enhancers and promoters.

    Science.gov (United States)

    Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam

    2016-05-01

    Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. © 2016 Kumar et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Polymeric anionic networks using dibromine as a crosslinker; the preparation and crystal structure of [(C4H9)4N]2[Pt2Br10].(Br2)7 and [(C4H9)4N]2[PtBr4Cl2].(Br2)6.

    Science.gov (United States)

    Berkei, Michael; Bickley, Jamie F; Heaton, Brian T; Steiner, Alexander

    2002-09-21

    The reaction of M[PtX3(CO)] (M+ = [(C4H9)4N]+, X = Br, Cl) with an excess of Br2 gives the new platinum(IV) salts, [(C4H9)4N]2[Pt2Br10].(Br2)7, 1, and [(C4H9)4N]2[PtBr4Cl2].(Br2)6, 2, which, in the solid state, contain strong Br Br interactions resulting in the formation of polymeric networks; they could provide useful solid storage reservoirs for elemental bromine.

  7. Increased radiation-induced transformation in C3H/10T1/2 cells after transfer of an exogenous c-myc gene

    International Nuclear Information System (INIS)

    Sorrentino, V.; Drozdoff, V.; Zeitz, L.; Fleissner, E.

    1987-01-01

    C3H/10T 1/2 cells were infected with a retroviral vector expressing a mouse c-myc oncogene and a drug-selection marker. The resulting cells, morphologically indistinguishable from C3H/10T l/1, displayed a greatly enhanced sensitivity to neoplastic transformation by ionizing radiation or by a chemical carcinogen. Constitutive expression of myc therefore appears to synergize with an initial carcinogenic event, providing a function analogous to a subsequent event that apparently is required for the neoplastic transformation of these cells. This cell system should prove useful in exploring early stages in radiation-induced transformation

  8. Effect of the CO2/SiH4 Ratio in the p-μc-SiO:H Emitter Layer on the Performance of Crystalline Silicon Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Jaran Sritharathikhun

    2014-01-01

    Full Text Available This paper reports the preparation of wide gap p-type hydrogenated microcrystalline silicon oxide (p-μc-SiO:H films using a 40 MHz very high frequency plasma enhanced chemical vapor deposition technique. The reported work focused on the effects of the CO2/SiH4 ratio on the properties of p-μc-SiO:H films and the effectiveness of the films as an emitter layer of crystalline silicon heterojunction (c-Si-HJ solar cells. A p-μc-SiO:H film with a wide optical band gap (E04, 2.1 eV, can be obtained by increasing the CO2/SiH4 ratio; however, the tradeoff between E04 and dark conductivity must be considered. The CO2/SiH4 ratio of the p-μc-SiO:H emitter layer also significantly affects the performance of the solar cells. Compared to the cell using p-μc-Si:H (CO2/SiH4 = 0, the cell with the p-μc-SiO:H emitter layer performs more efficiently. We have achieved the highest efficiency of 18.3% with an open-circuit voltage (Voc of 692 mV from the cell using the p-μc-SiO:H layer. The enhancement in the Voc and the efficiency of the solar cells verified the potential of the p-μc-SiO:H films for use as the emitter layer in c-Si-HJ solar cells.

  9. Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis.

    Science.gov (United States)

    Pesant, Matthieu; Sueur, Stéphanie; Dutartre, Patrick; Tallandier, Mireille; Grimaldi, Paul A; Rochette, Luc; Connat, Jean-Louis

    2006-02-01

    Activation of peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma plays beneficial roles in cardiovascular disorders such as atherosclerosis and heart reperfusion. Although PPARalpha and gamma have been documented to reduce oxidative stress in the vasculature and the heart, the role of PPARdelta remains poorly studied. We focused on PPARdelta function in the regulation of oxidative stress-induced apoptosis in the rat cardiomyoblast cell line H9c2. Using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we showed that PPARdelta is the predominantly expressed isotype whereas PPARalpha was weakly detected. By performing cell viability assays, we also showed that the selective PPARdelta agonist GW501516 protected cells from H(2)O(2)-induced cell death. The protective effect of GW501516 was due to an inhibition of H(2)O(2)-triggered apoptosis as shown by annexin-V labeling, DNA fragmentation analysis, and caspase-3 activity measurement. We demonstrated by transient transfection of a dominant negative mutant of PPARdelta that the protection induced by GW501516 was totally dependent on PPARdelta. Semi-quantitative RT-PCR and Western blotting analysis demonstrated that GW501516 treatment upregulated catalase. Moreover, forced overexpression of catalase inhibited H(2)O(2)-triggered apoptosis, as evidenced by annexin-V labeling. Taken together, our results account for an important role of PPARdelta in inhibiting the onset of oxidative stress-induced apoptosis in H9c2 cells. PPARdelta appears to be a new therapeutic target for the regulation of heart reperfusion-associated oxidative stress and stimulation of enzymatic antioxidative defences.

  10. Tribulus terrestris (Linn.) Attenuates Cellular Alterations Induced by Ischemia in H9c2 Cells Via Antioxidant Potential.

    Science.gov (United States)

    Reshma, P L; Lekshmi, V S; Sankar, Vandana; Raghu, K G

    2015-06-01

    Tribulus terrestris L. was evaluated for its cardioprotective property against myocardial ischemia in a cell line model. Initially, methanolic extract was prepared and subjected to sequential extraction with various solvents. The extract with high phenolic content (T. terrestris L. ethyl acetate extract-TTME) was further characterized for its chemical constituents and taken forward for evaluation against cardiac ischemia. HPLC analysis revealed the presence of phenolic compounds like caffeic acid (12.41 ± 0.22 mg g(-1)), chlorogenic acid (0.52 ± 0.06 mg g(-1)) and 4-hydroxybenzoic acid (0.60 ± 0.08 mg g(-1)). H9c2 cells were pretreated with TTME (10, 25, 50 and 100 µg/ml) for 24 h before the induction of ischemia. Then ischemia was induced by exposing cells to ischemia buffer, in a hypoxic chamber, maintained at 0.1% O2, 95% N2 and 5% CO2, for 1 h. A significant (p ≤ 0.05) increase in reactive oxygen species generation (56%), superoxide production (18%), loss of plasma membrane integrity, dissipation of transmembrane potential, permeability transition pore opening and apoptosis had been observed during ischemia. However, pretreatment with TTME was found to significantly (p ≤ 0.05) attenuate the alterations caused by ischemia. The overall results of this study partially reveal the scientific basis of the use of T. terrestris L. in the traditional system of medicine for heart diseases. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Bauhinia championii Flavone Attenuates Hypoxia-Reoxygenation Induced Apoptosis in H9c2 Cardiomyocytes by Improving Mitochondrial Dysfunction.

    Science.gov (United States)

    Liao, Ping; Sun, Guibo; Zhang, Chan; Wang, Min; Sun, Yao; Zhou, Yuehan; Sun, Xiaobo; Jian, Jie

    2016-11-04

    This study aimed to determine the effects of Bauhinia championii flavone (BCF) on hypoxia-reoxygenation (H/R) induced apoptosis in H9c2 cardiomyocytes and to explore potential mechanisms. The H/R model in H9c2 cardiomyocytes was established by 6 h of hypoxia and 12 h of reoxygenation. Cell viability was detected by CCK-8 assay. Apoptotic rate was measured by Annexin V/PI staining. Levels of mitochondria-associated ROS, mitochondrial transmembrane potential (∆Ψm) and mitochondrial permeability transition pores (MPTP) opening were assessed by fluorescent probes. ATP production was measured by ATP assay kit. The release of cytochrome c, translocation of Bax, and related proteins were measured by western blotting. Our results showed that pretreatment with BCF significantly improved cell viability and attenuated the cardiomyocyte apoptosis caused by H/R. Furthermore, BCF increased ATP production and inhibited ROS-generating mitochondria, depolarization of ΔΨm, and MPTP opening. Moreover, BCF pretreatment decreased Bax mitochondrial translocation, cytochrome c release, and activation of caspase-3, as well as increased the expression of p-PI3K, p-Akt, and the ratio of Bcl-2 to Bax. Interestingly, a specific inhibitor of phosphatidylinositol 3-kinase, LY294002, partly reversed the anti-apoptotic effect of BCF. These observations indicated that BCF pretreatment attenuates H/R-induced myocardial apoptosis strength by improving mitochondrial dysfunction via PI3K/Akt signaling pathway.

  12. Remote loading of doxorubicin into liposomes by transmembrane pH gradient to reduce toxicity toward H9c2 cells

    Directory of Open Access Journals (Sweden)

    Mohamed Alyane

    2016-03-01

    Full Text Available The use of doxorubicin (DOX is limited by its dose-dependent cardiotoxicity. Entrapped DOX in liposome has been shown to reduce cardiotoxicity. Results showed that about 92% of the total drug was encapsulated in liposome. The release experiments showed a weak DOX leakage in both culture medium and in PBS, more than 98% and 90% of the encapsulated DOX respectively was still retained in liposomes after 24 h of incubation. When the release experiments were carried out in phosphate buffer pH5.3, the leakage of DOX from liposomes reached 37% after 24 h of incubation. Evaluation of cellular uptake of the liposomal DOX indicated the possible endocytosis of liposomes because the majority of visible fluorescence of DOX was mainly in the cytoplasm, whereas the nuclear compartment showed a weak intensity. When using unloaded fluorescent-liposomes, the fluorescence was absent in nuclei suggests that liposomes cannot cross the nuclear membrane. MTT assay and measurement of LDH release suggest that necrosis is the form of cellular death predominates in H9c2 cells exposed to high doses of DOX, while for weak doses apoptosis could be the predominate form. Entrapped DOX reduced significantly DOX toxicity after 3 and 6 h of incubation, but after 20 h entrapped DOX is more toxic than free one.

  13. Sugar supported H/sub 2/ production and C/sub 2/H/sub 2/ reduction by the cyanobiont Anabaena azollae

    Energy Technology Data Exchange (ETDEWEB)

    Rozen, A.; Tel-Or, E.

    1986-01-01

    Sugar supported activities of H/sub 2/ production and C/sub 2/H/sub 2/ reduction were characterized in axenic cell cultures of the cyanobiont Anabaena azollae isolated from the water fern Azolla filiculoides. Fructose was found to be the favoured substrate, enhancing activities in both the light and the dark even at relatively low concentrations of 0.5-1.0 mM. Higher concentrations of sucrose, (10-20mM) also supported H/sub 2/ production and C/sub 2/H/sub 2/ reduction, while glucose was less effective. Levels of H/sub 2/ production were always lower than those of C/sub 2/H/sub 2/ reduction. 13 references.

  14. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gia-Ming [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  15. Study of the unimolecular decompositions of the (C3H6)+2 and (c-C3H6)+2 complexes

    International Nuclear Information System (INIS)

    Tzeng, W.; Ono, Y.; Linn, S.H.; Ng, C.Y.

    1985-01-01

    The major product channels identified in the unimolecular decompositions ofC 3 H + 6 xC 3 H 6 and c-C 3 H + 6 xc-C 3 H 6 in the total energy [neutral (C 3 H 6 ) 2 or (c-C 3 H 6 ) 2 heat of formation plus excitation energy] range of approx.230--450 kcal/mol are C 3 H + 7 +C 3 H 5 , C 4 H + 7 +C 2 H 5 , C 4 H + 8 +C 2 H 4 , and C 5 H + 9 +CH 3 . The measured appearance energy for C 4 H + 7 (9.54 +- 0.04 eV) from (C 3 H 6 ) 2 is equal to the thermochemical threshold for the formation of C 4 H + 7 +C 2 H 5 from (C 3 H 6 ) 2 , indicating that the exit potential energy barrier for the ion--molecule reaction C 3 H + 6 +C 3 H 6 →C 4 H + 7 +C 2 H 5 is negligible. There is evidence that the formations of C 4 H + 7 +C 2 H 4 +H from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 also proceed with high probabilities when they are energetically allowed. The variations of the relative abundances for C 4 H + 7 ,C 4 H + 8 , and C 5 H + 9 from (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 as a function of ionizing photon energy are in qualitative agreement, suggesting that (C 3 H 6 ) + 2 and (c-C 3 H 6 ) + 2 rearrange to similar C 6 H + 12 isomers prior to fragmentation. The fact that C 6 H + 11 is found to be a primary ion from the unimolecular decomposition of (c-C 3 H 6 ) + 2 but not (C 3 H 6 ) + 2 supports the conclusion that the distribution of C 6 H + 12 collision complexes involved in the C 3 H + 6 +C 3 H 6 reactions is different from that in the cyclopropane ion--molecule reactions

  16. Final report on CCQM-K9.2 : subsequent key comparison on pH determination of phosphate buffer by Harned cell measurements

    OpenAIRE

    Spitzer, Petra; Giera, Janine; Fraga, Isabel Cristina Serta; Jakobsen, Pia Tonnes; Jensen, Hans D.; Hyllested, Peter; Karpov, Oleg; Kutovoy, Viatcheslav; Nakamura, Susumu; Vospelova, Alena; Zvezdina, Valentina

    2008-01-01

    CCQM-K9.2 was performed supplementary to the key comparison CCQM-K9 [1] on the pH determination of a phosphate buffer with nominal pH ~ 6.9 (at 25 °C). The sample composition was very similar in both comparisons. Only the source of the starting material used for sample preparation was different. The comparison was restricted to the use of the primary method for pH (Harned cell measurement) as defined in the IUPAC Recommendations [2]. The measurement temperatures were15 °C, 25 °C , 37...

  17. pPKCδ activates SC35 splicing factor during H9c2 myoblastic differentiation.

    Science.gov (United States)

    Zara, Susi; Falconi, Mirella; Rapino, Monica; Zago, Michela; Orsini, Giovanna; Mazzotti, Giovanni; Cataldi, Amelia; Teti, Gabriella

    2011-01-01

    Although Protein Kinase C (PKC) isoforms' role in the neonatal and adult cardiac tissue development and ageing has been widely described "in vivo", the interaction of such enzymes with specific nuclear substrates needs to be investigated. The aim of our research has been the study of the expression, localization and interaction with the splicing factor SC35 of PKC isoforms (α, δ, ε, ζ) and their potential role in modulating the transcription machinery. H9c2 cells induced to myoblast differentiation in the presence of 1% Horse Serum (HS) have represented our experimental model. The expression of PKC isoforms, their distribution and interaction with SC35 have been evaluated by western blotting, co-immunoprecipitation and double gold immunolabeling for transmission and scanning electron microscopy. Our results show PKCδ as the most expressed isoform in differentiated cells. Surprisingly, the distribution of PKCδ and SC35 does not show any significant modification between 10%FBS and 1%HS treated samples and no co-localization is observed. Moreover the interaction between the phosphorylated form of PKCδ (pPKCδ) and SC35 increases, is distributed and co-localizes within the nucleus of differentiated H9c2. These data represent reasonable evidence of pPKCδ mediated SC35 splicing factor activation, suggesting its direct effect on transcription via interaction with the transcription machinery. Furthermore, this co-localization represents a crucial event resulting in downstream changes in transcription of components which determine the morphological modifications related to cardiomyoblast differentiated phenotype.

  18. Pre-Treatment of Platinum Resistant Ovarian Cancer Cells with an MMP-9/MMP-2 Inhibitor Prior to Cisplatin Enhances Cytotoxicity as Determined by High Content Screening

    Directory of Open Access Journals (Sweden)

    John J. O'Leary

    2013-01-01

    Full Text Available Platinum resistance is a major cause of treatment failure in ovarian cancer. We previously identified matrix metalloproteinase 9 (MMP-9 as a potential therapeutic target of chemoresistant disease. A2780cis (cisplatin-resistant and A2780 (cisplatin-sensitive ovarian carcinoma cell lines were used. The cytotoxic effect of MMP-9/MMP-2 inhibitor, (2R-2-[(4-Biphenylsulfonyl amino]-3 phenylpropionic acid (C21H19NO4S alone or in combination with cisplatin was determined using high content screening. Protein expression was examined using immunohistochemistry and ELISA. Co-incubation of cisplatin and an MMP-9/MMP-2 inhibitor, (2R-2-[(4-Biphenylsulfonyl amino]-3 phenylpropionic acid (C21H19NO4S resulted in significantly greater cytotoxicity as compared to either treatment alone in a cisplatin resistant MMP-9 overexpressing cell line; A2780cis. In addition, pre-incubating with MMP-9i prior to cisplatin further enhances the cytotoxic effect. No significant difference was observed in MMP-9 protein in tissue but a trend towards increased MMP-9 was observed in recurrent serum. We propose that MMP-9/MMP-2i may be utilized in the treatment of recurrent/chemoresistant ovarian cancers that overexpress MMP-9 mRNA but its role in vivo remains to be evaluated.

  19. Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells

    Directory of Open Access Journals (Sweden)

    Peiris Malik

    2010-03-01

    Full Text Available Abstract Avian influenza virus H9N2 isolates cause a mild influenza-like illness in humans. However, the pathogenesis of the H9N2 subtypes in human remains to be investigated. Using a human alveolar epithelial cell line A549 as host, we found that A/Quail/Hong Kong/G1/97 (H9N2/G1, which shares 6 viral "internal genes" with the lethal A/Hong Kong/156/97 (H5N1/97 virus, replicates efficiently whereas other H9N2 viruses, A/Duck/Hong Kong/Y280/97 (H9N2/Y280 and A/Chicken/Hong Kong/G9/97 (H9N2/G9, replicate poorly. Interestingly, we found that there is a difference in the translation of viral protein but not in the infectivity or transcription of viral genes of these H9N2 viruses in the infected cells. This difference may possibly be explained by H9N2/G1 being more efficient on viral protein production in specific cell types. These findings suggest that the H9N2/G1 virus like its counterpart H5N1/97 may be better adapted to the human host and replicates efficiently in human alveolar epithelial cells.

  20. Fabrication of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during photocatalytic water splitting.

    Science.gov (United States)

    Liu, Enzhou; Chen, Jibing; Ma, Yongning; Feng, Juan; Jia, Jia; Fan, Jun; Hu, Xiaoyun

    2018-08-15

    In this work, the 2D SnS 2 /g-C 3 N 4 heterojunctions were successfully prepared by heating the homogeneous dispersion of SnS 2 nanosheets and g-C 3 N 4 nanosheets using a microwave muffle. SEM, TEM and HRTEM images indicated that the SnS 2 nanosheets were loaded on the surface of the g-C 3 N 4 nanosheets. The UV-vis spectra show that the absorption intensity of the as-prepared samples was increased and the absorption range was also extended from 420 nm to approximately 600 nm. The H 2 production rate over 5 wt% SnS 2 /g-C 3 N 4 can reach 972.6 μmol·h -1 ·g -1 under visible light irradiation (λ > 420 nm) using TEOA as the sacrifice agent and Pt as the electron trap, which is 2.9 and 25.6 times higher than those of the pristine g-C 3 N 4 and SnS 2 , respectively. According to the obtained PL spectra, photocurrent and EIS spectra, the enhanced performance for H 2 generation over the heterojunctions is primarily ascribed to the rapid charge transfer arising from the suitable band gap positions leading to an improved photocatalytic performance. The recycling experiments indicated that the as-prepared composites exhibit good stability in H 2 production. Additionally, a possible enhanced mechanism for H 2 evolution was deduced based on the results obtained by various characterization techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. 2,6-Bis(9-ethyl-9H-carbazolylmethylenecyclohexanone

    Directory of Open Access Journals (Sweden)

    Abdullah M. Asiri

    2009-10-01

    Full Text Available The title compound, 2,6-bis(ethyl-9-ethyl-9H-carbazolylmethylenecyclohexanone has been synthesized by condensation of 9-ethylcarbazole-3-aldehyde and cyclohexanone in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H NMR, 13C NMR and EI-MS spectral analysis.

  2. Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity.

    Science.gov (United States)

    Vineetha, Vadavanath Prabhakaran; Girija, Seetharaman; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

    2014-03-01

    Evidences suggest that apple peel has a wide range of polyphenols having antioxidant activity and its consumption has been linked with improved health benefits. Arsenic trioxide (ATO) is a very effective drug for the treatment of acute promyelocytic leukemia (APL) but it leads to cardiotoxicity mediated through alterations in various cardiac ion channels and by increasing the intracellular calcium level and reactive oxygen species (ROS). The aim of the present investigation was to study the effect of methanolic extract of apple peel (APME) and aqueous extract of apple peel (APAE) on ATO (5 μM) induced toxicity in the H9c2 cardiac myoblast cell line. We estimated the cellular status of innate antioxidant enzymes, level of ROS, mitochondrial superoxide, glutathione and intracellular calcium with ATO and apple peel extracts. Prior to the cell line based study, we had evaluated the antioxidant potential of apple peel extract by 1,1-diphenyl-2-picrylhydrazyl (DPPH), total reducing power (TRP), superoxide anion and hydroxyl radical scavenging activity, in addition to quantifying total phenolic and flavonoid content. Both the extracts showed considerable antioxidant activity in cell-free chemical assays. In addition, both APME and APAE prevented the alteration in antioxidant status induced by ATO in H9c2 cells. Significant differential alterations had been observed in the activity of lactate dehydrogenase, superoxide dismutase, catalase, glutathione, glutathione peroxidase, thioredoxin reductase, xanthine oxidase, calcium overload and caspase 3 activity with ATO. The overall result revealed the protective property of polyphenol-rich apple peel extract against ATO induced cardiac toxicity via its antioxidant activity.

  3. Feasibility of dual reporter gene in rat myoblast cell line using human sodium iodide symporter (hNIS) and enhanced green fluorescent protein (EGFP) gene

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Jin; Lee, You La; Ahn, Sohn Joo; Choi, Chang Ik; Lee, Sang Woo; Ahn, Byeong Cheol; Lee, Jae Tae [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)

    2007-07-01

    To develop a non-invasive combined imaging method of gamma camera and optical imaging to assess rat myoblast cell line, H9c2, we constructed retrovirus containing hNIS and EGFP gene, and transfected to rat myoblast cell and monitored hNIS and EGFP expression. Rat myoblast cell line, H9C2, was transfected with hNIS and EGFP gene using retrovirus (H9C2-NG). The expression of hNIS and EGFP gene was determined by RT-PCR and fluorescence microscopy, respectively. The uptake and efflux of I-125 were measured in the transfected and wild type cell lines. Each cell line was injected to 4 flank sites (H9c2: 1X107 or 2X107, H9C2-NG: 1X107 or 2X107) in nude mouse. Scintigraphic image was performed at 3h, 1 day after H9C2 and H9C2-NG cell inoculation. We performed gamma camera and animal PET imaging to evaluate NIS expression. Also, GFP image obtained using optical imaging system. The expression of hNIS and EGFP gene was confirmed by RT-PCR. In iodide uptake, H9C2-NG cells accumulated 274.52.2 pmol/ mg protein at 30 min. But wild type cell line did not uptake iodide. In fluorescent microscopy, H9C2-NG cells were highly fluorescent than that of H9C2 cells. In iodide efflux study, 50% of radioactivity flowed out during the first 10min. Scintigraphy showed increased uptake of Tc-99m in H9c2-NG than in H9C2 for 1 day. Also, H9C2-NG cells showed high signal-to-background fluorescent spots in animal body. In this study, NIS and EGFP reporter gene were successfully transfected by a retrovirus in myoblast cell line, and the transfected cell can be easily visualized in vivo. These results suggest that NIS and EGFP gene has an excellent feasibility as a reporter gene, and it can be used to monitor cell trafficking for monitoring.

  4. Nido-Carborane building-block reagents. 2. Bulky-substituent (alkyl)2C2B4H6 derivatives and (C6H5)2C2B4H6: synthesis and properties

    International Nuclear Information System (INIS)

    Boyter, H.A. Jr.; Grimes, R.N.

    1988-01-01

    The preparation and chemistry of nido-2,3-R 2 C 2 C 2 B 4 H 6 carboranes in which R is n-butyl, isopentyl, n-hexyl, and phenyl was investigated in order to further assess the steric and electronic influence of the R groups on the properties of the nido-C 2 B 4 cage, especially with respect to metal complexation at the C 2 B 3 face and metal-promoted oxidative fusion. The three dialkyl derivatives were prepared from the corresponding dialkylacetylenes via reaction with B 5 H 9 and triethylamine, but the diphenyl compound could not be prepared in this manner and was obtained instead in a thermal reaction of B 5 H 9 with diphenylacetylene in the absence of amine. All four carboranes are readily bridge-deprotonated by NaH in THF, and the anions of the dialkyl species, on treatment with FeCl 2 and air oxidation, generate the respective R 4 C 4 B 8 H 8 carborane fusion products were R = n-C 4 H 9 , i-C 5 H 11 or n-C 6 H 13 . The diphenylcarborane anion Ph 2 C 2 B 4 H 5 - did not form detectable metal complexes with Fe 2+ , Co 2+ , or Ni 2+ , and no evidence of a Ph 4 C 4 B 8 H 8 fusion product has been found. Treatment of Ph 2 C 2 B 4 H 6 with Cr(CO) 6 did not lead to metal coordination of the phenyl rings, unlike (PhCH 2 ) 2 C 2 B 4 H 6 , which had previously been shown to form mono- and bis(tricarbonylchromium) complexes. However, the reaction of Ph 2 C 2 B 4 H 5 - , CoCl 2 , and (PhPCH 2 ) 2 did give 1,1-(Ph 2 PCH 2 ) 2 -1-Cl-1,2,3-Co(Ph 2 C 2 B 4 H 4 ), the only case in which metal complexation of the diphenylcarborane was observed. 14 references, 3 figures, 3 tables

  5. The Clustered, Regularly Interspaced, Short Palindromic Repeats-associated Endonuclease 9 (CRISPR/Cas9)-created MDM2 T309G Mutation Enhances Vitreous-induced Expression of MDM2 and Proliferation and Survival of Cells.

    Science.gov (United States)

    Duan, Yajian; Ma, Gaoen; Huang, Xionggao; D'Amore, Patricia A; Zhang, Feng; Lei, Hetian

    2016-07-29

    The G309 allele of SNPs in the mouse double minute (MDM2) promoter locus is associated with a higher risk of cancer and proliferative vitreoretinopathy (PVR), but whether SNP G309 contributes to the pathogenesis of PVR is to date unknown. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas) 9 from Streptococcus pyogenes (SpCas9) can be harnessed to manipulate a single or multiple nucleotides in mammalian cells. Here we delivered SpCas9 and guide RNAs using dual adeno-associated virus-derived vectors to target the MDM2 genomic locus together with a homologous repair template for creating the mutation of MDM2 T309G in human primary retinal pigment epithelial (hPRPE) cells whose genotype is MDM2 T309T. The next-generation sequencing results indicated that there was 42.51% MDM2 G309 in the edited hPRPE cells using adeno-associated viral CRISPR/Cas9. Our data showed that vitreous induced an increase in MDM2 and subsequent attenuation of p53 expression in MDM2 T309G hPRPE cells. Furthermore, our experimental results demonstrated that MDM2 T309G in hPRPE cells enhanced vitreous-induced cell proliferation and survival, suggesting that this SNP contributes to the pathogenesis of PVR. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. A novel compound DT-010 protects against doxorubicin-induced cardiotoxicity in zebrafish and H9c2 cells by inhibiting reactive oxygen species-mediated apoptotic and autophagic pathways.

    Science.gov (United States)

    Tang, Fan; Zhou, Xinhua; Wang, Liang; Shan, Luchen; Li, Chuwen; Zhou, Hefeng; Lee, Simon Ming-Yuen; Hoi, Maggie Pui-Man

    2018-02-05

    Doxorubicin (Dox) is an effective anti-cancer agent but limited by its cardiotoxicity, thus the search for pharmacological agents for enhancing anti-cancer activities and protecting against cardiotoxicity has been a subject of great interest. We have previously reported the synergistic anti-cancer effects of a novel compound DT-010. In the present study, we further investigated the cardioprotective effects of DT-010 in zebrafish embryos in vivo and the molecular underlying mechanisms in H9c2 cardiomyocytes in vitro. We showed that DT-010 prevented the Dox-induced morphological distortions in the zebrafish heart and the associated cardiac impairments, and especially improved ventricular functions. By using H9c2 cells model, we showed that DT-010 directly inhibited the generation of reactive oxygen species by Dox and protected cell death and cellular damage. We further observed that DT-010 protected against Dox-induced myocardiopathy via inhibiting downstream molecular pathways in response to oxidative stress, including reactive oxygen species-mediated MAPK signaling pathways ERK and JNK, and apoptotic pathways involving the activation of caspase 3, caspase 7, and PARP signaling. Recent studies also suggest the importance of alterations in cardiac autophagy in Dox cardiotoxicity. We further showed that DT-010 could inhibit the induction of autophagosomes formation by Dox via regulating the upstream Akt/AMPK/mTOR signaling. Since Dox-induced cardiotoxicity is multifactorial, our results suggest that multi-functional agent such as DT-010 might be an effective therapeutic agent for combating cardiotoxicity associated with chemotherapeutic agents such as Dox. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The protective effect of lipid emulsion in preventing bupivacaine-induced mitochondrial injury and apoptosis of H9C2 cardiomyocytes.

    Science.gov (United States)

    Chen, Zhe; Jin, Zhousheng; Xia, Yun; Zhao, Shishi; Xu, Xuzhong; Papadimos, Thomas J; Wang, Quanguang

    2017-11-01

    Lipid emulsion (LE) has been shown to be effective in the resuscitation of bupivacaine-induced cardiac arrest, but the precise mechanism of this action has not been fully elucidated. Pursuant to this lack of information on the mechanism in which LE protects the myocardium during bupivacaine-induced toxicity, we explored mitochondrial function and cell apoptosis. H9C2 cardiomyocytes were used in study. Cells were randomly divided in different groups and were cultivated 6 h, 12 h, and 24 h. The mitochondria were extracted and mitochondrial ATP content was measured, as was mitochondrial membrane potential, the concentration of calcium ion (Ca2+), and the activity of Ca2+-ATP enzyme (Ca2+-ATPase). Cells from groups Bup1000, LE group, and Bup1000LE were collected to determine cell viability, cell apoptosis, and electron microscopy scanning of mitochondrial ultrastructure (after 24 h). We found that LE can reverse the inhibition of the mitochondrial function induced by bupivacaine, regulate the concentration of calcium ion in mitochondria, resulting in the protection of myocardial cells from toxicity induced by bupivacaine.

  8. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-10-01

    Full Text Available Abstract Background The avian influenza virus (AIV can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. Methods We hypothesized that mesenchymal stromal cells (MSCs would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 104 MID50 of A/HONG KONG/2108/2003 [H9N2 (HK] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF and serum, and assessed pathological changes to the lungs. Results MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. Conclusions MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza.

  9. Nature of weak inter- and intramolecular interactions in crystals. Communication 5. Interactions Na...H-B in a crystal of sodium salt of charge compensated nido-carborane [9-SMe2-7,8-C2B9H10]-

    International Nuclear Information System (INIS)

    Lysenko, K.A.; Golovanov, D.G.; Meshcheryakov, V.I.; Kudinov, A.R.; Antipin, M.Yu.

    2005-01-01

    The character of electron density distribution in the C 2 B 3 open face, the influence of the SMe 2 group on the character of electron density distribution, and the nature of the sodium-anion interaction were studied based on the data of high-resolution X-ray diffraction study of crystals of the sodium salt of charge-compensated nido-carborane [9-SMe 2 -7,8- C 2 B 9 H 10 ] - and quantum-chemical calculations for the Na...H-B-bonded dimer, the isolated [9-SMe 2 -7,8-C 2 B 9 H 10 ] - anion, and the [7,8-C 2 B 9 H 10 ] 2- dianion. The character of electron density distribution in the C 2 B 3 open face is analogous to the electron distribution in the cyclopentadienyl ligand. In nido-carborane, a substantial charge redistribution takes place compared to that observed in the closo analogs. The topological analysis of the electron density distribution function demonstrated that the cation-anion interactions are determined predominantly by Na...H-B contacts. The total energy of these contacts in the {[9-SMe 2 -7,8-C 2 B 9 H 10 ]Na(thf) 2 } 2 dimer estimated from X-ray diffraction data is 11.74 kcal mol -1 [ru

  10. FGF-2 Transcriptionally Down-Regulates the Expression of BNIP3L via PI3K/Akt/FoxO3a Signaling and Inhibits Necrosis and Mitochondrial Dysfunction Induced by High Concentrations of Hydrogen Peroxide in H9c2 Cells

    Directory of Open Access Journals (Sweden)

    Qian Chen

    2016-12-01

    Full Text Available Background/Aims: Cardiovascular disease is a growing major global public health problem. Necrosis is one of the main forms of cardiomyocyte death in heart disease. Oxidative stress is regarded as one of the key regulators of cardiac necrosis, which eventually leads to cardiovascular disease. Many pharmacological and in vitro studies have suggested that FGF-2 can act directly on cardiomyocytes to maintain the integrity and function of the myocardium and prevent damage during oxidative stress. However, the mechanisms by which FGF-2 rescues the myocardium from oxidative stress damage in cardiovascular disease remain unclear. The present study explored the protective effects of FGF-2 in the H2O2-induced necrosis of H9C2 cardiomyocytes as well as the possible signaling pathways involved. Methods: Necrosis of H9c2 cardiomyocytes was induced by H2O2 and assessed using a Cell Counting Kit-8 (CCK8 assay and flow cytometry analysis. The cells were pretreated with the PI3K/Akt inhibitor Wortmannin to investigate the possible involvement of the PI3K/Akt pathway in the protection by FGF-2. The levels of Akt, p-Akt, FoxO3a, p-FoxO3a, and BNIP3L were detected by Western blot. Chromatin immuno-precipitation (ChIP analysis was used to test whether FoxO3a binds directly to the BNIP3L promoter region. A luciferase assay was used to study the effects of FoxO3a on BNIP3L gene promoter activity. Mitochondrial ΔΨM was quantified using tetramethylrhodamine methyl ester perchlorate (TMRM. The mitochondrial oxygen consumption rate (OCR was assessed with a Seahorse XF24 Analyzer. Results: Treatment with H2O2 decreased the phosphorylation of Akt and FoxO3a, and it induced the nuclear localization of FoxO3a and the necrosis of H9c2 cells. These effects of H2O2 were abrogated by pretreatment with FGF-2. Furthermore, the protective effects of FGF-2 were abolished by the PI3K/Akt inhibitor Wortmannin. ChIP analyses indicated that FoxO3a binds directly to the BNIP3L promoter

  11. Quantitative proteomics and systems analysis of cultured H9C2 cardiomyoblasts during differentiation over time supports a 'function follows form' model of differentiation.

    Science.gov (United States)

    Kankeu, Cynthia; Clarke, Kylie; Van Haver, Delphi; Gevaert, Kris; Impens, Francis; Dittrich, Anna; Roderick, H Llewelyn; Passante, Egle; Huber, Heinrich J

    2018-05-17

    The rat cardiomyoblast cell line H9C2 has emerged as a valuable tool for studying cardiac development, mechanisms of disease and toxicology. We present here a rigorous proteomic analysis that monitored the changes in protein expression during differentiation of H9C2 cells into cardiomyocyte-like cells over time. Quantitative mass spectrometry followed by gene ontology (GO) enrichment analysis revealed that early changes in H9C2 differentiation are related to protein pathways of cardiac muscle morphogenesis and sphingolipid synthesis. These changes in the proteome were followed later in the differentiation time-course by alterations in the expression of proteins involved in cation transport and beta-oxidation. Studying the temporal profile of the H9C2 proteome during differentiation in further detail revealed eight clusters of co-regulated proteins that can be associated with early, late, continuous and transient up- and downregulation. Subsequent reactome pathway analysis based on these eight clusters further corroborated and detailed the results of the GO analysis. Specifically, this analysis confirmed that proteins related to pathways in muscle contraction are upregulated early and transiently, and proteins relevant to extracellular matrix organization are downregulated early. In contrast, upregulation of proteins related to cardiac metabolism occurs at later time points. Finally, independent validation of the proteomics results by immunoblotting confirmed hereto unknown regulators of cardiac structure and ionic metabolism. Our results are consistent with a 'function follows form' model of differentiation, whereby early and transient alterations of structural proteins enable subsequent changes that are relevant to the characteristic physiology of cardiomyocytes.

  12. Syntheses of DNA adducts of two heterocyclic amines, 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C) and 2-amino-9H-pyrido[2,3-b]indole (A alpha C) and identification of DNA adducts in organs from rats dosed with MeA alpha C

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Frandsen, Henrik Lauritz; Pfau, W.

    2004-01-01

    2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeAalphaC) and 2-amino-3-methyl-9H-pyrido[2,3-b]indole (AalphaC) are mutagenic and carcinogenic heterocyclic amines formed during ordinary cooking. MeAalphaC and AalphaC are activated to mutagenic metabolites by cytochrome P450-mediated N-oxidation...... by reaction of the parent amines with acetylated guanine N3-oxide. N-2-OH-MeAalphaC and N-2-OH-AalphaC reacted with calf thymus DNA after addition of acetic anhydride. P-32-postlabelling analysis of modified DNA showed one major adduct co-migrating with N-2-(3',5'-diphospho-2'-deoxyguanosin-8-yl...

  13. Combination of Nigella sativa with Glycyrrhiza glabra and Zingiber officinale augments their protective effects on doxorubicin-induced toxicity in h9c2 cells.

    Science.gov (United States)

    Hosseini, Azar; Shafiee-Nick, Reza; Mousavi, Seyed Hadi

    2014-12-01

    The use of doxorubicin (DOX) is limited by its dose-dependent cardio toxicity in which reactive Oxygen Species (ROS) play an important role in the pathological process. The aim of this study was to evaluate the protective effect of three medicinal plants, Nigella sativa (N), Glycyrrhiza glabra (G) and Zingiber officinale (Z), and their combination (NGZ), against DOX-induced apoptosis and death in H9c2 cells. The cells were incubated with different concentrations of each extract or NGZ for 4 hr which continued in the presence or absence of 5µM doxorubicin for 24 hr. Cell viability and the apoptotic rate were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) and propidium iodide (PI) staining assays, respectively. The level of ROS and lipid peroxidation were measured by fluorimetric methods. Treatment with doxorubicin increased ROS generation, enhanced malondialdehyde (MDA) formation, and induced apoptosis. Co-treatment of the cells with each herb extract increased viability of cells dose-dependently with a maximum protection effect of about 30%, and their potencies were N>G>Z. The combination of the threshold dose of each extract (NGZ) produced a similar effect, which was increased dose-dependently to a maximum protection of 70%. These effects were correlated with the effects of NGZ on ROS and MDA. All of the extracts have some protective effects against DOX-induced toxicity in cardiomyocytes with similar efficacies, but with different potencies. However, NGZ produced much higher protective effect via reducing oxidative stress and inhibiting of apoptotic induction processes. Further investigations are needed to determine the effects of NGZ on DOX chemotherapy.

  14. Plant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cheng

    2016-01-01

    Full Text Available The opening of mitochondrial permeability transition pore (mPTP is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxygen species (ROS and glycogen synthase kinase 3β (GSK-3β, in the regulation of mPTP opening. We found that formononetin suppressed the formation of ROS and superoxide in a concentration-dependent manner. Formononetin also rescued OGD/reoxygenation-induced loss of mitochondrial membrane integrity. Further studies suggested that formononetin induced Akt activation and GSK-3β (Ser9 phosphorylation, thereby reducing GSK-3β activity towards mPTP opening. PI3K and PKC inhibitors abolished the effects of formononetin on mPTP opening and GSK-3β phosphorylation. Immunoprecipitation experiments further revealed that formononetin increased the binding of phosphor-GSK-3β to adenine nucleotide translocase (ANT while it disrupted the complex of ANT with cyclophilin D. Moreover, immunofluorescence revealed that phospho-GSK-3β (Ser9 was mainly deposited in the space between mitochondria and cell nucleus. Collectively, these results indicated that formononetin protected cardiomyocytes from OGD/reoxygenation injury via inhibiting ROS formation and promoting GSK-3β phosphorylation.

  15. Synthesis, single-crystal structure determination and Raman spectra of the tricyanomelaminates NaA{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O (A = Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.; Schulz, Armin [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Transparent colorless crystals of NaA{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O (A = Rb, Cs) were obtained by blending aqueous solutions of Na{sub 3}[C{sub 6}N{sub 9}] and RbF or CsF, respectively, and subsequent evaporation of the water under ambient conditions. Both compounds crystallize in the space group P2{sub 1}/m (no. 11) with the cell parameters a = 815.56(16), b = 1637.7(4) and c = 1036.4(3) pm, and β = 110.738(12) for NaRb{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O and a = 843.32(6), b = 1708.47(11) and c = 1052.42(7) pm, and β = 112.034(2) for NaCs{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O, respectively. Raman spectra of the title compounds complement our results.

  16. New homo- and heteroleptic derivatives of trivalent ytterbium containing anion-radical 1,4-diazadiene ligands. Synthesis, properties and crystal structure of (C9H7)2Yb[2-MeC6H4NC(Me)C(Me)NC6H4Me-2] and [PhNC(Ph)C(Ph)NPh]3Yb complexes

    International Nuclear Information System (INIS)

    Gudilenkov, I.D.; Fukin, G.K.; Cherkasov, A.V.; Shavyrin, A.S.; Trifonov, A.A.; Larionova, Yu.E.

    2008-01-01

    Reaction of ytterbium bisindenyl complex (C 9 H 7 ) 2 Yb II (THF) 2 (1) with 1,4-diazabutadiene 2-MeC 6 H 4 N=C(Me)-C(Me)=NC 6 H 4 Me-2 ( Me DAD) is accompanied by the oxidation of metal atom until trivalent state and results in the formation of paramagnetic compound of metallocenes type (C 9 H 7 ) 2 Yb III ( Me DAD -. ) (3) containing 1,4-diazabutadiene anion-radical. Structure of complex 3 is ascertained by the X-ray structure analysis. Reactions of bisindenyl (1) and bisfluorenyl (C 13 H 9 ) 2 Yb II (THF) 2 (2) derivatives of bivalent ytterbium with 1,4-diazabutadiene PhN=C(Ph)-C(Ph)=NPh ( Ph DAD) (at 1:2 molar ratio of reagents) proceed with the complete break of Yb-C bonds, oxidation of ytterbium atom until trivalent state, and result in the formation of homoligand complex ( Ph DAD -. ) 3 Yb (6) containing three anion-radical 1,4-diazadiene ligands. Complex 6 was also prepared by the exchange reaction of YbCl 3 with Ph DAD -. K + (1:3) in THF. Complex 6 is characterized by the X-ray structure analysis [ru

  17. Radiosensitization of C225 on human non-small cell lung cancer cell line H-520

    International Nuclear Information System (INIS)

    Zhang Yingdong; Wang Junjie; Liu Feng; Zhao Yong

    2008-01-01

    Objective: To investigate the efficacy of C225 (cetuximab), a chimeric human-mouse anti-epithelial growth factor receptor monoclonal antibody, combined with 60 Co gamma irradiation against human non-small cell lung cancer cell line H-520. Methods: H-520 cells were treated either with different dose of 60 Co irradiation (1,2,4,6,8 and 10 Gy)alone or together with C225 (100 nmol/L). Colony forming capacity was determined to create the survival curve 10 days after the treatment. Cells in different groups were harvested 72 hours after irradiation for apoptosis analysis or 48 hours after irradiation for cell cycle analysis by flow cytometry assay. Results: The clone number in combinational treatment group was less than that in irradiation only group, which suggested that the cell survival rate in the combinational treatment group was significantly decreased comparing with irradiation only group (F=6.36, P O + G 1 phases for C225 treatment, in G 2 + M phases for 60 Co irradiation, and in both G 0 + G 1 and G 2 + M phases for C225 in combination with 60 Co irradiation. Conclusions: C225 has radiosensitizing effects on H-520 cells, which may through the enhancement of 60 Co irradiation-induced cell death and cell cycle arrest. This study provides a supportive evidence for clinical treatment in non-small cell lung cancer. (authors)

  18. Curcumin enhances the mitomycin C-induced cytotoxicity via downregulation of MKK1/2-ERK1/2-mediated Rad51 expression in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Ko, Jen-Chung; Tsai, Min-Shao; Weng, Shao-Hsing; Kuo, Ya-Hsun; Chiu, Yu-Fan; Lin, Yun-Wei

    2011-01-01

    Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), has been reported to suppress the proliferation of a wide variety of tumor cells. Rad51 is a key protein in the homologous recombination (HR) pathway of DNA double-strand break repair, and HR represents a novel target for cancer therapy. A high expression of Rad51 has been reported in chemo- or radio-resistant carcinomas. Therefore, in the current study, we will examine whether curcumin could enhance the effects of mitomycin C (MMC), a DNA interstrand cross-linking agent, to induce cytotoxicity by decreasing Rad51 expression. Exposure of two human non-small lung cancer (NSCLC) cell lines (A549 and H1975) to curcumin could suppress MMC-induced MKK1/2-ERK1/2 signal activation and Rad51 protein expression. Enhancement of ERK1/2 activation by constitutively active MKK1/2 (MKK1/2-CA) increased Rad51 protein levels in curcumin and MMC co-treated human lung cells. Moreover, the synergistic cytotoxic effect induced by curcumin combined with MMC was decreased by MKK1-CA-mediated enhancement of ERK1/2 activation by a significant degree. In contrast, MKK1/2 inhibitor, U0126 was shown to augment the cytotoxicity of curcumin and MMC through downregulation of ERK1/2 activation and Rad51 expression. Depletion of endogenous Rad51 expression by siRad51 RNA transfection significantly enhanced MMC and/or curcumin induced cell death and cell growth inhibition. In contrast, an overexpression of Rad51 protected lung cancer cells from synergistic cytotoxic effects induced by curcumin and MMC. We concluded that Rad51 inhibition may be an additional action mechanism for enhancing the chemosensitization of MMC by curcumin in NSCLC. - Highlights: → Curcumin downregulates MKK-ERK-mediated Rad51 expression. → Curcumin enhances mitomycin C-induced cytotoxicity. → Rad51 protects cells from cytotoxic effects induced by curcumin and mitomycin C. → Rad51 inhibition enhances the chemosensitization of

  19. Skeleton polyhedral rearrangements of 8-alkyl-7,9-dicarba-nido-undecaborate(-1) anion to 11-alkyl-2,7-dicarba-nido-undecaborane(13) and to 9-alkyl-7,8-dicarba-nido-undecaborate(-1) anion. Molecular structure of 2,7-Me2-11-PhCH2-2,7-C2B9H10

    International Nuclear Information System (INIS)

    Zakharkin, K.I.; Zhigareva, G.G.; Antonovich, V.A.; Yanovskij, A.I.; Struchkov, Yu.T.

    1986-01-01

    Using the methods of 1 H and 11 B NMR-spectroscopy and X-ray diffraction analysis skeleton polyhedral rearrangements of carboranes are studied. During protonation of anion 8-R-7, 9-R' 2 -7, 9-C 2 B 9 H 9 - the skeleton polyhedral rearrangement in the series of nido-carboranes, resulting in 2,7-R' 2 -11-R-2, 7-C 2 B 9 H 10 (R=Me, PhCH 2 , R'=H, Me) is observed. The rearrangement is reversible. On the detachment of two protons from 2,7-Me 2 -11-PhCH 2 -2,7-C 2 B 9 H 10 and during subsequent protonation the skeleton polyhedral rearrangement with the formation of anion 9-PhCH 2 -7,8-Me 2 -7,8-C 2 B 9 H 9 - takes place

  20. The nido-osmaboranes [2,2,2-(CO)(PPh(3))(2)-nido-2-OsB(5)H(9)] and [6,6,6-(CO)(PPh(3))(2)-nido-6-OsB(9)H(13)].

    Science.gov (United States)

    Bould, J; Kennedy, J D; Thomas, R L; Rath, N P; Barton, L

    2001-11-01

    The structural characterization of the osmahexaborane 2-carbonyl-2,2-bis(triphenylphosphine)-nido-2-osmahexaborane(9), [Os(B(5)H(9))(C(18)H(15)P)(2)(CO)], (I), a metallaborane analogue of B(6)H(10), confirms the structure proposed from NMR spectroscopy. The structure of the osmadecaborane 6-carbonyl-6,6-bis(triphenylphosphine)-nido-6-osmadecaborane(13), [Os(B(9)H(13))(C(18)H(15)P)(2)(CO)], (IV), is similarly confirmed. The short basal B-B distance of 1.652 (8) A in (I), not bridged by an H atom, mirrors that in the parent hexaborane(10) [1.626 (4) A].

  1. Acetylene C2H 2 retrievals from MIPAS data and regions of enhanced upper tropospheric concentrations in August 2003

    Directory of Open Access Journals (Sweden)

    V. P. Kanawade

    2011-10-01

    Full Text Available Acetylene (C2H2 volume mixing ratios (VMRs have been successfully retrieved from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS Level 1B radiances during August 2003, providing the first global map of such data and ratios to CO in the literature. The data presented here contain most information between 300 hPa and 100 hPa with systematic errors less than 10% at the upper levels. Random errors per point are less than 15% at lower levels and are closer to 30% at 100 hPa. Global distributions of the C2H2 and C2H2/CO ratio confirm significant features associated with both the Asian monsoon anticyclone and biomass burning for this important hydrocarbon in a characteristic summer month (August 2003, showing tight correlations regionally, particularly at lower to medium values, but globally emphasising the differences between sources and lifetimes of CO and C2H2. The correlations are seen to be particularly disturbed in the regions of highest C2H2 concentrations, indicating variability in the surface emissions or fast processing. A strong isolation of C2H2 within the Asian monsoon anticyclone is observed, evidencing convective transport into the upper troposphere, horizontal advection within the anticyclone at 200 hPa, distinct gradients at the westward edge of the vortex and formation of a secondary dynamical feature from the eastward extension of the anticyclone outflow over the Asian Pacific. Ratios of C2H2/CO are consistent with the evidence from the cross-sections that the C2H2 is uplifted rapidly in convection. Observations are presented of enhanced C2H2 associated with the injection from biomass burning into the upper troposphere and the outflow from Africa at 200 hPa into both the Atlantic and Indian Oceans. In the biomass burning regions, C2H2 and CO are well correlated, but the uplift is less marked and peaks at lower altitudes compared to the strong effects observed in the Asian monsoon anticyclone. Ratios of C2H2/CO

  2. ENDOR determination of the proton positions around Gd3+ in La(C2H5SO4)3.9H2O

    International Nuclear Information System (INIS)

    Beer, R. de; Biesboer, F.; Ormondt, D. van

    1976-01-01

    The water proton positions around Gd 3+ in La(C 2 H 5 SO 4 ) 3 .9H 2 O have been determined by means of ENDOR. The positions of the nearest neighbour water oxygens are discussed on the basis of a superposition model analysis of the ratios b 2 0 /A 2 0 2 >, b 6 6 /b 6 0 and mod(A 6 6 )modA 6 0 . (Auth.)

  3. Human organic cation transporter 2 (hOCT2): Inhibitor studies using S2-hOCT2 cells

    International Nuclear Information System (INIS)

    Chiba, Shoetsu; Ikawa, Toru; Takeshita, Hiroshi; Kanno, Sanae; Nagai, Tomonori; Takada, Meri; Mukai, Toshiji; Wempe, Michael F.

    2013-01-01

    Highly expressed in kidney and located on the basolateral membrane, human organic cation transporter 2 (hOCT2) can transport various compounds (i.e. drugs and toxins) into the proximal tubular cell. Using cultured proximal tubule cells stably expressing hOCT2 (i.e. S2-hOCT2 cells), we sought to probe different compound classes (e.g. analgesics, anti-depressants, anti-psychotics, disinfectant, herbicides, insecticides, local anesthetic, muscarinic acetylcholine receptor antagonist, sedatives, steroid hormone, stimulants and toxins) for their ability to inhibit 14 C-TEA uptake, a prototypical OCT2 substrate. Aconitine, amitriptyline, atropine, chlorpyrifos, diazepam, fenitrothion, haloperidol, lidocaine, malathion, mianserin, nicotine and triazolam significantly inhibited 14 C-TEA uptake; IC 50 values were 59.2, 2.4, 2.0, 20.7, 32.3, 13.2, 32.5, 104.6, 71.1, 17.7, 52.8 and 65.5 μM, respectively. In addition, aconitine, amitriptyline, atropine, chlorpyrifos, fenitrothion, haloperidol, lidocaine, and nicotine displayed competitive inhibition with K i values of 145.6, 2.5, 2.4, 24.8, 16.9, 51.6, 86.8 and 57.7 μM, respectively. These in vitro data support the notion that compounds pertaining to a wide variety of different drug classes have the potential to decrease renal clearance of drugs transported via hOCT2. Consequently, these data warrant additional studies to probe hOCT2 and its role to influence drug pharmacokinetics

  4. Acute Metabolic Alkalosis Enhances Response of C3H Mouse Mammary Tumors to the Weak Base Mitoxantrone

    Directory of Open Access Journals (Sweden)

    Natarajan Raghunand

    2001-01-01

    Full Text Available Uptake of weak acid and weak base chemotherapeutic drugs by tumors is greatly influenced by the tumor extracellular/interstitial pH (pHe, the intracellular pH (pHi maintained by the tumor cells, and by the ionization properties of the drug itself. The acid-outside plasmalemmal pH gradient in tumors acts to exclude weak base drugs like the anthracyclines, anthraquinones, and vinca alkaloids from the cells, leading to a substantial degree of “physiological drug resistance” in tumors. We have induced acute metabolic alkalosis in C3H tumor-bearing C3H/hen mice, by gavage and by intraperitoneal (i.p. administration of NaHCO3. 31P magnetic resonance spectroscopic measurements of 3-aminopropylphosphonate show increases of up to 0.6 pH units in tumor pHe, and 0.2 to 0.3 pH units in hind leg tissue pHe, within 2 hours of i.p. administration of NaHCO3. Theoretical calculations of mitoxantrone uptake into tumor and normal (hind leg tissue at the measured pH, and pHI values indicate that a gain in therapeutic index of up to 3.3-fold is possible with NaHCO3 pretreatment. Treatment of C3H tumor-bearing mice with 12 mg/kg mitoxantrone resulted in a tumor growth delay of 9 days, whereas combined NaHCO3mitoxantrone therapy resulted in an enhancement of the TGD to 16 days.

  5. CD86 and beta2-adrenergic receptor signaling pathways, respectively, increase Oct-2 and OCA-B Expression and binding to the 3'-IgH enhancer in B cells.

    Science.gov (United States)

    Podojil, Joseph R; Kin, Nicholas W; Sanders, Virginia M

    2004-05-28

    Stimulation of CD86 (formerly known as B7-2) and/or the beta2-adrenergic receptor on a CD40 ligand/interleukin-4-activated B cell increased the rate of mature IgG1 transcription. To identify the mechanism responsible for this effect, we determined whether CD86 and/or beta2-adrenergic receptor stimulation regulated transcription factor expression and binding to the 3'-IgH enhancer in vitro and in vivo. We showed that CD86 stimulation increased the nuclear localization of NF-kappaB1 (p50) and phosphorylated RelA (p65) and increased Oct-2 expression and binding to the 3'-IgH enhancer, in a protein kinase C-dependent manner. These effects were lost when CD86-deficient or NF-kappaB1-deficient B cells were used. CD86 stimulation also increased the level of IkappaB-alpha phosphorylation but in a protein kinase C-independent manner. Beta2-adrenergic receptor stimulation increased CREB phosphorylation, OCA-B expression, and OCA-B binding to the 3'-IgH enhancer in a protein kinase A-dependent manner, an effect lost when beta2-adrenergic receptor-deficient B cells were used. Also, the beta2-adrenergic receptor-induced increase in the level of mature IgG1 transcript was lost when OCA-B-deficient B cells were used. These data are the first to show that CD86 stimulation up-regulates the expression of the transcription factor Oct-2 in a protein kinase C- and NF-kappaB1-dependent manner, and that beta2-adrenergic receptor stimulation up-regulates the expression of the coactivator OCA-B in a protein kinase A-dependent manner to cooperate with Oct-2 binding to the 3'-IgH enhancer.

  6. 1H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH2)3]3Bi2I9 as an example

    International Nuclear Information System (INIS)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Brym, Sz.; Kruk, D.; Jakubas, R.

    2016-01-01

    1 H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu 3 Bi 2 I 9 ([Gu = C(NH 2 ) 3 ] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ( 14 N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10 −6 s which has turned out to be (almost) temperature independent, and a fast process in the range of 10 −9 s. From the 1 H- 14 N relaxation contribution (that shows “quadrupole peaks”) the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions

  7. 1H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH2)3]3Bi2I9 as an example

    Science.gov (United States)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Jakubas, R.; Brym, Sz.; Kruk, D.

    2016-02-01

    1H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu3Bi2I9 ([Gu = C(NH2)3] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole (14N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10-6 s which has turned out to be (almost) temperature independent, and a fast process in the range of 10-9 s. From the 1H-14N relaxation contribution (that shows "quadrupole peaks") the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.

  8. Effect of the CO2/SiH4 Ratio in the p-μc-SiO:H Emitter Layer on the Performance of Crystalline Silicon Heterojunction Solar Cells

    OpenAIRE

    Sritharathikhun, Jaran; Krajangsang, Taweewat; Moollakorn, Apichan; Inthisang, Sorapong; Limmanee, Amornrat; Hongsingtong, Aswin; Boriraksantikul, Nattaphong; Taratiwat, Tianchai; Akarapanjavit, Nirod; Sriprapha, Kobsak

    2014-01-01

    This paper reports the preparation of wide gap p-type hydrogenated microcrystalline silicon oxide (p-μc-SiO:H) films using a 40 MHz very high frequency plasma enhanced chemical vapor deposition technique. The reported work focused on the effects of the CO2/SiH4 ratio on the properties of p-μc-SiO:H films and the effectiveness of the films as an emitter layer of crystalline silicon heterojunction (c-Si-HJ) solar cells. A p-μc-SiO:H film with a wide optical band gap (E04), 2.1 eV, can be obtain...

  9. The FAQUIRE Approach: FAst, QUantitative, hIghly Resolved and sEnsitivity Enhanced 1H, 13C Data.

    Science.gov (United States)

    Farjon, Jonathan; Milande, Clément; Martineau, Estelle; Akoka, Serge; Giraudeau, Patrick

    2018-02-06

    The targeted analysis of metabolites in complex mixtures is a challenging issue. NMR is one of the major tools in this field, but there is a strong need for more sensitive, better-resolved, and faster quantitative methods. In this framework, we introduce the concept of FAst, QUantitative, hIghly Resolved and sEnsitivity enhanced (FAQUIRE) NMR to push forward the limits of metabolite NMR analysis. 2D 1 H, 13 C 2D quantitative maps are promising alternatives for enhancing the spectral resolution but are highly time-consuming because of (i) the intrinsic nature of 2D, (ii) the longer recycling times required for quantitative conditions, and (iii) the higher number of scans needed to reduce the level of detection/quantification to access low concentrated metabolites. To reach this aim, speeding up the recently developed QUantItative Perfected and pUre shifted HSQC (QUIPU HSQC) is an interesting attempt to develop the FAQUIRE concept. Thanks to the combination of spectral aliasing, nonuniform sampling, and variable repetition time, the acquisition time of 2D quantitative maps is reduced by a factor 6 to 9, while conserving a high spectral resolution thanks to a pure shift approach. The analytical potential of the new Quick QUIPU HSQC (Q QUIPU HSQC) is evaluated on a model metabolite sample, and its potential is shown on breast-cell extracts embedding metabolites at millimolar to submillimolar concentrations.

  10. Nicotinamide N-Methyltransferase Suppression Participates in Nickel-Induced Histone H3 Lysine9 Dimethylation in BEAS-2B Cells

    Directory of Open Access Journals (Sweden)

    Qian Li

    2017-04-01

    Full Text Available Background: Nickel compounds are well-established human carcinogens with weak mutagenic activity. Histone methylation has been proposed to play an important role in nickel-induced carcinogenesis. Nicotinamide N-methyltransferase (NNMT decreases histone methylation in several cancer cells by altering the cellular ratio of S-adenosylmethionine (SAM to S-adenosylhomocysteine (SAH. However, the role of NNMT in nickel-induced histone methylation remains unclear. Methods: BEAS-2B cells were exposed to different concentrations of nickel chloride (NiCl2 for 72 h or 200 μM NiCl2 for different time periods. Histone H3 on lysine 9 (H3K9 mono-, di-, and trimethylation and NNMT protein levels were measured by western blot analysis. Expressions of NNMT mRNA and the H3k9me2-associated genes, mitogen-activated protein kinase 3 (MAP2K3 and dickkopf1 (DKK1, were determined by qPCR analysis. The cellular ratio of nicotinamide adenine dinucleotide (NAD+ to reduced NAD (NADH and SAM/SAH ratio were determined. Results: Exposure of BEAS-2B cells to nickel increased H3K9 dimethylation (H3K9me2, suppressed the expressions of H3K9me2-associated genes (MAP2K3 and DKK1, and induced NNMT repression at both the protein and mRNA levels. Furthermore, over-expression of NNMT inhibited nickel-induced H3K9me2 and altered the cellular SAM/SAH ratio. Additionally, the NADH oxidant phenazine methosulfate (PMS not only reversed the nickel-induced reduction in NAD+/NADH but also inhibited the increase in H3K9me2. Conclusions: These findings indicate that the repression of NNMT may underlie nickel-induced H3K9 dimethylation by altering the cellular SAM/SAH ratio.

  11. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.

    Science.gov (United States)

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-04-20

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.

  12. Deep extractive and oxidative desulfurization of dibenzothiophene with C5H9NO·SnCl2 coordinated ionic liquid.

    Science.gov (United States)

    Li, Fa-tang; Kou, Cheng-guang; Sun, Zhi-min; Hao, Ying-juan; Liu, Rui-hong; Zhao, Di-shun

    2012-02-29

    A new C5H9NO·SnCl2 coordinated ionic liquid (IL) was prepared by reacting N-methyl-pyrrolidone with anhydrous SnCl2. Desulfurization of dibenzothiophene (DBT) via extraction and oxidation with C5H9NO·SnCl2 IL as extractant, H2O2 and equal mol of CH3COOH as oxidants was investigated. The Nernst partition coefficients k(N) of C5H9NO·SnCl2 IL for the DBT in n-octane was above 5.0, showing its excellent extraction ability. During the oxidative desulfurization process, the optimal molar ratio of H2O2/DBT was six. Sulfur removal of DBT in n-octane was 94.8% in 30 min at 30 °C under the conditions of H2O2/DBT molar ratio of six and V (IL):V (oil)=1:3. Moreover, the sulfur removal increased with increasing temperature because of the high reaction rate constant, low viscosity, and high solubility of dibenzothiophene-sulfone in the IL. The kinetics of oxidative desulfurization of DBT was also investigated, and the apparent activation energy was found to be 32.5 kJ/mol. The IL could be recycled six times without a significant decrease in activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. H-D exchange in metal carbene complexes: Structure of cluster (μ-H)(μ-OCD3)Os3(CO)9{:C(CD3)NC2H8O}

    Science.gov (United States)

    Savkov, Boris; Maksakov, Vladimir; Kuratieva, Natalia

    2015-10-01

    X-ray and spectroscopic data for the new complex (μ-H)(μ-OCH3)Os3(CO)9{:C(CD3)NC2H8O} (2) obtained in the reaction of the (μ-H)(μ-Cl)Os3(CO)9{:C(CH3)NC2H8O} (1) with NaOCD3 in CD3OD solution are reported. It is shown that cluster 1 has the property of CH-acidity inherent of Fisher type carbenes. This had demonstrated using hydrogen deuterium exchange reaction in the presence of a strong base. Bridging chlorine to metoxide ligand substitution takes place during the reaction. The molecular structure of 2 is compared with known analogues.

  14. Bioactivation of the heterocyclic aromatic amine 2-amino-3-methyl-9H-pyrido [2,3-b]indole (MeA alpha C) in recombinant test systems expressing human xenobiotic-metabolizing enzymes

    DEFF Research Database (Denmark)

    Glatt, H.; Pabel, U.; Meinl, W.

    2004-01-01

    2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeAalphaC) and some metabolites were investigated for mutagenicity in mammalian cell lines and bacterial strains engineered for the expression of human enzymes. MeAalphaC induced gene mutations (studied at the hprt locus) in Chinese hamster V79-derived cel...

  15. Mechanism of improved maintenance of 2,3-diphosphoglycerate in stored blood by the xanthone compound 2-(2-hydroxyethoxy)-6-(1-H-tetrazole-5-yl)xanthen-9-one (BW A440C).

    Science.gov (United States)

    Beutler, E; Forman, L; West, C; Gelbart, T

    1988-03-15

    The effect of the xanthone derivative 2-(2-hydroxyethoxy)-6-(1-H-tetrazole-5-yl)xanthen-9-one (BW A440C) on red cells was studied. When added to stored red cells at a concentration of 6 mM, greatly improved preservation of 2,3-diphosphoglycerate (2,3-DPG) was observed. There was no effect on internal pH of the erythrocyte. At a concentration 0.500 mM, many red cell enzyme activities were inhibited completely. At a 0.500 mM concentration, however, inhibition of pyruvate kinase and diphosphoglycerate phosphatase was most striking. Inhibition of either of these enzymes could result in elevation of 2,3-DPG levels. BW A440C in concentrations which elevated 2,3-DPG levels in humans caused a decrease in 2,3-DPG levels in rabbits and markedly impaired the viability of 21-day stored rabbit erythrocytes.

  16. Standard Molar Enthalpy of Formation of RE(C5H8NS2)3(C12H8N2)

    Institute of Scientific and Technical Information of China (English)

    Meng Xiangxin; Shuai Qi; Chen Sanping; Xie Gang; Gao Shengli; Shi Qizhen

    2005-01-01

    Four solid ternary complexes of RE (C5H8NS2)3(C12H8N2) (RE=Eu, Gd, Tb, Dy) were synthesized in absolute ethanol by rare earth chloride low hydrate with the mixed ligands of ammonium pyrrolidinedi-thiocarbamate (APDC) and 1, 10-phenanthroline*H2O (o-phen*H2O) in the ordinary laboratory atmosphere without any cautions against moisture or air sensitivity. IR spectra of the complexes show that the RE3+ coordinated with six sulfur atoms of three PDC- and two nitrogen atoms of o-phen*H2O. It was assumed that the coordination number of RE3+ is eight. The constant-volume combustion energies of the complexes, ΔcU, were determined as (-16937.88±9.79 ), (-17588.79±8.62 ), (-17747.14±8.25 ) and (-17840.37±8.87 ) kJ*mol-1, by a precise rotating-bomb calorimeter at 298.15 K. Its standard molar enthalpies of combustion, ΔcHθm, and standard molar enthalpies of formation, ΔfHθm, were calculated as (-16953.37±9.79), (-17604.28±8.62), (-17762.63±8.25), (-17855.86±8.87) kJ*mol-1 and (-857.04±10.52), (-282.43±9.58), (-130.08±9.13), (-55.75±9.83) kJ*mol-1.

  17. Triosmium cluster compounds containing isocyanide and hydride ligands. Crystal and molecular structure of (μ-H)(μ-eta1-C==N(H)(t-C4H9))Os3(CO)10

    International Nuclear Information System (INIS)

    Adams, R.D.; Golembeski, N.M.

    1979-01-01

    The crystal and molecular structure of the compound (μ-H)(μ-eta 1 -C==N(H)(t-C 4 H 9 ))Os 3 (CO) 10 has been determined by X-ray crystallographic methods. The compound crystallizes in the centrosymmetric monoclinic space group P2 1 /n[C/sub 2h/ 5 ]:a = 13.651 (4) A, b = 9.156 (4) A, c = 18.275 (5) A, β = 111.42 (2) 0 , V = 2126.3 (25) A 3 , Z = 4, rho/sub calcd/ = 2.92 g cm -3 . A uniform triangular cluster of three osmium atoms contains ten linear carbonyl groups and a μ-eta 1 -C==N(H)(t-C 4 H 9 ) iminyl ligand. The carbon atom of the iminyl ligand symmetrically bridges one osmium-osmium bond, as is shown by the internuclear separations Os(2)-C(11) = 2.066 (8) A and Os(3)-C(11) = 2.043 (8) A. The iminyl bond, C(11)-N, is double with the C-N distance being 1.298 (10) A

  18. Preparation and characterization of organic-inorganic hybrid perovskite (C4H9NH3)2CuCl4

    International Nuclear Information System (INIS)

    Xiao Zelong; Chen Hongzheng; Shi Minmin; Wu Gang; Zhou Renjia; Yang Zhisheng; Wang Mang; Tang Benzhong

    2005-01-01

    Organic-inorganic hybrid perovskite (C 4 H 9 NH 3 ) 2 CuCl 4 was prepared via the reaction between copper chloride and butylammonium chloride. Its chemical structure was characterized by FT-IR and elemental analysis. Its thin film was obtained by spin-coating, and X-ray diffraction (XRD) measurements indicated the formation of two-dimensional layered perovskites structure, with the c-axis perpendicular to the substrate surface. The electronic structure, thermal properties and electrical properties of the hybrid perovskite (C 4 H 9 NH 3 ) 2 CuCl 4 were also studied by UV-vis, photoluminescience (PL), TGA, DSC, and Hall measurement

  19. Enhancement of the ALP activity of C3H10T1/2 cells by the combination of an oxysterol and apatite

    International Nuclear Information System (INIS)

    Son, Kyung Mi; Park, Hee Chul; Kim, Na Ryoung; Yang, Hyeong-Cheol; Lee, In-Seop

    2010-01-01

    Biomimetic apatite coating has been used to load osteogenic biomolecules onto the surface of titanium implants. Apatite on the surface of biomaterials is thought to function as a reservoir of biomolecules as well as enhancing osteoconductivity. In this study, 20α-hydroxycholesterol (20α-HC), an osteogenic oxysterol, was used to induce differentiation of a mouse embryo fibroblast cell line (C3H10T1/2) by loading the oxysterol on biomimetically coated apatite of titanium discs. We found that the phosphatase (alkaline phosphatase (ALP)) activity of 20α-HC was significantly higher with ascorbic acid than alone, suggesting a need for ascorbic acid as a co-factor. When 20α-HC was added into the apatite coating solution, the ALP activity of the C3H10T1/2 cells did not increase on the apatite surface, even in the presence of ascorbic acid. However, ALP activity increased dramatically when 20α-HC was loaded by volatilization of EtOH from the apatite coat after dipping discs in 20α-HC-dissolved EtOH. Interestingly, ascorbic acid was not needed for this increase in ALP activity, suggesting a synergistic effect of 20α-HC and apatite. The concentration of calcium ions, a major component of apatite, affected the osteogenic effect of 20α-HC, and the increase in ALP activity was attenuated by L-type calcium channel inhibitors, verapamil and nifedipine. These results demonstrate that calcium ions released from apatite are important in the synergistic effect of 20α-HC and apatite.

  20. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways.

    Science.gov (United States)

    Zhang, Jing-Yi; Guo, Ying; Si, Jin-Ping; Sun, Xiao-Bo; Sun, Gui-Bo; Liu, Jing-Jing

    2017-11-01

    Dendrobium officinale is one valuable traditional Chinese medicine, which has skyscraping medicinal value. Polysaccharide is the main active ingredient in D. officinale; its antioxidant activity is a hot research topic nowadays. Oxidative stress plays an important role in the pathological progress of a variety of cardiovascular disease, as one of key factors of cardiomyocyte apoptosis. This research adopts a model of H 2 O 2 induction-H9c2 cardiomyocytes apoptosis, aiming to study the effect of Dendrobium officinale Polysaccharide (DOP-GY) for cardiomyocyte apoptosis caused by oxidative stress and its possible mechanism. Our results showed that pretreatment of DOP-GY (low dose: 6.25μg/mL, medium dose: 12.5μg/mL, high dose: 25μg/mL) followed by a 2h incubation with 200μM H 2 O 2 elevated the survival rate, cutted the LDH leakage, reduced lipid peroxidation damage, improved the activity of the endogenous antioxidant enzymes. In addition, the pretreatment of DOP-GY significantly inhibited the production of ROS, declined of the mitochondrial membrane potential, down-regulated pro-apoptosis protein and up-regulated anti-apoptosis protein. The protective effect was correlated with the PI3K/Akt and MAPK signal pathway. Collectively, these observations suggest that DOY-GY has the potential to exert cardioprotective effects against H 2 O 2 -induced H9c2 cardiomyocyte apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria; Giangregorio, Maria M.; Bianco, Giuseppe V.; Sacchetti, Alberto; Capezzuto, Pio; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy)

    2009-10-15

    Au nanoparticles (NPs)/(n-type)a-Si:H/(p-type)c-Si heterojunctions have been deposited combining plasma-enhanced chemical-vapour deposition (PECVD) with Au sputtering. We demonstrate that a density of {proportional_to}1.3 x 10{sup 11} cm{sup -2} of Au nanoparticles with an approximately 20 nm diameter deposited onto (n-type)a-Si:H/(p-type)c-Si heterojunctions enhance performance exploiting the improved absorption of light by the surface plasmon resonance of Au NPs. In particular, Au NPs/(n-type)a-Si:H/(p-type)c-Si show an enhancement of 20% in the short-circuit current, J{sub SC}, 25% in the power output, P{sub max} and 3% in the fill factor, FF, compared to heterojunctions without Au NPs. Structures have been characterized by spectroscopic ellipsometry, atomic force microscopy and current-voltage (I-V) measurements to correlate the plasmon resonance-induced enhanced absorption of light with photovoltaic performance. (author)

  2. Experimental and Theoretical Studies of the Factors Affecting the Cycloplatination of the Chiral Ferrocenylaldimine (SC-[(η5-C5H5Fe{(η5-C5H4–C(H=N–CH(Me(C6H5}

    Directory of Open Access Journals (Sweden)

    Concepción López

    2014-11-01

    Full Text Available The study of the reactivity of the enantiopure ferrocenyl Schiff base (SC-[FcCH=N–CH(Me(C6H5] (1 (Fc = (η5-C5H5Fe(η5-C5H4 with cis-[PtCl2(dmso2] under different experimental conditions is reported. Four different types of chiral Pt(II have been isolated and characterized. One of them is the enantiomerically pure trans-(SC-[Pt{κ1-N[FcCH=N–CH(Me(C6H5]}Cl2(dmso] (2a in which the imine acts as a neutral N-donor ligand; while the other three are the cycloplatinated complexes: [Pt{κ2-C,N [(C6H4–N=CHFc]}Cl(dmso] (7a and the two diastereomers {(Sp,SC and (Rp,SC} of [Pt{κ2-C,N[(η5-C5H3–CH=N–{CH(Me(C6H5}]Fe(η5-C5H5}Cl(dmso] (8a and 9a, respectively. Isomers 7a-9a, differ in the nature of the metallated carbon atom [CPh (in 7a or CFc (in 8a and 9a] or the planar chirality of the 1,2-disubstituted ferrocenyl unit (8a and 9a. Reactions of 7a–9a with PPh3 gave [Pt{κ2-C,N[(C6H4–N=CHFc]}Cl(PPh3] (in 7b and the diastereomers (Sp,SC and (Rp,SC of [Pt{κ2-C,N[(η5-C5H3–CH=N–{CH(Me(C6H5}] Fe(η5-C5H5}Cl(PPh3] (8b and 9b, respectively. Comparative studies of the electrochemical properties and cytotoxic activities on MCF7 and MDA-MB231 breast cancer cell lines of 2a and cycloplatinated complexes 7b-9b are also reported. Theoretical studies based on DFT calculations have also been carried out in order to rationalize the results obtained from the cycloplatination of 1, the stability of the Pt(II complexes and their electrochemical properties.

  3. Hydrogenation and Deuteration of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} on Cold Grains: A Clue to the Formation Mechanism of C{sub 2}H{sub 6} with Astronomical Interest

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hitomi; Kawakita, Hideyo [Koyama Astronomical Observatory, Kyoto Sangyo University Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Hidaka, Hiroshi; Hama, Tetsuya; Watanabe, Naoki [Institute of Low Temperature Science, Hokkaido University N19-W8, Kita-ku, Sapporo, Hokkaido 060-0819 (Japan); Lamberts, Thanja; Kästner, Johannes, E-mail: h_kobayashi@kyoto-nijikoubou.com [Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)

    2017-03-10

    We quantitatively investigated the hydrogen addition reactions of acetylene (C{sub 2}H{sub 2}) and ethylene (C{sub 2}H{sub 4}) on amorphous solid water (ASW) at 10 and 20 K relevant to the formation of ethane (C{sub 2}H{sub 6}) on interstellar icy grains. We found that the ASW surface enhances the reaction rates for C{sub 2}H{sub 2} and C{sub 2}H{sub 4} by approximately a factor of 2 compared to those on the pure-solid C{sub 2}H{sub 2} and C{sub 2}H{sub 4} at 10 K, probably due to an increase in the sticking coefficient and adsorption energy of the H atoms on ASW. In contrast to the previous proposal that the hydrogenation rate of C{sub 2}H{sub 4} is orders of magnitude larger than that of C{sub 2}H{sub 2}, the present results show that the difference in hydrogenation rates of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} is only within a factor of 3 on both the surfaces of pure solids and ASW. In addition, we found the small kinetic isotope effect for hydrogenation/deuteration of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} at 10 K, despite the requirement of quantum tunneling. At 20 K, the reaction rate of deuteration becomes even larger than that of hydrogenation. These unusual isotope effects might originate from a slightly larger number density of D atoms than H atoms on ASW at 20 K. The hydrogenation of C{sub 2}H{sub 2} is four times faster than CO hydrogenation and can produce C{sub 2}H{sub 6} efficiently through C{sub 2}H{sub 4} even in the environment of a dark molecular cloud.

  4. Arsenic silences hepatic PDK4 expression through activation of histone H3K9 methylatransferase G9a

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xi; Wu, Jianguo; Choiniere, Jonathan [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); Yang, Zhihong [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516 (United States); Huang, Yi [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Bennett, Jason [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); Wang, Li, E-mail: li.wang@uconn.edu [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516 (United States); School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520 (United States)

    2016-08-01

    It is well established that increased liver cancer incidence is strongly associated with epigenetic silencing of tumor suppressor genes; the latter is contributed by the environmental exposure to arsenic. Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial protein that regulates the TCA cycle. However, the epigenetic mechanisms mediated by arsenic to control PDK4 expression remain elusive. In the present study, we showed that histone methyltransferase G9a- and Suv39H-mediated histone H3 lysine 9 (H3K9) methylations contributed to PDK4 silencing in hepatic cells. The PDK4 expression was induced by G9a inhibitor BRD4770 (BRD) and Suv39H inhibitor Chaetocin (CHA). In contrast, arsenic exposure decreased PDK4 expression by inducing G9a and increasing H3K9 di- and tri-methylations levels (H3K9me2/3). In addition, arsenic exposure antagonizes the effect of BRD by enhancing the enrichment of H3K9me2/3 in the PKD4 promoter. Moreover, knockdown of G9a using siRNA induced PDK4 expression in HCC cells. Furthermore, arsenic decreased hepatic PDK4 expression as well as diminished the induction of PDK4 by BRD in mouse liver and hepatocytes. Overall, the results suggest that arsenic causes aberrant repressive histone modification to silence PDK4 in both HCC cells and in mouse liver. - Graphical abstract: Schematic showing arsenic-mediated epigenetic pathway that inhibits PDK4 expression. (A) BRD induces PDK4 expression by decreasing G9a protein and histone H3K9me2 and H3K9me3 levels as well as diminishing their recruitment to the PDK4 promoter. (B) Arsenic counteracts the effect of BRD by increasing histone H3K9me2 and H3K9me3 levels as well as enhancing their enrichment to the PDK4 promoter. Display Omitted - Highlights: • Histone methyltrasferase G9a inhibitor BRD induces PDK4 expression. • Arsenic decreases PDK4 expression and increases H3K9me2 and me3 levels. • Arsenic enhances H3K9me2/me3 enrichment in the PDK4 promoter. • Arsenic antagonizes the activation of

  5. Arsenic silences hepatic PDK4 expression through activation of histone H3K9 methylatransferase G9a

    International Nuclear Information System (INIS)

    Zhang, Xi; Wu, Jianguo; Choiniere, Jonathan; Yang, Zhihong; Huang, Yi; Bennett, Jason; Wang, Li

    2016-01-01

    It is well established that increased liver cancer incidence is strongly associated with epigenetic silencing of tumor suppressor genes; the latter is contributed by the environmental exposure to arsenic. Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial protein that regulates the TCA cycle. However, the epigenetic mechanisms mediated by arsenic to control PDK4 expression remain elusive. In the present study, we showed that histone methyltransferase G9a- and Suv39H-mediated histone H3 lysine 9 (H3K9) methylations contributed to PDK4 silencing in hepatic cells. The PDK4 expression was induced by G9a inhibitor BRD4770 (BRD) and Suv39H inhibitor Chaetocin (CHA). In contrast, arsenic exposure decreased PDK4 expression by inducing G9a and increasing H3K9 di- and tri-methylations levels (H3K9me2/3). In addition, arsenic exposure antagonizes the effect of BRD by enhancing the enrichment of H3K9me2/3 in the PKD4 promoter. Moreover, knockdown of G9a using siRNA induced PDK4 expression in HCC cells. Furthermore, arsenic decreased hepatic PDK4 expression as well as diminished the induction of PDK4 by BRD in mouse liver and hepatocytes. Overall, the results suggest that arsenic causes aberrant repressive histone modification to silence PDK4 in both HCC cells and in mouse liver. - Graphical abstract: Schematic showing arsenic-mediated epigenetic pathway that inhibits PDK4 expression. (A) BRD induces PDK4 expression by decreasing G9a protein and histone H3K9me2 and H3K9me3 levels as well as diminishing their recruitment to the PDK4 promoter. (B) Arsenic counteracts the effect of BRD by increasing histone H3K9me2 and H3K9me3 levels as well as enhancing their enrichment to the PDK4 promoter. Display Omitted - Highlights: • Histone methyltrasferase G9a inhibitor BRD induces PDK4 expression. • Arsenic decreases PDK4 expression and increases H3K9me2 and me3 levels. • Arsenic enhances H3K9me2/me3 enrichment in the PDK4 promoter. • Arsenic antagonizes the activation of

  6. Crystal structure of 2,2′′-bis(2,7-dichloro-9-hydroxy-9H-fluoren-9-yl-1,1′:4′,1′′-terphenyl triethylamine trisolvate

    Directory of Open Access Journals (Sweden)

    Henrik Klien

    2015-12-01

    Full Text Available In the title solvate, C44H26Cl4O2·3C6H15N, the asymmetric part of the unit cell comprises two halves of the diol molecules, 2,2′′-bis(2,7-dichloro-9-hydroxy-9H-fluoren-9-yl-1,1′:4′,1′′-terphenyl, and three molecules of triethylamine, i. e. the diol molecules are located on crystallographic symmetry centres. Two of the solvent molecules are disordered over two positions [occupancy ratios of 0.567 (3:0.433 (3 and 0.503 (3:0.497 (3]. In the diol molecules, the outer rings of the 1,1′:4′,1′′-terphenyl elements are twisted with reference to their central arene ring and the mean planes of the fluorenyl moieties are inclined with respect to the terphenyl ring to which they are connected, the latter making dihedral angles of 82.05 (8 and 82.28 (8°. The presence of two 9-fluoren-9-ol units attached at positions 2 and 2′′ of the terphenyl moiety induces a `folded' geometry which is stabilized by intramolecular C—H...O hydrogen bonds and π–π stacking interactions, the latter formed between the fluorenyl units and the central ring of the terphenyl unit [centroid–centroid distances = 3.559 (1 and 3.562 (1 Å]. The crystal is composed of 1:2 complex units, in which the solvent molecules are associated with the diol molecules via O—H...N hydrogen bonds, while the remaining solvent molecule is linked to the host by a C—H...N hydrogen bond. The given pattern of intermolecular interactions results in formation of chain structures extending along [010].

  7. KEY COMPARISON: Final report on CCQM-K9.2: Subsequent key comparison on pH determination of phosphate buffer by Harned cell measurements

    Science.gov (United States)

    Spitzer, Petra; Giera, Janine; Fraga, Isabel C.; Tønnes Jakobsen, Pia; Jensen, Hans D.; Hyllested, Peter; Karpov, Oleg; Kutovoy, Viatcheslav; Nakamura, Susumu; Vospelova, Alena; Zvezdina, Valentina

    2008-01-01

    CCQM-K9.2 was performed supplementary to the key comparison CCQM-K9 on the pH determination of a phosphate buffer with nominal pH ~ 6.9 (at 25 °C). The sample composition was very similar in both comparisons. Only the source of the starting material used for sample preparation was different. The comparison was restricted to the use of the primary method for pH (Harned cell measurement) as defined in the IUPAC Recommendations [2]. The measurement temperatures were 15 °C, 25 °C, 37 °C. CCQM-K9.2, CCQM-K.9 and the first supplementary comparison CCQM-K9.1 [5] are activities of the Electrochemical Working Group (EAWG) of the CCQM. All three comparisons were coordinated by the PTB, Germany. The Danish Primary Laboratory (DPL) successfully took part in the CCQM-K9. Meanwhile the primary set-up for pH in Denmark moved from DPL affiliated to Radiometer Medical to DFM, Denmark. The subsequent comparison allows assessing the degree of equivalence for the measurement of pH at DFM after the move. Due to the interest of other laboratories in demonstrating their progress in pH measurements on the primary level the CCQM-K9.2 supplementary comparison was extended to other participants than DFM, namely NMIJ, VNIIFTRI, INMETRO and CMI. The reported quantity for CCQM-K9.2 was not the pH of the sample but the acidity function at zero chloride molality (see chapter 12). To calculate the pH value from the acidity function it is necessary to know the ionic strength of the sample buffer solution, which was undisclosed by the coordinator. With the exception of the Czech Metrology Institute, CMI, good agreement in the determined acidity function is found between the participants. The results reported by DFM and by PTB agree within their measurement uncertainty at all measurement temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report

  8. A BCR/ABL-hIL-2 DNA Vaccine Enhances the Immune Responses in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Yanan Qin

    2013-01-01

    Full Text Available The use of a DNA vaccine encoding the BCR/ABL fusion gene is thought to be a promising approach for patients with chronic myeloid leukemia (CML to eradicate minimal residual disease after treatment with chemotherapy or targeted therapy. In this study, our strategy employs genetic technology to create a DNA vaccine encoding the BCR/ABL fusion and human interleukin-2 (hIL-2 genes. The successfully constructed plasmids BCR/ABL-pIRES-hIL-2, BCR/ABL-pIRES, and pIRES-hIL-2 were delivered intramuscularly to BALB/c mice at 14-day intervals for three cycles. The transcription and expression of the BCR/ABL and hIL-2 genes were found in the injected muscle tissues. The interferon-γ (IFN-γ serum levels were increased, and the splenic CD4+/CD8+ T cell ratio was significantly decreased in the BCR/ABL-pIRES-hIL-2-injected mice. Furthermore, specific antibodies against K562 cells could be detected by indirect immunofluorescence. These results indicate that a DNA vaccine containing BCR/ABL and hIL-2 together may elicit increased in vivo humoral and cellular immune responses in BALB/c mice.

  9. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2 in human oral cancer cell line.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamamoto

    2010-09-01

    Full Text Available Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM, which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails.Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2. Protein level of DNA methyltransferase 3B (DNMT3B and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant.OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.

  10. The role of immune cell subpopulations in the growth and rejection of TC-1/A9 tumors in novel mouse strains differing in the H2-D haplotype and NKC domain.

    Science.gov (United States)

    Indrová, Marie; Rossowska, Joanna; Pajtasz-Piasecka, Elzbieta; Mikyšková, Romana; Richter, Jan; Rosina, Jozef; Sedlacek, Radislav; Fišerová, Anna

    2018-03-01

    The present study aimed to elucidate the role of cluster of differentiation (CD)8+, CD4+, natural killer (NK), and myeloid (CD11b+) cells in the course of the growth and rejection of experimental major histocompatibility complex (MHC) class I-deficient, HPV16 E6/E7-associated TC-1/A9 tumors in mice. Stable mouse lines (F 30 ) generated by inbreeding of Balb/c and C57BL/6 strains, which were characterized by H-2Db+d-NK1.1neg (B6-neg) and H-2Db-d+NK1.1high (Balb-high) phenotypes, were used for the present study. The novel strains spontaneously regressed tumors in 70-90% of cases. Ex vivo histological analysis of the tumor microenvironment in cryosections showed an indirect correlation between the growth of the transplanted tumor (progressor vs. regressor mice) and the proportion of immunocompetent cell infiltration in the tumors. The regressor mice exhibited a higher infiltration of tumors with CD4+ and CD8+ cells, and in Balb-high with NK cells as well, compared with the progressors. All tumor transplants also indicated a huge infiltration of CD11b+ cells, but this infiltration was not dependent on the stage of the TC-1/A9 tumor development. Depletion of individual cell subpopulations in vivo exhibited different effects on the tumor development in the two strains. Elimination of CD8-positive cells enhanced growth of TC-1/A9 tumor transplants in both hybrid stains, whereas CD4+ cell depletion affected rejection of TC-1/A9 tumors in the B6-neg mice only. Depletion of NK cells with anti-asialo GM1 antibody in the Balb-high strain led to enhancement of tumor growth, which was more pronounced after depletion of the NK1.1+ subpopulation. On the other hand, depletion of NK cells with anti-asialo GM1 in B6-neg mice did not affect the regression of TC-1/A9 tumor transplants, but increased the CD11b+ cell infiltration. In summary, these results indicate that co-operation of particular subsets of immunocompetent cells is essential for the rejection of TC-1/A9 tumor transplants

  11. Absence of PDGF-induced, PKC-independent c-fos expression in a chemically transformed C3H/10T1/2 cell clone.

    Science.gov (United States)

    Vassbotn, F S; Skar, R; Holmsen, H; Lillehaug, J R

    1992-09-01

    The effect of platelet-derived growth factor (PDGF) on c-fos mRNA transcription was studied in the immortalized mouse embryo fibroblast C3H/10T1/2 Cl 8 (10T1/2) cells and the chemically transformed, tumorigenic subclone C3H/10T1/2 Cl 16 (Cl 16). In the 10T1/2 cells as well as the Cl 16 subclone, the dose-dependent PDGF stimulation of c-fos mRNA synthesis was similar in both logarithmically growing and confluent cultures. c-fos mRNA was induced severalfold by 12-O-tetradecanoylphorbol-13-acetate (TPA) in both 10T1/2 and Cl 16. Down-regulation of protein kinase C (PKC) activity by TPA pretreatment inhibited PDGF-stimulated c-fos mRNA expression in Cl 16 cells but did not affect this induction in the 10T1/2 cells. This inhibition was not a general phenomenon of 3-methylcholanthrene-mediated transformation of 10T1/2 cells since experiments with another transformed 10T1/2 cell clone, C3H/10T1/2 TPA 482, gave qualitatively the same results as the 10T1/2 cells. Receptor binding experiments showed that the nontransformed and transformed cells had a comparable number of PDGF receptors, 1.3 x 10(5) and 0.7 x 10(5) receptors per cell, respectively. Furthermore, cAMP-induced c-fos expression induced by forskolin is formerly shown to be independent of PKC down-regulation. In our experiments, forskolin induced c-fos expression in both clones. However, PKC down-regulation inhibited the forskolin-induced c-fos expression in Cl 16 cells. This apparently demonstrates cross talk between PKC and PKA in the c-fos induction pathway. The present results provide evidence for an impaired mechanism for activating c-fos expression through PKC-independent, PDGF-induced signal transduction in the chemically transformed Cl 16 fibroblasts compared to that in nontransformed 10T1/2 cells.

  12. Evaluation of Pt/C catalyst degradation and H2O2 formation changes under simulated PEM fuel cell condition by a rotating ring-disk electrode

    International Nuclear Information System (INIS)

    Ono, Kenshiro; Yasuda, Yuki; Sekizawa, Koshi; Takeuchi, Norimitsu; Yoshida, Toshihiko; Sudoh, Masao

    2013-01-01

    Potential cycling tests using 42.2 wt% and 19.1 wt% Pt/C catalysts were conducted by the RRDE technique to evaluate the changes in the electrochemical surface area (ECSA) and H 2 O 2 formation ability of the catalysts. As the typical operating conditions of a proton exchange membrane fuel cell (PEMFC), square wave potential cycling (0.7–0.9 V) was applied to the catalysts for 150,000 cycles in an O 2 -saturated 0.1 M HClO 4 electrolyte. During the potential cycling test, electrochemical measurements were carried out to characterize the ECSA, oxygen reduction reaction (ORR) activity and H 2 O 2 formation. After 150,000 potential cyclings, while the ECSA of the 42.2 wt% Pt/C dropped by 35%, the ECSA loss for the 19.1 wt% Pt/C was 55%. This result implies that the Pt content in the cathode catalyst affects the ECSA loss during the long-term PEMFC operation. Additionally, the H 2 O 2 formation ratio obviously increased with the potential cycling only in the case of the 19.1 wt% Pt/C. In order to verify the H 2 O 2 formation dependence on the ECSA, four types of catalysts, which included different Pt loading amounts (42.2, 28.1, 19.1 and 9.5 wt% Pt/C), were evaluated, and these results explained the relationship between the ECSA decay and H 2 O 2 formation increase in the durability tests

  13. Experimental ion mobility measurements in Xe-C2H6

    Science.gov (United States)

    Perdigoto, J. M. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2017-10-01

    In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon (Xe) with ethane (C2H6) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 Td to 25 Td range (2.4-6.1 kVṡcm-1ṡ bar-1), at room temperature. The time of arrival spectra revealed two peaks throughout the entire range studied which were attributed to ion species with 3-carbons (C3H5+, C3H6+ C3H8+ and C3H9+) and with 4-carbons (C4H7+, C4H9+ and C4H10+). Besides these, and for Xe concentrations above 70%, a bump starts to appear at the right side of the main peak for reduced electric fields higher than 20 Td, which was attributed to the resonant charge transfer of C2H6+ to C2H6 that affects the mobility of its ion products (C3H8+ and C3H9+). The time of arrival spectra for Xe concentrations of 20%, 50%, 70% and 90% are presented, together with the reduced mobilities as a function of the Xe concentration calculated from the peaks observed for the low reduced electric fields and pressures studied.

  14. The novel protein C9orf116 promotes rat liver cell line BRL-3A proliferation.

    Directory of Open Access Journals (Sweden)

    Chunyan Zhang

    Full Text Available Our previous study has proved that the chromosome 9 open reading frame 116 (C9orf116 (NM_001106564.1 was significantly up-regulated in the proliferation phase of liver regeneration. To study its possible physiological function, we analyzed the effect of C9orf116 on BRL-3A cells via over-expression and interference technique. MTT results showed that the cell viability of the interference group was significantly lower than the control group at 48h after transfection (P<0.05, whereas it was significantly higher in the over-expression group (P<0.05. The flow cytometry results showed that C9orf116 knockdown or over-expression had little effect on BRL-3A cell apoptosis. However, the number of cells in division phase (G2/M was significantly reduced in the interference group (P<0.05, but significantly increased in the over-expression group (P<0.01. Furthermore, the expressions of cell proliferation-related genes CCNA2, CCND1 and MYC both at mRNA and protein levels were down-regulated in the interference group and up-regulated in the over-expression group. Therefore, we concluded that C9orf116 may promote cell proliferation by modulating cell cycle transition and the expression of key genes CCNA2, CCND1 and MYC in BRL-3A cells.

  15. Dexmedetomidine attenuates H2O2-induced cell death in human osteoblasts.

    Science.gov (United States)

    Yoon, Ji-Young; Park, Jeong-Hoon; Kim, Eun-Jung; Park, Bong-Soo; Yoon, Ji-Uk; Shin, Sang-Wook; Kim, Do-Wan

    2016-12-01

    Reactive oxygen species play critical roles in homeostasis and cell signaling. Dexmedetomidine, a specific agonist of the α 2 -adrenoceptor, has been commonly used for sedation, and it has been reported to have a protective effect against oxidative stress. In this study, we investigated whether dexmedetomidine has a protective effect against H 2 O 2 -induced oxidative stress and the mechanism of H 2 O 2 -induced cell death in normal human fetal osteoblast (hFOB) cells. Cells were divided into three groups: control group-cells were incubated in normoxia without dexmedetomidine, hydrogen peroxide (H 2 O 2 ) group-cells were exposed to H 2 O 2 (200 µM) for 2 h, and Dex/H 2 O 2 group-cells were pretreated with dexmedetomidine (5 µM) for 2 h then exposed to H 2 O 2 (200 µM) for 2 h. Cell viability and apoptosis were evaluated. Osteoblast maturation was determined by assaying bone nodular mineralization. Expression levels of bone-related proteins were determined by western blot. Cell viability was significantly decreased in the H 2 O 2 group compared with the control group, and this effect was improved by dexmedetomidine. The Hoechst 33342 and Annexin-V FITC/PI staining revealed that dexmedetomidine effectively decreased H 2 O 2 -induced hFOB cell apoptosis. Dexmedetomidine enhanced the mineralization of hFOB cells when compared to the H 2 O 2 group. In western blot analysis, bone-related protein was increased in the Dex/H 2 O 2 group. We demonstrated the potential therapeutic value of dexmedetomidine in H 2 O 2 -induced oxidative stress by inhibiting apoptosis and enhancing osteoblast activity. Additionally, the current investigation could be evidence to support the antioxidant potential of dexmedetomidine in vitro.

  16. Comparison of heat and/or radiation sensitivity and membrane composition of seven X-ray-transformed C3H 10T1/2 cell lines and normal C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Vadasz, J.A.; Azzam, E.I.; Sargent, M.D.; Borsa, J.; Einspenner, M.

    1985-01-01

    C3H 10T1/2 mouse embryo cells were transformed by X-irradiation, and seven transformed clones were isolated and propagated as cell lines. Some of these cell lines produced tumors in syngeneic mice and grew in agarose while the normal C3H 10T1/2 cell line did not possess these characteristics. Exponentially growing cell cultures with comparable cell-cycle distributions as measured by flow cytometry were tested for heat and X-ray sensitivity. The heat and X-ray sensitivity varied randomly compared to the normal cell line. One cell line was more heat resistant and one more heat sensitive than the normal cell line, and the others had sensitivities comparable to the normal cell line. Measurements on some of the biochemical parameters of the particulate fraction of cells after sonication and 24,000 X g centrifugation showed that altered thermal sensitivity was not correlated with protein, cholesterol, or phospholipid content of this fraction

  17. 2H isotope effect on 13C chemical shifts of Nitro-Benzo-9-Crown-3

    International Nuclear Information System (INIS)

    Moghimi, A.; Rastegar, M.; Ghandi, M.; Bijanzadeh, H. R.

    2002-01-01

    Deuterium substitution on two ortho-substituted-OCH 2 fragments in Nitro-Benzo-9 Crown-3 induces low frequency shifts, positive m ''nΔC j, in all 13 C NMR resonances which is an indication of the increased shielding in this crown ether. The magnitude of these shifts vary from 15 ΔC 7=716 to 54 ΔC 3=15 ppb for C 7 and C 3 carbons directly attached to 2 H, respectively. The influences of concentration and solvent, CDCl 3 CD 3 COCD 3 , and C 6 D 6 , on mn ΔC j values were investigated. The mn ΔC j values depended more on the nature of the solvent than on the concentration. The order of induced isotope shifts is 15 Δ, 51 Δ > 24 Δ, 42 Δ> 34 Δ, 43 Δ > 56 Δ, 65 Δ> 45 Δ, 54 Δ. The isotope shifts observed are suggested to be a sum of contributions from low frequency shift due to inductive-type and negative hyperconjugation perturbations. The C-D bond, as a poorer electron acceptor than a C-H bond induced less positive charge on directly attached oxygens O 1 and O 2. This, in turn, causes shielding of C 1 and C 2 in C1O1CD 2 and C 2 0 2 CD 2 fragments. The difference in 34 ΔC 1 and 43 ΔC 2 values is attributed to the conformational dependence of the negative hyperconjugation. The C 1 and C 2, are in fact, not equally affected by the two CD 2 groups by negative hyperconjugation because of the existence of NO 2 group attached to the benzene ring

  18. Isolation and structures of sulfonium salts derived from thioethers: [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)].

    Science.gov (United States)

    Jura, Marek; Levason, William; Reid, Gillian; Webster, Michael

    2009-10-07

    Two very unusual sulfonium salts, [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)], obtained from reaction of the thioethers with NbF(5) in CH(2)Cl(2) solution, are reported and their structures described; the eight-coordinate tetrafluoro Nb(v) cation of the dithioether is obtained from the same reaction.

  19. Anti-proliferative activity of 2,6-dichloro-9- or 7-(ethoxycarbonylmethyl)-9H- or 7H-purines against several human solid tumour cell lines.

    Science.gov (United States)

    Morales, Fátima; Ramírez, Alberto; Conejo-García, Ana; Morata, Cynthia; Marchal, Juan A; Campos, Joaquín M

    2014-04-09

    As leads we took several benzo-fused seven- and six-membered scaffolds linked to the pyrimidine or purine moieties with notable anti-proliferative activity against human breast, colon and melanoma cancerous cell lines. We then decided to maintain the double-ringed nitrogenous bases and change the other components to the ethyl acetate moiety. This way six purine and two 5-fluorouracil derivatives were obtained and evaluated against the MCF-7, HCT-116, A-375 and G-361 cancer cell lines. Two QSARs are obtained between the anti-proliferative IC₅₀ values for compounds 26-33 and the clog P against the melanoma cell lines A-375 and G-361. Our results show that two of the analogues [ethyl 2-(2,6-dichloro-9H- or 7H-purine-9- or 7-yl)acetates (30 and 33, respectively)] are potent cytotoxic agents against all the tumour cell lines assayed, showing single-digit micromolar IC₅₀ values. This exemplifies the potential of our previously reported purine compounds to qualify as lead structures for medicinal chemistry campaigns, affording simplified analogues easy to synthesize and with a noteworthy bioactivity. The selective activity of 30 and 33 against the melanoma cell line A-375, via apoptosis, supposes a great advantage for a future therapeutic use. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. JMJD1B Demethylates H4R3me2s and H3K9me2 to Facilitate Gene Expression for Development of Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sihui Li

    2018-04-01

    Full Text Available Summary: The arginine methylation status of histones dynamically changes during many cellular processes, including hematopoietic stem/progenitor cell (HSPC development. The arginine methyltransferases and the readers that transduce the histone codes have been defined. However, whether arginine demethylation actively occurs in cells and what enzyme demethylates the methylarginine residues during various cellular processes are unknown. We report that JMJD1B, previously identified as a lysine demethylase for H3K9me2, mediates arginine demethylation of H4R3me2s and its intermediate, H4R3me1. We show that demethylation of H4R3me2s and H3K9me2s in promoter regions is correlated with active gene expression. Furthermore, knockout of JMJD1B blocks demethylation of H4R3me2s and/or H3K9me2 at distinct clusters of genes and impairs the activation of genes important for HSPC differentiation and development. Consequently, JMJD1B−/− mice show defects in hematopoiesis. Altogether, our study demonstrates that demethylase-mediated active arginine demethylation process exists in eukaryotes and that JMJD1B demethylates both H4R3me2s and H3K9me2 for epigenetic programming during hematopoiesis. : Li et al. identify the arginine demethylase (RDM activity of JMJD1B, a known lysine demethylase (KDM. They reveal that JMJD1B actively mediates demethylation of histone markers H4R3me2s and H3K9me2 in hematopoietic stem/progenitor cells (HSPCs. Keywords: JMJD1B, KDM3B, PRMT5, arginine demethylase, histone, epigenetic programming, gene expression, hematopoiesis

  1. Human mesenchymal stem cell proliferation is regulated by PGE2 through differential activation of cAMP-dependent protein kinase isoforms

    International Nuclear Information System (INIS)

    Kleiveland, Charlotte Ramstad; Kassem, Moustapha; Lea, Tor

    2008-01-01

    The conditions used for in vitro differentiation of hMSCs contain substances that affect the activity and expression of cyclooxygenase enzymes (COX1/COX2) and thereby the synthesis of prostanoids. hMSC constitutively produce PGE2 when cultivated in vitro. In this study we have investigated effects of PGE2 on proliferation of hMSC. We here demonstrate that one of the main control molecules in the Wnt pathway, GSK-3β, is phosphorylated at the negative regulatory site ser-9 after treating the cells with PGE2. This phosphorylation is mediated by elevation of cAMP and subsequent activation of PKA. Furthermore, PGE2 treatment leads to enhanced nuclear translocation of β-catenin, thus influencing cell proliferation. The presence of two PKA isoforms, types I and II, prompted us to investigate their individual contribution in PGE2-mediated regulation of proliferation. Specific activation of PKA type II with synthetic cAMP analogues, resulted in enhancement of proliferation. On the other side, we found that treatment of hMSC with high concentrations of PGE2 inhibited cell proliferation by arresting the cells in G 0 /G 1 phase, an effect we found to be mediated by PKA I. Hence, the two different PKA isoforms seem to have opposing functions in the regulation of proliferation and differentiation in these cells

  2. Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9

    Directory of Open Access Journals (Sweden)

    Song Xin

    2009-04-01

    Full Text Available Abstract Background Abberant aryl hydrocarbon receptor (AhR expression and AhR pathway activation are involved in gastric carcinogenesis. However, the relationship between AhR pathway activation and gastric cancer progression is still unclear. In present study, we used 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD, a classic and most potent ligand of AhR, to activate AhR pathway and investigated the effect of AhR pathway activation on human gastric cancer AGS cell invasion and explored the corresponding mechanism. Results To determine whether AhR pathway can be activated in AGS cells, we examined the expression of CYP1A1, a classic target gene of AhR pathway, following TCDD exposure. RT-PCR and western blot analysis showed that both CYP1A1 mRNA and protein expression were increased in a dose-dependent manner following TCDD treatment and AhR antagonist resveratrol (RSV could reverse this TCDD-induced CYP1A1 expression. To determine whether TCDD treatment of AGS cells results in an induction of MMP-9 expression, we detected MMP-9 mRNA using RT-PCR and detected MMP-9 enzymatic activity using gelatin zymography. The results showed that both MMP-9 mRNA expression and enzymatic activity were gradually increased with the concentration increase of TCDD in media and these changes could be reversed by RSV treatment in a dose-dependent manner. To examine whether AhR activation-induced MMP-9 expression and activity in AGS cells results in increased migration and invasion, we performed wound healing migration assay and transwell migration and invasion assay. After TCDD treatment, the migration distance and the migration and invasion abilities of AGS cells were increased with a dose-dependent manner. To demonstrate AhR activation-induced MMP-9 expression is mediated by c-Jun, siRNA transfection was performed to silence c-Jun mRNA in AGS cells. The results showed that MMP-9 mRNA expression and activity in untreated control AGS cells were very weak; After TCDD

  3. The antioxidant edaravone prevents cardiac dysfunction by suppressing oxidative stress in type 1 diabetic rats and in high-glucose-induced injured H9c2 cardiomyoblasts.

    Science.gov (United States)

    Ji, Lei; Liu, Yingying; Zhang, Ying; Chang, Wenguang; Gong, Junli; Wei, Shengnan; Li, Xudong; Qin, Ling

    2016-09-01

    Edaravone, a radical scavenger, has been recognized as a potential protective agent for cardiovascular diseases. However, little is known about the effect of edaravone in cardiac complications associated with diabetes. Here, we have demonstrated that edaravone prevents cardiac dysfunction and apoptosis in the streptozotocin-induced type 1 diabetic rat heart. Mechanistic studies revealed that edaravone treatment improved cardiac function and restored superoxide dismutase levels. In addition, treatment of diabetic animals by edaravone increased protein expressions of sirtuin-1 (SIRT-1), peroxisome proliferator activated receptor γ coactivator α (PGC-1α), nuclear factor like-2 (NRF-2), and B cell lymphoma 2 (Bcl-2), and reduced protein expressions of Bax and Caspase-3 compared to the control group. High glucose incubation resulted in the production of reactive oxygen species (ROS) and cell death. Treatment of high-glucose-incubated H9c2 cells by edaravone reduced ROS production and cell death. In addition, the treatment of high-glucose-incubated H9c2 cells by edaravone increased the activity of antioxidative stress by increasing SIRT-1, PGC-1α, and NRF-2, and this treatment also reduced apoptosis by increasing Bcl-2 expression and reducing Bax and Caspase-3 expressions. Knockdown SIRT-1 with small interferer RNA abolished the effects of edaravone. Overall, our data demonstrated that edaravone may be an effective agent against the development of diabetic cardiomyopathy.

  4. Up-regulation of granzyme B and perforin by staphylococcal enterotoxin C2 mutant induces enhanced cytotoxicity in Hepa1–6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guojun [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); University of Chinese Academy of Sciences, Beijing (China); Xu, Mingkai, E-mail: mkxu@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); Zhang, Huiwen [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); Song, Yubo [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China); University of Chinese Academy of Sciences, Beijing (China); Wang, Jian; Zhang, Chenggang [Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road Shenhe Dis., Shenyang, Liaoning (China)

    2016-12-15

    Staphylococcal enterotoxin C2 (SEC2), a member of bacterial superantigen, is one of the most potent known activators of T lymphocytes. With this property, SEC2 has already been used in clinic as a tumor immunotherapy agent in China. To increase the antitumor activity, a SEC2 mutant named ST-4 (GKVTG102-106WWH) with amino acid substitutions in T cell receptor (TCR)-binding domain was generated by site-directed mutagenesis, and the molecular mechanism of the enhanced antitumor activity was investigated. Results showed that ST-4 could activate much more Vβ 8.2 and 8.3 T cells and NK cells compared with SEC2, and exhibited significantly enhanced immunocyte stimulation and antitumor activity in vitro. The synthetic peptide sequencing the residues of mutant TCR-binding domain could competitively inhibit the immunocyte stimulation activity of ST-4. Most importantly, ST-4 up-regulated granzyme B and perforin at both mRNA and protein levels. We also found that expression of proapoptotic proteins cytochrome c, BAX and activation of caspase-3, 9 was up-regulated, and antiapoptotic protein Bcl-xL was down-regulated in the treatment with either ST-4 or SEC2. When granzyme B inhibitor or perforin inhibitor is presented, tumor cell viability was significantly rescued. Taken together, we demonstrate that increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. These activated cells released up-regulated granzyme B and perforin, which induced the enhanced tumor cells apoptosis by mitochondrial apoptotic pathway, and ultimately led to enhanced tumor cell growth inhibition. ST-4 may be a promising candidate for antitumor clinic usage in future. - Highlights: • We obtained a SEC2 mutant ST-4 with enhanced superantigen and antitumor activity. • Increased ST-4-TCR recognition contributed to massive T cells and NK cells activation. • Up-regulated GzmB and PRF1 in T cell by ST-4 induced enhanced tumor cells apoptosis. • Enhanced tumor cell apoptosis

  5. Enhanced visible light photocatalytic H{sub 2} evolution of metal-free g-C{sub 3}N{sub 4}/SiC heterostructured photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao, E-mail: wangbiao@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Jingtao, E-mail: zhangjtao@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006 (China); Huang, Feng, E-mail: huangfeng@mail.sysu.edu.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006 (China)

    2017-01-01

    Highlights: • Novel g-C{sub 3}N{sub 4}/SiC composite was prepared by synthesizing g-C{sub 3}N{sub 4} on the surface of SiC. • g-C{sub 3}N{sub 4}/SiC composites exhibit much higher H{sub 2} production activity than pure g-C{sub 3}N{sub 4}. • The g-C{sub 3}N{sub 4}/SiC heterojunction mainly accounts for improved photocatalytic activity. - Abstract: g-C{sub 3}N{sub 4} has been attracting much attention for application in visible light photocatalytic water splitting due to its suitable band structure, and high thermal and chemical stability. However, the rapid recombination of photogenerated carriers has inhibited its wide use. For this reason, novel g-C{sub 3}N{sub 4}/SiC composites were prepared via in situ synthesis of g-C{sub 3}N{sub 4} on the surface of SiC, with which g-C{sub 3}N{sub 4} shows tight interaction (chemical bonding). The g-C{sub 3}N{sub 4}/SiC composites exhibit high stability in H{sub 2} production under irradiation with visible light (λ ≥ 420 nm), demonstrating a maximum of 182 μmol g{sup −1} h{sup −1}, being 3.4 times higher than that of pure g-C{sub 3}N{sub 4}. The enhanced photocatalytic H{sub 2} production ability for g-C{sub 3}N{sub 4}/SiC photocatalysts is primarily ascribed to the combined effects of enhanced separation of photogenerated carriers through efficient migration of electron and enlarged surface areas, in addition to the possible contributions of increased hydrophilicity of SiC and polymerization degree of g-C{sub 3}N{sub 4}. This study may provide new insights into the development of g-C{sub 3}N{sub 4}-based composites as stable and efficient photocatalysts for H{sub 2} production from water splitting.

  6. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    International Nuclear Information System (INIS)

    Weng Shengfeng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-01-01

    Two novel materials, [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1-bar (No. 2); compound 2 crystallized in monoclinic space group P2 1 /c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of Cu II ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d 1 excited state and two levels of the 4f 1 ground state ( 2 F 5/2 and 2 F 7/2 ). Compounds 1b and 2 containing Ce III ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers. - Graphical Abstract: [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2)—with 1D and 2D structures were synthesized and characterized. Highlights: ► Two MOF – [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2) – with 1D and 2D structures. ► The adjacent chains of the 1D framework were correlated with each other through an oxalate ligand to form a 2D layer structure. ► The source of the oxalate ligand was the decomposition in situ of citric acid oxidized in the presence of Cu II ions.

  7. MHC class I Dk locus and Ly49G2+ NK cells confer H-2k resistance to murine cytomegalovirus.

    Science.gov (United States)

    Xie, Xuefang; Stadnisky, Michael D; Brown, Michael G

    2009-06-01

    Essential NK cell-mediated murine CMV (MCMV) resistance is under histocompatibility-2(k) (H-2(k)) control in MA/My mice. We generated a panel of intra-H2(k) recombinant strains from congenic C57L.M-H2(k/b) (MCMV resistant) mice for precise genetic mapping of the critical interval. Recombination breakpoint sites were precisely mapped and MCMV resistance/susceptibility traits were determined for each of the new lines to identify the MHC locus. Strains C57L.M-H2(k)(R7) (MCMV resistant) and C57L.M-H2(k)(R2) (MCMV susceptible) are especially informative; we found that allelic variation in a 0.3-megabase interval in the class I D locus confers substantial difference in MCMV control phenotypes. When NK cell subsets responding to MCMV were examined, we found that Ly49G2(+) NK cells rapidly expand and selectively acquire an enhanced capacity for cytolytic functions only in C57L.M-H2(k)(R7). We further show that depletion of Ly49G2(+) NK cells before infection abrogated MCMV resistance in C57L.M-H2(k)(R7). We conclude that the MHC class I D locus prompts expansion and activation of Ly49G2(+) NK cells that are needed in H-2(k) MCMV resistance.

  8. Suspension culture process for H9N2 avian influenza virus (strain Re-2).

    Science.gov (United States)

    Wang, Honglin; Guo, Suying; Li, Zhenguang; Xu, Xiaoqin; Shao, Zexiang; Song, Guicai

    2017-10-01

    H9N2 avian influenza virus has caused huge economic loss for the Chinese poultry industry since it was first identified. Vaccination is frequently used as a control method for the disease. Meanwhile suspension culture has become an important tool for the development of influenza vaccines. To optimize the suspension culture conditions for the avian influenza H9N2 virus (Re-2 strain) in Madin-Darby Canine Kidney (MDCK) cells, we studied the culture conditions for cell growth and proliferation parameters for H9N2 virus replication. MDCK cells were successfully cultured in suspension, from a small scale to industrial levels of production, with passage time and initial cell density being optimized. The influence of pH on the culture process in the reactor has been discussed and the process parameters for industrial production were explored via amplification of the 650L reactor. Subsequently, we cultivated cells at high cell density and harvested high amounts of virus, reaching 10log2 (1:1024). Furthermore an animal experiment was conducted to detect antibody. Compared to the chicken embryo virus vaccine, virus cultured from MDCK suspension cells can produce a higher amount of antibodies. The suspension culture process is simple and cost efficient, thus providing a solid foundation for the realization of large-scale avian influenza vaccine production.

  9. NO and H2O2 contribute to SO2 toxicity via Ca2+ signaling in Vicia faba guard cells.

    Science.gov (United States)

    Yi, Min; Bai, Heli; Xue, Meizhao; Yi, Huilan

    2017-04-01

    NO and H 2 O 2 have been implicated as important signals in biotic and abiotic stress responses of plants to the environment. Previously, we have shown that SO 2 exposure increased the levels of NO and H 2 O 2 in plant cells. We hypothesize that, as signaling molecules, NO and H 2 O 2 mediate SO 2 -caused toxicity. In this paper, we show that SO 2 hydrates caused guard cell death in a concentration-dependent manner in the concentration range of 0.25 to 6 mmol L -1 , which was associated with elevation of intracellular NO, H 2 O 2 , and Ca 2+ levels in Vicia faba guard cells. NO donor SNP enhanced SO 2 toxicity, while NO scavenger c-PTIO and NO synthesis inhibitors L-NAME and tungstate significantly prevented SO 2 toxicity. ROS scavenger ascorbic acid (AsA) and catalase (CAT), Ca 2+ chelating agent EGTA, and Ca 2+ channel inhibitor LaCl 3 also markedly blocked SO 2 toxicity. In addition, both c-PTIO and AsA could completely block SO 2 -induced elevation of intracellular Ca 2+ level. Moreover, c-PTIO efficiently blocked SO 2 -induced H 2 O 2 elevation, and AsA significantly blocked SO 2 -induced NO elevation. These results indicate that extra NO and H 2 O 2 are produced and accumulated in SO 2 -treated guard cells, which further activate Ca 2+ signaling to mediate SO 2 toxicity. Our findings suggest that both NO and H 2 O 2 contribute to SO 2 toxicity via Ca 2+ signaling.

  10. Synthesis, crystal structure, thermal analysis and dielectric properties of [(C{sub 4}H{sub 9}){sub 4}N]{sub 3}Bi{sub 2}Cl{sub 9} compound

    Energy Technology Data Exchange (ETDEWEB)

    Trigui, W., E-mail: walatrigui@yahoo.fr; Oueslati, A.; Chaabane, I.; Hlel, F.

    2015-07-15

    A new organic–inorganic tri-tetrabutylammonium nonachlorobibismuthate(III) compound was prepared. It was found to crystallize in the monoclinic system (P2{sub 1}/n space group) with the following lattice parameters: a=11.32(2) Å, b=22.30(3) Å, c=28.53(2) Å and β=96.52(0)°. The [Bi{sub 2}Cl{sub 9}]{sup 3−} anions are surrounded by six [(C{sub 4}H{sub 9})N]{sup +} cations, forming an octahedral configuration. These octahedra are sharing corners in order to provide the tri-dimensional network cohesion. The differential scanning calorimetry reveals four order-disorder reversible phase transitions located at 214, 238, 434 and 477 K. The Raman and infrared spectra confirm the presence of both cationic [(C{sub 4}H{sub 9})N]{sup +} and anionic [Bi{sub 2}Cl{sub 9}]{sup 3−} parts. The dielectric parameters, real and imaginary dielectric permittivity (ε′ and ε″), and dielectric loss tangent (tg δ), were measured in the frequency range of 209 kHz–5 MHz at different temperatures. The variations of dielectric dispersion (ε') and dielectric absorption (ε″) with frequency show a distribution of relaxation times, which is probably related to the change in the dynamical state of the [(C{sub 4}H{sub 9}){sub 4}N]{sup +} cations and the [Bi{sub 2}Cl{sub 9}]{sup 3−} anions. - Graphical abstract: Projection of the atomic arrangement of the [(C{sub 4}H{sub 9}){sub 4}N]{sub 3}Bi{sub 2}Cl{sub 9} compound along the b axis. - Highlights: • The structure of the (TBA){sub 3}Bi{sub 2}Cl{sub 9} compound was solved and reported. • The cristal belongs to the monoclinic system with P2{sub 1}/n space group. • DSC discloses four order–disorder reversible phases transitions. • The temperature-dependent permittivity ε' and ε″ has been investigated.

  11. Adoptive transfer of transplantation tolerance in the H-2 compatible mouse system CBA/C3H

    International Nuclear Information System (INIS)

    Siegl, E.; Brock, J.; Schulze, H.A.

    1985-01-01

    Transfer of neonatally induced tolerance in the H-2 compatible CBA/C3H strain combination is possible with different efficiency by injection of adherent and non-adherent spleen cells, unseparated spleen cells and lymph node cells from C3H-tolerant CBA mice into sublethal irradiated CBA mice. The most efficient cell populations are adherent spleen cells and lymph node cells. Successfull transfer of transplantation tolerance is not possible to non-irradiated mice. The adherent fraction of spleen cells and lymph node cells contains a suppressor cell population responsible for transplantation tolerance against non-H-2 antigens. The induced transplantation tolerance is not due to a chimeric state of C3H-tolerant CBA mice. (author)

  12. Structural study of (N{sub 2}H{sub 5},H){sub 2.9}U{sub 1.1}Ce{sub 0.9}(C{sub 2}O{sub 4}){sub 5}·10H{sub 2}O from a conventional X-ray diffraction diagram obtained on a powder synthesized by a fast vortex process

    Energy Technology Data Exchange (ETDEWEB)

    Brackx, E., E-mail: Emmanuelle.brackx@cea.fr [CEA, DEN, DTEC, SGCS, LMAC, Marcoule, 30207 Bagnols sur Cèze (France); Laval, J.P. [Centre Européen de la Céramique, SPCTS, UMR-CNRS 7315, Université de Limoges, Faculté des Sciences, 12 rue Atlantis, 87068 Limoges (France); Dugne, O. [CEA, DEN, DTEC, SGCS, LMAC, Marcoule, 30207 Bagnols sur Cèze (France); Feraud, J.P. [CEA, DEN, DTEC, SGCS, LGCI, Marcoule, 30207 Bagnols sur Cèze (France); Arab-Chapelet, B. [CEA, DEN, DRCP, SCPS, LC2A, Marcoule, 30207 Bagnols sur Cèze (France)

    2015-01-15

    In the context of research on U/minor actinides for nuclear fuel reprocessing in the transmutation process, developments are first studied with surrogates containing uranium and lanthanides to facilitate testing. The tests consist of precipitating and calcining a hydrazinium uranium/cerium oxalate. The structure of this oxalate had not been previously determined, but was necessary to validate the physicochemical mechanisms involved. The present study, firstly demonstrates the structural similarity of the U/Ce oxalate phase (N{sub 2}H{sub 5},H){sub 2.9}U{sub 1.1}Ce{sub 0.9}(C{sub 2}O{sub 4}){sub 5}·10H{sub 2}O, synthesized using a vortex precipitator for continuous synthesis of actinide oxalates, with previously known oxalates, crystallizing in P6{sub 3}/mmc symmetry, obtained by more classical methods. This fast precipitation process induces massive nucleation of fine powders. Their structural and microstructural determination confirms that the raw and dried phases belong to the same structural family as (NH{sub 4}){sub 2}U{sub 2}(C{sub 2}O{sub 4}){sub 5}·0.7H{sub 2}O whose structure was described by Chapelet-Arab in P6{sub 3}/mmc symmetry, using single crystal data. However, they present an extended disorder inside the tunnels of the structure, even after drying at 100 °C, between water and hydrazinium ions. This disorder is directly related to the fast vortex method. This structure determination can be used as a basis for further semi-quantitative analysis on the U/minor actinides products formed under various experimental conditions. - Highlights: • Uranium cerium oxalate precipitate characterization by X-ray powder diffraction. • Morphology characterization by SEM analysis. • Structure determination by unit cell Rietveld refinement.

  13. La0.8Sr0.2Co0.8Ni0.2O3-δ impregnated oxygen electrode for H2O/CO2 co-electrolysis in solid oxide electrolysis cells

    Science.gov (United States)

    Zheng, Haoyu; Tian, Yunfeng; Zhang, Lingling; Chi, Bo; Pu, Jian; Jian, Li

    2018-04-01

    High-temperature H2O/CO2 co-electrolysis through reversible solid oxide electrolysis cell (SOEC) provides potentially a feasible and eco-friendly way to convert electrical energy into chemicals stored in syngas. In this work, La0.8Sr0.2Co0.8Ni0.2O3-δ (LSCN) impregnated Gd0.1Ce0.9O1.95 (GDC)-(La0.8Sr0.2)0.95MnO3-δ (LSM) composite oxygen electrode is studied as high-performance electrode for H2O/CO2 co-electrolysis. The LSCN impregnated cell exhibits competitive performance with the peak power density of 1057 mW cm-2 at 800 °C in solid oxide fuel cell (SOFC) mode; in co-electrolysis mode, the current density can reach 1.60 A cm-2 at 1.5 V at 800 °C with H2O/CO2 ratio of 2/1. With LSCN nanoparticles dispersed on the surface of GDC-LSM to maximize the reaction active sites, the LSCN impregnated cell shows significant enhanced electrochemical performance at both SOEC and SOFC modes. The influence of feed gas composition (H2O-H2-CO2) and operating voltages on the performance of co-electrolysis are discussed in detail. The cell shows a very stable performance without obvious degradation for more than 100 h. Post-test characterization is analyzed in detail by multiple measurements.

  14. Charge transfer processes in collisions of H+ ions with H2, D2, CO, CO2 CH4, C2H2, C2H6 and C3H8 molecules below 10 keV

    International Nuclear Information System (INIS)

    Kusakabe, T.; Buenker, R.J.; Kimura, M.

    2002-01-01

    Charge transfer processes resulting from collisions of H + ions with H 2 , D 2 , CO, CO 2 CH 4 , C 2 H 2 , C 2 H 6 and C 3 H 8 molecules have been investigated in the energy range of 0.2 to 4.0 keV experimentally and theoretically. The initial growth rate method was employed in the experiment for studying the dynamics and cross sections. Theoretical analysis based on a molecular-orbital expansion method for H 2 , D 2 , CO, CH 4 and C 2 H 2 targets was also carried out. The present results for the H 2 , CO and CO 2 molecules by H + impact are found to be in excellent accord with most of previous measurements above 1 keV, but they show some differences below this energy where our result displays a stronger energy-dependence. For CH 4 , C 2 H 2 , C 2 H 6 and C 3 H 8 targets, both experimental and theoretical results indicate that if one assumes vibrationally excited molecular ions (CH 4 + , C 2 H 2 + , C 2 H 6 + and C 3 H 8 + ) formed in the exit channel, then charge transfer processes sometimes become more favorable since these vibrationally excited fragments meet an accidental resonant condition. This is a clear indication of the role of vibrational excited states for charge transfer, and is an important realization for general understanding. (author)

  15. Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C

    Directory of Open Access Journals (Sweden)

    Xi-yu Liu

    2017-01-01

    Full Text Available Aims. Latent autoimmune diabetes in adults (LADA is an autoimmune disease of which the mechanism is not clear. Emerging evidence suggests that histone methylation contributes to autoimmunity. Methods. Blood CD4+ T lymphocytes from 26 LADA patients and 26 healthy controls were isolated to detect histone H3 lysine 4 and H3 lysine 9 methylation status. Results. Reduced global H3 lysine 9 methylation was observed in LADA patients’ CD4+ T lymphocytes, compared to healthy controls (P < 0.05. H3 lysine 4 methylation was not statistically different. The reduced H3 lysine 9 methylation was associated with GADA titer but not correlated with glycosylated hemoglobin (HbA1c. When the LADA patient group was divided into those with complication and those without, relatively reduced global H3 lysine 9 methylation was observed in LADA patients with complication (P < 0.05. The expression of histone methyltransferase SUV39H2 for H3 lysine 9 methylation was downregulated in LADA patients, and the expression of histone demethylase KDM4C which made H3 lysine 9 demethylation was upregulated. Conclusion. The reduction of histone H3 lysine 9 methylation which may due to the downregulation of methyltransferase SUV39H2 and the upregulation of demethylase KDM4C was found in CD4+ T lymphocytes of LADA patients.

  16. Kinetics of the reactions H+C2H4->C2H5, H+C2H5->2CH3 and CH3+C2H5->products studies by pulse radiolysis combined with infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Sillesen, A.; Ratajczak, E.; Pagsberg, P.

    1993-01-01

    Formation of methyl radicals via the consecutive reactions H+C2H4+M-->C2H5+M (1) and H+C2H5-->CH3+CH3 (2a) was initiated by pulse radiolysis of 10-100 mbar H-2 in the presence of ethylene. The kinetics of CH3 Were studied by monitoring the transient infrared absorption at the Q(3, 3) line of the ...

  17. NS1 of H7N9 Influenza A Virus Induces NO-Mediated Cellular Senescence in Neuro2a Cells

    OpenAIRE

    Yinxia Yan; Yongming Du; Huali Zheng; Gefei Wang; Rui Li; Jieling Chen; Kangsheng Li

    2017-01-01

    Background/Aims: The novel avian H7N9 influenza A virus has been detected in brain tissues and associated with central nervous system (CNS) symptoms in infected human and mice. Roles of its virulence factor, NS1 protein in influenza virus infected neuron has yet to be explored. Methods: Nitric oxide (NO) release and inducible nitric oxide synthase (iNOS) expression in H7N9/NS1-expressed Neuro2a cells were detected by Griess test and western blotting. Cell proliferation rate of H7N9/NS1-expres...

  18. Biona-C Cell Culture pH Monitoring System

    Science.gov (United States)

    Friedericks, C.

    1999-01-01

    Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.

  19. Crystal structures of NiSO4·9H2O and NiSO4·8H2O: magnetic properties, stability with respect to morenosite (NiSO4·7H2O), the solid-solution series (Mg x Ni1-x )SO4·9H2O

    Science.gov (United States)

    Fortes, A. D.; Knight, K. S.; Gibbs, A. S.; Wood, I. G.

    2018-02-01

    Since being discovered initially in mixed-cation systems, a method of forming end-member NiSO4·9H2O and NiSO4·8H2O has been found. We have obtained powder diffraction data from protonated analogues (with X-rays) and deuterated analogues (using neutrons) of these compounds over a range of temperatures, allowing us to determine their crystal structures—including all H-atoms—and to characterise the transitions on warming from 220 to 278 K; glass → 9-hydrate → 8-hydrate + ice → 7-hydrate + ice → partial melt (7-hydrate + liquid). NiSO4·8D2O is triclinic, space-group P\\bar {1} , Z = 2, with unit cell parameters at 150 K, a = 6.12463(8) Å, b = 6.8401(1) Å, c = 12.5339(2) Å, α = 92.846(1)°, β = 97.822(1)°, γ = 96.627(1)° and V = 515.58(1) Å3. The structure consists of two symmetry-inequivalent Ni(D2O)6 octahedra on sites of \\bar {1} symmetry. These are directly joined by a water-water H-bond to form chains of octahedra parallel with the c-axis at x = 0. Two interstitial water molecules serve both to bridge the Ni(D2O)6 octahedral chains in the b-c plane and also to connect with the SO4 2- tetrahedral oxyanion. These tetrahedra are linked by the two interstitial water molecules in a reticular motif to form sheets perpendicular to c. NiSO4·9D2O is monoclinic, space-group P21/c, Z = 4, with unit-cell parameters at 150 K, a = 6.69739(6) Å, b = 11.8628(1) Å, c = 14.5667(1) Å, β = 94.9739(8)° and V = 1152.96(1) Å3. The structure is isotypic with the Mg analogue described elsewhere (Fortes et al., Acta Cryst B 73:47‒64, 2017b). It shares the motif of H-bonded octahedral chains with NiSO4·8D2O, although in the enneahydrate these run parallel with the b-axis at x = 0. Three interstitial water molecules bridge the Ni(D2O)6 octahedra to the SO4 2- tetrahedral oxyanion. The tetrahedra sit at x ≈ 0.5 and are linked by two of the three interstitial water molecules in a pentagonal motif to form ribbons parallel with b. A solid-solution series

  20. The protective effect of lycopene on hypoxia/reoxygenation-induced endoplasmic reticulum stress in H9C2 cardiomyocytes.

    Science.gov (United States)

    Gao, Yang; Jia, Pengyu; Shu, WenQi; Jia, Dalin

    2016-03-05

    Nowadays, drugs protecting ischemia/reperfusion (I/R) myocardium become more suitable for clinic. It has been confirmed lycopene has various protections, but lacking the observation of its effect on endoplasmic reticulum stress (ERS)-mediated apoptosis caused by hypoxia/reoxygenation (H/R). This study aims to clarify the protective effect of lycopene on ERS induced by H/R in H9C2 cardiomyocytes. Detect the survival rate, lactic dehydrogenase (LDH) activity, apoptosis ratio, glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP), c-Jun-N-terminal protein Kinase (JNK) and Caspase-12 mRNA and protein expression and phosphorylation of JNK (p-JNK) protein expression. LDH activity, apoptosis ratio and GRP78 protein expression increase in the H/R group, reduced by lycopene. The survival rate reduces in the H/R and thapsigargin (TG) groups; lycopene and 4-phenyl butyric acid (4-PBA) can improve it caused by H/R, lycopene also can improve it caused by TG. The apoptosis ratio, the expression of GRP78, CHOP and Caspase-12 mRNA and protein and p-JNK protein increase in the H/R and TG groups, weaken in the lycopene+H/R, 4-PBA+H/R and lycopene+TG groups. There is no obvious change in the expression of JNK mRNA or protein. Hence, our results provide the evidence that 10 μM lycopene plays an obviously protective effect on H/R H9C2 cardiomyocytes, realized through reducing ERS and apoptosis. The possible mechanism may be related to CHOP, p-JNK and Caspase-12 pathways. Copyright © 2016. Published by Elsevier B.V.

  1. Comparative Analysis of Osteogenic/Chondrogenic Differentiation Potential in Primary Limb Bud-Derived and C3H10T1/2 Cell Line-Based Mouse Micromass Cultures

    Directory of Open Access Journals (Sweden)

    Róza Zákány

    2013-08-01

    Full Text Available Murine micromass models have been extensively applied to study chondrogenesis and osteogenesis to elucidate pathways of endochondral bone formation. Here we provide a detailed comparative analysis of the differentiation potential of micromass cultures established from either BMP-2 overexpressing C3H10T1/2 cells or mouse embryonic limb bud-derived chondroprogenitor cells, using micromass cultures from untransfected C3H10T1/2 cells as controls. Although the BMP-2 overexpressing C3H10T1/2 cells failed to form chondrogenic nodules, cells of both models expressed mRNA transcripts for major cartilage-specific marker genes including Sox9, Acan, Col2a1, Snorc, and Hapln1 at similar temporal sequence, while notable lubricin expression was only detected in primary cultures. Furthermore, mRNA transcripts for markers of osteogenic differentiation including Runx2, Osterix, alkaline phosphatase, osteopontin and osteocalcin were detected in both models, along with matrix calcification. Although the adipogenic lineage-specific marker gene FABP4 was also expressed in micromass cultures, Oil Red O-positive cells along with PPARγ2 transcripts were only detected in C3H10T1/2-derived micromass cultures. Apart from lineage-specific marker genes, pluripotency factors (Nanog and Sox2 were also expressed in these models, reflecting on the presence of various mesenchymal lineages as well as undifferentiated cells. This cellular heterogeneity has to be taken into consideration for the interpretation of data obtained by using these models.

  2. Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets

    Science.gov (United States)

    Sang, Xiaoyu; Wang, Airong; Ding, Jie; Kong, Huihui; Gao, Xiaolong; Li, Lin; Chai, Tongjie; Li, Yuanguo; Zhang, Kun; Wang, Chengyu; Wan, Zhonghai; Huang, Geng; Wang, Tiecheng; Feng, Na; Zheng, Xuexing; Wang, Hualei; Zhao, Yongkun; Yang, Songtao; Qian, Jun; Hu, Guixue; Gao, Yuwei; Xia, Xianzhu

    2015-01-01

    H9N2 avian influenza viruses circulate worldwide in poultry and have sporadically infected humans, raising concern whether H9N2 viruses have pandemic potential. Here, we use a guinea pig model to examine whether serial passage results in adaptive viral changes that confer a transmissible phenotype to a wild-type H9N2 virus. After nine serial passages of an H9N2 virus through guinea pigs, productive transmission by direct contact occurred in 2/3 guinea pig pairs. The efficiency of transmission by direct contact increased following the fifteenth passage and occurred in 3/3 guinea pig pairs. In contrast, airborne transmission of the passaged virus was less efficient and occurred in 1/6 guinea pig pairs and 0/6 ferret pairs after the fifteenth passage. Three amino acid substitutions, HA1-Q227P, HA2-D46E, and NP-E434K, were sufficient for contact transmission in guinea pigs (2/3 pairs). The two HA amino acid substitutions enhanced receptor binding to α2,3-linked sialic acid receptors. Additionally, the HA2-D46E substitution increased virus thermostability whereas the NP-E434K mutation enhanced viral RNA polymerase activity in vitro. Our findings suggest that adaptive changes that enhance viral receptor binding, thermostability, and replicative capacity in mammalian cells can collectively enhance the transmissibility of H9N2 AIVs by direct contact in the guinea pig model. PMID:26552719

  3. Fast Homoepitaxial Growth of 4H-SiC Films on 4° off-Axis Substrates in a SiH4-C2H4-H2 System

    International Nuclear Information System (INIS)

    Liu Bin; Sun Guo-Sheng; Liu Xing-Fang; Zhang Feng; Dong Lin; Zheng Liu; Yan Guo-Guo; Liu Sheng-Bei; Zhao Wan-Shun; Wang Lei; Zeng Yi-Ping; Wang Zhan-Guo; Li Xi-Guang; Yang Fei

    2013-01-01

    Homoepitaxial growth of 4H-SiC epilayers is conducted in a SiH 4 -C 2 H 4 -H 2 system by low pressure hot-wall vertical chemical vapor deposition (CVD). Thick epilayers of 45 μm are achieved at a high growth rate up to 26 μm/h under an optimized growth condition, and are characterized by using a Normaski optical microscope, a scanning electronic microscope (SEM), an atomic force microscope (AFM) and an x-ray diffractometer (XRD), indicating good crystalline quality with mirror-like smooth surfaces and an rms roughness of 0.9 nm in a 5 μm × 5μm area. The dependence of the 4H-SiC growth rate on growth conditions on 4° off-axis 4H-SiC substrates and its mechanism are investigated. It is found that the H 2 flow rate could influence the surface roughness, while good surface morphologies without Si droplets and epitaxial defects such as triangular defects could be obtained by increasing temperature

  4. The effects of ultraviolet light on host cell reactivation and plaque size of Herpes simplex virus type 1 in C3H/10T1/2 mouse cells

    International Nuclear Information System (INIS)

    Montes, J.G.; Taylor, W.D.

    1986-01-01

    Herpes simplex virus-type 1 (HSV-1) plaque-forming ability and plaque size were measured on (C3H/10T1/2) cell monolayers as functions of pretreatment dose with UV light at different times before inoculation with virus, in order to determine if UV-enhanced reactivation (ER) of UV-irradiated virus, as well as associated phenomena, could be obtained in this cell system. The number of virus plaques observed (i.e. the capacity of the cells to support virus growth) and the size of the plaques were found to increase substantially with pretreatment of the cells with UV light. However, no significant ER was observed. Therefore, the mechanisms responsible for the increases in plaque size and cell capacity seem to be independent of those responsible for ER. In work by others, C3H/10T1/2 cells have been transformed by UV light at doses similar to those used in this study; the absence of ER of UV-irradiated virus in this study indicates that the mechanism underlying ER is not required for transformation. (author)

  5. Synthesis of new dithiacobaltaborane clusters derived from arachno-6,8-S2B7H9

    International Nuclear Information System (INIS)

    Kang, S.O.; Sneddon, L.G.

    1988-01-01

    A series of air-stable dithiacobaltaborane clusters has been isolated from either the reaction of the arachno-S 2 B 7 H 8 - anion with cobalt chloride and pentamethylcyclopentadienide or the reaction of neutral arachno-6,8-S 2 B 7 H 9 with cobalt atoms and pentamethylcyclopentadiene. Thus, the reaction of arachno-S 2 B 7 H 8 - with CoCl 2 and C 5 (CH 3 ) 5 - in THF gave, as the major products, the triple-decker compound nido-4,6-η-C 5 (CH 3 ) 52 Co 2 -3,5-S 2 B 2 H 2 (I) and the 11-vertex cluster nido-8,10(η-C 5 (CH 3 ) 5 ) 2 Co 2 -7,9-S 2 B 7 H 7 (III). Also isolated in smaller amounts were a chloride derivative of I, nido-1-Cl-4,6-(η-C 5 (CH 3 ) 5 ) 2 Co 2 -3,5-S 2 B 2 H (II), two isomers of III, nido-3,10-(η-C 5 (CH 3 ) 5 ) 2 Co 2 -7,9-S 2 B 7 H 7 (IV) and nido-3,5-(η-C 5 (CH 3 ) 5 ) 2 Co 2 -7,9-S 2 B 7 H 7 (V), and the eight-boron cluster nido-8-(η-C 5 (CH 3 ) 5 )Co-7,9-S 2 B 8 H 8 (VI). Other trace products of the reaction included the six-boron clusters nido-5,8-(η-C 5 (CH 3 ) 5 ) 2 Co 2 -6,9-S 2 B 6 H 6 (VII) and arachno-7-(η-C 5 (CH 3 ) 5 )Co-6,8-S 2 B 6 H 8 (VIII). Compound III was found to isomerize at 250 degree C to IV, which could then be converted to V at 300 degree C. The reaction of cobalt atoms with arachno-6,8-S 2 B 7 H 9 in the presence of pentamethylcyclopentadiene gave VIII as the major product; however, a number of other clusters including I, V, VI, and [(η-C 5 (CH 3 ) 5 ) 2 Co] + [(SB 10 H 10 ) 2 Co] - were isolated in trace amounts. 16 references, 6 figures, 3 tables

  6. The Opening of ATP-Sensitive K+ Channels Protects H9c2 Cardiac Cells Against the High Glucose-Induced Injury and Inflammation by Inhibiting the ROS-TLR4-Necroptosis Pathway

    Directory of Open Access Journals (Sweden)

    Weijie Liang

    2017-02-01

    Full Text Available Background/Aims: Hyperglycemia activates multiple signaling molecules, including reactive oxygen species (ROS, toll-like receptor 4 (TLR4, receptor-interacting protein 3 (RIP3, a kinase promoting necroptosis, which mediate hyperglycemia-induced cardiac injury. This study explored whether inhibition of ROS-TLR4-necroptosis pathway contributed to the protection of ATP-sensitive K+ (KATP channel opening against high glucose-induced cardiac injury and inflammation. Methods: H9c2 cardiac cells were treated with 35 mM glucose (HG to establish a model of HG-induced insults. The expression of RIP3 and TLR4 were tested by western blot. Generation of ROS, cell viability, mitochondrial membrane potential (MMP and secretion of inflammatory cytokines were measured as injury indexes. Results: HG increased the expression of TLR4 and RIP3. Necrostatin-1 (Nec-1, an inhibitor of necroptosis or TAK-242 (an inhibitor of TLR4 co-treatment attenuated HG-induced up-regulation of RIP3. Diazoxide (DZ, a mitochondrial KATP channel opener or pinacidil (Pin, a non-selective KATP channel opener or N-acetyl-L-cysteine (NAC, a ROS scavenger pre-treatment blocked the up-regulation of TLR4 and RIP3. Furthermore, pre-treatment with DZ or Pin or NAC, or co-treatment with TAK-242 or Nec-1 attenuated HG-induced a decrease in cell viability, and increases in ROS generation, MMP loss and inflammatory cytokines secretion. However, 5-hydroxy decanoic acid (5-HD, a mitochondrial KATP channel blocker or glibenclamide (Gli, a non-selective KATP channel blocker pre-treatment did not aggravate HG-induced injury and inflammation. Conclusion: KATP channel opening protects H9c2 cells against HG-induced injury and inflammation by inhibiting ROS-TLR4-necroptosis pathway.

  7. H3S10ph broadly marks early-replicating domains in interphase ESCs and shows reciprocal antagonism with H3K9me2.

    Science.gov (United States)

    Chen, Carol C L; Goyal, Preeti; Karimi, Mohammad M; Abildgaard, Marie H; Kimura, Hiroshi; Lorincz, Matthew C

    2018-01-01

    Phosphorylation of histone H3 at serine 10 (H3S10ph) by Aurora kinases plays an important role in mitosis; however, H3S10ph also marks regulatory regions of inducible genes in interphase mammalian cells, implicating mitosis-independent functions. Using the fluorescent ubiquitin-mediated cell cycle indicator (FUCCI), we found that 30% of the genome in interphase mouse embryonic stem cells (ESCs) is marked with H3S10ph. H3S10ph broadly demarcates gene-rich regions in G1 and is positively correlated with domains of early DNA replication timing (RT) but negatively correlated with H3K9me2 and lamin-associated domains (LADs). Consistent with mitosis-independent kinase activity, this pattern was preserved in ESCs treated with Hesperadin, a potent inhibitor of Aurora B/C kinases. Disruption of H3S10ph by expression of nonphosphorylatable H3.3S10A results in ectopic spreading of H3K9me2 into adjacent euchromatic regions, mimicking the phenotype observed in Drosophila JIL-1 kinase mutants . Conversely, interphase H3S10ph domains expand in Ehmt1 (also known as Glp ) null ESCs, revealing that H3S10ph deposition is restricted by H3K9me2. Strikingly, spreading of H3S10ph at RT transition regions (TTRs) is accompanied by aberrant transcription initiation of genes co-oriented with the replication fork in Ehmt1 -/- and Ehmt2 -/- ESCs, indicating that establishment of repressive chromatin on the leading strand following DNA synthesis may depend upon these lysine methyltransferases. H3S10ph is also anti-correlated with H3K9me2 in interphase murine embryonic fibroblasts (MEFs) and is restricted to intragenic regions of actively transcribing genes by EHMT2. Taken together, these observations reveal that H3S10ph may play a general role in restricting the spreading of repressive chromatin in interphase mammalian cells. © 2018 Chen et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Bradykinin-potentiating PEPTIDE-10C, an argininosuccinate synthetase activator, protects against H2O2-induced oxidative stress in SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    Querobino, Samyr Machado; Ribeiro, César Augusto João; Alberto-Silva, Carlos

    2018-05-01

    Bradykinin-potentiating peptides (BPPs - 5a, 7a, 9a, 10c, 11e, and 12b) of Bothrops jararaca (Bj) were described as argininosuccinate synthase (AsS) activators, improving l-arginine availability. Agmatine and polyamines, which are l-arginine metabolism products, have neuroprotective properties. Here, we investigated the neuroprotective effects of low molecular mass fraction from Bj venom (LMMF) and two synthetic BPPs (BPP-10c, BPP-12b, BPP-10c showed higher protective capacity than BPP-12b. LMMF pretreatment was unable to prevent the reduction of cell viability caused by H 2 O 2 . The neuroprotective mechanism of BPP-10c against oxidative stress was investigated. BPP-10c reduced ROS generation and lipid peroxidation in relation to cells treated only with H 2 O 2 . BBP-10c increased AsS expression and was not neuroprotective in the presence of MDLA, a specific inhibitor of AsS. BPP-10c reduced iNOS expression and nitrate levels but decreased NF-kB expression. Furthermore, BPP-10c protected the mitochondrial membrane against oxidation. Overall, we demonstrated for the first time neuroprotective mechanisms of BPPs against oxidative stress, opening new perspectives to the study and application of these peptides for the treatment of neurodegenerative diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Pang, Daxin, E-mail: pdx@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Ouyang, Hongsheng, E-mail: ouyh@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China)

    2011-07-29

    Highlights: {yields} Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. {yields} The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. {yields} A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 {mu}g/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  10. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue; Pang, Daxin; Ouyang, Hongsheng

    2011-01-01

    Highlights: → Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. → The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. → A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 μg/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  11. [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, a Layered Coordination Polymer Containing DyO6N3 Tri-Capped Trigonal Prisms (H3ptc = Pyridine 2,4,6-Tricarboxylic Acid, C8H5NO6; Bipy = 2,2'-Bipyridine, C10H8N2

    Directory of Open Access Journals (Sweden)

    Shoaib Anwar

    2012-08-01

    Full Text Available The synthesis, structure and properties of the bimetallic layered coordination polymer, [KDy(C8H3NO63(C8H5NO6]n·2n(C10H9N2·5n(H2O = [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, are described. The Dy3+ ion is coordinated by three O,N,O-tridentate doubly-deprotonated pyridine tri-carboxylate (Hptc ligands to generate a fairly regular DyO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The potassium ion is coordinated by an O,N,O-tridentate H3ptc molecule as well as monodentate and bidentate Hptc ligands to result in an irregular KNO9 coordination geometry. The ligands bridge the metal-atom nodes into a bimetallic, layered, coordination polymer, which extends as corrugated layers in the (010 plane, with the mono-protonated bipyridine cations and water molecules occupying the inter-layer regions: Unlike related structures, there are no dysprosium–water bonds. Many O–HLO and N–HLO hydrogen bonds consolidate the structure. Characterization and bioactivity data are described. Crystal data: C52H42DyKN8O29, Mr = 1444.54, triclinic,  (No. 2, Z = 2, a = 9.188(2 Å, b = 15.7332(17 Å, c = 19.1664(19 Å, α = 92.797(6°, β = 92.319(7°, γ = 91.273(9°, V = 2764.3(7 Å3, R(F = 0.029, wR(F2 = 0.084.

  12. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  13. Silencing hyperoxia-induced C/EBPα in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells

    Science.gov (United States)

    Yang, Guang; Hinson, Maurice D.; Bordner, Jessica E.; Lin, Qing S.; Fernando, Amal P.; La, Ping; Wright, Clyde J.

    2011-01-01

    Postnatal lung development requires proliferation and differentiation of specific cell types at precise times to promote proper alveolar formation. Hyperoxic exposure can disrupt alveolarization by inhibiting cell growth; however, it is not fully understood how this is mediated. The transcription factor CCAAT/enhancer binding protein-α (C/EBPα) is highly expressed in the lung and plays a role in cell proliferation and differentiation in many tissues. After 72 h of hyperoxia, C/EBPα expression was significantly enhanced in the lungs of newborn mice. The increased C/EBPα protein was predominantly located in alveolar type II cells. Silencing of C/EBPα with a transpulmonary injection of C/EBPα small interfering RNA (siRNA) prior to hyperoxic exposure reduced expression of markers of type I cell and differentiation typically observed after hyperoxia but did not rescue the altered lung morphology at 72 h. Nevertheless, when C/EBPα hyperoxia-exposed siRNA-injected mice were allowed to recover for 2 wk in room air, lung epithelial cell proliferation was increased and lung morphology was restored compared with hyperoxia-exposed control siRNA-injected mice. These data suggest that C/EBPα is an important regulator of postnatal alveolar epithelial cell proliferation and differentiation during injury and repair. PMID:21571903

  14. File list: His.PSC.10.H2APERIODZac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.H2APERIODZac.AllCell mm9 Histone H2A.Zac Pluripotent stem cell SRX111870... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.10.H2APERIODZac.AllCell.bed ...

  15. File list: His.PSC.05.H2APERIODZac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.H2APERIODZac.AllCell mm9 Histone H2A.Zac Pluripotent stem cell SRX111870... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.05.H2APERIODZac.AllCell.bed ...

  16. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic perchlorates: (C6H18N3)·(ClO4)3H2O (I) and (C9H11N2)·ClO4(II)

    Science.gov (United States)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Ferretti, V.; Ben Nasr, C.

    2018-06-01

    The reaction of perchloric acid with 1-(2-aminoethyl)piperazine or 5,6-dimethyl-benzimidazole results in the formation of 1-(2-amonioethyl)piperazine-1,4-dium triperchlorate hydrate (C6H18N3)·(ClO4)3·H2O (I) or 5,6-dimethyl-benzylimidazolium perchlorate (C9H11N2)·ClO4(II). Both compounds were fully structurally characterized including single crystal X-ray diffraction analysis. Compound (I) crystallizes in the centrosymmetric triclinic space group P 1 bar with the lattice parameters a = 7.455 (2), b = 10.462 (2), c = 10.824 (2) Å, α = 80.832 (2), β = 88.243 (2), γ = 88.160 (2) °, Z = 2 and V = 832.77 (3) Å3. Compound (II) has been found to belong to the P21/c space group of the monoclinic system, with a = 7.590 (3), b = 9.266 (3), c = 16.503 (6) Å, β = 107.38 (2) °, V = 1107.69 (7) Å3 and Z = 4. The structures of (I) and (II) consist of slightly distorted [ClO4]- tetrahedra anions and 1-(2-amonioethyl)piperazine-1,4-dium trication (I) or 5,6-dimethyl-benzylimidazolium cations (II) and additionally a lattice water in (I). The crystal structures of (I) and (II) exhibit complex three-dimensional networks of H-bonds connecting all their components. In the atomic arrangement of (I), the ClO4- anions form corrugated chains, while in (II) the atomic arrangement exhibits wide pseudo-hexagonal channels of ClO4 tetrahedra including the organic entities. The lattice water serves as a link between pairs of cations and pairs of anions via several Osbnd H⋯O and N-H⋯O interactions in compound (I). The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. Intermolecular interactions were investigated by Hirshfeld surfaces. Electronic properties such as HOMO and LUMO energies were derived.

  17. Δ9-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: Possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J.; Aramaki, Hironori

    2014-01-01

    We recently reported that Δ 9 -tetrahydrocannabinol (Δ 9 -THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ 9 -THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ 9 -THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ 9 -THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ 9 -THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ 9 -THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ 9 -THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ 9 -THC up-regulation of FA2H in MDA-MB-231 cells

  18. Δ(9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2014-12-04

    We recently reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ(9)-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ(9)-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ(9)-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ(9)-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ(9)-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ(9)-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ(9)-THC up-regulation of FA2H in MDA-MB-231 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Characterization of μc-Si:H/a-Si:H tandem solar cell structures by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Murata, Daisuke; Yuguchi, Tetsuya; Fujiwara, Hiroyuki

    2014-01-01

    In order to perform the structural characterization of Si thin-film solar cells having submicron-size rough textured surfaces, we have developed an optical model that can be utilized for the spectroscopic ellipsometry (SE) analysis of a multilayer solar cell structure consisting of hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) layers fabricated on textured SnO 2 :F substrates. To represent the structural non-uniformity in the textured structure, the optical response has been calculated from two regions with different thicknesses of the Si layers. Moreover, in the optical model, the interface layers are modeled by multilayer structures assuming two-phase composites and the volume fractions of the phases in the layers are controlled by the structural curvature factor. The polarized reflection from the μc-Si:H layer that shows extensive surface roughening during the growth has also been modeled. In this study, a state-of-the-art solar cell structure with the textured μc-Si:H (2000 nm)/ZnO (100 nm)/a-Si:H (200 nm)/SnO 2 :F/glass substrate structure has been characterized. The μc-Si:H/a-Si:H textured structure deduced from our SE analysis shows remarkable agreement with that observed by transmission electron microscopy. From the above results, we have demonstrated the high-precision characterization of highly-textured μc-Si:H/a-Si:H solar cell structures. - Highlights: • Characterization of textured μc-Si:H/a-Si:H solar cell structures by ellipsometry • A new optical model using surface area and multilayer models • High precision characterization of submicron-range rough interface structures

  20. Improvement of μc-Si:H n–i–p cell efficiency with an i-layer made by hot-wire CVD by reverse H2-profiling

    NARCIS (Netherlands)

    Li, H. B. T.; Franken, R.H.; Stolk, R.L.; van der Werf, C.H.M.; Rath, J.K.; Schropp, R.E.I.

    2008-01-01

    The technique of maintaining a proper crystalline ratio in microcrystalline silicon (μc-Si:H) layers along the thickness direction by decreasing the H2 dilution ratio during deposition (H2 profiling) was introduced by several laboratories while optimizing either n–i–p or p–i–n μc-Si:H cells made by

  1. Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells

    Directory of Open Access Journals (Sweden)

    Ryo Ito

    2016-03-01

    Full Text Available DNA methylation is closely involved in the regulation of cellular differentiation, including chondrogenic differentiation of mesenchymal stem cells. Recent studies showed that Ten–eleven translocation (TET family proteins converted 5-methylcytosine (5mC to 5-hydroxymethylcytosine, 5-formylcytosine and 5carboxylcytosine by oxidation. These reactions constitute potential mechanisms for active demethylation of methylated DNA. However, the relationship between the DNA methylation patterns and the effects of TET family proteins in chondrocyte differentiation is still unclear. In this study, we showed that DNA hydroxylation of 5mC was increased during chondrocytic differentiation of C3H10T1/2 cells and that the expression of Tet1 was particularly enhanced. Moreover, knockdown experiments revealed that the downregulation of Tet1 expression caused decreases in chondrogenesis markers such as type 2 and type 10 collagens. Furthermore, we found that TET proteins had a site preference for hydroxylation of 5mC on the Insulin-like growth factor 1 (Igf1 promoter in chondrocytes. Taken together, we showed that the expression of Tet1 was specifically facilitated in chondrocyte differentiation and Tet1 can regulate chondrocyte marker gene expression presumably through its hydroxylation activity for DNA.

  2. Overexpression of α-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    International Nuclear Information System (INIS)

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo

    2009-01-01

    α- and β-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/β-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of α-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding α-catenin (MSCV-α-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium (β-glycerol phosphate and ascorbic acid), cells overexpressing α-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2 was significantly increased compared to control. Cell aggregation assay revealed that α-catenin overexpression has significantly increased cell-cell aggregation. However, cellular β-catenin levels (total, cytoplasmic-nuclear ratio) and β-catenin-TCF/LEF transcriptional activity did not change by overexpression of α-catenin. Knock-down of α-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that α-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/β-catenin-signaling.

  3. Ecto-ATPase CD39 Inactivates Isoprenoid-Derived Vγ92 T Cell Phosphoantigens

    Directory of Open Access Journals (Sweden)

    Georg Gruenbacher

    2016-07-01

    Full Text Available In humans, Vγ92cells respond to self and pathogen-associated, diphosphate-containing isoprenoids, also known as phosphoantigens (pAgs. However, activation and homeostasis of Vγ92cells remain incompletely understood. Here, we show that pAgs induced expression of the ecto-ATPase CD39, which, however, not only hydrolyzed ATP but also abrogated the γδ T cell receptor (TCR agonistic activity of self and microbial pAgs (C5 to C15. Only mevalonate-derived geranylgeranyl diphosphate (GGPP, C20 resisted CD39-mediated hydrolysis and acted as a regulator of CD39 expression and activity. GGPP enhanced macrophage differentiation in response to the tissue stress cytokine interleukin-15. In addition, GGPP-imprinted macrophage-like cells displayed increased capacity to produce IL-1β as well as the chemokine CCL2 and preferentially activated CD161-expressing CD4+ T cells in an innate-like manner. Our studies reveal a previously unrecognized immunoregulatory function of CD39 and highlight a particular role of GGPP among pAgs.

  4. Molecular epidemiology of H9N2 influenza viruses in Northern Europe.

    Science.gov (United States)

    Lindh, Erika; Ek-Kommonen, Christine; Väänänen, Veli-Matti; Vaheri, Antti; Vapalahti, Olli; Huovilainen, Anita

    2014-08-27

    Low pathogenic avian influenza viruses are maintained in wild bird populations throughout the world. Avian influenza viruses are characterized by their efficient ability to reassort and adapt, which enables them to cross the species barrier and enhances their zoonotic potential. Influenza viruses of the H9N2 subtype appear endemic among poultry in Eurasia. They usually exist as low-pathogenic strains and circulate between wild bird populations, poultry and birds sold at live bird markets. Direct transmission of H9N2 viruses, with receptor specificities similar to human influenza strains, to pigs and humans has been reported on several occasions. H9N2 virus was first encountered in Finland in 2009, during routine screening of hunted wild waterfowl. The next year, H9N2 influenza viruses were isolated from wild birds on four occasions, including once from a farmed mallard. We have investigated the relationship between the reared and wild bird isolates by sequencing the hemagglutinin and the neuraminidase genes of the Finnish H9N2 viruses. Nucleotide sequence comparison and phylogenetic analyses indicate that H9N2 was transmitted from wild birds to reared birds in 2010, and that highly identical strains have been circulating in Europe during the last few years. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Type 1 Responses of Human Vγ92 T Cells to Influenza A Viruses▿

    Science.gov (United States)

    Qin, Gang; Liu, Yinping; Zheng, Jian; Ng, Iris H. Y.; Xiang, Zheng; Lam, Kwok-Tai; Mao, Huawei; Li, Hong; Peiris, J. S. Malik; Lau, Yu-Lung; Tu, Wenwei

    2011-01-01

    γδ T cells are essential constituents of antimicrobial and antitumor defenses. We have recently reported that phosphoantigen isopentenyl pyrophosphate (IPP)-expanded human Vγ92 T cells participated in anti-influenza virus immunity by efficiently killing both human and avian influenza virus-infected monocyte-derived macrophages (MDMs) in vitro. However, little is known about the noncytolytic responses and trafficking program of γδ T cells to influenza virus. In this study, we found that Vγ92 T cells expressed both type 1 cytokines and chemokine receptors during influenza virus infection, and IPP-expanded cells had a higher capacity to produce gamma interferon (IFN-γ). Besides their potent cytolytic activity against pandemic H1N1 virus-infected cells, IPP-activated γδ T cells also had noncytolytic inhibitory effects on seasonal and pandemic H1N1 viruses via IFN-γ but had no such effects on avian H5N1 or H9N2 virus. Avian H5N1 and H9N2 viruses induced significantly higher CCL3, CCL4, and CCL5 production in Vγ92 T cells than human seasonal H1N1 virus. CCR5 mediated the migration of Vγ92 T cells toward influenza virus-infected cells. Our findings suggest a novel therapeutic strategy of using phosphoantigens to boost the antiviral activities of human Vγ92 T cells against influenza virus infection. PMID:21752902

  6. Pressure-composition isotherms and thermodynamic properties of TiF3-enhanced Na2LiAlH6

    International Nuclear Information System (INIS)

    Fossdal, A.; Brinks, H.W.; Fonnelop, J.E.; Hauback, B.C.

    2005-01-01

    The mixed alanate Na 2 LiAlH 6 was prepared by ball-milling and subsequent heat-treatment under H 2 pressure. After the synthesis, 2 mol% TiF 3 was added by ball-milling. Pressure-composition isotherms were measured for the Ti-enhanced material in the temperature range of 170-250 deg C. A van't Hoff plot was constructed using the equilibrium desorption plateau pressures. From this plot, a dissociation enthalpy of 56.4 ± 0.4 kJ/mol H 2 and a corresponding entropy of 137.9 ± 0.7 J/K mol H 2 was found for Na 2 LiAlH 6

  7. Expression of p89c-Mybex9b, an alternatively spliced form of c-Myb, is required for proliferation and survival of p210BCR/ABL-expressing cells

    International Nuclear Information System (INIS)

    Manzotti, G; Mariani, S A; Corradini, F; Bussolari, R; Cesi, V; Vergalli, J; Ferrari-Amorotti, G; Fragliasso, V; Soliera, A R; Cattelani, S; Raschellà, G; Holyoake, T L; Calabretta, B

    2012-01-01

    The c-Myb gene encodes the p75 c-Myb isoform and less-abundant proteins generated by alternatively spliced transcripts. Among these, the best known is p c-Mybex9b , which contains 121 additional amino acids between exon 9 and 10, in a domain involved in protein–protein interactions and negative regulation. In hematopoietic cells, expression of p c-Mybex9b accounts for 10–15% of total c-Myb; these levels may be biologically relevant because modest changes in c-Myb expression affects proliferation and survival of leukemic cells and lineage choice and frequency of normal hematopoietic progenitors. In this study, we assessed biochemical activities of p c-Mybex9b and the consequences of perturbing its expression in K562 and primary chronic myeloid leukemia (CML) progenitor cells. Compared with p75 c-Myb , p c-Mybex9b is more stable and more effective in transactivating Myb-regulated promoters. Ectopic expression of p c-Mybex9b enhanced proliferation and colony formation and reduced imatinib (IM) sensitivity of K562 cells; conversely, specific downregulation of p c-Mybex9b reduced proliferation and colony formation, enhanced IM sensitivity of K562 cells and markedly suppressed colony formation of CML CD34 + cells, without affecting the levels of p75 c-Myb . Together, these studies indicate that expression of the low-abundance p c-Mybex9b isoform has an important role for the overall biological effects of c-Myb in BCR/ABL-transformed cells

  8. Δ{sup 9}-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: Possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shuso [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112 (Japan); Ikeda, Eriko [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Su, Shengzhong [Center for Molecular Toxicology and Carcinogenesis, 101 Life Sciences Building, Pennsylvania State University, University Park, PA 16802 (United States); Harada, Mari [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Okazaki, Hiroyuki [Drug Innovation Research Center, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Watanabe, Kazuhito [Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181 (Japan); Omiecinski, Curtis J. [Center for Molecular Toxicology and Carcinogenesis, 101 Life Sciences Building, Pennsylvania State University, University Park, PA 16802 (United States); Aramaki, Hironori [Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan); Drug Innovation Research Center, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511 (Japan)

    2014-12-04

    We recently reported that Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ{sup 9}-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ{sup 9}-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ{sup 9}-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ{sup 9}-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ{sup 9}-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ{sup 9}-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ{sup 9}-THC up-regulation of FA2H in MDA-MB-231 cells.

  9. H2A/K pseudogene mutation may promote cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jisheng; Jing, Ruirui; Lv, Xin; Wang, Xiaoyue; Li, Junqiang; Li, Lin; Li, Cuiling; Wang, Daoguang; Bi, Baibing; Chen, Xinjun [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Yang, Jing-Hua, E-mail: sdu_crc_group1@126.com [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA (United States)

    2016-05-15

    Highlights: • The mutant H2A/K pseudogene is active. • The mutant H2A/K pseudogene can promote cell proliferation. - Abstract: Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.

  10. Toll like Receptor 2 engagement on CD4+ T cells promotes TH9 differentiation and function.

    Science.gov (United States)

    Karim, Ahmad Faisal; Reba, Scott M; Li, Qing; Boom, W Henry; Rojas, Roxana E

    2017-09-01

    We have recently demonstrated that mycobacterial ligands engage Toll like receptor 2 (TLR2) on CD4 + T cells and up-regulate T-cell receptor (TCR) triggered Th1 responses in vitro and in vivo. To better understand the role of T-cell expressed TLR2 on CD4 + T-cell differentiation and function, we conducted a gene expression analysis of murine naïve CD4 + T-cells stimulated in the presence or absence of TLR2 co-stimulation. Unexpectedly, naïve CD4 + T-cells co-stimulated via TLR2 showed a significant up-regulation of Il9 mRNA compared to cells co-stimulated via CD28. Under TH9 differentiation, we observed up-regulation of TH9 differentiation, evidenced by increases in both percent of IL-9 secreting cells and IL-9 in culture supernatants in the presence of TLR2 agonist both in polyclonal and Ag85B cognate peptide specific stimulations. Under non-polarizing conditions, TLR2 engagement on CD4 + T-cells had minimal effect on IL-9 secretion and TH9 differentiation, likely due to a prominent effect of TLR2 signaling on IFN-γ secretion and TH1 differentiation. We also report that, TLR2 signaling in CD4 + T cells increased expression of transcription factors BATF and PU.1, known to positively regulate TH9 differentiation. These results reveal a novel role of T-cell expressed TLR2 in enhancing the differentiation and function of TH9 T cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reduced temperature (22 degrees C) results in enhancement of cell killing and neoplastic transformation in noncycling HeLa x skin fibroblast human hybrid cells irradiated with low-dose-rate gamma radiation

    International Nuclear Information System (INIS)

    Redpath, J.L.; Antoniono, R.J.

    1995-01-01

    The effect of reduced temperature (22 degrees C) or serum deprivation during low-dose-rate (0.66 cGy/min) γ irradiation on cell killing and neoplastic transformation has been examined using the HeLa x skin fibroblast human hybrid cell system. The reduced temperature stops progression of these cells through the cell cycle while serum deprivation slows down cell turnover markedly. The data demonstrate an enhancement in both of the end points when cells are held at 22 degrees C compared to parallel experiments done at 37 degrees C. In operational terms, the decreased survival and increased neoplastic transformation are consistent with our earlier hypothesis of a higher probability of misrepair at reduced temperature. The interpretation that this damage enhancement was associated with the reduced temperature, and not the fact that the cells were noncycling, was supported by the results of experiments performed with cells cultured at 37 degrees C in serum-free medium for 35 h prior to and then during the 12.24 h low-dose-rate radiation exposure. Under these conditions, cell cycle progression, as shown by reduction in growth rate and dual-parameter flow cytometric analysis, was considerable inhibited (cell cycle time increased from 20 h to 40 h), and there was no significant enhancement of cell killing or neoplastic transformation. 23 refs., 2 figs., 1 tab

  12. Polymer microfiber meshes facilitate cardiac differentiation of c-kit{sup +} human cardiac stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Lijuan [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Thayer, Patrick [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Fan, Huimin [Research Institute of Heart Failure, Shanghai East Hospital of Tongji University, Shanghai (China); Ledford, Benjamin; Chen, Miao [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Goldstein, Aaron [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Cao, Guohua [School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); He, Jia-Qiang, E-mail: jiahe@vt.edu [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States)

    2016-09-10

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit{sup +} human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5 µm) elastomeric meshes consisting of aligned 1.7 µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increased expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. - Highlights: • First study to characterize c-kit{sup +} human cardiac stem cells on microfiber meshes. • Microfiber meshes seem reducing cell proliferation, but no effect on cell viability. • Microfiber meshes facilitate the elongation of human cardiac stem cells in culture. • Cardiac but not smooth muscle differentiation were enhanced on microfiber meshes. • Microfiber meshes may be used as cardiac patches in cell-based cardiac therapy.

  13. H-2-incompatible bone marrow chimeras produce donor-H-2-restricted Ly-2 suppressor T-cell factor(s)

    International Nuclear Information System (INIS)

    Noguchi, M.; Onoe, K.; Ogasawara, M.; Iwabuchi, K.; Geng, L.; Ogasawara, K.; Good, R.A.; Morikawa, K.

    1985-01-01

    To study adaptive-differentiation phenomena of T lymphocytes, suppressor T-cell factors (TsF) produced by Ly-2+ splenic T cells from fully allogeneic mouse bone marrow chimeras were analyzed. AKR mice irradiated and reconstituted with B10 marrow cells (B10----AKR chimeras) produced an Ly-2+ TsF after hyperimmunization with sheep erythrocytes. The TsF suppressed primary antibody responses (to sheep erythrocytes) generated with spleen cells of mice of H-2b haplotype but not those of H-2k haplotype. Thus, this suppressor factor was donor-H-2-restricted. The immunoglobulin heavy chain variable region gene (Igh-V)-restricting element was not involved in this form of suppression. Similar results were obtained when TsF from B6----BALB/c and BALB/c----B6 chimeras were analyzed. The TsF from B10----AKR chimeras suppressed responses of B10.A(3R) and B10.A(5R) mice but not those of B10.A(4R). This finding showed that identity between the factor-producing cells and target spleen cells is required on the left-hand side of the E beta locus of the H-2 region and that the putative I-Jb locus is not involved in this form of suppression. The present results support the postulate that post-thymic differentiation in the presence of continued or repeated stimulation with antigen and donor-derived antigen-presenting cells generates donor-H-2-restricted T-cell clones that may predominate within the repertoire of the specific antigen being presented

  14. Reaction rate and isomer-specific product branching ratios of C2H + C4H8: 1-butene, cis-2-butene, trans-2-butene, and isobutene at 79 K.

    Science.gov (United States)

    Bouwman, Jordy; Fournier, Martin; Sims, Ian R; Leone, Stephen R; Wilson, Kevin R

    2013-06-20

    The reactions of C2H radicals with C4H8 isomers 1-butene, cis-2-butene, trans-2-butene, and isobutene are studied by laser photolysis-vacuum ultraviolet mass spectrometry in a Laval nozzle expansion at 79 K. Bimolecular-reaction rate constants are obtained by measuring the formation rate of the reaction product species as a function of the reactant density under pseudo-first-order conditions. The rate constants are (1.9 ± 0.5) × 10(-10), (1.7 ± 0.5) × 10(-10), (2.1 ± 0.7) × 10(-10), and (1.8 ± 0.9) × 10(-10) cm(3) s(-1) for the reaction of C2H with 1-butene, cis-2-butene, trans-2-butene, and isobutene, respectively. Bimolecular rate constants for 1-butene and isobutene compare well to values measured previously at 103 K using C2H chemiluminescence. Photoionization spectra of the reaction products are measured and fitted to ionization spectra of the contributing isomers. In conjunction with absolute-ionization cross sections, these fits provide isomer-resolved product branching fractions. The reaction between C2H and 1-butene yields (65 ± 10)% C4H4 in the form of vinylacetylene and (35 ± 10)% C5H6 in the form of 4-penten-1-yne. The cis-2-butene and trans-2-butene reactions yield solely 3-penten-1-yne, and no discrimination is made between cis- and trans-3-penten-1-yne. Last, the isobutene reaction yields (26 ± 15)% 3-penten-1-yne, (35 ± 15)% 2-methyl-1-buten-3-yne, and (39 ± 15)% 4-methyl-3-penten-1-yne. The branching fractions reported for the C2H and butene reactions indicate that these reactions preferentially proceed via CH3 or C2H3 elimination rather than H-atom elimination. Within the experimental uncertainties, no evidence is found for the formation of cyclic species.

  15. Solvent-Dependent Delamination, Restacking, and Ferroelectric Behavior in a New Charge-Separated Layered Compound: [NH4 ][Ag3 (C9 H5 NO4 S)2 (C13 H14 N2 )2 ]⋅8 H2 O.

    Science.gov (United States)

    Sushrutha, Sringeri Ramesh; Mohana, Shivanna; Pal, Somnath; Natarajan, Srinivasan

    2017-01-03

    A new anionic coordination polymer, [NH 4 ][Ag 3 (C 9 H 5 NO 4 S) 2 (C 13 H 14 N 2 ) 2 ]⋅8 H 2 O, with a two-dimensional structure, has been synthesized by a reaction between silver nitrate, 8-hydroxyquinoline-5-sulfonic acid (HQS), and 4,4'-trimethylene dipyridine (TMDP). The compound stabilizes in a noncentrosymmetric space group, and the lattice water molecules and the charge-compensating [NH 4 ] + group occupy the inter-lamellar spaces. The lattice water molecules can be fully removed and reinserted, which is accompanied by a crystalline-amorphous-crystalline transformation. This transformation resembles the collapse/delamination and restacking of the layers. To the best of our knowledge, this is the first observation of delamination and restacking in an inorganic coordination polymer that contains silver. The presence of a natural dipole (the anionic framework and cationic ammonium ions) along with the noncentrosymmetric space group gives rise to the room-temperature ferroelectric behavior of the compound. The ferroelectric behavior is also water-dependent and exhibits a ferroelectric-paraelectric transformation. The temperature-dependent dielectric measurements indicate that the ferroelectric/ paraelectric transformation occurs at 320 K. This transformation has also been investigated by using in-situ IR spectroscopy and PXRD studies. The second-harmonic generation (SHG) study indicated values that are comparable to some of the known SHG solids, such as potassium dihydrogen phosphate (KDP) and urea. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis and structure of PbBipy2(1-B10H9S(CH3)2)2

    International Nuclear Information System (INIS)

    Orlova, A.M.; Sivaev, I.B.; Lagun, V.L.; Katser, S.B.; Solntsev, K.A.; Kuznetsov, N.T.

    1993-01-01

    Lead complex with B 10 H 9 S(CH 3 ) 2 - anion and 2,2'-bipyridine was synthesized and characterized. According to the data of X-ray diffraction analysis the crystals belong to monoclinic crystal system, sp. gr. P2 1 /a: a = 9.940(4), b 31.568(4), c = 13.458(2) A, β = 111.09(2) deg, V = 3940(2) A 3 , Z = 4. The structure consists of monomer units PbBipy 2 (1-B 10 H 9 S(CH 3 ) 2 ) 2 . The Pb-B distances are within 3.24-3.55 A. 15 refs., 1 fig., 2 tabs

  17. Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures.

    Science.gov (United States)

    Peukert, S L; Labbe, N J; Sivaramakrishnan, R; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the reactions CH3 + C2H6 → C2H4 + CH4 + H (1), CH3 + C2H4 → Products + H (2), and CH3 + C2H2 → Products + H (3). Biacetyl, (CH3CO)2, was used as a clean high temperature thermal source for CH3-radicals for all the three reactions studied in this work. For reaction 1, the experiments span a T-range of 1153 K ≤ T ≤ 1297 K, at P ~ 0.4 bar. The experiments on reaction 2 cover a T-range of 1176 K ≤ T ≤ 1366 K, at P ~ 1.0 bar, and those on reaction 3 a T-range of 1127 K ≤ T ≤ 1346 K, at P ~ 1.0 bar. Reflected shock tube experiments performed on reactions 1-3, monitored the formation of H-atoms with H-atom Atomic Resonance Absorption Spectrometric (ARAS). Fits to the H-atom temporal profiles using an assembled kinetics model were used to make determinations for k1, k2, and k3. In the case of C2H6, the measurements of [H]-atoms were used to derive direct high-temperature rate constants, k1, that can be represented by the Arrhenius equation k1(T) = 5.41 × 10(-12) exp(-6043 K/T) cm(3) molecules(-1) s(-1) (1153 K ≤ T ≤ 1297 K) for the only bimolecular process that occurs, H-atom abstraction. TST calculations based on ab initio properties calculated at the CCSD(T)/CBS//M06-2X/cc-pVTZ level of theory show excellent agreement, within ±20%, of the measured rate constants. For the reaction of CH3 with C2H4, the present rate constant results, k2', refer to the sum of rate constants, k(2b) + k(2c), from two competing processes, addition-elimination, and the direct abstraction CH3 + C2H4 → C3H6 + H (2b) and CH3 + C2H4 → C2H2 + H + CH4 (2c). Experimental rate constants for k2' can be represented by the Arrhenius equation k2'(T) = 2.18 × 10(-10) exp(-11830 K/T) cm(3) molecules(-1) s(-1) (1176 K ≤ T ≤ 1366 K). The present results are in excellent agreement with recent theoretical predictions. The present study provides the only direct measurement for the high-temperature rate constants for these channels

  18. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.; (USMC); (UTSMC)

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  19. Luminescence of solar cells with a-Si:H/c-Si heterojunctions

    Science.gov (United States)

    Zhigunov, D. M.; Il'in, A. S.; Forsh, P. A.; Bobyl', A. V.; Verbitskii, V. N.; Terukov, E. I.; Kashkarov, P. K.

    2017-05-01

    We have studied the electroluminescence (EL) and photoluminescence (PL) of solar cells containing a-Si:H/c-Si heterojunctions. It is established that both the EL and PL properties of these cells are determined by the radiative recombination of nonequilibrium carriers in crystalline silicon (c-Si). The external EL energy yield (efficiency) of solar cells with a-Si:H/c-Si heterojunctions at room temperature amounts to 2.1% and exceeds the value reached in silicon diode structures. This large EL efficiency can be explained by good passivation of the surface of crystalline silicon and the corresponding increase in lifetime of minority carrier s in these solar cells.

  20. Ab initio/GIAO-CCSD(T) study of structures, energies, and 13C NMR chemical shifts of C4H7(+) and C5H9(+) ions: relative stability and dynamic aspects of the cyclopropylcarbinyl vs bicyclobutonium ions.

    Science.gov (United States)

    Olah, George A; Surya Prakash, G K; Rasul, Golam

    2008-07-16

    The structures and energies of the carbocations C 4H 7 (+) and C 5H 9 (+) were calculated using the ab initio method. The (13)C NMR chemical shifts of the carbocations were calculated using the GIAO-CCSD(T) method. The pisigma-delocalized bisected cyclopropylcarbinyl cation, 1 and nonclassical bicyclobutonium ion, 2 were found to be the minima for C 4H 7 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level the structure 2 is 0.4 kcal/mol more stable than the structure 1. The (13)C NMR chemical shifts of 1 and 2 were calculated by the GIAO-CCSD(T) method. Based on relative energies and (13)C NMR chemical shift calculations, an equilibrium involving the 1 and 2 in superacid solutions is most likely responsible for the experimentally observed (13)C NMR chemical shifts, with the latter as the predominant equilibrating species. The alpha-methylcyclopropylcarbinyl cation, 4, and nonclassical bicyclobutonium ion, 5, were found to be the minima for C 5H 9 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level ion 5 is 5.9 kcal/mol more stable than the structure 4. The calculated (13)C NMR chemical shifts of 5 agree rather well with the experimental values of C 5H 9 (+).

  1. NKG2H-Expressing T Cells Negatively Regulate Immune Responses

    Directory of Open Access Journals (Sweden)

    Daniela Dukovska

    2018-03-01

    Full Text Available The biology and function of NKG2H receptor, unlike the better characterized members of the NKG2 family NKG2A, NKG2C, and NKG2D, remains largely unclear. Here, we show that NKG2H is able to associate with the signaling adapter molecules DAP12 and DAP10 suggesting that this receptor can signal for cell activation. Using a recently described NKG2H-specific monoclonal antibody (mAb, we have characterized the expression and function of lymphocytes that express this receptor. NKG2H is expressed at the cell surface of a small percentage of peripheral blood mononuclear cell (PBMC and is found more frequently on T cells, rather than NK cells. Moreover, although NKG2H is likely to trigger activation, co-cross-linking of this receptor with an NKG2H-specific mAb led to decreased T cell activation and proliferation in polyclonal PBMC cultures stimulated by anti-CD3 mAbs. This negative regulatory activity was seen only after cross-linking with NKG2H, but not NKG2A- or NKG2C-specific monoclonal antibodies. The mechanism underlying this negative effect is as yet unclear, but did not depend on the release of soluble factors or recognition of MHC class I molecules. These observations raise the intriguing possibility that NKG2H may be a novel marker for T cells able to negatively regulate T cell responses.

  2. Cluster-enhanced X-O-2 photochemistry (X=CH3I, C3H6, C6H12, and Xe)

    NARCIS (Netherlands)

    Baklanov, A.V.; Bogdanchikov, G.A.; Vidma, K.V.; Chestakov, D.A.; Parker, D.H.

    2007-01-01

    The effect of a local environment on the photodissociation of molecular oxygen is investigated in the van der Waals complex X-O-2 (X=CH3I, C3H6, C6H12, and Xe). A single laser operating at wavelengths around 226 nm is used for both photodissociation of the van der Waals complex and simultaneous

  3. Identification of metabolites in urine and feces from rats dosed with the heterocyclic amine, 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C)

    DEFF Research Database (Denmark)

    Frederiksen, H; Frandsen, H

    2004-01-01

    2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C) is a proximate mutagenic and carcinogenic heterocyclic amine formed during ordinary cooking. In model systems, MeA alpha C can be formed by pyrolyses of either tryptophan or proteins of animal or vegetable origin. In the present study, the in ......2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C) is a proximate mutagenic and carcinogenic heterocyclic amine formed during ordinary cooking. In model systems, MeA alpha C can be formed by pyrolyses of either tryptophan or proteins of animal or vegetable origin. In the present study...

  4. Vitamin C-linker-conjugated tripeptide AHK stimulates BMP-2-induced osteogenic differentiation of mouse myoblast C2C12 cells.

    Science.gov (United States)

    Jung, Jung-Il; Park, Kyeong-Yong; Lee, Yura; Park, Mira; Kim, Jiyeon

    2018-03-15

    Vitamin C-linker-conjugated Ala-His-Lys tripeptide (Vit C-AHK) is a derivative of Vitamin C-conjugated tripeptides, which were originally developed as a component of a product for collagen synthesis enhancement or human dermal fibroblast growth. Here, we investigated the effect of Vit C-AHK on bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Vit C-AHK enhanced proliferation of C2C12 cells and induction of BMP-2-induced alkaline phosphatase, a typical marker of osteoblast differentiation. Vit C-AHK also stimulated the phosphorylation and translocation of Smad1/5/8 to the nucleus and phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK1/2 and p38. In addition, Vit C-AHK enhanced the BMP-2-induced mRNA expression of osteoblast differentiation-related genes such as ALP, BMP-2, Osteocalcin, and Runx2. Our results suggest that Vit C-AHK exerts an enhancing effect on osteoblast proliferation and differentiation through activation of Smad1/5/8 and MAPK ERK1/2 and p38 signaling and without significant cytotoxicity. These results provide important data for the development of peptide-based bone-regenerative agents and treatment of bone-related disorders. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  5. 9-Ethyl-2,3-dihydro-9H-carbazol-4(1H-one

    Directory of Open Access Journals (Sweden)

    S. Sriman Narayanan

    2008-09-01

    Full Text Available In the title compound, C28H30N2O2, the cyclohexene ring system adopts a sofa conformation. The crystal structure is stabilized by C—H...O interactions between methyl H atoms of the ethyl substituents and the O atoms of carbonyl groups of adjacent molecules, and by an intermolecular carbonyl–carbonyl interactions [3.207 (2 Å

  6. Inhibition of H3K9me2 Reduces Hair Cell Regeneration after Hair Cell Loss in the Zebrafish Lateral Line by Down-Regulating the Wnt and Fgf Signaling Pathways

    Science.gov (United States)

    Tang, Dongmei; Lin, Qin; He, Yingzi; Chai, Renjie; Li, Huawei

    2016-01-01

    The activation of neuromast (NM) supporting cell (SC) proliferation leads to hair cell (HC) regeneration in the zebrafish lateral line. Epigenetic mechanisms have been reported that regulate HC regeneration in the zebrafish lateral line, but the role of H3K9me2 in HC regeneration after HC loss remains poorly understood. In this study, we focused on the role of H3K9me2 in HC regeneration following neomycin-induced HC loss. To investigate the effects of H3K9me2 in HC regeneration, we took advantage of the G9a/GLP-specific inhibitor BIX01294 that significantly reduces the dimethylation of H3K9. We found that BIX01294 significantly reduced HC regeneration after neomycin-induced HC loss in the zebrafish lateral line. BIX01294 also significantly reduced the proliferation of NM cells and led to fewer SCs in the lateral line. In situ hybridization showed that BIX01294 significantly down-regulated the Wnt and Fgf signaling pathways, which resulted in reduced SC proliferation and HC regeneration in the NMs of the lateral line. Altogether, our results suggest that down-regulation of H3K9me2 significantly decreases HC regeneration after neomycin-induced HC loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus H3K9me2 plays a critical role in HC regeneration. PMID:27303264

  7. Inhibition of H3K9me2 Reduces Hair Cell Regeneration after Hair Cell Loss in the Zebrafish Lateral Line by Down-Regulating the Wnt and Fgf Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Dongmei eTang

    2016-05-01

    Full Text Available The activation of neuromast supporting cell (SC proliferation leads to hair cell (HC regeneration in the zebrafish lateral line. Epigenetic mechanisms have been reported that regulate HC regeneration in the zebrafish lateral line, but the role of H3K9me2 in HC regeneration after HC loss remains poorly understood. In this study, we focused on the role of H3K9me2 in HC regeneration following neomycin-induced HC loss. To investigate the effects of H3K9me2 in HC regeneration, we took advantage of the G9a/GLP-specific inhibitor BIX01294 that significantly reduces the dimethylation of H3K9. We found that BIX01294 significantly reduced HC regeneration after neomycin-induced HC loss in the zebrafish lateral line. BIX01294 also significantly reduced the proliferation of neuromast cells and led to fewer SCs in the lateral line. In situ hybridization showed that BIX01294 significantly down-regulated the Wnt and Fgf signaling pathways, which resulted in reduced SC proliferation and HC regeneration in the neuromasts of the lateral line. Altogether, our results suggest that down-regulation of H3K9me2 significantly decreases HC regeneration after neomycin-induced HC loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus H3K9me2 plays a critical role in HC regeneration.

  8. Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2013-05-01

    Full Text Available Objective(s: Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its underlying mechanisms. Materials and Methods:NCI-H460 and A549 cells were treated with TRAIL alone, cisplatin alone or combination treatment in this study. The cytotoxicity was evaluated according to Sulforhodamine B assay, and apoptosis was examined using Hoechst 33342 staining and flow cytometry. The mRNA and protein levels of TRAIL receptors and apoptotic proteins including caspase-8, caspase-9, Bcl-2 and Bax were determined by RT-PCR and Western blotting, respectively. Results:Our results showed that NCI-H460 cells were sensitive to TRAIL, whereas A549 cells were resistant. However, subtoxic-dose cisplatin could enhance the both cells to TRAIL-mediated cell proliferation inhibition and apoptosis. The underlying mechanisms might be associated with the down-regulation of DcR2 and up-regulation of Caspase-8, Caspase-9 and Bax. Conclusion:Subtoxic-dose cisplatin could enhance both TRAIL- sensitive and TRAIL- resistant NSCLC cells to TRAIL-mediated apoptosis. These findings motivated further studies to evaluate such a combinatory therapeutic strategy against NSCLC in the animal models.

  9. Hydrothermal synthesis and crystal structure of the Ni2(C4H4N2)(V4O12)(H2O)2 and Ni3(C4H4N2)3(V8O23) inorganic-organic hybrid compounds. Thermal, spectroscopic and magnetic studies of the hydrated phase

    International Nuclear Information System (INIS)

    Larrea, Edurne S.; Mesa, Jose L.; Pizarro, Jose L.; Arriortua, Maria I.; Rojo, Teofilo

    2007-01-01

    Ni 2 (C 4 H 4 N 2 )(V 4 O 12 )(H 2 O) 2 , 1, and Ni 3 (C 4 H 4 N 2 ) 3 (V 8 O 23 ), 2, have been synthesized using mild hydrothermal conditions at 170 deg. C under autogenous pressure. Both phases crystallize in the P-1 triclinic space group, with the unit-cell parameters, a=7.437(7), b=7.571(3), c=7.564(4) A, α=65.64(4), β=76.09(4), γ=86.25(3) o for 1 and a=8.566(2), b=9.117(2), c=12.619(3) A, α=71.05(2), β=83.48(4), γ=61.32(3) o for 2, being Z=2 for both compounds. The crystal structure of the three-dimensional 1 is constructed from layers linked between them through the pyrazine molecules. The sheets are formed by edge-shared [Ni 2 O 6 (H 2 O) 2 N 2 ] nickel(II) dimers octahedra and rings composed by four [V 4 O 12 ] vanadium(V) tetrahedra linked through vertices. The crystal structure of 2 is formed from vertex shared [VO 4 ] tetrahedra that give rise to twelve member rings. [NiO 4 (C 4 H 4 N 2 ) 2 ] ∞ chains, resulting from [NiO 4 N 2 ] octahedra and pyrazine molecules, give rise to a 3D skeleton when connecting to [VO 4 ] tetrahedra. Diffuse reflectance measurements of 1 indicate a slightly distorted octahedral geometry with values of Dq=880, B=980 and C=2700 cm -1 . Magnetic measurements of 1, carried out in the 5.0-300 K range, indicate the existence of antiferromagnetic couplings with a Neel temperature near to 38 K. - Graphical abstract: Crystal structure of a sheet of Ni 2 (C 4 H 4 N 2 )(V 4 O 12 )(H 2 O) 2

  10. Chemerin C9 peptide induces receptor internalization through a clathrin-independent pathway

    Science.gov (United States)

    Zhou, Jun-xian; Liao, Dan; Zhang, Shuo; Cheng, Ni; He, Hui-qiong; Ye, Richard D

    2014-01-01

    Aim: The chemerin receptor CMKLR1 is one type of G protein-coupled receptors abundant in monocyte-derived dendritic cells and macrophages, which plays a key role in the entry of a subset of immunodeficiency viruses including HIV/SIV into lymphocytes and macrophages. The aim of this work was to investigate how CMKLR1 was internalized and whether its internalization affected cell signaling in vitro. Methods: Rat basophilic leukemia RBL-2H3 cells, HEK 293 cells, and HeLa cells were used. CMKLR1 internalization was visualized by confocal microscopy imaging or using a FACScan flow cytometer. Six potential phosphorylation sites (Ser337, Ser343, Thr352, Ser344, Ser347, and Ser350) in CMKLR1 were substituted with alanine using site-directed mutagenesis. Heterologous expression of wild type and mutant CMKLR1 allowed for functional characterization of endocytosis, Ca2+ flux and extracellular signal-regulated kinase (ERK) phosphorylation. Results: Chemerin and the chemerin-derived nonapeptide (C9) induced dose-dependent loss of cell surface CMKLR1-GFP fusion protein and increased its intracellular accumulation in HEK 293 cells and RBL-2H3 cells stably expressing CMKLR1. Up to 90% of CMKLR1 was internalized after treatment with C9 (1 μmol/L). By using different agents, it was demonstrated that clathrin-independent mechanism was involved in CMKLR1 internalization. Mutations in Ser343 for G protein-coupled receptor kinase phosphorylation and in Ser347 for PKC phosphorylation abrogated CMKLR1 internalization. Loss of CMKLR1 internalization partially enhanced the receptor signaling, as shown by increased Ca2+ flux and a shorter latency to peak level of ERK phosphorylation. Conclusion: CMKLR1 internalization occurs in a clathrin-independent manner, which negatively regulated the receptor-mediated Ca2+ flux and ERK phosphorylation. PMID:24658352

  11. Suppression of X-ray induced transformation by vitamin E in mouse C3H/10T1/2 cells

    International Nuclear Information System (INIS)

    Radner, B.S.; Kennedy, A.R.

    1986-01-01

    Vitamin E (d-α-tocopherol) was shown to decrease X-ray induced transformation in mouse C3H/10 1/2 cells. The d-α-tocopherol was active in the form of succinate diluted in ethanol, but was inactive at the highest non-toxic concentration of the pure substance dissolved in oil and diluted in acetone. Vitamin E succinate was effective when present only for the early portion of the radiation transformation assay period, indicating that its effect may be reversible. Vitamin E did not supress the growth and expression of transformed C3H/10 1/2 cells as foci when transformed cells were surrounded by a monolayer of normal cells. (author)

  12. Low-temperature solid-state preparation of ternary CdS/g-C_3N_4/CuS nanocomposites for enhanced visible-light photocatalytic H_2-production activity

    International Nuclear Information System (INIS)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun

    2017-01-01

    Highlights: • CdS/g-C_3N_4/CuS composite were synthesized by low-temperature solid-state method. • CdS/g-C_3N_4/CuS show enhanced visible-light photocatalytic H_2 evolution activity. • The enhanced photocatalytic H_2 production activity is due to the heterojunction. • Heterojunction between the components promote charge separation/transfer property. - Abstract: Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C_3N_4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C_3N_4/CuS composite exhibits a high visible-light photocatalytic H_2-production rate of 57.56 μmol h"−"1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na_2S/Na_2SO_3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C_3N_4/CuS composites show the enhanced visible-light photocatalytic H_2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C_3N_4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H_2-production activity.

  13. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition

    Science.gov (United States)

    Sorsby, Eleanor; Mahtey, Nabeel; Brown, Ian

    2017-01-01

    Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin and β-glucan exposure at the cell wall periphery. Unmasking of the underlying immuno-stimulatory β-glucan in acidic environments enhanced innate immune recognition of C. albicans by macrophages and neutrophils, and induced a stronger proinflammatory cytokine response, driven through the C-type lectin-like receptor, Dectin-1. This enhanced inflammatory response resulted in significant recruitment of neutrophils in an intraperitoneal model of infection, a hallmark of symptomatic vaginal colonisation. Enhanced chitin exposure resulted from reduced expression of the cell wall chitinase Cht2, via a Bcr1-Rim101 dependent signalling cascade, while increased β-glucan exposure was regulated via a non-canonical signalling pathway. We propose that this “unmasking” of the cell wall may induce non-protective hyper activation of the immune system during growth in acidic niches, and may attribute to symptomatic vaginal infection. PMID:28542528

  14. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition.

    Directory of Open Access Journals (Sweden)

    Sarah L Sherrington

    2017-05-01

    Full Text Available Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin and β-glucan exposure at the cell wall periphery. Unmasking of the underlying immuno-stimulatory β-glucan in acidic environments enhanced innate immune recognition of C. albicans by macrophages and neutrophils, and induced a stronger proinflammatory cytokine response, driven through the C-type lectin-like receptor, Dectin-1. This enhanced inflammatory response resulted in significant recruitment of neutrophils in an intraperitoneal model of infection, a hallmark of symptomatic vaginal colonisation. Enhanced chitin exposure resulted from reduced expression of the cell wall chitinase Cht2, via a Bcr1-Rim101 dependent signalling cascade, while increased β-glucan exposure was regulated via a non-canonical signalling pathway. We propose that this "unmasking" of the cell wall may induce non-protective hyper activation of the immune system during growth in acidic niches, and may attribute to symptomatic vaginal infection.

  15. Sensitivity of MLL-rearranged AML cells to all-trans retinoic acid is associated with the level of H3K4me2 in the RARα promoter region

    International Nuclear Information System (INIS)

    Sakamoto, K; Imamura, T; Yano, M; Yoshida, H; Fujiki, A; Hirashima, Y; Hosoi, H

    2014-01-01

    All-trans retinoic acid (ATRA) is well established as differentiation therapy for acute promyelocytic leukemia (APL) in which the PML–RARα (promyelocytic leukemia-retinoic acid receptor α) fusion protein causes blockade of the retinoic acid (RA) pathway; however, in types of acute myeloid leukemia (AML) other than APL, the mechanism of RA pathway inactivation is not fully understood. This study revealed the potential mechanism of high ATRA sensitivity of mixed-lineage leukemia (MLL)-AF9-positive AML compared with MLL-AF4/5q31-positive AML. Treatment with ATRA induced significant myeloid differentiation accompanied by upregulation of RARα, C/EBPα, C/EBPε and PU.1 in MLL-AF9-positive but not in MLL-AF4/5q31-positive cells. Combining ATRA with cytarabine had a synergistic antileukemic effect in MLL-AF9-positive cells in vitro. The level of dimethyl histone H3 lysine 4 (H3K4me2) in the RARα gene-promoter region, PU.1 upstream regulatory region (URE) and RUNX1+24/+25 intronic enhancer was higher in MLL-AF9-positive cells than in MLL-AF4-positive cells, and inhibiting lysine-specific demethylase 1, which acts as a histone demethylase inhibitor, reactivated ATRA sensitivity in MLL-AF4-positive cells. These findings suggest that the level of H3K4me2 in the RARα gene-promoter region, PU.1 URE and RUNX1 intronic enhancer is determined by the MLL-fusion partner. Our findings provide insight into the mechanisms of ATRA sensitivity in AML and novel treatment strategies for ATRA-resistant AML

  16. Electronic structure calculations and optical properties of a new organic-inorganic luminescent perovskite: (C9H19NH3)2PbI2Br2

    International Nuclear Information System (INIS)

    Abid, H.; Samet, A.; Dammak, T.; Mlayah, A.; Hlil, E.K.; Abid, Y.

    2011-01-01

    (C 9 H 19 NH 3 ) 2 PbI 2 Br 2 compound is a new crystal belonging to the large hybrid organic-inorganic perovskites compounds family. Optical properties are investigated by optical absorption UV-visible and photoluminescence (PL) techniques. Bands to band absorption peak at 2.44 eV as well as an extremely strong yellow-green photoluminescence emission at 2.17 eV is observed at room temperature. First principle calculations based on the DFT and FLAPW methods combined with LDA approximation are performed as well. Density of state close to the gap is presented and discussed in terms of optical absorption and photoluminescence experimental results. The perfect agreement between experimental data and electronic structure calculations is highlighted. - Highlights: → (C 9 H 19 NH 3 ) 2 PbI 2 Br 2 compound is a new crystal with strong yellow-green PL emission at 2.17 eV. → Calculations based on DFT and FLAPW method combined with LDA approximation are performed. → Gap, optical transitions and exciton presence were predicted from density of states. → Agreement between experimental data and electronic structure calculations.

  17. IL-9-Producing Mast Cell Precursors and Food Allergy

    Science.gov (United States)

    2016-10-01

    that Stat6-/- BM progenitors in sensitized wild type recipients that were competent in GFP- CD4+ST2+TH2 and ILC2s ( innate lymphoid cells ) generation, and...report demonstrated that type 2 innate lymphoid cells (ILC2s) lack cell lineage markers and have the potential to pro- duce IL-9 (Wilhelm et al., 2011...Fujii, H., and Koyasu, S. (2010). Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells . Nature 463, 540–544

  18. Radiation-induced apoptosis in F9 teratocarcinoma cells

    International Nuclear Information System (INIS)

    Langley, R.E.; Palayoor, S.T.; Coleman, C.N.; Bump, E.A.

    1994-01-01

    We have found that F9 murine teratocarcinoma cells undergo morphological changes and internucleosomal DNA fragmentation characteristic of apoptosis after exposure to ionizing radiation. We studied the time course, radiation dose-response, and the effects of protein and RNA synthesis inhibitors on this process. The response is dose dependent in the range 2-12 Gy. Internucleosomal DNA fragmentation can be detected as early as 6 h postirradiation and is maximal by 48 h. Cycloheximide, a protein synthesis inhibitor, and 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole, an RNA synthesis inhibitor, both induced internucleosomal DNA fragmentation in the unirradiated cells and enhanced radiation-induced DNA fragmentation. F9 cells can be induced to differentiate into cells resembling endoderm with retinoic acid. After irradiation, differentiated F9 cells exhibit less DNA fragmentation than stem cells. This indicates that ionizing radiation can induce apoptosis in non-lymphoid tumours. We suggest that embryonic tumour cells may be particularly susceptible to agents that induce apoptosis. (Author)

  19. Radiation-induced apoptosis in F9 teratocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R E; Palayoor, S T; Coleman, C N; Bump, E A [Joint Center for Radiation Therapy and Dana Farber Cancer Inst., Boston (United States)

    1994-05-01

    We have found that F9 murine teratocarcinoma cells undergo morphological changes and internucleosomal DNA fragmentation characteristic of apoptosis after exposure to ionizing radiation. We studied the time course, radiation dose-response, and the effects of protein and RNA synthesis inhibitors on this process. The response is dose dependent in the range 2-12 Gy. Internucleosomal DNA fragmentation can be detected as early as 6 h postirradiation and is maximal by 48 h. Cycloheximide, a protein synthesis inhibitor, and 5,6-dichloro-1-[beta]-D-ribofuranosylbenzimidazole, an RNA synthesis inhibitor, both induced internucleosomal DNA fragmentation in the unirradiated cells and enhanced radiation-induced DNA fragmentation. F9 cells can be induced to differentiate into cells resembling endoderm with retinoic acid. After irradiation, differentiated F9 cells exhibit less DNA fragmentation than stem cells. This indicates that ionizing radiation can induce apoptosis in non-lymphoid tumours. We suggest that embryonic tumour cells may be particularly susceptible to agents that induce apoptosis. (Author).

  20. High Spectral Resolution SOFIA/EXES Observations of C2H2 toward Orion IRc2

    Science.gov (United States)

    Rangwala, Naseem; Colgan, Sean W. J.; Le Gal, Romane; Acharyya, Kinsuk; Huang, Xinchuan; Lee, Timothy J.; Herbst, Eric; deWitt, Curtis; Richter, Matt; Boogert, Adwin; McKelvey, Mark

    2018-03-01

    We present high spectral resolution observations from 12.96 to 13.33 microns toward Orion IRc2 using the mid-infrared spectrograph, Echelon-Cross-Echelle Spectrograph (EXES), at Stratospheric Observatory for Infrared Astronomy (SOFIA). These observations probe the physical and chemical conditions of the Orion hot core, which is sampled by a bright, compact, mid-infrared background continuum source in the region, IRc2. All 10 of the rovibrational C2H2 transitions expected in our spectral coverage are detected with high signal-to-noise ratios (S/Ns), yielding continuous coverage of the R-branch lines from J = 9–8 to J = 18–17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. The isotopologue, 13CCH2, is clearly detected with a high S/N. This enabled a direct measurement of the 12C/13C isotopic ratio for the Orion hot core of 14 ± 1 and an estimated maximum value of 21. We also detected several HCN rovibrational lines. The ortho and para C2H2 ladders are clearly separate, and tracing two different temperatures, 226 K and 164 K, respectively, with a non-equilibrium ortho to para ratio (OPR) of 1.7 ± 0.1. Additionally, the ortho and para V LSR values differ by about 1.8 ± 0.2 km s‑1, while the mean line widths differ by 0.7 ± 0.2 km s‑1, suggesting that these species are not uniformly mixed along the line of sight to IRc2. We propose that the abnormally low C2H2 OPR could be a remnant from an earlier, colder phase, before the density enhancement (now the hot core) was impacted by shocks generated from an explosive event 500 years ago.

  1. Relationship between X-ray exposure and malignant transformation in C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Fox, M.; Murphy, G.; Little, J.B.

    1980-01-01

    The appearance of transformed foci after x-irradiation of the C3H 10T1/2 line of murine cells requires extensive proliferation followed by prolonged incubation under conditions of confluence. When the progeny of irradiated cells are resuspended and plated to determine the number of potential transformed foci, the absolute yield is constant over a wide range of dilutions and is similar to that observed in cultures that have not been resuspended. In addition, for cells exposed to a given x-ray dose, the number of transformed foci per dish is independent of the number of irradiated cells. These observations suggest that few, if any, of the transformed clones occur as a direct consequence of the x-ray exposure and challenge the hypothesis that transformed foci are the clonal products of occasional cells that have experienced an x-ray-induced mutational change. Rather, it appears that at least two steps are involved. We suggest that exposure to x-rays results in a change, for example, the induction or expression of some cell function, in many or all of the cells and that this change is transmitted to the progeny of the surviving cells; a consequence of this change is an enhanced probability of the occurrence of a second step, transformation, when these cells are maintained under conditions of confluence

  2. Crystallographic characterization of divalent organosamarium compound (C5H5)2Sm(THF)2

    International Nuclear Information System (INIS)

    Jagannatha Swamy, S.

    2002-01-01

    The single pot reaction between SmX 2 (X = Cl - , I - ) and BuLi in THF at -40 degC, followed by the addition of C 5 H 5 - Na + results in a dark red solution. Leaving the concentrated reaction mixture at -25 degC for two days in a deep freezer results in the formation of the crystals of the compound, (C 5 H 5 ) 2 ; Sm(THF) 2 . The compound is insoluble in any solvent and it has been characterized by conventional methods. The crystals are monoclinic with space group C2/c, and a = 13.416(1), b = 9.644(1), c = 14.129(2) pm, β109.873(9) 0 and z = 4 for ρcalcd = 1.64 g cm -3 . Least squares refinement on the basis of 1804 observed reflections has led to a final R value of 0.037 and R w = 0.054. (author)

  3. Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes

    Science.gov (United States)

    Schoneich, Christian; Dremina, Elena; Galeva, Nadezhda; Sharov, Victor

    2014-01-01

    Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cell but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad. PMID:24129924

  4. Um estudo teórico de propriedades moleculares em complexos de hidrogênio trimoleculares C2H4···2HF, C2H2···2HF e C3h6···2HF A theoretical study of molecular properties of C2H4···2HF, C2H2···2HF AND C3H6···2HF trimolecular hydrogen-bonded complexes

    Directory of Open Access Journals (Sweden)

    Boaz G. Oliveira

    2008-01-01

    Full Text Available We present a theoretical study of molecular properties in C2H4···2HF, C2H2···2HF and C3H6···2HF trimolecular hydrogen-bonded complexes. From B3LYP/6-311++G(d,p calculations, the most important structural deformations are related to the C=C (C2H4, C≡C (C2H2, C-C (C3H6 and HF bond lengths. According to the Bader's atoms in molecules and CHELPG calculations, it was identified a tertiary interaction between the fluorine atom of the second hydrofluoric acid molecule and hydrogen atoms of the ethylene and acetylene within the C2H4···2HF and C2H2···2HF complexes, respectively. Additionally, the evaluation of the infrared spectrum characterized the new vibrational modes and bathochromic effect of the HF molecules.

  5. Corrosion studies of thermally sensitised AGR fuel element brace in pH7 and pH9.2 borate solutions

    International Nuclear Information System (INIS)

    Tyfield, S.P.; Smith, C.A.

    1987-04-01

    Brace and cladding of AGR fuel elements sensitised in reactor are susceptible to intergranular and crevice corrosion, which may initiate in the pH7 borate pond storage environment of CEGB/SSEB stations. This report considers the benefit in corrosion control that is provided by raising the pond solution pH to 9.2, whilst maintaining the boron level at 1250 gm -3 . The greater corrosion protection provided by pH9.2 solution compared to the pH7 borate solution is demonstrated by a series of tests with non-active laboratory sensitised brace samples exposed to solutions dosed with chloride or sulphate in order to promote localised corrosion. The corrosion tests undertaken consisted of 5000 hour immersions at 32 0 C and shorter term electrochemically monitored experiments (rest potential, impedance, anodic current) generally conducted at 22 0 C. The pH9.2 solution effectively inhibited the initiation of crevice and intergranular corrosion in the presence of low levels of chloride and sulphate, whereas the pH7 solution did not always do so. However, the pH9.2 solution, dosed with 40 gm -3 chloride, failed to suppress fully crevice corrosion initiated in unborated 40 gm -3 chloride solution at 22 0 C. Fluoride is not deleterious at low levels ∼ 10 gm -3 in the borate solutions. The significant improvement in corrosion control demonstrated for the change from pH7 to pH9.2 borate solution on laboratory sensitised brace samples should ideally be confirmed using complete irradiated AGR fuel elements. (U.K.)

  6. Pre-analytical variables of circulating cell-free nucleosomes containing 5-methylcytosine DNA or histone modification H3K9Me3

    DEFF Research Database (Denmark)

    Rasmussen, Louise; Herzog, Marielle; Rømer, Eva

    2016-01-01

    Aim: To evaluate pre-analytical variables of circulating cell-free nucleosomes containing 5-methylcytosine DNA (5mC) or histone modification H3K9Me3 (H3K9Me3). Materials and methods: Six studies were designed to assess the possible influence of pre-analytical variables. Study 1: influence of stasis...... significantly lower levels of 5mC or H3K9Me3 compared to levels in healthy individuals. Conclusion: Levels of 5mC or H3K9Me3 appear stable in most pre-analytical settings if blood samples are stored at room temperature until centrifugation....

  7. Intracellular pH and 42.00 C heat response of CHO cells cultured at pH 6.6

    International Nuclear Information System (INIS)

    Cook, J.A.; Fox, M.H.

    1987-01-01

    The authors previously reported that cells under chronic low pH (6.6) conditions have altered thermotolerance. They further characterized both the doubling time (t/sub d/) and the internal pH (pH/sub 1/) of CHO cells continuously cultured at pH 6.6 for times greater than one year. The following differences were noted: 1) A t/sub d/ of 16 hr compared to a t/sub d/ of 12 hr for cells at normal pH (7.3) and a t/sub d/ of 25 hr for the acute low pH cells (pH = 6.6; incubation time = 4 hr). 2) A pH/sub i/ 0.1-0.15 pH units > normal cells and 0.3 pH units > acute low pH cells. 3) Survival at 42.0 0 C which differed from both normal and acute low pH cells. The chronic culture was still quite sensitive to 42.0 0 C treatments during the first 5 hr, but developed tolerance at a higher level than cells under acute low pH conditions. The pH/sub i/ of the chronic culture responded to 42.0 0 C heating in a manner similar to that for acute low pH cells. Whether this culture represents a normal response to long term low pH exposure, or was the response of a mutant population is at the present unknown

  8. Generation of a Nrf2 homozygous knockout human embryonic stem cell line using CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    So-Jung Kim

    2017-03-01

    Full Text Available Nuclear factor erythroid 2-related factor 2 (NFE2L2 or Nrf2 is a well-known transcription factor that regulates the expression of a large number of anti-oxidant genes in mammalian cells (J.H. Kim et al., 2014. Here, we generated a homozygous Nrf2 knockout human embryonic stem cell (hESC line, H9Nrf2KO-A13, using the CRISPR/Cas9 genome editing method. The Nrf2 homozygous knockout H9 cell line maintains pluripotency, differentiation potential into three germ layers, and a normal karyotype.

  9. Formation of closo-rhodacarboranes with the η2,η3-(CH2=CHC5H6) ligand in the reaction of μ-dichloro-bis[(η4-norbornadiene)rhodium] with nido-dicarbaundecaborates [K][nido-7-R1-8-R2-7,8-C2B9H10

    International Nuclear Information System (INIS)

    Safronov, A.V.; Sokolova, M.N.; Vorontsov, E.V.; Petrovskij, P.V.; Barakovskaya, I.G.; Chizhevskij, I.T.

    2004-01-01

    New closo-(η 2 ,η 3 -(4-vinylcyclopentene-3-yl)rhodacarboranes were prepared by reaction of the complex [(η 4 -C 7 H 8 )RhCl] 2 (C 7 H 8 -norbornadiene) with salts of substituted nido-dicarbaundecaborates [K][nido-7-R 1 -8-R 2 -7,8-C 2 B 9 H 10 ] (R 1 =R 2 =H (a); R = R 2 =Me (b); R 1 , R 2 =1',2'-(CH 2 ) 2 C 6 H 4 (c); R 1 =Me, R 2 =Ph (d) in CH 2 Cl 2 . The structure of the compounds prepared in solution was studied by the method of multinuclear NMR spectroscopy. A probable mechanism of the norbornadiene ligand regrouping was suggested [ru

  10. Development of Li+ Selective Microelectrode Using PPy [3,3'-Co(1,2-C2B9H112] as a Solid Contact

    Directory of Open Access Journals (Sweden)

    Safae MERZOUK

    2014-05-01

    Full Text Available Planar all solid-contact ion-selective microelectrodes (ASC-µISEs with a conducting polymer (polypyrrole doped with cobaltabis(dicarbollide anion [3,3'-Co(1,2-C2B9H112] as a solid contact layer between the polymeric membrane sensitive to lithium (Li and the gold (Au substrate were prepared and investigated. The N,N-dicyclohexyl-N',N'-diisobutylyl-cis-cyclohexane-1,2- dicarboxamide (ETH 1810 was used as ionophore for Li recognition. The developed microelectrodes show a linear response for Li+ concentration between 6´10-5 M and 1´10-1 M with slope of 53±1 mV per decade and exhibits remarkably enhanced selectivity for Li over other cations. The calibration plots using artificial serum containing three different levels of sodium chloride (NaCl (135, 145 and 155 mM as a background electrolyte were shown a linear response with a slope of 50 mV per decade in the clinical range of interest (0.7-1.5´10-3 M Li+. The developed microelectrodes will be used to determine Li+ concentrations in serum samples of manic-depressive patients under Li treatment.

  11. Amino acid analysis and cell cycle dependent phosphorylation of an H1-like, butyrate-enhanced protein (BEP; H10; IP25) from Chinese hamster cells

    International Nuclear Information System (INIS)

    D'Anna, J.A.; Gurley, L.R.; Becker, R.R.; Barham, S.S.; Tobey, R.A.; Walters, R.A.

    1980-01-01

    A fraction enriched in the butyrate-enhanced protein (BEP) has been isolated from Chinese hamster (line CHO) cells by perchloric acid extraction and Bio-Rex 70 chromatography. Amino acid analyses indicate that the composition of BEP resembles that of CHO H1; however, BEP contains 11% less alanine than H1, and, in contrast to H1, BEP contains methionine. Treatment of BEP with cyanogen bromide results in the cleavage of a small fragment of approx. 20 amino acids so that the large fragment seen in sodium dodecyl sulfate-acrylamide gels has a molecular weight of approx. 20,000. Radiolabeling and electrophoresis indicate that BEP is phosphorylated in a cell cycle dependent fashion. These data suggest that (1) BEP is a specialized histone of the H1 class and (2) BEP is the species equivalent of calf lung histone H1 0 , rat H1 0 , and IP 25 , a protein enhanced in differentiated Friend erythroleukemia cells. The data also indicate that putative HMG1 and HMG2 proteins do not undergo the extensive cell cycle dependent phosphorylations measured for histone H1 and BEP

  12. File list: His.PSC.20.H3K9ac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.H3K9ac.AllCell mm9 Histone H3K9ac Pluripotent stem cell SRX185844,SRX185...848,SRX873351,SRX873349,SRX873345,SRX097641,SRX130021,SRX873347,SRX187620 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.20.H3K9ac.AllCell.bed ...

  13. Experimental studies of collisions of excited Li(4p) atoms with C2H4, C2H6, C3H8 and theoretical interpretation of the Li-C2H4 system

    International Nuclear Information System (INIS)

    Semmineh, Natenael; Bililign, Solomon; Hagebaum-Reignier, Denis; Jeung, Gwang-Hi

    2009-01-01

    Collisions of excited Li(4p) states with C 2 H 4 , C 2 H 6 and C 3 H 8 are studied experimentally using far-wing scattering state spectroscopy techniques. High-level ab initio quantum mechanical studies of the Li-C 2 H 4 system are conducted to explain the results of the experiment for this system. The recent and present works indicate that knowledge of the internal structure of the perturber (C 2 H 4 , C 2 H 6 and C 3 H 8 ) is essential to fully understand the interaction between the metal and the hydrocarbon molecules. The ab initio calculation shows that the Li(4d) (with little probability under the experimental conditions) and the Li(4p) can be formed directly through the laser pumping. It also shows that the Li(4s) and Li(3d) states can be formed through an electronic diabatic coupling involving a radiationless process. However, the Li(3p), Li(3s) and Li(2p) states can only be formed through a secondary diabatic coupling which is a much less probable process than the primary one. The calculation limited to two C 2v sections of the potential energy surfaces (PESs) shows peculiar multi-state crossings that we have never seen in other lithium complexes we studied

  14. Cardioprotective effect of breviscapine: inhibition of apoptosis in H9c2 cardiomyocytes via the PI3K/Akt/eNOS pathway following simulated ischemia/reperfusion injury.

    Science.gov (United States)

    Wang, Jun; Ji, Shu-Yun; Liu, Si-Zhu; Jing, Rui; Lou, Wei-Juan

    2015-09-01

    Breviscapine (BE) is a standardized Chinese herbal medicine extracted from Erigeron breviscapus (Vant.) Hand.-Mazz. It has been widely used to treat cardiovascular and cerebrovascular diseases. However, there are no reports on the protective effects and underlying molecular mechanisms of BE action on myocardial ischemia/reperfusion (MI/R)-induced cardiomyocyte apoptosis. In the present study, we aimed to confirm the cardioprotective effect of BE from MI/R injury in vivo, and investigate the potential molecular mechanisms against simulated ischemia/reperfusion (SI/R)-induced cardiomyocyte apoptosis in vitro. The rat model of MI/R injury was induced by 30 min of transient vessel occlusion followed by 3 h of reperfusion. BE significantly reduced the myocardium infarct size and production of cardiac troponin (cTnl) in serum. In an in vitro experiment, H9c2 cardiomyocytes were incubated with vehicle or ischemic buffer during hypoxia; then, they were reoxygenated with or without BE. BE markedly improved the cell viability and decreased lactate dehydrogenase (LDH) release. We confirmed the anti-apoptotic effect of BE with the Hoechst 33258 staining assay, and this effect was associated with an increase in Bcl-2 and a decrease in active caspase-3 expression. Western blot analysis also showed that BE increased the phosphorylation of Akt and eNOS in H9c2 cells, and the protective effects of BE were partially inhibited by the phosphatidylinositol 3'-kinase (PI3K) specific inhibitor LY294002. Our results suggested that BE could provide significant cardioprotection against MI/R injury, and the potential mechanisms might involve suppression of cardiomyocyte apoptosis through activating the PI3K/Akt/eNOS signaling pathway.

  15. Mesenchymal Stem Cells Control Complement C5 Activation by Factor H in Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Haijun Ma

    2018-06-01

    Full Text Available Lupus nephritis (LN is one of the most severe complications of systemic lupus erythematosus (SLE caused by uncontrolled activation of the complement system. Mesenchymal stem cells (MSCs exhibit clinical efficacy for severe LN in our previous studies, but the underlying mechanisms of MSCs regulating complement activation remain largely unknown. Here we show that significantly elevated C5a and C5b-9 were found in patients with LN, which were notably correlated with proteinuria and different renal pathological indexes of LN. MSCs suppressed systemic and intrarenal activation of C5, increased the plasma levels of factor H (FH, and ameliorated renal disease in lupus mice. Importantly, MSCs transplantation up-regulated the decreased FH in patients with LN. Mechanistically, interferon-α enhanced the secretion of FH by MSCs. These data demonstrate that MSCs inhibit the activation of pathogenic C5 via up-regulation of FH, which improves our understanding of the immunomodulatory mechanisms of MSCs in the treatment of lupus nephritis. Keywords: Lupus nephritis, C5, MSCs, FH

  16. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    Science.gov (United States)

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  17. Induction of Intracellular Ca2+ and pH Changes in Sf9 Insect Cells by Rhodojaponin-III, A Natural Botanic Insecticide Isolated from Rhododendron molle

    Directory of Open Access Journals (Sweden)

    Yan-Bo Zhang

    2011-04-01

    Full Text Available Many studies on intracellular calcium ([Ca2+]i and intracellular pH (pHi have been carried out due to their importance in regulation of different cellular functions. However, most of the previous studies are focused on human or mammalian cells. The purpose of the present study was to characterize the effect of Rhodojaponin-III (R-III on [Ca2+]i and pHi and the proliferation of Sf9 cells. R-III strongly inhibited Sf9 cells proliferation with a time- and dose-dependent manner. Flow cytometry established that R-III interfered with Sf9 cells division and arrested them in G2/M. By using confocal scanning technique, effects of R-III on intracellular free calcium ([Ca2+]i and intracellular pH (pHi in Sf9 cells were determined. R-III induced a significant dose-dependent (1, 10, 100, 200 μg/mL increase in [Ca2+]i and pHi of Sf9 cells in presence of Ca2+-containing solution (Hanks and an irreversible decrease in the absence of extra cellular Ca2+. We also found that both extra cellular Ca2+ and intracellular Ca2+ stores contributed to the increase of [Ca2+]i, because completely treating Sf9 cells with CdCl2 (5 mM, a Ca2+ channels blocker, R-III (100 μg/mL induced a transient elevation of [Ca2+]i in case of cells either in presence of Ca2+ containing or Ca2+ free solution. In these conditions, pHi showed similar changes with that of [Ca2+]i on the whole. Accordingly, we supposed that there was a certain linkage for change of [Ca2+]i, cell cycle arrest, proliferation inhibition in Sf9 cells induced by R-III.

  18. MAPK inhibitors, particularly the JNK inhibitor, increase cell death effects in H2O2-treated lung cancer cells via increased superoxide anion and glutathione depletion.

    Science.gov (United States)

    Park, Woo Hyun

    2018-02-01

    Reactive oxygen species (ROS), especially hydrogen peroxide (H2O2), induce apoptosis in cancer cells by regulating mitogen-activated protein kinase (MAPK) signaling pathways. The present study investigated the effects of MAPK inhibitors on cell growth and death as well as changes in ROS and glutathione (GSH) levels in H2O2-treated Calu-6 and A549 lung cancer cells. H2O2 inhibited growth and induced death of Calu-6 and A549 lung cancer cells. All MAPK inhibitors appeared to enhance growth inhibition in H2O2-treated Calu-6 and A549 lung cancer cells and increased the percentage of Annexin V-FITC-positive cells in these cancer cells. Among the MAPK inhibitors, a JNK inhibitor significantly augmented the loss of mitochondrial membrane potential (MMP; ΔΨm) in H2O2-treated Calu-6 and A549 lung cancer cells. Intracellular ROS levels were significantly increased in the H2O2-treated cells at 1 and 24 h. Only the JNK inhibitor increased ROS levels in the H2O2-treated cells at 1 h and all MAPK inhibitors raised superoxide anion levels in these cells at 24 h. In addition, H2O2 induced GSH depletion in Calu-6 and A549 cells and the JNK inhibitor significantly enhanced GSH depletion in H2O2‑treated cells. Each of the MAPK inhibitors altered ROS and GSH levels differently in the Calu-6 and A549 control cells. In conclusion, H2O2 induced growth inhibition and death in lung cancer cells through oxidative stress and depletion of GSH. The enhanced effect of MAPK inhibitors, especially the JNK inhibitor, on cell death in H2O2-treated lung cancer cells was correlated with increased O2•- levels and GSH depletion.

  19. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping; Hatzell, Marta C; Logan, Bruce E

    2014-01-01

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.

  20. Microbial Reverse-Electrodialysis Electrolysis and Chemical-Production Cell for H2 Production and CO2 Sequestration.

    KAUST Repository

    Zhu, Xiuping

    2014-03-24

    Natural mineral carbonation can be accelerated using acid and alkali solutions to enhance atmospheric CO2 sequestration, but the production of these solutions needs to be carbon-neutral. A microbial reverse-electrodialysis electrolysis and chemical-production cell (MRECC) was developed to produce these solutions and H2 gas using only renewable energy sources (organic matter and salinity gradient). Using acetate (0.82 g/L) as a fuel for microorganisms to generate electricity in the anode chamber (liquid volume of 28 mL), 0.45 mmol of acid and 1.09 mmol of alkali were produced at production efficiencies of 35% and 86%, respectively, along with 10 mL of H2 gas. Serpentine dissolution was enhanced 17-87-fold using the acid solution, with approximately 9 mL of CO2 absorbed and 4 mg of CO2 fixed as magnesium or calcium carbonates. The operational costs, based on mineral digging and grinding, and water pumping, were estimated to be only $25/metric ton of CO2 fixed as insoluble carbonates. Considering the additional economic benefits of H2 generation and possible wastewater treatment, this method may be a cost-effective and environmentally friendly method for CO2 sequestration.

  1. The +37 kb Cebpa Enhancer Is Critical for Cebpa Myeloid Gene Expression and Contains Functional Sites that Bind SCL, GATA2, C/EBPα, PU.1, and Additional Ets Factors

    Science.gov (United States)

    Cooper, Stacy; Guo, Hong; Friedman, Alan D.

    2015-01-01

    The murine Cebpa gene contains an evolutionarily conserved 453 bp enhancer located at +37 kb that, together with its promoter, directs expression to myeloid progenitors and to long-term hematopoietic stem cells in transgenic mice. In human acute myeloid leukemia cases, the enhancer lacks point mutations but binds the RUNX1-ETO oncoprotein. The enhancer contains the H3K4me1 and H3K27Ac histone modifications, denoting an active enhancer, at progressively increasing levels as long-term hematopoietic stem cells transition to granulocyte-monocyte progenitors. We previously identified four enhancer sites that bind RUNX1 and demonstrated that their integrity is required for maximal enhancer activity in 32Dcl3 myeloid cells. The +37 kb Cebpa enhancer also contains C/EBP, Ets factor, Myb, GATA, and E-box consensus sites conserved in the human +42 kb CEBPA enhancer. Mutation of the two C/EBP, seven Ets, one Myb, two GATA, or two E-box sites reduces activity of an enhancer-promoter reporter in 32Dcl3 cells. In 293T gel shift assays, exogenous C/EBPα binds both C/EBP sites, c-Myb binds the Myb site, PU.1 binds the second Ets site, PU.1, Fli-1, ERG, and Ets1 bind the sixth Ets site, GATA2 binds both GATA sites, and SCL binds the second E-box. Endogenous hematopoietic RUNX1, PU.1, Fli-1, ERG, C/EBPα, GATA2, and SCL were previously shown to bind the enhancer, and we find that endogenous PU.1 binds the second Ets site in 32Dcl3 cells. Using CRISPR/Cas9, we developed 32Dcl3 lines in which the wild-type enhancer alleles are replaced with a variant mutant in the seven Ets sites. These lines have 20-fold reduced Cebpa mRNA when cultured in IL-3 or G-CSF, demonstrating a critical requirement for enhancer integrity for optimal Cebpa expression. In addition, these results indicate that the +37 kb Cebpa enhancer is the focus of multiple regulatory transcriptional pathways that impact its expression during normal hematopoiesis and potentially during myeloid transformation. PMID:25938608

  2. Helicobacter pylori-elicited induction in gastric mucosal matrix metalloproteinase-9 (MMP-9) release involves ERK-dependent cPLA2 activation and its recruitment to the membrane-localized Rac1/p38 complex.

    Science.gov (United States)

    Slomiany, B L; Slomiany, A

    2016-06-01

    Matrix metalloproteinases (MMPs) are a family of endopeptidases implicated in a wide rage of degenerative and inflammatory diseases, including Helicobacter pylori-associated gastritis, and gastric and duodenal ulcer. As gastric mucosal inflammatory responses to H. pylori are characterized by the rise in MMP-9 production, as well as the induction in mitogen-activated protein kinase (MAPK) and Rac1 activation, we investigated the role of Rac1/MAPK in the processes associated with the release of MMP-9. We show that H. pylori LPS-elicited induction in gastric mucosal MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A2 (cPLA2). Further, we demonstrate that the LPS-induced MMP-9 release requires ERK-mediated phosphorylation of cPLA2 on Ser(505) that is essential for its membrane localization with Rac1, and that this process necessitates p38 participation. Moreover, we reveal that the activation and membrane translocation of p38 to the Rac1-GTP complex plays a pivotal role in cPLA2-dependent enhancement in MMP-9 release. Hence, our findings provide a strong evidence for the role of ERK/cPLA2 and Rac1/p38/cPLA2 cascade in H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 release.

  3. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling

    Science.gov (United States)

    Tang, Jing; Quan, Yingzhou; Zhang, Yueyu; Jiang, Min; Al-Enizi, Abdullah M.; Kong, Biao; An, Tiance; Wang, Wenshuo; Xia, Limin; Gong, Xingao; Zheng, Gengfeng

    2016-03-01

    living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c5nr09236a

  4. Novel routes to 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines and 5,6,9,10,11,11a-hexahydro-8H-pyrido[1,2-a]pyrrolo[2,1-c]pyrazines.

    Science.gov (United States)

    Katritzky, Alan R; Jain, Ritu; Xu, Yong-Jiang; Steel, Peter J

    2002-11-15

    Condensation reactions of benzotriazole and 2-(pyrrol-1-yl)-1-ethylamine (1) with formaldehyde and glutaric dialdehyde, respectively, afforded intermediates 2 and 6. Subsequent nucleophilic substitutions of the benzotriazole group in 2 and 6 with Grignard reagents, sodium cyanide, and sodium borohydride gave 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines 3a-e, 4, 5 and 5,6,9,10,11,11a-hexahydro-8H-pyrido[1,2-a]pyrrolo[2,1-c]pyrazines 7a-c, 8, 9, respectively, in good yields.

  5. Radioprotective role of H2S/CSE pathway in Chang liver cells

    International Nuclear Information System (INIS)

    Pan Yan; Ye Shuang; Yuan Dexiao; Zhang Jianghong; Bai Yang; Shao Chunlin

    2012-01-01

    Radiation-induced liver cell damage may be life-threatening. Here, we investigated whether hydrogen sulfide (H 2 S)/cystathionine γ-lyase (CSE) pathway could serve the protective role toward radiation in normal human liver cells. Our data showed that pretreatment of cells with H 2 S donor, sodium hydrosulfide (NaHS) significantly attenuated radiation induced micronuclei formation and improved cell viability. However, the use of DL-propargylglycine (PPG), a potent inhibitor of CSE, markedly enhanced the cell-killing effect induced by radiation. Exposure of cells to 2 Gy γ-radiation led to significant increases of the endogenous H 2 S content. The mRNA and protein expressions of CSE also increased after radiation in a time-dependent manner, while the expression of cystathionine β-synthase (CBS), another endogenous H 2 S synthetase, did not change significantly. Notably, radiation induced production of reactive oxygen species (ROS) was significantly reversed by the pretreatment of NaHS, while blockage of CSE activity resulted in an enhanced ROS production in irradiated cells. Moreover, NaHS markedly suppressed radiation-induced phosphorylation of P53, decrease of Bcl-2/Bax, and activity of nuclear factor kappaB (NF-κB). In conclusion, our finding demonstrates that H 2 S/CSE pathway plays a radioprotection role by inhibiting radiation-induced ROS production, P53 phosphorylation, NF-κB activation and decrease of Bcl-2/Bax, indicating that modulation of H 2 S may be a novel protection strategy for liver radiation injury in radiotherapy.

  6. Metal-Free 2D/2D Phosphorene/g-C3 N4 Van der Waals Heterojunction for Highly Enhanced Visible-Light Photocatalytic H2 Production.

    Science.gov (United States)

    Ran, Jingrun; Guo, Weiwei; Wang, Hailong; Zhu, Bicheng; Yu, Jiaguo; Qiao, Shi-Zhang

    2018-04-30

    The generation of green hydrogen (H 2 ) energy using sunlight is of great significance to solve the worldwide energy and environmental issues. Particularly, photocatalytic H 2 production is a highly promising strategy for solar-to-H 2 conversion. Recently, various heterostructured photocatalysts with high efficiency and good stability have been fabricated. Among them, 2D/2D van der Waals (VDW) heterojunctions have received tremendous attention, since this architecture can promote the interfacial charge separation and transfer and provide massive reactive centers. On the other hand, currently, most photocatalysts are composed of metal elements with high cost, limited reserves, and hazardous environmental impact. Hence, the development of metal-free photocatalysts is desirable. Here, a novel 2D/2D VDW heterostructure of metal-free phosphorene/graphitic carbon nitride (g-C 3 N 4 ) is fabricated. The phosphorene/g-C 3 N 4 nanocomposite shows an enhanced visible-light photocatalytic H 2 production activity of 571 µmol h -1 g -1 in 18 v% lactic acid aqueous solution. This improved performance arises from the intimate electronic coupling at the 2D/2D interface, corroborated by the advanced characterizations techniques, e.g., synchrotron-based X-ray absorption near-edge structure, and theoretical calculations. This work not only reports a new metal-free phosphorene/g-C 3 N 4 photocatalyst but also sheds lights on the design and fabrication of 2D/2D VDW heterojunction for applications in catalysis, electronics, and optoelectronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A point mutation in the polymerase protein PB2 allows a reassortant H9N2 influenza isolate of wild-bird origin to replicate in human cells.

    Science.gov (United States)

    Hussein, Islam T.M.; Ma, Eric J.; Meixell, Brandt; Hill, Nichola J.; Lindberg, Mark S.; Albrecht , Randy A.; Bahl, Justin; Runstadler, Jonathan A.

    2016-01-01

    H9N2 influenza A viruses are on the list of potentially pandemic subtypes. Therefore, it is important to understand how genomic reassortment and genetic polymorphisms affect phenotypes of H9N2 viruses circulating in the wild bird reservoir. A comparative genetic analysis of North American H9N2 isolates of wild bird origin identified a naturally occurring reassortant virus containing gene segments derived from both North American and Eurasian lineage ancestors. The PB2 segment of this virus encodes 10 amino acid changes that distinguish it from other H9 strains circulating in North America. G590S, one of the 10 amino acid substitutions observed, was present in ~ 12% of H9 viruses worldwide. This mutation combined with R591 has been reported as a marker of pathogenicity for human pandemic 2009 H1N1 viruses. Screening by polymerase reporter assay of all the natural polymorphisms at these two positions identified G590/K591 and S590/K591 as the most active, with the highest polymerase activity recorded for the SK polymorphism. Rescued viruses containing these two polymorphic combinations replicated more efficiently in MDCK cells and they were the only ones tested that were capable of establishing productive infection in NHBE cells. A global analysis of all PB2 sequences identified the K591 signature in six viral HA/NA subtypes isolated from several hosts in seven geographic locations. Interestingly, introducing the K591 mutation into the PB2 of a human-adapted H3N2 virus did not affect its polymerase activity. Our findings demonstrate that a single point mutation in the PB2 of a low pathogenic H9N2 isolate could have a significant effect on viral phenotype and increase its propensity to infect mammals. However, this effect is not universal, warranting caution in interpreting point mutations without considering protein sequence context.

  8. Protocatechuic acid, a novel active substance against avian influenza virus H9N2 infection.

    Directory of Open Access Journals (Sweden)

    Changbo Ou

    Full Text Available Influenza virus H9N2 subtype has triggered co-infection with other infectious agents, resulting in huge economical losses in the poultry industry. Our current study aims to evaluate the antiviral activity of protocatechuic acid (PCA against a virulent H9N2 strain in a mouse model. 120 BALB/c mice were divided into one control group, one untreated group, one 50 mg/kg amantadine hydrochloride-treated group and three PCA groups treated 12 hours post-inoculation with 40, 20 or 10 mg/kg PCA for 7 days. All the infected animals were inoculated intranasally with 0.2 ml of a A/Chicken/Hebei/4/2008(H9N2 inoculum. A significant body weight loss was found in the 20 mg/kg and 40 mg/kg PCA-treated and amantadine groups as compared to the control group. The 14 day survivals were 94.4%, 100% and 95% in the PCA-treated groups and 94.4% in the amantadine hydrochloride group, compared to less than 60% in the untreated group. Virus loads were less in the PCA-treated groups compared to the amantadine-treated or the untreated groups. Neutrophil cells in BALF were significantly decreased while IFN-γ, IL-2, TNF-α and IL-6 decreased significantly at days 7 in the PCA-treated groups compared to the untreated group. Furthermore, a significantly decreased CD4+/CD8+ ratio and an increased proportion of CD19 cells were observed in the PCA-treated groups and amantadine-treated group compared to the untreated group. Mice administered with PCA exhibited a higher survival rate and greater viral clearance associated with an inhibition of inflammatory cytokines and activation of CD8+ T cell subsets. PCA is a promising novel agent against bird flu infection in the poultry industry.

  9. Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses

    Directory of Open Access Journals (Sweden)

    Heba M. El Naggar

    2017-02-01

    Full Text Available Aim: To develop a mucosal inactivated vaccines for Newcastle disease (ND and H9N2 viruses to protect against these viruses at sites of infections through mucosal immunity. Materials and Methods: In this study, we prepared two new formulations for mucosal bivalent inactivated vaccine formulations for Newcastle and Avian Influenza (H9N2 based on the use of nanoparticles and polymer adjuvants. The prepared vaccines were delivered via intranasal and spray routes of administration in specific pathogen-free chickens. Cell-mediated and humoral immune response was measured as well as challenge trial was carried out. In addition, ISA71 water in oil was also evaluated. Results: Our results showed that the use of spray route as vaccination delivery method of polymer and nanoparticles MontanideTM adjuvants revealed that it enhanced the cell mediated immune response as indicated by phagocytic activity, gamma interferon and interleukin 6 responses and induced protection against challenge with Newcastle and Avian Influenza (H9N2 viruses. Conclusion: The results of this study demonstrate the potentiality of polymer compared to nanoparticles adjuvantes when used via spray route. Mass application of such vaccines will add value to improve the vaccination strategies against ND virus and Avian influenza viruses.

  10. [Shikimic acid inhibits the degranulation and histamine release in RBL-2H3 cells].

    Science.gov (United States)

    Chen, Xianyong; Zheng, Qianqian; Liu, Wei; Yu, Lingling; Wang, Jinling; Li, Shigang

    2017-05-01

    Objective To study the effects of shikimic acid on the proliferation of rat RBL-2H3 cells and the degranulation of the cells induced by C48/80 and its mechanism. Methods MTT assay was performed to measure the proliferation of RBL-2H3 cells treated with 3, 10, 30 μg/mL shikimic acid. Toluidine blue staining was used to observe the degranulation of RBL-2H3 cells. The release of β-hexosaminidase from RBL-2H3 cells treated with 0, 12.5, 25, 50, 80, 100 μg/mL C48/80 was determined by substrate assay. ELISA was used to detect the histamine content in the supernatant of each treated group. Results Shikimic acid at 3, 10, 300 μg/mL had no obvious inhibitory effect on the proliferation of RBL-2H3 cells. There was a dose-effect relationship between the degranulation of RBL-2H3 cells and C48/80 concentration. Shikimic acid inhibited the degranulation of RBL-2H3 cells compared with the positive control group, the β-hexosaminidase release rate and histamine release were significantly reduced in RBL-2H3 cells treated with shikimic acid and C48/80. Conclusion Shikimic acid can inhibit the degranulation of RBL-2H3 cells and reduce histamine release.

  11. Modelling of phase equilibria in CH4–C2H6–C3H8–nC4H10–NaCl–H2O systems

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Zhigang; Luo, Xiaorong; Li, Xiaochun

    2015-01-01

    Highlights: • A new model was established for the phase equilibria of C1–C2C3–nC4–brine systems. • The model can reproduce of hydrocarbon–brine equilibria to high T&P and salinity. • The model can well predict H 2 O solubility in light hydrocarbon rich phases. - Abstract: A thermodynamic model is presented for the mutual solubility of CH 4 –C 2 H 6 –C 3 H 8 –nC 4 H 10 –brine systems up to high temperature, pressure and salinity. The Peng–Robinson model is used for non-aqueous phase fugacity calculations, and the Pitzer model is used for aqueous phase activity calculations. The model can accurately reproduce the experimental solubilities of CH 4 , C 2 H 6 , C 3 H 8 and nC 4 H 10 in water or NaCl solutions and H 2 O solubility in the non-aqueous phase. The experimental data of mutual solubility for the CH 4 –brine subsystem are sufficient for temperatures exceeding 250 °C, pressures exceeding 1000 bar and NaCl molalities greater than 6 molal. Compared to the CH 4 –brine system, the mutual solubility data of C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine are not sufficient. Based on the comparison with the experimental data of H 2 O solubility in C 2 H 6 -, C 3 H 8 - or nC 4 H 10 -rich phases, the model has an excellent capability for the prediction of H 2 O solubility in hydrocarbon-rich phases, as these experimental data were not used in the modelling. Predictions of hydrocarbon solubility (at temperatures up to 200 °C, pressures up to 1000 bar and NaCl molalities greater than 6 molal) were made for the C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine systems. The predictions suggest that increasing pressure generally increases the hydrocarbon solubility in water or brine, especially in the lower-pressure region. Increasing temperature usually decreases the hydrocarbon solubility at lower temperatures but increases the hydrocarbon solubility at higher temperatures. Increasing water salinity dramatically decreases

  12. Amino acid differences in glycoproteins B (gB, C (gC, H (gH and L(gL are associated with enhanced herpes simplex virus type-1 (McKrae entry via the paired immunoglobulin-like type-2 receptor α

    Directory of Open Access Journals (Sweden)

    Chowdhury Sona

    2012-06-01

    Full Text Available Abstract Background Herpes simplex virus type-1 (HSV-1 enters into cells via membrane fusion of the viral envelope with plasma or endosomal membranes mediated by viral glycoproteins. HSV-1 virions attach to cell surfaces by binding of viral glycoproteins gC, gD and gB to specific cellular receptors. Here we show that the human ocular and highly neurovirulent HSV-1 strain McKrae enters substantially more efficiently into cells via the gB-specific human paired immunoglobulin-like type-2 receptor-α (hPILR-α. Comparison of the predicted amino acid sequences between HSV-1(F and McKrae strains indicates that amino acid changes within gB, gC, gH and gL may cause increased entry via the hPILR- α receptor. Results HSV-1 (McKrae entered substantially more efficiently than viral strain F in Chinese hamster ovary (CHO cells expressing hPIRL-α but not within CHO-human nectin-1, -(CHO-hNectin-1, CHO-human HVEM (CHO-hHVEM or Vero cells. The McKrae genes encoding viral glycoproteins gB, gC, gD, gH, gL, gK and the membrane protein UL20 were sequenced and their predicted amino acid (aa sequences were compared with virulent strains F, H129, and the attenuated laboratory strain KOS. Most aa differences between McKrae and F were located at their gB amino termini known to bind with the PILRα receptor. These aa changes included a C10R change, also seen in the neurovirulent strain ANG, as well as redistribution and increase of proline residues. Comparison of gC aa sequences revealed multiple aa changes including an L132P change within the 129-247 aa region known to bind to heparan sulfate (HS receptors. Two aa changes were located within the H1 domain of gH that binds gL. Multiple aa changes were located within the McKrae gL sequence, which were preserved in the H129 isolate, but differed for the F strain. Viral glycoproteins gD and gK and the membrane protein UL20 were conserved between McKrae and F strains. Conclusions The results indicate that the observed

  13. Densities, viscosities, and refractive indexes for {C2H5CO2(CH2)2CH3+C6H13OH+C6H6} at T=308.15 K

    International Nuclear Information System (INIS)

    Casas, Herminio; Garcia-Garabal, Sandra; Segade, Luisa; Cabeza, Oscar.; Franjo, Carlos; Jimenez, Eulogio

    2003-01-01

    In this work we present densities, kinematic viscosities, and refractive indexes of the ternary system {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 13 OH+C 6 H 6 } and the corresponding binary mixtures {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 6 }, {C 2 H 5 CO 2 (CH 2 ) 2 CH 3 +C 6 H 13 OH}, and {C 6 H 13 OH+C 6 H 6 }. All data have been measured at T=308.15 K and atmospheric pressure over the whole composition range. The excess molar volumes, dynamic viscosity deviations, and changes of the refractive index on mixing were calculated from experimental measurements. The results for binary mixtures were fitted to a polynomial relationship to estimate the coefficients and standard deviations. The Cibulka equation has been used to correlate the experimental values of ternary mixtures. Also, the experimental values obtained for the ternary mixture were used to test the empirical methods of Kohler, Jacob and Fitzner, Colinet, Tsao and Smith, Toop, Scatchard et al., and Hillert. These methods predict excess properties of the ternary mixtures from those of the involved binary mixtures. The results obtained for dynamic viscosities of the binary mixtures were used to test the semi-empirical relations of Grunberg-Nissan, McAllister, Auslaender, and Teja-Rice. Finally, the experimental refractive indexes were compared with the predicted results for the Lorentz-Lorenz, Gladstone-Dale, Wiener, Heller, and Arago-Biot equations. In all cases, we give the standard deviation between the experimental data and that calculated with the above named relations

  14. Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO

    Directory of Open Access Journals (Sweden)

    Zheng Huang

    2015-09-01

    Full Text Available We have investigated the thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap(n-type semiconductors SiC, GaN, and ZnO based on first-principles calculations and Boltzmann transport theory. Our results show that the thermoelectric performance increases from 3C to 6H, 4H, and 2H structures with an increase of hexagonality for SiC. However, for GaN and ZnO, their power factors show a very weak dependence on the polytype. Detailed analysis of the thermoelectric properties with respect to temperature and carrier concentration of 4H-SiC, 2H-GaN, and 2H-ZnO shows that the figure of merit of these three compounds increases with temperature, indicating the promising potential applications of these thermoelectric materials at high temperature. The significant difference of the polytype-dependent thermoelectric properties among SiC, GaN, and ZnO might be related to the competition between covalency and ionicity in these semiconductors. Our calculations may provide a new way to enhance the thermoelectric properties of wide-band-gap semiconductors through atomic structure design, especially hexagonality design for SiC.

  15. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility

    Science.gov (United States)

    Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan

    2014-01-01

    A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis. PMID:24997565

  16. Leptin rapidly activates PPARs in C2C12 muscle cells

    International Nuclear Information System (INIS)

    Bendinelli, Paola; Piccoletti, Roberta; Maroni, Paola

    2005-01-01

    Experimental evidence suggests that leptin operates on the tissues, including skeletal muscle, also by modulating gene expression. Using electrophoretic mobility shift assays, we have shown that physiological doses of leptin promptly increase the binding of C2C12 cell nuclear extracts to peroxisome proliferator-activated receptor (PPAR) response elements in oligonucleotide probes and that all three PPAR isoforms participate in DNA-binding complexes. We pre-treated C2C12 cells with AACOCF 3 , a specific inhibitor of cytosolic phospholipase A 2 (cPLA 2 ), an enzyme that supplies ligands to PPARs, and found that it abrogates leptin-induced PPAR DNA-binding activity. Leptin treatment significantly increased cPLA 2 activity, evaluated as the release of [ 3 H]arachidonic acid from pre-labelled C2C12 cells, as well as phosphorylation. Further, using MEK1 inhibitor PD-98059 we showed that leptin activates cPLA 2 through ERK induction. These results support a direct effect of leptin on skeletal muscle cells, and suggest that the hormone may modulate muscle transcription also by precocious activation of PPARs through ERK-cPLA 2 pathway

  17. MUC1-C activates EZH2 expression and function in human cancer cells.

    Science.gov (United States)

    Rajabi, Hasan; Hiraki, Masayuki; Tagde, Ashujit; Alam, Maroof; Bouillez, Audrey; Christensen, Camilla L; Samur, Mehmet; Wong, Kwok-Kin; Kufe, Donald

    2017-08-07

    The EZH2 histone methyltransferase is a member of the polycomb repressive complex 2 (PRC2) that is highly expressed in diverse human cancers and is associated with a poor prognosis. MUC1-C is an oncoprotein that is similarly overexpressed in carcinomas and has been linked to epigenetic regulation. A role for MUC1-C in regulating EZH2 and histone methylation is not known. Here, we demonstrate that targeting MUC1-C in diverse human carcinoma cells downregulates EZH2 and other PRC2 components. MUC1-C activates (i) the EZH2 promoter through induction of the pRB→E2F pathway, and (ii) an NF-κB p65 driven enhancer in exon 1. We also show that MUC1-C binds directly to the EZH2 CXC region adjacent to the catalytic SET domain and associates with EZH2 on the CDH1 and BRCA1 promoters. In concert with these results, targeting MUC1-C downregulates EZH2 function as evidenced by (i) global and promoter-specific decreases in H3K27 trimethylation (H3K27me3), and (ii) activation of tumor suppressor genes, including BRCA1. These findings highlight a previously unreported role for MUC1-C in activating EZH2 expression and function in cancer cells.

  18. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    International Nuclear Information System (INIS)

    Alamdar, Ambreen; Xi, Guochen; Huang, Qingyu; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2017-01-01

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Since H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. - Highlights: • Epigenetic mechanisms of arsenic-induced male reproductive toxicity remain unclear. • Arsenic disturbs the expression of key steroidogenic genes in MLTC-1 cells. • Histone H3K9 di- and tri-methylation was suppressed in arsenic-exposed cells. • Arsenic activates 3β-HSD expression through repression of histone H3K9 methylation.

  19. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    Energy Technology Data Exchange (ETDEWEB)

    Alamdar, Ambreen; Xi, Guochen [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Huang, Qingyu, E-mail: qyhuang@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M (Denmark); Tian, Meiping [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Eqani, Syed Ali Musstjab Akber Shah [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Public Health and Environment Division, Department of Biosciences, COMSAT Institute of Information & Technology, Islamabad (Pakistan); Shen, Heqing, E-mail: hqshen@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2017-07-01

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Since H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. - Highlights: • Epigenetic mechanisms of arsenic-induced male reproductive toxicity remain unclear. • Arsenic disturbs the expression of key steroidogenic genes in MLTC-1 cells. • Histone H3K9 di- and tri-methylation was suppressed in arsenic-exposed cells. • Arsenic activates 3β-HSD expression through repression of histone H3K9 methylation.

  20. Ligase-deficient yeast cells exhibit defective DNA rejoining and enhanced gamma ray sensitivity

    International Nuclear Information System (INIS)

    Moore, C.W.

    1982-01-01

    Yeast cells deficient in DNA ligase were also deficient in their capacity to rejoin single-strand scissions in prelabeled nuclear DNA. After high-dose-rate gamma irradiation (10 and 25 krads), cdc9-9 mutant cells failed to rejoin single-strand scissions at the restrictive temperature of 37 0 C. In contrast, parental (CDC9) cells (incubated with mutant cells both during and after irradiation) exhibited rapid medium-independent DNA rejoining after 10 min of post-irradiation incubation and slower rates of rejoining after longer incubation. Parental cells were also more resistant than mutant cells to killing by gamma irradiation. Approximately 2.5 +- 0.07 and 5.7 +- 0.6 single-strand breaks per 10 8 daltons were detected in DNAs from either CDC9 or cdc9-9 cells converted to spheroplasts immediately after 10 and 25 krads of irradiation, respectively. At the permissive temperature of 23 0 C, the cdc9-9 cells contained 2 to 3 times the number of DNA single-strand breaks as parental cells after 10 min to 4 h of incubation after 10 krads of irradiation, and two- to eightfold more breaks after 10 min to 2.5 h of incubation after 25 krads of irradiation. Rejoining of single-strand scissions was faster in medium. After only 10 min in buffered growth medium after 10 krads of irradiation, the number of DNA single-strand breaks was reduced to 0.32 +- 0.3 (at 23 0 C) or 0.21 +- 0.05 (at 37 0 C) per 10 8 daltons in parental cells, but remained at 2.1 +- 0.06 (at 23 0 C) or 2.3 +- 0.07 (at 37 0 C) per 10 8 daltons in mutant cells. After 10 or 25 krads of irradiation plus 1 h of incubation in medium at 37 0 C, only DNA from CDC9 cells was rejoined to the size of DNA from unirradiated cells, whereas at 23 0 C, DNAs in both strains were completely rejoined

  1. Mannose-binding lectin contributes to deleterious inflammatory response in pandemic H1N1 and avian H9N2 infection.

    Science.gov (United States)

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K W; Peiris, J S Malik; Takahashi, K; Lau, Yu Lung

    2012-01-01

    Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response.

  2. EPR study of gamma irradiated N-methyl taurine (C 3H 9NO 3S) and sodium hydrogen sulphate monohydrate (NaHSO 3·H 2O) single crystals

    Science.gov (United States)

    Yıldırım, İlkay; Karabulut, Bünyamin

    2011-03-01

    EPR study of gamma irradiated C 3H 9NO 3S and NaHSO 3.H 2O single crystals have been carried out at room temperature. There is one site for the radicals in C 3H 9NO 3S and two magnetically distinct sites for the radicals in NaHSO 3. The observed lines in the EPR spectra have been attributed to the species of SO3- and RH radicals for N-methyl taurine, and to the SO3- and OH radicals for sodium hydrogen sulfate monohydrate single crystals. The principal values of the g for SO3-, the hyperfine values of RH and OH proton splitting have been calculated and discussed.

  3. Enhanced performance of flexible dye-sensitized solar cells using flexible Ag@ZrO2/C nanofiber film as low-cost counter electrode

    Science.gov (United States)

    Yin, Xin; Xie, Xueyao; Song, Lixin; Zhai, Jifeng; Du, Pingfan; Xiong, Jie

    2018-05-01

    Highly flexible ZrO2/C nanofibers (NFs) coated with Ag nanoparticles (NPs) have been fabricated by a combination of electrospinning, carbonization and hydrothermal treatment. The obtained Ag@ZrO2/C NFs serve as low-cost counter electrodes (CEs) for flexible dye-sensitized solar cells (FDSSCs). A considerable power conversion efficiency of 4.77% is achieved, which is 27.9% higher than the η of ZrO2/C NFs CEs (3.73%) and reaches about 90% of that of Pt CE (5.26%). It can be ascribed to the fact that the introduction of Ag NPs provides a large number of accessible reaction sites for electrolyte ions to rapidly participate in the I3-/I- reaction. Moreover, the Ag NPs can produce synergistic effect with ZrO2/C NFs to further enhance transport capacity and electro-catalytic activity of the Ag@ZrO2/C film. Therefore, the considerable performance together with characteristics of simple preparation, low cost and flexibility suggests the Ag@ZrO2/C film can be promising candidate for the future generation of FDSSC.

  4. (3′R-3′-Benzyl-2′,3′-dihydro-1H-spiro[indole-3,1′-naphtho[2,3-c]pyrrole]-2,4′,9′-trione

    Directory of Open Access Journals (Sweden)

    Garima Sharma

    2012-09-01

    Full Text Available In the title compound, C26H18N2O3, the maximum deviations from planarity for the tetrahydro-1H-naphtho[2,3-c]pyrrole and indoline rings systems are 0.091 (1 and 0.012 (2 Å, respectively. These ring systems make a dihedral angle of 89.95 (6° with each other and they make dihedral angles of 73.42 (8 and 71.28 (9°, respectively, with the benzene ring. In the crystal, inversion dimers linked by pairs of N—H...O hydrogen bonds generate R22(8 loops and C—H...O interactions connect the dimers into corrugated sheets lying parallel to the bc plane.

  5. Apoptotic effect of novel Schiff Based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells

    Science.gov (United States)

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Salga, Muhammad Saleh; Karimian, Hamed; Shams, Keivan; Zahedifard, Maryam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2015-01-01

    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies. PMID:25764970

  6. A Layered Solution Crystal Growth Technique and the Crystal Structure of (C 6H 5C 2H 4NH 3) 2PbCl 4

    Science.gov (United States)

    Mitzi, D. B.

    1999-07-01

    Single crystals of the organic-inorganic perovskite (C6H5C2H4NH3)2PbCl4 have been grown at room temperature using a layered solution approach. The bottom solution layer, contained within a long straight tube, consists of PbCl2 dissolved in concentrated aqueous HCl. A less dense layer of methanol is carefully placed on top of the HCl/PbCl2 solution using a syringe. Finally, a stoichiometric quantity of C6H5C2H4NH2 (relative to the PbCl2) is added to the top of the column. As the layers slowly diffuse together, well-formed crystals of (C6H5C2H4NH3)2PbCl4 appear near the interface between the HCl/PbCl2 and C6H5C2H4NH2 solutions. The thick, plate-like crystals are well suited for X-ray crystallography studies. Room temperature intensity data were refined using a triclinic (Poverline1) cell (a=11.1463(3) Å, b=11.2181(3) Å, c=17.6966(5) Å, α= 99.173(1)°, β=104.634(1)°, γ=89.999(1)°, V=2111.8(1) Å3, Z=4, Rf/Rw=0.031/0.044). The organic-inorganic layered perovskite structure features well-ordered sheets of corner-sharing distorted PbCl6 octahedra separated by bilayers of phenethylammonium cations. Tilting and rotation of the PbCl6 octahedra within the perovskite sheets, coupled with organic cation ordering, leads to the unusual in-sheet 2ap×2ap superstructure, where ap is the lattice constant for the ideal cubic perovskite.

  7. (E-3-Propoxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one monohydrate

    Directory of Open Access Journals (Sweden)

    Burkhon Zh Elmuradov

    2010-05-01

    Full Text Available The title compound, C15H16N2O2·H2O, was synthesized via the alkylation of 3-hydroxymethylidene-2,3-dihydro-1H-pyrrolo[2,1-b]quinazolin-9-one with n-propyl iodide in the presence of sodium hydroxide. The organic molecule and the water molecule both lie on a crystallographic mirror plane. In the crystal structure, intermolecular O—H...O and O—H...N hydrogen bonds link the components into extended chains along [100].

  8. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kodaka, Manami [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yang, Zeyu [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang (China); Nakagawa, Kentaro; Maruyama, Junichi [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Xu, Xiaoyin [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou (China); Sarkar, Aradhan; Ichimura, Ayana [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Nasu, Yusuke [Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou (China); Ozawa, Takeaki [Department of Chemistry, School of Science, The University of Tokyo, Tokyo (Japan); Iwasa, Hiroaki [Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Ishigami-Yuasa, Mari [Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Shigeru [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo (Japan); Kagechika, Hiroyuki [Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo (Japan); Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo (Japan); and others

    2015-08-15

    The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced.

  9. A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells

    International Nuclear Information System (INIS)

    Kodaka, Manami; Yang, Zeyu; Nakagawa, Kentaro; Maruyama, Junichi; Xu, Xiaoyin; Sarkar, Aradhan; Ichimura, Ayana; Nasu, Yusuke; Ozawa, Takeaki; Iwasa, Hiroaki; Ishigami-Yuasa, Mari; Ito, Shigeru; Kagechika, Hiroyuki

    2015-01-01

    The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced

  10. Temperature oscillations drive cycles in the activity of MMP-2,9 secreted by a human trabecular meshwork cell line.

    Science.gov (United States)

    Li, Stanley Ka-Lok; Banerjee, Juni; Jang, Christopher; Sehgal, Amita; Stone, Richard A; Civan, Mortimer M

    2015-02-05

    Aqueous humor inflow falls 50% during sleeping hours without proportional fall in IOP, partly reflecting reduced outflow facility. The mechanisms underlying outflow facility cycling are unknown. One outflow facility regulator is matrix metalloproteinase (MMP) release from trabecular meshwork (TM) cells. Because anterior segment temperature must oscillate due to core temperature cycling and eyelid closure during sleep, we tested whether physiologically relevant temperature oscillations drive cycles in the activity of secreted MMP. Temperature of transformed normal human TM cells (hTM5 line) was fixed or alternated 12 hours/12 hours between 33°C and 37°C. Activity of secreted MMP-2 and MMP-9 was measured by zymography, and gene expression by RT-PCR and quantitative PCR. Raising temperature to 37°C increased, and lowering to 33°C reduced, activity of secreted MMP. Switching between 37°C and 33°C altered MMP-9 by 40% ± 3% and MMP-2 by 22% ± 2%. Peripheral circadian clocks did not mediate temperature-driven cycling of MMP secretion because MMP-release oscillations did not persist at constant temperature after 3 to 6 days of alternating temperatures, and temperature cycles did not entrain clock-gene expression in these cells. Furthermore, inhibiting heat shock transcription factor 1, which links temperature and peripheral clock-gene oscillations, inhibited MMP-9 but not MMP-2 temperature-driven MMP cycling. Inhibition of heat-sensitive TRPV1 channels altered total MMP secretion but not temperature-induced modulations. Inhibiting cold-sensitive TRPM-8 channels had no effect. Physiologically relevant temperature oscillations drive fluctuations of secreted MMP-2 and MMP-9 activity in hTM5 cells independent of peripheral clock genes and temperature-sensitive TRP channels. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  11. C2-Ceramide Induces Cell Death and Protective Autophagy in Head and Neck Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Wenyuan Zhu

    2014-02-01

    Full Text Available Ceramides are second messengers involved in several intracellular processes in cancer cells, amongst others. The aim of this study was to evaluate the anti-tumor efficacy of C2-ceramide (C2-Cer; N-acetyl-D-sphingosine by investigating cell death and autophagy in head and neck squamous cell carcinoma (HNSCC cells. C2-Cer showed concentration-dependent cytotoxicity in HN4 and HN30 cell lines. It simultaneously induced caspase-3-independent apoptosis and programmed necrosis. C2-Cer markedly increased the expression level of microtubule-associated protein 1 light chain 3B (LC3B type II associated with protective autophagy. An autophagy inhibitor enhanced C2-Cer-mediated cytotoxicity, while a programmed-necrosis inhibitor produced the opposite effect. Furthermore, C2-Cer up-regulated the phosphorylation of extracellular signal-regulated kinase 1/2, but down-regulated its downstream substrate phospho-mammalian target of rapamycin (p-mTOR during the autophagy process. These results suggested that C2-Cer exerts anti-tumor effects by inducing programmed apoptosis and necrosis in HNSCC, and these cytotoxic effects are enhanced by an autophagy inhibitor.

  12. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt.

    Science.gov (United States)

    Kim, Shin-Hee

    2018-03-09

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.

  13. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt

    Directory of Open Access Journals (Sweden)

    Shin-Hee Kim

    2018-03-01

    Full Text Available Highly pathogenic avian influenza (HPAI H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1 altering amino acids in hemagglutinin (HA that enable binding affinity to human-type receptors, (2 loss of the glycosylation site and 130 loop in the HA protein and (3 mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.

  14. D/H fractionation in the H2-H2O system at supercritical water conditions: Compositional and hydrogen bonding effects

    Science.gov (United States)

    Foustoukos, Dionysis I.; Mysen, Bjorn O.

    2012-06-01

    A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the

  15. E2/ER β Enhances Calcineurin Protein Degradation and PI3K/Akt/MDM2 Signal Transduction to Inhibit ISO-Induced Myocardial Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Kuan-Ho Lin

    2017-04-01

    Full Text Available Secretion of multifunctional estrogen and its receptor has been widely considered as the reason for markedly higher frequency of heart disease in men than in women. 17β-Estradiol (E2, for instance, has been reported to prevent development of cardiac apoptosis via activation of estrogen receptors (ERs. In addition, protein phosphatase such as protein phosphatase 1 (PP1 and calcineurin (PP2B are also involved in cardiac hypertrophy and cell apoptosis signaling. However, the mechanism by which E2/ERβ suppresses apoptosis is not fully understood, and the role of protein phosphatase in E2/ERβ action also needs further investigation. In this study, we observed that E2/ERβ inhibited isoproterenol (ISO-induced myocardial cell apoptosis, cytochrome c release and downstream apoptotic markers. Moreover, we found that E2/ERβ blocks ISO-induced apoptosis in H9c2 cells through the enhancement of calcineurin protein degradation through PI3K/Akt/MDM2 signaling pathway. Our results suggest that supplementation with estrogen and/or overexpression of estrogen receptor β gene may prove to be effective means to treat stress-induced myocardial damage.

  16. Allicin protects against H2O2-induced apoptosis of PC12 cells via the mitochondrial pathway.

    Science.gov (United States)

    Lv, Runxiao; Du, Lili; Lu, Chunwen; Wu, Jinhui; Ding, Muchen; Wang, Chao; Mao, Ningfang; Shi, Zhicai

    2017-09-01

    Allicin is a major bioactive ingredient of garlic and has a broad range of biological activities. Allicin has been reported to protect against cell apoptosis induced by H 2 O 2 in human umbilical vein endothelial cells. The present study evaluated the neuroprotective effect of allicin on the H 2 O 2 -induced apoptosis of rat pheochromocytoma PC12 cells in vitro and explored the underlying mechanism involved. PC12 cells were incubated with increasing concentrations of allicin and the toxic effect of allicin was measured by MTT assay. The cells were pretreated for 24 h with low dose (L-), medium dose (M-) and high dose (H-) of allicin, followed by exposure to 200 µM H 2 O 2 for 2 h, and the cell viability was examined by MTT assay. In addition, cell apoptosis rate was analyzed by Annexin V-FITC/PI assay, while intracellular reactive oxygen species (ROS) and mitochondrial transmembrane potential (∆ψm) were measured by flow cytometry. Bcl-2, Bax, cleaved-caspase-3 and cytochrome c (Cyt C) in the mitochondria were also examined by western blotting. The results demonstrated that 0.01 µg/ml (L-allicin), 0.1 µg/ml (M-allicin) and 1 µg/ml (H-allicin) were non-toxic doses of allicin. Furthermore, H 2 O 2 reduced cell viability, promoted cell apoptosis, induced ROS production and decreased ∆ψm. However, allicin treatment reversed the effect of H 2 O 2 in a dose-dependent manner. It was also observed that H 2 O 2 exposure significantly decreased Bcl-2 and mitochondrial Cyt C, while it increased Bax and cleaved-caspase-3, which were attenuated by allicin pretreatment. The results revealed that allicin protected PC12 cells from H 2 O 2 -induced cell apoptosis via the mitochondrial pathway, suggesting the potential neuroprotective effect of allicin against neurological diseases.

  17. Thimerosal-induced apoptosis in mouse C2C12 myoblast cells occurs through suppression of the PI3K/Akt/survivin pathway.

    Directory of Open Access Journals (Sweden)

    Wen-Xue Li

    Full Text Available BACKGROUND: Thimerosal, a mercury-containing preservative, is one of the most widely used preservatives and found in a variety of biological products. Concerns over its possible toxicity have reemerged recently due to its use in vaccines. Thimerosal has also been reported to be markedly cytotoxic to neural tissue. However, little is known regarding thimerosal-induced toxicity in muscle tissue. Therefore, we investigated the cytotoxic effect of thimerosal and its possible mechanisms on mouse C2C12 myoblast cells. METHODOLOGY/PRINCIPAL FINDINGS: The study showed that C2C12 myoblast cells underwent inhibition of proliferation and apoptosis after exposure to thimerosal (125-500 nM for 24, 48 and 72 h. Thimerosal caused S phase arrest and induced apoptosis as assessed by flow cytometric analysis, Hoechst staining and immunoblotting. The data revealed that thimerosal could trigger the leakage of cytochrome c from mitochondria, followed by cleavage of caspase-9 and caspase-3, and that an inhibitor of caspase could suppress thimerosal-induced apoptosis. Thimerosal inhibited the phosphorylation of Akt(ser473 and survivin expression. Wortmannin, a PI3K inhibitor, inhibited Akt activity and decreased survivin expression, resulting in increased thimerosal-induced apoptosis in C2C12 cells, while the activation of PI3K/Akt pathway by mIGF-I (50 ng/ml increased the expression of survivin and attenuated apoptosis. Furthermore, the inhibition of survivin expression by siRNA enhanced thimerosal-induced cell apoptosis, while overexpression of survivin prevented thimerosal-induced apoptosis. Taken together, the data show that the PI3K/Akt/survivin pathway plays an important role in the thimerosal-induced apoptosis in C2C12 cells. CONCLUSIONS/SIGNIFICANCE: Our results suggest that in C2C12 myoblast cells, thimerosal induces S phase arrest and finally causes apoptosis via inhibition of PI3K/Akt/survivin signaling followed by activation of the mitochondrial apoptotic

  18. Generation of H9 T-cells stably expressing a membrane-bound form of the cytoplasmic tail of the Env-glycoprotein: lack of transcomplementation of defective HIV-1 virions encoding C-terminally truncated Env

    Directory of Open Access Journals (Sweden)

    Bosch Valerie

    2006-05-01

    Full Text Available Abstract H9-T-cells do not support the replication of mutant HIV-1 encoding Env protein lacking its long cytoplasmic C-terminal domain (Env-CT. Here we describe the generation of a H9-T-cell population constitutively expressing the HIV-1 Env-CT protein domain anchored in the cellular membrane by it homologous membrane-spanning domain (TMD. We confirmed that the Env-TMD-CT protein was associated with cellular membranes, that its expression did not have any obvious cytotoxic effects on the cells and that it did not affect wild-type HIV-1 replication. However, as measured in both a single-round assay as well as in spreading infections, replication competence of mutant pNL-Tr712, lacking the Env-CT, was not restored in this H9 T-cell population. This means that the Env-CT per se cannot transcomplement the replication block of HIV-1 virions encoding C-terminally truncated Env proteins and suggests that the Env-CT likely exerts its function only in the context of the complete Env protein.

  19. Inhibition of protein kinase C induces differentiation in Neuro-2a cells

    International Nuclear Information System (INIS)

    Minana, M.D.; Felipo, V.; Grisolia, S.

    1990-01-01

    1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine (H7), a potent inhibitor of protein kinase C, induced neuritogenesis in Neuro-2a cells, whereas N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004), which inhibits more efficiently cAMP- and cGMP-dependent protein kinases, did not. The effect, noticeable after 3 hr, was maximum (13-fold increase at 500 μM H7) between 1 and 3 days and was maintained over 2 months. In controls, 90% of the cells were undifferentiated, whereas after 3 hr with 500 μM H7 only 25% of the cells remained undifferentiated. DNA synthesis decreased as the number of differentiated cells increased. Differentiation is also functional since acetylcholinesterase activity increased ∼7-fold after 48 hr with 500 μM H7. Phorbol 12-myristate 13-acetate, a specific activator of protein kinase C, prevented or reversed the induction of neuritogenesis and the inhibition of DNA synthesis by H7. There is a good correlation between the level of protein kinase C and the percentage of differentiated cells. The results indicate that protein kinase C may play a key role in the control of differentiation of neural cells. Some possible clinical implications are briefly discussed

  20. A FORMAÇÃO DE LIGAÇÕES DE HIDROGÊNIO π‧‧‧H, F‧‧‧H E C‧‧‧H NOS COMPLEXOS C2H2‧‧‧(HF, C2H2‧‧‧2(HF E C2H2‧‧‧3(HF

    Directory of Open Access Journals (Sweden)

    Boaz G. Oliveira

    2016-04-01

    Full Text Available In this work, a theoretical study on the basis of structural, vibrational, electronic and topological parameters of the C2H2‧‧‧(HF, C2H2‧‧‧2(HF and C2H2‧‧‧3(HF complexes concerning the formation of π‧‧‧H, F‧‧‧H and C‧‧‧H hydrogen bonds is presented. The main difference among these complexes is not properly the interaction strength, but the hydrogen bond type whose benchmark is ruled justly by the structure. Meanwhile, the occurrence of π‧‧‧H hydrogen bonds was unveiled in both C2H2‧‧‧(HF dimer and C2H2‧‧‧3(HF tetramer, although in latter, this interaction is stronger than C‧‧‧H of the C2H2‧‧‧2(HF trimer. However, the F‧‧‧H hydrogen bonds within the subunits of hydrofluoric acid are the strongest ones, reaching a partial covalent limit, and thereby contribute decisively to the stabilization of the tetramer structure. In line with this, the largest red-shifts were observed on the hydrofluoric acid trimer of the C2H2‧‧‧3(HF complex.

  1. Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential.

    Directory of Open Access Journals (Sweden)

    Hongquan Wan

    2008-08-01

    Full Text Available H9N2 avian influenza A viruses are endemic in poultry of many Eurasian countries and have caused repeated human infections in Asia since 1998. To evaluate the potential threat of H9N2 viruses to humans, we investigated the replication and transmission efficiency of H9N2 viruses in the ferret model. Five wild-type (WT H9N2 viruses, isolated from different avian species from 1988 through 2003, were tested in vivo and found to replicate in ferrets. However these viruses achieved mild peak viral titers in nasal washes when compared to those observed with a human H3N2 virus. Two of these H9N2 viruses transmitted to direct contact ferrets, however no aerosol transmission was detected in the virus displaying the most efficient direct contact transmission. A leucine (Leu residue at amino acid position 226 in the hemagglutinin (HA receptor-binding site (RBS, responsible for human virus-like receptor specificity, was found to be important for the transmission of the H9N2 viruses in ferrets. In addition, an H9N2 avian-human reassortant virus, which contains the surface glycoprotein genes from an H9N2 virus and the six internal genes of a human H3N2 virus, showed enhanced replication and efficient transmission to direct contacts. Although no aerosol transmission was observed, the virus replicated in multiple respiratory tissues and induced clinical signs similar to those observed with the parental human H3N2 virus. Our results suggest that the establishment and prevalence of H9N2 viruses in poultry pose a significant threat for humans.

  2. Inhibition of H9N2 virus invasion into dendritic cells by the S-layer protein from L. acidophilus ATCC 4356

    Directory of Open Access Journals (Sweden)

    Xue Gao

    2016-10-01

    Full Text Available Probiotics are essential for the prevention of virus invasion and the maintenance of the immune balance. However, the mechanism of competition between probiotics and virus are unknown. The objectives of this study were to isolate the surface layer (S-layer protein from L. acidophilus ATCC 4356 as a new antiviral material, to evaluate the stimulatory effects of the S-layer protein on mouse dendritic cells (DCs and to verify its ability to inhibit the invasion of H9N2 avian influenza virus (AIV in DCs. We found that the S-layer protein induced DCs activation and up-regulated the IL-10 secretion. The invasion and replication of the H9N2 virus in mouse DCs was successfully demonstrated. However, the invasion of H9N2 virus into DCs could be inhibited by treatment with the S-layer protein prior to infection, which was verified by the reduced hemagglutinin (HA and neuraminidase (NA mRNA expression, and nucleoprotein (NP protein expression in the DCs. Furthermore, treatment with the S-layer protein increases the Mx1, Isg15, and Ddx58 mRNA expressions, and remits the inflammatory process to inhibit H9N2 AIV infection. In conclusion, the S-layer protein stimulates the activation of mouse DCs, inhibits H9N2 virus invasion of DCs, and stimulates the IFN-I signalling pathway. Thus, the S-layer protein from Lactobacillus is a promising biological antiviral material for AIV prevention.

  3. Chemistry through cocrystals: pressure-induced polymerization of C2H2·C6H6 to an extended crystalline hydrocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Matthew D. [Geophysical Laboratory; Carnegie Institution of Washington; Washington; USA; Huang, Haw-Tyng [Department of Materials Science and Engineering; Pennsylvania State University; University Park; USA; Zhu, Li [Geophysical Laboratory; Carnegie Institution of Washington; Washington; USA; Biswas, Arani [Department of Chemistry; Pennsylvania State University; University Park; USA; Popov, Dmitry [High Pressure Collaborative Access Team (HPCAT); Geophysical Laboratory; Carnegie Institution of Washington; Argonne; USA; Badding, John V. [Department of Materials Science and Engineering; Pennsylvania State University; University Park; USA; Department of Chemistry; Strobel, Timothy A. [Geophysical Laboratory; Carnegie Institution of Washington; Washington; USA

    2018-01-01

    The 1 : 1 acetylene–benzene cocrystal, C2H2·C6H6, was synthesized under pressure in a diamond anvil cell (DAC) and its evolution under pressure was studied with single-crystal X-ray diffraction and Raman spectroscopy.

  4. Chemistry through cocrystals: pressure-induced polymerization of C2H2·C 6H6 to an extended crystalline hydrocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Matthew D. [Geophysical Laboratory; Carnegie Institution of Washington; Washington; USA; Huang, Haw-Tyng [Department of Materials Science and Engineering; Pennsylvania State University; University Park; USA; Zhu, Li [Geophysical Laboratory; Carnegie Institution of Washington; Washington; USA; Biswas, Arani [Department of Chemistry; Pennsylvania State University; University Park; USA; Popov, Dmitry [High Pressure Collaborative Access Team (HPCAT); Geophysical Laboratory; Carnegie Institution of Washington; Argonne; USA; Badding, John V. [Department of Materials Science and Engineering; Pennsylvania State University; University Park; USA; Department of Chemistry; Strobel, Timothy A. [Geophysical Laboratory; Carnegie Institution of Washington; Washington; USA

    2018-01-01

    The 1:1 acetylene–benzene cocrystal, C2H2·C6H6, was synthesized under pressure in a diamond anvil cell (DAC) and its evolution under pressure was studied with single-crystal X-ray diffraction and Raman spectroscopy.

  5. The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn AND Pb

    Directory of Open Access Journals (Sweden)

    E. Vessally

    2009-08-01

    Full Text Available Total energy gaps, ∆Et–s, enthalpy gaps, ∆Ht–s, and Gibbs free energy gaps, ∆Gt–s, between singlet (s and triplet (t states were calculated for three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn and Pb at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆Gt–s, for C2H2M (M = C, Si, Ge, Sn and Pb are found to be increased in the order: C2H2Si > C2H2C > C2H2Ge > C2H2Sn > C2H2Pb. The ∆Gt–s of C4H4M are found to be increased in the order: C4H4Pb > C4H4Sn > C4H4Ge > C4H4Si > C4H4C. Also, the ∆Gt–s of C6H6M are determined in the order: C6H6Pb > C6H6Ge ≥ C6H6Sn > C6H6Si > C6H6C. The most stable conformers of C2H2M, C4H4M and C6H6M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed.

  6. Single-Atom Pt as Co-Catalyst for Enhanced Photocatalytic H2 Evolution.

    Science.gov (United States)

    Li, Xiaogang; Bi, Wentuan; Zhang, Lei; Tao, Shi; Chu, Wangsheng; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2016-03-23

    Isolated single-atom platinum (Pt) embedded in the sub-nanoporosity of 2D g-C3 N4 as a new form of co-catalyst is reported. The highly stable single-atom co-catalyst maximizes the atom efficiency and alters the surface trap states of g-C3 N4 , leading to significantly enhanced photocatalytic H2 evolution activity, 8.6 times higher than that of Pt nanoparticles and up to 50 times that for bare g-C3 N4 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Identification and characterization of luekotriene C4 and D4 receptors on a cultured smooth muscle cell line, BC3H-1

    International Nuclear Information System (INIS)

    Tamura, N.; Agrawal, D.K.; Townley, R.G.

    1987-01-01

    The authors studied the characteristics of the leukotriene (LT) C 4 and D 4 receptors on a cultured smooth muscle cell line, BC3H-1. Specific [ 3 H]LTC 4 binding to the cell membrane was greater than 80% of total binding and saturable at a density of 3.96 +/- 0.39 pmol/mg protein, with an apparent dissociation constant(Kd) of 14.3 +/- 2.0 nM (n=9). The association and dissociation of [ 3 H]LTC 4 binding were rapid and apparent equilibrium conditions were established within 5 min. Calculated Kd value of [ 3 H]LTC binding from the kinetic analysis was 9.9 nM. From the competition analysis, calculated Ki value of unlabeled LTC 4 to compete for the specific binding of [ 3 H]LTC 4 was 9.2 nM and was in good agreement with the Kd value obtained from the Scatchard plots or kinetic analysis. The maximum number of binding sites (Bmax) of [ 3 H]LTD 4 in the membrane of BC3H-1 cell line was about 11 times lower than that of the [ 3 H]LTC 4 . The calculated values of Kd and Bmax of [ 3 H]LTD 4 binding were 9.3 +/- 0.8 nM and 0.37 +/- 0.04 pmol/mg proteins, respectively (n=3). These findings demonstrate that BC3H-1 cell line possess both LTC 4 and LTD 4 receptors with a predominance of LTC 4 receptors. Thus, BC3H-1 cell line is a good model to study the regulation of LTC 4 and LTD 4 receptors. 34 references, 5 figures, 1 table

  8. Bluish-white-light-emitting diodes based on two-dimensional lead halide perovskite (C6H5C2H4NH3)2PbCl2Br2

    Science.gov (United States)

    Cai, Peiqing; Wang, Xiangfu; Seo, Hyo Jin; Yan, Xiaohong

    2018-04-01

    Bluish-white-light-emitting diodes (BWLEDs) are designed based on the two-dimensional mixed halide perovskite (C6H5C2H4NH3)2PbCl2Br2 at room temperature. Bluish-white electroluminescence devices were fabricated by a spin-coating method. The BWLEDs can be turned on at 4.9 V and depict a maximum luminance of ˜70 cd/m2 at 7 V. Low and room temperature photoluminescence spectra show the coexistence of free exciton and self-trapped exciton luminescence in a deformable lattice. The strategy of achieving white electroluminescence (EL) from mixed halide perovskite reported here can be applied to other two-dimensional perovskites to increase the optoelectronic efficiency of the device in the future.

  9. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation

    Directory of Open Access Journals (Sweden)

    Anita Thakur

    2015-08-01

    Full Text Available Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose generate DCFH-DA positive ROS only for 2 h; while those treated with 100 µM NE (apoptotic dose sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H2O2 but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses.

  10. Signal Immune Reactions of Macrophages Differentiated from THP-1 Monocytes to Infection with Pandemic H1N1PDM09 Virus and H5N2 and H9N2 Avian Influenza A Virus.

    Science.gov (United States)

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Timofeeva, T A

    2018-03-01

    In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.

  11. Pressure-composition isotherms and thermodynamic properties of TiF{sub 3}-enhanced Na{sub 2}LiAlH{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Fossdal, A. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)]. E-mail: anita.fossdal@ife.no; Brinks, H.W. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Fonnelop, J.E. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway); Hauback, B.C. [Department of Physics, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)

    2005-07-19

    The mixed alanate Na{sub 2}LiAlH{sub 6} was prepared by ball-milling and subsequent heat-treatment under H{sub 2} pressure. After the synthesis, 2 mol% TiF{sub 3} was added by ball-milling. Pressure-composition isotherms were measured for the Ti-enhanced material in the temperature range of 170-250 deg C. A van't Hoff plot was constructed using the equilibrium desorption plateau pressures. From this plot, a dissociation enthalpy of 56.4 {+-} 0.4 kJ/mol H{sub 2} and a corresponding entropy of 137.9 {+-} 0.7 J/K mol H{sub 2} was found for Na{sub 2}LiAlH{sub 6}.

  12. Excretion of metabolites in urine and faeces from rats dosed with the heterocyclic amine, 2-amino-9H-pyrido[2,3-b]indole (A alpha C)

    DEFF Research Database (Denmark)

    Frederiksen, H.; Frandsen, Henrik Lauritz

    2004-01-01

    2-amino-9H-pyrido[2,3-b]indole (AalphaC) is a mutagenic and carcinogenic heterocyclic amine formed during ordinary cooking. In model systems AalphaC can be formed by pyrolysing either tryptophan or proteins of animal or vegetable origin. In the present study, the in vivo metabolism of Aalpha....... Any activated metabolites of AalphaC were not detected in rat urine or faeces. In future accumulation or binding of AalphaC to macromolecules such as DNA and proteins has to be studied....

  13. Suppression of transformed foci, induced by alpha radiation of C3H 10T1/2 cells, by untransformed cells

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.; Henning, C.B.

    1978-01-01

    The C3H 10T1/2 CL8 cell line obtained from a mouse embryo has been widely used for screening chemical carcinogens. Transformed foci are easily distinguishable in this system as crisscrossed, piled-up cells which stain more deeply than the surrounding untransformed cells. When these foci are ringcloned and subcultured, they have been shown to give rise to malignant tumors in C3H immunodepressed mice. Previous work showed that such malignant transformations, which occurred with a dose dependent frequency, could be induced by alpha particle irradiation. The present study, in turn, demonstrates that the expression of these transformations can be completely suppressed by co-cultivating the transformed cells with a large number of untransformed cells. The precise ratio of the number of untransformed cells to transformed cells to give complete suppression was found to vary in different experiments. Maximum effects were seen when a small number of transformed cells in low passage were used. These experiments may provide at least a partial explanation for the greatly increased frequency of transformations per cell irradiated in vitro, compared with the number of tumors observed after irradiation of the same number of cells in vivo. In addition, if conditions could be optimized whereby transformed foci could reproducibly be eliminated by the use of a known number of untransformed cells, this might have important applications in the prevention and treatment of certain human cancers

  14. Phosphinodi(benzylsilane) PhP{(o-C6H4CH2)SiMe2H}2: a versatile "PSi2Hx" pincer-type ligand at ruthenium.

    Science.gov (United States)

    Montiel-Palma, Virginia; Muñoz-Hernández, Miguel A; Cuevas-Chávez, Cynthia A; Vendier, Laure; Grellier, Mary; Sabo-Etienne, Sylviane

    2013-09-03

    The synthesis of the new phosphinodi(benzylsilane) compound PhP{(o-C6H4CH2)SiMe2H}2 (1) is achieved in a one-pot reaction from the corresponding phenylbis(o-tolylphosphine). Compound 1 acts as a pincer-type ligand capable of adopting different coordination modes at Ru through different extents of Si-H bond activation as demonstrated by a combination of X-ray diffraction analysis, density functional theory calculations, and multinuclear NMR spectroscopy. Reaction of 1 with RuH2(H2)2(PCy3)2 (2) yields quantitatively [RuH2{[η(2)-(HSiMe2)-CH2-o-C6H4]2PPh}(PCy3)] (3), a complex stabilized by two rare high order ε-agostic Si-H bonds and involved in terminal hydride/η(2)-Si-H exchange processes. A small free energy of reaction (ΔrG298 = +16.9 kJ mol(-1)) was computed for dihydrogen loss from 3 with concomitant formation of the 16-electron species [RuH{[η(2)-(HSiMe2)-CH2-o-C6H4]PPh[CH2-o-C6H4SiMe2]}(PCy3)] (4). Complex 4 features an unprecedented (29)Si NMR decoalescence process. The dehydrogenation process is fully reversible under standard conditions (1 bar, 298 K).

  15. Quinoline compound KM11073 enhances BMP-2-dependent osteogenic differentiation of C2C12 cells via activation of p38 signaling and exhibits in vivo bone forming activity.

    Directory of Open Access Journals (Sweden)

    Seung-hwa Baek

    Full Text Available Recombinant human bone morphogenetic protein (rhBMP-2 has been approved by the FDA for clinical application, but its use is limited due to high cost and a supra-physiological dose for therapeutic efficacy. Therefore, recent studies have focused on the generation of new therapeutic small molecules to induce bone formation or potentiate the osteogenic activity of BMP-2. Here, we show that [4-(7-chloroquinolin-4-yl piperazino][1-phenyl-5-(trifluoromethyl-1H-pyrazol-4-yl]methanone (KM11073 strongly enhances the BMP-2-stimulated induction of alkaline phosphatase (ALP, an early phase biomarker of osteoblast differentiation, in bi-potential mesenchymal progenitor C2C12 cells. The KM11073-mediated ALP induction was inhibited by the BMP antagonist noggin, suggesting that its osteogenic activity occurs via BMP signaling. In addition, a pharmacological inhibition study suggested the involvement of p38 activation in the osteogenic action of KM11073 accompanied by enhanced expression of BMP-2, -6, and -7 mRNA. Furthermore, the in vivo osteogenic activity of KM11073 was confirmed in zebrafish and mouse calvarial bone formation models, suggesting the possibility of its single use for bone formation. In conclusion, the combination of rhBMP-2 with osteogenic small molecules could reduce the use of expensive rhBMP-2, mitigating the undesirable side effects of its supra-physiological dose for therapeutic efficacy. Moreover, due to their inherent physical properties, small molecules could represent the next generation of regenerative medicine.

  16. Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity

    Science.gov (United States)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun

    2017-01-01

    Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C3N4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C3N4/CuS composite exhibits a high visible-light photocatalytic H2-production rate of 57.56 μmol h-1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na2S/Na2SO3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C3N4/CuS composites show the enhanced visible-light photocatalytic H2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C3N4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H2-production activity.

  17. Modulation of the epithelial Ca2+ channel ECaC by extracellular pH.

    NARCIS (Netherlands)

    Vennekens, R.; Prenen, J.; Hoenderop, J.G.J.; Bindels, R.J.M.; Droogmans, G.; Nilius, B.

    2001-01-01

    We investigated the effect of extracellular pH on whole-cell currents through the epithelial Ca2+ channel, ECaC, expressed in HEK 293 cells. Both mono- and divalent current densities were significantly smaller at pH 6.0 than at pH 7.4. At pH 8.5 they were slightly larger. Lowering extracellular pH

  18. Regulation of the angiopoietin-2 gene by hCG in ovarian cancer cell line OVCAR-3.

    Science.gov (United States)

    Pietrowski, D; Wiehle, P; Sator, M; Just, A; Keck, C

    2010-05-01

    Angiogenesis is a crucial step in growing tissues including many tumors. It is regulated by pro- and antiangiogenic factors including the family of angiopoietins and their corresponding receptors. In previous work we have shown that in human ovarian cells the expression of angiopoietin 2 (ANG2) is regulated by human chorionic gonadotropin (hCG). To better understand the mechanisms of hCG-dependent regulation of the ANG2-gene we have now investigated upstream regulatory active elements of the ANG2-promoter in the ovarian carcinoma cell line OVCAR-3. We cloned several ANG2-promoter-fragments of different lengths into a luciferase reporter-gene-vector and analyzed the corresponding ANG2 expression before and after hCG stimulation. We identified regions of the ANG2-promoter between 1 048 bp and 613 bp upstream of the transcriptional start site where hCG-dependent pathways promote a significant downregulation of gene expression. By sequence analysis of this area we found several potential binding sites for transcription factors that are involved in regulation of ANG2-expression, vascular development and ovarian function. These encompass the forkhead family transcription factors FOXC2 and FOXO1 as well as the CCAAT/enhancer binding protein family (C/EBP). In conclusion, we have demonstrated that the regulation of ANG2-expression in ovarian cancer cells is hCG-dependent and we suggest that forkhead transcription factor and C/EBP-dependent pathways are involved in the regulation of ANG2-expression in ovarian cancer cells. Georg Thieme Verlag KG Stuttgart-New York.

  19. Influenza A(H9N2) Virus, Myanmar, 2014-2015.

    Science.gov (United States)

    Lin, Thant Nyi; Nonthabenjawan, Nutthawan; Chaiyawong, Supassama; Bunpapong, Napawan; Boonyapisitsopa, Supanat; Janetanakit, Taveesak; Mon, Pont Pont; Mon, Hla Hla; Oo, Kyaw Naing; Oo, Sandi Myint; Mar Win, Mar; Amonsin, Alongkorn

    2017-06-01

    Routine surveillance of influenza A virus was conducted in Myanmar during 2014-2015. Influenza A(H9N2) virus was isolated in Shan State, upper Myanmar. Whole-genome sequencing showed that H9N2 virus from Myanmar was closely related to H9N2 virus of clade 4.2.5 from China.

  20. Hydrogen sulfide (H2S)/cystathionine γ-lyase (CSE) pathway contributes to the proliferation of hepatoma cells

    International Nuclear Information System (INIS)

    Pan, Yan; Ye, Shuang; Yuan, Dexiao; Zhang, Jianghong; Bai, Yang; Shao, Chunlin

    2014-01-01

    Highlights: • Inhibition of H 2 S/CSE pathway strongly stimulates cellular apoptosis. • Inhibition of H 2 S/CSE pathway suppresses cell growth by blocking EGFR pathway. • H 2 S/CSE pathway is critical for maintaining the proliferation of hepatoma cells. - Abstract: Hydrogen sulfide (H 2 S)/cystathionine γ-lyase (CSE) pathway has been demonstrated to play vital roles in physiology and pathophysiology. However, its role in tumor cell proliferation remains largely unclear. Here we found that CSE over-expressed in hepatoma HepG2 and PLC/PRF/5 cells. Inhibition of endogenous H 2 S/CSE pathway drastically decreased the proliferation of HepG2 and PLC/PRF/5 cells, and it also enhanced ROS production and mitochondrial disruption, pronounced DNA damage and increased apoptosis. Moreover, this increase of apoptosis was associated with the activation of p53 and p21 accompanied by a decreased ratio of Bcl-2/Bax and up-regulation of phosphorylated c-Jun N-terminal kinase (JNK) and caspase-3 activity. In addition, the negative regulation of cell proliferation by inhibition of H 2 S/CSE system correlated with the blockage of cell mitogenic and survival signal transduction of epidermal growth factor receptor (EGFR) via down-regulating the extracellular-signal-regulated kinase 1/2 (ERK1/2) activation. These results demonstrate that H 2 S/CSE and its downstream pathway contribute to the proliferation of hepatoma cells, and inhibition of this pathway strongly suppress the excessive growth of hepatoma cells by stimulating mitochondrial apoptosis and suppressing cell growth signal transduction

  1. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe(II) coagulation.

    Science.gov (United States)

    Jia, Peili; Zhou, Yanping; Zhang, Xufeng; Zhang, Yi; Dai, Ruihua

    2017-12-11

    Harmful algal blooms in source water are a worldwide issue for drinking water production and safety. UV/H 2 O 2 , a pre-oxidation process, was firstly applied to enhance Fe(II) coagulation for the removal of Microcystis aeruginosa [M. aeruginosa, 2.0 (±0.5) × 10 6  cell/mL] in bench scale. It significantly improved both algae cells removal and algal organic matter (AOM) control, compared with UV irradiation alone (254 nm UVC, 5.4 mJ/cm 2 ). About 94.7% of algae cells were removed after 5 min UV/H 2 O 2 pre-treatment with H 2 O 2 dose 375 μmol/L, FeSO 4 coagulation (dose 125 μmol/L). It was also certified that low residue Fe level and AOM control was simultaneously achieved due to low dose of Fe(II) to settle down the cells as well as the AOM. The result of L 9 (3) 4 orthogonal experiment demonstrated that H 2 O 2 and FeSO 4 dose was significantly influenced the algae removal. UV/H 2 O 2 induced an increase of intracellular reactive oxidant species (ROS) and a decrease in zeta potential, which might contribute to the algae removal. The total microcystins (MCs) concentration was 1.5 μg/L after UV/H 2 O 2 pre-oxidation, however, it could be removed simultaneously with the algae cells and AOM. This study suggested a novel application of UV/H 2 O 2 -Fe(II) process to promote algae removal and simultaneously control AOM release in source waters, which is a green and promising technology without secondary pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A novel H2S/H2O2 fuel cell operating at the room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sanli, Ayse Elif [Gazi University (Turkey)], email: aecsanli@gmail.com; Aytac, Aylin [Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar (Turkey)], email: aytaca@gazi.edu.tr

    2011-07-01

    This study concerns the oxidation mechanism of hydrogen sulfide and a fuel cell; acidic peroxide is used as the oxidant and basic hydrogen sulfide is the fuel. A solid state H2S/H2O2 stable fuel cell was produced at room temperature. A cell potential of 0.85 V was reached; this is quite remarkable in comparison to the H2S/O2 fuel cell potential of 0.85 V obtained at 850-1000 degree celsius. The hydrogen sulfide goes through an oxidation reaction in the alkaline fuel cell (H2S/H2O2 fuel cell) which opens up the possibility of using the cheaper nickel as a catalyst. As a result, the fuel cell becomes a potentially low cost technology. A further benefit from using H2S as the alkaline liquid H2S/H2O2 fuel cell, is that sulfide ions are oxidized at the anode, releasing electrons. Sulfur produced reacts with the other sulfide ions and forms disulfide and polysulfide ions in basic electrolytes (such as Black Sea water).

  3. Histone peptide AKRHRK enhances H2O2-induced DNA damage and alters its site specificity

    International Nuclear Information System (INIS)

    Midorikawa, Kaoru; Murata, Mariko; Kawanishi, Shosuke

    2005-01-01

    Histone proteins are involved in compaction of DNA and the protection of cells from oxygen toxicity. However, several studies have demonstrated that the metal-binding histone reacts with H 2 O 2 , leading to oxidative damage to a nucleobase. We investigated whether histone can accelerate oxidative DNA damage, using a minimal model for the N-terminal tail of histone H4, CH 3 CO-AKRHRK-CONH 2 , which has a metal-binding site. This histone peptide enhanced DNA damage induced by H 2 O 2 and Cu(II), especially at cytosine residues, and induced additional DNA cleavage at the 5'-guanine of GGG sequences. The peptide also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and ESR spin-trapping signal from H 2 O 2 and Cu(II). Cyclic redox reactions involving histone-bound Cu(II) and H 2 O 2 , may give rise to multiple production of radicals leading to multiple hits in DNA. It is noteworthy that the histone H4 peptide with specific sequence AKRHRK can cause DNA damage rather than protection under metal-overloaded condition

  4. Sequence of cDNAs for mammalian H2A. Z, an evolutionarily diverged but highly conserved basal histone H2A isoprotein species

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, C L; Bonner, W M

    1988-02-11

    The nucleotide sequences of cDNAs for the evolutionarily diverged but highly conserved basal H2A isoprotein, H2A.Z, have been determined for the rat, cow, and human. As a basal histone, H2A.Z is synthesized throughout the cell cycle at a constant rate, unlinked to DNA replication, and at a much lower rate in quiescent cells. Each of the cDNA isolates encodes the entire H2A.Z polypeptide. The human isolate is about 1.0 kilobases long. It contains a coding region of 387 nucleotides flanked by 106 nucleotides of 5'UTR and 376 nucleotides of 3'UTR, which contains a polyadenylation signal followed by a poly A tail. The bovine and rat cDNAs have 97 and 94% nucleotide positional identity to the human cDNA in the coding region and 98% in the proximal 376 nucleotides of the 3'UTR which includes the polyadenylation signal. A potential stem-forming sequence imbedded in a direct repeat is found centered at 261 nucleotides into the 3'UTR. Each of the cDNA clones could be transcribed and translated in vitro to yield H2A.Z protein. The mammalian H2A.Z cDNA coding sequences are approximately 80% similar to those in chicken and 75% to those in sea urchin.

  5. In vitro antiproliferative activity of 2,3-dihydroxy-9,10-anthraquinone induced apoptosis against COLO320 cells through cytochrome c release caspase mediated pathway with PI3K/AKT and COX-2 inhibition.

    Science.gov (United States)

    Balachandran, C; Emi, N; Arun, Y; Yamamoto, N; Duraipandiyan, V; Inaguma, Yoko; Okamoto, Akinao; Ignacimuthu, S; Al-Dhabi, N A; Perumal, P T

    2016-04-05

    The present study investigated the anticancer activity of 2,3-dihydroxy-9,10-anthraquinone against different cancer cells such as MCF-7, COLO320, HepG-2, Skov-3, MOLM-14, NB-4, CEM, K562, Jurkat, HL-60, U937, IM-9 and Vero. 2,3-dihydroxy-9,10-anthraquinone showed good antiproliferative activity against COLO320 cells when compared to other tested cells. The cytotoxicity results showed 79.8% activity at the dose of 2.07 μM with IC50 value of 0.13 μM at 24 h in COLO320 cells. So we chose COLO320 cells for further anticancer studies. mRNA expression was confirmed by qPCR analysis using SYBR green method. Treatment with 2,3-dihydroxy-9,10-anthraquinone was found to trigger intrinsic apoptotic pathway as indicated by down regulation of Bcl-2, Bcl-xl; up regulation of Bim, Bax, Bad; release of cytochrome c and pro-caspases cleaving to caspases. Furthermore, 2,3-dihydroxy-9,10-anthraquinone stopped at G0/G1 phase with modulation in protein levels of cyclins. On the other hand PI3K/AKT signaling plays an important role in cell metabolism. We found that 2,3-dihydroxy-9,10-anthraquinone inhibits PI3K/AKT activity after treatment. Also, COX-2 enzyme plays a major role in colorectal cancer. Our results showed that the treatment significantly reduced COX-2 enzyme in COLO320 cells. These results indicated antiproliferative activity of 2,3-dihydroxy-9,10-anthraquinone involving apoptotic pathways, mitochondrial functions, cell cycle checkpoint and controlling the over expression genes during the colorectal cancer. Molecular docking studies showed that the compound bound stably to the active sites of Bcl-2, COX-2, PI3K and AKT. This is the first report of anticancer mechanism involving 2,3-dihydroxy-9,10-anthraquinone in COLO320 cells. The present results might provide helpful suggestions for the design of antitumor drugs toward colorectal cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    International Nuclear Information System (INIS)

    Guseva, Daria; Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V.; Palotás, András; Islamov, Rustem R.

    2014-01-01

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis

  7. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, Daria [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation); Hannover Medical School, Hannover (Germany); Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V. [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Palotás, András, E-mail: palotas@asklepios-med.eu [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Asklepios-Med (Private Medical Practice and Research Center), Szeged (Hungary); Islamov, Rustem R., E-mail: islamru@yahoo.com [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation)

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.

  8. 17β-Estradiol Protects Mitochondrial Functions through Extracellular-Signal-Regulated Kinase in C2C12 Muscle Cells

    Directory of Open Access Journals (Sweden)

    Ana C. Ronda

    2013-10-01

    Full Text Available Background/Aims: We have previously shown that exposure to 17β-estradiol (E2 prior to induction of apoptosis with H2O2 protects skeletal muscle cells against oxidative damage. However, the mechanism involved in the protective action of the hormone is poorly understood. In the present study, we focused on the mechanism by which ERK mediates this survival effect in connection with COXIV activity and mitochondrial membrane potential. Methods: Immunocytochemistry, Western blot, cytochrome c oxidase complex IV (COXIV activity, coimmunoprecipitation and JC-1 dye by flow cytometry were carried out using C2C12 myoblasts as experimental model. Results: E2 is able to activate ERK and then induces its translocation to mitochondria. Using the pharmacological inhibitor of ERK activation U0126 we show that E2, through ERK activation, is able to enhance COXIV activity. Moreover, the hormone increases the interaction between COXIV and ERK. Also, we found that hydrogen peroxide decreases COXIV activity and that preincubation of the cells with E2 prior to induction of apoptosis prevents this effect. In addition, we observe that the estrogen inhibits the collapse of mitochondrial membrane potential induced by H2O2, involving ERK and COXIV. Conclusion: Our data demonstrate that E2 promotes ERK activation and translocation to mitochondria preventing the decline in COXIV activity and in turn, alteration of mitochondrial membrane potential by oxidative stress, in C2C12 myoblasts.

  9. Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br, –CH3, –C6H4, –F2, –(CH3)2) materials

    International Nuclear Information System (INIS)

    Buragohain, Amlan; Couck, Sarah; Van Der Voort, Pascal; Denayer, Joeri F.M.; Biswas, Shyam

    2016-01-01

    Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH 3 , 4-CH 3 ; new ones with X=–C 6 H 4 , 5-C 6 H 4 ; –F 2 , 6-F 2 , –(CH 3 ) 2 , 7-(CH 3 ) 2 ) were synthesized under hydrothermal conditions. All the materials except 5-C 6 H 4 could be prepared by a general synthetic route, in which the mixtures of CrO 3 , H 2 BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144 h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C 6 H 4 , could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S BET range: 1273–2135 m 2 g −1 ). At 0 °C and 1 bar, the CO 2 adsorption capacities of the compounds fall in the 1.7–2.9 mmol g −1 range. Compounds 1-F and 6-F 2 showed enhanced CO 2 uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p 0 =0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH 3 suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N 2 , CO 2 and benzene. • Mono- and di-fluorinated Cr-MIL-101 materials showed enhanced CO 2 adsorption capacities.

  10. SurR9C84A protects and recovers human cardiomyocytes from hypoxia induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Ashok, Ajay [Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research - C-MMR, Deakin University, Waurn Ponds, Victoria 3216 (Australia); Department of Pathology, Case Western Reserve University, 2103 Cornell Rd. WRB 5128, Cleveland, OH 44106-7288 (United States); Kanwar, Jagat Rakesh [Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research - C-MMR, Deakin University, Waurn Ponds, Victoria 3216 (Australia); Krishnan, Uma Maheswari [Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology (SCBT), SASTRA University, Thanjavur 613401 (India); Kanwar, Rupinder Kaur, E-mail: rupinder.kanwar@deakin.edu.au [Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research - C-MMR, Deakin University, Waurn Ponds, Victoria 3216 (Australia)

    2017-01-01

    Survivin, as an anti-apoptotic protein and a cell cycle regulator, is recently gaining importance for its regenerative potential in salvaging injured hypoxic cells of vital organs such as heart. Different strategies are being employed to upregulate survivin expression in dying hypoxic cardiomyocytes. We investigated the cardioprotective potential of a cell permeable survivin mutant protein SurR9C84A, for the management of hypoxia mediated cardiomyocyte apoptosis, in a novel and clinically relevant model employing primary human cardiomyocytes (HCM). The aim of this research work was to study the efficacy and mechanism of SurR9C84A facilitated cardioprotection and regeneration in hypoxic HCM. To mimic hypoxic microenvironment in vitro, well characterized HCM were treated with 100 µm (48 h) cobalt chloride to induce hypoxia. Hypoxia induced (HI) HCM were further treated with SurR9C84A (1 µg/mL) in order to analyse its cardioprotective efficacy. Confocal microscopy showed rapid internalization of SurR9C84A and scanning electron microscopy revealed the reinstatement of cytoskeleton projections in HI HCM. SurR9C84A treatment increased cell viability, reduced cell death via, apoptosis (Annexin-V assay), and downregulated free cardiac troponin T and MMP-9 expression. SurR9C84A also upregulated the expression of proliferation markers (PCNA and Ki-67) and downregulated mitochondrial depolarization and ROS levels thereby, impeding cell death. Human Apoptosis Array further revealed that SurR9C84A downregulated expression of pro-apoptotic markers and augmented expression of HSPs and HTRA2/Omi. SurR9C84A treatment led to enhanced levels of survivin, VEGF, PI3K and pAkt. SurR9C84A proved non-toxic to normoxic HCM, as validated through unaltered cell proliferation and other marker levels. Its pre-treatment exhibited lesser susceptibility to hypoxia/damage. SurR9C84A holds a promising clinical potential for human cardiomyocyte survival and proliferation following hypoxic injury

  11. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy.

    Science.gov (United States)

    Wang, Wenjun; Wang, Qing; Wan, Danyang; Sun, Yue; Wang, Lin; Chen, Hong; Liu, Chengyu; Petersen, Robert B; Li, Jianshuang; Xue, Weili; Zheng, Ling; Huang, Kun

    2017-05-04

    Autophagy plays critical and complex roles in many human diseases, including diabetes and its complications. However, the role of autophagy in the development of diabetic retinopathy remains uncertain. Core histone modifications have been reported involved in the development of diabetic retinopathy, but little is known about the histone variants. Here, we observed increased autophagy and histone HIST1H1C/H1.2, an important variant of the linker histone H1, in the retinas of type 1 diabetic rodents. Overexpression of histone HIST1H1C upregulates SIRT1 and HDAC1 to maintain the deacetylation status of H4K16, leads to upregulation of ATG proteins, then promotes autophagy in cultured retinal cell line. Histone HIST1H1C overexpression also promotes inflammation and cell toxicity in vitro. Knockdown of histone HIST1H1C reduces both the basal and stresses (including high glucose)-induced autophagy, and inhibits high glucose induced inflammation and cell toxicity. Importantly, AAV-mediated histone HIST1H1C overexpression in the retinas leads to increased autophagy, inflammation, glial activation and neuron loss, similar to the pathological changes identified in the early stage of diabetic retinopathy. Furthermore, knockdown of histone Hist1h1c by siRNA in the retinas of diabetic mice significantly attenuated the diabetes-induced autophagy, inflammation, glial activation and neuron loss. These results indicate that histone HIST1H1C may offer a novel therapeutic target for preventing diabetic retinopathy.

  12. Solvothermal synthesis and characterisation of new one-dimensional indium and gallium sulphides: [C1N4H26]0.5[InS2] and [C1N4H26]0.5[GaS2

    International Nuclear Information System (INIS)

    Vaqueiro, Paz

    2006-01-01

    Two new main group metal sulphides, [C 1 N 4 H 26 ] 0.5 [InS 2 ] (1) and [C 1 N 4 H 26 ] 0.5 [GaS 2 ] (2) have been prepared solvothermally in the presence of 1,4-bis(3-aminopropyl)piperazine and their crystal structures determined by single-crystal X-ray diffraction. Both compounds are isostructural and crystallise in the monoclinic space group P2 1 /n (Z=4), with a=6.5628(5), b=11.2008(9), c=12.6611(9) A and β=94.410(4) o (wR=0.035) for compound (1) and a=6.1094(5), b=11.2469(9), c=12.7064(10) A and β=94.313(4) o (wR=0.021) for compound (2). The structure of [C 1 N 4 H 26 ] 0.5 [MS 2 ] (M=In,Ga) consists of one-dimensional [MS 2 ] - chains which run parallel to the crystallographic a axis and are separated by diprotonated amine molecules. These materials represent the first example of solvothermally prepared one-dimensional gallium and indium sulphides. -- Graphical abstract: [C 1 N 4 H 26 ] 0.5 [InS 2 ] and [C 1 N 4 H 26 ] 0.5 [GaS 2 ], prepared under solvothermal conditions, consist of one-dimensional [MS 2 ] - chains separated by diprotonated 1,4-bis(3-aminopropyl)piperazine molecules

  13. Protective effect of bone morphogenetic protein 6 on RPE cells injury caused by H2O2

    Directory of Open Access Journals (Sweden)

    Li Chen

    2016-01-01

    Full Text Available AIM:To investigate the effect of bone morphogenetic protein 6(BMP-6on cellular morphology, proliferation and apoptosis of retinal pigment epithelial cells(ARPE-19incubated in hydrogen peroxide(H2O2. METHODS:ARPE-19 cells were cultured conventionally and divided into four groups. One group was untreated as blank group, the other three groups were incubated in 75μm/L H2O2, 150ng/mLBMP-6 or75μm/L H2O2+150ng/mL BMP-6. All the groups were incubated for 3h, 6h, 9h and 12h. We tested the cell viabilitity by MTT. We used flow cytometry to test the cell cycle and cell apoptosis.RESULTS:H2O2 significantly decreased the cell activity in time-dependent manner. The activity of cells with BMP-6+H2O2 was higher H2O2 group, and the differences between the two groups at 3h and 6h were significant(P2O2, while the cells with BMP-6 were less cell detachment and apoptosis. CONCLUSION:BMP-6 has protective effects on RPE cells from oxidative stress in certain extent.

  14. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Sujuan Chen

    2017-06-01

    Full Text Available H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128 were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  15. SINTESIS SENYAWA C18H26O9 DARI HIPTOLIDA HASIL ISOLASI DAUN HYPTIS PECTINATA

    Directory of Open Access Journals (Sweden)

    Meiny Suzery

    2012-05-01

    Full Text Available SYNTHESIS OF C18H26O9 COMPOUNDS FROM HYPTOLIDE ISOLATED FROM HYPTIS PECTINATA LEAVES. Isolation of hyptolide has been done from Hyptis pectinata, and alkene group transformation through oxidation reactions using H3B: OEt2 to the isolated compound was also conducted. Product analyses were carried out using TLC, UV spectrometry, IR, and LC-MS. Pure crystal with melting point of 86-87oC was isolated. The yield was 1.75% (w/w. After analysing and compilating of spectroscopic data it was confirmed as hyptolide compound. Hydroboration of this compound (followed by hydrolysis using H2O2 under alkaline conditions produce its alcohol derivatives, with 28.9% the percentage of transformation, it was demonstrated by LCMS data. IR spectrum at 3600cm-1, confirming the replacement of hydroxyl bond by alkene. Regioselectivity of addition reaction is proposed through simulation with Chem Office. The reaction product was suspected as 6-hydroxy-7-(6-oxo-3,6-dihydro-2H-pyran-2-yl heptane-2,3,5-tryil triacetate. Extension of reaction time to 24 hours, has increase hydroboration product to 78.3%. This research has opened other studies of natural materials in accordance to the roadmap set.  Telah dilakukan isolasi hiptolida dari bahan alam Hyptis pectinata, dan transformasinya melalui reaksi oksidasi menggunakan H3B:OEt2 terhadap gugus alkena pada senyawa hasil isolasi. Analisis produk dilakukan menggunakan KLT, spektrometri UV, IR, dan LC-MS. Kristal murni dengan titik leleh 86-87oC berhasil diisolasi dengan rendemen 1,75 % (b/b, dirujuk sebagai senyawa hiptolida setelah melalui analisis dan kompilasi data-data spektroskopi. Hidroborasi terhadap senyawa hiptolida (yang diikuti hidrolisis menggunakan H2O2 dalam suasana basa menghasilkan senyawa alkohol turunannya, dengan persentase transformasi sebesar 28,9%, dapat ditunjukkan melalui data LCMS. Data spectrum IR menunjukkan adanya puncak pada 3600cm-1, memperkuat dugaan  adanya ikatan hidroksil menggantikan gugus

  16. Synthesis of cationic diphosphine ruthenium complexes with nido-dicarbaundecaborate anions. Molecular structure of [RuCl(dppe)2]+[7,8-nido-C2B9H12]-

    International Nuclear Information System (INIS)

    Cheredilin, D.N.; Dolgushin, F.M.; Balagurova, E.V.; Godovikov, I.A.; Chizhevskij, I.T.

    2004-01-01

    Five new diphosphine ruthenium(II) complexes with nido-dicarbaundecaborate anions were synthesized. The composition and structure of the complexes were confirmed by data of 1 H, 31 P{ 1 H} NMR and elementary analysis. The crystal and molecular structure of solvated complex [RuCl(dppe) 2 + [7,8-nido-C 2 B 9 H 12 ] - ·CH 2 Cl 2 was ascertained by the method of X-ray diffraction analysis. It is shown that coordination sphere of ruthenium atom in the complex cation is a distorted trigonal bipyramid. The distances from ruthenium atom to phosphorus atoms are 2.398(1) and 2.391(1) A, while the angle P-Ru-P equals 175.85(5) Deg [ru

  17. Zein nanoparticle as a novel BMP6 derived peptide carrier for enhanced osteogenic differentiation of C2C12 cells.

    Science.gov (United States)

    Hadavi, Mahvash; Hasannia, Sadegh; Faghihi, Shahab; Mashayekhi, Farhad; Homazadeh, Homayoun; Mostofi, Seyed Behrooz

    2018-01-26

    Zein nanoparticles as a carrier system for BMP6-derived peptide were prepared by liquid-liquid phase separation procedure and characterized with SEM, DLS, FTIR and thermogravimetric methods. After peptide encapsulation, nanoparticle size increased from 236.3 ± 92.2 nm to 379.4 ± 116.8 nm. The encapsulation efficiency of peptide was 72.6% and the release of peptide from Zein nanoparticles was partly sustained in trypsin containing phosphate buffered saline (pH 7.4) for up to 14 days. Peptide-loaded nanoparticles showed similar cell viability compared with blank ones. ALP activity of C2C12 cells treated with peptide-loaded nanoparticles (500 µg/mL) was evaluated 7, 14, 21 and 28 days after culture. In peptide-loaded nanoparticles, ALP activity was significantly higher (p < .05) compared with other groups at day 14. Alizarin Red S staining showed, C2C12 cells behind peptide-loaded nanoparticles had significantly (p < .05) higher calcium deposition at day 21. The results of RT-qPCR show that the BMP-6 peptide activated expression of RUNX2 as a transcription factor. In turn, RUNX2 regulates SPP1 and BGLAP gene expression, as osteogenic marker genes. The results confirm that the peptide-loaded Zein nanoparticles, as osteoinductive material, may be used to repair small area of bone defects, with low load bearing.

  18. Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells

    International Nuclear Information System (INIS)

    Sekiya, Mika; Hiraishi, Ako; Touyama, Maiko; Sakamoto, Kazuichi

    2008-01-01

    SREBP1c (sterol regulatory element-binding protein 1c) is a metabolic-syndrome-associated transcription factor that controls fatty acid biosynthesis under glucose/insulin stimulation. Oxidative stress increases lipid accumulation, which promotes the generation of reactive oxygen species (ROS). However, we know little about the role of oxidative stress in fatty acid biosynthesis. To clarify the action of oxidative stress in lipid accumulation via SREBP1c, we examined SREBP1c activity in H 2 O 2 -treated mammalian cells. We introduced a luciferase reporter plasmid carrying the SREBP1c-binding site into HepG2 or COS-7 cells. With increasing H 2 O 2 dose, SREBP1c transcriptional activity increased in HepG2 cells but declined in COS-7 cells. RT-PCR analysis revealed that mRNA expression of SREBP1c gene or of SREBP1c-regulated genes rose H 2 O 2 dose-dependently in HepG2 cells but dropped in COS-7 cells. Lipid accumulation and levels of the nuclear form of SREBP1c increased in H 2 O 2 -stimulated HepG2 cells. ROS may stimulate lipid accumulation in HepG2 cells via SREBP1c activation

  19. Two new barium-copper-ethylene glycol complexes: Synthesis and structure of BaCu(C2H6O2)n(C2H4O2)2 (N = 3, 6)

    International Nuclear Information System (INIS)

    Love, C.P.; Page, C.J.; Torardi, C.C.

    1992-01-01

    Two crystalline barium-copper-ethylene glycol complexes have been isolated and structurally characterized by single-crystal x-ray diffraction. The solution-phase complex has also been investigated as a molecular precursor for use in sol-gel synthesis of high-temperature superconductors. The first crystalline form has the formula BaCu(C 2 H 6 O 2 ) 6 (C 2 H 4 O 2 ) 2 (1) and has been isolated directly from ethylene glycol solutions of the barium-copper salt. In this molecule, copper is coordinated to the four xygens of two ethylene glycolate ligands in a nearly square planar geometry. Barium is coordinated by three bidentate ethylene glycol molecules and three monodentate ethylene glycol molecules; the 9-fold coordination resembles a trigonal prism with each rectangular face capped. Copper and barium moieties do not share any ethylene glycol or glycolate oxygens; they are found by hydrogen bonding to form linear chains. The second crystal type has formula BaCu(C 2 H 6 O 2 ) 3 (C 2 H 4 O 2 ) 2 (2). It was prepared via crystallization of the mixed-metal alkoxide from an ethylene glycol/methyl ethyl ketone solution. As for 1, the copper is coordinated to four oxygen atoms of two ethylene glycolate ligands in a nearly square planar arrangement. Barium is 8-coordinate in a distorted cubic geometry. It is coordinated to three bidentate ethylene glycol molecules and shares two of the oxygen atoms bound to the copper (one from each coordinated ethylene glycol) to form a discrete molecular barium-copper complex

  20. Radiation-induced transformation in oncogene primed C3H/10T1/2 cells; a new system for analysis of multi-step transformation in vitro

    International Nuclear Information System (INIS)

    Drozdoff, V.V.

    1988-01-01

    Several established rodent cell lines, such as C3H/10T1/2 fibroblasts, have been developed to study radiation and chemically-induced malignant transformation. Most experimental evidence has supported the idea that transformation in 10T1/2 cells involved at least two steps but that the apparent frequency of transformation depends on the density of plated cells. A new approach is presented here for studying radiation-induced transformation. An oncogene primed cell system (C3H-myc) was developed by introducing a constitutively active mouse c-myc gene into 10T1/2 cells. A primary goal was to determine if the introduction of an activated oncogene could substitute for one of the required steps in radiation-induced transformation. Results are presented that show that the expression of the exogenous myc gene significantly increased the frequency of radiation-induced transformation in these cells. Subculture experiments performed to analyze the kinetics of transformation in C3H-myc cells and reconstruction experiments allowing the effects of normal cells on radiation-induced transformants to be determined indicated that transformed cells arose very shortly after irradiation. These results support the conclusion that a radiation-induced event can complement the effect of myc in C3H-myc cells and directly result in transformation. This system thus provides an opportunity to isolate early steps in radiation-induced transformation and should facilitate the identification and analysis of these events

  1. Low-temperature solid-state preparation of ternary CdS/g-C{sub 3}N{sub 4}/CuS nanocomposites for enhanced visible-light photocatalytic H{sub 2}-production activity

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun, E-mail: xiangqj@mail.hzau.edu.cn

    2017-01-01

    Highlights: • CdS/g-C{sub 3}N{sub 4}/CuS composite were synthesized by low-temperature solid-state method. • CdS/g-C{sub 3}N{sub 4}/CuS show enhanced visible-light photocatalytic H{sub 2} evolution activity. • The enhanced photocatalytic H{sub 2} production activity is due to the heterojunction. • Heterojunction between the components promote charge separation/transfer property. - Abstract: Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C{sub 3}N{sub 4}/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C{sub 3}N{sub 4}/CuS composite exhibits a high visible-light photocatalytic H{sub 2}-production rate of 57.56 μmol h{sup −1} with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na{sub 2}S/Na{sub 2}SO{sub 3} mixed aqueous solution as sacrificial agent. The ternary CdS/g-C{sub 3}N{sub 4}/CuS composites show the enhanced visible-light photocatalytic H{sub 2}-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C{sub 3}N{sub 4} in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H{sub 2}-production activity.

  2. File list: His.PSC.50.H3K9K14ac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.50.H3K9K14ac.AllCell hg19 Histone H3K9K14ac Pluripotent stem cell SRX037086... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.PSC.50.H3K9K14ac.AllCell.bed ...

  3. Synthesis and antimicrobial activities of 9H-carbazole derivatives

    Directory of Open Access Journals (Sweden)

    Nadia Salih

    2016-09-01

    Full Text Available In this work 9H-carbazole was utilized as a precursor to prepare new heterocyclic derivatives. Treatment of carbazole 1 with ethyl acetoacetate gave ethyl 9H-carbazol-9-ylacetate 2. The acetate ester derivative 2 was transformed into the 2-(9H-carbazol-9-ylacetohydrazide 3 through treatment with hydrazine hydrate. Reaction of compound 3 with sodium nitrite/HCl afforded [(9H-carbazol-9-ylacetylamino]diazonium chloride 4. Compounds 3-[3-(9H-carbazol-9-ylacetyltriazanylidene]pentane-2,4-dione 5 and ethyl 2-[3-(9H-carbazol-9-ylacetyltriazanylidene]-3-oxobutnoate 6 were obtained by reaction of compound 4 with acetylacetone and ethyl acetoacetate, respectively. Treatment of compounds 5 and 6 with urea and phenylhydrazine afforded 5-[3-(9H-carbazol-9-ylacetyltriazanylidene]-4,6-dimethyl pyrimidin-2(5H-one 7 and 4-[3-(9H-carbazol-9-yl acetyltriazanylidene]-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 8, respectively. The structures of the synthesized compounds were characterized by IR, 1H NMR, 13C NMR and elemental analysis. All synthesized products were tested and evaluated as antimicrobial agents.

  4. CRISPR/Cas9-mediated knockout of c-REL in HeLa cells results in profound defects of the cell cycle

    Science.gov (United States)

    Ruiz-Perera, Lucia M.; Kadhim, Hussamadin M.; Tertel, Tobias; Henkel, Elena; Hübner, Wolfgang; Huser, Thomas; Kaltschmidt, Barbara; Kaltschmidt, Christian

    2017-01-01

    Cervical cancer is the fourth common cancer in women resulting worldwide in 266,000 deaths per year. Belonging to the carcinomas, new insights into cervical cancer biology may also have great implications for finding new treatment strategies for other kinds of epithelial cancers. Although the transcription factor NF-κB is known as a key player in tumor formation, the relevance of its particular subunits is still underestimated. Here, we applied CRISPR/Cas9n-mediated genome editing to successfully knockout the NF-κB subunit c-REL in HeLa Kyoto cells as a model system for cervical cancers. We successfully generated a homozygous deletion in the c-REL gene, which we validated using sequencing, qPCR, immunocytochemistry, western blot analysis, EMSA and analysis of off-target effects. On the functional level, we observed the deletion of c-REL to result in a significantly decreased cell proliferation in comparison to wildtype (wt) without affecting apoptosis. The impaired proliferative behavior of c-REL-/- cells was accompanied by a strongly decreased amount of the H2B protein as well as a significant delay in the prometaphase of mitosis compared to c-REL+/+ HeLa Kyoto cells. c-REL-/- cells further showed significantly decreased expression levels of c-REL target genes in comparison to wt. In accordance to our proliferation data, we observed the c-REL knockout to result in a significantly increased resistance against the chemotherapeutic agents 5-Fluoro-2’-deoxyuridine (5-FUDR) and cisplatin. In summary, our findings emphasize the importance of c-REL signaling in a cellular model of cervical cancer with direct clinical implications for the development of new treatment strategies. PMID:28767691

  5. Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2.

    Science.gov (United States)

    Ling, Xi; Fang, Wenjing; Lee, Yi-Hsien; Araujo, Paulo T; Zhang, Xu; Rodriguez-Nieva, Joaquin F; Lin, Yuxuan; Zhang, Jin; Kong, Jing; Dresselhaus, Mildred S

    2014-06-11

    Realizing Raman enhancement on a flat surface has become increasingly attractive after the discovery of graphene-enhanced Raman scattering (GERS). Two-dimensional (2D) layered materials, exhibiting a flat surface without dangling bonds, were thought to be strong candidates for both fundamental studies of this Raman enhancement effect and its extension to meet practical applications requirements. Here, we study the Raman enhancement effect on graphene, hexagonal boron nitride (h-BN), and molybdenum disulfide (MoS2), by using the copper phthalocyanine (CuPc) molecule as a probe. This molecule can sit on these layered materials in a face-on configuration. However, it is found that the Raman enhancement effect, which is observable on graphene, hBN, and MoS2, has different enhancement factors for the different vibrational modes of CuPc, depending strongly on the surfaces. Higher-frequency phonon modes of CuPc (such as those at 1342, 1452, 1531 cm(-1)) are enhanced more strongly on graphene than that on h-BN, while the lower frequency phonon modes of CuPc (such as those at 682, 749, 1142, 1185 cm(-1)) are enhanced more strongly on h-BN than that on graphene. MoS2 demonstrated the weakest Raman enhancement effect as a substrate among these three 2D materials. These differences are attributed to the different enhancement mechanisms related to the different electronic properties and chemical bonds exhibited by the three substrates: (1) graphene is zero-gap semiconductor and has a nonpolar C-C bond, which induces charge transfer (2) h-BN is insulating and has a strong B-N bond, while (3) MoS2 is semiconducting with the sulfur atoms on the surface and has a polar covalent bond (Mo-S) with the polarity in the vertical direction to the surface. Therefore, the different Raman enhancement mechanisms differ for each material: (1) charge transfer may occur for graphene; (2) strong dipole-dipole coupling may occur for h-BN, and (3) both charge transfer and dipole-dipole coupling may

  6. BAMBI Promotes C2C12 Myogenic Differentiation by Enhancing Wnt/β-Catenin Signaling

    Directory of Open Access Journals (Sweden)

    Qiangling Zhang

    2015-08-01

    Full Text Available Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI is regarded as an essential regulator of cell proliferation and differentiation that represses transforming growth factor-β and enhances Wnt/β-catenin signaling in various cell types. However, its role in skeletal muscle remains largely unknown. In the current study, we found that the expression level of BAMBI peaked in the early differentiation phase of the C2C12 rodent myoblast cell line. Knockdown of BAMBI via siRNA inhibited C2C12 differentiation, indicated by repressed MyoD, MyoG, and MyHC expression as well as reductions in the differentiation and fusion indices. BAMBI knockdown reduced the activity of Wnt/β-catenin signaling, as characterized by the decreased nuclear translocation of β-catenin and the lowered transcription of Axin2, which is a well-documented target gene of the Wnt/β-catenin signaling pathway. Furthermore, treatment with LiCl, an activator of Wnt/β-catenin signaling, rescued the reduction in C2C12 differentiation caused by BAMBI siRNA. Taken together, our data suggest that BAMBI is required for normal C2C12 differentiation, and that its role in myogenesis is mediated by the Wnt/β-catenin pathway.

  7. Isolation of avian influenza virus (H9N2 from emu in china

    Directory of Open Access Journals (Sweden)

    Kang Wenhua

    2006-03-01

    Full Text Available Abstract This is the first reported isolation of avian influenza virus (AIV from emu in China. An outbreak of AIV infection occurred at an emu farm that housed 40 four-month-old birds. Various degrees of haemorrhage were discovered in the tissues of affected emus. Cell degeneration and necrosis were observed microscopically. Electron microscopy revealed round or oval virions with a diameter of 80 nm to 120 nm, surrounded by an envelope with spikes. The virus was classified as low pathogenic AIV (LPAIV, according to OIE standards. It was named A/Emu/HeNen/14/2004(H9N2(Emu/HN/2004. The HA gene (1683bp was amplified by RT-PCR and it was compared with other animal H9N2 AIV sequences in GenBank, the US National Institutes of Health genetic sequence database. The results suggested that Emu/HN/2004 may have come from an avian influenza virus (H9N2 from Southern China.

  8. Photoluminescence enhancement in porous SiC passivated by atomic layer deposited Al2O3 films

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2016-01-01

    Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved.......Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved....

  9. Growth and optical, magnetic and transport properties of (C4H9NH3)2MCl4 organic-inorganic hybrid films (M = Cu, Sn)

    Science.gov (United States)

    Aruta, C.; Licci, F.; Zappettini, A.; Bolzoni, F.; Rastelli, F.; Ferro, P.; Besagni, T.

    2005-10-01

    Films of (C4H9NH3)2MCl4 (M=Cu and Sn) organic-inorganic hybrid perovskites have been deposited in-situ by a single-source thermal ablation technique on glassy, crystalline and polymeric substrates. Independently of the substrate, the films were well crystallized, c-axis oriented and with a narrow rocking curve of the (0010) reflection (full width at half maximum photoluminescence spectra of typical (C4H9NH3)2SnCl4 films at 12 K had a broad yellow band, which did not correspond to any significant peak in the absorption spectrum. The films were semiconducting down to 250 K or, in the case of the best samples, down to 200 K and became insulating at lower temperature. The resistivity of the best films was (5±1) 104 Ω cm at 300 K, and the energy gap was 1.11 eV.

  10. Cytotoxic effects of the synthetic oestrogens and androgens on Balb/c 3T3 and HepG2 cells

    Directory of Open Access Journals (Sweden)

    Minta Maria

    2014-12-01

    Full Text Available The aim of the study was to test and compare the cytotoxic potential of two synthetic oestrogens: diethylstilboestrol (DES and ethinyloestradiol (EE2 and two androgens: testosterone propionate (TP and trenbolone (TREN on two cell lines. The fibroblast cell line Balb/c 3T3 and the hepatoma cell line HepG2 were selected. To get more insight into the mode of toxic action, four methods were used, which evaluated different biochemical endpoints: mitochondrial activity (3-(4,5-dimethylthiazol-2-yl- 2,5-diphenyltetrazolium bromide reduction assay, lysosomal activity (neutral red uptake assay, total protein content, and lactate dehydrogenase release. Cytotoxicity was assessed after 24, 48, and 72 h exposure to eight concentrations ranging from 0.78 to 100 μg/mL. Concentration- and time- dependent effects were observed. Depending on the line and assay used, half maximal effective concentration after 72 h (EC50-72h values ranged as follows: DES 1-13.7 μg/mL (Balb/c 3T3 and 3.7-5.2 μg/mL (HepG2; EE2 2.1-14.3 μg/mL (Balb/c 3T3 and 1.8-7.8 μg/mL (HepG2; TP-14.9-17.5 μg/mL (Balb/c 3T3, and 63.9- 100 μg/mL (HepG2; and TREN 11.3-31.4 μg/mL (Balb/c 3T3 and 12.5-59.4 μg/mL (HepG2. The results revealed that oestrogens were more toxic than androgens and the most affected endpoint was mitochondrial activity. In contrast to oestrogens, for which EC50-72h values were similar in both lines and by all assays used, Balb/c 3T3 cells were more sensitive than HepG2 cells to TP.

  11. Identification of metabolites in urine and feces from rats dosed with the heterocyclic amine, 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeA alpha C)

    DEFF Research Database (Denmark)

    Frederiksen, H.; Frandsen, Henrik Lauritz

    2004-01-01

    2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeAalphaC) is a proximate mutagenic and carcinogenic heterocyclic amine formed during ordinary cooking. In model systems, MeAalphaC can be formed by pyrolyses of either tryptophan or proteins of animal or vegetable origin. In the present study, the in vivo...

  12. Experimental investigation of slow-positron emission from 4H-SiC and 6H-SiC surfaces

    International Nuclear Information System (INIS)

    Ling, C.C.; Beling, C.D.; Fung, S.; Weng, H.M.

    2002-01-01

    Slow-positron emission from the surfaces of as-grown n-type 4H-SiC and 6H-SiC (silicon carbide) with a conversion efficiency of ∼10 -4 has been observed. After 30 min of 1000 deg. C annealing in forming gas, the conversion efficiency of the n-type 6H-SiC sample was observed to be enhanced by 75% to 1.9x10 -4 , but it then dropped to ∼10 -5 upon a further 30 min annealing at 1400 deg. C. The positron work function of the n-type 6H-SiC was found to increase by 29% upon 1000 deg. C annealing. For both p-type 4H-SiC and p-type 6H-SiC materials, the conversion efficiency was of the order of ∼10 -5 , some ten times lower than that for the n-type materials. This was attributed to the band bending at the p-type material surface which caused positrons to drift away from the positron emitting surface. (author)

  13. Explanation of the photocurrent quantum efficiency (Φ) enhancements through the CAN's model equation for the p-CuI sensitized methylviolet-C18 LB films in the photoelectrochemical cells (PECs) and Cu/n-Cu2O/M-C18/p-CuI solid-state photovoltaic cells

    International Nuclear Information System (INIS)

    Fernando, C A N; Liyanaarachchi, U S; AARajapaksha, R D

    2013-01-01

    Photocurrent enhancements in a dye sensitized photoelectrochemical cell (PEC) with a Cu/p-CuI/M-C 18 photoelectrode and a dye sensitized solid state photovoltaic cell (DSSC) with Cu/n-Cu 2 O/M-C 18 /p-CuI are studied by controlling the formation of dye aggregates of M-C 18 Langmuir–Blodgett (LB) films on the p-CuI layer. LB films of M-C 18 are deposited under biasing conditions during the LB deposition process on Cu/p-CuI, Cu/n-Cu 2 O/p-CuI and conductive glass plates with the three-electrode configuration setup coupling to the LB trough. LB films prepared under positive biasing conditions enhance the photocurrent quantum efficiencies for both PECs and DSSCs controlling and minimizing the formation of dye aggregates. The electrolyte used for LB deposition and photocurrent measurements is (10 −2 M) Fe 2+ + Fe 3+ (10 −2 M) and (10 −2 M) NaH 2 PO 4 –Na 2 HPO 4 , pH = 6 buffer solution. Maximum photocurrent quantum efficiencies (φmax%) obtained are ≈22% for PEC and ≈20% for DSSCs, where the M-C 18 LB film deposition applied potentials +0.3 V versus Ag/AgCl. The mechanism of the photocurrent enhancement is discussed through the CAN's model equation, φ = AD 0 –BD 0 2 , where A = k 1 k 2 /F, B = I k 1 2 k 2 [2k 6 /F 3 + k 2 k 4 /k 3 2 X 2 F 2 ], F = k 2 + k 5 Y + k 7 + k 1 I [1 + k 2 /k 3 X], presented from our previous study [1]. Experimental evidence for the formation of the aggregates of M-C 18 LB films for the negative applied potentials and suppression of the aggregates with positive applied potentials are presented from absorption spectra, AFM pictures and fluorescence measurements of the samples. Conversion efficiency obtained is ≈2.5%, V oc ≈750 mV and I sc ≈ 5.8 mA cm −2 for DSSC fabricated with +0.3 V versus Ag/AgCl applied deposition potential of M-C 18 LB films. (paper)

  14. Minocycline enhances mitomycin C-induced cytotoxicity through down-regulating ERK1/2-mediated Rad51 expression in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Wang, Tai-Jing; Chang, Po-Yuan; Syu, Jhan-Jhang; Chen, Jyh-Cheng; Chen, Chien-Yu; Jian, Yun-Ting; Jian, Yi-Jun; Zheng, Hao-Yu; Chen, Wen-Ching; Lin, Yun-Wei

    2015-10-01

    Minocycline is a semisynthetic tetracycline derivative; it has anti-inflammatory and anti-cancer effects distinct from its antimicrobial function. However, the molecular mechanism of minocycline-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the MKK1/2-ERK1/2 signal pathway maintains the expression of Rad51 in NSCLC cells. In this study, minocycline treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1975. Treatment with minocycline decreased Rad51 mRNA and protein levels through MKK1/2-ERK1/2 inactivation. Furthermore, expression of constitutively active MKK1 (MKK1-CA) vectors significantly rescued the decreased Rad51 protein and mRNA levels in minocycline-treated NSCLC cells. However, combined treatment with MKK1/2 inhibitor U0126 and minocycline further decreased the Rad51 expression and cell viability of NSCLC cells. Knocking down Rad51 expression by transfection with small interfering RNA of Rad51 enhanced the cytotoxicity and cell growth inhibition of minocycline. Mitomycin C (MMC) is typically used as a first or second line regimen to treat NSCLC. Compared to a single agent alone, MMC combined with minocycline resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-ERK1/2, and reduced Rad51 protein levels. Overexpression of MKK1-CA or Flag-tagged Rad51 could reverse the minocycline and MMC-induced synergistic cytotoxicity. These findings may have implications for the rational design of future drug regimens incorporating minocycline and MMC for the treatment of NSCLC. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Covariance mapping of two-photon double core hole states in C 2 H 2 and C 2 H 6 produced by an x-ray free electron laser

    International Nuclear Information System (INIS)

    Mucke, M; Motomura, K; Bozek, J D; Schorb, S; Messerschmidt, M; Glownia, J M; Cryan, J P; Coffee, R N; Takahashi, O; Prince, K C; Feifel, R; Univ. of Gothenburg

    2015-01-01

    Few-photon ionization and relaxation processes in acetylene (C 2 H 2 ) and ethane (C 2 H 6 ) were investigated at the linac coherent light source x-ray free electron laser (FEL) at SLAC, Stanford using a highly efficient multi-particle correlation spectroscopy technique based on a magnetic bottle. The analysis method of covariance mapping has been applied and enhanced, allowing us to identify electron pairs associated with double core hole (DCH) production and competing multiple ionization processes including Auger decay sequences. The experimental technique and the analysis procedure are discussed in the light of earlier investigations of DCH studies carried out at the same FEL and at third generation synchrotron radiation sources. In particular, we demonstrate the capability of the covariance mapping technique to disentangle the formation of molecular DCH states which is barely feasible with conventional electron spectroscopy methods

  16. Secretin enhances [14C]erythritol clearance in unanesthetized dogs

    International Nuclear Information System (INIS)

    Lewis, M.H.; Baker, A.L.; Dhorajiwala, J.; Moossa, A.R.

    1982-01-01

    To determine the effect of secretin infusion on clearance of inert markers into bile, unanesthetized dogs fitted with Thomas cannulas received continuous infusions of [ 14 C]erythritol and [ 3 H]inulin throughout study. Taurocholic acid administered sequentially at 9.0, 20.0, and 40.0 mumol/min enhanced [ 14 C]erythritol clearance, and GIH secretin (3 units/min) administered along with TCA (40.0 mumol/min) increased [ 14 C]erythritol clearance from 4.9 +/- 1.2 ml/10 min to 6.8 +/- 1.3 ml/10 min (P less than 0.001), but simultaneously measured [ 3 H]inulin clearance was unaltered. Secretin alone also increased [ 14 C]erythritol clearance but did not alter [ 3 H]inulin clearance. The increase in [ 14 C]erythritol clearance per unit increase in bile flow was less during secretin infusion than TCA. Thus, secretin increases [ 14 C]erythritol transport through restricted channels, probably distal to the canaliculi. [ 14 C]Erythritol may not be an accurate marker for canalicular bile flow in dogs during secretin infusion

  17. Cell density dependence of transformation frequencies in C3H10T1/2 cells exposed to X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Bettega, D; Calzolari, P; Ottolenghi, A; Lombardi, L T [Milan Univ. (Italy). Ist. di Fisica; Rimoldi, E [Milan Univ. (Italy). Ist. di Radiologia Veterinaria

    1989-12-01

    The effects of cell density on transformation frequencies were studied in C3H10T1/2 cells exposed to 0.5 and 7 Gy of 200 kVp X-rays. Initial cell density strongly influenced transformation frequency; this decreased by a factor of between 4 and 10 when the initial seeding density was changed from 50 to 2500 cells/10 cm diameter Petri dish. The data were fitted with two equations: (a) an allometric function represented on a log-log scale by a straight line and (b) a sigmoidal function with plateaux between 50 and 250 cells/dish and above 600. The two curves are compared and their probabilities discussed. Our data indicate that the region between 50 and 250 cells/dish would be the most suitable region for dose-effect measurements. A study of the growth curves at 0.5 and 8.5 Gy shows that cell growth rates are not influenced by initial cell density. (author).

  18. RAD9 deficiency enhances radiation induced bystander DNA damage and transcriptomal response

    International Nuclear Information System (INIS)

    Ghandhi, Shanaz A; Ponnaiya, Brian; Panigrahi, Sunil K; Hopkins, Kevin M; Cui, Qingping; Hei, Tom K; Amundson, Sally A; Lieberman, Howard B

    2014-01-01

    Radiation induced bystander effects are an important component of the overall response of cells to irradiation and are associated with human health risks. The mechanism responsible includes intra-cellular and inter-cellular signaling by which the bystander response is propagated. However, details of the signaling mechanism are not well defined. We measured the bystander response of Mrad9 +/+ and Mrad9 −/− mouse embryonic stem cells, as well as human H1299 cells with inherent or RNA interference-mediated reduced RAD9 levels after exposure to 1 Gy α particles, by scoring chromosomal aberrations and micronuclei formation, respectively. In addition, we used microarray gene expression analyses to profile the transcriptome of directly irradiated and bystander H1299 cells. We demonstrated that Mrad9 null enhances chromatid aberration frequency induced by radiation in bystander mouse embryonic stem cells. In addition, we found that H1299 cells with reduced RAD9 protein levels showed a higher frequency of radiation induced bystander micronuclei formation, compared with parental cells containing inherent levels of RAD9. The enhanced bystander response in human cells was associated with a unique transcriptomic profile. In unirradiated cells, RAD9 reduction broadly affected stress response pathways at the mRNA level; there was reduction in transcript levels corresponding to genes encoding multiple members of the UVA-MAPK and p38MAPK families, such as STAT1 and PARP1, suggesting that these signaling mechanisms may not function optimally when RAD9 is reduced. Using network analysis, we found that differential activation of the SP1 and NUPR1 transcriptional regulators was predicted in directly irradiated and bystander H1299 cells. Transcription factor prediction analysis also implied that HIF1α (Hypoxia induced factor 1 alpha) activation by protein stabilization in irradiated cells could be a negative predictor of the bystander response, suggesting that local hypoxic stress

  19. Biological H{sub 2} from syngas and from H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Maness, P.C.; Markov, S.; Martin, S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    The two stand-alone objectives of the research are to economically produce neat H{sub 2} in the near term from biomass (thermally gasified to syngas) and in the mid term from H{sub 2}O using cyanobacteria or algae with an oxygen-tolerant bacterial hydrogenase. Photosynthetic bacteria have four different terminal enzymes that mediate their H{sub 2} metabolisms-nitrogenase, uptake hydrogenase, fermentative hydrogenase, and carbon monoxide-linked hydrogenase. Each has been microbiologically and biochemically examined for their potential to specifically generate H{sub 2} in large-scale processes. Based on measurements of maximal activities, stabilities, energy requirements, equilibria, and partial pressures of the H{sub 2} producing reactions, the CO-linked hydrogenase is easily the most suited for practical applications. The enzyme mediates H{sub 2} production from CO at rates up to 1.5 mmol/min/g cell dry weight at near ambient temperature and pressure. Hydrogen can be produced and evolved at linear rates up to at least 2 atmospheres of partial pressure (100% CO). The rate-limiting step with high cell density suspensions is the mass transfer of CO into the aqueous phase. Bioreactor designs have been examined which enhance the mass transfer. Hollow-fiber bioreactors with bacterial cells immobilized on the fiber surfaces evolve H{sub 2} at ambient pressure at rates of about 0.3-0.7 mmol/min/g cdw. One such reactor has been producing H{sub 2} from CO continuously for 9 months with only occasional changes of liquid medium. A trickle-filter reactor with bacteria immobilized on beads removed from a bulk water phase and a pumped-bubble coil reactor with bacteria in suspension are also being examined.

  20. Explanation of the photocurrent quantum efficiency (Φ) enhancements through the CAN's model equation for the p-CuI sensitized methylviolet-C18 LB films in the photoelectrochemical cells (PECs) and Cu/n-Cu2O/M-C18/p-CuI solid-state photovoltaic cells

    Science.gov (United States)

    Fernando, C. A. N.; Liyanaarachchi, U. S.; AARajapaksha, R. D.

    2013-04-01

    Photocurrent enhancements in a dye sensitized photoelectrochemical cell (PEC) with a Cu/p-CuI/M-C18 photoelectrode and a dye sensitized solid state photovoltaic cell (DSSC) with Cu/n-Cu2O/M-C18/p-CuI are studied by controlling the formation of dye aggregates of M-C18 Langmuir-Blodgett (LB) films on the p-CuI layer. LB films of M-C18 are deposited under biasing conditions during the LB deposition process on Cu/p-CuI, Cu/n-Cu2O/p-CuI and conductive glass plates with the three-electrode configuration setup coupling to the LB trough. LB films prepared under positive biasing conditions enhance the photocurrent quantum efficiencies for both PECs and DSSCs controlling and minimizing the formation of dye aggregates. The electrolyte used for LB deposition and photocurrent measurements is (10-2 M) Fe2+ + Fe3+ (10-2 M) and (10-2 M) NaH2PO4-Na2HPO4, pH = 6 buffer solution. Maximum photocurrent quantum efficiencies (Фmax%) obtained are ≈22% for PEC and ≈20% for DSSCs, where the M-C18 LB film deposition applied potentials +0.3 V versus Ag/AgCl. The mechanism of the photocurrent enhancement is discussed through the CAN's model equation, Ф = AD0-BD02, where A = k1k2/F, B = I k12 k2[2k6/F3 + k2k4/k32 X2F2], F = k2 + k5Y + k7 + k1 I [1 + k2/k3 X], presented from our previous study [1]. Experimental evidence for the formation of the aggregates of M-C18 LB films for the negative applied potentials and suppression of the aggregates with positive applied potentials are presented from absorption spectra, AFM pictures and fluorescence measurements of the samples. Conversion efficiency obtained is ≈2.5%, Voc ≈750 mV and Isc ≈ 5.8 mA cm-2 for DSSC fabricated with +0.3 V versus Ag/AgCl applied deposition potential of M-C18 LB films.

  1. Channels with ordered water and bipyridine molecules in the porous coordination polymer {[Cu(SiF6(C10H8N22]·2C10N2H8·5H2O}n

    Directory of Open Access Journals (Sweden)

    Emmanuel Aubert

    2016-11-01

    Full Text Available The coordination polymer {[Cu(SiF6(C10H8N22]·2C10H8N2·5H2O}n, systematic name: poly[[bis(μ2-4,4′-bipyridine(μ2-hexafluoridosilicatocopper(II] 4,4′-bipyridine disolvate pentahydrate], contains pores which are filled with water and 4,4′-bipyridine molecules. As a result of the presence of these ordered species, the framework changes its symmetry from P4/mmm to P21/c. The 4,4′-bipyridine guest molecules form chains inside the 6.5 × 6.9 Å pores parallel to [100] in which the molecules interact through π–π stacking. Ordered water molecules form infinite hydrogen-bonded chains inside a second pore system (1.6 × 5.3 Å free aperture perpendicular to the 4,4′-bipyridine channels.

  2. Affordable uniform isotope labeling with 2H, 13C and 15N in insect cells

    International Nuclear Information System (INIS)

    Sitarska, Agnieszka; Skora, Lukasz; Klopp, Julia; Roest, Susan; Fernández, César; Shrestha, Binesh; Gossert, Alvar D.

    2015-01-01

    For a wide range of proteins of high interest, the major obstacle for NMR studies is the lack of an affordable eukaryotic expression system for isotope labeling. Here, a simple and affordable protocol is presented to produce uniform labeled proteins in the most prevalent eukaryotic expression system for structural biology, namely Spodoptera frugiperda insect cells. Incorporation levels of 80 % can be achieved for 15 N and 13 C with yields comparable to expression in full media. For 2 H, 15 N and 2 H, 13 C, 15 N labeling, incorporation is only slightly lower with 75 and 73 %, respectively, and yields are typically twofold reduced. The media were optimized for isotope incorporation, reproducibility, simplicity and cost. High isotope incorporation levels for all labeling patterns are achieved by using labeled algal amino acid extracts and exploiting well-known biochemical pathways. The final formulation consists of just five commercially available components, at costs 12-fold lower than labeling media from vendors. The approach was applied to several cytosolic and secreted target proteins

  3. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    International Nuclear Information System (INIS)

    Zeng, Xiangbin; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-01-01

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B_2H_6 flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10"−"3 Ω cm, mobility of 16.5–25.5 cm"2/Vs, and carrier concentration of 2.22.7 × 10"2"0 cm"−"3 were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n"+-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm"2 and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm"2 and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  4. Synergistic effects of thymoquinone and curcumin on immune response and anti-viral activity against avian influenza virus (H9N2) in turkeys.

    Science.gov (United States)

    Umar, S; Shah, M A A; Munir, M T; Yaqoob, M; Fiaz, M; Anjum, S; Kaboudi, K; Bouzouaia, M; Younus, M; Nisa, Q; Iqbal, M; Umar, W

    2016-07-01

    The main objective of this study was to determine the possible effects of thymoquinone (TQ) and curcumin (Cur) on immune-response and pathogenesis of H9N2 avian influenza virus (AIV) in turkeys. The experiment was performed on 75 non-vaccinated mixed-sex turkey poults, divided into 5 experimental groups (A, B, C, D, and E) of 15 birds each. Group A was kept as non-infected and a non-treated negative control (ctrl group) while group B was kept as infected and non-treated positive control (H9N2 group). Turkeys in groups A and B received normal commercial feed while turkeys in groups C and D received TQ, and Cur respectively, and group E concurrently received TQ and Cur from d one through the entire experiment period. All groups were challenged intra-nasally with H9N2 AIV (A/chicken/Pakistan/10RS3039-284-48/2010) at the fourth wk of age except group A. Infected turkeys showed clinical signs of different severity, showing the most prominent disease signs in turkeys in group B. All infected turkeys showed positive results for virus shedding; however, the pattern of virus shedding was different, and with turkeys in group B showing more pronounced virus secretion than the turkeys in the other groups receiving different levels of TQ and Cur. Moreover, significantly higher antibody titer against H9N2 AIV in turkeys shows the immunomodulatory nature of TQ and Cur. Similarly, increased cytokine gene expression suggests antiviral behavior of TQ and Cur especially in combination, leading to suppressed pathogenesis of H9N2 viruses. However, reduced virus shedding and enhanced immune responses were more pronounced in those turkeys receiving TQ and Cur concurrently. This study showed that supplements of TQ and Cur in combination would significantly enhance immune responsiveness and suppress pathogenicity of influenza viruses in turkeys. © 2016 Poultry Science Association Inc.

  5. 3,6-Dibromo-9-(4-tert-butylbenzyl-9H-carbazole

    Directory of Open Access Journals (Sweden)

    Duan-Lin Cao

    2008-08-01

    Full Text Available In the title compound, C23H21Br2N, which was synthesized by the N-alkylation of 1-tert-butyl-4-(chloromethylbenzene with 3,6-dibromo-9H-carbazole, the asymmetric unit contains two unique molecules. Each carbazole ring system is essentially planar, with mean deviations of 0.0077 and 0.0089 Å for the two molecules. The carbazole planes make dihedral angles of 78.9 (2 and 81.8 (2° with the planes of the respective benzene rings.

  6. Replication Capacity of Avian Influenza A(H9N2) Virus in Pet Birds and Mammals, Bangladesh.

    Science.gov (United States)

    Lenny, Brian J; Shanmuganatham, Karthik; Sonnberg, Stephanie; Feeroz, Mohammed M; Alam, S M Rabiul; Hasan, M Kamrul; Jones-Engel, Lisa; McKenzie, Pamela; Krauss, Scott; Webster, Robert G; Jones, Jeremy C

    2015-12-01

    Avian influenza A(H9N2) is an agricultural and public health threat. We characterized an H9N2 virus from a pet market in Bangladesh and demonstrated replication in samples from pet birds, swine tissues, human airway and ocular cells, and ferrets. Results implicated pet birds in the potential dissemination and zoonotic transmission of this virus.

  7. Sensitivity of mitochondrial DNA depleted ρ0 cells to H2O2 depends on the plasma membrane status.

    Science.gov (United States)

    Tomita, Kazuo; Kuwahara, Yoshikazu; Takashi, Yuko; Tsukahara, Takao; Kurimasa, Akihiro; Fukumoto, Manabu; Nishitani, Yoshihiro; Sato, Tomoaki

    2017-08-19

    To clarify the relationship between mitochondrial DNA (mtDNA)-depleted ρ0 cells and the cellular sensitivity to hydrogen peroxide (H 2 O 2 ), we established HeLa and SAS ρ0 cell lines and investigated their survival rate in H 2 O 2 , radical scavenging enzymes, plasma membrane potential status, and chronological change in intracellular H 2 O 2 amount under the existence of extracellular hydrogen peroxide compared with the parental cells. The results revealed that ρ0 cells had higher sensitivity to H 2 O 2 than their parental cells, even though the catalase activity of ρ0 cells was up-regulated, and the membrane potential of the ρ0 cells was lower than their parental cells. Furthermore, the internal H 2 O 2 amount significantly increased only in ρ0 cells after 50 μM H 2 O 2 treatment for 1 h. These results suggest that plasma membrane status of ρ0 cells may cause degradation, and the change could lead to enhanced membrane permeability to H 2 O 2 . As a consequence, ρ0 cells have a higher H 2 O 2 sensitivity than the parental cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Double labeling autoradiography. Cell kinetic studies with 3H- and 14C-thymidine

    International Nuclear Information System (INIS)

    Schultze, B.

    1981-01-01

    Examples of the multiple applicability of the double labeling method with 3 H- and 14 C-TdR are demonstrated. Double labeling with 3 H- and 14 C-TdR makes it possible to determine the cycle and its phases with high precision by modifying the usual percent labeled mitoses method with a single injection of 3 H-TdR. In addition, data is provided on the variances of the transit times through the cycle phases. For example, in the case of the jejunal crypt cells of the mouse, the transit times through successive cycle phases are uncorrelated. In the case of glial cells the double labeling method provides cell kinetic parameters despite the paucity of proliferating glial cells. In the adult untreated animal, glial cell mitoses are so rare that the percent labeled mitoses method can not be utilized. However, the S-phase duration can be measured by double labeling and the cycle time can be determined by the so-called method of labeled S phases. With the latter method the passage through the S phase of the 3 H-TdR-labeled S phase cells can be registered by injecting 14 C-TdR at different time intervals following 3 H-TdR application. In this way an S-phase duration of about 10 hr and a cycle time of about 20 hr was found for glial cells in the adult untreated mouse. An exchange of glial cells between the growth fraction and the nongrowth fraction has also been shown by double labeling. A quite different application of the double labeling method with 3H- and 14 C-TdR is the in vivo study of the cell cycle phase-specific effect of drugs used in chemotherapy of tumors. The effect of vincristine on these cells has been studied. Vincristine affects cells in S and G2 in such a manner that they are arrested during the next metaphase and subsequently become necrotic. It has no effect on G1 cells

  9. Transformation of mouse embryo (C3H 10T1/2) cells by alpha particles

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, A.; Henning, C.B.; Gemmell, D.S.; Zabransky, B.J.

    1977-01-01

    Mammalian cells in culture (C3H mouse 10T1/2 cells) have been shown here for the first time to be transformed by alpha irradiation when cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine. Malignant tumors were induced following inoculation of the transformed cells into syngeneic hosts. Unirradiated control cells injected at the same concentration have, so far, failed to produce tumors. The morphology of the transformed foci was remarkably similar to that obtained by x rays and chemicals but different from virally transformed cells. When the cells were seeded at low density in the exponential growth phase, the transformation frequency per surviving cell increased approximately as the cube of the dose and peaked at an alpha particle fluence between 1.5 and 2.5 x 10 7 alpha particles per cm 2 (205 to 342 rads). The frequency of the transformation was found to be greatly dependent on the number of cells per dish irradiated. Irradiation of larger numbers resulted in much lower frequencies of transformation. The maximum transformation frequency observed in nine separate experiments was 4 percent of the surviving cells. At doses greater than 200 rads the transformation frequency per surviving cell remained constant. The present results permit us to conclude that alpha irradiation may, indeed, be able to exert a direct effect on the genome of the cell to produce malignancy without any external immunological or hormonal influences

  10. Compositional study of glow-discharge A-SiC:H films for window layer of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Imura, T; Hiraki, A

    1983-10-01

    A series of compositional studies on various types of amorphous silicon-carbon-hydrogen alloy (a-SiC:H) were performed by means of Auger electron spectroscopy (AES) and infrared spectroscopy (IR). The difference between CH4 and C2H4 as a carbon source was examined. From the infrared absorption study it is shown that C2H4-based a-SiC:H films contain carbons as -C2H5 and -CH3,, whereas CH4-based ones as tetrahedral atoms. These results will serve to elucidate the fabrication problems of solar cells. 14 references.

  11. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si:H/c-Si heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn; Wen, Xixing; Sun, Xiaohu; Liao, Wugang; Wen, Yangyang

    2016-04-30

    Boron-doped zinc oxide (BZO) films were grown by metal organic chemical vapor deposition. The influence of B{sub 2}H{sub 6} flow rate and substrate temperature on the microstructure, optical, and electrical properties of BZO films was investigated by X-ray diffraction spectrum, scanning electron microscope, optical transmittance spectrum, and Hall measurements. The BZO films with optical transmittance above 85% in the visible and infrared light range, resistivity of 0.9–1.0 × 10{sup −3} Ω cm, mobility of 16.5–25.5 cm{sup 2}/Vs, and carrier concentration of 2.22.7 × 10{sup 20} cm{sup −3} were deposited under optimized conditions. The optimum BZO films were applied on the bifacial BZO/p-type a-Si:H/i-type a-Si:H/n-type c-Si/i-type a-Si:H/n{sup +}-type a-Si:H/BZO heterojunction solar cell as both front and back transparent electrodes. Meanwhile, the bifacial heterojunction solar cell with indium tin oxide (ITO) as both front and back transparent electrodes was fabricated. The efficiencies of 17.788% (open-circuit voltage: 0.628 V, short-circuit current density: 41.756 mA/cm{sup 2} and fill factor: 0.678) and 16.443% (open-circuit voltage: 0.590 V, short-circuit current density: 36.515 mA/cm{sup 2} and fill factor: 0.762) were obtained on the a-Si/c-Si heterojunction solar cell with BZO and ITO transparent electrodes, respectively. - Highlights: • Boron-doped zinc oxide films with low resistivity were fabricated. • The boron-doped zinc oxide films have the high transmittance. • B-doped ZnO film was applied in a-Si:H/c-Si solar cell as transparent electrodes. • The a-Si:H/c-Si solar cell with efficiency of 17.788% was obtained.

  12. Rh(I) -Catalyzed Intramolecular Carbonylative C-H/C-I Coupling of 2-Iodobiphenyls Using Furfural as a Carbonyl Source.

    Science.gov (United States)

    Furusawa, Takuma; Morimoto, Tsumoru; Nishiyama, Yasuhiro; Tanimoto, Hiroki; Kakiuchi, Kiyomi

    2016-08-19

    Synthesis of fluoren-9-ones by a Rh-catalyzed intramolecular C-H/C-I carbonylative coupling of 2-iodobiphenyls using furfural as a carbonyl source is presented. The findings indicate that the rate-determining step is not a C-H bond cleavage but, rather, the oxidative addition of the C-I bond to a Rh(I) center. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3

    Science.gov (United States)

    Chen, Gang; Zhang, Yao; Chen, Jian; Guo, Xinli; Zhu, Yunfeng; Li, Liquan

    2018-06-01

    Nano-dispersed Ni particles over mesoporous carbon material CMK-3 (Ni/CMK-3) was fabricated by means of impregnation-reduction strategy using precursor NiCl2 · 6H2O, which is beneficial to improving the de/rehydrogenation performances of MgH2. The dehydrogenation onset temperature of MgH2–Ni/CMK-3 is significantly lowered by 170 K from that of pristine MgH2 (around 603 K). Totally 5.9 wt% of hydrogen absorption capacity is liberated within 1 h at a temperature of 423 K under a pressure of 3 MPa. This composite can absorb 3.9 wt% hydrogen even at a temperature of 328 K under 3 MPa H2. Activation energy values of both dehydrogenation (43.4 kJ mol‑1) and rehydrogenation (37.4 kJ mol‑1) for MgH2–Ni/CMK-3 are greatly enhanced from those of as-milled MgH2. Ni/CMK-3 also slightly destabilizes the dehydrogenation of MgH2 by 1.5 kJ mol {{{{H}}}2}-1. The enhanced performances can be attributed to the synergistic effects of both destabilization and activation from nano-dispersed Ni particles.

  14. Resveratrol enhances radiosensitivity of human non-small cell lung cancer NCI-H838 cells accompanied by inhibition of nuclear factor-kappa B activation

    International Nuclear Information System (INIS)

    Liao, Hui-Fen; Kuo Cheng-Deng; Yang, Yuh-Cheng; Lin, Chin-Ping; Tai, Hung-Chi; Chen, Yu-Jen; Chen, Yu-Yawn

    2005-01-01

    Resveratrol, a polyphenol in red wine, possesses many pharmacological activities including cardio-protection, chemoprevention, anti-tumor effects, and nuclear factor-kappa B (NF-κB) inactivation. The present study was designed to evaluate the effects and possible mechanism of resveratrol in enhancing radiosensitivity of lung cancer cells. Human non-small cell lung cancer NCI-H838 cells were irradiated with or without resveratrol pretreatment. The surviving fraction and sensitizer enhancement ratio (SER) were estimated by using a colony formation assay and linear-quadratic model. The cell-cycle distribution was evaluated by using prospidium iodide staining and flow cytometry. An enzyme-linked immunosorbent assay (ELISA)-based assay with immobilized oligonucleotide was performed to assess the DNA binding activity of NF-κB. Resveratrol had no direct growth-inhibitory effect on NCI-H838 cells treated for 24 hours with doses up to 25 μM. Pretreatment with resveratrol significantly enhanced cell killing by radiation, with an SER up to 2.2. Radiation activated NF-κB, an effect reversed by resveratrol pretreatment. Resveratrol resulted in a decrease of cells in the G 0 /G 1 phase and an increase in the S phase. Our results demonstrate that resveratrol enhances the radiosensitivity of NCI-H838 cells accompanied by NF-κB inhibition and S-phase arrest. (author)

  15. The species origin of the cellular microenvironment influences markers of beta cell fate and function in EndoC-βH1 cells.

    Science.gov (United States)

    Jeffery, N; Richardson, S; Beall, C; Harries, L W

    2017-12-15

    Interaction between islet cell subtypes and the extracellular matrix influences beta-cell function in mammals. The tissue architecture of rodent islets is very different to that of human islets; cell-to-cell communication and interaction with the extracellular matrix may vary between species. In this work, we have compared the responses of the human EndoC-βH1 cell line to non-human and human-derived growth matrices in terms of growth morphology, gene expression and glucose-stimulated insulin secretion (GSIS). EndoC-βH1 cells demonstrated a greater tendency to form cell clusters when cultured in a human microenvironment and exhibited reduced alpha cell markers at the mRNA level; mean expression difference - 0.23 and - 0.51; p = 0.009 and 0.002 for the Aristaless-related homeobox (ARX) and Glucagon (GCG) genes respectively. No differences were noted in the protein expression of mature beta cell markers such as Pdx1 and NeuroD1 were noted in EndoC-βH1 cells grown in a human microenvironment but cells were however more sensitive to glucose (4.3-fold increase in insulin secretion following glucose challenge compared with a 1.9-fold increase in cells grown in a non-human microenvironment; p = 0.0003). Our data suggests that the tissue origin of the cellular microenvironment has effects on the function of EndoC-βH1 cells in vitro, and the use of a more human-like culture microenvironment may bring benefits in terms of increased physiological relevance. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of Sodium Chloride and pH on Enterotoxin C Production

    Science.gov (United States)

    Genigeorgis, Constantin; Foda, Mohamed S.; Mantis, Antony; Sadler, Walter W.

    1971-01-01

    Growth and production of enterotoxin C by Staphylococcus aureus strain 137 in 3% + 3% protein hydrolysate powder N-Z Amine NAK broths with 0 to 12% NaCl and an initial pH of 4.00 to 9.83 were studied during an 8-day incubation period at 37 C. Growth was initiated at pH values as low as 4.00 and as high as 9.83 at 0% salt level as long as the inoculum contained at least 108 cells per ml. Rate of growth decreased as the NaCl concentration was increased gradually to 12%. Enterotoxin C was produced in broths inoculated with 108 cells per ml and above and having initial pH ranges of 4.00 to 9.83, 4.40 to 9.43, 4.50 to 8.55 and respective NaCl concentrations of 0, 4, and 8%. In the presence of 10% NaCl, the pH range supporting enterotoxin C production was 5.45 to 7.30 for an inoculum level of 108 cells per ml and 6.38 to 7.30 for 3.6 × 106 cells per ml. In repeated experiments in which the inoculum contained 108 cells per ml, we failed to demonstrate enterotoxin C production in broths with 12% NaCl and a pH range of 4.50 to 8.55 and concentrated up to 14 times. The effect of NaCl on enterotoxin C production followed the same pattern as its effect on enterotoxin B production. As the concentration of NaCl increased from 0 to 10%, yields of enterotoxin B and C decreased to undetectable amounts. PMID:5574320

  17. Dose fractionation effects in plateau-phase cultures of C3H 10T1/2 cells and their transformed counterparts

    International Nuclear Information System (INIS)

    Zeman, E.M.; Bedford, J.S.

    1985-01-01

    A comparison of γ-ray dose fractionation effects was made using plateau-phase cultures of C3H 10T1/2 cells and their transformed counterparts in an attempt to simulate basically similar populations of cells that differ primarily in their turnover rates. The status of cell populations with respect to their turnover rates may be an important factor influencing dose fractionation effects in early- and late-responding tissues. In this cell culture system, the rate of cell turnover was approximately three times higher for the plateau-phase transformed cultures. While the single acute dose survival curves for log-phase cells were indistinguishable, there were significant differences between the survival curves for plateau-phase cultures of the two cell types. Both cell lines had a similar capacity for repair of sublethal damage, but untransformed cells had a much greater capacity to repair potentially lethal damage in plateau phase. Multifraction survival curves were determined for both cell lines for doses per fraction ranging from 9.0 to 0.8 Gy, and from these isoeffect curves of log total dose versus dose per fraction were derived. The isoeffect curve for the slowly cycling, untransformed cells was found to be appreciably steeper than that for the more rapidly cycling transformed cells, a finding consistent with previously reported differences in dose fractionation isoeffect curves for early- and late-responding tissues in vivo

  18. Hydrogen sulfide (H{sub 2}S)/cystathionine γ-lyase (CSE) pathway contributes to the proliferation of hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yan; Ye, Shuang; Yuan, Dexiao; Zhang, Jianghong; Bai, Yang; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2014-05-15

    Highlights: • Inhibition of H{sub 2}S/CSE pathway strongly stimulates cellular apoptosis. • Inhibition of H{sub 2}S/CSE pathway suppresses cell growth by blocking EGFR pathway. • H{sub 2}S/CSE pathway is critical for maintaining the proliferation of hepatoma cells. - Abstract: Hydrogen sulfide (H{sub 2}S)/cystathionine γ-lyase (CSE) pathway has been demonstrated to play vital roles in physiology and pathophysiology. However, its role in tumor cell proliferation remains largely unclear. Here we found that CSE over-expressed in hepatoma HepG2 and PLC/PRF/5 cells. Inhibition of endogenous H{sub 2}S/CSE pathway drastically decreased the proliferation of HepG2 and PLC/PRF/5 cells, and it also enhanced ROS production and mitochondrial disruption, pronounced DNA damage and increased apoptosis. Moreover, this increase of apoptosis was associated with the activation of p53 and p21 accompanied by a decreased ratio of Bcl-2/Bax and up-regulation of phosphorylated c-Jun N-terminal kinase (JNK) and caspase-3 activity. In addition, the negative regulation of cell proliferation by inhibition of H{sub 2}S/CSE system correlated with the blockage of cell mitogenic and survival signal transduction of epidermal growth factor receptor (EGFR) via down-regulating the extracellular-signal-regulated kinase 1/2 (ERK1/2) activation. These results demonstrate that H{sub 2}S/CSE and its downstream pathway contribute to the proliferation of hepatoma cells, and inhibition of this pathway strongly suppress the excessive growth of hepatoma cells by stimulating mitochondrial apoptosis and suppressing cell growth signal transduction.

  19. MicroRNA-9 enhances sensitivity to cetuximab in epithelial phenotype hepatocellular carcinoma cells through regulation of the eukaryotic translation initiation factor 5A-2.

    Science.gov (United States)

    Xue, Fei; Liang, Yuntian; Li, Zhenrong; Liu, Yanhui; Zhang, Hongwei; Wen, Yu; Yan, Lei; Tang, Qiang; Xiao, Erhui; Zhang, Dongyi

    2018-01-01

    Hepatocellular carcinoma (HCC) is one of the most widespread malignant human tumors worldwide. Treatment options include radiotherapy, surgical intervention and chemotherapy; however, drug resistance is an ongoing treatment concern. In the present study, the effects of a microRNA (miR/miRNA), miR-9, on the sensitivity of HCC cell lines to the epidermal growth factor receptor inhibitor, cetuximab, were examined. miR-9 has been proposed to serve a role in tumorigenesis and tumor progression. In the present study, bioinformatics analyses identified the eukaryotic translation initiation factor 5A2 (eIF-5A-2) as a target of miR-9. The expression levels of miR-9 and eIF-5A-2 were examined by reverse transcription-quantitative polymerase chain reaction and HCC cell lines were transfected with miR-9 mimics and inhibitors to determine the effects of the miRNA on cell proliferation and viability. The miR-9 mimic was revealed to significantly increase the sensitivity of epithelial phenotype HCC cells (Hep3B and Huh7) to cetuximab, while the miR-9 inhibitor triggered the opposite effect. There were no significant differences in sensitivity to cetuximab observed in mesenchymal phenotype HCC cells (SNU387 and SNU449). Cells lines displaying high expression levels of eIF-5A-2 were more resistant to cetuximab. Transfection of cells with a miR-9 mimic resulted in downregulation of the expression of eIF-5A-2 mRNA, while an miR-9 inhibitor increased expression. When expression of eIF-5A-2 was knocked down with siRNA, the effects of miR-9 on cetuximab sensitivity were no longer observed. Taken together, these data support a role for miR-9 in enhancing the sensitivity of epithelial phenotype HCC cells to cetuximab through regulation of eIF-5A-2.

  20. H2O2 Production in Microbial Electrochemical Cells Fed with Primary Sludge.

    Science.gov (United States)

    Ki, Dongwon; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2017-06-06

    We developed an energy-efficient, flat-plate, dual-chambered microbial peroxide producing cell (MPPC) as an anaerobic energy-conversion technology for converting primary sludge (PS) at the anode and producing hydrogen peroxide (H 2 O 2 ) at the cathode. We operated the MPPC with a 9 day hydraulic retention time in the anode. A maximum H 2 O 2 concentration of ∼230 mg/L was achieved in 6 h of batch cathode operation. This is the first demonstration of H 2 O 2 production using PS in an MPPC, and the energy requirement for H 2 O 2 production was low (∼0.87 kWh/kg H 2 O 2 ) compared to previous studies using real wastewaters. The H 2 O 2 gradually decayed with time due to the diffusion of H 2 O 2 -scavenging carbonate ions from the anode. We compared the anodic performance with a H 2 -producing microbial electrolysis cell (MEC). Both cells (MEC and MPPC) achieved ∼30% Coulombic recovery. While similar microbial communities were present in the anode suspension and anode biofilm for the two operating modes, aerobic bacteria were significant only on the side of the anode facing the membrane in the MPPC. Coupled with a lack of methane production in the MPPC, the presence of aerobic bacteria suggests that H 2 O 2 diffusion to the anode side caused inhibition of methanogens, which led to the decrease in chemical oxygen demand removal. Thus, the Coulombic efficiency was ∼16% higher in the MPPC than in the MEC (64% versus 48%, respectively).

  1. Pigeon RIG-I Function in Innate Immunity against H9N2 IAV and IBDV

    Directory of Open Access Journals (Sweden)

    Wenping Xu

    2015-07-01

    Full Text Available Retinoic acid-inducible gene I (RIG-I, a cytosolic pattern recognition receptor (PRR, can sense various RNA viruses, including the avian influenza virus (AIV and infectious bursal disease virus (IBDV, and trigger the innate immune response. Previous studies have shown that mammalian RIG-I (human and mice and waterfowl RIG-I (ducks and geese are essential for type I interferon (IFN synthesis during AIV infection. Like ducks, pigeons are also susceptible to infection but are ineffective propagators and disseminators of AIVs, i.e., “dead end” hosts for AIVs and even highly pathogenic avian influenza (HPAI. Consequently, we sought to identify pigeon RIG-I and investigate its roles in the detection of A/Chicken/Shandong/ZB/2007 (H9N2 (ZB07, Gansu/Tianshui (IBDV TS and Beijing/CJ/1980 (IBDV CJ-801 strains in chicken DF-1 fibroblasts or human 293T cells. Pigeon mRNA encoding the putative pigeon RIG-I analogs was identified. The exogenous expression of enhanced green fluorescence protein (EGFP-tagged pigeon RIG-I and caspase activation and recruitment domains (CARDs, strongly induced antiviral gene (IFN-β, Mx, and PKR mRNA synthesis, decreased viral gene (M gene and VP2 mRNA expression, and reduced the viral titers of ZB07 and IBDV TS/CJ-801 virus strains in chicken DF-1 cells, but not in 293T cells. We also compared the antiviral abilities of RIG-I proteins from waterfowl (duck and goose and pigeon. Our data indicated that waterfowl RIG-I are more effective in the induction of antiviral genes and the repression of ZB07 and IBDV TS/CJ-801 strain replication than pigeon RIG-I. Furthermore, chicken melanoma differentiation associated gene 5(MDA5/ mitochondrial antiviral signaling (MAVS silencing combined with RIG-I transfection suggested that pigeon RIG-I can restore the antiviral response in MDA5-silenced DF-1 cells but not in MAVS-silenced DF-1 cells. In conclusion, these results demonstrated that pigeon RIG-I and CARDs have a strong antiviral

  2. The system Ba(H2PO4)2-Sr(H2PO4)2-H3PO4(30%)-H2O at 25, 40 and 60 deg C

    International Nuclear Information System (INIS)

    Taranenko, N.P.; Serebrennikova, G.M.; Stepin, B.D.; Oboznenko, Yu.V.

    1982-01-01

    The system Ba(