WorldWideScience

Sample records for h2o-oh monolayer films

  1. The structure of mixed H2O-OH monolayer films on Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Tatarkhanov, M.; Fomin, E.; Salmeron, M.; Andersson, K.; Ogasawara, H.; Pettersson, L.G.M.; Nilsson, A.; Cerda, J.I.

    2008-10-20

    Scanning tunneling microscopy (STM) and x-ray absorption spectroscopy (XAS) have been used to study the structures produced by water on Ru(0001) at temperatures above 140 K. It was found that while undissociated water layers are metastable below 140 K, heating above this temperature produces drastic transformations whereby a fraction of the water molecules partially dissociate and form mixed H{sub 2}O-OH structures. XPS and XAS revealed the presence of hydroxyl groups with their O-H bond essentially parallel to the surface. STM images show that the mixed H{sub 2}O-OH structures consist of long narrow stripes aligned with the three crystallographic directions perpendicular to the close-packed atomic rows of the Ru(0001) substrate. The internal structure of the stripes is a honeycomb network of H-bonded water and hydroxyl species. We found that the metastable low temperature molecular phase can also be converted to a mixed H{sub 2}O-OH phase through excitation by the tunneling electrons when their energy is 0.5 eV or higher above the Fermi level. Structural models based on the STM images were used for Density Functional Theory optimizations of the stripe geometry. The optimized geometry was then utilized to calculate STM images for comparison with the experiment.

  2. The structure of mixed H2O-OH monolayer films on Ru(0001)

    DEFF Research Database (Denmark)

    Tatarkhanov, M.; Fomin, E.; Salmeron, M.

    2008-01-01

    temperature molecular phase can also be converted to a mixed H2O-OH phase through excitation by the tunneling electrons when their energy is 0.5 eV or higher above the Fermi level. Structural models based on the STM images were used for density functional theory optimizations of the stripe geometry...

  3. The effect of the partial pressure of H2 gas and atomic hydrogen on diamond films deposited using CH3OH/H2O gas

    International Nuclear Information System (INIS)

    Lee, Kwon-Jai; Koh, Jae-Gui; Shin, Jae-Soo; Kwon, Ki-Hong; Lee, Chang-Hee

    2006-01-01

    Diamond films were deposited on Si(100) substrates by hot filament chemical vapor deposition (HFCVD) with a CH 3 OH/H 2 O gas mixture while changing the gas ratio. The films were analyzed with scanning electron microscopy (SEM), Raman spectroscopy, and optical emission spectroscopy (OES). The diamond films were grown with CH 3 OH being 52 % by volume of the gas mixture. The effect of atomic hydrogen on the film was different from that of the CH 4 /H 2 gas mixture. Analysis with OES during film growth indicated that among the thermally dissociated hydrogen radicals, only H α contributed to the etching of graphite.

  4. Composition and structural study of solution-processed Zn(S,O,OH) thin films grown using H{sub 2}O{sub 2} based deposition route

    Energy Technology Data Exchange (ETDEWEB)

    Buffière, M., E-mail: marie.buffiere@imec.be [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44Solar, 14 rue Kepler, 44240 La Chapelle-sur-Erdre (France); Gautron, E. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Hildebrandt, T. [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP)-UMR 7174 EDF-CNRS-ENSCP, 6 quai Watier-78401 Chatou Cedex (France); Harel, S.; Guillot-Deudon, C.; Arzel, L. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Naghavi, N. [Institut de Recherche et Développement sur l' Energie Photovoltaïque (IRDEP)-UMR 7174 EDF-CNRS-ENSCP, 6 quai Watier-78401 Chatou Cedex (France); Barreau, N. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Kessler, J. [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); 44Solar, 14 rue Kepler, 44240 La Chapelle-sur-Erdre (France)

    2013-05-01

    Recent results have revealed that the low deposition time issue of chemical bath deposited (CBD) Zn(S,O,OH) buffer layer used in Cu(In,Ga)Se{sub 2} (CIGSe) solar cells could be resolved using H{sub 2}O{sub 2} as an additive in the chemical bath solution. Although the use of this additive does not hinder the electrical properties of the resulting Zn(S,O,OH)-buffered CIGSe solar cells, the impact of H{sub 2}O{sub 2} on the Zn(S,O,OH) properties remains unclear. The present contribution aims at determining the chemical composition and the microstructure of Zn(S,O,OH) film deposited by CBD using the alternative deposition bath containing the standard zinc sulfate, thiourea, ammonia but also H{sub 2}O{sub 2} additive. Both X-ray photoemission spectroscopy and energy dispersive X-ray spectroscopy analyses reveal higher sulfur content in alternatively deposited Zn(S,O,OH), since the first step growth of the layer. According to transmission electron microscopy analyses, another consequence of the higher deposition rate achieved when adding H{sub 2}O{sub 2} in the bath is the modification of the absorber/buffer interface. This could be explained by the enhancement of the cluster growth mechanism of the layer. - Highlights: ► The Zn(S,O,OH) layer composition can vary with the chemical bath process used. ► The alternative process leads to a faster incorporation of sulfur in the layer. ► No ZnS epitaxial layer has been found at absorber/alternative buffer interface. ► The use of H{sub 2}O{sub 2} enhances the cluster-by-cluster growth mechanism.

  5. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O and anhydrous Rb[UO2(AsO3OH)(AsO2(OH)2)

    International Nuclear Information System (INIS)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.; Bosbach, Dirk; Suleimanov, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.; Alekseev, Evgeny V.

    2014-01-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO 2 (AsO 3 OH)(AsO 2 (OH) 2 )]·H 2 O (α-, β-RbUAs) and the anhydrous phase Rb[UO 2 (AsO 3 OH)(AsO 2 (OH) 2 )] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions. - Graphical abstract: Three different layer geometries observed in the structures of Rb[UO 2 (AsO 3 OH)(AsO 2 (OH) 2 )] and α- and β- Rb[UO 2 (AsO 3 OH)(AsO 2 (OH) 2 )]·H 2 O. Two different coordination environments of uranium polyhedra (types I and II) are shown schematically on the top of the figure. - Highlights: • Three new uranyl arsenates were synthesized from the hydrothermal reactions. • The phases consist of the topologically identical but geometrically different layers. • Topotactic transitions were observed in the processes of mono-hyrates dehydration

  6. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O and anhydrous Rb[UO2(AsO3OH)(AsO2(OH)2)

    Science.gov (United States)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.; Bosbach, Dirk; Suleimanov, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.; Alekseev, Evgeny V.

    2014-07-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O (α-, β-RbUAs) and the anhydrous phase Rb[UO2(AsO3OH)(AsO2(OH)2)] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions.

  7. Redetermination of Ce[B5O8(OH(H2O]NO3·2H2O

    Directory of Open Access Journals (Sweden)

    Ya-Xi Huang

    2012-05-01

    Full Text Available The crystal structure of Ce[B5O8(OH(H2O]NO3·2H2O, cerium(III aquahydroxidooctaoxidopentaborate nitrate dihydrate, has been redetermined from single-crystal X-ray diffraction data. In contrast to the previous determination [Li et al. (2003. Chem. Mater. 15, 2253–2260], the present study reveals the location of all H atoms, slightly different fundamental building blocks (FBBs of the polyborate anions, more reasonable displacement ellipsoids for all non-H atoms, as well as a model without disorder of the nitrate anion. The crystal structure is built from corrugated polyborate layers parallel to (010. These layers, consisting of [B5O8(OH(H2O]2− anions as FBBs, stack along [010] and are linked by Ce3+ ions, which exhibit a distorted CeO10 coordination sphere. The layers are additionally stabilized via O—H...O hydrogen bonds between water molecules and nitrate anions, located at the interlayer space. The [BO3(H2O]-group shows a [3 + 1] coordination and is considerably distorted from a tetrahedral configuration. Bond-valence-sum calculation shows that the valence sum of boron is only 2.63 valence units (v.u. when the contribution of the water molecule (0.49 v.u. is neglected.

  8. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling.

    Science.gov (United States)

    Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F

    2016-03-03

    The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.

  9. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O and anhydrous Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Na; Klepov, Vladislav V. [Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research (IEK-6), 52428 Jülich (Germany); Villa, Eric M. [Department of Chemistry, Creighton University, 2500 California Plaza, Omaha NE 68178 (United States); Bosbach, Dirk [Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research (IEK-6), 52428 Jülich (Germany); Suleimanov, Evgeny V. [Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Depmeier, Wulf [Institut für Geowissenschaften, Universität zu Kiel, 24118 Kiel (Germany); Albrecht-Schmitt, Thomas E., E-mail: albrecht-schmitt@chem.fsu.edu [Department of Chemistry and Biochemistry, Florida State University, 102 Varsity Way, Tallahassee, FL 32306-4390 (United States); Alekseev, Evgeny V., E-mail: e.alekseev@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute for Energy and Climate Research (IEK-6), 52428 Jülich (Germany); Institut für Kristallographie, RWTH Aachen University, 52066 Aachen (Germany)

    2014-07-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O (α-, β-RbUAs) and the anhydrous phase Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions. - Graphical abstract: Three different layer geometries observed in the structures of Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] and α- and β- Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O. Two different coordination environments of uranium polyhedra (types I and II) are shown schematically on the top of the figure. - Highlights: • Three new uranyl arsenates were synthesized from the hydrothermal reactions. • The phases consist of the topologically identical but geometrically different layers. • Topotactic transitions were observed in the processes of mono-hyrates dehydration.

  10. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors.

    Science.gov (United States)

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M João; Montemor, M Fátima

    2017-01-04

    Consecutive layers of Ni(OH) 2 and Co(OH) 2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH) 2 , Co(OH) 2 , Ni 1/2 Co 1/2 (OH) 2 and layered films of Ni(OH) 2 on Co(OH) 2 and Co(OH) 2 on Ni(OH) 2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH) 2 films and of particles agglomerates in the Ni(OH) 2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH) 2 on Co(OH) 2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g -1 at the specific current of 1 A g -1 . The hybrid cell using Ni(OH) 2 on Co(OH) 2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g -1 and 37.8 W h g -1 at specific powers of 0.2 W g -1 and 2.45 W g -1 , respectively.

  11. Physical limit of stability in supercooled D2O and D2O+H2O mixtures

    Science.gov (United States)

    Kiselev, S. B.; Ely, J. F.

    2003-01-01

    The fluctuation theory of homogeneous nucleation was applied for calculating the physical boundary of metastable states, the kinetic spinodal, in supercooled D2O and D2O+H2O mixtures. The kinetic spinodal in our approach is completely determined by the surface tension and equation of state of the supercooled liquid. We developed a crossover equation of state for supercooled D2O, which predicts a second critical point of low density water-high density water equilibrium, CP2, and represents all available experimental data in supercooled D2O within experimental accuracy. Using Turnbull's expression for the surface tension we calculated with the crossover equation of state for supercooled D2O the kinetic spinodal, TKS, which lies below the homogeneous nucleation temperature, TH. We show that CP2 always lies inside in the so-called "nonthermodynamic habitat" and physically does not exist. However, the concept of a second "virtual" critical point is physical and very useful. Using this concept we have extended this approach to supercooled D2O+H2O mixtures. As an example, we consider here an equimolar D2O+H2O mixture in normal and supercooled states at atmospheric pressure, P=0.1 MPa.

  12. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    International Nuclear Information System (INIS)

    Nefedov, R A; Ferapontov, Yu A; Kozlova, N P

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H 2 O 2 - H 2 O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li 2 O 2 ·H 2 O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li 2 O 2 ·H 2 O content on hydrogen peroxide decay contained in liquid phase of LiOH - H 2 O 2 - H 2 O trinary system under conditions of experiments conducted has been shown. (paper)

  13. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    Science.gov (United States)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H2O2 - H2O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li2O2·H2O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li2O2·H2O content on hydrogen peroxide decay contained in liquid phase of LiOH - H2O2 - H2O trinary system under conditions of experiments conducted has been shown.

  14. Ferrous ion oxidations by ·H, ·OH and H2O2 in aerated FBX dosimetry system

    International Nuclear Information System (INIS)

    Gupta, B.L.; Nilekani, S.R.

    1998-01-01

    In the ferrous ion, benzoic acid and xylenol orange (FBX) dosimetric system, benzoic acid (BA) increases the G(Fe 3+ ) value. Xylenol orange (XO) controls the BA sensitized chain reaction as well as forms a complex with Fe 3+ . In the aerated FBX system each ·H, ·OH and H 2 O 2 oxidizes 8.5, 6.6 and 7.6 Fe 2+ ions, respectively; and these values respectively increase to 11.3, 7.6 and 8.6 in oxygenated solution. About 8% ·OH reacts with XO and the remaining with BA. The above fractional values are due to this competition. This ·OH reaction with XO oxidizes 1.8% and 2.1% ferrous ions only in aerated and oxygenated solutions, respectively. There is a competition between ·H reactions with O 2 and with BA, but both lead to the production of H 2 O 2 . The oxidation of Fe 2+ by ·OH reactions at different concentrations of H 2 O 2 is linear with absorbed dose while the ·H reactions make the oxidation of Fe 2+ non-linear with dose. This is due to competition reaction of H-adduct of BA between O 2 and Fe 3+

  15. Synthesis and crystal structures of new complexes of Np(V) glycolate with 2,2'-bipyridine, [NpO2(C10H8N2)(OOC2H2OH)].1.5H2O and [NpO2(C10H8N2)(OOC2H2OH)].2.5H2O

    International Nuclear Information System (INIS)

    Charushnikova, I.A.; Krot, N.N.; Starikova, Z.A.

    2009-01-01

    Single crystals were prepared, and the structures of two complexes of Np(V) glycolate with 2,2'-bipyridine of the compositions [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)].1.5H 2 O (I) and [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)]2.5H 2 O (II) were studied. The structures of the compounds are based on neptunyl-glycolate chains in which the glycolate anion manifests its complexation ability in different manner. In structure I, the bidentate-bridging anion links the adjacent NpO 2 - cations through the oxygen atoms of the carboxylate group. The neptunyl-glycolate chains of I exhibits the mutual coordination of the NpO 2 - cations acting toward each other simultaneously as ligands and coordinating centers. In compound II, the glycolate anion is bidentately coordinated to one neptunium atom to form a planar five-membered metallocycle [NpOCCO]. The O atom external with respect to the metallocycle is in the coordination environment of the adjacent neptunyl. The nitrogen-containing molecular ligand Bipy is included into the coordination environment of Np. The coordination polyhedron of the Np atoms in both structures is a pentagonal bipyramid in which the average Np-N bond length is 2.666 Aa (I) and 2.596 Aa (II). (orig.)

  16. Widespread distribution of OH/H2O on the lunar surface inferred from spectral data.

    Science.gov (United States)

    Bandfield, Joshua L; Poston, Michael J; Klima, Rachel L; Edwards, Christopher S

    2018-01-01

    Remote sensing data from lunar orbiters have revealed spectral features consistent with the presence of OH or H 2 O on the lunar surface. Analyses of data from the Moon Mineralogy Mapper spectrometer onboard the Chandryaan-1 spacecraft have suggested that OH/H 2 O is recycled on diurnal timescales and persists only at high latitudes. However, the spatial distribution and temporal variability of the OH/H 2 O, as well as its source, remain uncertain. Here we incorporate a physics-based thermal correction into analysis of reflectance spectra from the Moon Mineralogy Mapper and find that prominent absorption features consistent with OH/H 2 O can be present at all latitudes, local times, and surface types examined. This suggests the widespread presence of OH/H 2 O on the lunar surface without significant diurnal migration. We suggest that the spectra are consistent with the production of OH in space weathered materials by the solar wind implantation of H + and formation of OH at crystal defect sites, as opposed to H 2 O sourced from the lunar interior. Regardless of the specific composition or formation mechanism, we conclude that OH/H 2 O can be present on the Moon under thermal conditions more wide-ranging than previously recognized.

  17. Cross sections for Scattering and Mobility of OH- and H3 O+ ions in H2 O

    Science.gov (United States)

    Petrovic, Zoran; Stojanovic, Vladimir; Maric, Dragana; Jovanovic, Jasmina

    2016-05-01

    Modelling of plasmas in liquids and in biological and medical applications requires data for scattering of all charged and energetic particles in water vapour. We present swarm parameters for OH- and H3 O+, as representatives of principal negative and positive ions at low pressures in an attempt to provide the data that are not yet available. We applied Denpoh-Nanbu procedure to calculate cross section sets for collisions of OH- and H3 O+ ions with H2 O molecule. Swarm parameters for OH- and H3 O+ ions in H2 O are calculated by using a well tested Monte Carlo code for a range of E / N(E -electric field, N-gas density) at temperature T = 295 K, in the low pressure limit. Non-conservative processes were shown to strongly influence the transport properties even for OH- ions above the average energy of 0.2 eV(E / N >200 Td). The data are valid for low pressure water vapour or small amounts in mixtures. They will provide a basis for calculating properties of ion-water molecule clusters that are most commonly found at higher pressures and for modelling of discharges in liquids. Acknowledgment to Ministry of Education, Science and Technology of Serbia.

  18. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application

    Science.gov (United States)

    Nimbalkar, Amol R.; Patil, Maruti G.

    2017-12-01

    In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.

  19. An open-framework three-dimensional indium oxalate: [In(OH)(C2O4)(H2O)]3.H2O

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Lin Jianhua

    2005-01-01

    By hydrothermal reaction of In 2 O 3 with H 2 C 2 O 4 .2H 2 O in the presence of H 3 BO 3 at 155 deg. C, an open-framework three-dimensional indium oxalate of formula [In(OH)(C 2 O 4 )(H 2 O)] 3 .H 2 O (1) has been obtained. The compound crystallizes in the trigonal system, space group R3c with a=18.668(3)A, c=7.953(2)A, V=2400.3(7)A 3 , Z=6, R 1 =0.0352 at 298K. The small pores in 1 are filled with water molecules. It loses its filled water at about 180 deg. C without the change of structure, then the bounded water at 260 deg. C, and completely decompounds at 324 deg. C. The residue is confirmed to be In 2 O 3

  20. H2XP:OH2 Complexes: Hydrogen vs. Pnicogen Bonds

    Directory of Open Access Journals (Sweden)

    Ibon Alkorta

    2016-02-01

    Full Text Available A search of the Cambridge Structural Database (CSD was carried out for phosphine-water and arsine-water complexes in which water is either the proton donor in hydrogen-bonded complexes, or the electron-pair donor in pnicogen-bonded complexes. The range of experimental P-O distances in the phosphine complexes is consistent with the results of ab initio MP2/aug’-cc-pVTZ calculations carried out on complexes H2XP:OH2, for X = NC, F, Cl, CN, OH, CCH, H, and CH3. Only hydrogen-bonded complexes are found on the H2(CH3P:HOH and H3P:HOH potential surfaces, while only pnicogen-bonded complexes exist on H2(NCP:OH2, H2FP:OH2, H2(CNP:OH2, and H2(OHP:OH2 surfaces. Both hydrogen-bonded and pnicogen-bonded complexes are found on the H2ClP:OH2 and H2(CCHP:OH2 surfaces, with the pnicogen-bonded complexes more stable than the corresponding hydrogen-bonded complexes. The more electronegative substituents prefer to form pnicogen-bonded complexes, while the more electropositive substituents form hydrogen-bonded complexes. The H2XP:OH2 complexes are characterized in terms of their structures, binding energies, charge-transfer energies, and spin-spin coupling constants 2hJ(O-P, 1hJ(H-P, and 1J(O-H across hydrogen bonds, and 1pJ(P-O across pnicogen bonds.

  1. OH radicals distribution in an Ar-H2O atmospheric plasma jet

    Science.gov (United States)

    Li, L.; Nikiforov, A.; Xiong, Q.; Britun, N.; Snyders, R.; Lu, X.; Leys, C.

    2013-09-01

    Recently, plasma jet systems found numerous applications in the field of biomedicine and treatment of temperature-sensitive materials. OH radicals are one of the main active species produced by these plasmas. Present study deals with the investigation of RF atmospheric pressure plasma jet in terms of OH radicals production by admixture of H2O into argon used as a feed gas. Generation of OH radicals is studied by laser-induced fluorescence spectroscopy. The excitation dynamics of OH radicals induced by the laser photons is studied by time-resolved spectroscopy. It is shown that vibrational and rotational energy transfer processes, which are sensitive to the surrounding species, can lead to the complication in the OH radicals diagnostics at high pressure and have to be considered during experiments. The axial and radial 2D maps of absolute densities of hydroxyl radicals at different water contents are obtained. The highest density of 1.15 × 1020 m-3 is measured in the plasma core for the case of 0.3% H2O. In the x-y-plane, the OH density steeply decreases within a range of ±2 mm from its maximum value down to 1018 m-3. The effect of H2O addition on the generation of OH radicals is investigated and discussed.

  2. System of Sr(NO2)2-Sr(OH)2-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Popova, T.B.; Berdyukova, V.A.; Khutsistova, F.M.

    1990-01-01

    Sr(NO 2 ) 2 -Sr(OH) 2 -H 2 O system was investigated by the methods of solubility, density, viscosity, electric conductivity and refractometry. It was established that its compoments form the compound 4Sr(NO 2 ) 2 xSr(OH) 2 x8H 2 O. The compound was separated from solution; its density, decomposition temperature were determined; IR spectra and X-ray patterns of prepared and initial compounds were obtained

  3. Effects of the addition of H2O and NH4OH in the optical and structural properties of the thin films of Y2O3 deposited by pyrolytic spray

    International Nuclear Information System (INIS)

    Alarcon F, G.; Carvajal V, R.; Aguilar F, M.; Falcony, C.

    2005-01-01

    In this work we studied the optical and structural properties of yttrium oxide thin films deposited by spray pyrolysis. Yttrium acetylacetonate was used as raw material and N, N-DMF was used as solvent. The films were deposited on Si (100) and Si (111) substrates at temperatures of 400, 450, 500 and 550 C. The optical and structural characteristics of the films were dramatically improved when a mist of H 2 O and/or NH 4 0H was simultaneously added during deposition of the films. A refraction index up to 1.88, and deposition rates lower than 10 A/sec were obtained in the films. Infrared spectroscopy measurements indicate that the films resulted free from -OH bonds. X-ray diffraction patterns reveal that the films were polycrystalline. In addition, the relative chemical composition of the films was determined by Energy Dispersive Spectroscopy and the surface morphology was analyzed in the Atomic Force Microscope. (Author)

  4. Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells

    Science.gov (United States)

    Vallejo, W.; Arredondo, C. A.; Gordillo, G.

    2010-11-01

    In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.

  5. Oriented monolayer film of Gd2O3:0.05 Eu crystallites: quasi-topotactic transformation of the hydroxide film and drastic enhancement of photoluminescence properties.

    Science.gov (United States)

    Hu, Linfeng; Ma, Renzhi; Ozawa, Tadashi C; Sasaki, Takayoshi

    2009-01-01

    Caught on film: A semitransparent and intensely luminescent monolayer film of oriented Gd(2)O(3):0.05 Eu platelet crystallites is fabricated by annealing the precursor hydroxide film (see scheme). The photoluminescence properties of the as-transformed film are greatly improved over those of the hydroxide film, and are much more pronounced than those of the corresponding Gd(2)O(3):0.05 Eu powder.

  6. Systems Li2B4O7 (Na2B4O7, K2B4O7)-N2H3H4OH-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Sadetdinov, Sh.V.; Akimov, V.M.; Mitrasov, Yu.N.; Petrova, O.V.; Klopov, Yu.N.

    1994-01-01

    Phase equilibriums in the Li 2 B 4 O 7 (Na 2 B 4 O 7 , K 2 B 4 O 7 )-N 2 H 3 H 4 OH-H 2 O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM 2 B 4 O 7 ·nN 2 H 3 C 2 H 4 OH·XH 2 O, where M=Li, Na with hydrazine ethanol. K 2 B 4 O 7 ·4H 2 O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods

  7. OH radicals distribution in an Ar-H{sub 2}O atmospheric plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Li, L.; Leys, C. [Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Sint-Pietersnieuwstraat 41, Ghent B-9000 (Belgium); Nikiforov, A. [Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Sint-Pietersnieuwstraat 41, Ghent B-9000 (Belgium); Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya St., 1, Ivanono, 153045 (Russian Federation); Xiong, Q. [Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Sint-Pietersnieuwstraat 41, Ghent B-9000 (Belgium); College of Electrical and Electronic Engineering, HuaZhong University of Science and Technology, WuHan, Hubei 430074 (China); Britun, N. [Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Universite de Mons, 20 Place du Parc, B-7000 Mons (Belgium); Snyders, R. [Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Universite de Mons, 20 Place du Parc, B-7000 Mons (Belgium); Materia Nova Research Centre, Parc Initialis, B-7000 Mons (Belgium); Lu, X. [College of Electrical and Electronic Engineering, HuaZhong University of Science and Technology, WuHan, Hubei 430074 (China)

    2013-09-15

    Recently, plasma jet systems found numerous applications in the field of biomedicine and treatment of temperature-sensitive materials. OH radicals are one of the main active species produced by these plasmas. Present study deals with the investigation of RF atmospheric pressure plasma jet in terms of OH radicals production by admixture of H{sub 2}O into argon used as a feed gas. Generation of OH radicals is studied by laser-induced fluorescence spectroscopy. The excitation dynamics of OH radicals induced by the laser photons is studied by time-resolved spectroscopy. It is shown that vibrational and rotational energy transfer processes, which are sensitive to the surrounding species, can lead to the complication in the OH radicals diagnostics at high pressure and have to be considered during experiments. The axial and radial 2D maps of absolute densities of hydroxyl radicals at different water contents are obtained. The highest density of 1.15 × 10{sup 20} m{sup −3} is measured in the plasma core for the case of 0.3% H{sub 2}O. In the x–y-plane, the OH density steeply decreases within a range of ±2 mm from its maximum value down to 10{sup 18} m{sup −3}. The effect of H{sub 2}O addition on the generation of OH radicals is investigated and discussed.

  8. Solid-State Synthesis and Structure of the Enigmatic Ammonium Octaborate: (NH4)2[B7O9(OH)5]·3/4B(OH)3·5/4H2O.

    Science.gov (United States)

    Neiner, Doinita; Sevryugina, Yulia V; Schubert, David M

    2016-09-06

    The compound known since the 19th century as ammonium octaborate was structurally characterized revealing the ammonium salt of the ribbon isomer of the heptaborate anion, [B7O9(OH)5](2-), with boric acid and water molecules. Of composition (NH4)2B7.75O12.63·4.88H2O, it approximates the classical ammonium octaborate composition (NH4)2B8O13·6H2O and has the structural formula {(NH4)2[B7O9(OH)5]}4·3B(OH)3·5H2O. It spontaneously forms at room temperature in solid-state mixtures of ammonium tetraborate and ammonium pentaborate. It crystallizes in the monoclinic space group P21/c with a = 11.4137(2) Å, b = 11.8877(2) Å, c = 23.4459(3) Å, β = 90.092(1)°, V = 3181.19(8) Å(3), and Z = 2 and contains well-ordered ammonium cations and [B7O9(OH)5](2-) anions and disordered B(OH)3 and H2O molecules linked by extensive H bonding. Expeditious solid-state formation of the heptaborate anion under ambient conditions has important implications for development of practical syntheses of industrially useful borates.

  9. Synthetic routes to a nanoscale inorganic cluster [Ga13(μ3-OH)6(μ2-OH)18(H2O)](NO3)15 evaluated by solid-state 71Ga NMR

    International Nuclear Information System (INIS)

    Hammann, Blake A.; Marsh, David A.; Ma, Zayd L.; Wood, Suzannah R.; Eric West, Michael; Johnson, Darren W.; Hayes, Sophia E.

    2016-01-01

    Solid-state 71 Ga NMR was used to characterize a series of [Ga 13 (μ 3 -OH) 6 (μ 2 -OH) 18 (H 2 O)](NO 3 ) 15 “Ga 13 ” molecular clusters synthesized by multiple methods. These molecular clusters are precursors to thin film electronics and may be employed in energy applications. The synthetic routes provide varying levels of impurities in the solid phase, and these impurities often elude traditional characterization techniques such as powder X-ray diffraction and Raman spectroscopy. Solid-state NMR can provide a window into the gallium species even in amorphous phases. This information is vital in order to prevent the impurities from causing defect sites in the corresponding thin films upon gelation and condensation (polymerization) of the Ga 13 clusters. This work demonstrates the resolving power of solid-state NMR to evaluate structure and synthetic quality in the solid state, and the application of high-field NMR to study quadrupolar species, such as 71 Ga. - Graphical abstract: The various synthetic routes and 71 Ga solid-state NMR spectra of the nanoscale inorganic cluster [Ga 13 (μ 3 -OH) 6 (μ 2 -OH) 18 (H 2 O)](NO 3 ) 15 . - Highlights: • Solid-state 71 Ga NMR of hydroxo-aquo metal clusters and the impurities present. • High-field NMR capability allows for quadrupolar species, such as 71 Ga, to be routinely studied. • Efficient and environmentally friendly synthetic routes have been developed to prepare hydroxo-aquo metal clusters.

  10. One-pot synthesis of powder-form β-Ni(OH)2 monolayer nanosheets with high electrochemical performance

    International Nuclear Information System (INIS)

    Wang, Minmin; Ren, Wanzhong; Zhao, Yunan; Liu, Yan; Cui, Hongtao

    2013-01-01

    In this work, β-Ni(OH) 2 monolayer nanosheets, which had been thought to be unachievable, were successfully prepared for the first time by a one-pot strategy using epoxide as precipitation agent and sodium dodecyl sulfate (SDS) as surfactant. The characterization results indicate that the formation of monolayer morphology depends on the mediation of SDS molecules. The XRD patterns demonstrate the loose and defective packing of Ni(OH) 2 layers in the SDS intercalated samples. The disappearing of vibration band of free hydroxyl groups in the FTIR spectra suggests the interlayer separation resulted by SDS. The TEM and AFM images further confirm the formation of monolayer nanosheets. It is proposed that the in situ modification of the secondary growth unit of β-Ni(OH) 2 by SDS allows its two-dimensional anisotropic growth through steric hindrance of SDS molecules. In addition, this effect allows isolation of β-Ni(OH) 2 from solvent with keeping of monolayer nanosheet state in dry powder. The electrochemical measurement results indicate that β-Ni(OH) 2 monolayer nanosheets own much higher urea electrolysis performance than their corresponding multilayer structure

  11. Trapping {BW12}2 tungstoborate: synthesis and crystal structure of hybrid [{(H2BW12O42)2O}{Mo6O6S6(OH)4(H2O)2}]14- anion.

    Science.gov (United States)

    Korenev, V S; Abramov, P A; Vicent, C; Mainichev, D A; Floquet, S; Cadot, E; Sokolov, M N; Fedin, V P

    2012-12-28

    Reaction between monolacunary {BW(11)} tungstoborate and oxothiocationic building block, {Mo(2)O(2)S(2)}, results in the formation of a new polyoxothiometalate with a unique architecture in which two [H(2)BW(12)O(43)](9-) tungstoborate subunits are linked together with a hexamolybdate [Mo(V)(6)O(6)S(6)(OH)(4)(H(2)O)(2)](2+) bridge.

  12. Surface properties of SiO2 with and without H2O2 treatment as gate dielectrics for pentacene thin-film transistor applications

    Science.gov (United States)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    The effect of H2O2 treatment on the surface properties of SiO2 is studied. H2O2 treatment leads to the formation of Si(sbnd OH)x at the SiO2 surface that serves to reduce the number of trap states, inducing the shift of the Fermi level toward the conduction band minimum. H2O2 treatment also leads to a noticeable reduction in the value of the SiO2 capacitance per unit area. The effect of SiO2 layers with H2O2 treatment on the behavior of carrier transports for the pentacene/SiO2-based organic thin-film transistor (OTFT) is also studied. Experimental identification confirms that the shift of the threshold voltage towards negative gate-source voltages is due to the reduced number of trap states in SiO2 near the pentacene/SiO2 interface. The existence of a hydrogenated layer between pentacene and SiO2 leads to a change in the pentacene-SiO2 interaction, increasing the value of the carrier mobility.

  13. SMA OBSERVATIONS OF THE W3(OH) COMPLEX: PHYSICAL AND CHEMICAL DIFFERENTIATION BETWEEN W3(H{sub 2}O) AND W3(OH)

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Sheng-Li [Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming, 650091 (China); Schilke, Peter; Sánchez-Monge, Álvaro [Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany); Wu, Jingwen [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Wu, Yuefang [Department of Astronomy, Peking University, Beijing, 100871 (China); Liu, Tie [Korea Astronomy and Space Science Institute 776, Daedeokdaero, Yuseong-gu, Daejeon, Korea 305-348 (Korea, Republic of); Liu, Ying, E-mail: slqin@bao.ac.cn [Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024 (China)

    2015-04-10

    We report on the Submillimeter Array (SMA) observations of molecular lines at 270 GHz toward the W3(OH) and W3(H{sub 2}O) complex. Although previous observations already resolved the W3(H{sub 2}O) into two or three sub-components, the physical and chemical properties of the two sources are not well constrained. Our SMA observations clearly resolved the W3(OH) and W3(H{sub 2}O) continuum cores. Taking advantage of the line fitting tool XCLASS, we identified and modeled a rich molecular spectrum in this complex, including multiple CH{sub 3}CN and CH{sub 3}OH transitions in both cores. HDO, C{sub 2}H{sub 5}CN, O{sup 13}CS, and vibrationally excited lines of HCN, CH{sub 3}CN, and CH{sub 3}OCHO were only detected in W3(H{sub 2}O). We calculate gas temperatures and column densities for both cores. The results show that W3(H{sub 2}O) has higher gas temperatures and larger column densities than W3(OH) as previously observed, suggesting physical and chemical differences between the two cores. We compare the molecular abundances in W3(H{sub 2}O) to those in the Sgr B2(N) hot core, the Orion KL hot core, and the Orion Compact Ridge, and discuss the chemical origin of specific species. An east–west velocity gradient is seen in W3(H{sub 2}O), and the extension is consistent with the bipolar outflow orientation traced by water masers and radio jets. A north–south velocity gradient across W3(OH) is also observed. However, with current observations we cannot be assured whether the velocity gradients are caused by rotation, outflow, or radial velocity differences of the sub-components of W3(OH)

  14. Hydrothermal synthesis and crystal structures of new uranyl oxalate hydroxides: α- and β-[(UO2)2(C2O4)(OH)2(H2O)2] and [(UO2)2(C2O4)(OH)2(H2O)2].H2O

    International Nuclear Information System (INIS)

    Duvieubourg, Laurence; Nowogrocki, Guy; Abraham, Francis; Grandjean, Stephane

    2005-01-01

    Two modifications of the new uranyl oxalate hydroxide dihydrate [UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ] (1 and 2) and one form of the new uranyl oxalate hydroxide trihydrate [(UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ].H 2 O (3) were synthesized by hydrothermal methods and their structures determined from single-crystal X-ray diffraction data. The crystal structures were refined by full-matrix least-squares methods to agreement indices R(wR)=0.0372(0.0842) and 0.0267(0.0671) calculated for 1096 and 1167 unique observed reflections (I>2σ(I)), for α (1) and β (2) forms, respectively and to R(wR)=0.0301(0.0737) calculated for 2471 unique observed reflections (I>2σ(I)), for 3. The α-form of the dihydrate is triclinic, space group P1-bar , Z=1, a=6.097(2), b=5.548(2), c=7.806(3)A, α=89.353(5), β=94.387(5), γ=97.646(5) o , V=260.88(15)A 3 , β-form is monoclinic, space group C2/c, Z=4, a=12.180(3), b=8.223(2), c=10.777(3)A, β=95.817(4), V=1073.8(5)A 3 . The trihydrate is monoclinic, space group P2 1 /c, Z=4, a=5.5095(12), b=15.195(3), c=13.398(3)A, β=93.927(3), V=1119.0(4)A 3 . In the three structures, the coordination of uranium atom is a pentagonal bipyramid composed of dioxo UO 2 2+ cation perpendicular to five equatorial oxygen atoms belonging to one bidentate oxalate ion, one water molecule and two hydroxyl ions in trans configuration in 2 and in cis configuration in 1 and 3. The UO 7 polyhedra are linked through hydroxyl oxygen atoms to form different structural building units, dimers [U 2 O 10 ] obtained by edge-sharing in 1, chains [UO 6 ] ∼ and tetramers [U 4 O 26 ] built by corner-sharing in 2 and 3, respectively. These units are further connected by oxalate entities that act as bis-bidentate to form one-dimensional chains in 1 and bi-dimensional network in 2 and 3. These chains or layers are connected in frameworks by hydrogen-bond arrays

  15. Systems Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O at 25 deg C. Sistemy Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O pri 25 grad S

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, V G; Sadetdinov, Sh V; Akimov, V M; Mitrasov, Yu N; Petrova, O V; Klopov, Yu N [Chuvashskij Gosudarstvennyj Pedagogicheskij Inst., Cheboksary (Russian Federation) Universitet Druzhby Narodov, Moscow (Russian Federation)

    1994-02-01

    Phase equilibriums in the Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM[sub 2]B[sub 4]O[sub 7][center dot]nN[sub 2]H[sub 3]C[sub 2]H[sub 4]OH[center dot]XH[sub 2]O, where M=Li, Na with hydrazine ethanol. K[sub 2]B[sub 4]O[sub 7][center dot]4H[sub 2]O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods.

  16. One-pot synthesis of powder-form {beta}-Ni(OH){sub 2} monolayer nanosheets with high electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minmin; Ren, Wanzhong; Zhao, Yunan; Liu, Yan; Cui, Hongtao, E-mail: htcui@ytu.edu.cn [Yantai University, Shandong Provincial Engineering Research Center for Light Hydrocarbon Comprehensive Utilization, College of Chemistry and Chemical Engineering (China)

    2013-08-15

    In this work, {beta}-Ni(OH){sub 2} monolayer nanosheets, which had been thought to be unachievable, were successfully prepared for the first time by a one-pot strategy using epoxide as precipitation agent and sodium dodecyl sulfate (SDS) as surfactant. The characterization results indicate that the formation of monolayer morphology depends on the mediation of SDS molecules. The XRD patterns demonstrate the loose and defective packing of Ni(OH){sub 2} layers in the SDS intercalated samples. The disappearing of vibration band of free hydroxyl groups in the FTIR spectra suggests the interlayer separation resulted by SDS. The TEM and AFM images further confirm the formation of monolayer nanosheets. It is proposed that the in situ modification of the secondary growth unit of {beta}-Ni(OH){sub 2} by SDS allows its two-dimensional anisotropic growth through steric hindrance of SDS molecules. In addition, this effect allows isolation of {beta}-Ni(OH){sub 2} from solvent with keeping of monolayer nanosheet state in dry powder. The electrochemical measurement results indicate that {beta}-Ni(OH){sub 2} monolayer nanosheets own much higher urea electrolysis performance than their corresponding multilayer structure.

  17. Effects of the addition of H{sub 2}O and NH{sub 4}OH in the optical and structural properties of the thin films of Y{sub 2}O{sub 3} deposited by pyrolytic spray; Efectos de la adicion de H{sub 2}O y NH{sub 4}OH en las propiedades opticas y estructurales de las peliculas delgadas de Y{sub 2}O{sub 3} depositadas por rocio pirolitico

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon F, G.; Carvajal V, R.; Aguilar F, M. [CICATA-IPN, Legaria 694, Col. Irrigacion, 11500 Mexico D.F. (Mexico); Falcony, C. [CINVESTAV, A.P. 14-740, 07000 Mexico D.F. (Mexico)] [and others

    2005-07-01

    In this work we studied the optical and structural properties of yttrium oxide thin films deposited by spray pyrolysis. Yttrium acetylacetonate was used as raw material and N, N-DMF was used as solvent. The films were deposited on Si (100) and Si (111) substrates at temperatures of 400, 450, 500 and 550 C. The optical and structural characteristics of the films were dramatically improved when a mist of H{sub 2}O and/or NH{sub 4}0H was simultaneously added during deposition of the films. A refraction index up to 1.88, and deposition rates lower than 10 A/sec were obtained in the films. Infrared spectroscopy measurements indicate that the films resulted free from -OH bonds. X-ray diffraction patterns reveal that the films were polycrystalline. In addition, the relative chemical composition of the films was determined by Energy Dispersive Spectroscopy and the surface morphology was analyzed in the Atomic Force Microscope. (Author)

  18. Local and Nanoscale Structure and Speciation in the PuO2+x-y(OH)2y ·zH2O System

    International Nuclear Information System (INIS)

    Conradson, Steven D.; Begg, Bruce D.; Clark, David L.; Den Auwer, Christophe J.; Ding, Mei; Dorhout, Peter K.; Espinosa-Faller, Francisco J.; Gordon, Pamela L.; Haire, Richard G.; Hess, Nancy J.; Hess, Ryan F.; Keogh, D. Webster; Morales, Luis A.; Neu, Mary P.; Paviet-Hartmann, Patricia; Runde, Wolfgang; Tait, C DREW; Veirs, D. Kirk; Villella, Phillip M.

    2004-01-01

    Pu L3 X-ray absorption fine structure spectra from 24 samples of PuO 2+x (and two related Pu substituted oxides), prepared by a variety of methods, demonstrate that (1) although the Pu sublattice remains the ordered part of the Pu distribution, the nearest-neighbor O atoms even at x = 0 are found in a multisite distribution with Pu-O distances consistent with the stable incorporation of OH - (and possibly H 2 O and H + ) into the PuO 2 lattice; (2) the excess O from oxidation is found at Pu-O distances 2 + moieties that are aperiodically distributed through the lattice; and (4) the collective interactions between these defect sites most likely cause them to cluster so as give nanoscale heterogeneity in the form of domains that may have unusual reactivity, observed as sequential oxidation by H 2 O at ambient conditions. The most accurate description of PuO 2 is therefore actually PuO 2+x-y (OH) 2y · zH 2 O, with pure, ordered, homogeneous PuO 2 attained only when H 2 O is rigorously excluded and the O activity is relatively low

  19. Synthesis and crystal structure of Na6[(UO2)3O(OH)3(SeO4)2]2·10H2O

    International Nuclear Information System (INIS)

    Baeva, E.Eh.; Serezhkina, L.B.; Virovets, A.V.; Peresypkina, E.V.

    2006-01-01

    The complex Na 6 [(UO 2 ) 3 O(OH) 3 (SeO 4 ) 2 ] 2 ·10H 2 O (I) is synthesized and studied by monocrystal X-ray diffraction. The compound crystallizes in the orthorhombic crystal system with the unit cell parameters: a=14.2225(7) A, b=18.3601(7) A, c=16.5406(6) A, V=4319.2(3) A 3, Z=4, space group Cmcm, R 1 =0.0406. Compound I is found to be a representative of the crystal-chemical group A 3 M 3 M 3 2 T 2 3 (A=UO 2 2+ , M 3 =O 2- , M 2 =OH - , T 3 =SeO 4 2- ) of the uranyl complexes; it contains layer uranium-containing groups [(UO 2 ) 3 O(OH) 3 (SeO 4 ) 2 ] 3- . These layers are linked to form a three-dimensional cage through bonds formed by the sodium atoms with the oxygen atoms of the uranyl ions and SeO 4 groups that belong to different layers [ru

  20. Hydrogen retention in Li and Li-C-O films

    Science.gov (United States)

    Buzi, Luxherta; Nelson, Andrew O.; Yang, Yuxin; Kaita, Robert; Koel, Bruce E.

    2017-10-01

    The efficiency of Li in binding H isotopes has led to reduced recycling in magnetic fusion devices and improved plasma performance. Since elemental Li surfaces are challenging to maintain in fusion devices due to the presence of impurities, parameterizing and understanding the mechanisms for H retention in various Li compounds (Li-C-O), in addition to pure Li, is crucial for Li plasma-facing material applications. To determine H retention in Li and Li-C-O films, measurements were done under ultrahigh vacuum conditions using temperature programmed desorption (TPD). Thin Li films (20 monolayers) were deposited on a nickel single crystal substrate and irradiated with 500 eV H2+ions at surface temperatures from 90K to 520K. Initial measurements on Li and Li-O films showed that the retention was comparable and dropped exponentially with surface temperature, from 95% at 90 K to 35% at 520 K. Auger electron spectroscopy and TPD showed that H was retained as lithium hydride (LiH) in pure Li and as lithium hydroxide (LiOH) in Li2O, which decomposed to H2O and Li2O at temperatures higher than 470K. H retention in Li-C and Li-C-O films will be determined over a similar temperature range, and the sputtering rate of these layers with H ions will also be reported. This material is based upon work supported by the U.S. Department of Energy, Office of Science/Fusion Energy Sciences under Award Number DE-SC0012890.

  1. CaK2(AsO3OH)(H2O)2 cell length a | forthcoming | boms | Volumes ...

    Indian Academy of Sciences (India)

    Home; public; Volumes; boms; forthcoming; CaK2(AsO3OH)(H2O)2 cell length a. 404! error. The page your are looking for can not be found! Please check the link or use the navigation bar at the top. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th ...

  2. Determination of the rate constant for the OH(X2Π) + OH(X2Π) → H2O + O(3P) reaction over the temperature range 295 to 701 K.

    Science.gov (United States)

    Altinay, Gokhan; Macdonald, R Glen

    2014-01-09

    The rate constant for the radical-radical reaction OH(X(2)Π) + OH(X(2)Π) → H2O + O((3)P) has been measured over the temperature and pressure ranges 295-701 K and 2-12 Torr, respectively, in mixtures of CF4, N2O, and H2O. The OH radical was produced by the 193 nm laser photolysis of N2O. The resulting O((1)D) atoms reacted rapidly with H2O to produce the OH radical. The OH radical was detected by high-resolution time-resolved infrared absorption spectroscopy using a single Λ-doublet component of the OH(1,0) P1e/f(4.5) fundamental vibrational transition. A detailed kinetic model was used to determine the reaction rate constant as a function of temperature. These experiments were conducted in a new temperature controlled reaction chamber. The values of the measured rate constants are quite similar to the previous measurements from this laboratory of Bahng and Macdonald (J. Phys. Chem. A 2007 , 111 , 3850 - 3861); however, they cover a much larger temperature range. The results of the present work do not agree with recent measurements of Sangwan and Krasnoperov (J. Phys. Chem. A 2012 , 116 , 11817 - 11822). At 295 K the rate constant of the title reaction was found to be (2.52 ± 0.63) × 10(-12) cm(3) molecule(-1) s(-1), where the uncertainty includes both experimental scatter and an estimate of systematic errors at the 95% confidence limit. Over the temperature range of the experiments, the rate constant can be represented by k1a = 4.79 × 10(-18)T(1.79) exp(879.0/T) cm(3) molecule(-1) s(-1) with a uncertainty of ±24% at the 2σ level, including experimental scatter and systematic error.

  3. Temperature-dependent field-effect carrier mobility in organic thin-film transistors with a gate SiO2 dielectric modified by H2O2 treatment

    Science.gov (United States)

    Lin, Yow-Jon; Hung, Cheng-Chun

    2018-02-01

    The effect of the modification of a gate SiO2 dielectric using an H2O2 solution on the temperature-dependent behavior of carrier transport for pentacene-based organic thin-film transistors (OTFTs) is studied. H2O2 treatment leads to the formation of Si(-OH) x (i.e., the formation of a hydroxylated layer) on the SiO2 surface that serves to reduce the SiO2 capacitance and weaken the pentacene-SiO2 interaction, thus increasing the field-effect carrier mobility ( µ) in OTFTs. The temperature-dependent behavior of carrier transport is dominated by the multiple trapping model. Note that H2O2 treatment leads to a reduction in the activation energy. The increased value of µ is also attributed to the weakening of the interactions of the charge carriers with the SiO2 dielectric that serves to reduce the activation energy.

  4. Effects of the addition of H2O and NH4OH in the electrical properties of thin films of Y2O3 deposited by pyrolytic spray

    International Nuclear Information System (INIS)

    Herrera S, H.J.; Alarcon F, G.; Aguilar F, M.; Falcony, C.; Garcia H, M.; Guzman M, J.; Araiza I, J.J.

    2005-01-01

    In this work we studied the electrical properties of yttrium oxide thin films obtained by spray pyrolysis from Y(acac) 3 and N,N-DMF. The films were deposited on Si(100) substrates at temperatures of 400, 450, 500 and 550 C. The electrical characteristic of the films was improved when a mist of H 2 O and/or NH 4 0H was simultaneously added to the deposition system. Current and capacitance versus voltage measurements were obtained when the Y 2 O 3 films were integrated in MOS (Metal-Oxide-Semiconductor) structures. Y 2 O 3 films with a dielectric constant up to 15 were obtained. The films can stand electric fields up to 2 MV/cm. An interface state density in the range of 10 10 -10 11 cm -2 eV -1 was measured at midgap from the high and low frequency capacitance measurements. (Author)

  5. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    Science.gov (United States)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  6. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    Science.gov (United States)

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer

  7. Photogeneration of H2O2 in Water-Swollen SPEEK/PVA Polymer Films.

    Science.gov (United States)

    Lockhart, PaviElle; Little, Brian K; Slaten, B L; Mills, G

    2016-06-09

    Efficient reduction of O2 took place via illumination with 350 nm photons of cross-linked films containing a blend of sulfonated poly(ether etherketone) and poly(vinyl alcohol) in contact with air-saturated aqueous solutions. Swelling of the solid macromolecular matrices in H2O enabled O2 diffusion into the films and also continuous extraction of the photogenerated H2O2, which was the basis for a method that allowed quantification of the product. Peroxide formed with similar efficiencies in films containing sulfonated polyketones prepared from different precursors and the initial photochemical process was found to be the rate-determining step. Generation of H2O2 was most proficient in the range of 4.9 ≤ pH ≤ 8 with a quantum yield of 0.2, which was 10 times higher than the efficiencies determined for solutions of the polymer blend. Increases in temperature as well as [O2] in solution were factors that enhanced the H2O2 generation. H2O2 quantum yields as high as 0.6 were achieved in H2O/CH3CN mixtures with low water concentrations, but peroxide no longer formed when film swelling was suppressed. A mechanism involving reduction of O2 by photogenerated α-hydroxy radicals from the polyketone in competition with second-order radical decay processes explains the kinetic features. Higher yields result from the films because cross-links present in them hinder diffusion of the radicals, limiting their decay and enhancing the oxygen reduction pathway.

  8. Magnetic measurements and neutron diffraction study of the layered hybrid compounds Mn(C8H4O4)(H2O)2 and Mn2(OH)2(C8H4O4)

    International Nuclear Information System (INIS)

    Sibille, Romain; Mesbah, Adel; Mazet, Thomas; Malaman, Bernard; Capelli, Silvia; François, Michel

    2012-01-01

    Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ) layered organic–inorganic compounds based on manganese(II) and terephthalate molecules (C 8 H 4 O 4 2− ) have been studied by DC and AC magnetic measurements and powder neutron diffraction. The dihydrated compound behaves as a 3D antiferromagnet below 6.5 K. The temperature dependence of its χT product is typical of a 2D Heisenberg system and allows determining the in-plane exchange constant J≈−7.4 K through the carboxylate bridges. The magnetic structure confirms the in-plane nearest neighbor antiferromagnetic interactions and the 3D ordering. The hydroxide based compound also orders as a 3D antiferromagnet with a higher Néel temperature (38.5 K). Its magnetic structure is described from two antiferromagnetically coupled ferromagnetic sublattices, in relation with the two independent metallic sites. The isothermal magnetization data at 2 K are consistent with the antiferromagnetic ground-state of these compounds. However, in both cases, a slope change points to field-induced modification of the magnetic structure. - Graphical abstract: The macroscopic magnetic properties and magnetic structures of two metal-organic frameworks based on manganese (II) and terephthalate molecules are presented. Highlights: ► Magnetic study of Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ). ► Two compounds with common features (interlayer linker/distance, S=5/2 spin). ► Magnetic measurements quantitatively analyzed to deduce exchange constants. ► Magnetic structures determined from neutron powder diffraction experiments.

  9. Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation

    Science.gov (United States)

    Xu, Shipu; Sun, Fengqiang; Yang, Shumin; Pan, Zizhao; Long, Jinfeng; Gu, Fenglong

    2015-01-01

    A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties. PMID:25758292

  10. Hydrothermal synthesis and characterization of the praseodymium borate-nitrate Pr[B{sub 5}O{sub 8}(OH)(H{sub 2}O){sub 0.87}]NO{sub 3}.2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Teresa S.; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2017-10-01

    The praseodymium borate-nitrate Pr[B{sub 5}O{sub 8}(OH)(H{sub 2}O){sub 0.87}]NO{sub 3}.2H{sub 2}O was obtained in a hydrothermal synthesis. It crystallizes monoclinically in the space group P2{sub 1}/n (no. 14) with four formula units (Z=4) and unit cell parameters of a=641.9(3), b=1551.8(7), c=1068.4(5) pm, with β=90.54(2) yielding V=1.0643(8) nm{sup 3}. The defect variant constitutes the missing member in the series of isostructural, early rare earth borate-nitrates of the composition RE[B{sub 5}O{sub 8}(OH)(H{sub 2}O){sub x}]NO{sub 3}.2H{sub 2}O [RE=La (x=0; 1), Ce (x=1), Nd (x=0.85), Sm (x=0)]. In addition to powder and single-crystal X-ray diffraction data, the novel borate-nitrate was characterized through IR and Raman spectroscopy.

  11. Synthesis and crystal structure of new uranyl selenite(IV)-selenate(VI) [C5H14N][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)(HSeO4)

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.; Kalenberg, V.

    2006-01-01

    Crystals of new uranyl selenite(IV)-selenate(VI) [C 5 H 14 N][(UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)](H 2 SeO 3 )(HSeO 4 ) are obtained by the method of evaporation from aqueous solutions. Compound has triclinic lattice, space group P1-bar, a=11.7068(9), b=14.8165(12), c=16.9766(15), α=73.899(6), β=76.221(7), γ=89.361(6) Deg, V=2743.0(4) A 3 , Z=2. Laminated complexes (UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)] 3- are the basis of the structure. [HSe(VI)O 4 ] - , [H 2 Se(IV)O 3 ] complexes and protonated methylbutylamine cations are disposed between layers [ru

  12. Selective photocatalytic reduction of CO{sub 2} by H{sub 2}O/H{sub 2} to CH{sub 4} and CH{sub 3}OH over Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} nanocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Muhammad, E-mail: mtahir@cheme.utm.my [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor (Malaysia); Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore, Punjab (Pakistan); Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor (Malaysia)

    2016-12-15

    Highlights: • Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} nanocatalysts tested for CO{sub 2} photoreduction with H{sub 2}O/H{sub 2}. • Production of CH{sub 4} and CH{sub 3}OH depends on reductants type and metal-loading to TiO{sub 2}. • CH{sub 4} production over Cu-In/TiO{sub 2} was 1.5 fold more than In/TiO{sub 2} and 5 times the TiO{sub 2}. • The Cu-promoted CH{sub 3}OH production while In gave more CH{sub 4} with water vapors. • The H{sub 2} reductant gave negative effect for CH{sub 4} but enhanced CH{sub 3}OH production. - Abstract: Photocatalytic CO{sub 2} reduction by H{sub 2}O and/or H{sub 2} reductant to selective fuels over Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N{sub 2} adsorption-desorption, UV–vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO{sub 2}, oxidized as Cu{sup 2+} and In{sup 3+}, promoted efficient separation of photo-generated electron/hole pairs (e{sup −}/h{sup +}). The results indicate that the reduction rate of CO{sub 2} by H{sub 2}O to CH{sub 4} approached to 181 μmol g{sup −1} h{sup −1} using 0.5% Cu-3% In{sub 2}O{sub 3}/TiO{sub 2} catalyst, a 1.53 fold higher than the production rate over the 3% In{sub 2}O{sub 3}/TiO{sub 2} and 5 times the amount produced over the pure TiO{sub 2}. In addition, Cu was found to promote efficient production of CH{sub 3}OH and yield rate reached to 68 μmol g{sup −1} h{sup −1} over 1% Cu-3% In{sub 2}O{sub 3}/TiO{sub 2} catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H{sub 2} reductant was less favorable for CH{sub 4} production, yet a significant amount of CH{sub 4} and CH{sub 3}OH were obtained using a mixture of H{sub 2}O/H{sub 2} reductant. Therefore, Cu-loaded In{sub 2}O{sub 3}/TiO{sub 2} catalyst has shown to be capable for

  13. System of Sr(NO sub 2 ) sub 2 -Sr(OH) sub 2 -H sub 2 O at 25 deg C. Sistema Sr(NO sub 2 ) sub 2 -H sub 2 O pri 25 grad C

    Energy Technology Data Exchange (ETDEWEB)

    Popova, T B; Berdyukova, V A; Khutsistova, F M [Kalmytskij Gosudarstvennyj Univ., Ehlista (USSR) Rostovskij-na-Donu Gosudarstvennyj Univ., Rostov-na-Donu (USSR)

    1990-02-01

    Sr(NO{sub 2}){sub 2}-Sr(OH){sub 2}-H{sub 2}O system was investigated by the methods of solubility, density, viscosity, electric conductivity and refractometry. It was established that its compoments form the compound 4Sr(NO{sub 2}){sub 2}xSr(OH){sub 2}x8H{sub 2}O. The compound was separated from solution; its density, decomposition temperature were determined; IR spectra and X-ray patterns of prepared and initial compounds were obtained.

  14. Nano structured TiO2 thin films by polymeric precursor method

    International Nuclear Information System (INIS)

    Stroppa, Daniel Grando; Giraldi, Tania Regina; Leite, Edson Roberto; Varela, Jose Arana; Longo, Elson

    2008-01-01

    This work focuses in optimizing setup for obtaining TiO 2 thin films by polymeric precursor route due to its advantages on stoichiometric and morphological control. Precursor stoichiometry, synthesis pH, solids concentration and rotation speed at deposition were optimized evaluating thin films morphology and thickness. Thermogravimetry and NMR were applied for precursor's characterization and AFM, XRD and ellipsometry for thin films evaluation. Results showed successful attainment of homogeneous nanocrystalline anatase TiO 2 thin films with outstanding control over morphological characteristics, mean grain size of 17 nm, packing densities between 57 and 75%, estimated surface areas of 90 m 2 /g and monolayers thickness within 20 and 128 nm. (author)

  15. Repairable and nonrepairable inactivation of irradiated aqueous papain: effect of OH, O2-, e/sub aq-/, and H2O2

    International Nuclear Information System (INIS)

    Lin, W.S.; Clement, J.R.; Gaucher, G.M.; Armstrong, D.A.

    1975-01-01

    Repairable inactivation of papain irradiated in dilute aqueous solutions saturated with air or nitrous oxide is caused predominantly by reversible oxidation of Cys 25 SH by H 2 O 2 . The same process occurs in nitrogen-saturated solutions but the yield of repairable product decreases at higher doses, probably because of the consumption of H 2 O 2 by intermediates formed from e - /sub aq/ and papain. The OH radical produces only nonrepairable damage, with the fraction of the OH radical causing nonrepairable inactivation (f/sub OH//sup n.r./) equal to 0.1 and this is accompanied by, if not solely due to, SH loss. The O 2 - radical with f/sub O 2 //sup -n.r. = 0.4 also causes nonrepairable damage resulting from or accompanied by SH loss. In addition, there is evidence that every O 2 - reacts with papain to produce a hydrogen peroxide molecule, thus causing a marked increase in the repairable yield. The solvated electron for which f/sub e//Sup n.r./ is 0.07 does not appear to destroy Cys 25 SH, and must, therefore, inactivate papain by damaging other essential residues or changing the active site geometry. The inactivation yields for the present papain solutions prepared by affinity chromatography are compared with other work. Discrepancies in previous determinations of sulfhydryl loss are attributed to the special properties of the sulfenic acid product of the H 2 O 2 -papain reaction and its different effects on pHMB and DTNB assays. (U.S.)

  16. Aggregate formation of eosin-Y adsorbed on nanocrystalline TiO2 films

    Science.gov (United States)

    Yaguchi, Kaori; Furube, Akihiro; Katoh, Ryuzi

    2012-11-01

    We have studied the adsorption of eosin-Y on nanocrystalline TiO2 films with two different solvents namely acetonitrile (ACN) and ethanol (EtOH). A Langmuir-type adsorption isotherm was observed with ACN. In contrast, a Freundlich-type adsorption isotherm was observed with EtOH, suggesting that EtOH molecules co-adsorbed on TiO2 surface. Absorption spectra of the dye adsorbed films clearly show aggregate formation at high concentrations of dye in the solutions. From the analysis of the spectra, we conclude that head-to-tail type aggregates are observed with ACN, whereas various types of aggregates, including H-type and head-to-tail type aggregates, are observed with EtOH.

  17. The solubility of gold in H 2 O-H 2 S vapour at elevated temperature and pressure

    Science.gov (United States)

    Zezin, Denis Yu.; Migdisov, Artashes A.; Williams-Jones, Anthony E.

    2011-09-01

    This experimental study sheds light on the complexation of gold in reduced sulphur-bearing vapour, specifically, in H 2O-H 2S gas mixtures. The solubility of gold was determined in experiments at temperatures of 300, 350 and 365 °C and reached 2.2, 6.6 and 6.3 μg/kg, respectively. The density of the vapour varied from 0.02 to 0.22 g/cm 3, the mole fraction of H 2S varied from 0.03 to 0.96, and the pressure in the cell reached 263 bar. Statistically significant correlations of the amount of gold dissolved in the fluid with the fugacity of H 2O and H 2S permit the experimental data to be fitted to a solvation/hydration model. According to this model, the solubility of gold in H 2O-H 2S gas mixtures is controlled by the formation of sulphide or bisulphide species solvated by H 2S or H 2O molecules. Formation of gold sulphide species is favoured statistically over gold bisulphide species and thus the gold is interpreted to dissolve according to reactions of the form: Au(s)+(n+1)HS(g)=AuS·(HS)n(g)+H(g) Au(s)+HS(g)+mHO(g)=AuS·(HO)m(g)+H(g) Equilibrium constants for Reaction (A1) and the corresponding solvation numbers ( K A1 and n) were evaluated from the study of Zezin et al. (2007). The equilibrium constants as well as the hydration numbers for Reaction (A2) ( K A2 and m) were adjusted simultaneously by a custom-designed optimization algorithm and were tested statistically. The resulting values of log K A2 and m are -15.3 and 2.3 at 300 and 350 °C and -15.1 and 2.2 at 365 °C, respectively. Using the calculated stoichiometry and stability of Reactions (A1) and (A2), it is now possible to quantitatively evaluate the contribution of reduced sulphur species to the transport of gold in aqueous vapour at temperatures up to 365 °C. This information will find application in modelling gold ore-forming processes in vapour-bearing magmatic hydrothermal systems, notably those of epithermal environments.

  18. Study on the equilibrium in the MBr2-CH3OH-H2O system (M = Sr2+, Ba2+) at 25 0C

    International Nuclear Information System (INIS)

    Zlateva, I.; Stoev, M.

    1985-01-01

    The dehydration processes in the three-component system MBr 2 -CH 3 OH-H 2 O (M = Sr 2+ , Ba 2+ ) have been studied at 25 0 C by physio-chemical analyses. Crystallization fields for the lower crystal hydrates SrBr 2 x H 2 O and BaBr 2 x H 2 O have been found. The solubility curves exhibit complex-formation processes. The dehydration and solvation processes in three-component system such as MBr 2 -CH 3 OH-H 2 O at 25 0 C with M = Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ have been discussed in general terms. (author)

  19. Attikaite, Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O, a new mineral species

    Science.gov (United States)

    Chukanov, N. V.; Pekov, I. V.; Zadov, A. E.

    2007-12-01

    Attikaite, a new mineral species, has been found together with arsenocrandalite, arsenogoyazite, conichalcite, olivenite, philipsbornite, azurite, malachite, carminite, beudantite, goethite, quartz, and allophane at the Christina Mine No. 132, Kamareza, Lavrion District, Attiki Prefecture (Attika), Greece. The mineral is named after the type locality. It forms spheroidal segregations (up to 0.3 mm in diameter) consisting of thin flexible crystals up to 3 × 20 × 80 μm in size. Its color is light blue to greenish blue, with a pale blue streak. The Mohs’ hardness is 2 to 2.5. The cleavage is eminent mica-like parallel to {001}. The density is 3.2(2) g/cm3 (measured in heavy liquids) and 3.356 g/cm3 (calculated). The wave numbers of the absorption bands in the infrared spectrum of attikaite are (cm-1; sh is shoulder; w is a weak band): 3525 sh, 3425, 3180, 1642, 1120 w, 1070 w, 1035 w, 900 sh, 874, 833, 820, 690 w, 645 w, 600 sh, 555, 486, 458, and 397. Attikaite is optically biaxial, negative, α = 1.642(2), β = γ = 1.644(2) ( X = c) 2 V means = 10(8)°, and 2 V calc = 0°. The new mineral is microscopically colorless and nonpleochroic. The chemical composition (electron microprobe, average over 4 point analyses, wt %) is: 0.17 MgO, 17.48 CaO, 0.12 FeO, 16.28 CuO, 10.61 Al2O3, 0.89 P2O5, 45.45 As2O5, 1.39 SO3, and H2O (by difference) 7.61, where the total is 100.00. The empirical formula calculated on the basis of (O,OH,H2O)22 is: Ca2.94Cu{1.93/2+} Al1.97Mg0.04Fe{0.02/2+} [(As3.74S0.16P0.12)Σ4.02O16.08](OH)3.87 · 2.05H2 O. The simplified formula is Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O. Attikaite is orthorhombic, space group Pban, Pbam or Pba2; the unit-cell dimensions are a = 10.01(1), b = 8.199(5), c = 22.78(1) Å, V = 1870(3) Å3, and Z = 4. In the result of the ignition of attikaite for 30 to 35 min at 128 140°, the H2O bands in the IR spectrum disappear, while the OH-group band is not modified; the weight loss is 4.3%, which approximately corresponds to two H2O

  20. Strictly monolayer large continuous MoS2 films on diverse substrates and their luminescence properties

    International Nuclear Information System (INIS)

    Mohapatra, P. K.; Deb, S.; Singh, B. P.; Vasa, P.; Dhar, S.

    2016-01-01

    Despite a tremendous interest on molybdenum disulfide as a thinnest direct band gap semiconductor, single step synthesis of a large area purely monolayer MoS 2 film has not yet been reported. Here, we report a CVD route to synthesize a continuous film of strictly monolayer MoS 2 covering an area as large as a few cm 2 on a variety of different substrates without using any seeding material or any elaborate pretreatment of the substrate. This is achieved by allowing the growth to take place in the naturally formed gap between a piece of SiO 2 coated Si wafer and the substrate, when the latter is placed on top of the former inside a CVD reactor. We propose a qualitative model to explain why the MoS 2 films are always strictly monolayer in this method. The photoluminescence study of these monolayers shows the characteristic excitonic and trionic features associated with monolayer MoS 2 . In addition, a broad defect related luminescence band appears at ∼1.7 eV. As temperature decreases, the intensity of this broad feature increases, while the band edge luminescence reduces

  1. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films

    Science.gov (United States)

    Koyama, Miki; Ichimura, Masaya

    2018-05-01

    Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.

  2. Tiberiobardiite, Cu9Al(SiO3OH2(OH12(H2O6(SO41.5·10H2O, a New Mineral Related to Chalcophyllite from the Cretaio Cu Prospect, Massa Marittima, Grosseto (Tuscany, Italy: Occurrence and Crystal Structure

    Directory of Open Access Journals (Sweden)

    Cristian Biagioni

    2018-04-01

    Full Text Available The new mineral species tiberiobardiite, ideally Cu9Al(SiO3OH2(OH12(H2O6(SO41.5·10H2O, has been discovered in the Cretaio Cu prospect, Massa Marittima, Grosseto, Tuscany, Italy, as very rare, light green, vitreous, tabular {0001}, pseudo-hexagonal crystals, up to 200 μm in size and 5 μm in thickness, associated with brochantite. Electron microprobe analysis gave (in wt %, average of 5 spot analyses: SO3 10.37, P2O5 3.41, As2O5 0.05, SiO2 8.13, Al2O3 5.54, Fe2O3 0.74, CuO 62.05, and ZnO 0.03, for a total of 90.32. Based on an idealized O content of 42 atoms per formula unit, assuming the presence of 16 H2O groups and 13.5 cations (without H, the empirical formula of tiberiobardiite is (Cu8.69Al0.21Fe0.10Σ9.00Al1.00(Si1.51P0.54Σ2.05S1.44O12.53(OH13.47·16H2O. The main diffraction lines, corresponding to multiple hkl indices, are [d in Å (relative visual intensity]: 9.4 (s, 4.67 (s, 2.576 (m, 2.330 (m, and 2.041 (mw. The crystal structure study revealed tiberiobardiite to be trigonal, space group R 3 ¯ , with unit-cell parameters a = 10.6860(4, c = 28.3239(10 Å, V = 2801.0(2 Å3, and Z = 3. The crystal structure was refined to a final R1 = 0.060 for 1747 reflections with Fo > 4σ (Fo and 99 refined parameters. Tiberiobardiite is the Si-analogue of chalcophyllite, with Si4+ replacing As5+ through the coupled substitution As5+ + O2− = Si4+ + (OH−. The name tiberiobardiite honors Tiberio Bardi (b. 1960 for his contribution to the study of the mineralogy of Tuscany.

  3. Nonlinear optical characteristics of monolayer MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)

    2016-08-15

    In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Phase formation in the systems ZrO2-H2SO4-Na2SO4 (NaCl)-H2O

    International Nuclear Information System (INIS)

    Sozinova, Yu.P.; Motov, D.L.; Rys'kina, M.P.

    1988-01-01

    Formation of solid phases in the systems ZrO 2 - H 2 SO 4 - Na 2 SO 4 (NaCl) - H 2 O at 25 and 75 deg C is studied. Three basic Na 2 Zr(OH) 2 (SO 4 ) 2 x (0.2 - 0.4)H 2 O, NaZrOH(SO 4 ) 2 x H 2 O, NaZrO 0.5 (OH) 2 SO 4 x 2H 2 O and three normal sodium sulfatozirconates Na 2 Zr(SO 4 ) 3 x 3H 2 O, Na 4 Zr(SO 4 ) 4 x 3H 2 O, Na 6 Zr(SO 4 ) 5 x 4H 2 O have been isolated, their solubility and crystal optical properties are determined

  5. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    Science.gov (United States)

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  6. Evaluation of coronary endothelial dysfunction in healthy young smokers: Cold pressor test using [15O]H2O PET

    International Nuclear Information System (INIS)

    Hwang, Kyung Hoon; Lee, Byeong-il; Kim, Su Jin; Lee, Jae Sung; Lee, Dong Soo

    2009-01-01

    The purpose of this study was to investigate coronary endothelial dysfunction in young healthy smokers by measuring myocardial blood flow (MBF) using [ 15 O]H 2 O-PET. The study population was 18 young male volunteers consisted of 9 smokers (age: 23.8±1.1 yr) and 9 non-smokers (age: 25.0±2.5 yr). The smokers had been smoking cigarettes for 6.6±2.5 pack years. Myocardial [ 15 O]H 2 O-PET was performed at rest, during cold (5 deg. C) pressor stimulation and during adenosine infusion. Left ventricular (LV) input function and tissue time-activity curves were obtained by drawing region of interest (ROI) on the LV blood pool and myocardium images obtained by non-negative matrix factorization (NMF) of dynamic [ 15 O]H 2 O-PET data, and MBF was calculated using these time-activity curves and single compartmental model. There were no significant difference in resting MBF between two groups (smokers: 1.43±0.41 and non-smokers: 1.37±0.41 ml/g/min; P=NS). However, during cold pressor stimulation, MBF in smokers was significantly lower than that in non-smokers (1.25±0.33 vs. 1.59±0.29 ml/g/min; P=0.019). MBF changed to 90±24% of resting MBF in smokers and 122±28% in non-smokers. The difference in the ratio of cold pressor MBF to basal MBF between two groups was also significant (P=0.024). During adenosine infusion, however, hyperemic MBF did not differ significantly between smokers and non-smokers (5.81±1.99 vs. 5.03±1.27 ml/g/min; P=NS). This study shows that [ 15 O]H 2 O PET analysis can reveal that endothelial dysfunction occurs in even young smokers of about 6 pack years.

  7. OH+ Formation in the Low-temperature O+(4S) + H2 Reaction

    Science.gov (United States)

    Kovalenko, Artem; Dung Tran, Thuy; Rednyk, Serhiy; Roučka, Štěpán; Dohnal, Petr; Plašil, Radek; Gerlich, Dieter; Glosík, Juraj

    2018-04-01

    Formation of OH+ in collisions of ground-state O+(4S) ions with normal H2 has been studied using a variable temperature 22-pole RF ion trap. From 300 to 30 K the measured reaction rate coefficient is temperature-independent, with a small decrease toward 15 K. The recent wave packet calculation predicts a slightly steeper temperature dependence. The rate coefficients at 300 and 15 K are almost the same, (1.4 ± 0.3) × 10‑9 cm3 s‑1 and (1.3 ± 0.3) × 10‑9 cm3 s‑1, respectively. The influence of traces of the two metastable ions, O+(2D) and O+(2P), has been examined by monitoring the H+ products of their reactions with H2, as well as by chemically probing them with N2 reactant gas.

  8. A study of the accelerated zircaloy-4 oxidation reaction with H2O/H2 mixture gas

    International Nuclear Information System (INIS)

    Kim, Y. S.; Cho, I. J.

    2001-01-01

    A study of the Zircaloy-4 reaction with H 2 O/H 2 mixture gas is carried out by using TGA (Thermo Gravimetric Apparatus) to estimate the hydrogen embrittlement which can possibly cause catastrophic nuclear fuel rod failure. Reaction rates are measured as a function of H 2 /H 2 O. In the experiments reaction temperature is set at 500 .deg. C and total pressure of the mixture gas is maintained at 1 atm. Experimental results reveal that hydriding and oxidation reaction are competing. In early stage, hydriding kinetics is faster than oxidation, however, oxidant in H 2 O forms oxide on the surface as steam environment is maintained, thus, this growing oxide begins to protect the zirconium base metal against hydrogen permeation. In this second stage, the total kinetic rate follows enhanced oxidation kinetics. In the final stage, it is observed that the oxide is broken down and massive hydriding takes place through the mechanical defects in the oxide, whose kinetics is similar to pure hydriding kinetics. These results are confirmed by SEM and EDX analysis along with hydrogen concentration measurements

  9. Temperature dependence of the rate constant for reactions of hydrated electrons with H, OH and H2O2

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, K.; Løgager, T.

    1994-01-01

    The temperature dependence of the rate constants, for the reactions of hydrated electrons with H atoms, OH radicals and H2O2 has been determined. The reaction with H atoms, studied in the temperature range 20-250-degrees-C gives k(20-degrees-C) = 2.4 x 10(10) M-1 s-1 and the activation energy E......-1 and E(A) = 15.6 kJ mol-1 (3.7 kcal mol-1) measured from 5-150-degrees-C. Thus, the activation energy for all three fast reactions is close to that expected for diffusion controlled reactions. As phosphates were used as buffer system, the rate constant and activation energy for the reaction......(A) = 14.0 kJ mol-1 (3.3 kcal mol-1). For reaction with OH radicals the corresponding values are, k(20-degrees-C) = 3.1 x 10(10) M-1 s-1 and E(A) = 14.7 kJ mol-1 (3.5 kcal mol-1) determined in the temperature range 5-175-degrees-C. For reaction with H2O2 the values are, k(20-degrees-C) = 1.2 x 10(10) M-1 s...

  10. Formulation and Characterization of Cr2O3 Doped ZnO Thick Films as H2S Gas Sensor

    Directory of Open Access Journals (Sweden)

    A. V. PATIL

    2009-09-01

    Full Text Available Cr2O3 doped ZnO thick films have been prepared by screen printing technique and firing process. These films were characterized by X-ray diffraction (XRD, Scanning electron microscopy (SEM, and EDX. H2S gas sensing properties of these films were investigated at different operating temperatures and different H2S concentrations. The 7 wt. % Cr2O3 doped ZnO thick films exhibits excellent H2S gas sensing properties with maximum sensitivity of 99.12 % at 300 oC in air atmosphere with fast response and recovery time.

  11. Study of ZrO2-H2SO4-(NH4)2SO4(NH4Cl)-H2O systems

    International Nuclear Information System (INIS)

    Motov, D.L.; Sozinova, Yu.P.; Rys'kina, M.P.

    1988-01-01

    Regions of formation, composition and solubility of ammonium sulfatozirconates (ASZ) in ZrO 2 -H 2 SO 4 -(NH 4 ) 2 SO 4 (NH 4 Cl)-H 2 O systems at 25 and 75 deg C are studied by the isothermal method. Five ASZ: (NH 4 ) 2 Zr(OH) 2 (SO 4 ) 2 , NH 4 ZrOH(SO 4 ) 2 xH 2 O, NH 4 ZrO 0.5 (OH) 2 SO 4 x1.5H 2 O, (NH 4 ) 2 Zr(SO 4 ) 3 x2H 2 O, (NH 4 ) 4 Zr(SO 4 ) 4 x4H 2 O are detected, their properties are investigated. Main sulfates are new compounds never described ealier

  12. The crystal structure of ianthinite, [U24+(UO2)4O6(OH)4(H2O)4](H2O)5: a possible phase for Pu4+ incorporation during the oxidation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Burns, P.C.; Hawthorne, F.C.; Miller, M.L.; Ewing, R.C.

    1997-01-01

    Ianthinite, [U 4+ 2 (UO 2 ) 4 O 6 (OH) 4 (H 2 O) 4 ](H 2O) 5 , is the only known uranyl oxide hydrate mineral that contains U 4+ , and it has been proposed that ianthinite may be an important Pu 4+ -bearing phase during the oxidative dissolution of spent nuclear fuel. The crystal structure of ianthinite, orthorhombic, a=0.7178(2), b=1.1473(2), c=3.039(1) nm, V=2.5027 nm 3 , Z=4, space group P2 1 cn, has been solved by direct methods and refined by least-squares methods to an R index of 9.7% and a wR index of 12.6% using 888 unique observed [ vertical stroke F vertical stroke ≥5σ vertical stroke F vertical stroke ] reflections. The structure contains both U 6+ and U 4+ . The U 6+ cations are present as roughly linear (U 6+ O 2 ) 2+ uranyl ions (Ur) that are in turn coordinated by five O 2- and OH - located at the equatorial positions of pentagonal bipyramids. The U 4+ cations are coordinated by O 2- , OH - and H 2 O in a distorted octahedral arrangement. The Urφ 5 and U 4+ φ 6 (φ: O 2- , OH - , H 2 O) polyhedra link by sharing edges to form two symmetrically distinct sheets at z∼0.0 and z∼0.25 that are parallel to (001). The sheets have the β-U 3 O 8 sheet anion-topology. There are five symmetrically distinct H 2 O groups located at z∼0.125 between the sheets of Uφ n polyhedra, and the sheets of Uφ n polyhedra are linked together only by hydrogen bonding to the intersheet H 2 O groups. The crystal-chemical requirements of U 4+ and Pu 4+ are very similar, suggesting that extensive Pu 4+ U 4+ substitution may occur within the sheets of Uφ n polyhedra in the structure of ianthinite. (orig.)

  13. Schroedinger equation from 0 (h/2π) to o(h/2πinfinity)

    International Nuclear Information System (INIS)

    Voros, A.

    1985-08-01

    The Balian and Bloch idea, that the semiclassical treatment of the Schroedinger equation can be carried out exactly to all orders, o(h/2πinfinity), has been explicitly confirmed upon the time-independent equation with a polynomial potential V(q) in one degree of freedom. The global analytic structure of certain functions, which encode the full eigenvalue distribution, has indeed been computed in great detail with the complex WKB method, yielding a structure called a resurgence algebra. In the special case V(q) = q 2 sub(M), this leads to sum rules for the eigenvalues, which have been verified numerically. Inasmuch as the leading order 0(h/2π) of the WKB expansion amounts to the stationary phase evaluation of the Feynman path integral, it is a yet unsolved challenge to reproduce our results by an exact analysis of this path integral using a generalized saddle-point treatment

  14. Dependency of the band gap of electrodeposited Copper oxide thin films on the concentration of copper sulfate (CuSO4.5H2O) and pH in bath solution for photovoltaic applications

    KAUST Repository

    Islam, Md. Anisul

    2016-03-10

    In this study, Copper oxide thin films were deposited on copper plate by electrodeposition process in an electrolytic bath containing CuSO4.5H2O, 3M lactic acid and NaOH. Copper oxide films were electrodeposited at different pH and different concentration of CuSO4.5H2O and the optical band gap was determined from their absorption spectrum which was obtained from UV-Vis absorption spectroscopy. It was found that copper oxide films which were deposited at low concentration of CuSO4.5H2O have higher band gap than those deposited at higher bath concentration. The band gap of copper oxide films also significantly changes with pH of the bath solution. It was also observed that with the increase of the pH of bath solution band gap of copper oxide film decreased. © 2015 IEEE.

  15. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis.

    Science.gov (United States)

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  16. Strictly monolayer large continuous MoS{sub 2} films on diverse substrates and their luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, P. K.; Deb, S.; Singh, B. P.; Vasa, P.; Dhar, S., E-mail: dhar@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2016-01-25

    Despite a tremendous interest on molybdenum disulfide as a thinnest direct band gap semiconductor, single step synthesis of a large area purely monolayer MoS{sub 2} film has not yet been reported. Here, we report a CVD route to synthesize a continuous film of strictly monolayer MoS{sub 2} covering an area as large as a few cm{sup 2} on a variety of different substrates without using any seeding material or any elaborate pretreatment of the substrate. This is achieved by allowing the growth to take place in the naturally formed gap between a piece of SiO{sub 2} coated Si wafer and the substrate, when the latter is placed on top of the former inside a CVD reactor. We propose a qualitative model to explain why the MoS{sub 2} films are always strictly monolayer in this method. The photoluminescence study of these monolayers shows the characteristic excitonic and trionic features associated with monolayer MoS{sub 2}. In addition, a broad defect related luminescence band appears at ∼1.7 eV. As temperature decreases, the intensity of this broad feature increases, while the band edge luminescence reduces.

  17. One-dimensional ferromagnetic array compound [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate)

    Science.gov (United States)

    Honda, Zentaro; Nomoto, Naoyuki; Fujihara, Takashi; Hagiwara, Masayuki; Kida, Takanori; Sawada, Yuya; Fukuda, Takeshi; Kamata, Norihiko

    2018-06-01

    We report on the syntheses, crystal structure, and magnetic properties of the transition metal coordination polymer [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate) in which CoO6 octahedra are linked through their edges, forming one-dimensional (1D) Co(II) arrays running along the crystal a-axis. These arrays are further perpendicularly bridged by SBA ligand to construct a three-dimensional framework. Its magnetic properties have been investigated, and ferromagnetic interactions within the arrays have been found. From heat capacity measurements, we have found that this compound exhibits a three-dimensional ferromagnetic phase transition at TC = 1.54 K, and the specific heat just above TC shows a Schottky anomaly which originates from an energy gap caused by uniaxial magnetic anisotropy. These results suggest that [Co3(SBA)2(OH)2(H2O)2]n consists of weakly coupled 1D ferromagnetic Ising arrays.

  18. HERSCHEL SURVEY OF GALACTIC OH{sup +}, H{sub 2}O{sup +}, AND H{sub 3}O{sup +}: PROBING THE MOLECULAR HYDROGEN FRACTION AND COSMIC-RAY IONIZATION RATE

    Energy Technology Data Exchange (ETDEWEB)

    Indriolo, Nick; Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Gerin, M.; Falgarone, E. [LERMA, Observatoire de Paris, Ecole Normale Supérieure, PSL Research University, CNRS, UMR8112, F-75014 Paris (France); Schilke, P.; Chambers, E. T.; Ossenkopf, V. [I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Benz, A. O. [Institute of Astronomy, ETH Zürich (Switzerland); Winkel, B.; Menten, K. M. [MPI für Radioastronomie, Bonn (Germany); Black, John H.; Persson, C. M. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Bruderer, S.; Van Dishoeck, E. F. [Max Planck Institut für Extraterrestrische Physik, Garching (Germany); Godard, B.; Lis, D. C. [Sorbonne Universités, UPMC Univ. Paris 06, UMR8112, LERMA, F-75005 Paris (France); Goicoechea, J. R. [Instituto de Ciencias de Materiales de Madrid (CSIC), E-28049 Cantoblanco, Madrid (Spain); Gupta, H. [California Institute of Technology, Pasadena, CA 91125 (United States); Sonnentrucker, P. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Van der Tak, F. F. S. [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands); and others

    2015-02-10

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H{sub 2}. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζ{sub H}) and molecular hydrogen fraction (f{sub H{sub 2}}). We present observations targeting transitions of OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH{sup +} and H{sub 2}O{sup +} are detected in absorption in multiple velocity components along every sight line, but H{sub 3}O{sup +} is only detected along 7 sight lines. From the molecular abundances we compute f{sub H{sub 2}} in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH{sup +} and H{sub 2}O{sup +} primarily reside in gas with low H{sub 2} fractions. We also infer ζ{sub H} throughout our sample, and find a lognormal distribution with mean log (ζ{sub H}) = –15.75 (ζ{sub H} = 1.78 × 10{sup –16} s{sup –1}) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H{sub 3}{sup +} observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies.

  19. Structural variability in neptunium(V) oxalate compounds: synthesis and structural characterization of Na2NpO2(C2O4)OH.H2O.

    Science.gov (United States)

    Bean, Amanda C; Garcia, Eduardo; Scott, Brian L; Runde, Wolfgang

    2004-10-04

    Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.

  20. Structuring effects of [Ln6O(OH)8(NO3)6(H2O)12]2+ entities

    International Nuclear Information System (INIS)

    Guillou, O.; Daiguebonne, C.; Calvez, G.; Le Dret, F.; Car, P.-E.

    2008-01-01

    In order to obtain highly porous lanthanide-based coordination polymers we are currently investigating reactions between [Ln 6 O(OH) 8 (NO 3 ) 6 (H 2 O) 12 ] 2+ di-cationic hexanuclear entities and sodium salts of benzene-poly-carboxylic acids. Two new coordination polymers obtained during this study are reported here. In both cases, the hexanuclear entity has been destroyed during the reaction. However the resulting compounds are original thanks to a structuring effect of the poly-metallic complex. The first compound of chemical formula [Y 2 (C 8 H 4 O 4 ) 3 (DMF)(H 2 O)],2DMF crystallizes in the monoclinic system, space group P121/n (n o 14) with a = 16.0975(3) A, b = 14.4605(3) A, c = 17.7197(4) A, β = 92.8504(9) o and Z = 4. The second compound of chemical formula Y 2 (NO 3 ) 2 (C 10 H 2 O 8 )(DMF) 4 crystallizes in the triclinic system, space group P-1 (n o 2) with a = 7.5312(3) A, b = 9.0288(3) A, c = 13.1144(6) A, α = 92.6008(14) o , β = 94.9180(14) o , γ = 112.1824(16) o and Z = 2. Both crystal structures are 2D. Both crystal structures are described and the original structural features are highlighted and related to a potential structuring effect of the hexanuclear precursor

  1. Oxothiomolybdenum derivatives of the superlacunary crown heteropolyanion {P8W48}: structure of [K4{Mo4O4S4(H2O)3(OH)2}2(WO2)(P8W48O184)]30– and studies in solution.

    Science.gov (United States)

    Korenev, Vladimir S; Floquet, Sébastien; Marrot, Jérôme; Haouas, Mohamed; Mbomekallé, Israël-Martyr; Taulelle, Francis; Sokolov, Maxim N; Fedin, Vladimir P; Cadot, Emmanuel

    2012-02-20

    Reaction of the cyclic lacunary [H(7)P(8)W(48)O(184)](33-) anion (noted P(8)W(48)) with the [Mo(2)S(2)O(2)(H(2)O)(6)](2+) oxothiocation led to two compounds, namely, [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) (denoted 1) and [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) (denoted 2), which were characterized in the solid state and solution. In the solid state, the structure of [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) reveals the presence of two disordered {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) "handles" connected on both sides of the P(8)W(48) ring. Such a disorder is consistent with the presence of two geometrical isomers where the relative disposition of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles are arranged in a perpendicular or parallel mode. Such an interpretation is fully supported by (31)P and (183)W NMR solution studies. The relative stability of both geometrical isomers appears to be dependent upon the nature of the internal alkali cations, i.e., Na(+) vs K(+), and increased lability of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles, compared to the oxo analogous, was clearly identified by significant broadening of the (31)P and (183)W NMR lines. Solution studies carried out by UV-vis spectroscopy showed that formation of the adduct [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) occurs in the 1.5-4.7 pH range and corresponds to a fast and quantitative condensation process. Furthermore, (31)P NMR titrations in solution reveal formation of the "monohandle" derivative [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(P(8)W(48)O(184))](38-) as an intermediate prior to formation of the "bishandle" derivatives. Furthermore, the electrochemical behavior of [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) was studied in aqueous medium and compared with the parent anion P(8)W(48).

  2. The molecular structure of the borate mineral inderite Mg(H4B3O7)(OH) · 5H2O--a vibrational spectroscopic study.

    Science.gov (United States)

    Frost, Ray L; López, Andrés; Xi, Yunfei; Lima, Rosa Malena Fernandes; Scholz, Ricardo; Granja, Amanda

    2013-12-01

    We have undertaken a study of the mineral inderite Mg(H4B3O7)(OH) · 5H2O a hydrated hydroxy borate mineral of magnesium using scanning electron microscopy, thermogravimetry and vibrational spectroscopic techniques. The structure consists of [Formula: see text] soroborate groups and Mg(OH)2(H2O)4 octahedra interconnected into discrete molecules by the sharing of two OH groups. Thermogravimetry shows a mass loss of 47.2% at 137.5 °C, proving the mineral is thermally unstable. Raman bands at 954, 1047 and 1116 cm(-1) are assigned to the trigonal symmetric stretching mode. The two bands at 880 and 916 cm(-1) are attributed to the symmetric stretching mode of the tetrahedral boron. Both the Raman and infrared spectra of inderite show complexity. Raman bands are observed at 3052, 3233, 3330, 3392 attributed to water stretching vibrations and 3459 cm(-1) with sharper bands at 3459, 3530 and 3562 cm(-1) assigned to OH stretching vibrations. Vibrational spectroscopy is used to assess the molecular structure of inderite. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. An i.r. investigation on some calcium aluminate hydrates, Ca2Al(OH)6+X-.yH2O (= 3CaO.Al2O3.CaX2.nH2O, X- = univalent anion)

    NARCIS (Netherlands)

    Houtepen, C.J.M.; Stein, H.N.

    1976-01-01

    The i.r. spectra of some hydrated and dehydrated calcium aluminate hydrates of the type Ca2Al(OH)6+X-·yH2O with X- = Cl-, Br-, J-, ClO3-, NO3-, ClO4- (y = 2) and X- = BrO3-, JO3- (2

  4. Design of Highly Sensitive C2H5OH Sensors Using Self-Assembled ZnO Nanostructures

    Directory of Open Access Journals (Sweden)

    Jong-Heun Lee

    2011-10-01

    Full Text Available Various ZnO nanostructures such as porous nanorods and two hierarchical structures consisting of porous nanosheets or crystalline nanorods were prepared by the reaction of mixtures of oleic-acid-dissolved ethanol solutions and aqueous dissolved Zn-precursor solutions in the presence of NaOH. All three ZnO nanostructures showed sensitive and selective detection of C2H5OH. In particular, ultra-high responses (Ra/Rg = ~1,200, Ra: resistance in air, Rg: resistance in gas to 100 ppm C2H5OH was attained using porous nanorods and hierarchical structures assembled from porous nanosheets, which is one of the highest values reported in the literature. The gas response and linearity of gas sensors were discussed in relation to the size, surface area, and porosity of the nanostructures.

  5. Physical properties of nanostructured CeO2 thin films grown by SILAR method

    Science.gov (United States)

    Khan, Ishaque Ahmed; Belkhedkar, M. R.; Salodkar, R. V.; Ubale, A. U.

    2018-05-01

    Nanostructured CeO2 thin films have been deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrate using (CeNO3)3 6H2O and NaOH as cationic and anionic precursors respectively. The structural and morphological characterizations were carried out by means of X-ray diffraction, FTIR, FESEM and EDX studies. The highly resistive (1010 Ω cm) semiconducting CeO2 film exhibits 2.95 eV optical band gap.

  6. Quantitative agreement between [(15)O]H2O PET and model free QUASAR MRI-derived cerebral blood flow and arterial blood volume.

    Science.gov (United States)

    Heijtel, D F R; Petersen, E T; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; van Bavel, E T; Boellaard, R; Lammertsma, A A; Nederveen, A J

    2016-04-01

    The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week in separate MRI and PET imaging sessions, after which quantitative and qualitative agreement between both modalities was assessed for gray matter, white matter and whole brain region of interests (ROI). The correlation between CBF measurements obtained with both modalities was moderate to high (r(2): 0.28-0.60, P QUASAR significantly underestimated CBF by 30% (P QUASAR yielding values that were only 27% of the [(15)O]H2O-derived values (P QUASAR MRI, indicating similar qualitative CBVA and CBF information by both modalities. In conclusion, the results of this study demonstrate that QUASAR MRI and [(15)O]H2O PET provide similar CBF and CBVA information, but with systematic quantitative discrepancies. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Modelling of the solid state electrochromic system WO/sub 3//HSbO/sub 3/ x 2H/sub 2/O/Ni(OH)/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Lagzdons, J L; Bajars, G E; Lusis, A R [AN Litovskoj SSR, Vilnyus. Inst. Fiziki Poluprovodnikov

    1984-08-16

    The problem of compatibility of electrochromic materials (ECM) with the solid electrolyte and the selection of solid electrolytes has been studied by means of modelling. The model electrochromic system (ECS) containing cathodically coloring ECM (WO/sub 3/), anodically coloring ECM (Ni(OH)/sub 2/), and a solid proton electrolyte (HSbO/sub 3/ x 2H/sub 2/O), as well as ECS containing H/sub x/WO/sub 3/ as counterelectrode has been investigated by the aid of cyclic voltammograms. Results show the compatibility of both the cathodic (WO/sub 3/) and anodic (Ni(OH)/sub 2/) ECM with solid proton electrolyte. Effective electrochromic devices can be worked out on their basis.

  8. A thermodynamic model for the solubility of NpO2(am) in the aqueous K+-HCO3--CO32--OH--H2O system

    International Nuclear Information System (INIS)

    Rai, D.; Hess, N.J.; Felmy, A.R.; Moore, D.A.; Yui, M.

    1999-01-01

    Solubility of NpO 2 (am) was determined in the aqueous K + -HCO 3 - -CO 3 2- -OH - -H 2 O system extending to high concentrations of carbonate, bicarbonate, and mixed carbonate-hydroxide. Several reducing agents (Fe powder, Na 2 S 2 O 4 , NH 2 . NH 2 , and NH 2 OH . HCl) were tested for their effectiveness to maintain neptunium in the tetravalent state. Of these reducing agents, Na 2 S 2 O 4 was found to be the most effective. Even in the presence of Na 2 S 2 O 4 , significant oxidation of Np(IV) to Np(V) occurred in samples containing relatively low concentrations of carbonate/bicarbonate, relatively high concentrations of hydroxide, and samples equilibrated for relatively long periods. X-ray absorption spectroscopy (XAS) and solvent extraction were used to identify aqueous species and oxidation states and to help select appropriate data sets for thermodynamic interpretations. The dominant aqueous species in CO 3 2- and relatively concentrated HCO 3 - solutions was found by XAS to be Np(CO 3 ) 5 6- . Solubility of NpO 2 (am) in carbonate and bicarbonate solutions increased dramatically with increasing molal concentrations (carbonate >0.1 moles per kg H 2 O (m) and bicarbonate >0.01 m), indicating that carbonate makes strong complexes with Np(IV). The dominant Np(IV)-carbonate species that reasonably described all of the experimental data were Np(CO 3 ) 5 6- in low to high concentrations of carbonate and hydroxide and in high concentrations of bicarbonate, and Np(OH) 2 (CO 3 ) 2 2- in low concentrations of bicarbonate. The logarithm of the thermodynamic equilibrium constants for the NpO 2 (am) dissolution reactions involving these species [(NpO 2 (am) + 5 CO 3 2- + 4 H + Np(CO 3 ) 3 6- + 2 H 2 O) and (NpO 2 (am) + 2 HCO 3 - Np(OH) 2 (CO 3 ) 2 2- )] were found to be 34.85 and -4.44, respectively. These values, when combined with the solubility product of NpO 2 (am) [log K Sp = -54.9 [1, and recent unpublished data from Rai et al.

  9. MgO monolayer epitaxy on Ni (100)

    Science.gov (United States)

    Sarpi, B.; Putero, M.; Hemeryck, A.; Vizzini, S.

    2017-11-01

    The growth of two-dimensional oxide films with accurate control of their structural and electronic properties is considered challenging for engineering nanotechnological applications. We address here the particular case of MgO ultrathin films grown on Ni (100), a system for which neither crystallization nor extended surface ordering has been established previously in the monolayer range. Using Scanning Tunneling Microscopy and Auger Electron Spectroscopy, we report on experiments showing MgO monolayer (ML) epitaxy on a ferromagnetic nickel surface, down to the limit of atomic thickness. Alternate steps of Mg ML deposition, O2 gas exposure, and ultrahigh vacuum thermal treatment enable the production of a textured film of ordered MgO nano-domains. This study could open interesting prospects for controlled epitaxy of ultrathin oxide films with a high magneto-resistance ratio on ferromagnetic substrates, enabling improvement in high-efficiency spintronics and magnetic tunnel junction devices.

  10. Hydrothermal synthesis of copper zirconium phosphate hydrate [Cu(OH)2Zr(HPO4)2·2H2O] and an investigation of its lubrication properties in grease.

    Science.gov (United States)

    Zhang, Xiaosheng; Xu, Hong; Zuo, Zhijun; Lin, Zhi; Ferdov, Stanislav; Dong, Jinxiang

    2013-08-28

    Copper zirconium phosphate hydrate (Cu(OH)2Zr(HPO4)2·2H2O, hereafter referred to as Cu-α-ZrP) with high crystallinity was directly synthesized in a NaF-CuO-ZrO-P2O5-H2O system under hydrothermal conditions. The copper ion was confirmed to be an exchangeable cation in the Cu-α-ZrP through elemental analysis and a proton ion exchange process. The crystal structure of the Cu-α-ZrP was determined ab initio by using X-ray powder diffraction data. In the structure, the CuO6 octahedron would be located in an exchangeable atom position. Moreover, Cu-α-ZrP was evaluated as an additive in grease in a four ball test. The maximum nonseizure load (PB, representing the load-carrying capacity) of the base grease containing Cu-α-ZrP was increased from 353 to 1235 N. The excellent load-carrying capacity may be explained by the easier adherence of the material to the worn surface forming a tight protective film.

  11. Analyses of desorbed H2O with temperature programmed desorption technique in sol-gel derived HfO2 thin films

    International Nuclear Information System (INIS)

    Shimizu, H.; Nemoto, D.; Ikeda, M.; Nishide, T.

    2009-01-01

    Hafnium oxide (HfO 2 ) is a promising material for the gate insulator in highly miniaturized silicon (Si) ultra-large-scale-integration (ULSI) devices (32 nm and beyond). In the field chemistry, a sol-gel processing has been used to fabricate HfO 2 thin film with the advantages of low cost, relative simplicity, and easy control of the composition of the layers formed. Temperature-programmed desorption (TPD) has been used not only for analyzing adsorbed gases on the surfaces of bulk sol-gel-derived HfO 2 of sol-gel-derived HfO 2 thin film fired at 350, 450, 550 and 700 deg C in sol-gel derived HfO 2 films in air is investigated using TPD, and also the material characterization of HfO 2 thin films is evaluated by X-ray diffraction (XRD) method. The dielectric constant of the films was also estimated using the capacitance-voltage (C-V) method. TPD is essentially a method of analyzing desorped gases from samples heated by infra-red light as a function of temperature under vacuum conditions using a detector of quadruple mass spectroscopy (QMS). Sol-gel-derived HfO 2 films were fabricated on 76-mm-diameter Si(100) wafers as follows. Hafnia sol solutions were prepared by dissolving HfCl 4 in NH 4 OH solution, followed by the of HCOOH. (author)

  12. Control of O-H bonds at a-IGZO/SiO2 interface by long time thermal annealing for highly stable oxide TFT

    Directory of Open Access Journals (Sweden)

    Jae Kwon Jeon

    2017-12-01

    Full Text Available We report two-step annealing, high temperature and sequent low temperature, for amorphous indium-gallium-zinc-oxide (a-IGZO thin-film transistor (TFT to improve its stability and device performance. The annealing is carried out at 300 oC in N2 ambient for 1 h (1st step annealing and then at 250 oC in vacuum for 10 h (2nd step annealing. It is found that the threshold voltage (VTH changes from 0.4 V to -2.0 V by the 1st step annealing and to +0.6 V by 2nd step annealing. The mobility changes from 18 cm2V-1s-1 to 25 cm2V-1s-1 by 1st step and decreases to 20 cm2V-1s-1 by 2nd step annealing. The VTH shift by positive bias temperature stress (PBTS is 3.7 V for the as-prepared TFT, and 1.7 V for the 1st step annealed TFT, and 1.3 V for the 2nd step annealed TFT. The XPS (X-ray photoelectron spectroscopy depth analysis indicates that the reduction in O-H bonds at the top interface (SiO2/a-IGZO by 2nd step annealing appears, which is related to the positive VTH shift and smaller VTH shift by PBTS.

  13. Control of O-H bonds at a-IGZO/SiO2 interface by long time thermal annealing for highly stable oxide TFT

    Science.gov (United States)

    Jeon, Jae Kwon; Um, Jae Gwang; Lee, Suhui; Jang, Jin

    2017-12-01

    We report two-step annealing, high temperature and sequent low temperature, for amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) to improve its stability and device performance. The annealing is carried out at 300 oC in N2 ambient for 1 h (1st step annealing) and then at 250 oC in vacuum for 10 h (2nd step annealing). It is found that the threshold voltage (VTH) changes from 0.4 V to -2.0 V by the 1st step annealing and to +0.6 V by 2nd step annealing. The mobility changes from 18 cm2V-1s-1 to 25 cm2V-1s-1 by 1st step and decreases to 20 cm2V-1s-1 by 2nd step annealing. The VTH shift by positive bias temperature stress (PBTS) is 3.7 V for the as-prepared TFT, and 1.7 V for the 1st step annealed TFT, and 1.3 V for the 2nd step annealed TFT. The XPS (X-ray photoelectron spectroscopy) depth analysis indicates that the reduction in O-H bonds at the top interface (SiO2/a-IGZO) by 2nd step annealing appears, which is related to the positive VTH shift and smaller VTH shift by PBTS.

  14. Study in crossed molecular beams of the state-to-state reactive collision: O("1D) + H_2(X "1Σ_g"+,v) → OH(X "2Π and A"2Σ"+,v',J') + H("2S)

    International Nuclear Information System (INIS)

    Drawin, Stefan

    1990-01-01

    Reactions between oxygen and hydrogen such as O + H_2OH + H play a significant role in combustion processes and in atmospheric and interstellar chemistry. But they are also examples of reactive collisions between atoms and molecules which can be addressed theoretically and experimentally for a better understanding of mechanisms present in a chemical reaction. This research thesis reports the experimental study of two reactive ways involving the metastable compound O("1D): O("1D) + H_2OH(X "2Π) + H O("1D) + H_2OH(A "2Σ"+) + H. The experiment is performed by using crossed molecular beams. Thus, the nature of reactants is well defined, and the interaction medium is rarefied. The first way is largely exothermic, whereas for the second one, endothermicity is overcome by H_2 vibrational excitation. A characterization of reactants is performed. Three methods of analysis of the OH product are used: time-of-flight measurement at different angles, laser induced fluorescence, and spontaneous fluorescence [fr

  15. Quantification of myocardial blood flow with 11C-hydroxyephedrine dynamic PET: comparison with 15O-H2O PET.

    Science.gov (United States)

    Hiroshima, Yuji; Manabe, Osamu; Naya, Masanao; Tomiyama, Yuuki; Magota, Keiichi; Obara, Masahiko; Aikawa, Tadao; Oyama-Manabe, Noriko; Yoshinaga, Keiichiro; Hirata, Kenji; Kroenke, Markus; Tamaki, Nagara; Katoh, Chietsugu

    2017-12-21

    11 C-hydroxyephedrine (HED) PET has been used to evaluate the myocardial sympathetic nervous system (SNS). Here we sought to establish a simultaneous approach for quantifying both myocardial blood flow (MBF) and the SNS from a single HED PET scan. Ten controls and 13 patients with suspected cardiac disease were enrolled. The inflow rate of 11 C-HED (K1) was obtained using a one-tissue-compartment model. We compared this rate with the MBF derived from 15 O-H 2 O PET. In the controls, the relationship between K 1 from 11 C-HED PET and the MBF from 15 O-H 2 O PET was linked by the Renkin-Crone model. The relationship between K 1 from 11 C-HED PET and the MBF from 15 O-H 2 O PET from the controls' data was approximated as follows: K 1   =  (1 - 0.891 * exp(- 0.146/MBF)) * MBF. In the validation set, the correlation coefficient demonstrated a significantly high relationship for both the whole left ventricle (r = 0.95, P < 0.001) and three coronary territories (left anterior descending artery: r = 0.96, left circumflex artery: r = 0.81, right coronary artery: r =  0.86; P < 0.001, respectively). 11 C-HED can simultaneously estimate MBF and sympathetic nervous function without requiring an additional MBF scan for assessing mismatch areas between MBF and SNS.

  16. Synthesis of TiO{sub 2} sol in a neutral solution using TiCl{sub 4} as a precursor and H{sub 2}O{sub 2} as an oxidizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Sasirekha, Natarajan; Rajesh, Baskaran [Department of Chemical Engineering, National Central University, Chung-Li 320, Taiwan (China); Chen, Yu-Wen, E-mail: ywchen@cc.ncu.edu.t [Department of Chemical Engineering, National Central University, Chung-Li 320, Taiwan (China)

    2009-11-02

    Nanosize TiO{sub 2} thin film on glass substrate was obtained through dip-coating method using TiO{sub 2} sol. Suspended nanosize TiO{sub 2} sols with anatase structure in aqueous solution were synthesized by sol-gel method using TiCl{sub 4} as a precursor. TiCl{sub 4} was reacted with an aqueous solution of NH{sub 4}OH to form Ti(OH){sub 4}, and H{sub 2}O{sub 2} was then added to form peroxo titanic acid. It was further heated in water and converted to TiO{sub 2}. The effects of the preparation parameters, viz., pH value of the Ti(OH){sub 4} gel, concentration of H{sub 2}O{sub 2}, and heating temperature and time, on the properties of the TiO{sub 2} sol were investigated. The materials were characterized by X-ray diffraction, Fourier transform-infrared spectroscopy, and transmission electron microscopy. The results showed that the primary TiO{sub 2} particles were rhombus with the major axis ca. 10 nm and minor axis ca. 4 nm, and were in anatase structure. The sol was excellent in dispersibility and was stable in neutral and even slight basic conditions for at least 2 years without causing agglomeration. The best preparation condition was optimized with the pH value of Ti(OH){sub 4} gel at 8, H{sub 2}O{sub 2}/TiO{sub 2} mole ratio of 2, and heating at 97 {sup o}C for 8 h. The transparent adherent TiO{sub 2} film on glass substrates exhibits strong hydrophilicity after illuminating with ultraviolet light and it can be used as an efficient photocatalyst.

  17. Preparation of Zr(Mo,W)2O8 with a larger negative thermal expansion by controlling the thermal decomposition of Zr(Mo,W)2(OH,Cl)22H2O.

    Science.gov (United States)

    Petrushina, Mariya Yu; Dedova, Elena S; Filatov, Eugeny Yu; Plyusnin, Pavel E; Korenev, Sergei V; Kulkov, Sergei N; Derevyannikova, Elizaveta A; Sharafutdinov, Marat R; Gubanov, Alexander I

    2018-03-28

    Solid solutions of Zr(Mo,W) 2 O 7 (OH,Cl) 22H 2 O with a preset ratio of components were prepared by a hydrothermal method. The chemical composition of the solutions was determined by energy dispersive X-ray spectroscopy (EDX). For all the samples of ZrMo x W 2-x O 7 (OH,Cl) 22H 2 O (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0), TGA and in situ powder X-ray diffraction (PXRD) studies (300-1100 K) were conducted. For each case, the boundaries of the transformations were determined: Zr(Mo,W) 2 O 7 (OH,Cl) 22H 2 O → orthorhombic-ZrMo x W 2-x O 8 (425-525 K), orthorhombic-ZrMo x W 2-x O 8  → cubic-ZrMo x W 2-x O 8 (700-850 K), cubic-ZrMo x W 2-x O 8  → trigonal-ZrMo x W 2-x O 8 (800-1050 K for x > 1) and cubic-ZrMo x W 2-x O 8  → oxides (1000-1075 K for x ≤ 1). The cell parameters of the disordered cubic-ZrMo x W 2-x O 8 (space group Pa-3) were measured within 300-900 K, and the thermal expansion coefficients were calculated: -3.5∙10 -6  - -4.5∙10 -6  K -1 . For the ordered ZrMo 1.8 W 0.2 O 8 (space group P2 1 3), a negative thermal expansion (NTE) coefficient -9.6∙10 -6  K -1 (300-400 K) was calculated. Orthorhombic-ZrW2O 8 is formed upon the decomposition of ZrW 2 O 7 (OH,Cl) 22H 2 O within 500-800 K.

  18. Understanding LiOH chemistry in a ruthenium-catalyzed Li-O{sub 2} battery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Liu, Zigeng; Kim, Gunwoo; Grey, Clare P. [Department of Chemistry, University of Cambridge (United Kingdom); Frith, James T.; Garcia-Araez, Nuria [Department of Chemistry, University of Southampton (United Kingdom)

    2017-12-11

    Non-aqueous Li-O{sub 2} batteries are promising for next-generation energy storage. New battery chemistries based on LiOH, rather than Li{sub 2}O{sub 2}, have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru-catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e{sup -} oxygen reduction reaction, the H in LiOH coming solely from added H{sub 2}O and the O from both O{sub 2} and H{sub 2}O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li{sub 2}O{sub 2}, LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long-lived battery. An optimized metal-catalyst-electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Local and Nanoscale Structure and Speciation in the PuO{sub 2+x-y}(OH){sub 2y} {center_dot}zH{sub 2}O System

    Energy Technology Data Exchange (ETDEWEB)

    Conradson, Steven D.; Begg, Bruce D.; Clark, David L.; Den Auwer, Christophe J.; Ding, Mei; Dorhout, Peter K.; Espinosa-Faller, Francisco J.; Gordon, Pamela L.; Haire, Richard G.; Hess, Nancy J.; Hess, Ryan F.; Keogh, D. Webster; Morales, Luis A.; Neu, Mary P.; Paviet-Hartmann, Patricia; Runde, Wolfgang; Tait, C DREW.; Veirs, D. Kirk; Villella, Phillip M.

    2004-09-26

    Pu L3 X-ray absorption fine structure spectra from 24 samples of PuO{sub 2+x} (and two related Pu substituted oxides), prepared by a variety of methods, demonstrate that (1) although the Pu sublattice remains the ordered part of the Pu distribution, the nearest-neighbor O atoms even at x = 0 are found in a multisite distribution with Pu-O distances consistent with the stable incorporation of OH{sup -} (and possibly H{sub 2}O and H{sup +}) into the PuO{sub 2} lattice; (2) the excess O from oxidation is found at Pu-O distances <1.9 {angstrom}, consistent with the multiply bound ''oxo''-type ligands found in molecular complexes of Pu(V) and Pu(VI); (3) the Pu associated with these oxo groups is most likely Pu(V), so that the excess O probably occurs as PuO{sub 2}{sup +} moieties that are aperiodically distributed through the lattice; and (4) the collective interactions between these defect sites most likely cause them to cluster so as give nanoscale heterogeneity in the form of domains that may have unusual reactivity, observed as sequential oxidation by H{sub 2}O at ambient conditions. The most accurate description of PuO{sub 2} is therefore actually PuO{sub 2+x-y}(OH){sub 2y} {center_dot} zH{sub 2}O, with pure, ordered, homogeneous PuO{sub 2} attained only when H{sub 2}O is rigorously excluded and the O activity is relatively low.

  20. Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO 2

    KAUST Repository

    Yao, Ke Xin; Zeng, Hua Chun

    2008-01-01

    Through synthetic architecture and functionalization with self-assembled monolayers (SAMs), complex nanocomposite films of SAM/Pt/ZnO/SiO2 have been facilely prepared in this work. The nanostructured films are highly uniform and porous, showing a

  1. Behaviour of ceramic and metallic layers in a H2O-H2S

    International Nuclear Information System (INIS)

    Furtuna, I.; Mihailescu, M.; Deaconu, M.; Dinu, A.; Cotolan, V; Nedelcu, L.; Titescu, Gh.

    1996-01-01

    In the installations for heavy water production there exist zones where the action of aggressive working conditions combined with a severe variable hydrodynamical regime lead to the destruction of the pyrite protecting layer. An alternating solution for the protection of these zones is to cover them with ceramic or metallic layers. This work presents the results of the preliminary tests on G28-52 steel samples, covered with ceramic and metallic layers, in the working environment (H 2 O-H 2 S) of the heavy water production installations and in severe hydrodynamical conditions. On the basis of the results obtained in the experiments and from the examination of the microstructure of the layers prior and after testing, a phenomenological model was developed to explain the behaviour of the deposed layers. On the basis of this model the conditions that the layers must satisfy have been deduced to improve their behaviour in the working environment

  2. Thermal transformation of synthetic borax, Na2[B4O5(OH)4]x8H2O

    International Nuclear Information System (INIS)

    Abdullaev, G.K.

    1981-01-01

    Using the methods of high temperature roentgenography and derivatography thermal transformation of synthetic borax is studied. It is established that borax dehydration proceeds in four stages (50-80, 80-100, 100-150 and 150-500 deg C) with the formation of three intermediate crystalline hydrate forms (one stable and two unstable) and one final stable crystalline phase. The stable crystalline phases correspond to synthetic tincalconite Na 2 [B 4 O 5 (OH) 4 ]x3H 2 O and sodium tetraborate Na 2 B 4 O 7 . Thermal transformation of borax into tincalconite and sodium tetraborate is explained on the basis of their crystal structures [ru

  3. Synthetic routes to a nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} evaluated by solid-state {sup 71}Ga NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hammann, Blake A. [Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 (United States); Marsh, David A. [Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403 (United States); Ma, Zayd L. [Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 (United States); Wood, Suzannah R. [Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403 (United States); Eric West, Michael [Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 (United States); Johnson, Darren W. [Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403 (United States); Hayes, Sophia E., E-mail: hayes@wustl.edu [Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2016-10-15

    Solid-state {sup 71}Ga NMR was used to characterize a series of [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15} “Ga{sub 13}” molecular clusters synthesized by multiple methods. These molecular clusters are precursors to thin film electronics and may be employed in energy applications. The synthetic routes provide varying levels of impurities in the solid phase, and these impurities often elude traditional characterization techniques such as powder X-ray diffraction and Raman spectroscopy. Solid-state NMR can provide a window into the gallium species even in amorphous phases. This information is vital in order to prevent the impurities from causing defect sites in the corresponding thin films upon gelation and condensation (polymerization) of the Ga{sub 13} clusters. This work demonstrates the resolving power of solid-state NMR to evaluate structure and synthetic quality in the solid state, and the application of high-field NMR to study quadrupolar species, such as {sup 71}Ga. - Graphical abstract: The various synthetic routes and {sup 71}Ga solid-state NMR spectra of the nanoscale inorganic cluster [Ga{sub 13}(μ{sub 3}-OH){sub 6}(μ{sub 2}-OH){sub 18}(H{sub 2}O)](NO{sub 3}){sub 15}. - Highlights: • Solid-state {sup 71}Ga NMR of hydroxo-aquo metal clusters and the impurities present. • High-field NMR capability allows for quadrupolar species, such as {sup 71}Ga, to be routinely studied. • Efficient and environmentally friendly synthetic routes have been developed to prepare hydroxo-aquo metal clusters.

  4. Effects of O2 plasma post-treatment on ZnO: Ga thin films grown by H2O-thermal ALD

    Science.gov (United States)

    Lee, Yueh-Lin; Chuang, Jia-Hao; Huang, Tzu-Hsuan; Ho, Chong-Long; Wu, Meng-Chyi

    2013-03-01

    Transparent conducting oxides have been widely employed in optoelectronic devices using the various deposition methods such as sputtering, thermal evaporator, and e-gun evaporator technologies.1-3 In this work, gallium doped zinc oxide (ZnO:Ga) thin films were grown on glass substrates via H2O-thermal atomic layer deposition (ALD) at different deposition temperatures. ALD-GZO thin films were constituted as a layer-by-layer structure by stacking zinc oxides and gallium oxides. Diethylzinc (DEZ), triethylgallium (TEG) and H2O were used as zinc, gallium precursors and oxygen source, respectively. Furthermore, we investigated the influences of O2 plasma post-treatment power on the surface morphology, electrical and optical property of ZnO:Ga films. As the result of O2 plasma post-treatment, the characteristics of ZnO:Ga films exhibit a smooth surface, low resistivity, high carrier concentration, and high optical transmittance in the visible spectrum. However, the transmittance decreases with O2 plasma power in the near- and mid-infrared regions.

  5. Copper(II) perrhenate Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}: Synthesis from isopropanol and CuReO{sub 4}, structure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailova, D., E-mail: d.mikhailova@ifw-dresden.de [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76434 Eggenstein-Leopoldshafen (Germany); Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden (Germany); Engel, J.M. [Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt (Germany); Schmidt, M. [Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187 Dresden (Germany); Tsirlin, A.A. [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Ehrenberg, H. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, D-76434 Eggenstein-Leopoldshafen (Germany); Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Str. 2, D-64287 Darmstadt (Germany)

    2015-12-15

    The crystal structure of Cu{sup +}Re{sup 7+}O{sub 4} is capable of a quasi-reversible incorporation of C{sub 3}H{sub 7}OH molecules. A room-temperature reaction between CuReO{sub 4} and C{sub 3}H{sub 7}OH under oxidizing conditions leads to the formation of a novel metal-organic hybrid compound Cu{sup 2+}(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2}. Upon heating under reducing conditions, this compound transforms back into CuReO{sub 4}, albeit with ReO{sub 2} and metallic Cu as by-products. The crystal structure of Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} solved from single-crystal X-ray diffraction (Pbca, a=10.005(3) Å, b=7.833(2) Å, and c=19.180(5) Å) reveals layers of corner-sharing CuO{sub 6}-octahedra and ReO{sub 4}-tetrahedra, whereas isopropyl groups are attached to both sides of these layers, thus providing additional connections within the layers through hydrogen bonds. Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} is paramagnetic down to 4 K because the spatial arrangement of the Cu{sup 2+} half-filled orbitals prevents magnetic superexchange. The paramagnetic effective moment of 2.0(1) μ{sub B} is slightly above the spin-only value and typical for Cu{sup 2+} ions. - Highlights: • Novel Cu(C{sub 3}H{sub 7}OH){sub 2}(ReO{sub 4}){sub 2} compound has a sequence of inorganic and organic layers. • Hydrogen bonds provide an additional bonding Isopropanol molecules serve as a reducing agent during decomposition. • No direct Cu-O-Re-O-Cu connections via d{sub x2-y2} orbital of Cu{sup 2+} explain paramagnetism. • Hydrogen bonds provide an additional bonding. • Isopropanol molecules serve as a reducing agent during decomposition.

  6. Salt-assisted clean transfer of continuous monolayer MoS2 film for hydrogen evolution reaction

    Science.gov (United States)

    Cho, Heung-Yeol; Nguyen, Tri Khoa; Ullah, Farman; Yun, Jong-Won; Nguyen, Cao Khang; Kim, Yong Soo

    2018-03-01

    The transfer of two-dimensional (2D) materials from one substrate to another is challenging but of great importance for technological applications. Here, we propose a facile etching and residue-free method for transferring a large-area monolayer MoS2 film continuously grown on a SiO2/Si by chemical vapor deposition. Prior to synthesis, the substrate is dropped with water- soluble perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt (PTAS). The as-grown MoS2 on the substrate is simply dipped in water to quickly dissolve PTAS to yield the MoS2 film floating on the water surface, which is subsequently transferred to the desired substrate. The morphological, optical and X-ray photoelectron spectroscopic results show that our method is useful for fast and clean transfer of the MoS2 film. Specially, we demonstrate that monolayer MoS2 film transferred onto a conducting substrate leads to excellent performance for hydrogen evolution reaction with low overpotential (0.29 V vs the reversible hydrogen electrode) and Tafel slope (85.5 mV/decade).

  7. Effects of the addition of H{sub 2}O and NH{sub 4}OH in the electrical properties of thin films of Y{sub 2}O{sub 3} deposited by pyrolytic spray; Efectos de la adicion de H{sub 2}O y NH{sub 4}OH en las propiedades electricas de peliculas delgadas de Y{sub 2}O{sub 3} depositadas por rocio pirolitico

    Energy Technology Data Exchange (ETDEWEB)

    Herrera S, H.J.; Alarcon F, G.; Aguilar F, M. [CICATA-IPN, Legaria 694, Col. Irrigacion, 11500 Mexico D.F. (Mexico); Falcony, C. [CINVESTAV-IPN, 07000 Mexico D.F. (Mexico); Garcia H, M.; Guzman M, J. [IIM-UNAM, A.P. 70-360, 04510 Mexico D.F. (Mexico); Araiza I, J.J. [UAZ, 98060 Zacatecas (Mexico)

    2005-07-01

    In this work we studied the electrical properties of yttrium oxide thin films obtained by spray pyrolysis from Y(acac){sub 3} and N,N-DMF. The films were deposited on Si(100) substrates at temperatures of 400, 450, 500 and 550 C. The electrical characteristic of the films was improved when a mist of H{sub 2}O and/or NH{sub 4}0H was simultaneously added to the deposition system. Current and capacitance versus voltage measurements were obtained when the Y{sub 2}O{sub 3} films were integrated in MOS (Metal-Oxide-Semiconductor) structures. Y{sub 2}O{sub 3} films with a dielectric constant up to 15 were obtained. The films can stand electric fields up to 2 MV/cm. An interface state density in the range of 10{sup 10}-10{sup 11} cm{sup -2} eV{sup -1} was measured at midgap from the high and low frequency capacitance measurements. (Author)

  8. Isotope analysis of diamond-surface passivation effect of high-temperature H2O-grown atomic layer deposition-Al2O3 films

    International Nuclear Information System (INIS)

    Hiraiwa, Atsushi; Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi

    2015-01-01

    The Al 2 O 3 film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H 2 O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D 2 O instead of H 2 O in the ALD and found that the Al 2 O 3 film formed at a conventional temperature (100 °C) incorporates 50 times more CH 3 groups than the high-temperature film. This CH 3 is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H 2 O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H 2 O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D 2 O-oxidant ALD but found that the mass density and dielectric constant of D 2 O-grown Al 2 O 3 films are smaller than those of H 2 O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al 2 O 3 films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of the aforementioned new isotope effect will be a basis for further enhancing ALD

  9. Overtone vibrational spectroscopy in H2-H2O complexes: a combined high level theoretical ab initio, dynamical and experimental study.

    Science.gov (United States)

    Ziemkiewicz, Michael P; Pluetzer, Christian; Nesbitt, David J; Scribano, Yohann; Faure, Alexandre; van der Avoird, Ad

    2012-08-28

    First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.

  10. THE CHEMISTRY OF INTERSTELLAR OH{sup +}, H{sub 2}O{sup +}, AND H{sub 3}O{sup +}: INFERRING THE COSMIC-RAY IONIZATION RATES FROM OBSERVATIONS OF MOLECULAR IONS

    Energy Technology Data Exchange (ETDEWEB)

    Hollenbach, David [SETI Institute, Mountain View, CA 94043-5203 (United States); Kaufman, M. J. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192-0106 (United States); Neufeld, D. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Wolfire, M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Goicoechea, J. R. [Departamento de Astrofisica, Centro de Astrobiologia (CSIC-INTA), 28850 Madrid (Spain)

    2012-08-01

    We model the production of OH{sup +}, H{sub 2}O{sup +}, and H{sub 3}O{sup +} in interstellar clouds, using a steady-state photodissociation region code that treats the freezeout of gas species, grain surface chemistry, and desorption of ices from grains. The code includes polycyclic aromatic hydrocarbons (PAHs), which have important effects on the chemistry. All three ions generally have two peaks in abundance as a function of depth into the cloud, one at A{sub V} {approx}< 1 and one at A{sub V} {approx} 3-8, the exact values depending on the ratio of incident ultraviolet flux to gas density. For relatively low values of the incident far-ultraviolet flux on the cloud ({chi} {approx}< 1000; {chi} = 1 = local interstellar value), the columns of OH{sup +} and H{sub 2}O{sup +} scale roughly as the cosmic-ray primary ionization rate {zeta}{sub crp} divided by the hydrogen nucleus density n. The H{sub 3}O{sup +} column is dominated by the second peak, and we show that if PAHs are present, N(H{sub 3}O{sup +}) {approx}4 Multiplication-Sign 10{sup 13} cm{sup -2} independent of {zeta}{sub crp} or n. If there are no PAHs or very small grains at the second peak, N(H{sub 3}O{sup +}) can attain such columns only if low-ionization potential metals are heavily depleted. We also model diffuse and translucent clouds in the interstellar medium, and show how observations of N(OH{sup +})/N(H) and N(OH{sup +})/N(H{sub 2}O{sup +}) can be used to estimate {zeta}{sub crp}/n, {chi}/n and A{sub V} in them. We compare our models to Herschel observations of these two ions, and estimate {zeta}{sub crp} {approx}4-6 Multiplication-Sign 10{sup -16}(n/100 cm{sup -3}) s{sup -1} and {chi}/n = 0.03 cm{sup 3} for diffuse foreground clouds toward W49N.

  11. Ab initio and transition state theory study of the OH + HO2H2O + O2(3Σg−)/O2(1Δg) reactions: yield and role of O2(1Δg) in H2O2 decomposition and in combustion of H2

    KAUST Repository

    Monge Palacios, Manuel

    2018-01-22

    Reactions of hydroxyl (OH) and hydroperoxyl (HO2) are important for governing the reactivity of combustion systems. We performed post-CCSD(T) ab initio calculations at the W3X-L//CCSD = FC/cc-pVTZ level to explore the triplet ground-state and singlet excited-state potential energy surfaces of the OH + HO2H2O + O2(3Σg−)/O2(1Δg) reactions. Using microcanonical and multistructural canonical transition state theories, we calculated the rate constant for the triplet and singlet channels over the temperature range 200–2500 K, represented by k(T) = 3.08 × 1012T0.07 exp(1151/RT) + 8.00 × 1012T0.32 exp(−6896/RT) and k(T) = 2.14 × 106T1.65 exp(−2180/RT) in cm3 mol−1 s−1, respectively. The branching ratios show that the yield of singlet excited oxygen is small (<0.5% below 1000 K). To ascertain the importance of singlet oxygen channel, our new kinetic information was implemented into the kinetic model for hydrogen combustion recently updated by Konnov (Combust. Flame, 2015, 162, 3755–3772). The updated kinetic model was used to perform H2O2 thermal decomposition simulations for comparison against shock tube experiments performed by Hong et al. (Proc. Combust. Inst., 2013, 34, 565–571), and to estimate flame speeds and ignition delay times in H2 mixtures. The simulation predicted a larger amount of O2(1Δg) in H2O2 decomposition than that predicted by Konnov\\'s original model. These differences in the O2(1Δg) yield are due to the use of a higher ab initio level and a more sophisticated methodology to compute the rate constant than those used in previous studies, thereby predicting a significantly larger rate constant. No effect was observed on the rate of the H2O2 decomposition and on the flame speeds and ignition delay times of different H2–oxidizer mixtures. However, if the oxidizer is seeded with O3, small differences appear in the flame speed. Given that O2(1Δg) is much more reactive than O2(3Σg−), we do not preclude an effect of the

  12. Modification of H2O adsorbed Si(100)-(2 x 1) surface by photon and electron beam

    International Nuclear Information System (INIS)

    Moon, S.W.; Chung, S.M.; Hwang, C.C.; Ihm, K.W.; Kang, T.-H.; Chen, C.H.; Park, C.-Y.

    2004-01-01

    Full text: Oxidation of silicon has been the subject of intense scientific and technological interest due to the several uses of thin oxide films as insulating layers in microelectronic devices. The great strides have been made in understanding about the formation and thermal evolution of the Si/SiO 2 interface. In this presentation, we provide synchrotron radiation photoemission spectroscopy (SRPES) and photoemission electron microscope (PEEM) results, showing how a H 2 O adsorbed Si(100) surface evolves into an ultra-thin silicon oxide m when exposed to monochromatized synchrotron radiation and electron beam at room temperature. All SRPES, PEEM experiments have been performed at the beam line, 4B1, of Pohang Light Source (PLS) in Korea. Water dissociates into OH(a) and H(a) species upon adsorption on the Si(100)-(2 - 1) at room temperature. The bonding (b 2 ) and antibonding (a 1 ) OH orbital and the oxygen lone pair orbital (b 1 ) from the dissociated OH and H species has been identified in ultraviolet photoemission spectra (UPS). These structures gradually changed and a new silicon oxide peak appeared with the photon/E-beam irradiation. This indicates that the H 2 O adsorbed on Si surface transforms into a thin silicon oxide film by photon/E-beam irradiation. We have shown in our PEEM images that one can make micro-patterns on silicon surface by using the photon induced surface modification. The fabricated patterns can be clearly identified through the inverse contrast images between photon exposed region and unexposed one. The near edge x-ray absorption fine structure (NEXAFS) results revealed that the OH adsorbed Si surface transforms into a thin silicon oxide film by photon irradiation

  13. X-ray photoelectron spectroscopic and electrochemical impedance spectroscopic analysis of RuO_2-Ta_2O_5 thick film pH sensors

    International Nuclear Information System (INIS)

    Manjakkal, Libu; Cvejin, Katarina; Kulawik, Jan; Zaraska, Krzysztof; Socha, Robert P.; Szwagierczak, Dorota

    2016-01-01

    The paper reports on investigation of the pH sensing mechanism of thick film RuO_2-Ta_2O_5 sensors by using X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). Interdigitated conductimetric pH sensors were screen printed on alumina substrates. The microstructure and elemental composition of the films were examined by scanning electron microscopy and energy dispersive spectroscopy. The XPS studies revealed the presence of Ru ions at different oxidation states and the surface hydroxylation of the sensing layer increasing with increasing pH. The EIS analysis carried out in the frequency range 10 Hz–2 MHz showed that the electrical parameters of the sensitive electrodes in the low frequency range were distinctly dependent on pH. The charge transfer and ionic exchange occurring at metal oxide-solution interface were indicated as processes responsible for the sensing mechanism of thick film RuO_2-Ta_2O_5 pH sensors. - Highlights: • Conductimetric pH sensors with RuO_2-Ta_2O_5 thick film electrodes were developed. • Microstructure and elemental composition of the films were examined by SEM and EDX. • Sensing film composition and hydroxylation were studied by XPS as a function of pH. • Electrochemical reactions at oxide-solution interface were analyzed by EIS method. • Impact of solution pH, electrode composition and sintering temperature was studied.

  14. Structural, electrical and optical properties of nanostructured ZrO2 thin film deposited by SILAR method

    Science.gov (United States)

    Salodkar, R. V.; Belkhedkar, M. R.; Nemade, S. D.

    2018-05-01

    Successive Ionic Layer Adsorption and Reaction (SILAR) method has been employed to deposit nanocrystalline ZrO2 thin film of thickness 91 nm onto glass substrates using ZrOCl2.8H2O and NaOH as cationic and anionic precursors respectively. The structural and surface morphological characterizations have been carried out by means of X-ray diffraction and field emission scanning electron microscopy confirms the nanocrystalline nature of ZrO2 thin film. The direct optical band gap and activation energy of the ZrO2 thin film are found to be 4.74 and 0.80eV respectively.

  15. Effect of various SnO2 pH on ZnO/SnO2-composite film via immersion technique

    Science.gov (United States)

    Malek, M. F.; Mohamed, R.; Mamat, M. H.; Ismail, A. S.; Yusoff, M. M.; Rusop, M.

    2018-05-01

    ZnO/SnO2-composite film has been synthesized via immersion technique with various pH of SnO2. The pH of SnO2 were varied between 4.5 and 6.5. The optical measurements of the samples were carried out using Varian Cary 5000 UV-Vis spectrophotometer within the range from 350 nm to 800 nm at room temperature in air with a data interval of 1 nm. On the other hand, the optical photoluminescence properties were measured by a photoluminescence spectrometer (PL, model: Horiba Jobin Yvon - 79 DU420A-OE-325) using a He-Cd laser as the excitation source at 325 nm. These highly oriented ZnO/SnO2-composite film are potential for the creation of functional materials, such as the sensors, solar cells and etc.

  16. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O-H2O and δ2H-H2O values by cavity ring-down spectroscopy

    Science.gov (United States)

    Johnson, Jennifer E.; Rella, Chris W.

    2017-08-01

    Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  17. Reduction Mechanisms of Cu2+-Doped Na2O-Al2O3-SiO2 Glasses during Heating in H2 Gas.

    Science.gov (United States)

    Nogami, Masayuki; Quang, Vu Xuan; Ohki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2018-01-25

    Controlling valence state of metal ions that are doped in materials has been widely applied for turning optical properties. Even though hydrogen has been proven effective to reduce metal ions because of its strong reducing capability, few comprehensive studies focus on practical applications because of the low diffusion rate of hydrogen in solids and the limited reaction near sample surfaces. Here, we investigated the reactions of hydrogen with Cu 2+ -doped Na 2 O-Al 2 O 3 -SiO 2 glass and found that a completely different reduction from results reported so far occurs, which is dominated by the Al/Na concentration ratio. For Al/Na glass body. For Al/Na > 1, on the other hand, the reduction of Cu 2+ ions occurred simultaneously with the formation of OH bonds, whereas the reduced Cu metal moved outward and formed a metallic film on glass surface. The NMR and Fourier transform infrared results indicated that the Cu 2+ ions were surrounded by Al 3+ ions that formed AlO 4 , distorted AlO 4 , and AlO 5 units. The diffused H 2 gas reacted with the Al-O - ···Cu + units, forming Al-OH and metallic Cu, the latter of which moved freely toward glass surface and in return enhanced H 2 diffusion.

  18. Computational study on the mechanisms and energetics of trimethylindium reactions with H2O and H2S.

    Science.gov (United States)

    Raghunath, P; Lin, M C

    2007-07-19

    The reactions of trimethylindium (TMIn) with H2O and H2S are relevant to the chemical vapor deposition of indium oxide and indium sulfide thin films. The mechanisms and energetics of these reactions in the gas phase have been investigated by density functional theory and ab initio calculations using the CCSD(T)/[6-31G(d,p)+Lanl2dz]//B3LYP/[6-31G(d,p)+Lanl2dz] and CCSD(T)/[6-31G(d,p)+Lanl2dz] //MP2/[6-31G(d,p)+Lanl2dz] methods. The results of both methods are in good agreement for the optimized geometries and relative energies. When TMIn reacts with H2O and H2S, initial molecular complexes [(CH3)3In:OH2 (R1)] and [(CH3)3In:SH2 (R2)] are formed with 12.6 and 3.9 kcal/mol binding energies. Elimination of a CH4 molecule from each complex occurs with a similar energy barrier at TS1 (19.9 kcal/mol) and at TS3 (22.1 kcal/mol), respectively, giving stable intermediates (CH3)2InOH and (CH3)2InSH. The elimination of the second CH4 molecule from these intermediate products, however, has to overcome very high and much different barriers of 66.1 and 53.2 kcal/mol, respectively. In the case of DMIn with H2O and H2S reactions, formation of both InO and InS is exothermic by 3.1 and 30.8 kcal/mol respectively. On the basis of the predicted heats of formation of R1 and R2 at 0 K and -20.1 and 43.6 kcal/mol, the heats of formation of (CH3)2InOH, (CH3)2InSH, CH3InO, CH3InS, InO, and InS are estimated to be -20.6, 31.8, and 29.0 and 48.4, 35.5, and 58.5 kcal/mol, respectively. The values for InO and InS are in good agreement with available experimental data. A similar study on the reactions of (CH3)2In with H2O and H2S has been carried out; in these reactions CH3InOH and CH3InSH were found to be the key intermediate products.

  19. Electroless Ni-Mo-P diffusion barriers with Pd-activated self-assembled monolayer on SiO2

    International Nuclear Information System (INIS)

    Liu Dianlong; Yang Zhigang; Zhang Chi

    2010-01-01

    Ternary Ni-based amorphous films can serve as a diffusion barrier layer for Cu interconnects in ultralarge-scale integration (ULSI) applications. In this paper, electroless Ni-Mo-P films deposited on SiO 2 layer without sputtered seed layer were prepared by using Pd-activated self-assembled monolayer (SAM). The solutions and operating conditions for pretreatment and deposition were presented, and the formation of Pd-activated SAM was demonstrated by XPS (X-ray photoelectron spectroscopy) analysis and BSE (back-scattered electron) observation. The effects of the concentration of Na 2 MoO 4 added in electrolytes, pH value, and bath temperature on the surface morphology and compositions of Ni-Mo-P films were investigated. The microstructures, diffusion barrier property, electrical resistivity, and adhesion were also examined. Based on the experimental results, the Ni-Mo-P alloys produced by using Pd-activated SAM had an amorphous or amorphous-like structure, and possessed good performance as diffusion barrier layer.

  20. Synthesis of photosensitive nanograined TiO2 thin films by SILAR method

    International Nuclear Information System (INIS)

    Patil, U.M.; Gurav, K.V.; Joo, Oh-Shim; Lokhande, C.D.

    2009-01-01

    Nanocrystalline TiO 2 thin films are deposited by simple successive ionic layer adsorption and reaction (SILAR) method on glass and fluorine-doped tin oxide (FTO)-coated glass substrate from aqueous solution. The as-deposited films are heat treated at 673 K for 2 h in air. The change in structural, morphological and optical properties are studied by means of X-ray diffraction (XRD), selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), transmission electron microscopy (TEM) and UV-vis-NIR spectrophotometer. The results show that the SILAR method allows the formation of anatase, nanocrystalline, and porous TiO 2 thin films. The heat-treated film showed conversion efficiency of 0.047% in photoelectrochemical cell with 1 M NaOH electrolyte.

  1. Crystal structure of vanuralite, Al[(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}](OH) . 8.5H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Plasil, Jakub [Czech Academy of Sciences, Praha (Czech Republic). Inst. of Physics

    2017-07-01

    Vanuralite, Al[(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}](OH) . 8.5H{sub 2}O, is a rare supergene uranyl vanadate that forms during hydration-oxidation weathering of uraninite in oxide zones of U deposits. On the basis of single-crystal X-ray diffraction data it is monoclinic, space group P2{sub 1}/n, with a = 10.4637(10), b = 8.4700(5), c = 20.527(2) Aa, β = 102.821(9) , V=1773.9(3) Aa{sup 3} and Z = 4, D{sub calc.} = 3.561 g cm{sup -3}. The structure of vanuralite (R = 0.058 for 2638 unique observed reflections) contains uranyl vanadate sheets of francevillite topology of the composition [(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}]{sup 2-}. Sheets are stacked perpendicular to c, and an interstitial complex {sup [6]}Al(OH)(H{sub 2}O){sub 4}(H{sub 2}O){sub 4.5}; adjacent structural sheets are linked through an extensive network of hydrogen bonds. Vanuralite is the most complex mineral among uranyl vanadates, with 961 bits/cell. The scarcity of occurrences is probably caused by the less common combination of elements present in the structure, as well as the relatively high complexity of the structure (compared to related minerals), arising namely from the complicated network of H-bonds.

  2. Thermodynamic properties of beryllium hydroxide; Proprietes thermodynamiques de l'hydroxyde de beryllium. Etude du systeme BeO - H{sub 2}O - BE(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Baur, A; Lecocq, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The study of the hydro-thermal decomposition of beryllium hydroxide has made it possible to determine the free energy of formation and the entropy. The results obtained are in good agreement with the theoretical values calculated from the solubility product of this substance. They give furthermore the possibility of acquiring a better understanding of the BeO-H{sub 2}O-Be (OH){sub 2} system between 20 and 1500 C. (authors) [French] L'etude de la decomposition hydrothermale de l'hydroxyde de beryllium a permis de determiner l'energie libre de formation et l'entropie. Les resultats obtenus sont en bon accord avec les valeurs theoriques calculees a partir du produit de solubilite de ce corps. Ils donnent en outre la possibilite d'acceder a une meilleure comprehension du systeme BeO - H{sub 2}O - Be(OH){sub 2}, entre 20 C et 1500 C. (auteurs)

  3. Superconductivity in Na{sub 1-x}CoO{sub 2}.yH{sub 2}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Sandra; Komissinkiy, Philipp; Alff, Lambert [Institute for Materials Science, TU Darmstadt (Germany); Fritsch, Ingo; Habermeier, Hanns-Ulrich [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Lemmens, Peter [Institute for Condensed Matter Physics, TU Braunschweig (Germany)

    2010-07-01

    Sodium cobaltate (Na{sub 1-x}CoO{sub 2}) is a novel material with thermoelectric behavior, charge and spin ordered states dependent on the sodium content in the composition. A superconducting phase was found in water intercalated sodium cobaltate (Na{sub 1-x}CoO{sub 2}.yH{sub 2}O) with x=0.65-0.7 and y=0.9-1.3. The pairing state is still under debate, but there are some indications for a spin-triplet or p-wave superconducting pairing state. First films of Na{sub 1-x}CoO{sub 2}.yH{sub 2}O with a superconducting transition temperature near 5 K have been successfully grown. Here we report on thin films of Na{sub 1-x}CoO{sub 2} grown by pulsed laser deposition technique. The deposition parameters, sodium deintercalation and water intercalation conditions are tuned in order to obtain the superconducting phase. The instability of this phase might be an indication for triplet superconductivity, which is known to be affected strongly by impurities and defects.This observation is in agreement with the fact that so far also no superconducting thin films of the most famous triplet superconductor Sr{sub 2}RuO{sub 4} have been reported.

  4. Characterization of ultra-thin TiO2 films grown on Mo(112)

    International Nuclear Information System (INIS)

    Kumar, D.; Chen, M.S.; Goodman, D.W.

    2006-01-01

    Ultra-thin TiO 2 films were grown on a Mo(112) substrate by stepwise vapor depositing of Ti onto the sample surface followed by oxidation at 850 K. X-ray photoelectron spectroscopy showed that the Ti 2p peak position shifts from lower to higher binding energy with an increase in the Ti coverage from sub- to multilayer. The Ti 2p peak of a TiO 2 film with more than a monolayer coverage can be resolved into two peaks, one at 458.1 eV corresponding to the first layer, where Ti atoms bind to the substrate Mo atoms through Ti-O-Mo linkages, and a second feature at 458.8 eV corresponding to multilayer TiO 2 where the Ti atoms are connected via Ti-O-Ti linkages. Based on these assignments, the single Ti 2p 3/2 peak at 455.75 eV observed for the Mo(112)-(8 x 2)-TiO x monolayer film can be assigned to Ti 3+ , consistent with our previous results obtained with high-resolution electron energy loss spectroscopy

  5. Characteristics of TiO_2/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    International Nuclear Information System (INIS)

    Rahman, Rohanieza Abdul; Zulkefle, Muhammad Al Hadi; Abdullah, Wan Fazlida Hanim; Rusop, M.; Herman, Sukreen Hana

    2016-01-01

    In this study, titanium dioxide (TiO_2) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO_2/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO_2/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.

  6. In situ Observation of Direct Electron Transfer Reaction of Cytochrome c Immobilized on ITO Electrode Modified with 11-{2-[2-(2-Methoxyethoxy)ethoxy]ethoxy}undecylphosphonic Acid Self-assembled Monolayer Film by Electrochemical Slab Optical Waveguide Spectroscopy.

    Science.gov (United States)

    Matsuda, Naoki; Okabe, Hirotaka; Omura, Ayako; Nakano, Miki; Miyake, Koji

    2017-01-01

    To immobilize cytochrome c (cyt.c) on an ITO electrode while keeping its direct electron transfer (DET) functionality, the ITO electrode surface was modified with 11-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}undecylphosphonic acid (CH 3 O (CH 2 CH 2 O) 3 C 11 H 22 PO(OH) 2 , M-EG 3 -UPA) self-assembled monolayer (SAM) film. After a 100-times washing process to exchange a phosphate buffer saline solution surrounding cyt.c and ITO electrode to a fresh one, an in situ observation of visible absorption spectral change with slab optical waveguide (SOWG) spectroscopy showed that 87.7% of the cyt.c adsorbed on the M-EG 3 -UPA modified ITO electrode remained on the ITO electrode. The SOWG absorption spectra corresponding to oxidized and reduced cyt.c were observed with setting the ITO electrode potential at 0.3 and -0.3 V vs. Ag/AgCl, respectively, while probing the DET reaction between cyt.c and ITO electrode occurred. The amount of cyt.c was evaluated to be about 19.4% of a monolayer coverage based on the coulomb amount in oxidation and reduction peaks on cyclic voltammetry (CV) data. The CV peak current maintained to be 83.4% compared with the initial value for a M-EG 3 -UPA modified ITO electrode after 60 min continuous scan with 0.1 V/s between 0.3 and -0.3 V vs. Ag/AgCl.

  7. In Situ Hall Effect Monitoring of Vacuum Annealing of In2O3:H Thin Films

    Directory of Open Access Journals (Sweden)

    Hans F. Wardenga

    2015-02-01

    Full Text Available Hydrogen doped In2O3 thin films were prepared by room temperature sputter deposition with the addition of H2O to the sputter gas. By subsequent vacuum annealing, the films obtain high mobility up to 90 cm2/Vs. The films were analyzed in situ by X-ray photoelectron spectroscopy (XPS and ex situ by X-ray diffraction (XRD, optical transmission and Hall effect measurements. Furthermore, we present results from in situ Hall effect measurements during vacuum annealing of In2O3:H films, revealing distinct dependence of carrier concentration and mobility with time at different annealing temperatures. We suggest hydrogen passivation of grain boundaries as the main reason for the high mobility obtained with In2O3:H films.

  8. The Cheshire-cat-like Behavior of 2nu(sub 3) Overtone of Co2 near 2.134 micron: NIR Lab Spectra of Solid CO2 in H2O and CH3OH

    Science.gov (United States)

    Bernstein, Max; Sandford, Scott; Cruikshank, Dale

    2005-01-01

    Infrared (IR) spectra have demonstrated that solid H2O is very common in the outer Solar System, and solid carbon dioxide (CO2) has been detected on icy satellites, comets, and planetismals throughout the outer Solar System. In such environments, CO2 and H2O must sometimes be mixed at a molecular level, changing their IR absorption features. In fact, the IR spectra of CO2-H2O mixtures are not equivalent to a linear combination of the spectra of the pure materials. Laboratory IR spectra of pure CO2 and H2O have been published but a lack of near-IR spectra of CO2-H2O mixtures has made the interpretation of outer Solar System spectra more difficult. We present near infrared (IR) spectra of CO2 in H2O and in CH3OH compared to that of pure solid CO2 and find significant differences. Peaks not present in either pure H2O or pure CO2 spectra become evident. First, the CO2 (2nu(sub 3)) overtone near 2.134 micron (4685/ cm) that is not seen in pure solid CO2 is prominent in the spectrum of a CO2/H2O = 25 mixture. Second, a 2.74 micron (3650/ cm) dangling OH feature of water (and a potentially related peak at 1.89 micron) appear in the spectra of CO2-H2O ice mixtures, but may not be specific to the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with water. Changes in CO2 peak positions and profiles on warming of a CO2/H2O = 5 mixture are consistent with 'segregation' of the ice into nearly pure separate components. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 ( 2nu(sub 3)) overtone near 2.134 micron (4685/ cm) is not present in pure CO2 but prominent in mixtures it may be a good observational indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. Significant changes in the near IR spectrum of solid CO2 in the presence of H2O and CH3OH means that the abundance of solid CO2 in the

  9. Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application

    International Nuclear Information System (INIS)

    Gurav, K.V.; Patil, U.M.; Shin, S.W.; Agawane, G.L.; Suryawanshi, M.P.; Pawar, S.M.; Patil, P.S.; Lokhande, C.D.; Kim, J.H.

    2013-01-01

    Highlights: •Cu(OH) 2 is presented as the new supercapacitive material. •The novel room temperature method used for the synthesis of Cu(OH) 2 . •The hydrous, nanograined Cu(OH) 2 shows higher specific capacitance of 120 F/g. -- Abstract: Room temperature soft chemical synthesis route is used to grow nanograined copper hydroxide [Cu(OH) 2 ] thin films on glass and stainless steel substrates. The structural, morphological, optical and wettability properties of Cu(OH) 2 thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV–vis spectrophotometer and water contact angle measurement techniques. The results showed that, room temperature chemical synthesis route allows to form the nanograined and hydrophilic Cu(OH) 2 thin films with optical band gap energy of 3.0 eV. The electrochemical properties of Cu(OH) 2 thin films are studied in an aqueous 1 M NaOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with 120 F/g specific capacitance

  10. Hilarionite, Fe{2/3+}(SO4)(AsO4)(OH) · 6H2O, a new supergene mineral from Lavrion, Greece

    Science.gov (United States)

    Pekov, I. V.; Chukanov, N. V.; Yapaskurt, V. O.; Rusakov, V. S.; Belakovsky, D. I.; Turchkova, A. G.; Voudouris, P.; Magganas, A.; Katerinopoulos, A.

    2014-12-01

    A new mineral, hilarionite, ideally Fe{2/3+} (SO4)(AsO4)(OH) · 6H2O, has been found in the Hilarion Mine, Agios Konstantinos, Kamariza, Lavrion district, Attiki Prefecture, Greece. It was formed in the oxidation zone of a sulfide-rich orebody in association with goethite, gypsum, bukovskyite, jarosite, melanterite, chalcanthite, allophane, and azurite. Hilarionite occurs as light green (typically with an olive or grayish tint) to light yellowish green spherulites (up to 1 mm in size) and bunches of prismatic to acicular "individuals" up to 0.5 mm long that are in fact near-parallel or divergent aggregates of very thin, curved fibers up to 0.3 mm long and usually lesser than 2 μm thick. The luster is silky to vitreous. The Mohs' hardness is ca. 2. Hilarionite is ductile, its "individuals" are flexible and inelastic; fracture is uneven or splintery. D(meas) = 2.40(5), D(calc) = 2.486 g/cm3. IR spectrum shows the presence of arsenate and sulfate groups and H2O molecules in significant amounts. The Mössbauer spectrum indicates the presence of Fe3+ at two six-fold coordinated sites and the absence of Fe2+. Hilarionite is optically biaxial (+), α = 1.575(2), γ = 1.64(2), 2 V is large. The chemical composition (electron microprobe, average of 7 point analyses; H2O determined by modified Penfield method) is as follows, wt %: 0.03 MnO, 0.18 CuO, 0.17 ZnO, 33.83 Fe2O3, 0.22 P2O5, 18.92 As2O5, 22.19 SO3, 26.3 H2O, total is 101.82%. The empirical formula calculated on the basis of 15 O is: (Fe{1.90/3+}Cu0.01Zn0.01)Σ1.92[(SO4)1.24(AsO4)0.74(PO4)0.01]Σ1.99(OH)1.01 · 6.03H2O. The X-ray powder diffraction data show close structural relationship of hilarionite and kaňkite, Fe{2/3+}(AsO4)2 · 7H2O. Hilarionite is monoclinic, space group C2/ m, Cm or C2, a = 18.53(4), b = 17.43(3), c = 7.56(1) Å, β = 94.06(15)°, V = 2436(3) Å3, Z = 8. The strongest reflections in the X-ray powder diffraction pattern ( d, Å- I[ hkl]) are: 12.66-100[110], , 5.00-10[22l], , 4

  11. DFT study of uranyl peroxo complexes with H2O, F-, OH-, CO3(2-), and NO3(-).

    Science.gov (United States)

    Odoh, Samuel O; Schreckenbach, Georg

    2013-05-06

    The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.

  12. Deposition of ZnSO4 · 3Zn(OH2 · 4H2O films by SILAR method and their study by XRD, SEM and µ-Raman Depósito de películas de ZnSO4 • 3Zn(OH2 • 4H2O por el método SILAR y su estudio por DRX, SEM Y μ-RAMAN

    Directory of Open Access Journals (Sweden)

    F N Jiménez García

    2012-06-01

    Full Text Available ZnSO4 · 3Zn(OH2 · 4H2O(Zinc Sulfate Hidroxide Hidrate films were obtained on glass substrates by SILAR method. It was employed a precursorsolution of ZnSO4 and MnSO4 and water near boiling point complexed with 1 ml of NH4OH as a second solution. Films were treated on air at 300oC by 1 hour. Both films ZnSO4·3Zn(OH2·4H2O as ZnO are important protective against zinc corrosion because they are passive films that give a longer duration to material, it is therefore relevant to study their response to temperature changes. For those reasons films were analyzed before and after thermal treatment to study the structural and morphological changes by X ray diffraction (XRD, Scanning electron microscopy (SEM and Raman Microscopy techniques. It was found before thermal treatment by XRD thepresence of ZnSO4 · 3Zn(OH2 · 4H2O triclinic phase and after such treatment the ZnO hexagonal phase was evidenced. The morphology identified by SEM before thermal treatment was sheets formed by platelet like structure of micrometric size which changes after thermal treatment to a combination ofthose sheets with flowers like structure characteristic of ZnO hexagonal. By µ-Raman the hexagonal ZnO phase before thermal treatment as the triclinicZnSO4 · 3Zn(OH2 · 4H2O phase after thermal treatment were confirmed.One objective of this study was to obtain this protective corrosion material in a controlled manner by techiniques of low cost and high simplicity as Silarmethod. Which, even under temperture increases continue being protective corrosion although suffers phase changes because new phases have protectivecorrosive characteristics too.Se obtuvieron películas de ZnSO4 · 3Zn(OH2 · 4H2O (Zinc Sulfate Hidroxide Hidrate sobre sustratos de vidrio mediante procedimiento SILAR. Se empleó una solución precursora de ZnSO4 y MnSO4 y una segunda solución de agua a ebullición acomplejada con 1 ml de NH4OH. Se realizó tratamiento térmico en aire a 300oC por

  13. Monolayer behaviour of chiral compounds at the air-water interface: 4-hexadecyloxy-butane-1,2-diol

    DEFF Research Database (Denmark)

    Rietz, R.; Rettig, W.; Brezesinski, G.

    1996-01-01

    Monolayers of the pure S-enantiomer (x(S) = 1) and of two mixtures x(S) = 0.75 and x(S) = 0.5 (racemate) of 4-hexadecyloxy-butane-1,2-diol (C16H33-O-CH2-CH2-CHOH-CH2OH) (HOBD) have been studied at the air-water interface by thermodynamic measurements, fluorescence microscopy and X-ray diffraction...

  14. Mid-infrared signatures of hydroxyl containing water clusters: Infrared laser Stark spectroscopy of OH–H{sub 2}O and OH(D{sub 2}O){sub n} (n = 1-3)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Federico J. [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba (Argentina); Brice, Joseph T.; Leavitt, Christopher M.; Liang, Tao; Douberly, Gary E., E-mail: douberly@uga.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); Raston, Paul L. [Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807 (United States); Pino, Gustavo A. [INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba (Argentina)

    2015-10-28

    Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing a 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.

  15. CdO Doped Indium Oxide Thick Film as a Low Temperature H2S Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. N. CHAVAN

    2011-06-01

    Full Text Available The thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performance of thick film was tested for various gases. It showed maximum gas response to ethanol vapor at 350 oC for 80 ppm. To improve the gas response and selectivity of the film towards a particular gas, In2O3 thick films were modified by dipping them in an aqueous solution of 0.1 M CdCl2 for different intervals of time. The surface modified (10 min In2O3 thick film showed maximum response to H2S gas (10 ppm than pure In2O3 thick film at 150 oC. Cadmium oxide on the surface of the film shifts the gas response from ethanol vapor to H2S gas. A systematic study of sensing performance of the thick films indicates the key role played by cadmium oxide on the surface of thick films. The selectivity, gas response and recovery time of the thick films were measured and presented.

  16. Raman spectroscopic study of the minerals apophyllite-(KF) KCa4Si8O20F·8H2O and apophyllite-(KOH) KCa4Si8O20(F,OH)·8H2O

    Science.gov (United States)

    Frost, Ray L.; Xi, Yunfei

    2012-11-01

    Raman spectroscopy complimented with infrared spectroscopy has been used to study the variation in molecular structure of two minerals of the apophyllite mineral group, namely apophyllite-(KF) KCa4Si8O20F·8H2O and apophyllite-(KOH) KCa4Si8O20(F,OH)·8H2O. apophyllite-(KF) and apophyllite-(KOH) are different minerals only because of the difference in the percentage of fluorine to hydroxyl ions. The Raman spectra are dominated by a very intense sharp peak at 1059 cm-1. A band at around 846 cm-1 is assigned to the water librational mode. It is proposed that the difference between apophyllite-(KF) and apophyllite-(KOH) is the observation of two Raman bands in the OH stretching region at around 3563 and 3625 cm-1. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate surfaces.

  17. Test and implementation of position sensors on load and unload [18O]H2O control valve of the target used in 18F - production by proton irradiation

    International Nuclear Information System (INIS)

    Costa, Osvaldo L. da; Sciani, Valdir

    2009-01-01

    The radionuclide 18 F used to produce the radiopharmaceutical [ 18 F]FDG has 109.7 min of half-life, becoming your productive chain so peculiar, because since the beginning of [ 18 O]H 2 O irradiation until the PET-CT exam there is a period about six hours, and any procedure fail in the productive chain will result in a delay to the PET CT exam. The absence of the position signs from [ 18 O]H 2 O load and unload valve of the target may result in 18 F production loss and even area contamination around the target. In this paper, three types of position sensors, into cyclotron radionuclides production environment in Cyclotron Accelerator Center from IPEN-CNEN/SP were tested. The tests were an indicative to discover the fitter sensor to the [ 18 O]H 2 O load and unload valve from target used in [ 18 F]fluoride production. After finding the fitter sensor, it was implemented in 18 F- target, supplying the correct position from [ 18 O]H 2 O load and unload valve to programmable logic controller, that had the software modified, respecting in this way the valve position. By this way, it was possible to reduce the incidence of fails, increasing the reliability in [ 18 F]FDG productive chain. (author)

  18. Calculating Equilibrium Constants in the SnCl2-H2O-NaOH System According to Potentiometric Titration Data

    Science.gov (United States)

    Maskaeva, L. N.; Fedorova, E. A.; Yusupov, R. A.; Markov, V. F.

    2018-05-01

    The potentiometric titration of tin chloride SnCl2 is performed in the concentration range of 0.00009-1.1 mol/L with a solution of sodium hydroxide NaOH. According to potentiometric titration data based on modeling equilibria in the SnCl2-H2O-NaOH system, basic equations are generated for the main processes, and instability constants are calculated for the resulting hydroxo complexes and equilibrium constants of low-soluble tin(II) compounds. The data will be of interest for specialists in the field of theory of solutions.

  19. Monolayer Superconductivity in WS2

    NARCIS (Netherlands)

    Zheliuk, Oleksandr; Lu, Jianming; Yang, Jie; Ye, Jianting

    Superconductivity in monolayer tungsten disulfide (2H-WS2) is achieved by strong electrostatic electron doping of an electric double-layer transistor (EDLT). Single crystals of WS2 are grown by a scalable method - chemical vapor deposition (CVD) on standard Si/SiO2 substrate. The monolayers are

  20. Electrochemical deposition of Mg(OH2/GO composite films for corrosion protection of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Fengxia Wu

    2015-09-01

    Full Text Available Mg(OH2/graphene oxide (GO composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential. The characteristics of the Mg(OH2/GO composite film were investigated by scanning electron microscope (SEM, energy-dispersive X-ray spectrometry (EDS, X-ray diffractometer (XRD and Raman spectroscopy. It was shown that the flaky GO randomly distributed in the composite film. Compared with the Mg(OH2 film, the Mg(OH2/GO composite film exhibited more uniform and compact structure. Potentiodynamic polarization tests revealed that the Mg(OH2/GO composite film could significantly improve the corrosion resistance of Mg(OH2 film with an obvious positive shift of corrosion potential by 0.19 V and a dramatic reduction of corrosion current density by more than one order of magnitude.

  1. DC sputter deposition of amorphous indium-gallium-zinc-oxide (a-IGZO) films with H2O introduction

    International Nuclear Information System (INIS)

    Aoi, Takafumi; Oka, Nobuto; Sato, Yasushi; Hayashi, Ryo; Kumomi, Hideya; Shigesato, Yuzo

    2010-01-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) films were deposited by dc magnetron sputtering with H 2 O introduction and how the H 2 O partial pressure (P H 2 O ) during the deposition affects the electrical properties of the films was investigated in detail. Resistivity of the a-IGZO films increased dramatically to over 2 x 10 5 Ωcm with increasing P H 2 O to 2.7 x 10 -2 Pa while the hydrogen concentration in the films increased to 2.0 x 10 21 cm -3 . TFTs using a-IGZO channels deposited under P H 2 O at 1.6-8.6 x 10 -2 Pa exhibited a field-effect mobility of 1.4-3.0 cm 2 /Vs, subthreshold swing of 1.0-1.6 V/decade and on-off current ratio of 3.9 x 10 7 -1.0 x 10 8 .

  2. Characteristics of TiO{sub 2}/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Rohanieza Abdul, E-mail: rohanieza.abdrahman@gmail.com; Zulkefle, Muhammad Al Hadi, E-mail: alhadizulkefle@gmail.com [NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Abdullah, Wan Fazlida Hanim, E-mail: wanfaz@salam.uitm.edu.my [Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Shah Alam, 40450 Shah Alam, Selangor (Malaysia); Rusop, M., E-mail: rusop@salam.uitm.com [NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); NANO-Science Technology Centre (NST), Institute of Science (IOS), Faculty of Applied Science, Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Herman, Sukreen Hana, E-mail: hana1617@salam.uitm.edu.my [NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); CoRe of Frontier Materials & Industry Applications, Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    In this study, titanium dioxide (TiO{sub 2}) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO{sub 2}/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO{sub 2}/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.

  3. Electrochemical deposition of Mg(OH)2/GO composite films for corrosion protection of magnesium alloys

    OpenAIRE

    Fengxia Wu; Jun Liang; Weixue Li

    2015-01-01

    Mg(OH)2/graphene oxide (GO) composite film was electrochemical deposited on AZ91D magnesium alloys at constant potential. The characteristics of the Mg(OH)2/GO composite film were investigated by scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffractometer (XRD) and Raman spectroscopy. It was shown that the flaky GO randomly distributed in the composite film. Compared with the Mg(OH)2 film, the Mg(OH)2/GO composite film exhibited more uniform and compac...

  4. Ethanol oxidation reactions catalyzed by water molecules: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2)

    Science.gov (United States)

    Takahashi, H.; Hisaoka, S.; Nitta, T.

    2002-09-01

    Ab initio density functional theory calculations have been performed to investigate the catalytic role of water molecules in the oxidation reaction of ethanol: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2) . The results show that the potential energy barrier for the reaction is 88.0 kcal/mol in case of n=0, while it is reduced by ˜34 kcal/mol when two water molecules are involved ( n=2) in the reaction. As a result, the rate constant increases to 3.31×10 -4 s-1, which shows a significant catalytic role of water molecules in the ethanol oxidation reactions.

  5. Spin Speed and Duration Dependence of TiO2 Thin Films pH Sensing Behavior

    Directory of Open Access Journals (Sweden)

    Muhammad AlHadi Zulkefle

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 thin films were applied as the sensing membrane of an extended-gate field-effect transistor (EGFET pH sensor. TiO2 thin films were deposited by spin coating method and the influences of the spin speed and spin duration on the pH sensing behavior of TiO2 thin films were investigated. The spin coated TiO2 thin films were connected to commercial metal-oxide-semiconductor field-effect transistor (MOSFET to form the extended gates and the MOSFET was integrated in a readout interfacing circuit to complete the EGFET pH sensor system. For the spin speed parameter investigation, the highest sensitivity was obtained for the sample spun at 3000 rpm at a fixed spinning time of 60 s, which was 60.3 mV/pH. The sensitivity was further improved to achieve 68 mV/pH with good linearity of 0.9943 when the spin time was 75 s at the speed of 3000 rpm.

  6. A New Open-framework Iron Borophosphate from Ionic Liquids: KFe[BP2O8(OH

    Directory of Open Access Journals (Sweden)

    Guangmei Wang

    2011-04-01

    Full Text Available A new open-framework iron borophosphate, KFe[BP2O8(OH], has been obtained by ionothermal synthesis from KH2PO4, FeCl3∙4H2O, H3BO3 and [C4mpyr]Br (1-butyl-1-methylpyrrolidinium bromide. Single-crystal X-ray diffraction analysis shows that KFe[BP2O8(OH] (monoclinic, P21/c, a = 9.372(2 Å , b = 8.146(2Å , c = 9.587(2 Å, β = 101.18(3°, V = 718.0(2Å3 and Z = 4 has a three-dimensional (3-D framework structure composed by {Fe(IIIO5(OH} octahedra as well as {BO3(OH} and {PO4} tetrahedra. As anionic structural sub-unit, KFe[BP2O8(OH], contains an infinite open-branched {[BP2O8(OH]4-} chain which is formed by alternating {BO3(OH} and {PO4} tetrahedra. {Fe(IIIO5(OH} octahedra share common O corners with five phosphate tetrahedra and the OH corner links to the hydrogen borate group to give a 3D framework. The negative charges of the inorganic framework are balanced by K+ ions.

  7. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2H2O and C2H4—H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.

    2017-01-01

    an intermolecular CH⋯O hydrogen-bonded configuration of C2v symmetry with the H2O subunit acting as the hydrogen bond acceptor. The observation and assignment of two large-amplitude donor OH librational modes of the C2H4—H2O complex at 255.0 and 187.5 cm−1, respectively, confirms an intermolecular OH⋯π hydrogen...

  8. Oxidative damage to fibronectin. 2. The effect of H2O2 and the hydroxyl radical

    International Nuclear Information System (INIS)

    Vissers, M.C.; Winterbourn, C.C.

    1991-01-01

    The effect of H2O2 and the hydroxyl radical (.OH) on fibronectin was investigated. .OH was generated in three ways: (1) by radiolysis with 60Co under N2O, or by the Fenton system using either (2) equimolar Fe(2+)-EDTA and H2O2 or (3) H2O2 and catalytic amounts of Fe(2+)-EDTA recycled with ascorbate. Each system had a different effect. H2O2 alone caused no changes, even at an 800-fold molar excess. Radiolytic .OH caused a rapid loss of tryptophan fluorescence, an increase in bityrosine fluorescence, and extensive crosslinking. The Fenton system using Fe-EDTA, H2O2, and ascorbate caused a loss in tryptophan fluorescence, a smaller increase in bityrosine than was seen with radiolytic .OH, and a threefold increase in carbonyl groups. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis fragmentation of fibronectin was seen. In contrast, when .OH was generated with equimolar Fe-EDTA and H2O2, the only change was a small increase in bityrosine fluorescence at the highest dose of oxidant. None of the systems used affected cysteine. All the changes except the loss of tryptophan by radiolytic .OH were completely inhibited with mannitol. The differences seen with radiolytic .OH and the Fe-EDTA, H2O2, ascorbate system were not solely due to O2 in the latter system since similar results were obtained under N2. The differences between radiolytic .OH and the Fenton systems could be partly due to the components of the latter systems reacting with .OH and thus competing with fibronectin. The authors results demonstrate that the extent and type of fibronectin damage by .OH is dependent on the mode of radical generation

  9. Self-assembly of red-blood-cell-like (NH4)[Fe2(OH)(PO4)22H2O architectures from 2D nanoplates by sonochemical method.

    Science.gov (United States)

    Wu, Kaipeng; Liu, Diwei; Tang, Yun

    2018-01-01

    Red-blood-cell-like (RBC-like) (NH 4 )[Fe 2 (OH)(PO 4 ) 22H 2 O architectures assembled from 2D nanoplates are successfully synthesized via a facile sonochemical method. XRD measurement indicates that the as-prepared sample is well crystallized with a monoclinic structure. The morphology of the sample is characterized by SEM analysis, which shows that the (NH 4 )[Fe 2 (OH)(PO 4 ) 22H 2 O particles exhibit a unique biconcave red blood cell morphology with an average diameter of 4um and thickness of 1.5um. The detailed time-dependent experiments are conducted to investigate the morphological evolution process. It reveals that the ultrasonic time is crucial to the morphology of the products, and the RBC-like (NH 4 )[Fe 2 (OH)(PO 4 ) 22H 2 O proceeds in steps of crystallization, formation of thin plates, and the subsequent self-assembly. Compared to the available methods that are typically time-consuming and complicated, this smart sonochemical strategy proposed herein is efficient and simple. Moreover, these obtained special RBC-like architectures will be more fascinating for application in many areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A thermodynamic and kinetic study of the de- and rehydration of Ca(OH){sub 2} at high H{sub 2}O partial pressures for thermo-chemical heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Schaube, F.; Koch, L. [German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany); Woerner, A., E-mail: antje.woerner@dlr.de [German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany); Mueller-Steinhagen, H. [German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany)

    2012-06-20

    Highlights: Black-Right-Pointing-Pointer Investigation of the thermodynamic equilibrium and reaction enthalpy of 'Ca(OH){sub 2} {r_reversible} CaO + H{sub 2}O'. Black-Right-Pointing-Pointer Investigation of the reaction kinetics of the dehydration of Ca(OH){sub 2} at partial pressures up to 956 mbar. Black-Right-Pointing-Pointer Investigation of the reaction kinetics of the rehydration of Ca(OH){sub 2} at partial pressures up to 956 mbar. - Abstract: Heat storage technologies are used to improve energy efficiency of power plants and recovery of process heat. Storing thermal energy by reversible thermo-chemical reactions offers a promising option for high storage capacities especially at high temperatures. Due to its low material cost, the use of the reversible reaction Ca(OH){sub 2} Rightwards-Harpoon-Over-Leftwards-Harpoon CaO + H{sub 2}O has been proposed. This paper reports on the physical properties such as heat capacity, thermodynamic equilibrium, reaction enthalpy and kinetics. To achieve high reaction temperatures, high H{sub 2}O partial pressures are required. Therefore the cycling stability is confirmed for H{sub 2}O partial pressures up to 95.6 kPa and the dehydration and hydration kinetics are studied. Quantitative data are collected and expressions are derived which are in good agreement with the presented measurements. At 1 bar H{sub 2}O partial pressure the expected equilibrium temperature is 505 Degree-Sign C and the reaction enthalpy is 104.4 kJ/mol.

  11. Atmospheric chemistry of CF3O radicals: Reaction with H2O

    DEFF Research Database (Denmark)

    Wallington, T.J.; Hurley, M.D.; Schneider, W.F.

    1993-01-01

    Evidence is presented that CF3O radicals react with H2O in the gas phase at 296 K to give CF3OH and OH radicals. This reaction is calculated to be exothermic by 1.7 kcal mol-I implying a surprisingly strong CF3O-H bond energy of 120 +/- 3 kcal mol-1. Results from a relative rate experimental study...... suggest that the rate constant for the reaction of CF3O radicals with H2O lies in the range (0.2-4.0) X 10(-17) cm3 molecule-1 s-1. Implications for the atmospheric chemistry of CF3O radicals are discussed....

  12. Room temperature chemical synthesis of Cu(OH){sub 2} thin films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Gurav, K.V. [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of); Patil, U.M. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 007 (M.S.) (India); Shin, S.W.; Agawane, G.L.; Suryawanshi, M.P.; Pawar, S.M.; Patil, P.S. [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of); Lokhande, C.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 007 (M.S.) (India); Kim, J.H., E-mail: jinhyeok@chonnam.ac.kr [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of)

    2013-10-05

    Highlights: •Cu(OH){sub 2} is presented as the new supercapacitive material. •The novel room temperature method used for the synthesis of Cu(OH){sub 2}. •The hydrous, nanograined Cu(OH){sub 2} shows higher specific capacitance of 120 F/g. -- Abstract: Room temperature soft chemical synthesis route is used to grow nanograined copper hydroxide [Cu(OH){sub 2}] thin films on glass and stainless steel substrates. The structural, morphological, optical and wettability properties of Cu(OH){sub 2} thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV–vis spectrophotometer and water contact angle measurement techniques. The results showed that, room temperature chemical synthesis route allows to form the nanograined and hydrophilic Cu(OH){sub 2} thin films with optical band gap energy of 3.0 eV. The electrochemical properties of Cu(OH){sub 2} thin films are studied in an aqueous 1 M NaOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with 120 F/g specific capacitance.

  13. Structural damage to lymphocyte nuclei by H2O2 or gamma irradiation is dependent on the mechanism of OH anion radical production

    International Nuclear Information System (INIS)

    Allan, I.M.; Vaughan, A.T.M.; Milner, A.E.; Lunec, J.; Bacon, P.A.

    1988-01-01

    Normal human lymphocytes were exposed to OH anion radicals produced indirectly by exposure to H 2 O 2 or directly by gamma irradiation. Using a flow cytometry technique to measure changes in nucleoid size, it was found that generation of OH anion in each system produced a characteristic relaxation in nuclear supercoiling. Exposure of cells to H 2 O 2 produced a metal-dependent step-wise relaxation in extracted nucleoids, while gamma irradiation induced a gradual dose-dependent increase in nucleoid size. The site-specific metal-dependent changes produced in lymphocytes incubated in H 2 O 2 should also occur in gamma irradiated cells, but the characteristic effects on nuclear supercoiling would not be detected within the background of random DNA damage. The importance of metals in maintaining the supercoiled loop configuration of DNA within the protein matrix suggests that free radical damage at metal locations may be particularly toxic for the cell. (author)

  14. Observation of dopant-profile independent electron transport in sub-monolayer TiO{sub x} stacked ZnO thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.; Kukreja, L. M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Das, Gangadhar [Indus Synchrotrons Utilisation Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2016-01-18

    Dopant-profile independent electron transport has been observed through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ vertical stacking of multiple sub-monolayers of TiO{sub x} in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurement revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-profiles. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiO{sub x} structures in the emerging field of transparent oxide electronics.

  15. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    International Nuclear Information System (INIS)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-01-01

    Two one-dimensional bismuth-coordination materials, Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 ) x F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi 2 O 3 , 2,6-NC 5 H 3 (CO 2 H) 2 , HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi 3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C led to α-Bi 2 O 3 that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F single crystals at 800 °C results in the α-Bi 2 O 3 rods that maintain the original morphology of the crystals. Highlights: ► Synthesis of one-dimensional chain Bi-organic frameworks. ► Reversible hydration reactions of Bi[NC 5 H 3 (CO 2 ) 2 ](OH 2 )F. ► Topotactic decomposition maintaining the same morphology of the original crystals.

  16. Bulk modulus of basic sodalite, Na8[AlSiO4]6(OH)2·2H2O, a possible zeolitic precursor in coal-fly-ash-based geopolymers

    KAUST Repository

    Oh, Jae Eun; Moon, Juhyuk; Mancio, Mauricio; Clark, Simon M.; Monteiro, Paulo J.M.

    2011-01-01

    Synthetic basic sodalite, Na8[AlSiO4] 6(OH)22H2O, cubic, P43n, (also known as hydroxysodalite hydrate) was prepared by the alkaline activation of amorphous aluminosilicate glass, obtained from the phase separation of Class F fly ash. The sample

  17. Surface passivation by Al2O3 and a-SiNx: H films deposited on wet-chemically conditioned Si surfaces

    NARCIS (Netherlands)

    Bordihn, S.; Mertens, V.; Engelhart, P.; Kersten, K.; Mandoc, M.M.; Müller, J.W.; Kessels, W.M.M.

    2012-01-01

    The surface passivation of p- and n-type silicon by different chemically grown SiO2 films (prepared by HNO3, H2SO4/H2O2 and HCl/H2O2 treatments) was investigated after PECVD of a-SiNx:H and ALD of Al2O3 capping films. The wet chemically grown SiO2 films were compared to thermally grown SiO2 and the

  18. Isotope analysis of diamond-surface passivation effect of high-temperature H{sub 2}O-grown atomic layer deposition-Al{sub 2}O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp [Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi, E-mail: kawarada@waseda.jp [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2015-06-07

    The Al{sub 2}O{sub 3} film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H{sub 2}O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D{sub 2}O instead of H{sub 2}O in the ALD and found that the Al{sub 2}O{sub 3} film formed at a conventional temperature (100 °C) incorporates 50 times more CH{sub 3} groups than the high-temperature film. This CH{sub 3} is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H{sub 2}O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H{sub 2}O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D{sub 2}O-oxidant ALD but found that the mass density and dielectric constant of D{sub 2}O-grown Al{sub 2}O{sub 3} films are smaller than those of H{sub 2}O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al{sub 2}O{sub 3} films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of

  19. Synchrotron radiation stimulated etching of SiO sub 2 thin films with a Co contact mask for the area-selective deposition of self-assembled monolayer

    CERN Document Server

    Wang, C

    2003-01-01

    The area-selective deposition of a self-assembled monolayer (SAM) was demonstrated on a pattern structure fabricated by synchrotron radiation (SR) stimulated etching of a SiO sub 2 thin film on the Si substrate. The etching was conducted by irradiating the SiO sub 2 thin film with SR through a Co contact mask and using a mixture of SF sub 6 + O sub 2 as the reaction gas. The SR etching stopped completely at the SiO sub 2 /Si interface. After the SR etching, the Si surface and the SiO sub 2 surface beneath the Co mask were evaluated by an atomic force microscope (AFM). A dodecene SAM was deposited on the Si surface, and trichlorosilane-derived SAMs (octadecyltrichlorosilane, and octenyltrichlorosilane) were deposited on the SiO sub 2 surface beneath the Co mask. The structure of the deposited SAMs showed a densely packed and well-ordered molecular architecture, which was characterized by infrared spectroscopy, ellipsometry, and water contact angle (WCA) measurements. (author)

  20. Physicochemical properties of the CsNO2-CsOH-H2O ternary system at 25 deg C

    International Nuclear Information System (INIS)

    Protsenko, P.I.; Medvedev, B.S.; Popova, T.B.

    1977-01-01

    Saturated solutions of the CsNO 2 - CsOH- H 2 O system have been studied at 25 deg C by the methods of solubility, viscosity, electric conductivity, refractometry and density. It is stated that no solid phase of a new composition is formed in the system. While adding hydroxide to the saturated solution of cesium nitride, a considerable salting-out of the latter takes place

  1. Preparation of ZrO2 thin films by CVD using H2-CO2 as oxidizer. H2-CO2 wo sanka gas ni mochiita CVD ho ni yoru ZrO2 maku no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, M; Kobayashi, C [Toto Ltd., Kitakyushu (Japan); Yamane, H; Hirai, T [Tohoku University, Sendai (Japan). Institute for Materials Research

    1993-02-01

    This report describes an outline on the results of investigation on the formation of ZrO2 films from [beta]-diketone chelate of Zr using H2/CO2 as oxidizing gas by application of the CVD method at a temperature as high as 1000[degree]C. The deposition rate is 4[mu]m/h at 650[degree]C, increases with rise of temperature and reaches 10[mu]m/h at 900-1000[degree]C. No lowering of the rate at high temperature seems to be caused by temperature dependence of water (increase of water concentration above 850[degree]C). The physical form of ZrO2 is black and amorphous at 650[degree]C; grey and tetragonal at 850[degree]C; white, monoclinic and tetragonal at 950-1000[degree]C. All of these films showed a fine-grain, polycrystalline structure at any temperature and became white by heat-treatment at 1100[degree]C for 100h. This treatment gave no change to amorphous films but transformed tetragonal films and the mixture films of tetragonal and monoclinic crystals into white monoclinic Zr films. This may be because oxygen defects were present in black and grey films of low deposition temperature due to insufficient oxydation of raw material by H2O. Instability of tetragonal crystals seems to be attributed to participation of oxygen defects. In conclusion, possibility of high-temperature film formation was confirmed. 17 refs., 4 figs.

  2. Molecular structures and thermodynamic properties of 12 gaseous cesium-containing species of nuclear safety interest: Cs 2, CsH, CsO, Cs 2O, CsX, and Cs 2X 2 (X = OH, Cl, Br, and I)

    Science.gov (United States)

    Badawi, Michael; Xerri, Bertrand; Canneaux, Sébastien; Cantrel, Laurent; Louis, Florent

    2012-01-01

    Ab initio electronic structure calculations at the coupled cluster level with a correction for the triples extrapolated to the complete basis set limit have been made for the estimation of the thermochemical properties of Cs 2, CsH, CsO, Cs 2O, CsX, and Cs 2X 2 (X = OH, Cl, Br, and I). The standard enthalpies of formation and standard molar entropies at 298 K, and the temperature dependence of the heat capacities at constant pressure were evaluated. The calculated thermochemical properties are in good agreement with their literature counterparts. For Cs 2, CsH, CsOH, Cs 2(OH) 2, CsCl, Cs 2Cl 2, CsBr, CsI, and Cs 2I 2, the calculated ΔfH298K∘ values are within chemical accuracy of the most recent experimental values. Based on the excellent agreement observed between our calculated ΔfH298K∘ values and their literature counterparts, the standard enthalpies of formation at 298 K are estimated to be the following: ΔfH298K∘ (CsO) = 17.0 kJ mol -1 and ΔfH298K∘ (Cs 2Br 2) = -575.4 kJ mol -1.

  3. Orientation of pentacene molecules on SiO2: From a monolayer to the bulk

    International Nuclear Information System (INIS)

    Zheng, Fan; Park, Byoung-Nam; Seo, Soonjoo; Evans, Paul G.; Himpsel, F. J.

    2007-01-01

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy is used to study the orientation of pentacene molecules within thin films on SiO 2 for thicknesses ranging from monolayers to the bulk (150 nm). The spectra exhibit a strong polarization dependence of the π * orbitals for all films, which indicates that the pentacene molecules are highly oriented. At all film thicknesses the orientation varies with the rate at which pentacene molecules are deposited, with faster rates favoring a thin film phase with different tilt angles and slower rates leading to a more bulklike orientation. Our NEXAFS results extend previous structural observations to the monolayer regime and to lower deposition rates. The NEXAFS results match crystallographic data if a finite distribution of the molecular orientations is included. Damage to the molecules by hot electrons from soft x-ray irradiation eliminates the splitting between nonequivalent π * orbitals, indicating a breakup of the pentacene molecule

  4. Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures

    Science.gov (United States)

    Mookherjee, Mainak; Tsuchiya, Jun; Hariharan, Anant

    2016-02-01

    We examined the equation of state and high-pressure elasticity of the hydrous aluminosilicate mineral topaz-OH (Al2SiO4(OH)2) using first principles simulation. Topaz-OH is a hydrous phase in the Al2O3-SiO2-H2O (ASH) ternary system, which is relevant for the mineral phase relations in the hydrated sedimentary layer of subducting slabs. Based on recent neutron diffraction experiments, it is known that the protons in the topaz-OH exhibit positional disorder with half occupancy over two distinct crystallographic sites. In order to adequately depict the proton environment in the topaz-OH, we examined five crystal structure models with distinct configuration for the protons in topaz-OH. Upon full geometry optimization we find two distinct space group, an orthorhombic Pbnm and a monoclinic P21/c for topaz-OH. The topaz-OH with the monoclinic P21/c space group has a lower energy compared to the orthorhombic Pbmn space group symmetry. The pressure-volume results for the monoclinic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0mon = 348.63 (±0.04) Å3, K0mon = 164.7 (±0.04) GPa, and K0mon = 4.24 (±0.05). The pressure-volume results for the orthorhombic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0orth = 352.47 (±0.04) Å3, K0orth = 166.4 (±0.06) GPa, and K0orth = 4.03 (±0.04). While the bulk moduli are very similar for both the monoclinic and orthorhombic topaz-OH, the shear elastic constants and the shear moduli are very sensitive to the position of the proton, orientation of the O-H dipole, and the space group symmetry. The S-wave anisotropy for the orthorhombic and monoclinic topaz-OH are also quite distinct. In the hydrated sedimentary layer of subducting slabs, transformation of a mineral assemblage consisting of coesite (SiO2) and diaspore (AlOOH) to topaz-OH (Al2SiO4(OH)2) is likely to be accompanied by an increase in density, compressional velocity, and shear wave velocity. However

  5. SnO2 thin-films prepared by a spray-gel pyrolysis: Influence of sol properties on film morphologies

    International Nuclear Information System (INIS)

    Luyo, Clemente; Fabregas, Ismael; Reyes, L.; Solis, Jose L.; Rodriguez, Juan; Estrada, Walter; Candal, Roberto J.

    2007-01-01

    Nanostructured tin oxide films were prepared by depositing different sols using the so-called spray-gel pyrolysis process. SnO 2 suspensions (sols) were obtained from tin (IV) tert-amyloxide (Sn(t-OAm) 4 ) or tin (IV) chloride pentahydrate (SnCl 4 .5H 2 O) precursors, and stabilized with ammonia or tetraethylammonium hydroxide (TEA-OH). Xerogels from the different sols were obtained by solvent evaporation under controlled humidity. The Relative Gelling Volumes (RGV) of these sols strongly depended on the type of precursor. Xerogels obtained from inorganic salts gelled faster, while, as determined by thermal gravimetric analysis, occluding a significant amount of volatile compounds. Infrared spectroscopic analysis was performed on raw and annealed xerogels (300, 500 deg. C, 1 h). Annealing removed water and ammonium or alkyl ammonium chloride, increasing the number of Sn-O-Sn bonds. SnO 2 films were prepared by spraying the sols for 60 min onto glass and alumina substrates at 130 deg. C. The films obtained from all the sols were amorphous or displayed a very small grain size, and crystallized after annealing at 400 deg. C or 500 deg. C in air for 2 h. X-ray diffraction analysis showed the presence of the cassiterite structure and line broadening indicated a polycrystalline material with a grain size in the nanometer range. Results obtained from Scanning Electron Microscopy analysis demonstrated a strong dependence of the film morphology on the RGV of the sols. Films obtained from Sn(t-OAm) 4 showed a highly textured morphology based on fiber-shape bridges, whereas the films obtained from SnCl 4 .5H 2 O had a smoother surface formed by 'O-ring' shaped domains. Lastly, the performance of these films as gas sensor devices was tested. The conductance (sensor) response for ethanol as a target analyte was of the same order of magnitude for the three kinds of films. However, the response of the highly textured films was more stable with shorter response times

  6. SIMULTANEOUS OBSERVATIONS OF SiO AND H{sub 2}O MASERS TOWARD KNOWN STELLAR H{sub 2}O MASER SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeheon [Yonsei University Observatory, Seongsan-ro 262, Seodaemun, Seoul 120-749 (Korea, Republic of); Cho, Se-Hyung [Korean VLBI Network Yonsei Radio Astronomy Observatory, Yonsei University, Seongsan-ro 262, Seodaemun, Seoul 120-749 (Korea, Republic of); Kim, Sang Joon, E-mail: jhkim@kasi.re.kr, E-mail: cho@kasi.re.kr, E-mail: sjkim1@khu.ac.kr [Department of Astronomy and Space Science, Kyung Hee University, Seocheon-Dong, Giheung-Gu, Yongin, Gyeonggi-Do 446-701 (Korea, Republic of)

    2013-01-01

    We present the results of simultaneous observations of SiO v = 1, 2, {sup 29}SiO v = 0, J = 1-0, and H{sub 2}O 6{sub 16}-5{sub 23} maser lines toward 152 known stellar H{sub 2}O maser sources using the Yonsei 21 m radio telescope of the Korean VLBI Network from 2009 June to 2011 January. Both SiO and H{sub 2}O masers were detected from 62 sources with a detection rate of 40.8%. The SiO-only maser emission without H{sub 2}O maser detection was detected from 27 sources, while the H{sub 2}O-only maser without SiO maser detection was detected from 22 sources. Therefore, the overall SiO maser emission was detected from 89 sources, resulting in a detection rate of 58.6%. We have identified 70 new detections of the SiO maser emission. For both H{sub 2}O and SiO maser detected sources, the peak and integrated antenna temperatures of SiO masers are stronger than those of H{sub 2}O masers in both Mira variables and OH/IR stars and the relative intensity ratios of H{sub 2}O to SiO masers in OH/IR stars are larger than those in Mira variables. In addition, distributions of 152 observed sources were investigated in the IRAS two-color diagram.

  7. Cation effects on phosphatidic acid monolayers at various pH conditions.

    Science.gov (United States)

    Zhang, Ting; Cathcart, Matthew G; Vidalis, Andrew S; Allen, Heather C

    2016-10-01

    The impact of pH and cations on phase behavior, stability, and surface morphology for dipalmitoylphosphatidic acid (DPPA) monolayers was investigated. At pHCations are found to expand and stabilize the monolayer in the following order of increasing magnitude at pH 5.6: Na + >K + ∼Mg 2+ >Ca 2+ . Additionally, cation complexation is tied to the pH and protonation state of DPPA, which are the primary factors controlling the monolayer surface behavior. The binding affinity of cations to the headgroup and thus deprotonation capability of the cation, ranked in the order of Ca 2+ >Mg 2+ >Na + >K + , is found to be well explained by the law of matching water affinities. Nucleation of surface 3D lipid structures is observed from Ca 2+ , Mg 2+ , and Na + , but not from K + , consistent with the lowest binding affinity of K + . Unraveling cation and pH effects on DPPA monolayers is useful in further understanding the surface properties of complex systems such as organic-coated marine aerosols where organic films are directly influenced by the pH and ionic composition of the underlying aqueous phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Quantitative agreement between [(15)O]H2O PET and model free QUASAR MRI-derived cerebral blood flow and arterial blood volume

    NARCIS (Netherlands)

    Heijtel, D. F. R.; Petersen, E. T.; Mutsaerts, H. J. M. M.; Bakker, E.; Schober, P.; Stevens, M. F.; van Berckel, B. N. M.; Majoie, C. B. L. M.; Booij, J.; van Osch, M. J. P.; van Bavel, E. T.; Boellaard, R.; Lammertsma, A. A.; Nederveen, A. J.

    2016-01-01

    The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week

  9. Electrochemical and optical properties of CeO2-SnO2 and CeO2-SnO2:X (X = Li, C, Si films

    Directory of Open Access Journals (Sweden)

    Berton Marcos A.C.

    2001-01-01

    Full Text Available Thin solid films of CeO2-SnO2 (17 mol% Sn and CeO2-SnO2:X (X = Li, C and Si were prepared by the sol-gel route, using an aqueous-based process. The addition of Li, C and Si to the precursor solution leads to films with different electrochemical performances. The films were deposited by the dip-coating technique on ITO coated glass (Donnelly Glass at a speed of 10 cm/min and submitted to a final thermal treatment at 450 °C during 10 min in air. The electrochemical and optical properties of the films were determined from the cyclic voltammetry and chronoamperometry measurements using 0.1 M LiOH as supporting electrolyte. The ion storage capacity of the films was investigated using in situ spectroelectrochemical method and during the insertion/extraction process the films remained transparent. The powders were characterized by thermal analysis (DSC/TGA and X-ray diffraction.

  10. [Effect of Residual Hydrogen Peroxide on Hydrolysis Acidification of Sludge Pretreated by Microwave -H2O2-Alkaline Process].

    Science.gov (United States)

    Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing

    2015-10-01

    Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and

  11. The O-H Bond Dissociation Energies of Substituted Phenols and Proton Affinities of Substituted Phenoxide Ions: A DFT Study

    Directory of Open Access Journals (Sweden)

    Tadafumi Uchimaru

    2002-04-01

    Full Text Available Abstract: The accurate O-H bond dissociation enthalpies for a series of meta and para substituted phenols (X-C6H4-OH, X=H, F, Cl, CH3, OCH3, OH, NH2, CF3, CN, and NO2 have been calculated by using the (ROB3LYP procedure with 6-311G(d,p and 6-311++G(2df,2p basis sets. The proton affinities of the corresponding phenoxide ions (XC6H4-O- have also been computed at the same level of theory. The effect of change of substituent position on the energetics of substituted phenols has been analyzed. The correlations of Hammett’s substituent constants with the bond dissociation enthalpies of the O-H bonds of phenols and proton affinities of phenoxide ions have been explored.

  12. Investigation on pseudosymmetry, twinning and disorder in crystal structure determinations: Ba(H2O)M2III[PO3(OH)]4 (M=Fe, V) as examples

    International Nuclear Information System (INIS)

    Sun Wei; Huang Yaxi; Pan Yuanming; Mi Jinxiao

    2012-01-01

    Twinning commonly occurs in monoclinic crystals with dimensionally similar a and c axes and results in pseudo-orthorhombic symmetries with overlapping diffractions. For example, twinning in the new synthetic compound Ba(H 2 O)Fe 2 [PO 3 (OH)] 4 , which varies in space group from P2 1 to P2 1 /c with approximately equal a and c axial lengths, gives rise to a pseudosymmetry of C222 1 . Similarly, the related compound Ba(H 2 O)V 2 [PO 3 (OH)] 4 is commonly twinned and varies in space groups as well, arising from ordered to disordered distributions of the barium cations and water molecules in the cavities. Moreover, analyses of these and other twinned structures show that the small average standard uncertainty of bond distances is a sensitive criterion for structure determinations, especially for those involving crystal twinning as well as order–disorder. A proper structure determination leads to small standard uncertainties of the atomic displacement parameters, which further result in the small standard uncertainties of bond distances. - Graphical abstract: Ba(H 2 O)M 2 III [PO 3 (OH)] 4 (M=Fe, V) varies in space group from P2 1 to P2 1 /c, arising from ordered to disordered distributions of Ba 2+ and H 2 O in the cavities. Highlights: ► Twinning commonly occurs in monoclinic crystals with a≈c. ► Overlapping diffractions from twin domains hamper with the determination of real space groups. ► Conventional criteria for evaluating the real space groups are not effective in this case. ► Small standard uncertainty of bond distances is proposed as a sensitive criterion. ► Using this criterion we determined the order–disorder structures of Ba(H 2 O)M 2 III [PO 3 (OH)] 4 (M=Fe, V) from twinned crystals.

  13. Time dependent quantum dynamics study of the O++H2(v=0,j=0)→OH++H ion-molecule reaction and isotopic variants (D2,HD)

    International Nuclear Information System (INIS)

    Martinez, Rodrigo; Sierra, Jose Daniel; Gray, Stephen K.; Gonzalez, Miguel

    2006-01-01

    The time dependent real wave packet method using the helicity decoupling approximation was used to calculate the cross section evolution with collision energy (excitation function) of the O + +H 2 (v=0,j=0)→OH + +H reaction and its isotopic variants with D 2 and HD, using the best available ab initio analytical potential energy surface. The comparison of the calculated excitation functions with exact quantum results and experimental data showed that the present quantum dynamics approach is a very useful tool for the study of the selected and related systems, in a quite wide collision energy interval (approximately 0.0-1.1 eV), involving a much lower computational cost than the quantum exact methods and without a significant loss of accuracy in the cross sections

  14. Phase transformation of the brownmillerite SrCoO{sub 2.5} thin film through alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tambunan, Octolia Togibasa; Lee, Min Young; Kim, Deok Hyeon; Parwanta, Kadek Juliana; Jung, Chang Uk [Hankuk University of Foreign Studies, Yongin (Korea, Republic of)

    2014-06-15

    A phase transformation from insulating brownmillerite SrCoO{sub 2.5} to conducting perovskite SrCoO{sub 3} through electrochemical oxidation has been demonstrated for thin films of SrCoO{sub x} on a SrTiO{sub 3} (001) substrate. The cobalt-oxide film strongly favors the brownmillerite phase of SrCoO{sub 2.5} instead of the perovskite phase of SrCoO{sub 3} on a SrTiO{sub 3} (001) substrate due to its low lattice mismatch. Therefore, the phase transformation has its own retention. The alkaline water electrolysis occurs between the copper cathode and the SrCoO{sub 2.5} film anode. The H{sup +} ions are attracted to the cathode and generate H{sub 2} gas. The OH{sup -} ions are attracted to the film's surface and generate a rich amount of oxygen to fill the oxygen vacancy channel of brownmillerite SrCoO{sub 2.5}. The phase transformation was verified from the change in the out-of-plane lattice constant and the change in the resistivity of the electrolyzed film.

  15. Fabrication of a Co(OH)2/ZnCr LDH "p-n" Heterojunction Photocatalyst with Enhanced Separation of Charge Carriers for Efficient Visible-Light-Driven H2 and O2 Evolution.

    Science.gov (United States)

    Sahoo, Dipti Prava; Nayak, Susanginee; Reddy, K Hemalata; Martha, Satyabadi; Parida, Kulamani

    2018-04-02

    Photocatalytic generation of H 2 and O 2 by water splitting remains a great challenge for clean and sustainable energy. Taking into the consideration promising heterojunction photocatalysts, analogous energy issues have been mitigated to a meaningful extent. Herein, we have architectured a highly efficient bifunctional heterojunction material, i.e., p-type Co(OH) 2 platelets with an n-type ZnCr layered double hydroxide (LDH) by an ultrasonication method. Primarily, the Mott-Schottky measurements confirmed the n- and p-type semiconductive properties of LDH and CH material, respectively, with the construction of a p-n heterojunction. The high resolution transmission electron microscopy results suggest that surface modification of ZnCr LDH by Co(OH) 2 hexagonal platelets could form a fabulous p-n interfacial region that significantly decreases the energy barrier for O 2 and H 2 production by effectively separating and transporting photoinduced charge carriers, leading to enhanced photoreactivity. A deep investigation into the mechanism shows that a 30 wt % Co(OH) 2 -modified ZnCr LDH sample liberates maximum H 2 and O 2 production in 2 h, i.e., 1115 and 560 μmol, with apparent conversion efficiencies of H 2 and O 2 evolution of 13.12% and 6.25%, respectively. Remarkable photocatalytic activity with energetic charge pair transfer capability was illustrated by electrochemical impedance spectroscopy, linear sweep voltammetry, and photoluminescence spectra. The present study clearly suggests that low-cost Co(OH) 2 platelets are the most crucial semiconductors to provide a new p-n heterojunction photocatalyst for photocatalytic H 2 and O 2 production on the platform of ZnCr LDH.

  16. Chemical synthesis of flower-like hybrid Cu(OH)2/CuO electrode: Application of polyvinyl alcohol and triton X-100 to enhance supercapacitor performance.

    Science.gov (United States)

    Shinde, S K; Fulari, V J; Kim, D-Y; Maile, N C; Koli, R R; Dhaygude, H D; Ghodake, G S

    2017-08-01

    In this research article, we report hybrid nanomaterials of copper hydroxide/copper oxide (Cu(OH) 2 /CuO). A thin films were prepared by using a facile and cost-effective successive ionic layer adsorption and reaction (SILAR) method. As-synthesized and hybrid Cu(OH) 2 /CuO with two different surfactants polyvinyl alcohol (PVA) and triton-X 100 (TRX-100) was prepared having distinct morphological, structural, and supercapacitor properties. The surface of the thin film samples were examined by scanning electron microscopy (SEM). A nanoflower-like morphology of the Cu(OH) 2 /CuO nanostructures arranged vertically was evidenced on the stainless steel substrate. The surface was well covered by nanoflake-like morphology and formed a uniform Cu(OH) 2 /CuO nanostructures after treating with surfactants. X-ray diffraction patterns were used to confirm the hybrid phase of Cu(OH) 2 /CuO materials. The electrochemical properties of the pristine Cu(OH) 2 /CuO, PVA:Cu(OH) 2 /CuO, TRX-100:Cu(OH) 2 /CuO films were observed by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy technique. The electrochemical examination reveals that the Cu(OH) 2 /CuO electrode has excellent specific capacitance, 292, 533, and 443Fg -1 with pristine, PVA, and TRX-100, respectively in 1M Na 2 SO 4 electrolyte solution. The cyclic voltammograms (CV) of Cu(OH) 2 /CuO electrode shows positive role of the PVA and TRX-100 to enhance supercapacitor performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Nano Ag-Doped In2O3 Thick Film: A Low-Temperature H2S Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. N. Chavan

    2011-01-01

    Full Text Available Thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performances of thick films were tested for various gases. It showed maximum sensitivity to ethanol vapour at 350°C for 80 ppm concentration. To improve the sensitivity and selectivity of the film towards a particular gas, In2O3 sensors were surface-modified by dipping them in a solution of 2% nanosilver for different intervals of time. Obtained results indicated that spherical nano-Ag grains are highly dispersed on the surface of In2O3sensor. The surface area of the nano-Ag/ In2O3 sensor is several times larger than that of pure In2O3 sensor. In comparison with pure In2O3 sensor, all of the nano-Ag-doped sensors showed better sensing performance in respect of response, selectivity, and optimum operating temperature. The surface-modified (30 min In2O3 sensor showed larger sensitivity to H2S gas (10 ppm at 100°C. Nano silver on the surface of the film shifts the reactivity of film from ethanol vapour to H2S gas. A systematic study of gas sensing performance of the sensor indicates the key role played by the nano silver species on the surface. The sensitivity, selectivity, response, and recovery time of the sensor were measured and presented.

  18. Synthesis and structure of a 1,6-hexyldiamine heptaborate, [H3N(CH2)6NH3][B7O10(OH)3

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Xiong Ming; Lin Jianhua

    2007-01-01

    A new 1,6-hexyldiamine heptaborate, [H 3 N(CH 2 ) 6 NH 3 ][B 7 O 10 (OH) 3 ] (1), has been solvothermally synthesized and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in monoclinic system, space group P2 1 /n with a=8.042(2) A, b=20.004(4) A, c=10.103(2) A, and β=90.42(3) deg. The anionic [B 7 O 10 (OH) 3 ] n 2n- layers are interlinked via hydrogen bonding to form a 3D supramolecular network containing large channels, in which the templated [H 3 N(CH 2 ) 6 NH 3 ] 2+ cations are located. - Graphical abstract: A layered 1,6-hexyldiamine heptaborate, [H 3 N(CH 2 ) 6 NH 3 ][B 7 O 10 (OH) 3 ], was solvothermally synthesized at 150 deg. C. It is a layer borate and crystallized in monoclinic space group P2 1 /n with a=8.042(2) A, b=20.004(4) A, c=10.103(2) A, β=90.42(3) deg

  19. Two actinide-organic frameworks constructed by a tripodal flexible ligand: Occurrence of infinite ((UO{sub 2})O{sub 2}(OH){sub 3}){sub 4n} and hexanuclear (Th{sub 6}O{sub 4}(OH){sub 4}) motifs

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Lingling; Zhang, Ronglan [College of Chemistry and Materials, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of education, Northwest University, Xi’an 710069 (China); Zhao, Jianshe, E-mail: jszhao@nwu.edu.cn [College of Chemistry and Materials, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of education, Northwest University, Xi’an 710069 (China); Liu, Chiyang, E-mail: lcy@nwu.edu.cn [Department of Geology, Northwest University, Xi’an 710069 (China); Weng, Ng Seik [The University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor Darul Ehsan (Malaysia)

    2016-11-15

    Two new actinide metal-organic frameworks were constructed by using a tripodal flexible ligand tris (2-carboxyethyl) isocyanurate (H{sub 3}tci) under hydrothermal condition. The combination of H{sub 3}tci and uranyl nitrate hexahydrate in aqueous solution leads to the isolation of [(UO{sub 2}){sub 2}(H{sub 2}O){sub 4}]{sub 0.5}(tci){sub 2}(UO{sub 2}){sub 4}(OH){sub 4}·18H{sub 2}O (1), which contains two distinct UO{sub 2}{sup 2+} coordination environments. Four uranyl cations, linked through μ{sub 3}-OH respectively, result in the edge-sharing ribbons. Then, the layer structure is constructed by U-O clusters linked through other eight-coordinated uranyl unions, giving rise to a porous structure in the space. Topological analysis reveals that complex 1 belongs to a (4, 8)-connected net with a schläfli symbol of (3{sup 4.}2{sup 6.}3){sub 2}(3{sup 4.}4{sup 6.}5{sup 6.}6{sup 8.}7{sup 3.}8). Th{sub 3}(tci){sub 2}O{sub 2}(OH){sub 2}(H{sub 2}O){sub 3}·12H{sub 2}O (2) generated by the reaction of H{sub 3}tci and thorium nitrate tetrahydrate, possesses nine-fold coodinated Th(IV) centers with a monocapped square antiprismatic geometry. The hexamers “Th{sub 6}O{sub 4}(OH){sub 4}” motifs are connected together by the carboxylate groups, showing a three-dimensional structures. Complex 2 takes on an 8-connected architecture and the point symbol is (4{sup 24.}6{sup 4}). - Graphical abstract: Two new 3D actinide metal-organic frameworks were constructed by using a tripodal flexible ligand tris (2-carboxyethyl) isocyanurate (H3tci) and their topological structures were displayed. The infinite ((UO{sub 2})O{sub 2}(OH){sub 3}){sub 4n} and hexanuclear (Th{sub 6}O{sub 4}(OH){sub 4}) motifs were found in the title actinides networks.

  20. Surface properties of self-assembled monolayer films of tetra-substituted cobalt, iron and manganese alkylthio phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Akinbulu, Isaac Adebayo; Khene, Samson [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.z [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2010-09-30

    Self-assembled monolayer (SAM) films of iron (SAM-1), cobalt (SAM-2) and manganese (SAM-3) phthalocyanine complexes, tetra-substituted with diethylaminoethanethio at the non-peripheral positions, were formed on gold electrode in dimethylformamide (DMF). Electrochemical, impedimentary and surface properties of the SAM films were investigated. Cyclic voltammetry was used to investigate the electrochemical properties of the films. Ability of the films to inhibit common faradaic processes on bare gold surface (gold oxidation, solution redox chemistry of [Fe(H{sub 2}O){sub 6}]{sup 3+}/[Fe(H{sub 2}O){sub 6}]{sup 2+} and underpotential deposition (UDP) of copper) was investigated. Electrochemical impedance spectroscopy (EIS), using [Fe(CN){sub 6}]{sup 3-/4-} redox process as a probe, offered insights into the electrical properties of the films/electrode interfaces. Surface properties of the films were probed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The films were employed for the electrocatalytic oxidation of the pesticide, carbofuran. Electrocatalysis was evidenced from enhanced current signal and less positive oxidation potential of the pesticide on each film, relative to that observed on the bare gold electrode. Mechanism of electrocatalytic oxidation of the pesticide was studied using rotating disc electrode voltammetry.

  1. Synthesis, structure and magnetic behavior of a new three-dimensional Manganese phosphite-oxalate: [C2N2H10][Mn2II(OH2)2(HPO3)2(C2O4)

    International Nuclear Information System (INIS)

    Ramaswamy, Padmini; Mandal, Sukhendu; Natarajan, Srinivasan

    2009-01-01

    A novel manganese phosphite-oxalate, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO 3 )] ∞ , formed by MnO 6 octahedra and HPO 3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one-dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn 2+ ions. - Abstract: A new antiferromagnetic three-dimensional inorganic-organic hybrid compound, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been prepared hydrothermally. The compound has neutral manganese layers pillared by oxalate units. The neutral manganese layers are shown here. Display Omitted

  2. Atmospheric chemistry of CF3CH2CH2OH

    DEFF Research Database (Denmark)

    Hurley, Michael D.; Misner, Jessica A.; Ball, James C.

    2005-01-01

    Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF3CH2C(O)H and CF3CH2CH2OH in 700 Torr of N-2 or air diluent at 296 2 K. The rate constants determined were k(Cl+CF3CH2C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF3CH2C(O)H) = (2.57 +/- 0.44...

  3. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    Directory of Open Access Journals (Sweden)

    Jingbin Yang

    2017-06-01

    Full Text Available C-A-S-H (CaO-Al2O3-SiO2-H2O and N-A-S-H (Na2O-Al2O3-SiO2-H2O have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali

  4. Calcioferrite with composition (Ca3.94Sr0.06Mg1.01(Fe2.93Al1.07(PO46(OH4·12H2O

    Directory of Open Access Journals (Sweden)

    Barbara Lafuente

    2014-03-01

    Full Text Available Calcioferrite, ideally Ca4MgFe3+4(PO46(OH4·12H2O (tetracalcium magnesium tetrairon(III hexakis-phosphate tetrahydroxide dodecahydrate, is a member of the calcioferrite group of hydrated calcium phosphate minerals with the general formula Ca4AB4(PO46(OH4·12H2O, where A = Mg, Fe2+, Mn2+ and B = Al, Fe3+. Calcioferrite and the other three known members of the group, montgomeryite (A = Mg, B = Al, kingsmountite (A = Fe2+, B = Al, and zodacite (A = Mn2+, B = Fe3+, usually occur as very small crystals, making their structure refinements by conventional single-crystal X-ray diffraction challenging. This study presents the first structure determination of calcioferrite with composition (Ca3.94Sr0.06Mg1.01(Fe2.93Al1.07(PO46(OH4·12H2O based on single-crystal X-ray diffraction data collected from a natural sample from the Moculta quarry in Angaston, Australia. Calcioferrite is isostructural with montgomeryite, the only member of the group with a reported structure. The calcioferrite structure is characterized by (Fe/AlO6 octahedra (site symmetries 2 and -1 sharing corners (OH to form chains running parallel to [101]. These chains are linked together by PO4 tetrahedra (site symmetries 2 and 1, forming [(Fe/Al3(PO43(OH2] layers stacking along [010], which are connected by (Ca/Sr2+ cations (site symmetry 2 and Mg2+ cations (site symmetry 2; half-occupation. Hydrogen-bonding interactions involving the water molecules (one of which is equally disordered over two positions and OH function are also present between these layers. The relatively weaker bonds between the layers account for the cleavage of the mineral parallel to (010.

  5. Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors

    International Nuclear Information System (INIS)

    Manjakkal, Libu; Djurdjic, Elvira; Cvejin, Katarina; Kulawik, Jan; Zaraska, Krzysztof; Szwagierczak, Dorota

    2015-01-01

    The conductimetric interdigitated thick film pH sensors based on RuO 2 were fabricated and their electrochemical reactions with solutions of different pH values were studied by electrochemical impedance spectroscopy (EIS) technique. The microstructural properties and composition of the sensitive films were examined by scanning electron microscopy, X-ray energy dispersive spectroscopy and Raman spectroscopy. The EIS analysis of the sensor was carried out in the frequency range 10 mHz–2 MHz for pH values of test solutions 2–12. The electrical parameters of the sensor were found to vary with changing pH. The conductance and capacitance of the film were distinctly dependent on pH in the low frequency range. The Nyquist and Bode plots derived from the impedance data for the metal oxide thick film pH sensor provided information about the underlying electrochemical reactions

  6. Nanostructured ZrO2 Thick Film Resistors as H2-Gas Sensors Operable at Room Temperature

    Directory of Open Access Journals (Sweden)

    K. M. GARADKAR

    2009-11-01

    Full Text Available Nanostructured ZrO2 powder was synthesized by microwave assisted sol-gel method. The material was characterized by XRD and SEM techniques. X-Ray diffraction studies confirm that a combination of tetragonal and monoclinic zirconia nanoparticles is obtained by using microwave-assisted method. The nanopowder was calcined at an optimized temperature of 400 °C for 3 h. The prepared powder had crystalline size about 25 nm. Thick films of synthesized ZrO2 powder were prepared by screen printing technique. The gas sensing performances of these films for various gases were tested. Films showed highest response to H2 (50 ppm gas at room temperature with poor responses to others (1000 ppm. The quick response and fast recovery are the main features of this sensor. The effects of microstructure, operating temperature and gas concentration on the gas response, selectivity, response time and recovery time of the sensor in the presence of H2 gas and others were studied and discussed.

  7. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    Science.gov (United States)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  8. Obtention of agricultural gypsum traced on 34 S (Ca34 SO4.2H2O), by chemical reaction between H234 SO4 and Ca(OH)2

    International Nuclear Information System (INIS)

    Rossete, Alessandra L.R.M.; Bendassolli, Jose A.; Ignoto, Raquel de Fatima; Batagello, Hugo Henrique

    2002-01-01

    The gypsum (CaSO 4 .2H 2 O) has double function in the soil: as source of calcium and sulfur and reducing agent of aluminum saturation. The sulfur for the plants has acting in the vital functions and it is proven fact increase of the S deficiency in Brazilian soils. The isotope tracer 34 S can elucidate important aspects in the sulfur cycle. The Ca 34 SO 4 .2H 2 O was obtained by chemical reaction between Ca(OH) 2 and H 2 34 SO 4 solution. The acid was obtained by chromatography ionic change, using cationic resin Dowex 50WX8 and Na 2 34 SO 4 solution. The reaction was realized under slow agitation. After the reaction, the precipitate was separated and dried in ventilated stove at 60 deg C temperature. The Mass of the Ca 34 SO 4 .2H 2 O produced was determined by method gravimetric. This way, a system contends resin 426 cm 3 , considering volume of 2.2 liters can be obtained a solution contends 44.2 g of H 2 34 SO 4 , theoretically could be produced 78.0 g of Ca 34 SO 4 .2H 2 O approximately. With results of the tests were verified that there was not total precipitation of the Ca 34 SO 4 .2H 2 O. Were produced 73.7± 0.6 g of Ca 34 SO 4 .2H 2 O representing average income 94.6±0.8 %. The purity of the produced CaSO 4 .2H 2 O was 98%. (author)

  9. Incorporation of μ3-CO3 into an MnIII/MnIV Mn12 cluster: {[(cyclam)MnIV(μ-O)2MnIII(H2O)(μ-OH)]6(μ3-CO3)2}Cl8·24H2O

    Science.gov (United States)

    Levaton, Ben B.; Olmstead, Marilyn M.

    2010-01-01

    The centrosymmetric title cluster, hexa­aquadi-μ3-carbonato-hexa­cyclamhexa-μ2-hydroxido-dodeca-μ2-oxido-hexa­mang­an­ese(IV)hexa­manganese(III) octa­chloride tetra­cosa­hydrate, [Mn12(CO3)2O12(OH)6(C10H24N4)6(H2O)6]Cl8·24H2O, has two μ3-CO3 groups that not only bridge octahedrally coordinated MnIII ions but also act as acceptors to two different kinds of hydrogen bonds. The carbonate anion is planar within experimental error and has an average C—O distance of 1.294 (4) Å. The crystal packing is stabilized by O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonds. Two of the four independent chloride ions are disordered over five positions, and eight of the 12 independent water mol­ecules are disordered over 21 positions. PMID:21587382

  10. Noninvasive parametric blood flow imaging of head and neck tumours using [15O]H2O and PET/CT.

    Science.gov (United States)

    Komar, Gaber; Oikonen, Vesa; Sipilä, Hannu; Seppänen, Marko; Minn, Heikki

    2012-11-01

    The aim of this study was to develop a simple noninvasive method for measuring blood flow using [15O]H2O PET/CT for the head and neck area applicable in daily clinical practice. Fifteen dynamic [15O]H2O PET emission scans with simultaneous online radioactivity measurements of radial arterial blood [Blood-input functions (IFs)] were performed. Two noninvasively obtained population-based input functions were calculated by averaging all Blood-IF curves corrected for patients' body mass and injected dose [standardized uptake value (SUV)-IF] and for body surface area (BSA-IF) and injected dose. Parametric perfusion images were calculated for each set of IFs using a linearized two-compartment model, and values for several tissues were compared using Blood-IF as the gold standard. On comparing all tissues, the correlation between blood flow obtained with the invasive Blood-IF and both SUV-IF and BSA-IF was significant (R2=0.785 with P<0.001 and R2=0.813 with P<0.001, respectively). In individual tissues, the performance of the two noninvasive methods was most reliable in resting muscle and slightly less reliable in tumour and cerebellar regions. In these two tissues, only BSA-IF showed a significant correlation with Blood-IF (R2=0.307 with P=0.032 in tumours and R2=0.398 with P<0.007 in the cerebellum). The BSA-based noninvasive method enables clinically relevant delineation between areas of low and high blood flow in tumours. The blood flow of low-perfusion tissues can be reliably quantified using either of the evaluated noninvasive methods.

  11. Inhibitory Effect of Dissolved Silica on the H2O2 Decomposition by Iron(III) and Manganese(IV) Oxides: Implications for H2O2-based In Situ Chemical Oxidation

    Science.gov (United States)

    Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.

    2011-01-01

    The decomposition of H2O2 on iron minerals can generate •OH, a strong oxidant that can transform a wide range of contaminants. This reaction is critical to In Situ Chemical Oxidation (ISCO) processes used for soil and groundwater remediation, as well as advanced oxidation processes employed in waste treatment systems. The presence of dissolved silica at concentrations comparable to those encountered in natural waters decreases the reactivity of iron minerals toward H2O2, because silica adsorbs onto the surface of iron minerals and alters catalytic sites. At circumneutral pH values, goethite, amorphous iron oxide, hematite, iron-coated sand and montmorillonite that were pre-equilibrated with 0.05 – 1.5 mM SiO2 were significantly less reactive toward H2O2 decomposition than their original counterparts, with the H2O2 loss rates inversely proportional to the SiO2 concentration. In the goethite/H2O2 system, the overall •OH yield, defined as the percentage of decomposed H2O2 producing •OH, was almost halved in the presence of 1.5 mM SiO2. Dissolved SiO2 also slows the H2O2 decomposition on manganese(IV) oxide. The presence of dissolved SiO2 results in greater persistence of H2O2 in groundwater, lower H2O2 utilization efficiency and should be considered in the design of H2O2-based treatment systems. PMID:22129132

  12. Chemical and Electrochemical Asymmetric Dihydroxylation of Olefins in I(2)-K(2)CO(3)-K(2)OsO(2)(OH)(4) and I(2)-K(3)PO(4)/K(2)HPO(4)-K(2)OsO(2)(OH)(4) Systems with Sharpless' Ligand.

    Science.gov (United States)

    Torii, Sigeru; Liu, Ping; Bhuvaneswari, Narayanaswamy; Amatore, Christian; Jutand, Anny

    1996-05-03

    Iodine-assisted chemical and electrochemical asymmetric dihydroxylation of various olefins in I(2)-K(2)CO(3)-K(2)OsO(2)(OH)(4) and I(2)-K(3)PO(4)/K(2)HPO(4)-K(2)OsO(2)(OH)(4) systems with Sharpless' ligand provided the optically active glycols in excellent isolated yields and high enantiomeric excesses. Iodine (I(2)) was used stoichiometrically for the chemical dihydroxylation, and good results were obtained with nonconjugated olefins in contrast to the case of potassium ferricyanide as a co-oxidant. The potentiality of I(2) as a co-oxidant under stoichiometric conditions has been proven to be effective as an oxidizing mediator in electrolysis systems. Iodine-assisted asymmetric electro-dihydroxylation of olefins in either a t-BuOH/H(2)O(1/1)-K(2)CO(3)/(DHQD)(2)PHAL-(Pt) or t-BuOH/H(2)O(1/1)-K(3)PO(4)/K(2)HPO(4)/(DHQD)(2)PHAL-(Pt) system in the presence of potassium osmate in an undivided cell was investigated in detail. Irrespective of the substitution pattern, all the olefins afforded the diols in high yields and excellent enantiomeric excesses. A plausible mechanism is discussed on the basis of cyclic voltammograms as well as experimental observations.

  13. The film thickness dependent thermal stability of Al{sub 2}O{sub 3}:Ag thin films as high-temperature solar selective absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiudi; Xu Gang, E-mail: xiudixiao@163.com; Xiong Bin; Chen Deming; Miao Lei [Chinese Academy of Sciences, Key Laboratory of Renewable Energy and Gas Hydrates, Guangzhou Institute of Energy Conversion (China)

    2012-03-15

    The monolayer Al{sub 2}O{sub 3}:Ag thin films were prepared by magnetron sputtering. The microstructure and optical properties of thin film after annealing at 700 Degree-Sign C in air were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and spectrophotometer. It revealed that the particle shape, size, and distribution across the film were greatly changed before and after annealing. The surface plasmon resonance absorption and thermal stability of the film were found to be strongly dependent on the film thickness, which was believed to be associated with the evolution process of particle diffusion, agglomeration, and evaporation during annealing at high temperature. When the film thickness was smaller than 90 nm, the film SPR absorption can be attenuated until extinct with increasing annealing time due to the evaporation of Ag particles. While the film thickness was larger than 120 nm, the absorption can keep constant even after annealing for 64 h due to the agglomeration of Ag particles. On the base of film thickness results, the multilayer Al{sub 2}O{sub 3}:Ag solar selective thin films were prepared and the thermal stability test illustrated that the solar selectivity of multilayer films with absorbing layer thickness larger than 120 nm did not degrade after annealing at 500 Degree-Sign C for 70 h in air. It can be concluded that film thickness is an important factor to control the thermal stability of Al{sub 2}O{sub 3}:Ag thin films as high-temperature solar selective absorbers.

  14. State-to-state reactive scattering in six dimensions using reactant-product decoupling: OH + H2H2O + H (J = 0).

    Science.gov (United States)

    Cvitaš, Marko T; Althorpe, Stuart C

    2011-01-14

    We extend to full dimensionality a recently developed wave packet method [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)] for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions and also increase the computational efficiency of the method. This is done by introducing a new set of product coordinates, by applying the Crank-Nicholson approximation to the angular kinetic energy part of the split-operator propagator and by using a symmetry-adapted basis-to-grid transformation to evaluate integrals over the potential energy surface. The newly extended method is tested on the benchmark OH + H(2) → H(2)O + H reaction, where it allows us to obtain accurately converged state-to-state reaction probabilities (on the Wu-Schatz-Fang-Lendvay-Harding potential energy surface) with modest computational effort. These methodological advances will make possible efficient calculations of state-to-state differential cross sections on this system in the near future.

  15. Polyelectrolyte-assisted preparation and characterization of nanostructured ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shijun

    2005-05-15

    The present work focuses on the synthesis and characterization of nanostructured ZnO thin films onto silicon wafers modified by self-assembled-monolayers via chemical bath deposition. Two precursor solutions were designed and used for the film deposition, in which two different polymers were introduced respectively to control the growth of the ZnO colloidal particles in solution. ZnO films were deposited from an aqueous solution containing zinc salt and hexamethylenetetramine (HMTA) in the presence of a graft-copolymer (P (MAA{sub 0.50}-co(MAA-EO{sub 20}){sub 0.50}){sub 70}). A film-formation-diagram was established based on the results obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM), which describes the influence of the concentration of HMTA and copolymer on the ZnO film formation. According to the film morphology, film formation can be classified into three categories: (a) island-like films, (b) uniform films and (c) canyon-like films. The ZnO films annealed at temperatures of 450 C, 500 C, 600 C and 700 C were examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). After annealing, the films are polycrystalline ZnO with wurtzite structure. XRD measurements indicate that with increasing annealing temperature, the average grain size increases accordingly and the crystallinity of the films is improved. Upon heating to 600 C, the ZnO films exhibit preferred orientation with c-axis normal to substrate, whereas the films annealed at 700 C even show a more explicit texture. By annealing at temperatures above 600 C the ZnO film reacts with the substrate to form an interfacial layer of Zn{sub 2}SiO{sub 4}, which grows thicker at elevated annealing temperatures. The ZnO films annealed at 600 C and 700 C show strong UV emission. Another non-aqueous solution system for ZnO thin film deposition was established, in which 2- propanol was used as a solvent and Zn(CH3COO){sub 2}.2H{sub 2}O as well as NaOH as reactants

  16. Benchmarking semiempirical and DFT methods for the interaction of thiophene and diethyl sulfide molecules with a Ti(OH)4(H2O) cluster.

    Science.gov (United States)

    Vorontsov, Alexander V; Smirniotis, Panagiotis G

    2017-08-01

    Semiempirical methods pm6 and pm7 as well as density functional theory functionals exchange LSDA, exchange-correlation PW91 and PBE, hybrid B3LYP1 and PBE0 were compared for energy and geometry of thiophene, diethyl sulfide (DES) molecules and their binding to a frozen Ti(OH) 4 (H 2 O) complex having one coordinatively unsaturated Ti 5C site representing small fragment of TiO 2 anatase (001) surface. PBE0/6-31G(d) with DFT-D3 dispersion correction was the best method for description of thiophene and DES molecules geometries as comparison with experimental data demonstrated. Semiempirical methods pm6 and pm7 resulted in only three of four possible binding configurations of thiophene with the Ti(OH) 4 (H 2 O) complex while pm7 described correctly the enthalpy and all configurations of DES binding with the Ti(OH) 4 (H 2 O) complex. SBKJC pseudopotential and LSDA with and without dispersion correction produced flawed results for many configurations. PBE0 and PBE with and without dispersion correction and PW91 with 6-31G(d) basis set systematically produced dependable results for thiophene and DES binding to the Ti(OH) 4 (H 2 O) complex. PBE0-D3/6-31G(d), B3LYP1-D3/6-31G(d), and PBE-D3/6-31G(d) gave best match of binding energy for thiophene while PBE0/6-31G(d) gave best match of DES binding energy as comparison with CCSD(T) energy demonstrated. On the basis of the superior results obtained with PBE0/6-31G(d), it is the recommended method for modeling of adsorption over TiO 2 surfaces. Such a conclusion is in agreement with recent literature.

  17. Direct observation of an isopolyhalomethane O-H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product

    International Nuclear Information System (INIS)

    Kwok, W.M.; Zhao Cunyuan; Li Yunliang; Guan Xiangguo; Phillips, David Lee

    2004-01-01

    Picosecond time-resolved resonance Raman (ps-TR 3 ) spectroscopy was used to obtain the first definitive spectroscopic observation of an isopolyhalomethane O-H insertion reaction with water. The ps-TR 3 spectra show that isobromoform is produced within several picoseconds after photolysis of CHBr 3 and then reacts on the hundreds of picosecond time scale with water to produce a CHBr 2 OH reaction product. Photolysis of low concentrations of bromoform in aqueous solution resulted in noticeable formation of HBr strong acid. Ab initio calculations show that isobromoform can react with water to produce a CHBr 2 (OH) O-H insertion reaction product and a HBr leaving group. This is consistent with both the ps-TR 3 experiments that observe the reaction of isobromoform with water to form a CHBr 2 (OH) product and photolysis experiments that show HBr acid formation. We briefly discuss the implications of these results for the phase dependent behavior of polyhalomethane photochemistry in the gas phase versus water solvated environments

  18. Dynamic investigation of the diffusion absorption refrigeration system NH3-H2O-H2

    Directory of Open Access Journals (Sweden)

    Mohamed Izzedine Serge Adjibade

    2017-09-01

    Full Text Available This paper reports on a numerical and experimental study of a diffusion absorption refrigerator. The performance of the system is examined by computer simulation using MATLAB software and Engineering Equations Solver. A dynamic model is developed for each component of the system and solved numerically in order to predict the transient state of the diffusion absorption refrigeration. The experiment set included 0.04 m3 commercial absorption diffusion refrigerator working with the ammonia-water-hydrogen (NH3-H2O-H2 solution. The transient numerical results were validated with the experimental data. The investigations are focused on the dynamic profile of the temperature of each component. The results obtained agree with the experiment; the relative error between numerical and experimental models doesn’t exceed 15% for all temperatures of each component. The increase of the average ambient temperature from 23.04 °C to 32.56 °C causes an increase of the condensation temperature from 29.46 °C to 37.51 °C, and the best evaporation temperature obtained was 3 °C, with an ambient temperature of 23.04 °C. The results show that a minimum starting temperature of 152 °C and 63.8 W electric power are required to initiate the decrease of evaporation temperature.

  19. Time and spatially resolved LIF of OH in a plasma filament in atmospheric pressure He-H2O

    International Nuclear Information System (INIS)

    Verreycken, T; Van der Horst, R M; Baede, A H F M; Van Veldhuizen, E M; Bruggeman, P J

    2012-01-01

    The production of OH in a nanosecond pulsed filamentary discharge generated in pin-pin geometry in a He-H 2 O mixture is studied by time and spatially resolved laser-induced fluorescence. Apart from the OH density the gas temperature and the electron density are also measured. Depending on the applied voltage the discharge is in a different mode. The maximum electron densities in the low- (1.3 kV) and high-density (5 kV) modes are 2 × 10 21 m -3 and 7 × 10 22 m -3 , respectively. The gas temperature in both modes does not exceed 600 K. In the low-density mode the maximum OH density is at the centre of the discharge filament, while in the high-density mode the largest OH density is observed on the edge of the discharge. A chemical model is used to obtain an estimate of the absolute OH density. The chemical model also shows that charge exchange and dissociative recombination can explain the production of OH in the case of the high-density mode. (paper)

  20. Atom-radical reaction dynamics of O(3P)+C3H5→C3H4+OH: Nascent rovibrational state distributions of product OH

    Science.gov (United States)

    Park, Jong-Ho; Lee, Hohjai; Kwon, Han-Cheol; Kim, Hee-Kyung; Choi, Young-Sang; Choi, Jong-Ho

    2002-08-01

    The reaction dynamics of ground-state atomic oxygen [O(3P)] with allyl radicals (C3H5) has been investigated by applying a combination of crossed beams and laser induced fluorescence techniques. The reactants O(3P) and C3H5 were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of precursor allyl iodide, respectively. A new exothermic channel of O(3P)+C3H5→C3H4+OH was observed and the nascent internal state distributions of the product OH (X 2Π:υ″=0,1) showed substantial bimodal internal excitations of the low- and high-N″ components without Λ-doublet and spin-orbit propensities in the ground and first excited vibrational states. With the aid of the CBS-QB3 level of ab initio theory and Rice-Ramsperger-Kassel-Marcus calculations, it is predicted that on the lowest doublet potential energy surface the major reaction channel of O(3P) with C3H5 is the formation of acrolein (CH2CHCHO)+H, which is consistent with the previous bulk kinetic experiments performed by Gutman et al. [J. Phys. Chem. 94, 3652 (1990)]. The counterpart C3H4 of the probed OH product in the title reaction is calculated to be allene after taking into account the factors of reaction enthalpy, barrier height and the number of intermediates involved along the reaction pathway. On the basis of population analyses and comparison with prior calculations, the statistical picture is not suitable to describe the reactive atom-radical scattering processes, and the dynamics of the title reaction is believed to proceed through two competing dynamical pathways. The major low N″-components with significant vibrational excitation may be described by the direct abstraction process, while the minor but extraordinarily hot rotational distribution of high N″-components implies that some fraction of reactants is sampled to proceed through the indirect short-lived addition-complex forming process.

  1. Carbon-14 immobilization via the CO2-Ba(OH)2 hydrate gas-solid reaction

    International Nuclear Information System (INIS)

    Haag, G.L.

    1981-08-01

    For the treatment of an air-based off-gas stream, the use of packed beds of Ba(OH) 2 .8H 2 O flakes to remove CO 2 has been demonstrated. However, the operating conditions must be maintained between certain upper and lower limits with respect to the partial pressure of water. If the water vapor pressure in the gas is less than the dissociation vapor pressure of Ba(OH) 2 .8H 2 O, the bed will deactivate. If the vapor pressure is considerably greater, pressure drop problems will increase with increaseing humidity as the particles curl and degrade. Results have indicted that when operated in the proper regime, the bulk of the increase in pressure drop results from the conversion of Ba(OH) 2 .8H 2 O to BaCO 3 and not from the hydration of the commercial Ba(OH) 2 .8H 2 O (i.e., Ba(OH) 2 .7.50H 2 O) to Ba(OH) 2 .8H 2 O

  2. Advanced oxidation (H2O2 and/or UV) of functionalized carbon nanotubes (CNT-OH and CNT-COOH) and its influence on the stabilization of CNTs in water and tannic acid solution

    International Nuclear Information System (INIS)

    Czech, Bożena; Oleszczuk, Patryk; Wiącek, Agnieszka

    2015-01-01

    The properties of carbon nanotubes (CNTs) functionalized with –OH and –COOH groups during simulated water treatment with H 2 O 2 and/or UV were tested. There following properties of CNTs were investigated: specific surface area, elemental composition (CHN), dynamic light scattering, Raman spectroscopy, X-ray photoelectron spectroscopy and changes in the CNTs structure were observed using transmission electron microscopy. Treatment of CNTs with H 2 O 2 and/or UV affected their properties. This effect, however, was different depending on the functionalization of CNTs and also on the factor used (UV and/or H 2 O 2 ). H 2 O 2 plays a key role as a factor modifying the surface of CNT-OHs, whereas the properties of CNT-COOHs were most affected by UV rays. A shortening of the nanotubes, exfoliation, the opening of their ends, and changes in the surface charge were observed as a result of the action of UV and/or H 2 O 2 . The changes in observed parameters may influence the stability of the aqueous suspensions of CNTs. - Highlights: • Treatment of CNT–OH and CNT–COOH with H 2 O 2 and/or UV affected their properties. • This effect was different depending on the functionalization of CNTs and factor used. • H 2 O 2 was a factor modifying CNT-OHs surface, whereas UV affected most CNT-COOHs. • The shorten, exfoliated, open tubes with changed surface charge were observed. • All these changes influenced the stability of the aqueous suspensions of CNTs. - The research identified how advanced wastewater treatment methods (UV and/or H 2 O 2 ) affected carbon nanomaterials properties, their mobility (ability to aggregate) and then toxicity

  3. Audit of ECCS Availability for CANDU Reactors with an extended O/H interval

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong Soo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2011-10-15

    KINS conducts regulatory periodic inspections of the safety and performance of each nuclear installation during the planned outage every 20 months, pursuant to the Atomic Energy Act. For CANDU reactors, planned outage or overhaul (O/H) have been performed every 15 months. KHNP has been making efforts to extend the O/H intervals of CANDU reactors into 20 months since 2001. Low ECCS availability is one of the regulatory pending issues in the related licensing

  4. Oxidant effect of La(NO{sub 3}){sub 3}·6H{sub 2}O solution on the crystalline characteristics of nanocrystalline ZrO{sub 2} films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Nam Khen [Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kim, Jin-Tae [Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Department of Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kang, Goru; An, Jong-Ki; Nam, Minwoo [Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Kim, So Yeon [Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Park, In-Sung, E-mail: parkis77@hanyang.ac.kr [Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Yun, Ju-Young, E-mail: jyun@kriss.re.kr [Vacuum Center, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Department of Nanomaterials Science and Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of)

    2017-02-01

    Highlights: • The La(NO{sub 3}){sub 3}·6H{sub 2}O aqua solution is introduced as an oxidant in ALD process. • The H{sub 2}O and La(NO{sub 3}){sub 3}·6H{sub 2}O lead different crystalline properties of ZrO{sub 2} films. • Concentration of La(NO{sub 3}){sub 3}·6H{sub 2}O solution minimally influences crystalline status. - Abstract: Nanocrystalline ZrO{sub 2} films were synthesized by atomic layer deposition method using CpZr[N(CH{sub 3}){sub 2}]{sub 3} (Cp = C{sub 5}H{sub 5}) as the metal precursor and La(NO{sub 3}){sub 3}·6H{sub 2}O solution as the oxygen source. La element in the deposited ZrO{sub 2} films could not be detected as its content was below the resolution limit of the X-ray photoelectron spectroscopy. The alternative introduction of La(NO{sub 3}){sub 3}·6H{sub 2}O solution to conventionally used H{sub 2}O as the oxidant effectively altered the crystalline structure, grain size, and surface roughness of the grown ZrO{sub 2} films. Specifically, the crystalline structure of the ZrO{sub 2} film changed from a mixture of tetragonal and monoclinic phases to monoclinic phase. The average grain size also increased, and the resulting film surface became rougher. The average grain sizes of the ZrO{sub 2} films prepared from La(NO{sub 3}){sub 3}·6H{sub 2}O solution at concentrations of 10, 20, 30, and 40% were 280, 256, 208, and 200 nm, respectively, whereas that prepared using H{sub 2}O oxidant was 142 nm. However, the concentration of La(NO{sub 3}){sub 3}·6H{sub 2}O solution minimally influenced the crystalline characteristics of the nanocrystalline ZrO{sub 2} films i.e., the crystalline structure, grain size, and surface roughness except for crystallite size.

  5. Reaction rate prediction in the supercritical region of H · + OH"- → e"-_a_q + H_2O using μSR

    International Nuclear Information System (INIS)

    Du, T.; Liu, G.; Beninger, J.; Ghandi, K.

    2015-01-01

    Knowledge of reaction rates in the supercritical region for reactions caused by the radiolysis of water is needed to prevent damage to future Supercritical Water-Cooled reactors. In particular, the H · + OH"- → e"-_a_q + H_2O reaction is examined experimentally within the supercritical region by usage of muon spin rotation spectroscopy. Using the obtained data and the 'cage effect' theory, the reaction was modelled and plateau-like behaviour near the critical point was accounted for. (author)

  6. Ilyukhinite (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 • 3H2O, a New Mineral of the Eudialyte Group

    Science.gov (United States)

    Chukanov, N. V.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Aksenov, S. M.; Pekov, I. V.; Belakovsky, D. I.; Kristiansen, R.; Van, K. V.

    2017-12-01

    A new eudialyte-group mineral, ilyukhinite, ideally (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2 · 3H2O, has been found in peralkaline pegmatite at Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. It occurs as brownish orange, with vitreous luster anhedral grains up to 1 mm across in hydrothermally altered peralkaline rock, in association with aegirine, murmanite, albite, microcline, rhabdophane-(Ce), fluorite, sphalerite and molybdenite. The Mohs hardness is 5; cleavage is not observed. D meas 2.67(2), D calc 2.703 g/cm3. Ilyukhinite is optically uniaxial (-): ω = 1.585(2), ɛ = 1.584(2). The IR spectrum is given. The average chemical composition of ilyukhinite (wt %; electron microprobe, ranges given in parentheses; H2O determined by gas chromatography) is as follows: 3.07 (3.63-4.43) Na2O, 0.32 (0.28-0.52) K2O, 10.63 (10.26-10.90) CaO, 3.06 (2.74-3.22) MnO, 1.15 (0.93-1.37) FeO, 0.79 (0.51-0.89) La2O3, 1.21 (0.97-1.44) Ce2O3, 0.41 (0.30-0.56) Nd2O3, 0.90 (0.77-1.12) TiO2, 10.94 (10.15-11.21) ZrO2, 1.40 (0.76-1.68) Nb2O5, 51.24 (49.98-52.28) SiO2, 1.14 (0.89-1.37) SO3, 0.27 (0.19—0.38) Cl, 10.9(5 )H2O,-0.06-O = C1, total is 98.27. The empirical formula is H36.04(Na3.82K0.20)(Ca5.65Ce0.22La0.14Nd0.07)(Mn1.285Fe0.48)(Zr2.645Ti0.34)Nb0.31Si25.41S0.42Cl0.23O86.82. The crystal structure has been solved ( R = 0.046). Ilyukhinite is trigonal, R3 m; a = 14.1695(6) Å, b = 31.026(1) Å, V = 5394.7(7) Å3, Z = 3. The strongest XRD reflections [ d, Å (I, %) ( hkl)] are 11.44 (82) (101), 7.09 (70) (110), 6.02 (44) (021), 4.371 (89) 205), 3.805 (47) (303, 033), 3.376 (41) (131), 2.985 (100) (315, 128), 2.852 (92) (404). Ilyukhinite was named in memory of Vladimir V. Ilyukhin (1934-1982), an outstanding Soviet crystallographer. The type specimen of ilyukhinite has been deposited in the collection of the Natural History Museum, University of Oslo, Norway.

  7. Syntheses and structural characterization of vanado-tellurites and vanadyl-selenites: SrVTeO{sub 5}(OH), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}, Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Konatham, Satish; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2017-05-15

    Four new quaternary vanado-tellurites and vanadyl-selenites, namely, SrVTeO{sub 5}(OH)(1), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2), Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3) and Ba{sub 2}VSe{sub 3}O{sub 10}(4) have been synthesized and structurally characterized by single crystal X-ray diffraction. The oxidation state of vanadium is +5 in tellurites 1 and 2 and +4 in selenites 3 and 4. The structures of SrVTeO{sub 5}(OH)(1) and Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2) compounds consist of (VTeO{sub 5}(OH)){sup 2-} and (V{sub 2}Te{sub 2}O{sub 11}){sup 4-}anionic chains respectively, which are built from tetrahedral VO{sub 4} and disphenoidal TeO{sub 4} moieties. Similarly the structures of Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3) and Ba{sub 2}VSe{sub 3}O{sub 10}(4) respectively contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} anionic chains, which are made up of octahedral VO{sub 6} and pyramidal SeO{sub 3} units. Compounds 1 and 3 have been characterized by thermogravimetric and infrared spectroscopic methods. Compounds 1 and 2 are wide band gap semiconductors. - Graphical abstract: Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10} compounds contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} chains. - Highlights: • Four new vanado-tellurites and vanadyl-selenites are synthesized. • Their structural features are different. • The vanado-tellurites are wide band gap semiconductors.

  8. Glassy carbon electrodes modified with hemin-carbon nanomaterial films for amperometric H2O2 and NO2− detection

    International Nuclear Information System (INIS)

    Valentini, Federica; Cristofanelli, Lara; Carbone, Marilena; Palleschi, Giuseppe

    2012-01-01

    In this work a new chemical sensor for the H 2 O 2 and nitrite amperometric detection was assembled, using a glassy carbon (GC) bare electrode modified by two different nanocomposite materials. The nanocomposite films were prepared by casting a functionalised carbon nanofiber (CNF-COOH) and single-walled carbon nanotubes (SWCNT-OH, for comparison) on the glassy carbon electrode surface; then an iron(III) protoporphyrin IX (Fe(III)P) was adsorbed on these modified surfaces. A morphological investigation of the nanocomposite layers was also carried out, using the Scanning Electron Microscopy (SEM). The electrochemical characterization, performed optimising several electro-analytical parameters (such as different medium, pH, temperature, scan rate, and potential window), demonstrated that the direct electrochemistry of the Fe(III)P/Fe(II)P redox couple involves 1e − /1H + process. A kinetic evaluation of the electron-transfer reaction mechanism was also carried out, demonstrating that the heterogeneous electron transfer rate constant resulted higher at CNF/hemin/GC biosensor than that evaluated at SWCNT/hemin/GC modified electrode. Finally, the electrocatalytic activity toward the H 2 O 2 reduction was also demonstrated for both sensors but better results were observed working at CNF/hemin/GC modified electrode, especially in terms of an extended linearity (ranging from 50 to 1000 μM), a lower detection limit (L.O.D. = 3σ) of 2.0 × 10 −6 M, a higher sensitivity of 2.2 × 10 −3 A M −1 cm −2 , a fast response time (9 s), a good reproducibility (RSD% −3 to 2.5 × 10 −1 M), a lower detection limit (L.O.D. = 3σ) of 3.18 × 10 −4 M, a higher sensitivity of 1.2 × 10 −2 A M −1 cm −2 , a fast response time of 10 s, a good reproducibility (RSD% <1, n = 3) and finally a good operational stability.

  9. Thermally-driven H interaction with HfO2 films deposited on Ge(100) and Si(100)

    Science.gov (United States)

    Soares, G. V.; Feijó, T. O.; Baumvol, I. J. R.; Aguzzoli, C.; Krug, C.; Radtke, C.

    2014-01-01

    In the present work, we investigated the thermally-driven H incorporation in HfO2 films deposited on Si and Ge substrates. Two regimes for deuterium (D) uptake were identified, attributed to D bonded near the HfO2/substrate interface region (at 300 °C) and through the whole HfO2 layer (400-600 °C). Films deposited on Si presented higher D amounts for all investigated temperatures, as well as, a higher resistance for D desorption. Moreover, HfO2 films underwent structural changes during annealings, influencing D incorporation. The semiconductor substrate plays a key role in this process.

  10. Controllable synthesis of (NH4)Fe2(PO4)2(OH2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment.

    Science.gov (United States)

    Dong, Bin; Li, Guang; Yang, Xiaogang; Chen, Luming; Chen, George Z

    2018-04-01

    (NH 4 )Fe 2 (PO 4 ) 2 (OH2H 2 O samples with different morphology are successfully synthesized via two-step synthesis route - ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment (UIHT) method. The effects of the adoption of ultrasonic-intensified impinging stream pre-treatment, reagent concentration (C), pH value of solution and hydrothermal reaction time (T) on the physical and chemical properties of the synthesised (NH 4 )Fe 2 (PO 4 ) 2 (OH2H 2 O composites and FePO 4 particles were systematically investigated. Nano-seeds were firstly synthesized using the ultrasonic-intensified T-mixer and these nano-seeds were then transferred into a hydrothermal reactor, heated at 170 °C for 4 h. The obtained samples were characterized by utilising XRD, BET, TG-DTA, SEM, TEM, Mastersizer 3000 and FTIR, respectively. The experimental results have indicated that the particle size and morphology of the obtained samples are remarkably affected by the use of ultrasonic-intensified impinging stream pre-treatment, hydrothermal reaction time, reagent concentration, and pH value of solution. When such (NH 4 )Fe 2 (PO 4 ) 2 (OH2H 2 O precursor samples were transformed to FePO 4 products after sintering at 650 °C for 10 h, the SEM images have clearly shown that both the precursor and the final product still retain their monodispersed spherical microstructures with similar particle size of about 3 μm when the samples are synthesised at the optimised condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Osteogenic cell differentiation on H-terminated and O-terminated nanocrystalline diamond films

    Directory of Open Access Journals (Sweden)

    Liskova J

    2015-01-01

    Full Text Available Jana Liskova,1 Oleg Babchenko,2 Marian Varga,2 Alexander Kromka,2 Daniel Hadraba,1 Zdenek Svindrych,1 Zuzana Burdikova,1 Lucie Bacakova1 1Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; 2Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic Abstract: Nanocrystalline diamond (NCD films are promising materials for bone implant coatings because of their biocompatibility, chemical resistance, and mechanical hardness. Moreover, NCD wettability can be tailored by grafting specific atoms. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition and grafted by hydrogen atoms (H-termination or oxygen atoms (O-termination. Human osteoblast-like Saos-2 cells were used for biological studies on H-terminated and O-terminated NCD films. The adhesion, growth, and subsequent differentiation of the osteoblasts on NCD films were examined, and the extracellular matrix production and composition were quantified. The osteoblasts that had been cultivated on the O-terminated NCD films exhibited a higher growth rate than those grown on the H-terminated NCD films. The mature collagen fibers were detected in Saos-2 cells on both the H-terminated and O-terminated NCD films; however, the quantity of total collagen in the extracellular matrix was higher on the O-terminated NCD films, as were the amounts of calcium deposition and alkaline phosphatase activity. Nevertheless, the expression of genes for osteogenic markers – type I collagen, alkaline phosphatase, and osteocalcin – was either comparable on the H-terminated and O-terminated films or even lower on the O-terminated films. In conclusion, the higher wettability of the O-terminated NCD films is promising for adhesion and growth of osteoblasts. In addition, the O-terminated surface also seems to support the deposition of extracellular matrix proteins and extracellular matrix

  12. Low energy electron stimulated desorption from DNA films dosed with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Mirsaleh-Kohan, Nasrin; Bass, Andrew D.; Cloutier, Pierre; Massey, Sylvain; Sanche, Leon [Groupe en sciences des radiations, Faculte de medecine et des sciences de la sante, Universite de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2012-06-21

    Desorption of anions stimulated by 1-18 eV electron impact on self-assembled monolayer (SAM) films of single DNA strands is measured as a function of film temperature (50-250 K). The SAMs, composed of 10 nucleotides, are dosed with O{sub 2}. The OH{sup -} desorption yields increase markedly with exposure to O{sub 2} at 50 K and are further enhanced upon heating. In contrast, the desorption yields of O{sup -}, attributable to dissociative electron attachment to trapped O{sub 2} molecules decrease with heating. Irradiation of the DNA films prior to the deposition of O{sub 2} shows that this surprising increase in OH{sup -} desorption, at elevated temperatures, arises from the reaction of O{sub 2} with damaged DNA sites. These results thus appear to be a manifestation of the so-called 'oxygen fixation' effect, well known in radiobiology.

  13. IR and Raman spectra of LaH(SeO3)2 and FeH(SeO3)2

    International Nuclear Information System (INIS)

    Ratheesh, R.; Suresh, G.; Nayar, V.U.; Morris, R.E.

    1995-01-01

    The infrared and Raman spectra of LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals are recorded and analysed. Bands confirm the coexistence of HSeO 3 - and SeO 3 2- ions in both LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals. The Se-OH stretching vibrations are observed to be at lower wavenumbers in LaH(SeO 3 ) 2 than that in the iron compound in agreement with the short O-O distance in the former. Observed bands indicate that the SeO 3 2- ions are more angularly distorted in FeH(SeO 3 ) 2 crystal. ABC bands, characteristic of strong hydrogen bonded systems are observed in the infrared spectra of both the crystals. (author). 15 refs., 2 figs., 1 tab

  14. Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO 2

    KAUST Repository

    Yao, Ke Xin

    2008-12-16

    Through synthetic architecture and functionalization with self-assembled monolayers (SAMs), complex nanocomposite films of SAM/Pt/ZnO/SiO2 have been facilely prepared in this work. The nanostructured films are highly uniform and porous, showing a wide range of tunable wettabilities from superhydrophilicity to superhydrophobicity (water contact angles: 0° to 170°). Our approach offers synthetic flexibility in controlling film architecture, surface topography, coating texture, crystallite size, and chemical composition of modifiers (e.g., SAMs derived from alkanethiols). For example, wettability properties of the nanocomposite films can be finely tuned with both inorganic phase (i.e., ZnO/SiO2 and Pt/ZnO/SiO2) and organic phase (i.e., SAMs on Pt/ZnO/SiO2). Due to the presence of catalytic components Pt/ZnO within the nanocomposites, surface reactions of the organic modifiers can further take place at room temperature and elevated temperatures, which provides a means for SAM formation and elimination. Because the Pt/ZnO forms an excellent pair of metal-semiconductors for photocatalysis, the anchored SAMs can also be modified or depleted by UV irradiation (i.e., the films possess self-cleaning ability). Potential applications of these nanocomposite films have been addressed. Our durability tests also confirm that the films are thermally stable and structurally robust in modification- regeneration cycles. © 2008 American Chemical Society.

  15. Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films

    Science.gov (United States)

    Della Gaspera, Enrico; Menin, Enrico; Sada, Cinzia

    2018-01-01

    Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors. PMID:29538338

  16. Effect of thermal treatment on the CO and H2O sensing properties of MoO3 thin films

    International Nuclear Information System (INIS)

    Torres-Luengo, M; Martínez, H M; Torres, J; López-Carreño, L D

    2014-01-01

    MoO 3 thin films were prepared on Corning glass substrates using the chemical spray pyrolysis technique. A 0.1 M solution of ammonium molybdate tetrahydrate was used as precursor one. 5ml and 20 ml of the precursor solution was sprayed with the substrate temperature maintained at 623 K. Thermal treatment involved drying at 393 K for 8 h with continuous N 2 flow, followed by a vacuum annealing at 473 K for 2 h in a residual inert atmosphere. XRD indicates that the crystallographic structure corresponded to the orthorhombic α-MoO 3 phase. Electrical characterization was carried out in a system operating under high vacuum conditions. The samples could be cooled down to LN 2 temperature and heated in a controlled way up to 473 K. To elucidate the electrical response of the films to CO and H 2 O exposure, the I-V characteristic curve was measured over the whole temperature range. The electrical resistance of the films decreased with increasing temperature. In 5 ml films, the sensitivity to both gases increased which thermal treatment, reaching values between 40% and 60% at room temperature. On the contrary, the 20 ml films' sensitivity decreased almost half of their original values after thermal treatment

  17. New family of lanthanide-based inorganic-organic hybrid frameworks: Ln2(OH)4[O3S(CH2)nSO3]·2H2O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4) and their derivatives.

    Science.gov (United States)

    Liang, Jianbo; Ma, Renzhi; Ebina, Yasuo; Geng, Fengxia; Sasaki, Takayoshi

    2013-02-18

    We report the synthesis and structure characterization of a new family of lanthanide-based inorganic-organic hybrid frameworks, Ln(2)(OH)(4)[O(3)S(CH(2))(n)SO(3)]·2H(2)O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4), and their oxide derivatives. Highly crystallized samples were synthesized by homogeneous precipitation of Ln(3+) ions from a solution containing α,ω-organodisulfonate salts promoted by slow hydrolysis of hexamethylenetetramine. The crystal structure solved from powder X-ray diffraction data revealed that this material comprises two-dimensional cationic lanthanide hydroxide {[Ln(OH)(2)(H(2)O)](+)}(∞) layers, which are cross-linked by α,ω-organodisulfonate ligands into a three-dimensional pillared framework. This hybrid framework can be regarded as a derivative of UCl(3)-type Ln(OH)(3) involving penetration of organic chains into two {LnO(9)} polyhedra. Substitutional modification of the lanthanide coordination promotes a 2D arrangement of the {LnO(9)} polyhedra. A new hybrid oxide, Ln(2)O(2)[O(3)S(CH(2))(n)SO(3)], which is supposed to consist of alternating {[Ln(2)O(2)](2+)}(∞) layers and α,ω-organodisulfonate ligands, can be derived from the hydroxide form upon dehydration/dehydroxylation. These hybrid frameworks provide new opportunities to engineer the interlayer chemistry of layered structures and achieve advanced functionalities coupled with the advantages of lanthanide elements.

  18. HERSCHEL FAR-INFRARED SPECTRAL-MAPPING OF ORION BN/KL OUTFLOWS: SPATIAL DISTRIBUTION OF EXCITED CO, H{sub 2}O, OH, O, AND C{sup +} IN SHOCKED GAS

    Energy Technology Data Exchange (ETDEWEB)

    Goicoechea, Javier R.; Cernicharo, José; Cuadrado, Sara; Etxaluze, Mireya [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC). Sor Juana Ines de la Cruz 3, E-28049 Cantoblanco, Madrid (Spain); Chavarría, Luis [Centro de Astrobiología, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, E-28850 Madrid (Spain); Neufeld, David A. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Vavrek, Roland [Herschel Science Center, ESA/ESAC, P.O. Box 78, Villanueva de la Cañada, E-28691 Madrid (Spain); Bergin, Edwin A. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Encrenaz, Pierre [LERMA, UMR 8112 du CNRS, Observatoire de Paris, École Normale Supérieure, F-75014 Paris (France); Melnick, Gary J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 66, Cambridge, MA 02138 (United States); Polehampton, Edward, E-mail: jr.goicoechea@icmm.csic.es [RAL Space, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2015-01-20

    We present ∼2' × 2' spectral-maps of Orion Becklin-Neugebauer/Kleinmann-Low (BN/KL) outflows taken with Herschel at ∼12'' resolution. For the first time in the far-IR domain, we spatially resolve the emission associated with the bright H{sub 2} shocked regions ''Peak 1'' and ''Peak 2'' from that of the hot core and ambient cloud. We analyze the ∼54-310 μm spectra taken with the PACS and SPIRE spectrometers. More than 100 lines are detected, most of them rotationally excited lines of {sup 12}CO (up to J = 48-47), H{sub 2}O, OH, {sup 13}CO, and HCN. Peaks 1/2 are characterized by a very high L(CO)/L {sub FIR} ≈ 5 × 10{sup –3} ratio and a plethora of far-IR H{sub 2}O emission lines. The high-J CO and OH lines are a factor of ≈2 brighter toward Peak 1 whereas several excited H{sub 2}O lines are ≲50% brighter toward Peak 2. Most of the CO column density arises from T {sub k} ∼ 200-500 K gas that we associate with low-velocity shocks that fail to sputter grain ice mantles and show a maximum gas-phase H{sub 2}O/CO ≲ 10{sup –2} abundance ratio. In addition, the very excited CO (J > 35) and H{sub 2}O lines reveal a hotter gas component (T {sub k} ∼ 2500 K) from faster (v {sub S} > 25 km s{sup –1}) shocks that are able to sputter the frozen-out H{sub 2}O and lead to high H{sub 2}O/CO ≳ 1 abundance ratios. The H{sub 2}O and OH luminosities cannot be reproduced by shock models that assume high (undepleted) abundances of atomic oxygen in the preshock gas and/or neglect the presence of UV radiation in the postshock gas. Although massive outflows are a common feature in other massive star-forming cores, Orion BN/KL seems more peculiar because of its higher molecular luminosities and strong outflows caused by a recent explosive event.

  19. Adsorbed Layers of D2, H2, O2, and 3He on Graphite Studied by Neutron Scattering

    DEFF Research Database (Denmark)

    Nielsen, Mourits; McTague, J. P.; Ellenson, W. D.

    1977-01-01

    The phase diagrams of adsorbed monolayers of D2, H2, O2, and 3He on graphite have been measured by neutron diffraction. H2 and D2-layers have a registered √3 structure at low coverages, and at monolayer completion they have a dense triangular structure, which is incommensurate with the substrate...

  20. Photocatalytic sterilization of TiO2 films coated on Al fiber

    International Nuclear Information System (INIS)

    Luo Li; Miao Lei; Tanemura, Sakae; Tanemura, Masaki

    2008-01-01

    Photocatalytic TiO 2 films were coated on Al fiber by sol-gel dip-coating method, and then annealed. The crystal structure and morphology of the films were performed by XRD, TEM and SEM. Photocatalytic sterilization of the films was investigated in O 2 atmosphere through purifying the aqueous solution with facultative aerobe (Bacillus cereus), aerobe (Pseudomonas aeruginosa) and anaerobe (Staphylococcus aureus, Enterococcus faecalis and Escherichia coli). In the presence of O 2 , it benefits to generate O 2 · - and ·OH at the first stage of the photocatalytic reaction, while the excess O 2 restrains the anaerobe from reproducing and accelerates the reproducing for the aerobe at the second stage of reaction. As a result, it was found that the crystal of TiO 2 films is anatase phase and the films have excellent sterilization effect against facultative aerobe and anaerobe. Nevertheless, it only decreased the bioactivity against aerobe in a short time

  1. Cluster self-organization of germanate systems: suprapolyhedral precursor clusters and self-assembly of K2Nd4Ge4O13(OH)4, K2YbGe4O10(OH), K2Sc2Ge2O7(OH)2, and KScGe2O6(PYR)

    International Nuclear Information System (INIS)

    Ilyushin, G.D.; Dem'yanets, L.N.

    2008-01-01

    One performed the computerized (the TOPOS 4.0 software package) geometric and topological analyses of all known types of K, TR-germanates (TR = La-Lu, Y, Sc, In). The skeleton structure are shown as three-dimensional 3D, K, TR, Ge-patterns (graphs) with remote oxygen atoms. TR 4 3 3 4 3 3 + T 4 3 4 3, K 2 YbGe 4 O 14 (OH) pattern, TR 6 6 3 6 + T1 6 8 6 + T2 3 6 8, K 2 Sc 2 Ge 2 O 7 (OH) 2 , TR 6 4 6 4 + T 6 4 6 and KScGe 2 O 6 - TR 6 6 3 6 3 4 + T1 6 3 6 + T2 6 4 3 patterns served as crystal-forming 2D TR,Ge-patterns for K 2 Nd 4 Ge 4 O 13 (OH) 4 . One performed the 3D-simulation of the mechanism of self-arrangement of the crystalline structures: cluster-precursor - parent chain - microlayer - microskeleton (super-precursor). Within K 2 Nd 4 Ge 4 O 13 (OH) 4 , K 2 Sc 2 Ge 2 O 7 (OH) 2 and KScGe 2 O 6 one identified the invariant type of the cyclic hexapolyhedral cluster-precursor consisting of TR-octahedrons linked by diorthogroups stabilized by K atoms. For K 2 Nd 4 Ge 4 O 13 (OH) 4 one determined the type of the cyclic tetrapolyhedral cluster-precursor consisting of TR-octavertices linked by tetrahedrons. The cluster CN within the layer just for KScGe 2 O 6 water-free germanate (the PYR pyroxene analog) is equal to 6 (the maximum possible value), while in the rest OH-containing germanates it constitutes 4. One studied the formation mechanism of Ge-radicals in the form of Ge 2 O 7 and Ge 4 O 13 groupings, GeO 3 chain and the tubular structure consisting of Ge 8 O 20 fixed cyclic groupings [ru

  2. Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2): New one-dimensional Bi-coordination materials—Reversible hydration and topotactic decomposition to α-Bi2O3

    Science.gov (United States)

    Jeon, Hye Rim; Lee, Dong Woo; Ok, Kang Min

    2012-03-01

    Two one-dimensional bismuth-coordination materials, Bi[NC5H3(CO2)2](OH2)xF (x=1 and 2), have been synthesized by hydrothermal reactions using Bi2O3, 2,6-NC5H3(CO2H)2, HF, and water at 180 °C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi3+ cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC5H3(CO2)2](OH2)F single crystals at 800 °C led to α-Bi2O3 that maintained the same morphology of the original crystals.

  3. H2O2 Synthesis Induced by Irradiation of H2O with Energetic H(+) and Ar(+) Ions at Various Temperatures

    Science.gov (United States)

    Baragiola, R. A.; Loeffler, M. J.; Raut, U.; Vidal, R. A.; Carlson, R. W.

    2004-01-01

    The detection of H2O2 on Jupiter's icy satellite Europa by the Galileo NIMS instrument presented a strong evidence for the importance of radiation effects on icy surfaces. A few experiments have investigated whether solar flux of protons incident on Europa ice could cause a significant if any H2O2 production. These published results differ as to whether H2O2 can be formed by ions impacting water at temperatures near 80 K, which are appropriate to Europa. This discrepancy may be a result of the use of different incident ion energies, different vacuum conditions, or different ways of processing the data. The latter possibility comes about from the difficulty of identifying the 3.5 m peroxide OH band on the long wavelength wing of the much stronger water 3.1 m band. The problem is aggravated by using straight line baselines to represent the water OH band with a curvature, in the region of the peroxide band, that increases with temperature. To overcome this problem, we use polynomial baselines that provide good fits to the water band and its derivative.

  4. Assessing Many-Body Effects of Water Self-Ions. I: OH-(H2O) n Clusters.

    Science.gov (United States)

    Egan, Colin K; Paesani, Francesco

    2018-04-10

    The importance of many-body effects in the hydration of the hydroxide ion (OH - ) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the CCSD(T) level of theory, extrapolated to the complete basis set limit, for the low-lying isomers of OH - (H 2 O) n clusters, with n = 1-5. This is accomplished by partitioning individual fragments extracted from the whole clusters into "groups" that are classified by both the number of OH - and water molecules and the hydrogen bonding connectivity within each fragment. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method, this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling OH - hydration. Furthermore, the rapid convergence of the many-body expansion of the interaction energy also suggests a rigorous path for the development of analytical potential energy functions capable of describing individual OH - -water many-body terms, with chemical accuracy. Finally, a comparison between the reference CCSD(T) many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that range-separated, dispersion-corrected, hybrid functionals exhibit the highest accuracy, while GGA functionals, with or without dispersion corrections, are inadequate to describe OH - -water interactions.

  5. Vacancy-Rich Monolayer BiO2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst.

    Science.gov (United States)

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; Zhang, Gaoke; Chen, Hong

    2018-01-08

    Vacancy-rich layered materials with good electron-transfer property are of great interest. Herein, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x , monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy V Bi-O ''' as confirmed by the positron annihilation spectra. The presence of V Bi-O ''' defects in monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tailoring of TiO2 films by H2SO4 treatment and UV irradiation to improve anticoagulant ability and endothelial cell compatibility.

    Science.gov (United States)

    Liao, Yuzhen; Li, Linhua; Chen, Jiang; Yang, Ping; Zhao, Ansha; Sun, Hong; Huang, Nan

    2017-07-01

    Surfaces with dual functions that simultaneously exhibit good anticoagulant ability and endothelial cell (EC) compatibility are desirable for blood contact materials. However, these dual functions have rarely been achieved by inorganic materials. In this study, titanium dioxide (TiO 2 ) films were treated by sulphuric acid (H 2 SO 4 ) and ultraviolet (UV) irradiation successively (TiO 2 H 2 SO 4 -UV), resulting in good anticoagulant ability and EC compatibility simultaneously. We found that UV irradiation improved the anticoagulant ability of TiO 2 films significantly while enhancing EC compatibility, though not significantly. The enhanced anticoagulant ability could be related to the oxidation of surface-adsorbed hydrocarbons and increased hydrophilicity. The H 2 SO 4 treatment improved the anticoagulant ability of TiO 2 films slightly, while UV irradiation improved the anticoagulant ability strongly. The enhanced EC compatibility could be related to the increased surface roughness and positive charges on the surface of the TiO 2 films. Furthermore, the time-dependent degradation of the enhanced EC compatibility and anticoagulant ability of TiO 2 H 2 SO 4 -UV was observed. In summary, TiO 2 H 2 SO 4 -UV expressed both excellent anticoagulant ability and good EC compatibility at the same time, which could be desirable for blood contact materials. However, the compatibility of TiO 2 H 2 SO 4 -UV with smooth muscle cells (SMCs) and macrophages was also improved. More effort is still needed to selectively improve EC compatibility on TiO 2 films for better re-endothelialization. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Chebyshev method for state-to-state reactive scattering using reactant-product decoupling: OH + H2H2O + H.

    Science.gov (United States)

    Cvitaš, Marko T; Althorpe, Stuart C

    2013-08-14

    We extend a recently developed wave packet method for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)] to include the Chebyshev propagator. The method uses the further partitioned approach to reactant-product decoupling, which uses artificial decoupling potentials to partition the coordinate space of the reaction into separate reactant, product, and transition-state regions. Separate coordinates and basis sets can then be used that are best adapted to each region. We derive improved Chebyshev partitioning formulas which include Mandelshtam-and-Taylor-type decoupling potentials, and which are essential for the non-unitary discrete variable representations that must be used in 4-atom reactive scattering calculations. Numerical tests on the fully dimensional OH + H2H2O + H reaction for J = 0 show that the new version of the method is as efficient as the previously developed split-operator version. The advantages of the Chebyshev propagator (most notably the ease of parallelization for J > 0) can now be fully exploited in state-to-state reactive scattering calculations on 4-atom reactions.

  8. Hyperfine excitation of OH+ by H

    Science.gov (United States)

    Lique, François; Bulut, Niyazi; Roncero, Octavio

    2016-10-01

    The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.

  9. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors.

    Science.gov (United States)

    Yang, Yang; Li, Lei; Ruan, Gedeng; Fei, Huilong; Xiang, Changsheng; Fan, Xiujun; Tour, James M

    2014-09-23

    A three-dimensional nanoporous Ni(OH)2 thin-film was hydrothermally converted from an anodically formed porous layer of nickel fluoride/oxide. The nanoporous Ni(OH)2 thin-films can be used as additive-free electrodes for energy storage. The nanoporous layer delivers a high capacitance of 1765 F g(-1) under three electrode testing. After assembly with porous activated carbon in asymmetric supercapacitor configurations, the devices deliver superior supercapacitive performances with capacitance of 192 F g(-1), energy density of 68 Wh kg(-1), and power density of 44 kW kg(-1). The wide working potential window (up to 1.6 V in 6 M aq KOH) and stable cyclability (∼90% capacitance retention over 10,000 cycles) make the thin-film ideal for practical supercapacitor devices.

  10. Adhesion of ultrathin ZrO2(111) films on Ni(111) from first principles

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Carter, Emily A.

    2001-01-01

    We have studied the ZrO2(111)/Ni(111) interface using the ultrasoft pseudopotential formalism within density functional theory. We find that ZrO2(111) adheres relatively strongly at the monolayer level but thicker ceramic films interact weakly with the Ni-substrate. We argue that the cohesion cha...

  11. Interactive effects of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures

    Science.gov (United States)

    Liu, Shurong; Berns, Anne E.; Vereecken, Harry; Wu, Di; Brüggemann, Nicolas

    2017-02-01

    Abiotic conversion of the reactive nitrification intermediate hydroxylamine (NH2OH) to nitrous oxide (N2O) is a possible mechanism of N2O formation during nitrification. Previous research has demonstrated that manganese dioxide (MnO2) and organic matter (OM) content of soil as well as soil pH are important control variables of N2O formation in the soil. But until now, their combined effect on abiotic N2O formation from NH2OH has not been quantified. Here, we present results from a full-factorial experiment with artificial soil mixtures at five different levels of pH, MnO2 and OM, respectively, and quantified the interactive effects of the three variables on the NH2OH-to-N2O conversion ratio (RNH2OH-to-N2O). Furthermore, the effect of OM quality on RNH2OH-to-N2O was determined by the addition of four different organic materials with different C/N ratios to the artificial soil mixtures. The experiments revealed a strong interactive effect of soil pH, MnO2 and OM on RNH2OH-to-N2O. In general, increasing MnO2 and decreasing pH increased RNH2OH-to-N2O, while increasing OM content was associated with a decrease in RNH2OH-to-N2O. Organic matter quality also affected RNH2OH-to-N2O. However, this effect was not a function of C/N ratio, but was rather related to differences in the dominating functional groups between the different organic materials.

  12. Production of 34S-labeled gypsum (Ca34SO4.2H2O Produção de gesso (Ca34SO4.2H2O, marcado com 34S

    Directory of Open Access Journals (Sweden)

    Alexssandra Luiza Rodrigues Molina Rossete

    2006-08-01

    Full Text Available Agricultural gypsum (CaSO4.2H2O stands out as an effective source of calcium and sulfur, and to control aluminum saturation in the soil. Labeled as 34S it can elucidate important aspects of the sulfur cycle. Ca34SO4.2H2O was obtained by chemical reaction between Ca(OH2 and H2(34SO4, performed under slow agitation. The acid was produced by ion exchange chromatography using the Dowex 50WX8 cation exchange resin and a Na2(34SO4 eluting solution. After precipitation, the precipitate was separated and dried in a ventilated oven at 60ºC. From 2.2 L H2SO4 0.2 mol L-1 and 33.6 g Ca(OH2, 73.7 ± 0.6 g Ca34SO4.2H2O were produced on average in the tests, representing a mean yield of 94.6 ± 0.8%, with 98% purity. The 34SO2 gas was obtained from Ca34SO4.2H2O in the presence of NaPO3 in a high vacuum line and was used for the isotopic determination of S in an ATLAS-MAT model CH-4 mass spectrometer.O gesso agrícola (CaSO4.2H2O destaca-se como fonte eficiente de cálcio e enxofre e na redução da saturação de alumínio no solo. O 34S como traçador isotópico pode elucidar aspectos importantes no ciclo do enxofre. Para tanto o Ca34SO4.2H2O foi obtido por reação química entre o Ca(OH2 e solução de H2(34SO4, realizada sob agitação lenta. O ácido foi produzido por cromatografia de troca iônica, utilizando resina catiônica Dowex 50WX8 e solução eluente de Na2(34SO4. Após a precipitação foi separado o precipitado e realizada a secagem em estufa ventilada à temperatura de 60ºC. Nos testes, a partir de 2,2 L de H2SO4 0,2 mol L-1 e 33,6 g de Ca(OH2, foram produzidos em média 73,7 ± 0,6 g de Ca34SO4.2H2O representando um rendimento médio de 94,6 ± 0,8%, com pureza de 98%. A partir do Ca34SO4.2H2O na presença de NaPO3, em linha de alto vácuo, obteve-se o gás 34SO2 utilizado para a determinação isotópica do S no espectrômetro de massas ATLAS-MAT modelo CH-4.

  13. A Novel Ruthenium-Decorating Polyoxomolybdate Cs3Na6H[MoVI14RuIV2O50(OH2]·24H2O: An Active Heterogeneous Oxidation Catalyst for Alcohols

    Directory of Open Access Journals (Sweden)

    Rong Wan

    2018-01-01

    Full Text Available The first example of wholly inorganic ruthenium-containing polyoxomolybdate Cs3Na6H[MoVI14RuIV2O50(OH2]·24H2O (1 was isolated and systematically characterized by element analysis, infrared spectroscopy (IR, thermogravimetric analyses (TGA, X-ray photoelectron spectroscopy (XPS, energy dispersive X-ray spectroscopy (EDX and single-crystal X-ray diffraction. Compound 1 is composed of an unprecedented {Mo14}-type isopolymolybdate with a di-ruthenium core precisely encapsulated in its center, exhibiting a three-tiered ladder-like structure. The title compound can act as an efficient heterogeneous catalyst in the transformation of 1-phenylethanol to acetophenone. This catalyst is also capable of being recycled and reused for at least ten cycles with its activity being retained under the optimal conditions.

  14. Thermal decomposition of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O: Influence on structure, microstructure and hydrofluorination

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Hall de Recherche de Pierrelatte, AREVA NC, BP 16, 26701 Pierrelatte (France); Rivenet, M., E-mail: murielle.rivenet@ensc-lille.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Berrier, E. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Waele, I. de [Université de Lille, CNRS, UMR 8516 – LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille (France); Arab, M.; Amaraggi, D.; Morel, B. [Hall de Recherche de Pierrelatte, AREVA NC, BP 16, 26701 Pierrelatte (France); Abraham, F. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-01-15

    The thermal decomposition of uranyl peroxide tetrahydrate, (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2}.2H{sub 2}O, was studied by combining high temperature powder X-ray diffraction, scanning electron microscopy, thermal analyses and spectroscopic techniques (Raman, IR and {sup 1}H NMR). In situ analyses reveal that intermediates and final uranium oxides obtained upon heating are different from that obtained after cooling at room temperature and that the uranyl precursor used to synthesize (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O, sulfate or nitrate, has a strong influence on the peroxide thermal behavior and morphology. The decomposition of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O ex sulfate is pseudomorphic and leads to needle-like shaped particles of metastudtite, (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2}, and UO{sub 3-x}(OH){sub 2x}·zH{sub 2}O, an amorphous phase found in air in the following of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2} dehydration. (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O and the compounds resulting from its thermal decomposition are very reactive towards hydrofluorination as long as their needle-like morphology is kept.

  15. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    Science.gov (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  16. Monolayers and thin films of dextran hydrophobically modified

    International Nuclear Information System (INIS)

    Leiva, Angel; Munoz, Natalia; Gargallo, Ligia; Radic, Deodato; Urzua, Marcela

    2010-01-01

    A series of biodegradable graft copolymers were synthesized by grafting e-caprolactone over dextran of different molecular weights. The obtained copolymers were characterized by Fourier transform infrared spectroscopy FTIR, proton nuclear magnetic resonance 1H NMR, thermogravimetry and elemental analysis. Stable monolayers at the air-water interface and spin coated thin films were prepared and characterized by the Langmuir technique and by contact angle measurements respectively. The compressibility and static surface elasticity of the monolayers and the surface energy of copolymer thin films show dependence with the e-caprolactone content. >From these results it can be concluded that the surface properties of grafted copolymers can be modulated by their composition. Additionally, according to the obtained results, e-caprolactone grafted-dextrans show potential for being used in different applications where surface properties are important. (author)

  17. Preparation of acid salt M(HPO4)2.nH2 O thin films

    International Nuclear Information System (INIS)

    Kassem, M.

    1998-01-01

    The layered crystalline powders of Titanium Phosphate with the formula Ti(HPO 4 ) 2 .nH 2 O (phase α when n=2, phase γ when n=1) were prepared by reaction of titanium three chloride with phosphoric acid under specific thermal conditions. Starting from these powders thin films have been prepared using some methods such as: Thermal evaporation, sol-gel and vapor phase transport. The results of X-ray diffraction and differential thermal deferential analysis show that the temperature plays an important role in the determination of the crystalline phases and the phase transition of the prepared films. (author). 7 refs

  18. Obtention of agricultural gypsum traced on {sup 34} S (Ca{sup 34} SO{sub 4}.2H{sub 2}O), by chemical reaction between H{sub 2}{sup 34} SO{sub 4} and Ca(OH){sub 2}; Obtencao do gesso agricola marcado no {sup 34} S (Ca{sup 34} SO{sub 4}.2H{sub 2}O), por reacao quimica entre o H{sub 2}{sup 34} SO{sub 4} e Ca(OH){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rossete, Alessandra L.R.M.; Bendassolli, Jose A.; Ignoto, Raquel de Fatima; Batagello, Hugo Henrique [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Isotopos Estaveis

    2002-07-01

    The gypsum (CaSO{sub 4}.2H{sub 2}O) has double function in the soil: as source of calcium and sulfur and reducing agent of aluminum saturation. The sulfur for the plants has acting in the vital functions and it is proven fact increase of the S deficiency in Brazilian soils. The isotope tracer {sup 34} S can elucidate important aspects in the sulfur cycle. The Ca{sup 34} SO{sub 4}.2H{sub 2}O was obtained by chemical reaction between Ca(OH){sub 2} and H{sub 2}{sup 34} SO{sub 4} solution. The acid was obtained by chromatography ionic change, using cationic resin Dowex 50WX8 and Na{sub 2}{sup 34} SO{sub 4} solution. The reaction was realized under slow agitation. After the reaction, the precipitate was separated and dried in ventilated stove at 60 deg C temperature. The Mass of the Ca{sup 34} SO{sub 4}.2H{sub 2}O produced was determined by method gravimetric. This way, a system contends resin 426 cm{sup 3}, considering volume of 2.2 liters can be obtained a solution contends 44.2 g of H{sub 2}{sup 34} SO{sub 4}, theoretically could be produced 78.0 g of Ca{sup 34} SO{sub 4}.2H{sub 2}O approximately. With results of the tests were verified that there was not total precipitation of the Ca{sup 34}SO{sub 4}.2H{sub 2}O. Were produced 73.7{+-} 0.6 g of Ca{sup 34} SO{sub 4}.2H{sub 2}O representing average income 94.6{+-}0.8 %. The purity of the produced CaSO{sub 4}.2H{sub 2}O was 98%. (author)

  19. Atomistic growth phenomena of reactively sputtered RuO2 and MnO2 thin films

    International Nuclear Information System (INIS)

    Music, Denis; Bliem, Pascal; Geyer, Richard W.; Schneider, Jochen M.

    2015-01-01

    We have synthesized RuO 2 and MnO 2 thin films under identical growth conditions using reactive DC sputtering. Strikingly different morphologies, namely, the formation of RuO 2 nanorods and faceted, nanocrystalline MnO 2 , are observed. To identify the underlying mechanisms, we have carried out density functional theory based molecular dynamics simulations of the growth of one monolayer. Ru and O 2 molecules are preferentially adsorbed at their respective RuO 2 ideal surface sites. This is consistent with the close to defect free growth observed experimentally. In contrast, Mn penetrates the MnO 2 surface reaching the third subsurface layer and remains at this deep interstitial site 3.10 Å below the pristine surface, resulting in atomic scale decomposition of MnO 2 . Due to this atomic scale decomposition, MnO 2 may have to be renucleated during growth, which is consistent with experiments

  20. A simple approach of fabricating thermoelectric γ-NaxCoO2 and superconductive Nax(H2O)yCoO2films using the sol-gel spin-coating method

    International Nuclear Information System (INIS)

    Liu, Chia-Jyi; Nayak, Pradipta K.; Chen, Yong-Zhi

    2009-01-01

    We report a simple approach of fabricating thermoelectric γ-Na x CoO 2 film with the c-axis orientation using the sol-gel spin-coating method. The inferred sodium content is x = 0.65 according to the correlation between the c-axis lattice constant and x. Temperature dependence of both the resistivity and thermopower resembles that of the γ-Na 0.68 CoO 2 film grown by the reactive solid-phase epitaxy. The fitted thermopower data show that the bandwidth of γ-Na x CoO 2 is found to be ∼ 101 meV, being close to the quasi-particle band (70-100 meV) derived from an angle-resolved photoemission study of γ-Na 0.7 CoO 2 . These results enable the possibility of low-cost fabrication of γ-Na x CoO 2 -based thermoelectric film devices. Furthermore, we have also topotactically transformed the of γ-Na x CoO 2 film to a superconducting Na x (H 2 O) y CoO 2film with T c,onset = 4.12 K.

  1. Line shape parameters for the H2O-H2 collision system for application to exoplanet and planetary atmospheres

    Science.gov (United States)

    Renaud, Candice L.; Cleghorn, Kara; Hartmann, Léna; Vispoel, Bastien; Gamache, Robert R.

    2018-05-01

    Water can be detected throughout the universe: in comets, asteroids, dwarf planets, the inner and outer planets in our solar system, cool stars, brown dwarfs, and on many exoplanets. Here the focus is on locations rich in hydrogen gas. To properly study these environments, there is a need for the line shape parameters for H2O transitions in collision with hydrogen. This work presents calculations of the half-width and line shift, made using the Modified Complex Robert-Bonamy (MCRB) formalism, at a number of temperatures. It is shown that this collision system is strongly off-resonance. For such conditions, the atom-atom part of the intermolecular potential dominates the interaction of the radiating and perturbing molecules. The atom-atom parameters were adjusted by fitting the H2O-H2 measurements of Brown and Plymate (1996). Several techniques were used to extract lines for which there is more confidence in the quality of the data. The final potential yields results that agree with the measurements with ∼0.3% difference and a 5.9% standard deviation. Using this potential, MCRB calculations were made for all transitions in the pure rotation, ν2, ν1, and ν3 bands. The structure of the line shape parameters and the temperature dependence of the half-width, as a function of the rotational and vibrational quantum numbers, are discussed. It is shown that the power law model of the T-dependence of the half-width is inadequate over large temperature ranges.

  2. Estimation of myocardial blood flow and myocardial flow reserve by 99mTc-sestamibi imaging: comparison with the results of [15O]H2O PET

    International Nuclear Information System (INIS)

    Ito, Yoshinori; Noriyasu, Kazuyuki; Kohya, Tetsuro; Kitabatake, Akira; Katoh, Chietsugu; Kuge, Yuji; Furuyama, Hideto; Morita, Koichi; Tamaki, Nagara

    2003-01-01

    We developed a noninvasive method to quantitatively estimate the myocardial blood flow (MBF) index and flow reserve (MFR) using dynamic and static data obtained with technetium-99m sestamibi, and compared the results with MBF and MFR measured by oxygen-15-labeled water ([ 15 O]H 2 O) PET. Twenty patients with coronary artery disease (CAD) and nine normal subjects underwent both 99m Tc-sestamibi and PET studies within 2 weeks. From the anterior view, dynamic data were acquired for 2 min immediately after the injection of 99m Tc-sestamibi, and planar static images were also obtained after 5 min at rest and during ATP stress (0.16 mg kg -1 min -1 for 5 min) on another day. The area under the time-activity curve on the aortic arch (Aorta ACU), myocardial weight with the SPET image (M), and the myocardial count on the planar image for 1 min (C m ) were obtained. The MBF index (MBFI) was calculated as follows: MBFI=C m /Aorta ACU x 100/M. MFR was measured by dividing the MBFI at ATP stress by MBFI at rest. The MBFI measured by 99m Tc-sestamibi was significantly correlated with MBF obtained using [ 15 O]H 2 O PET (MBFI=13.174+11.732 x MBF, r=0.821, P 99m Tc-sestamibi was well correlated with that obtained using [ 15 O]H 2 O PET, with some underestimation (r=0.845, P 99m Tc-sestamibi in patients with CAD was significantly lower than that in normal subjects (CAD: 1.484±0.256 vs normal: 2.127±0.308, P 99m Tc-sestamibi. This may be useful for the quantitative assessment of CAD, especially in those patients with diffuse coronary disease. (orig.)

  3. Assembly of CdSe onto mesoporous TiO{sub 2} films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Lai-Wan; Chien, Huei-Ting; Lee, Yuh-Lang [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 70101 (China)

    2010-08-01

    A self-assembled monolayer (SAM) of 3-mercaptopropyl-trimethyoxysilane (MPTMS) is pre-assembled onto a mesoporous TiO{sub 2} film and is used as a surface-modified layer to induce the growth of CdSe QDs in the successive ionic layer adsorption and reaction (SILAR) process. Due to the specific interaction of the terminal thiol groups to CdSe, the MPTMS SAM is found to increase the nucleation and growth rates of CdSe in the SILAR process, leading to a well covering and higher uniform CdSe layer which has a superior ability, compared with the electrode without MPTMS, in inhibiting the charge recombination at the electrode/electrolyte interface. Furthermore, the performance of the CdSe-sensitized TiO{sub 2} electrode can further be improved by an additional heat annealing after film deposition, attributable to a better interfacial connection between CdSe and TiO{sub 2}, as well as a better connection among CdSe QDs. The CdSe-sensitized solar cell prepared by the present strategy can achieve an energy conversion efficiency of 2.65% under the illumination of one sun (AM 1.5, 100 mW cm{sup -2}). (author)

  4. Fabrication and properties of highly luminescent materials from Tb(OH)3-SiO2 and Tb(OH)3-SiO2:Eu3+ nanotubes

    International Nuclear Information System (INIS)

    Tran Thu Huong; Tran Kim Anh; Le Quoc Minh

    2009-01-01

    Luminescent nanomaterials with one-dimensional (1D) structures have attracted much attention due to their unique properties and potential applications in nanophotonics and nanobiophotonics. In this paper, we report a synthesis of terbium - hydroxide - at - silica Tb(OH) 3 -SiO 2 and Tb(OH) 3 -SiO 2 :Eu 3+ nanotubes. Terbium - hydroxide tubes were synthesized by soft template method. The size of the tubes can be controlled precisely and have outer diameters ranging from 80 to 120 nm, wall thickness of about 30 nm, and lengths ranging from 300 to 800 nm. To fabricate core/shell materials, the seed growth method is used. FESEM, X-ray diffraction, Raman spectra of Tb(OH) 3 and Tb(OH) 3 -SiO 2 nanotubes were investigated. The photoluminescence (PL) spectrum of Tb(OH) 3 under 325 nm excitation consists of four main peaks at 488, 542, 582, and 618 nm. Furthermore, a preliminary suggestion for the mechanism of growth of the Tb(OH) 3 nanotubes using the soft - template synthesis technique has been proposed. The PL intensity from Tb(OH) 3 -SiO 2 or Tb(OH) 3 -SiO 2 :Eu 3+ nanotubes is much stronger than that of Tb(OH) 3 .

  5. Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2.

    Science.gov (United States)

    Misak, Anton; Grman, Marian; Bacova, Zuzana; Rezuchova, Ingeborg; Hudecova, Sona; Ondriasova, Elena; Krizanova, Olga; Brezova, Vlasta; Chovanec, Miroslav; Ondrias, Karol

    2018-06-01

    Exogenous and endogenously produced sulfide derivatives, such as H 2 S/HS - /S 2- , polysulfides and products of the H 2 S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O 2 - ) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O 2 - , we found that a polysulfide (Na 2 S 4 ) and S/GSNO were potent scavengers of O 2 - and cPTIO radicals compared to H 2 S (Na 2 S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H 2 O 2 and produced OH in the following order: S/GSNO > Na 2 S 4  ≥ Na 2 S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H 2 O 2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H 2 O 2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H 2 O 2 ; and (iv) Na 2 S 4 modulated intracellular calcium in A87MG cells, which depended on the order of Na 2 S 4 /H 2 O 2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time

  6. Kamarizaite, Fe{3/3+}(AsO4)2(OH)3 · 3H2O, a new mineral species, arsenate analogue of tinticite

    Science.gov (United States)

    Chukanov, N. V.; Pekov, I. V.; Möckel, S.; Mukhanova, A. A.; Belakovsky, D. I.; Levitskaya, L. A.; Bekenova, G. K.

    2010-12-01

    Kamarizaite, a new mineral species, has been identified in the dump of the Kamariza Mine, Lavrion mining district, Attica Region, Greece, in association with goethite, scorodite, and jarosite. It was named after type locality. Kamarizaite occurs as fine-grained monomineralic aggregates (up to 3 cm across) composed of platy crystals up to 1 μm in size and submicron kidney-shaped segregations. The new mineral is yellow to beige, with light yellow streak. The Mohs hardness is about 3. No cleavage is observed. The density measured by hydrostatic weighing is 3.16(1) g/cm3, and the calculated density is 3.12 g/cm3. The wavenumbers of absorption bands in the IR spectrum of kamarizaite are (cm-1; s is strong band, w is weak band): 3552, 3315s, 3115, 1650w, 1620w, 1089, 911s, 888s, 870, 835s, 808s, 614w, 540, 500, 478, 429. According to TG and IR data, complete dehydration and dehydroxylation in vacuum (with a weight loss of 15.3(1)%) occurs in the temperature range 110-420°C. Mössbauer data indicate that all iron in kamarizaite is octahedrally coordinated Fe3+. Kamarizaite is optically biaxial, positive: n min = 1.825, n max = 1.835, n mean = 1.83(1) (for a fine-grained aggregate). The chemical composition of kamarizaite (electron microprobe, average of four point analyses) is as follows, wt %: 0.35 CaO, 41.78 Fe2O3, 39.89 As2O5, 1.49 SO3, 15.3 H2O (from TG data); the total is 98.81. The empirical formula calculated on the basis of (AsO4,SO4)2 is Ca0.03Fe{2.86/3+} (AsO4)1.90(SO4)0.10(OH)2.74 · 3.27H2O. The idealized formula is Fe{3/3+}(AsO4)2(OH)3 · 3H2O. Kamarizaite is an arsenate analogue of orthorhombic tinticite, space group Pccm, Pcc2, Pcmm, Pcm21, or Pc2 m; a = 21.32(1), b = 13.666(6), c =15.80(1) Å, V= 4603.29(5) Å3, Z= 16. The strongest reflections of the X-ray powder diffraction pattern [ bar d , Å ( I, %) ( hkl)] are: 6.61 (37) (112, 120), 5.85 (52) (311), 3.947 (100) (004, 032, 511), 3.396 (37) (133, 431), 3.332 (60) (314), 3.085 (58) (621, 414, 324

  7. Automatic generation of absolute myocardial blood flow images using [15O]H2O and a clinical PET/CT scanner.

    Science.gov (United States)

    Harms, Hendrik J; Knaapen, Paul; de Haan, Stefan; Halbmeijer, Rick; Lammertsma, Adriaan A; Lubberink, Mark

    2011-05-01

    Parametric imaging of absolute myocardial blood flow (MBF) using [(15)O]H(2)O enables determination of MBF with high spatial resolution. The aim of this study was to develop a method for generating reproducible, high-quality and quantitative parametric MBF images with minimal user intervention. Nineteen patients referred for evaluation of MBF underwent rest and adenosine stress [(15)O]H(2)O positron emission tomography (PET) scans. Ascending aorta and right ventricular (RV) cavity volumes of interest (VOIs) were used as input functions. Implementation of a basis function method (BFM) of the single-tissue model with an additional correction for RV spillover was used to generate parametric images. The average segmental MBF derived from parametric images was compared with MBF obtained using nonlinear least-squares regression (NLR) of VOI data. Four segmentation algorithms were evaluated for automatic extraction of input functions. Segmental MBF obtained using these input functions was compared with MBF obtained using manually defined input functions. The average parametric MBF showed a high agreement with NLR-derived MBF [intraclass correlation coefficient (ICC) = 0.984]. For each segmentation algorithm there was at least one implementation that yielded high agreement (ICC > 0.9) with manually obtained input functions, although MBF calculated using each algorithm was at least 10% higher. Cluster analysis with six clusters yielded the highest agreement (ICC = 0.977), together with good segmentation reproducibility (coefficient of variation of MBF generated automatically using cluster analysis and a implementation of a BFM of the single-tissue model with additional RV spillover correction.

  8. pH Dependent Studies of Chemical Bath Deposition Grown ZnO-SiO{sub 2} Core-Shell Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Seth, Rajni; Panwar, Sanjay [Maharishi Markandeshwar University, Ambala (India); Kumar, Sunil; Kang, T. W.; Jeon, H. C. [Dongguk University, Seoul (Korea, Republic of)

    2017-01-15

    ZnO-SiO{sub 2} core-shell thin films were synthesized using chemical-bath deposition at different pH. Optical studies were done to optimize the thin films to find suitable parameters for solar cell buffer layers. These studies were done by measuring the transmission at 500 nm, which is the peak of the solar spectrum. All the parameters were seen to be highly pH dependent. The transmittance for a sample synthesized with a pH of 10.8 reached 85%. The transmittance was found not to depend on the bandgap values, but it was found possibly to depend on the fewer defect states created at a particular pH, as shown by Urbach energy and scanning electron microscopy (SEM) surface structure. An appreciable transmittance was observed in the blue region of the spectrum which had been missing until now in commercial CdS-based buffer layers. The Fourier-transform infrared and the energy dispersive X-ray spectra confirmed that the films were composed of only ZnO and silica only : no impurities were found. The urbach energy values and the SEM image of sample S3 clearly indicate the creation of fewer of defects, leading to higher crystallintiy and higher transmittance. Therefore, this shortcoming can be resolved by the substituted buffer layer of ZnO:SiO{sub 2} nano-composite thin film, which can enhance the blue response of the photovoltaic cells.

  9. Drying Temperature Dependence of Sol-gel Spin Coated Bilayer Composite ZnO/TiO2 Thin Films for Extended Gate Field Effect Transistor pH Sensor

    Science.gov (United States)

    Rahman, R. A.; Zulkefle, M. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-03-01

    This study presents an investigation on zinc oxide (ZnO) and titanium dioxide (TiO2) bilayer film applied as the sensing membrane for extended-gate field effect transistor (EGFET) for pH sensing application. The influences of the drying temperatures on the pH sensing capability of ZnO/TiO2 were investigated. The sensing performance of the thin films were measured by connecting the thin film to a commercial MOSFET to form the extended gates. By varying the drying temperature, we found that the ZnO/TiO2 thin film dried at 150°C gave the highest sensitivity compared to other drying conditions, with the sensitivity value of 48.80 mV/pH.

  10. Physicochemical properties of the CsNO/sub 2/-CsOH-H/sub 2/O ternary system at 25/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Protsenko, P I; Medvedev, B S; Popova, T B [Rostovskii-na-Donu Gosudarstvennyj Univ. (USSR); Kalmytskij Gosudarstvennyj Univ., Ehlista (USSR))

    1977-01-01

    Saturated solutions of the CsNO/sub 2/ - CsOH- H/sub 2/O system have been studied at 25 deg C by the methods of solubility, viscosity, electric conductivity, refractometry and density. It is stated that no solid phase of a new composition is formed in the system. While adding hydroxide to the saturated solution of cesium nitride, a considerable salting-out of the latter takes place.

  11. Passivation of pigment-grade TiO2 particles by nanothick atomic layer deposited SiO2 films

    International Nuclear Information System (INIS)

    King, David M; Liang Xinhua; Weimer, Alan W; Burton, Beau B; Akhtar, M Kamal

    2008-01-01

    Pigment-grade TiO 2 particles were passivated using nanothick insulating films fabricated by atomic layer deposition (ALD). Conformal SiO 2 and Al 2 O 3 layers were coated onto anatase and rutile powders in a fluidized bed reactor. SiO 2 films were deposited using tris-dimethylaminosilane (TDMAS) and H 2 O 2 at 500 deg. C. Trimethylaluminum and water were used as precursors for Al 2 O 3 ALD at 177 deg. C. The photocatalytic activity of anatase pigment-grade TiO 2 was decreased by 98% after the deposition of 2 nm SiO 2 films. H 2 SO 4 digest tests were performed to exhibit the pinhole-free nature of the coatings and the TiO 2 digest rate was 40 times faster for uncoated TiO 2 than SiO 2 coated over a 24 h period. Mass spectrometry was used to monitor reaction progress and allowed for dosing time optimization. These results demonstrate that the TDMAS-H 2 O 2 chemistry can deposit high quality, fully dense SiO 2 films on high radius of curvature substrates. Particle ALD is a viable passivation method for pigment-grade TiO 2 particles

  12. Controlled electrodeposition of Au monolayer film on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Liu, Shengzhong Frank, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-15

    Highlights: • We fabricate Au monolayer film on Ionic liquid substrate using an electrochemical deposition technique. • Au monolayer film was deposited on a “soft substrate” for the first time. • Au monolayer film can contribute extra Raman enhancement. - Abstract: Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF{sub 6}] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  13. Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study.

    Science.gov (United States)

    Huber, Vincent J; Igarashi, Hironaka; Ueki, Satoshi; Kwee, Ingrid L; Nakada, Tsutomu

    2018-06-13

    The blood-brain barrier (BBB), which imposes significant water permeability restriction, effectively isolates the brain from the systemic circulation. Seemingly paradoxical, the abundance of aquaporin-4 (AQP-4) on the inside of the BBB strongly indicates the presence of unique water dynamics essential for brain function. On the basis of the highly specific localization of AQP-4, namely, astrocyte end feet at the glia limitans externa and pericapillary Virchow-Robin space, we hypothesized that the AQP-4 system serves as an interstitial fluid circulator, moving interstitial fluid from the glia limitans externa to pericapillary Virchow-Robin space to ensure proper glymphatic flow draining into the cerebrospinal fluid. The hypothesis was tested directly using the AQP-4 facilitator TGN-073 developed in our laboratory, and [O]H2O JJ vicinal coupling proton exchange MRI, a method capable of tracing water molecules delivered into the blood circulation. The results unambiguously showed that facilitation of AQP-4 by TGN-073 increased turnover of interstitial fluid through the system, resulting in a significant reduction in [O]H2O contents of cortex with normal flux into the cerebrospinal fluid. The study further suggested that in addition to providing the necessary water for proper glymphatic flow, the AQP-4 system produces a water gradient within the interstitial space promoting circulation of interstitial fluid within the BBB.

  14. Dissociative electron attachment to DNA-diamine thin films: Impact of the DNA close environment on the OH{sup −} and O{sup −} decay channels

    Energy Technology Data Exchange (ETDEWEB)

    Boulanouar, Omar; Fromm, Michel; Mavon, Christophe [UMR CNRS 6249 Chrono-Environnement, Laboratoire de Chimie Physique et Rayonnements – Alain Chambaudet, LRC CEA, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon cedex (France); Cloutier, Pierre; Sanche, Léon [Groupe en Sciences des Radiations, Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Québec J1H 5N4 (Canada)

    2013-08-07

    We measure the desorption of anions stimulated by the impact of 0–20 eV electrons on highly uniform thin films of plasmid DNA-diaminopropane. The results are accurately correlated with film thickness and composition by AFM and XPS measurements, respectively. Resonant structures in the H{sup −}, O{sup −}, and OH{sup −} yield functions are attributed to the decay of transient anions into the dissociative electron attachment (DEA) channel. The diamine induces ammonium-phosphate bridges along the DNA backbone, which suppresses the DEA O{sup −} channel and in counter-part increases considerably the desorption of OH{sup −}. The close environment of the phosphate groups may therefore play an important role in modulating the rate and type of DNA damages induced by low energy electrons.

  15. Bulk modulus of basic sodalite, Na8[AlSiO4]6(OH)2·2H2O, a possible zeolitic precursor in coal-fly-ash-based geopolymers

    KAUST Repository

    Oh, Jae Eun

    2011-01-01

    Synthetic basic sodalite, Na8[AlSiO4] 6(OH)22H2O, cubic, P43n, (also known as hydroxysodalite hydrate) was prepared by the alkaline activation of amorphous aluminosilicate glass, obtained from the phase separation of Class F fly ash. The sample was subjected to a process similar to geopolymerization, using high concentrations of a NaOH solution at 90 °C for 24 hours. Basic sodalite was chosen as a representative analogue of the zeolite precursor existing in Na-based Class F fly ash geopolymers. To determine its bulk modulus, high-pressure synchrotron X-ray powder diffraction was applied using a diamond anvil cell (DAC) up to a pressure of 4.5 GPa. A curve-fit with a truncated third-order Birch-Murnaghan equation of state with a fixed K\\'o = 4 to pressure-normalized volume data yielded the isothermal bulk modulus, K o = 43 ± 4 GPa, indicating that basic sodalite is more compressible than sodalite, possibly due to a difference in interactions between the framework host and the guest molecules. © 2010 Elsevier Ltd.

  16. Urchin-Like Ni1/3Co2/3(CO3)1/2(OH)·0.11H2O for Ultrahigh-Rate Electrochemical Supercapacitors: Structural Evolution from Solid to Hollow.

    Science.gov (United States)

    Wei, Wutao; Cui, Shizhong; Ding, Luoyi; Mi, Liwei; Chen, Weihua; Hu, Xianluo

    2017-11-22

    Portable electronics and electric or hybrid electric vehicles are developing in the trend of fast charge and long electric mileage, which ask us to design a novel electrode with sufficient electronic and ionic transport channels at the same time. Herein, we fabricate a uniform hollow-urchin-like Ni 1/3 Co 2/3 (CO 3 ) 1/2 (OH)·0.11H 2 O electrode material through an easy self-generated and resacrificial template method. The one-dimensional chain-like crystal structure unit containing the metallic bonding and the intercalated OH - and H 2 O endow this electrode material with abundant electronic and ionic transport channels. The hollow-urchin-like structure built by nanorods contributes to the large electrode-electrolyte contact area ensuring the supply of ions at high current. CNTs are employed to transport electrons between electrode material and current collector. The as-assembled NC-CNT-2//AC supercapacitor device exhibits a high specific capacitance of 108.3 F g -1 at 20 A g -1 , a capacitance retention ratio of 96.2% from 0.2 to 20 A g -1 , and long cycle life. Comprehensive investigations unambiguously highlight that the unique hollow-urchin-like Ni 1/3 Co 2/3 (CO 3 ) 1/2 (OH)·0.11H 2 O electrode material would be the right candidate for advanced next-generation supercapacitors.

  17. Density determination of langmuir-blodgett monolayer films using x-ray reflectivity technique

    International Nuclear Information System (INIS)

    Damar Yoga Kusuma

    2015-01-01

    Monolayer deposition by Langmuir-Blodgett technique produces monolayer films that are uniform with controllable thickness down to nanometer scale. To evaluate the quality of the monolayer deposition, X-ray reflectivity technique are employed to monitor the monolayers density. Langmuir-Blodgett monolayer with good coverage and uniformity results in film density close to its macroscopic film counterpart whereas films with presence of air gaps shows lower density compared to its macroscopic film counterpart. (author)

  18. Vibrational spectra of Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·nH2O (n = 4, 6) with a crystal structure determination of the Tutton salt Cs2Cu(SeO4)2·6H2O

    Science.gov (United States)

    Wildner, M.; Marinova, D.; Stoilova, D.

    2016-02-01

    The solubility in the three-component systems Cs2SO4-CuSO4-H2O and Cs2SeO4-CuSeO4-H2O have been studied at 25 °C. The experimental results show that double salts, Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·4H2O, crystallize from the ternary solutions within large concentration ranges. Crystals of Cs2Cu(SeO4)2·6H2O were synthesized at somewhat lower temperatures (7-8 °C). The thermal dehydration of the title compounds was studied by TG, DTA and DSC methods and the respective dehydration schemes are proposed. The calculated enthalpies of dehydration (ΔHdeh) have values of: 434.2 kJ mol-1 (Cs2Cu(SeO4)2·6H2O), 280.9 kJ mol-1 (Cs2Cu(SeO4)2·4H2O), and 420.2 kJ mol-1 (the phase transition of Cs2Cu(SO4)2·6H2O into Cs2Cu(SO4)2·H2O). The crystal structure of Cs2Cu(SeO4)2ṡ6H2O was determined from single crystal X-ray diffraction data. It belongs to the group of Tutton salts, crystallizing isotypic to the respective sulfate in a monoclinic structure which is characterized by isolated Cu(H2O)6 octahedra and SeO4 tetrahedra, interlinked by hydrogen bonds and [9]-coordinated Cs+ cations. Infrared spectra of the cesium copper compounds are presented and discussed with respect to both the normal modes of the tetrahedral ions and the water molecules. The analysis of the infrared spectra of the double compounds reveals that the distortion of the selenate tetrahedra in Cs2Cu(SeO4)2·4H2O is stronger than those in Cs2Cu(SeO4)2·6H2O in agreement with the structural data. Matrix-infrared spectroscopy was applied to confirm this claim - Δν3 for SO4 2 - ions matrix-isolated in Cs2Cu(SeO4)2·6H2O has a value of 35 cm-1 and that of the same ions included in Cs2Cu(SeO4)2·4H2O - 84 cm-1. This spectroscopic finding is due to the formation of strong covalent bands Cu-OSO3 on one hand, and on the other to the stronger deformation of the host SeO4 2 - tetrahedra in Cs2Cu(SeO4)2·4H2O as compared to those in Cs2Cu(SeO4)2·6H2O. The strength of the hydrogen bonds as deduced from the

  19. Potential hydroxyl ultraviolet laser. [Ar-H/sub 2/O

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C H; Payne, M G

    1976-09-01

    A strong emission band extending from 3060 to 3120 A was observed following proton beam excitation of an Ar--H/sub 2/O mixture. This emission band was assigned to the transition of OH(A/sup 2/Sigma/sup +/)/sub nu=o/ ..-->.. OH(X/sup 2/Pi)/sub nu=o/. At high argon partial pressure (> 200 torr), the precursor of this emission band is believed to be the argon excimer Ar/sup *//sub 2/(1/sub u/). The fluorescence efficiency of Ar--H/sub 2/O is estimated to be a factor of 4 times that of Ar--N/sub 2/. Development of a highly efficient, tunable uv laser by e-beam pumping is promising.

  20. Monolayer dispersion of CoO on Al2O3 probed by positronium atom

    International Nuclear Information System (INIS)

    Liu, Z.W.; Zhang, H.J.; Chen, Z.Q.

    2014-01-01

    CoO/Al 2 O 3 catalysts were prepared by wet impregnation method with CoO contents ranging from 0 wt% to 24 wt%. X-ray diffraction and X-ray photoelectron spectroscopy measurements suggest formation of CoO after calcined in N 2 . Quantitative X-ray diffraction analysis indicates monolayer dispersion capacity of CoO in CoO/Al 2 O 3 catalysts to be about 3 wt%. Positron annihilation lifetime and coincidence Doppler broadening measurements were performed to study the dispersion state of CoO on Al 2 O 3 . The positron lifetime measurements reveal two long lifetime components τ 3 and τ 4 , which correspond to ortho-positronium annihilation lifetime in microvoids and large pores, respectively. It was found that the positronium atom is very sensitive to the dispersion state of CoO on Al 2 O 3 . The presence of CoO significantly decreases both the lifetime and the intensity of τ 4 . Detailed analysis of the coincidence Doppler broadening measurements suggests that with the CoO content lower than the monolayer dispersion, spin conversion reaction of positronium is induced by CoO. When the cobalt content is higher than the monolayer dispersion capacity, inhibition of positronium formation becomes the dominate effect.

  1. D/H fractionation in the H2-H2O system at supercritical water conditions: Compositional and hydrogen bonding effects

    Science.gov (United States)

    Foustoukos, Dionysis I.; Mysen, Bjorn O.

    2012-06-01

    A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the

  2. Synthesis and magnetotransport studies of CrO2 films grown on TiO2 nanotube arrays by chemical vapor deposition

    Science.gov (United States)

    Wang, Xiaoling; Zhang, Caiping; Wang, Lu; Lin, Tao; Wen, Gehui

    2018-04-01

    The CrO2 films have been prepared on the TiO2 nanotube array template via atmospheric pressure chemical vapor deposition method. And the growth procedure was studied. In the beginning of the deposition process, the CrO2 grows on the cross section of the TiO2 nanotubes wall, forms a nanonet-like layer. And the grain size of CrO2 is very small. With the increase of the deposition time, the grain size of CrO2 also increases, and the nanonet-like layer changes into porous film. With the further increase of the deposition time, all the nanotubes are covered by CrO2 grains and the surface structure becomes polycrystalline film. The average grain size on the surface of the CrO2 films deposited for 1 h, 2 h and 5 h is about 190 nm, 300 nm and 470 nm. The X-ray diffraction pattern reveals that the rutile CrO2 film has been synthesized on the TiO2 nanotube array template. The CrO2 films show large magnetoresistance (MR) at low temperature, which should originate from spin-dependent tunneling through grain boundaries between CrO2 grains. And the tunneling mechanism of the CrO2 films can be well described by the fluctuation-induced tunneling (FIT) model. The CrO2 film deposited for 2 h shows insulator behavior from 5 k to 300 K, but the CrO2 film deposited for 5 h shows insulator-metal transition around 140 K. The reason is briefly discussed.

  3. Preoperative mapping of cortical motor function: prospective comparison of functional magnetic resonance imaging and [15O]-H2O-positron emission tomography in the same co-ordinate system.

    Science.gov (United States)

    Reinges, Marcus H T; Krings, Timo; Meyer, Philipp T; Schreckenberger, Mathias; Rohde, Veit; Weidemann, Jürgen; Sabri, Osama; Mulders, Edith J M; Buell, Udalrich; Thron, Armin; Gilsbach, Joachim M

    2004-10-01

    Two of the most widely accepted approaches to map eloquent cortical areas preoperatively are positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). As yet, no study has compared these two modalities within the same frame of reference in tumour patients. We employed [15O]-H2O-PET and fMRI in patients undergoing presurgical evaluation and compared the results with those obtained by direct electrical cortical stimulation (DECS). Twenty-five patients with tumours of different aetiology near the central region were investigated. fMRI and PET were processed using the same methods, i.e. statistical parametric mapping (SPM) without anatomical normalization, and transformed into the same frame of reference. fMRI activity was found in more cranial and lateral sections, i.e. closer to the brain surface, in comparison with PET, which demonstrated parenchymal activation. The mean localization difference between fMRI and PET was 8.1 +/- 4.6 mm (range, 2-18 mm). fMRI and [15O]-H2O-PET could reliably identify the central sulcus, as demonstrated by DECS. fMRI and [15O]-H2O-PET demonstrate comparable results and are sensitive and reliable tools to map the central region, especially in cases of infiltrating brain tumours. However, fMRI is more prone to artefacts, such as the visualization of draining veins, which may explain the more cranial and lateral activation visualized by fMRI, whereas PET depicts capillary perfusion changes and therefore shows activation closer to the parenchyma.

  4. Effects of ion irradiation on the mechanical properties of SiNa wO xC yH z sol-gel derived thin films

    Science.gov (United States)

    Lucca, D. A.; Qi, Y.; Harriman, T. A.; Prenzel, T.; Wang, Y. Q.; Nastasi, M.; Dong, J.; Mehner, A.

    2010-10-01

    A study of the effects of ion irradiation of hybrid organic/inorganic modified silicate thin films on their mechanical properties is presented. NaOH catalyzed SiNa wO xC yH z thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H + or 250 keV N 2+ at fluences ranging from 1 × 10 14 to 2.5 × 10 16 ions/cm 2. Nanoindentation was used to characterize the films. Changes in hardness and reduced elastic modulus were examined as a function of ion fluence and irradiating species. The resulting increases in hardness and reduced elastic modulus are compared to similarly processed acid catalyzed silicate thin films.

  5. Thermodynamic modeling of neptunium(V) solubility in concentrated Na-CO3-HCO3-Cl-ClO4-H-OH-H2O systems

    International Nuclear Information System (INIS)

    Novak, C.F.; Roberts, K.E.

    1994-01-01

    Safety assessments of nuclear waste repositories often require estimation of actinide solubilities as a function of groundwater composition. Although considerable amount of research has been done on the solubility and speciation of actinides, relatively little has been done to unify these data into a model applicable to concentrate brines. Numerous authors report data on the aqueous chemical properties of Np(V) in NaClO 4 , Na 2 CO 3 , and NaCl media, but a consistent thermodynamic model for predicting these properties is not available. To meet this need, a model was developed to describe the solubility of Np(V) in Na-Cl-ClO 4 -CO 3 aqueous systems, based on the Pitzer activity coefficient formalism for concentrated electrolytes. Hydrolysis and/or carbonate complexation are the dominant aqueous reactions with neptunyl in these systems. Literature data for neptunyl extraction and solubility, and solubility data that the authors developed, are used to parameterize an integrated model for Np(V) solubility in the Np(V)-Na-CO 3 -HCO 3 -Cl-ClO 4 -H-OH-H 2 O system. The resulting model is tested against additional solubility data, and compared with Np(V) solubility experiments in complex synthetic brines

  6. Impact of OH Radical-Initiated H2CO3 Degradation in the Earth's Atmosphere via Proton-Coupled Electron Transfer Mechanism.

    Science.gov (United States)

    Ghoshal, Sourav; Hazra, Montu K

    2016-02-04

    The decomposition of isolated carbonic acid (H2CO3) molecule into CO2 and H2O (H2CO3 → CO2 + H2O) is prevented by a large activation barrier (>35 kcal/mol). Nevertheless, it is surprising that the detection of the H2CO3 molecule has not been possible yet, and the hunt for the free H2CO3 molecule has become challenging not only in the Earth's atmosphere but also on Mars. In view of this fact, we report here the high levels of quantum chemistry calculations investigating both the energetics and kinetics of the OH radical-initiated H2CO3 degradation reaction to interpret the loss of the H2CO3 molecule in the Earth's atmosphere. It is seen from our study that proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) are the two mechanisms by which the OH radical initiates the degradation of the H2CO3 molecule. Moreover, the PCET mechanism is potentially the important one, as the effective barrier, defined as the difference between the zero point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, for the PCET mechanism at the CCSD(T)/6-311++G(3df,3pd) level of theory is ∼3 to 4 kcal/mol lower than the effective barrier height associated with the HAT mechanism. The CCSD(T)/6-311++G(3df,3pd) level predicted effective barrier heights for the degradations of the two most stable conformers of H2CO3 molecule via the PCET mechanism are only ∼2.7 and 4.3 kcal/mol. A comparative reaction rate analysis at the CCSD(T)/6-311++G(3df,3pd) level of theory has also been carried out to explore the potential impact of the OH radical-initiated H2CO3 degradation relative to that from water (H2O), formic acid (FA), acetic acid (AA) and sulfuric acid (SA) assisted H2CO3 → CO2 + H2O decomposition reactions in both the Earth's troposphere and stratosphere. The comparison of the reaction rates reveals that, although the atmospheric concentration of the OH radical is

  7. Thermal conductivity of a h-BCN monolayer.

    Science.gov (United States)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Liu, Hong-Yuan; Wei, Ning

    2017-10-18

    A hexagonal graphene-like boron-carbon-nitrogen (h-BCN) monolayer, a new two-dimensional (2D) material, has been synthesized recently. Herein we investigate for the first time the thermal conductivity of this novel 2D material. Using molecular dynamics simulations based on the optimized Tersoff potential, we found that the h-BCN monolayers are isotropic in the basal plane with close thermal conductivity magnitudes. Though h-BCN has the same hexagonal lattice as graphene and hexagonal boron nitride (h-BN), it exhibits a much lower thermal conductivity than the latter two materials. In addition, the thermal conductivity of h-BCN monolayers is found to be size-dependent but less temperature-dependent. Modulation of the thermal conductivity of h-BCN monolayers can also be realized by strain engineering. Compressive strain leads to a monotonic decrease in the thermal conductivity while the tensile strain induces an up-then-down trend in the thermal conductivity. Surprisingly, the small tensile strain can facilitate the heat transport of the h-BCN monolayers.

  8. The pH Sensing Properties of RF Sputtered RuO2 Thin-Film Prepared Using Different Ar/O2 Flow Ratio

    Directory of Open Access Journals (Sweden)

    Ali Sardarinejad

    2015-06-01

    Full Text Available The influence of the Ar/O2 gas ratio during radio frequency (RF sputtering of the RuO2 sensing electrode on the pH sensing performance is investigated. The developed pH sensor consists in an RF sputtered ruthenium oxide thin-film sensing electrode, in conjunction with an electroplated Ag/AgCl reference electrode. The performance and characterization of the developed pH sensors in terms of sensitivity, response time, stability, reversibility, and hysteresis are investigated. Experimental results show that the pH sensor exhibits super-Nernstian slopes in the range of 64.33–73.83 mV/pH for Ar/O2 gas ratio between 10/0–7/3. In particular, the best pH sensing performance, in terms of sensitivity, response time, reversibility and hysteresis, is achieved when the Ar/O2 gas ratio is 8/2, at which a high sensitivity, a low hysteresis and a short response time are attained simultaneously.

  9. A preliminary study on the etching behavior of SiO sub 2 aerogel film with CHF sub 3 gas

    CERN Document Server

    Wang, S J; Yeom, G Y

    1998-01-01

    Etching behavior of SiO sub 2 aerogel film has been investigated in order to examine the feasibility of its application to an interlevel dielectric material. Low dielectric property of SiO sub 2 aerogel film is simply originated from its highly porous structure, but interconnected particles are covered with surface chemical bondings (-OH, -OC sub 2 H sub 5 , etc). Etching experiments have been performed with high density inductively coupled CHF sub 3 plasma. The effects of porous structure and surface chemical bondings on the etching of SiO sub 2 aerogel film have been analyzed. The changes of surface morphology were observed using scanning electron microscopy. X-ray photoelectron spectroscopic analyses revealed compositions and chemical bonding states of reaction layer. From the analyses, 3-dimensional etching was not feasible macroscopically in SiO sub 2 aerogel film even with its porous nature because network structure was maintained through the etching process. Internal surface chemicals seemed to act an ...

  10. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-06-28

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H2O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H2OH2 + OH reaction. The strong enhancement of reactivity by the H2O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal.

  11. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal

    International Nuclear Information System (INIS)

    Zhao, Bin; Guo, Hua; Sun, Zhigang

    2015-01-01

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H 2 O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H 2 OH 2 + OH reaction. The strong enhancement of reactivity by the H 2 O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal

  12. Dual-Function Au@Y2O3:Eu3+ Smart Film for Enhanced Power Conversion Efficiency and Long-Term Stability of Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Chang Woo; Eom, Tae Young; Yang, In Seok; Kim, Byung Su; Lee, Wan In; Kang, Yong Soo; Kang, Young Soo

    2017-07-28

    In the present study, a dual-functional smart film combining the effects of wavelength conversion and amplification of the converted wave by the localized surface plasmon resonance has been investigated for a perovskite solar cell. This dual-functional film, composed of Au nanoparticles coated on the surface of Y 2 O 3 :Eu 3+ phosphor (Au@Y 2 O 3 :Eu 3+ ) nanoparticle monolayer, enhances the solar energy conversion efficiency to electrical energy and long-term stability of photovoltaic cells. Coupling between the Y 2 O 3 :Eu 3+ phosphor monolayer and ultraviolet solar light induces the latter to be converted into visible light with a quantum yield above 80%. Concurrently, the Au nanoparticle monolayer on the phosphor nanoparticle monolayer amplifies the converted visible light by up to 170%. This synergy leads to an increased solar light energy conversion efficiency of perovskite solar cells. Simultaneously, the dual-function film suppresses the photodegradation of perovskite by UV light, resulting in long-term stability. Introducing the hybrid smart Au@Y 2 O 3 :Eu 3+ film in perovskite solar cells increases their overall solar-to-electrical energy conversion efficiency to 16.1% and enhances long-term stability, as compared to the value of 15.2% for standard perovskite solar cells. The synergism between the wavelength conversion effect of the phosphor nanoparticle monolayer and the wave amplification by the localized surface plasmon resonance of the Au nanoparticle monolayer in a perovskite solar cell is comparatively investigated, providing a viable strategy of broadening the solar spectrum utilization.

  13. Comparative study of normal and branched alkane monolayer films adsorbed on a solid surface. I. Structure

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Flemming Yssing; Diama, A.

    2007-01-01

    their backbone and squalane has, in addition, six methyl side groups. Upon adsorption, there are significant differences as well as similarities in the behavior of these molecular films. Both molecules form ordered structures at low temperatures; however, while the melting point of the two-dimensional (2D......The structure of a monolayer film of the branched alkane squalane (C30H62) adsorbed on graphite has been studied by neutron diffraction and molecular dynamics (MD) simulations and compared with a similar study of the n-alkane tetracosane (n-C24H52). Both molecules have 24 carbon atoms along...... temperature. The neutron diffraction data show that the translational order in the squalane monolayer is significantly less than in the tetracosane monolayer. The authors' MD simulations suggest that this is caused by a distortion of the squalane molecules upon adsorption on the graphite surface. When...

  14. Large-area MoS2 grown using H2S as the sulphur source

    International Nuclear Information System (INIS)

    Dumcenco, Dumitru; Ovchinnikov, Dmitry; Lopez Sanchez, Oriol; Kis, Andras; Gillet, Philippe; Alexander, Duncan T L; Lazar, Sorin; Radenovic, Aleksandra

    2015-01-01

    We report on the growth of molybdenum disulphide (MoS 2 ) using H 2 S as a gas-phase sulfur precursor that allows controlling the domain growth direction of domains in both vertical (perpendicular to the substrate plane) and horizontal (within the substrate plane), depending on the H 2 S:H 2 ratio in the reaction gas mixture and temperature at which they are introduced during growth. Optical and atomic force microscopy measurements on horizontal MoS 2 demonstrate the formation of monolayer triangular-shape domains that merge into a continuous film. Scanning transmission electron microscopy of monolayer MoS 2 shows a regular atomic structure with a hexagonal symmetry. Raman and photoluminescence spectra confirm the monolayer thickness of the material. Field-effect transistors fabricated on MoS 2 domains that are transferred onto Si/SiO 2 substrates show a mobility similar to previously reported exfoliated and chemical vapor deposition-grown materials. (paper)

  15. Improvement of H2S Sensing Properties of SnO2-Based Thick Film Gas Sensors Promoted with MoO3 and NiO

    Directory of Open Access Journals (Sweden)

    In Sung Son

    2013-03-01

    Full Text Available The effects of the SnO2 pore size and metal oxide promoters on the sensing properties of SnO2-based thick film gas sensors were investigated to improve the detection of very low H2S concentrations (<1 ppm. SnO2 sensors and SnO2-based thick-film gas sensors promoted with NiO, ZnO, MoO3, CuO or Fe2O3 were prepared, and their sensing properties were examined in a flow system. The SnO2 materials were prepared by calcining SnO2 at 600, 800, 1,000 and 1,200 °C to give materials identified as SnO2(600, SnO2(800, SnO2(1000, and SnO2(1200, respectively. The Sn(12Mo5Ni3 sensor, which was prepared by physically mixing 5 wt% MoO3 (Mo5, 3 wt% NiO (Ni3 and SnO2(1200 with a large pore size of 312 nm, exhibited a high sensor response of approximately 75% for the detection of 1 ppm H2S at 350 °C with excellent recovery properties. Unlike the SnO2 sensors, its response was maintained during multiple cycles without deactivation. This was attributed to the promoter effect of MoO3. In particular, the Sn(12Mo5Ni3 sensor developed in this study showed twice the response of the Sn(6Mo5Ni3 sensor, which was prepared by SnO2(600 with the smaller pore size than SnO2(1200. The excellent sensor response and recovery properties of Sn(12Mo5Ni3 are believed to be due to the combined promoter effects of MoO3 and NiO and the diffusion effect of H2S as a result of the large pore size of SnO2.

  16. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    Science.gov (United States)

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  17. Water as a solute in aprotic dipolar solvents. 2. D2O-H2O solute isotope effects on the enthalpy of water dissolution in nitromethane, acetonitrile and propylene carbonate at 298.15 K

    International Nuclear Information System (INIS)

    Ivanov, Evgeniy V.; Smirnov, Valeriy I.

    2010-01-01

    The enthalpies of solution of ordinary (H 2 O) and heavy (D 2 O) water in nitromethane (NM), acetonitrile (ACN) and propylene carbonate (PC) were measured calorimetrically at 298.15 K. Standard (at the infinite dilution) enthalpies of solution and solvation, along with D 2 O-H 2 O solute isotope effects on the quantities in question, were calculated. The enthalpies of solution of water H/D isotopologues were found to be positive by sign and substantially increasing in magnitude on going from ACN and PC to NM, whereas the corresponding positive solute H/D isotope effect changes in a consequence: NM > ACN > PC. The qualitative interrelations between the enthalpy-isotopic effect of dissolution (solvation) of water and the electron-accepting/donating ability of aprotic dipolar solvent (within a series considered) were found.

  18. Kinetics of struvite to newberyite transformation in the precipitation system MgCl2-NH4H2PO4NaOH-H2O.

    Science.gov (United States)

    Babić-Ivancić, Vesna; Kontrec, Jasminka; Brecević, Ljerka; Kralj, Damir

    2006-10-01

    The influence of the initial reactant concentrations on the composition of the solid phases formed in the precipitation system MgCl(2)-NH(4)H(2)PO(4)-NaOH-H(2)O was investigated. The precipitation diagram constructed shows the approximate concentration regions within which struvite, newberyite, and their mixtures exist at 25 degrees C and an aging time of 60 min. It was found that immediately after mixing the reactant solutions, struvite (MgNH(4)PO(4).6H(2)O) precipitated in nearly the whole concentration area, while newberyite (MgHPO(4).3H(2)O) appeared mostly within the region of the excess of magnesium concentration. It was also found that after aging time of 60 min the precipitation domain of struvite alone is much broader than that of newberyite or the domain of their coexistence, and shows that struvite is more abundant in the systems in which the initial concentration of ammonium phosphate is higher than that of magnesium. The kinetics of struvite to newberyite transformation (conversion) was systematically studied under the conditions of different initial reactant concentrations and different initial pH in the systems in which a mixture of both phases precipitated spontaneously. The struvite to newberyite conversion period was found to be strongly related to the ratio of initial supersaturations, S(N)/S(S), rather than to the any particular physical quantity that can describe and predict the behavior of the precipitation system. Experimental data suggest a solution-mediated process as a most possible transformation mechanism. Along with a continuous monitoring of the changes in the liquid phase, the content of struvite in the solid phase was estimated by means of a Fourier transform infrared (FT-IR) method, developed for this particular precipitation system.

  19. Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-fenton degradation of rhodamine B.

    Science.gov (United States)

    Yuan, Songhu; Fan, Ye; Zhang, Yucheng; Tong, Man; Liao, Peng

    2011-10-01

    A novel electro-Fenton process was developed for wastewater treatment using a modified divided electrolytic system in which H2O2 was generated in situ from electro-generated H2 and O2 in the presence of Pd/C catalyst. Appropriate pH conditions were obtained by the excessive H+ produced at the anode. The performance of the novel process was assessed by Rhodamine B (RhB) degradation in an aqueous solution. Experimental results showed that the accumulation of H2O2 occurred when the pH decreased and time elapsed. The maximum concentration of H2O2 reached 53.1 mg/L within 120 min at pH 2 and a current of 100 mA. Upon the formation of the Fenton reagent by the addition of Fe2+, RhB degraded completely within 30 min at pH 2 with a pseudo first order rate constant of 0.109 ± 0.009 min(-1). An insignificant decline in H2O2 generation and RhB degradation was found after six repetitions. RhB degradation was achieved by the chemisorption of H2O2 on the Pd/C surface, which subsequently decomposed into •OH upon catalysis by Pd0 and Fe2+. The catalytic decomposition of H2O2 to •OH by Fe2+ was more powerful than that by Pd0, which was responsible for the high efficiency of this novel electro-Fenton process.

  20. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer.

    Science.gov (United States)

    Li, Jinhua; Wang, Gang; Zhu, Hongqin; Zhang, Miao; Zheng, Xiaohu; Di, Zengfeng; Liu, Xuanyong; Wang, Xi

    2014-03-12

    Graphene has attracted increasing attention for potential applications in biotechnology due to its excellent electronic property and biocompatibility. Here we use both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) to investigate the antibacterial actions of large-area monolayer graphene film on conductor Cu, semiconductor Ge and insulator SiO2. The results show that the graphene films on Cu and Ge can surprisingly inhibit the growth of both bacteria, especially the former. However, the proliferation of both bacteria cannot be significantly restricted by the graphene film on SiO2. The morphology of S. aureus and E. coli on graphene films further confirms that the direct contact of both bacteria with graphene on Cu and Ge can cause membrane damage and destroy membrane integrity, while no evident membrane destruction is induced by graphene on SiO2. From the viewpoint of charge transfer, a plausible mechanism is proposed here to explain this phenomenon. This study may provide new insights for the better understanding of antibacterial actions of graphene film and for the better designing of graphene-based antibiotics or other biomedical applications.

  1. Photoionization of H2O at high resolution

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Chupka, W.A.

    1978-01-01

    The relative photoionization cross sections for the formation of H 2 O + , OH + , and H + from H 2 O were measured at high wavelength resolution using a 3-meter photoionization mass spectrometer equipped with a quadrupole mass flter and a 1-meter photoionization mass spectrometer equipped with a 12-inch radius, 60 0 sector magnetic mass spectrometer. Discrete structure in the parent ion photoionization efficiency curve is interpreted in terms of Rydberg series converging to excited states of the H 2 O + ion. 9 references

  2. Chemical modification of glass surface with a monolayer of nonchromophoric and chromophoric methacrylate terpolymer

    Energy Technology Data Exchange (ETDEWEB)

    Janik, Ryszard [Department of Polymer Engineering and Technology, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Kucharski, Stanislaw, E-mail: stanislaw.kucharski@pwr.wroc.pl [Department of Polymer Engineering and Technology, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Sobolewska, Anna [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Barille, Regis [Institut des Sciences et Techniques Moleculaires d' Angers ' Moltech Anjou' , CNRS UMR 6200, 49045 Angers (France)

    2010-11-15

    The methacrylate terpolymers, a nonchromophoric and chromophoric one, containing 2-hydroxyethyl groups were reacted with 3-isocyanatopropyltriethoxysilane to obtain reactive polymers able to form covalent bonding with -SiOH groups of the glass surface via triethoxysilane group condensation. Chemical modification of the Corning 2949 glass plates treated in this way resulted in increase of wetting angle from 11{sup o} to ca. 70-73{sup o}. Determination of ellipsometric parameters revealed low value of the substrate refractive index as compared with that of bulk Corning 2949 glass suggesting roughness of the surface. The AFM image of the bare glass surface and that modified with terpolymer monolayer confirmed this phenomenon. Modification of the glass with the terpolymer monolayer made it possible to create the substrate surface well suited for deposition of familiar chromophore film by spin-coating. The chromophore polymer film deposited onto the modified glass surface was found to be resistant to come unstuck in aqueous solution.

  3. Isolation and characterization of α-cellulose from blank bunches of palm oil and dry jackfruit leaves with alkaline process NaOH continued with bleaching process H2O2

    Science.gov (United States)

    Tristantini, Dewi; Dewanti, Dian Purwitasari; Sandra, Cindy

    2017-11-01

    Alpha cellulose is a pure form of cellulose. Cellulose is a natural polymer in the form of carbohydrates (polysaccharides) that has fiber which is white, insoluble in water, renewable, easily decomposes, and non-toxic. Cellulosic sources are abundant in nature even in untapped biomass wastes. In this study, cellulose was isolated from Empty Palm Oil Bunches (EPOB) of 45% and Dry Jackfruit Leaves (DJL) of 21.45%. This study aims to obtain optimum yield of cellulose at NaOH concentration and cellulose characterization with water content, FTIR, and SEM analysis. The optimum α-cellulose yield was determined by alkali process with 8, 10, 12 and 14% (w/v) NaOH variations at 90-100 °C for 3 hours to remove hemicellulose and lignin followed by bleaching process with H2O2 10% (w/v) at 80-90 °C for 1.5 h to obtain pure α-cellulose. The optimum yield of EPOB cellulose was 38,562% in 12% NaOH and DJL was 7.27% in 10% NaOH. The water content in OPB cellulose was 4.38% and DJL was 6.37%. A typical cellulose-forming functional group seen in FTIR (Fourier Transform Infra-Red) and morphological results appears in SEM (Scanning Electron Microscopy) analysis. From FTIR analysis result shows cellulose from EPOB and DJL contains O-H, C-H, and C-O. SEM analysis shows fibers from EPOB and DJL are uniform and have pores. However, DJL fibers have white patches, which suspected to be impurities.

  4. Carbon-14 immobilization via the Ba(OH)2.8H2O process

    International Nuclear Information System (INIS)

    Haag, G.L.; Nehls, J.W. Jr.; Young, G.C.

    1983-03-01

    The airborne release of 4 C from varous nuclear facilities has been identified as a potential biohazard due to the long half-life of 14 C (5730 y) and the ease with which it may be assimilated into the biosphere. At ORNL, technology has been developed for the removal and immobilization of this radionuclide. Prior studies have indicated that 14 C will likely exist in the oxidized form as CO 2 and will contribute slightly to the bulk CO 2 concentration of the gas stream, which is airlike in nature (approx. 330 ppmv CO 2 ). The technology that has been developed utilizes the CO 2 -Ba(OH) 2 .8H 2 O gas-solid reaction with the mode of gas-solid contacting being a fixed bed. The product, BaCO 3 , possesses excellent thermal and chemical stability, prerequisites for the long-term disposal of nuclear wastes. For optimal process operation, studies have indicated that an operating window of adequate size does exist. When operating within the window, high CO 2 removal efficiency (effluent concentrations 99%), and an acceptable pressure drop across the bed (3 kPa/m at a superficial velocity of 13 cm/s) are possible. This paper addresses three areas of experimental investigation: (1) microscale studies on 150-mg samples to provide information concerning surface properties, kinetics, and equilibrium vapor pressures; (2) macroscale studies on large fixed beds (4.2 kg of reactant) to determine the effects of humidity, temperature, and gas flow rate upon bed pressure drop and CO 2 breakthrough; and (3) design, construction, and initial operation of a pilot unit capable of continuously processing a 34-m 3 /h (20-ft 3 /min) air-based gas stream

  5. Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO2 structure

    International Nuclear Information System (INIS)

    Poghossian, A.; Abouzar, M.H.; Razavi, A.; Baecker, M.; Bijnens, N.; Williams, O.A.; Haenen, K.; Moritz, W.; Wagner, P.; Schoening, M.J.

    2009-01-01

    A capacitive field-effect EDIS (electrolyte-diamond-insulator-semiconductor) sensor with improved pH and penicillin sensitivity has been realised using a nanocrystalline-diamond (NCD) film as sensitive gate material. The NCD growth process on SiO 2 as well as an additional surface treatment in oxidising medium have been optimised to provide high pH-sensitive, non-porous O-terminated films without damage of the underlying SiO 2 layer. The surface morphology of O-terminated NCD thin films and the layer structure of EDIS sensors have been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. To establish the relative coverage of the surface functional groups generated by the oxidation of NCD surfaces, X-ray photoelectron spectroscopy analysis was carried out. The hydrophilicity of NCD thin films has been studied by water contact-angle measurements. A nearly Nernstian pH sensitivity of 54-57 mV/pH has been observed for O-terminated NCD films treated in an oxidising boiling mixture for 80 min and in oxygen plasma. The high pH-sensitive properties of O-terminated NCD have been used to develop an EDIS-based penicillin biosensor. A freshly prepared penicillin biosensor possesses a high sensitivity of 85 mV/decade in the concentration range of 0.1-2.5 mM penicillin G. The lower detection limit is 5 μM.

  6. Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4

    OpenAIRE

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-01-01

    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O...

  7. ZnO/Cu2S/ZnO Multilayer Films: Structure Optimization and Its Detail Data for Applications on Photoelectric and Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Zhenxing Wang

    2017-01-01

    Full Text Available Monolayer Cu2S and ZnO, and three kinds of complex films, Cu2S/ZnO, ZnO/Cu2S, and ZnO/Cu2S/ZnO, were deposited on glass substrates by means of radio frequency (RF magnetron sputtering device. The impact of the thickness of ZnO and Cu2S on the whole transmittance, conductivity, and photocatalysis was investigated. The optical and electrical properties of the multilayer were studied by optical spectrometry and four point probes. Numerical simulation of the optical transmittance of the multilayer films has been carried out in order to guide the experimental work. The comprehensive performances of the multilayers as transparent conductive coatings were compared using the figure of merit. Compared with monolithic Cu2S and ZnO films, both the optical transmission property and photocatalytic performance of complex films such as Cu2S/ZnO and ZnO/Cu2S/ZnO change significantly.

  8. The renal blood flow reserve in healthy humans and patients with atherosclerotic renovascular disease measured by positron emission tomography using [15O]H2O.

    Science.gov (United States)

    Päivärinta, Johanna; Koivuviita, Niina; Oikonen, Vesa; Iida, Hidehiro; Liukko, Kaisa; Manner, Ilkka; Löyttyniemi, Eliisa; Nuutila, Pirjo; Metsärinne, Kaj

    2018-06-11

    Microvascular function plays an important role in ARVD (atherosclerotic renovascular disease). RFR (renal flow reserve), the capacity of renal vasculature to dilate, is known to reflect renal microvascular function. In this pilot study, we assessed PET (positron emission tomography)-based RFR values of healthy persons and renal artery stenosis patients. Seventeen patients with ARVD and eight healthy subjects were included in the study. Intravenous enalapril 1 mg was used as a vasodilatant, and the maximum response (blood pressure and RFR) to it was measured at 40 min. Renal perfusion was measured by means of oxygen-15-labeled water PET. RFR was calculated as a difference of stress flow and basal flow and was expressed as percent [(stress blood flow - basal blood flow)/basal blood flow] × 100%. RFR of the healthy was 22%. RFR of the stenosed kidneys of bilateral stenosis patients (27%) was higher than that of the stenosed kidneys of unilateral stenosis patients (15%). RFR of the contralateral kidneys of unilateral stenosis patients was 21%. There was no difference of statistical significance between RFR values of ARVD subgroups or between ARVD subgroups and the healthy. In the stenosed kidneys of unilateral ARVD patients, stenosis grade of the renal artery correlated negatively with basal (p = 0.04) and stress flow (p = 0.02). Dispersion of RFR values was high. This study is the first to report [ 15 O]H 2 O PET-based RFR values of healthy subjects and ARVD patients in humans. The difference between RFR values of ARVD patients and the healthy did not reach statistical significance perhaps because of high dispersion of RFR values. [ 15 O]H 2 O PET is a valuable non-invasive and quantitative method to evaluate renal blood flow though high dispersion makes imaging challenging. Larger studies are needed to get more information about [ 15 O]H 2 O PET method in evaluation of renal blood flow.

  9. Effects of CO, O2, NO, H2O, and irradiation temperature on the radiation-induced oxidation of SO2

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Nishimura, Koichi; Suzuki, Nobutake; Washino, Masamitsu

    1977-01-01

    When a SO 2 -H 2 O-O 2 -N 2 gaseous mixture was irradiated by electron beams of 1.5 MeV, SO 2 was easily oxidized to H 2 SO 4 . Effects of CO, O 2 , NO, H 2 O, and irradiation temperature on the radiation-induced oxidation of SO 2 were studied by measuring the SO 2 concentration gas chromatographically. The G(-SO 2 ) increased greatly at the addition of a small amount of O 2 , and then decreased gradually with an increase in the O 2 concentration, i.e., the G(-SO 2 ) values were 0.9, 8.0, and 5.3 for the 0, 0.1, and 20% O 2 concentrations at 100 0 C, respectively (Fig.4). The G(-SO 2 ) was independent of the H 2 O concentration in the range of 0.84 to 8.4% (Fig.5). The G(-SO 2 ) decreased with a rise in the irradiation temperature (Fig.6) and an apparent activation energy of the oxidation reaction of SO 2 obtained was -4.2 kcal.mol -1 . The effects of CO, NO, and O 2 on the G(-SO 2 ) showed that SO 2 was mainly oxidized by OH and O and that the contribution of OH to the oxidation of SO 2 increased with an increase in the O 2 concentration (Table 1). The rate constants for the reactions of SO 2 with OH and O, obtained from competitive reactions of SO 2 with CO and O 2 , were 5.4 x 10 11 cm 3 .mol -1 .sec -1 and 5.0 x 10 11 cm 3 .mol -1 .sec -1 , respectively. (auth.)

  10. Pseudo-ternary phase diagram in the Na2O-Na2O2-NaOH system

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Tendo, Masayuki; Aoto, Kazumi

    1997-10-01

    Generally, the phase diagrams are always used to understand the present state of compounds at certain temperature. In order to understand the corrosion behavior of structural material for FBR by main sodium compounds (Na 2 O, Na 2 O 2 and NaOH), it is very important to comprehend the phase diagrams of their compounds. However, only Na 2 O-NaOH pseudo-binary phase diagram had been investigated previously in this system. There is no study of other pseudo-binary or ternary phase diagrams in the Na 2 O-Na 2 O 2 -NaOH system. In this study, in order to clarify the present states of their compounds at certain temperatures, the pseudo-binary and ternary phase diagrams in the Na 2 O-Na 2 O 2 -NaOH system were prepared. A series of thermal analyses with binary and ternary component system has been carried out using the differential scanning calorimetry (DSC). The liquidus temperature and ternary eutectic temperatures were confirmed by these measurements. The beneficial indications for constructing phase diagrams were obtained from these experiments. On the basis of these results, the interaction parameters between compounds which were utilized for the Thermo-Calc calculation were optimized. Thermo-Calc is one of thermodynamic calculation software. Consequently the accurate pseudo-binary and ternary phase diagrams were indicated using the optimized parameters. (author)

  11. A novel organic–inorganic hybrid with Anderson type polyanions as building blocks: (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Thabet, Safa, E-mail: safathabet@hotmail.fr [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia); Ayed, Brahim, E-mail: brahimayed@yahoo.fr [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia); Haddad, Amor [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia)

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of a novel inorganic–organic hybrid compound based on Anderson polyoxomolybdates. ► Characterization by X-ray diffraction, IR and UV–Vis spectroscopies of the new compound. ► Potential applications in catalysis, biochemical analysis and electrical conductivity of the organic–inorganic compound. -- Abstract: A new organic–inorganic hybrid compound based on Anderson polyoxomolybdates, (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O (1) have been isolated by the conventional solution method and characterized by single-crystal X-ray diffraction, infrared, ultraviolet spectroscopy and Thermogravimetric Analysis (TGA). This compound crystallized in the triclinic system, space group P−1, with a = 94.635(1) Å, b = 10.958(1) Å, c = 11.602(1) Å, α = 67.525(1)°, β = 71.049(1)°, γ = 70.124(1)° and Z = 1. The crystal structures of the compounds exhibit three-dimensional supramolecular assembly based on the extensive hydrogen bonding interactions between organic cations, sodium cations, water molecules and Anderson polyoxoanions. The infrared spectrum fully confirms the X-ray crystal structure and the UV spectrum of the title compound exhibits an absorption peak at 210 nm.

  12. One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors

    International Nuclear Information System (INIS)

    Min, Shudi; Zhao, Chongjun; Chen, Guorong; Qian, Xiuzhen

    2014-01-01

    Reduced graphene oxide (RGO) on nickel hydroxide (Ni(OH) 2 ) film was synthesized via a green and facile hydrothermal approach. In this process, graphene oxide (GO) was reduced by nickel foam (NF) while the nickel metal was oxidized to Ni(OH) 2 film simultaneously, which resulted in RGO on Ni(OH) 2 structure. The RGO/Ni(OH) 2 composite film was characterized using by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscope (FESEM). The electrochemical performances of the supercapacitor with the as-synthesized RGO/Ni(OH) 2 composite films as electrodes were evaluated using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectrometry (EIS) in 1 M KOH aqueous solution. Results indicated that the RGO/Ni(OH) 2 /NF composite electrodes exhibited superior capacitive performance with high capability (2500 mF cm −2 at a current density of 5 mA cm −2 , or 1667 F g −1 at 3.3 A g −1 ), compared with pure Ni(OH) 2 /NF (450 mF cm −2 at 5 mA cm −2 , 409 F g −1 at 3.3 A g −1 ) prepared under the identical conditions. Our study highlights the importance of anchoring RGO films on Ni(OH) 2 surface for maximizing the optimized utilization of electrochemically active Ni(OH) 2 and graphene for energy storage application in supercapacitors

  13. Photocatalytic properties of porous TiO2/Ag thin films

    International Nuclear Information System (INIS)

    Chang, C.-C.; Chen, J.-Y.; Hsu, T.-L.; Lin, C.-K.; Chan, C.-C.

    2008-01-01

    In this study, nanocrystalline TiO 2 /Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO 2 /Ag thin films were prepared after calcination at a temperature of 500 deg. C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO 2 films. The as-prepared TiO 2 and TiO 2 /Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation. When PS spheres of different sizes were introduced after calcination, the as-prepared TiO 2 films exhibited different porous structures. XRD results showed that all TiO 2 /Ag films exhibited a major anatase phase. The photodegradation of porous TiO 2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure

  14. Properties of NiO thin films deposited by chemical spray pyrolysis using different precursor solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cattin, L. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France); Reguig, B.A.; Khelil, A. [Universite d' Oran Es-Senia, LPCM2E (Algeria); Morsli, M. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France); Benchouk, K. [Universite d' Oran Es-Senia, LPCM2E (Algeria); Bernede, J.C. [Universite de Nantes, Nantes Atlantique Universites, LAMP, EA 3825, Faculte des Sciences et des Techniques, 2 rue de la Houssiniere, BP 92208, Nantes F-44000 (France)], E-mail: Jean-Christian.Bernede@univ-nantes.fr

    2008-07-15

    NiO thin films have been deposited by chemical spray pyrolysis using a perfume atomizer to grow the aerosol. The influence of the precursor, nickel chloride hexahydrate (NiCl{sub 2}.6H{sub 2}O), nickel nitrate hexahydrate (Ni(NO{sub 3}){sub 2}.6H{sub 2}O), nickel hydroxide hexahydrate (Ni(OH){sub 2}.6H{sub 2}O), nickel sulfate tetrahydrate (NiSO{sub 4}.4H{sub 2}O), on the thin films properties has been studied. In the experimental conditions used (substrate temperature 350 deg. C, precursor concentration 0.2-0.3 M, etc.), pure NiO thin films crystallized in the cubic phase can be achieved only with NiCl{sub 2} and Ni(NO{sub 3}){sub 2} precursors. These films have been post-annealed at 425 deg. C for 3 h either in room atmosphere or under vacuum. If all the films are p-type, it is shown that the NiO films conductivity and optical transmittance depend on annealing process. The properties of the NiO thin films annealed under room atmosphere are not significantly modified, which is attributed to the fact that the temperature and the environment of this annealing is not very different from the experimental conditions during spray deposition. The annealing under vacuum is more efficient. This annealing being proceeded in a vacuum no better than 10{sup -2} Pa, it is supposed that the modifications of the NiO thin film properties, mainly the conductivity and optical transmission, are related to some interaction between residual oxygen and the films.

  15. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures.

    Science.gov (United States)

    Zhao, Hai-Qian; Wang, Zhong-Hua; Gao, Xing-Cun; Liu, Cheng-Hao; Qi, Han-Bing

    2018-01-01

    H2O2 was adopted to oxidize NO in simulated flue gas at 100-500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300-500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption.

  16. Amorphous and crystalline In_2O_3-based transparent conducting films for photovoltaics

    International Nuclear Information System (INIS)

    Koida, Takashi

    2017-01-01

    We reported solar cells with reduced electrical and optical losses using hydrogen-doped In_2O_3 (In_2O_3:H) transparent conducting layers with low sheet resistance and high transparence characteristics. The transparent conducting oxide (TCO) films were prepared by solid-phase crystallization of amorphous (a-) In_2O_3:H films grown by magnetron sputtering. The polycrystalline (poly-) In_2O_3:H films exhibited electron mobilities (over 100 cm"2V"-"1 s"-"1) 2 and 3 times greater than those of conventional TCO films. This paper describes (i) the current status of the electrical properties of In_2O_3-based TCO; (ii) the structural and optoelectrical properties of the a-In_2O_3:H and poly-In_2O_3:H films, focusing on the inhomogeneity and stability characteristics of the films; and (iii) the electrical properties of bilayer TCO. The potential of these high mobility TCO films for solar cells was also described. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Electrodeposition of In{sub 2}O{sub 3} thin films from a dimethylsulfoxide based electrolytic solution

    Energy Technology Data Exchange (ETDEWEB)

    Henriquez, R.; Munoz, E.; Gomez, H. [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Curauma Valparaiso (Chile); Dalchiele, E.A.; Marotti, R.E. [Instituto de Fisica and CINQUIFIMA, Facultad de Ingenieria, Montevideo (Uruguay); Martin, F.; Leinen, D.; Ramos-Barrado, J.R. [Laboratorio de Materiales y Superficie, Departamento de Fisica Aplicada and Ingenieria Quimica, Universidad de Malaga (Spain)

    2013-02-15

    Indium (III) oxide (In{sub 2}O{sub 3}) thin films have been obtained after heat treatment of In(OH){sub 3} precursor layers grown by a potential cycling electrodeposition (PCED) method from a dimethylsulfoxide (DMSO) based electrolytic solution onto fluorine-doped tin oxide (FTO) coated glass substrates. X-ray diffraction (XRD) measurements indicate the formation of a polycrystalline In{sub 2}O{sub 3} phase with a cubic structure. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed a smooth morphology of the In{sub 2}O{sub 3} thin films after an optimized heat treatment had been developed. The surface composition and chemical state of the semiconductor films was established by X-ray photoelectron spectroscopy analysis. The nature of the semiconductor material, flat band potential and donor density were determined from Mott-Schottky plots. This study reveals that the In{sub 2}O{sub 3} films exhibited n-type conductivity with an average donor density of 2.2 x 10{sup 17} cm{sup -3}. The optical characteristics were determined through transmittance spectra. The direct and indirect band gap values obtained are according to the accepted values for the In{sub 2}O{sub 3} films of 2.83 and 3.54 eV for the indirect and direct band gap values. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The effect of O2 partial pressure on the structure and photocatalytic property of TiO2 films prepared by sputtering

    International Nuclear Information System (INIS)

    Liu Baoshun; Zhao Xiujian; Zhao Qingnan; Li Chunling; He Xin

    2005-01-01

    The TiO 2 films were prepared on slide substrates by dc reactive magnetron sputtering at different oxygen partial pressure, and were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Fourier transform infrared spectrometry (FT-IR). The degradation of methyl orange aqueous solutions was used to evaluate the photocatalytic activity. The results show that all films show crystalline anatase structure irrespective of oxygen partial pressure. The surface oxygen element exists in three forms, the first one is TiO 2 , the second one is OH - and the last one is physical absorbed water. The films deposited at oxygen partial pressure of 0.035 and 0.040 mTorr present better photocatalytic activity, which shows clear tendency to increase with oxygen partial pressure. Such photocatalytic activity results are considered to correlate with the crystalline structure, grain sizes and the OH - concentration

  19. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process

    International Nuclear Information System (INIS)

    Yuan Fang; Hu Chun; Hu Xuexiang; Wei Dongbin; Chen Yong; Qu Jiuhui

    2011-01-01

    The photodegradation of three antibiotics, oxytetracycline (OTC), doxycycline (DTC), and ciprofloxacin (CIP) in UV and UV/H 2 O 2 process was investigated with a low-pressure UV lamp system. Experiments were performed in buffered ultrapure water (UW), local surface water (SW), and treated water from local municipal drinking water treatment plant (DW) and wastewater treatment plant (WW). The efficiency of UV/H 2 O 2 process was affected by water quality. For all of the three selected antibiotics, the fastest degradation was observed in DW, and the slowest degradation occurred in WW. This phenomenon can be explained by R OH,UV , defined as the experimentally determined ·OH radical exposure per UV fluence. The R OH,UV values represent the background ·OH radical scavenging in water matrix, obtained by the degradation of para-chlorobenzoic acid (pCBA), a probe compound. In natural water, the indirect degradation of CIP did not significantly increase with the addition of H 2 O 2 due to its effective degradation by UV direct photolysis. Moreover, the formation of several photoproducts and oxidation products of antibiotics in UV/H 2 O 2 process was identified using GC-MS. Toxicity assessed by Vibrio fischer (V. fischer), was increased in UV photolysis, for the photoproducts still preserving the characteristic structure of the parent compounds. While in UV/H 2 O 2 process, toxicity increased first, and then decreased; nontoxic products were formed by the oxidation of ·OH radical. In this process, detoxification was much easier than mineralization for the tested antibiotics, and the optimal time for the degradation of pollutants in UV/H 2 O 2 process would be determined by parent compound degradation and toxicity changes.

  20. Mn{sub 0.95}I{sub 0.02}[PO{sub 3}(OH)] · 2H{sub 2}O phosphate–iodate, an inorganic analogue of phosphonates

    Energy Technology Data Exchange (ETDEWEB)

    Belokoneva, E. L., E-mail: elbel@geol.msu.ru; Dimitrova, O. V.; Volkov, A. S. [Moscow State University, Faculty of Geology (Russian Federation)

    2015-09-15

    The new Mn{sub 0.95}I{sub 0.02}[PO{sub 3}(OH)] · 2H{sub 2}O phosphate–iodate (space group Pnam = Pnma, D{sub 2h}{sup 16}) is obtained under hydrothermal conditions. The crystal structure is determined without preliminary knowledge of the chemical formula. The structure consists of layers of MnO{sub 6} octahedra connected with PO{sub 4} tetrahedra. Water molecules are located between the layers. [IO3]{sup –} groups having a typical umbrella-like coordination are statistically implanted in layers of MnO{sub 6} octahedra at a distance of 1.2 Å from Mn atoms. Their content in the crystal is minor. The structures of the phosphate–iodate coincides with the structures of phosphonates with consideration for the replacement of one (OH) vertex of the PO{sub 4} tetrahedron by the organic methyl radical CH{sub 3}. In the structures of phosphonates and earlier studied phosphates, identical layers are distinguished and the cause of the existence of two MDO varieties is established based on the analysis within the OD theory. Possible hybrid structures derived from the prototypes under consideration are predicted.

  1. Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes

    International Nuclear Information System (INIS)

    Jagadale, A.D.; Kumbhar, V.S.; Dhawale, D.S.; Lokhande, C.D.

    2013-01-01

    In the present investigation, we have successfully assembled symmetric supercapacitor device based on cobalt hydroxide [Co(OH) 2 ] thin film electrodes using 1 M KOH as an electrolyte. Initially, potentiodynamic electrodeposition method is employed for the preparation of Co(OH) 2 thin films onto stainless steel substrate. These films are characterized for structural and morphological elucidations using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD reveals formation of β-Co(OH) 2 material with hexagonal crystal structure. The SEM images show formation of nanoflakes like microstructure with average flake width 100 nm. Electrochemical characterizations of Co(OH) 2 based symmetric supercapacitor cell are carried out using cyclic voltammetry, charge–discharge and electrochemical impedance spectroscopy (EIS) techniques. In the performance evaluation the maximum values of specific capacitance, specific energy and specific power are encountered as 44 F g −1 , 3.96 Wh kg −1 and 42 kW kg −1 . The value of equivalent series resistance (ESR) is estimated as 2.3 Ω using EIS

  2. Synthesis and investigation of aluminium uranium-containing compounds of Al[B5UO6]2[OH]·nH2O (B5=P, As) composition

    International Nuclear Information System (INIS)

    Chernorukov, N.G.; Sulejmanov, E.V.; Barch, S.V.

    2001-01-01

    The technique of synthesis of hydroxyuranophosphate and hydroxyuranoarsenate of aluminium is developed. Hydroxyuranophosphates and hydroxyuranoarsenates of aluminium are prepared by reaction of interaction of aqueous solutions of orthophosphoric (orthoarsenic) acid (0.05 mol/l), uranyl nitrate (0.05 mol/l) and aluminium nitrate (0.1 mol/l) at 20 Deg C. Peculiarities of the structure and thermal degradation reactions are studied by the methods of x-ray diffraction, IR spectroscopy, thermography. It is shown that in dependence on outer conditions in the systems Al[PUO 6 ] 2 ·[OH]·nH 2 O and Al[AsUO 6 ] 2 ·[OH]·nH 2 O crystal hydrates with hydrate numbers n=3-11(13) and anhydrous compounds form. The compounds have laminated type of lattice. Two-dimensional layers of [P(As)UO 6 ] ∞ n- are the basis of anion sublattice of these compounds. Aluminium in coordination surrounding of hydroxy groups and water molecules forms cationic sublattice [ru

  3. TiO2 and Cu/TiO2 Thin Films Prepared by SPT

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-12-01

    Full Text Available Titanium oxide (TiO2 and copper (Cu doped titanium oxide (Cu/TiO2 thin films have been prepared by spray pyrolysis technique. Titanium chloride (TiCl4 and copper acetate (Cu(CH3COO2.H2O were used as source of Ti and Cu. The doping concentration of Cu was varied from 1-10 wt. %. The X-ray diffraction studies show that TiO2 thin films are tetragonal structure and Cu/TiO2 thin films implies CuO has present with monoclinic structure. The optical properties of the TiO2 thin films have been investigated as a function of Cu-doping level. The optical transmission of the thin films was found to increase from 88 % to 94 % with the addition of Cu up to 8 % and then decreases for higher percentage of Cu doping. The optical band gap (Eg for pure TiO2 thin film is found to be 3.40 eV. Due to Cu doping, the band gap is shifted to lower energies and then increases further with increasing the concentration of Cu. The refractive index of the TiO2 thin films is found to be 2.58 and the variation of refractive index is observed due to Cu doped. The room temperature resistivity of the films decreases with increasing Cu doping and is found to be 27.50 - 23.76 W·cm. It is evident from the present study that the Cu doping promoted the thin film morphology and thereby it is aspect for various applications.

  4. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    International Nuclear Information System (INIS)

    Moldovan, Carmen; Mihailescu, Carmen; Stan, Dana; Ruta, Lavinia; Iosub, Rodica; Gavrila, Raluca; Purica, Munizer; Vasilica, Schiopu

    2009-01-01

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti-Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti-E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab') 2 fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  5. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    Energy Technology Data Exchange (ETDEWEB)

    Moldovan, Carmen, E-mail: carmen.moldovan@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Mihailescu, Carmen, E-mail: carmen_mihail28@yahoo.com [University of Bucharest, 90-92 Sos Panduri, Bucharest (Romania); Stan, Dana, E-mail: dana_stan2005@yahoo.com [DDS Diagnostic, 1 Segovia Street, Bucharest (Romania); Ruta, Lavinia, E-mail: laviniacoco@yahoo.com [University of Bucharest, 90-92 Sos Panduri, Bucharest (Romania); Iosub, Rodica, E-mail: rodica.iosub@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Gavrila, Raluca, E-mail: raluca.gavrila@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Purica, Munizer, E-mail: munizer.purica@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Vasilica, Schiopu, E-mail: vasilica.schiopu@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania)

    2009-08-30

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti-Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti-E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab'){sub 2} fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  6. The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions.

    Science.gov (United States)

    Reus, William F; Thuo, Martin M; Shapiro, Nathan D; Nijhuis, Christian A; Whitesides, George M

    2012-06-26

    The liquid-metal eutectic of gallium and indium (EGaIn) is a useful electrode for making soft electrical contacts to self-assembled monolayers (SAMs). This electrode has, however, one feature whose effect on charge transport has been incompletely understood: a thin (approximately 0.7 nm) film-consisting primarily of Ga(2)O(3)-that covers its surface when in contact with air. SAMs that rectify current have been measured using this electrode in Ag(TS)-SAM//Ga(2)O(3)/EGaIn (where Ag(TS) = template-stripped Ag surface) junctions. This paper organizes evidence, both published and unpublished, showing that the molecular structure of the SAM (specifically, the presence of an accessible molecular orbital asymmetrically located within the SAM), not the difference between the electrodes or the characteristics of the Ga(2)O(3) film, causes the observed rectification. By examining and ruling out potential mechanisms of rectification that rely either on the Ga(2)O(3) film or on the asymmetry of the electrodes, this paper demonstrates that the structure of the SAM dominates charge transport through Ag(TS)-SAM//Ga(2)O(3)/EGaIn junctions, and that the electrical characteristics of the Ga(2)O(3) film have a negligible effect on these measurements.

  7. Cu and Cu2O films with semi-spherical particles grown by electrochemical deposition

    International Nuclear Information System (INIS)

    Zheng, Jin You; Jadhav, Abhijit P.; Song, Guang; Kim, Chang Woo; Kang, Young Soo

    2012-01-01

    Cu and Cu 2 O films can be prepared on indium-doped tin oxide glass substrates by simple electrodeposition in a solution containing 0.1 M Cu(NO 3 ) 2 and 3 M lactic acid at different pH values. At low pH (pH = 1.2), the uniform Cu films were obtained; when pH ≥ 7, the pure Cu 2 O films can be deposited. Especially, at pH = 11, the deposited Cu 2 O films exhibited cubic surface morphology exposing mainly {100} plane; in contrast, the films consisting of semi-spherical particles were obtained when the solution was being stirred for 2 weeks prior to use. The possible growth process and mechanism were comparatively discussed. - Highlights: ► Cu and Cu 2 O films were prepared by facile electrodeposition. ► Electrodeposition was preformed in electrolyte at different pH values. ► Dendritic Cu films were obtained at 1.2 pH with relatively high deposition potential. ► Semi-spherical Cu 2 O films were obtained with solution at 11 pH and stirred for 2 weeks. ► The possible growth mechanism of semi-spherical Cu 2 O films was discussed.

  8. Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2}){sub x}F (x=1 and 2): New one-dimensional Bi-coordination materials-Reversible hydration and topotactic decomposition to {alpha}-Bi{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hye Rim [Department of Chemistry Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Dong Woo [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Ok, Kang Min, E-mail: kmok@cau.ac.kr [Department of Chemistry, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2012-03-15

    Two one-dimensional bismuth-coordination materials, Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2}){sub x}F (x=1 and 2), have been synthesized by hydrothermal reactions using Bi{sub 2}O{sub 3}, 2,6-NC{sub 5}H{sub 3}(CO{sub 2}H){sub 2}, HF, and water at 180 Degree-Sign C. Structures of the two materials were determined by single-crystal X-ray diffraction. Although they have different crystal structures, both Bi-organic materials shared a common structural motif, a one-dimensional chain structure consisting of Bi{sup 3+} cations and pyridine dicarboxylate linkers. Detailed structural analyses include infrared spectroscopy, thermogravimetric analysis, and reversible hydration reactions for the coordinated water molecules were reported. Also, thermal decomposition of the rod-shaped Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2})F single crystals at 800 Degree-Sign C led to {alpha}-Bi{sub 2}O{sub 3} that maintained the same morphology of the original crystals. - Graphical abstract: Calcination of the Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2})F single crystals at 800 Degree-Sign C results in the {alpha}-Bi{sub 2}O{sub 3} rods that maintain the original morphology of the crystals. Highlights: Black-Right-Pointing-Pointer Synthesis of one-dimensional chain Bi-organic frameworks. Black-Right-Pointing-Pointer Reversible hydration reactions of Bi[NC{sub 5}H{sub 3}(CO{sub 2}){sub 2}](OH{sub 2})F. Black-Right-Pointing-Pointer Topotactic decomposition maintaining the same morphology of the original crystals.

  9. Homogeneous catalysis of deuterium transfer by potassium hydroxide and potassium methoxide D2-H2O and D2-CH3OH exchange

    International Nuclear Information System (INIS)

    Strathdee, G.G.; Garner, D.M.; Given, R.M.

    1977-01-01

    The kinetics and mechanism of exchange of deuterium between D 2 and water and between D 2 and methanol, catalyzed respectively by concentrated potassium hydroxide and potassium methoxide, has been studied between 348 and 398 K. In the D 2 -KOH-H 2 O case, the transfer of deuterium was found to be controlled by the rate of activation of the D 2 molecule by OH - . Rapid exchange of D + with the aqueous solution followed. From the D 2 -KOCH 3 -CH 3 OH studies, it was concluded that deuterium exchange depended upon the rates of both D 2 activation by methoxide and interaction of the solvent with the transition, or encounter, complex. The dependence of second-order rate constants on solvent activity for both systems was determined by normalization of the exchange reaction rates to unit reagent activity. Analysis of the kinetic isotope effects for each system suggested that their increase with base concentration or temperature was due to solvation effects. (author)

  10. Preparation and antibacterial activity of Ag–TiO2 composite film by ...

    Indian Academy of Sciences (India)

    WINTEC

    The stability of the Ag–TiO2 films was tested in a weather chamber (Atlas ... test. The antibacterial activity of the film after weathering was then compared to the one before weathering. 3. Results .... form the electron-cavity, the cavities oxidize the OH. – and ... in pharmaceutical and medical device factories, where the bacteria ...

  11. Reaction rate prediction in the supercritical region of H · + OH{sup -} → e{sup -}{sub aq} + H{sub 2}O using μSR

    Energy Technology Data Exchange (ETDEWEB)

    Du, T., E-mail: tdu@mta.ca [Mount Allison University, Sackville, NB (Canada); Liu, G., E-mail: gliu@mta.ca [Mount Allison University, Sackville, NB (Canada); Beninger, J., E-mail: jgbeninger@mta.ca [Mount Allison University, Sackville, NB (Canada); Ghandi, K., E-mail: kghandi@mta.ca [Mount Allison University, Sackville, NB (Canada)

    2015-07-01

    Knowledge of reaction rates in the supercritical region for reactions caused by the radiolysis of water is needed to prevent damage to future Supercritical Water-Cooled reactors. In particular, the H · + OH{sup -} → e{sup -}{sub aq} + H{sub 2}O reaction is examined experimentally within the supercritical region by usage of muon spin rotation spectroscopy. Using the obtained data and the 'cage effect' theory, the reaction was modelled and plateau-like behaviour near the critical point was accounted for. (author)

  12. Carbonate hydrates of the heavy alkali metals: preparation and structure of Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O; Carbonat-Hydrate der schweren Alkalimetalle: Darstellung und Struktur von Rb{sub 2}CO{sub 3} . 1,5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Cirpus, V.; Wittrock, J.; Adam, A. [Koeln Univ. (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O and Cs{sub 2}CO{sub 3} . 3 H{sub 2}O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four-circle diffractometer data, the crystal structures were determined (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, {beta} = 120.133(8) , V{sub EZ} = 1109.3(6) . 10{sup 6} pm{sup 3}; Cs{sub 2}CO{sub 3} . 3 H{sub 2}O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, {beta} = 90.708(14) , V{sub EZ} = 393.9(2) . 10{sup 6} pm{sup 3}). Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O is isostructural with K{sub 2}CO{sub 3} . 1.5 H{sub 2}O. In case of Cs{sub 2}CO{sub 3} . 3 H{sub 2}O no comparable structure is known. Both structures show {sub {infinity}}{sup 1}[(CO{sub 3}{sup 2-})(H{sub 2}O)]-chains, being connected via additional H{sub 2}O forming columns (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O) and layers (Cs{sub 2}CO{sub 3} . 3 H{sub 2}O), respectively. (orig.)

  13. One- or two-electron water oxidation, hydroxyl radical, or H_2O_2 evolution

    International Nuclear Information System (INIS)

    Siahrostami, Samira; Li, Guo-Ling; Viswanathan, Venkatasubramanian; Nørskov, Jens K.

    2017-01-01

    Electrochemical or photoelectrochemcial oxidation of water to form hydrogen peroxide (H_2O_2) or hydroxyl radicals (•OH) offers a very attractive route to water disinfection, and the first process could be the basis for a clean way to produce hydrogen peroxide. A major obstacle in the development of effective catalysts for these reactions is that the electrocatalyst must suppress the thermodynamically favored four-electron pathway leading to O_2 evolution. Here, we develop a thermochemical picture of the catalyst properties that determine selectivity toward the one, two, and four electron processes leading to •OH, H_2O_2, and O_2.

  14. Integrated nanophotonic hubs based on ZnO-Tb(OH3/SiO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2011-01-01

    Full Text Available Abstract Optical integration is essential for practical application, but it remains unexplored for nanoscale devices. A newly designed nanocomposite based on ZnO semiconductor nanowires and Tb(OH3/SiO2 core/shell nanospheres has been synthesized and studied. The unique sea urchin-type morphology, bright and sharply visible emission bands of lanthanide, and large aspect ratio of ZnO crystalline nanotips make this novel composite an excellent signal receiver, waveguide, and emitter. The multifunctional composite of ZnO nanotips and Tb(OH3/SiO2 nanoparticles therefore can serve as an integrated nanophotonics hub. Moreover, the composite of ZnO nanotips deposited on a Tb(OH3/SiO2 photonic crystal can act as a directional light fountain, in which the confined radiation from Tb ions inside the photonic crystal can be well guided and escape through the ZnO nanotips. Therefore, the output emission arising from Tb ions is truly directional, and its intensity can be greatly enhanced. With highly enhanced lasing emissions in ZnO-Tb(OH3/SiO2 as well as SnO2-Tb(OH3/SiO2 nanocomposites, we demonstrate that our approach is extremely beneficial for the creation of low threshold and high-power nanolaser.

  15. Atomistic growth phenomena of reactively sputtered RuO{sub 2} and MnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis, E-mail: music@mch.rwth-aachen.de; Bliem, Pascal; Geyer, Richard W.; Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, 52074 Aachen (Germany)

    2015-07-07

    We have synthesized RuO{sub 2} and MnO{sub 2} thin films under identical growth conditions using reactive DC sputtering. Strikingly different morphologies, namely, the formation of RuO{sub 2} nanorods and faceted, nanocrystalline MnO{sub 2}, are observed. To identify the underlying mechanisms, we have carried out density functional theory based molecular dynamics simulations of the growth of one monolayer. Ru and O{sub 2} molecules are preferentially adsorbed at their respective RuO{sub 2} ideal surface sites. This is consistent with the close to defect free growth observed experimentally. In contrast, Mn penetrates the MnO{sub 2} surface reaching the third subsurface layer and remains at this deep interstitial site 3.10 Å below the pristine surface, resulting in atomic scale decomposition of MnO{sub 2}. Due to this atomic scale decomposition, MnO{sub 2} may have to be renucleated during growth, which is consistent with experiments.

  16. High-resolution ellipsometric study of an n-alkane film, dotriacontane, adsorbed on a SiO2 surface

    DEFF Research Database (Denmark)

    Volkmann, U.G.; Pino, M.; Altamirano, L.A.

    2002-01-01

    -crystal substrates. Our results suggest a model of a solid dotriacontane film that has a phase closest to the SiO2 surface in which the long-axis of the molecules is oriented parallel to the interface. Above this "parallel film" phase, a solid monolayer adsorbs in which the molecules are oriented perpendicular...... at higher coverages. In addition, we have performed high-resolution ellipsometry and stray-light measurements on dotriacontane films deposited from solution onto highly oriented pyrolytic graphite substrates. After film deposition, these substrates proved to be less stable in air than SiO2....

  17. DFT studies of elemental mercury oxidation mechanism by gaseous advanced oxidation method: Co-interaction with H2O2 on Fe3O4 (111) surface

    Science.gov (United States)

    Zhou, Changsong; Song, Zijian; Zhang, Zhiyue; Yang, Hongmin; Wang, Ben; Yu, Jie; Sun, Lushi

    2017-12-01

    Density functional theory calculations have been carried out for H2O2 and Hg0 co-interaction on Fe3O4 (111) surface. On the Fetet1-terminated Fe3O4 (111) surface, the most favored configurations are H2O2 decomposition and produce two OH groups, which have strong interaction with Hg atom to form an OHsbnd Hgsbnd OH intermediate. The adsorbed OHsbnd Hgsbnd OH is stable and hardly detaches from the catalyst surface due to the highly endothermic process. A large amount of electron transfer has been found from Hg to the produced OH groups and has little irreversible effect on the Fe3O4 (111) surface. On the Feoct2-terminated Fe3O4 (111) surface, the Feoct2 site is more active than Fetet1 site. H2O2 decomposition and Hg0 oxidation processes are more likely to occur due to that the Feoct2 site both contains Fe2+ and Fe3+ cations. The calculations reveal that Hg0 oxidation by the OH radical produced from H2O2 is energetically favored. Additionally, Hg0 and H2O2 co-interaction mechanism on the Fe3O4 (111) interface has been investigated on the basis of partial local density of state calculation.

  18. Tricyclic sesquiterpene copaene prevents H2O2-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hasan Turkez

    2014-02-01

    Full Text Available Aim: Copaene (COP, a tricyclic sesquiterpene, is present in several essential oils of medicinal and aromatic plants and has antioxidant and anticarcinogenic features. But, very little information is known about the effects of COP on oxidative stress induced neurotoxicity. Method: We used hydrogen peroxide (H2O2 exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of COP in H2O2-induced toxicity in rat cerebral cortex cell cultures for the first time. For this purpose, methyl thiazolyl tetrazolium (MTT and lactate dehydrogenase (LDH release assays were carried out to evaluate cytotoxicity. Total antioxidant capacity (TAC and total oxidative stress (TOS parameters were used to evaluate oxidative changes. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG levels, the single cell gel electrophoresis (SCGE or comet assay was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Result: The results of this study showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage increased in the H2O2 alone treated cultures. But pre-treatment of COP suppressed the cytotoxicity, genotoxicity and oxidative stress which were increased by H2O2. Conclusion: It is proposed that COP as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative diseases. [J Intercult Ethnopharmacol 2014; 3(1.000: 21-28

  19. Oxygen adsorption and dissociation during the oxidation of monolayer Ti2C

    KAUST Repository

    Gan, Liyong

    2013-08-20

    Exfoliated two-dimensional early transition metal carbides and carbonitrides are usually not terminated by metal atoms but saturated by O, OH, and/or F, thus making it difficult to understand the surface structure evolution and the induced electronic modifications. To fill this gap, density functional theory and molecular dynamics simulations are performed to capture the initial stage of the oxidation process of Ti2C, a prototypical example from the recently fabricated class of two-dimensional carbides and carbonitrides. It is shown that the unsaturated Ti 3d orbitals of the pristine Ti2C surface interact strongly with the approaching O2 molecules, resulting in barrierless O2 dissociation. The diffusion of the dissociated O atoms is also found to be very facile. Molecular dynamics simulations suggest that both dissociation and diffusion are enhanced as the O2 coverage increases to 0.25 monolayer. For a coverage of less than 0.11 monolayer, the adsorbates lead to a minor modification of the electronic properties of Ti2C, while the modification is remarkable at 0.25 monolayer. The formed Ti2CO2 after O saturation is an indirect narrow gap semiconductor (0.33 eV) with high intrinsic carrier concentration at room temperature and high thermodynamic stability at intermediate temperature (e.g., 550 °C).

  20. Oxygen adsorption and dissociation during the oxidation of monolayer Ti2C

    KAUST Repository

    Gan, Liyong; Huang, Dan; Schwingenschlö gl, Udo

    2013-01-01

    Exfoliated two-dimensional early transition metal carbides and carbonitrides are usually not terminated by metal atoms but saturated by O, OH, and/or F, thus making it difficult to understand the surface structure evolution and the induced electronic modifications. To fill this gap, density functional theory and molecular dynamics simulations are performed to capture the initial stage of the oxidation process of Ti2C, a prototypical example from the recently fabricated class of two-dimensional carbides and carbonitrides. It is shown that the unsaturated Ti 3d orbitals of the pristine Ti2C surface interact strongly with the approaching O2 molecules, resulting in barrierless O2 dissociation. The diffusion of the dissociated O atoms is also found to be very facile. Molecular dynamics simulations suggest that both dissociation and diffusion are enhanced as the O2 coverage increases to 0.25 monolayer. For a coverage of less than 0.11 monolayer, the adsorbates lead to a minor modification of the electronic properties of Ti2C, while the modification is remarkable at 0.25 monolayer. The formed Ti2CO2 after O saturation is an indirect narrow gap semiconductor (0.33 eV) with high intrinsic carrier concentration at room temperature and high thermodynamic stability at intermediate temperature (e.g., 550 °C).

  1. Hydrogen retention properties of lithium film

    International Nuclear Information System (INIS)

    Kanaya, Koh; Yamauchi, Yuji; Hirohata, Yuko; Hino, Tomoaki; Mori, Kintaro

    1998-01-01

    Hydrogen retention properties of Li films and lithium oxide-lithium hydroxide (Li 2 O-LiOH) mixed films were investigated by two methods, hydrogen ion irradiation and hydrogen glow discharge. In a case of the hydrogen ion irradiation, thermal desorption spectrum of hydrogen retained in Li 2 O-LiOH film had two desorption peaks at around 470 K and 570 K. The ratio between retained hydrogen and Li atom was about 0.7. In a case of the hydrogen glow discharge, the hydrogen was also gettered in Li film during the discharge. The ratio of H/Li was almost 0.9. Most of gettered hydrogen desorbed by a baking with a temperature of 370 K. On the contrary, when the Li film exposed to the atmosphere was irradiated by the hydrogen plasma, the desorption of H 2 O was observed in addition to the adsorption of H 2 . (author)

  2. The rate constant for the CO + H2O2 reaction

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2009-01-01

    The rate constant for the reaction CO + H2O2 -> HOCO + OH (R1) at 713 K is determined based on the batch reactor experiments of Baldwin et al. [ R. R. Baldwin, R. W. Walker, S. J. Webster, Combust. Flame 15 (1970) 167] on decomposition of H2O2 sensitized by CO. The value, k(1) (713 K) = 8.1 x 10...

  3. A novel highly efficient adsorbent {[Co4(L)2(μ3-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n: Synthesis, crystal structure, magnetic and arsenic (V) absorption capacity

    Science.gov (United States)

    Zhang, Chong; Xiao, Yu; Qin, Yan; Sun, Quanchun; Zhang, Shuhua

    2018-05-01

    A novel highly efficient adsorbent-microporous tetranuclear Co(II)-based polymer, {[Co4(L)2(μ3-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n (1, H3L = 4-(N,N‧-bis(4-carboxybenzyl)amino) benzenesulfonic acid, 4,4‧-bipy = 4,4‧-bipyridine), was hydrothermally synthesized. The complex 1 is a metal-organic framework (MOF) material which was characterized by single-crystal X-ray diffraction, BET and platon software. Co-MOF (complex 1) reveals excellent adsorption property. The capacity of Co-MOF to remove arsenic As(V) from sodium arsenate aqueous solutions was investigated (The form of As(V) is AsO43-). The experimental results showed that Co-MOF had a higher stable and relatively high As(V) removal rate (> 98%) at pH 4-10. The adsorption kinetics followed a pseudo-second-order kinetic model, and the adsorption isotherm followed the Langmuir equation. Co-MOF exhibits a very high adsorption capacity of As(V) in aqueous solution (Qmax of 96.08 mg/g). Finally, the optimal adsorption conditions for the model were obtained through a Box-Behnken response surface experiment which was designed with adsorption time, dose, temperature and rotational speed of the shaker as the influencing factors to determine two-factor interaction effects. Co-MOF was further characterized using FTIR, PXRD, X-ray photoelectron spectroscopy before and after adsorption As (V). The magnetism of Co-MOF was also discussed.

  4. Excimer laser processing of ZnO thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    Winfield, R.J.; Koh, L.H.K.; O'Brien, Shane; Crean, Gabriel M.

    2007-01-01

    ZnO thin films were prepared on soda-lime glass from a single spin-coating deposition of a sol-gel prepared with anhydrous zinc acetate [Zn(C 2 H 3 O 2 ) 2 ], monoethanolamine [H 2 NC 2 H 4 OH] and isopropanol. The deposited films were dried at 50 and 300 deg. C. X-ray analysis showed that the films were amorphous. Laser annealing was performed using an excimer laser. The laser pulse repetition rate was 25 Hz with a pulse energy of 5.9 mJ, giving a fluence of 225 mJ cm -2 on the ZnO film. Typically, five laser pulses per unit area of the film were used. After laser processing, the hexagonal wurtzite phase of zinc oxide was observed from X-ray diffraction pattern analysis. The thin films had a transparency of greater than 70% in the visible region. The optical band-gap energy was 3.454 eV. Scanning electron microscopy and profilometry analysis highlighted the change in morphology that occurred as a result of laser processing. This comparative study shows that our sol-gel processing route differs significantly from ZnO sol-gel films prepared by conventional furnace annealing which requires temperatures above 450 deg. C for the formation of crystalline ZnO

  5. Carbon-14 immobilization via the CO2-Ba(OH)2 hydrate gas-solid reaction

    International Nuclear Information System (INIS)

    Haag, G.L.

    1980-01-01

    Although no restrictions have been placed on the release of carbon-14, it has been identified as a potential health hazard due to the ease in which it may be assimilated into the biosphere. The intent of the Carbon-14 Immobilization Program, funded through the Airborne Waste Program Management Office, is to develop and demonstrate a novel process for restricting off-gas releases of carbon-14 from various nuclear facilities. The process utilizes the CO 2 -Ba(OH) 2 hydrate gas-solid reaction to directly remove and immobilize carbon-14. The reaction product, BaCO 3 , possesses both the thermal and chemical stability desired for long-term waste disposal. The process is capable of providing decontamination factors in excess of 1000 and reactant utilization of greater than 99% in the treatment of high volumetric, airlike (330 ppM CO 2 ) gas streams. For the treatment of an air-based off-gas stream, the use of packed beds of Ba(OH) 2 .8H 2 O flakes to remove CO 2 has been demonstrated. However, the operating conditions must be maintained between certain upper and lower limits with respect to the partial pressure of water. If the water vapor pressure in the gas is less than the dissociation vapor pressure of Ba(OH) 2 .8H 2 O, the bed will deactivate. If the vapor pressure is considerably greater, pressure drop problems will increase with increasing humidity as the particles curl and degrade. Results have indicated that when operated in the proper regime, the bulk of the increase in pressure drop results from the conversion of Ba(OH) 2 .8H 2 O to BaCO 3 and not from the hydration of the commercial Ba(OH) 2 .8H 2 O (i.e. Ba(OH) 2 .7.50H 2 O) to Ba(OH) 2 .8H 2 O

  6. Structure of the demesmaekerite, Pb/sub 2/Cu/sub 5/(SeO/sub 3/)/sub 6/(UO/sub 2/)/sub 2/(OH)/sub 6/. 2H/sub 2/O

    Energy Technology Data Exchange (ETDEWEB)

    Ginderow, D [Laboratoire de Mineralogie-Cristallographie, Universite Pierre et Marie Curie, Paris, France; Cesbron, F [Bureau de Recherches Geologiques et Minieres (BRGM), 45 - Orleans (France)

    1938-07-15

    Msub(r) = 2172, triclinic, P1-bar, a = 11.955(5), b = 10.039(4), c = 5.639(2) A, ..cap alpha.. = 89.78(4), ..beta.. = 100.36(4), ..gamma.. = 91.34(4)/sup 0/, Z = 1, V = 666 A/sup 3/, Dsub(x) = 5.42(5), Dsub(m) = 5.28(4) Mg m/sup -3/, ..mu..(Mo K..cap alpha..) = 36.57 mm/sup -1/, F(000) = 1217, T = 295 K. The final R value is 0.060 for 3329 observed reflexions. The crystal structure consists of layers of (Cu(O,OH,H/sub 2/O)/sub 6/) octahedra parallel to (010) and linked to each other by oblique chains which are formed by oxygen bridges linking uranyl and selenium ions.

  7. Synthesis and X-ray structure of the dysprosium(III complex derived from the ligand 5-chloro-1,3-diformyl-2-hydroxybenzene-bis-(2-hydroxybenzoylhydrazone [Dy2(C22H16ClN4O53](SCN 3.(H2O.(CH3OH

    Directory of Open Access Journals (Sweden)

    Aliou H. Barry

    2003-12-01

    Full Text Available The title compound [Dy2(C22H16ClN4O53](SCN 3.(H2O.(CH3OH has been synthesized and its crystal structure determined by single X-ray diffraction at room temperature. The two nine coordinated Dy(III are bound to three macromolecules ligand through the phenolic oxygens of the p-chlorophenol moieties, the nitrogen atoms and the carbonyl functions of the hydrazonic moieties. The phenolic oxygen atoms of the 2-hydroxybenzoyl groups are not bonded to the metal ions. In the bases of the coordination polyhedra the six Dy-N bonds are in the range 2.563(13-2.656(13 Å and the twelve Dy-O bonds are in the range 2.281(10-2.406(10 Å.

  8. Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO{sub 2} structure

    Energy Technology Data Exchange (ETDEWEB)

    Poghossian, A. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, Juelich (Germany)], E-mail: a.poghossian@fz-juelich.de; Abouzar, M.H.; Razavi, A.; Baecker, M. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, Juelich (Germany); Bijnens, N. [Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); Williams, O.A.; Haenen, K. [Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); Division IMOMEC, IMEC vzw., Diepenbeek (Belgium); Moritz, W. [Humboldt University Berlin, Berlin (Germany); Wagner, P. [Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); Schoening, M.J. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, Juelich (Germany)

    2009-10-30

    A capacitive field-effect EDIS (electrolyte-diamond-insulator-semiconductor) sensor with improved pH and penicillin sensitivity has been realised using a nanocrystalline-diamond (NCD) film as sensitive gate material. The NCD growth process on SiO{sub 2} as well as an additional surface treatment in oxidising medium have been optimised to provide high pH-sensitive, non-porous O-terminated films without damage of the underlying SiO{sub 2} layer. The surface morphology of O-terminated NCD thin films and the layer structure of EDIS sensors have been studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. To establish the relative coverage of the surface functional groups generated by the oxidation of NCD surfaces, X-ray photoelectron spectroscopy analysis was carried out. The hydrophilicity of NCD thin films has been studied by water contact-angle measurements. A nearly Nernstian pH sensitivity of 54-57 mV/pH has been observed for O-terminated NCD films treated in an oxidising boiling mixture for 80 min and in oxygen plasma. The high pH-sensitive properties of O-terminated NCD have been used to develop an EDIS-based penicillin biosensor. A freshly prepared penicillin biosensor possesses a high sensitivity of 85 mV/decade in the concentration range of 0.1-2.5 mM penicillin G. The lower detection limit is 5 {mu}M.

  9. 2D NiFe/CeO2 Basic-Site-Enhanced Catalyst via in-Situ Topotactic Reduction for Selectively Catalyzing the H2 Generation from N2HH2O.

    Science.gov (United States)

    Wu, Dandan; Wen, Ming; Gu, Chen; Wu, Qingsheng

    2017-05-17

    An economical catalyst with excellent selectivity and high activity is eagerly desirable for H 2 generation from the decomposition of N 2 H 4 ·H 2 O. Here, a bifunctional two-dimensional NiFe/CeO 2 nanocatalyst with NiFe nanoparticles (∼5 nm) uniformly anchored on CeO 2 nanosheets supports has been successfully synthesized through a dynamic controlling coprecipitation process followed by in-situ topotactic reduction. Even without NaOH as catalyst promoter, as-designed Ni 0.6 Fe 0.4 /CeO 2 nanocatalyst can show high activity for selectively catalyzing H 2 generation (reaction rate (mol N2H4 mol -1 NiFe h -1 ): 5.73 h -1 ). As ceria is easily reducible from CeO 2 to CeO 2-x , the surface of CeO 2 could supply an extremely large amount of Ce 3+ , and the high-density electrons of Ce 3+ can work as Lewis base to facilitate the absorption of N 2 H 4 , which can weaken the N-H bond and promote NiFe active centers to break the N-H bond preferentially, resulting in the high catalytic selectivity (over 99%) and activity for the H 2 generation from N 2 H 4 ·H 2 O.

  10. Decomposition of poly(amide-imide) film using atmospheric pressure non-equilibrium plasma generated in a stream of H2O/Ar mixed gases

    International Nuclear Information System (INIS)

    Ueshima, M.; Aoki, Y.; Suzuki, K.; Kuwasima, S.; Sugiyama, K.

    2010-01-01

    Atmospheric pressure non-equilibrium Ar-H 2 O plasma was irradiated to exfoliate a thin film of a heat-resistant polymer, poly(amide-imide) coating on enamel copper wire. The plasma was produced by applying microwave power inducted with Ar-H 2 , Ar-O 2 , Ar-H 2 O or Ar-H 2 -O 2 mixed gases. The poly(amide-imide) thin film was exfoliate by those plasma irradiations. The magnitude of exfoliation depended on the distance of the copper wire from the plasma generating material and reached a maximum at a distance around 4 cm for each plasma irradiation. Surface conditions of the copper wire varied depending on the inducted gases. Ar-O 2 plasma irradiation oxidized the copper surface while other plasmas kept the copper surface unchanged. The time it took to exfoliate the poly(amide-imide) depended on the irradiation source, either Ar-O 2 (within 60 s), Ar-H 2 O (within 70 s), Ar-H 2 -O 2 (within 70 s) or Ar-H 2 (within 125 s). The Ar-H 2 O plasma irradiation under non-equilibrium atmospheric pressure was found to be the best method for exfoliating the poly(amide-imide) thin film coating on enamel copper wires rather than the Ar-H 2 -O 2 plasma because of its simplicity and safety.

  11. Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings.

    Science.gov (United States)

    Tebbe, Jonathon L; Holder, Aaron M; Musgrave, Charles B

    2015-11-04

    Reactions of HF with uncoated and Al and Zn oxide-coated surfaces of LiCoO2 cathodes were studied using density functional theory. Cathode degradation caused by reaction of HF with the hydroxylated (101̅4) LiCoO2 surface is dominated by formation of H2O and a LiF precipitate via a barrierless reaction that is exothermic by 1.53 eV. We present a detailed mechanism where HF reacts at the alumina coating to create a partially fluorinated alumina surface rather than forming AlF3 and H2O and thus alumina films reduce cathode degradation by scavenging HF and avoiding H2O formation. In contrast, we find that HF etches monolayer zinc oxide coatings, which thus fail to prevent capacity fading. However, thicker zinc oxide films mitigate capacity loss by reacting with HF to form a partially fluorinated zinc oxide surface. Metal oxide coatings that react with HF to form hydroxyl groups over H2O, like the alumina monolayer, will significantly reduce cathode degradation.

  12. In situ measurement of the effect of LiOH on the stability of zircaloy-2 surface film in PWR water

    International Nuclear Information System (INIS)

    Saario, T.; Taehtinen, S.

    1997-01-01

    Surface films on the metals play a major role in corrosion assisted cracking. A new method called Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films in high temperature and high pressure environments. The technique has been used to determine in situ the electric resistance of films on metals when in contact with water and dissolved anions, during formation and destruction of oxides and hydrides and during electroplating of metals. Electric resistance data can be measured with a frequency of the order of one hertz, which makes it possible to investigate in situ the kinetics of surface film related processes which are dependent on the environment, temperature, pH and electrochemical potential. This paper presents the results of the CER investigation on the effects of LiOH on the stability of Zircaloy-2 surface film in water with 2000 ppm H 3 BO 3 . At 300 deg. C the LiOH concentrations higher than 10 -2 M (roughly 70 ppm of Li + ) were found to markedly reduce the electric resistance of the Zircaloy-2 surface film during a test period of less than two hours. The decrease of the film resistance is very abrupt, possibly indicating a phase transformation. Moreover, the advantages of the CER technique over the other competing techniques which rely on the measurement of current are discussed. (author)

  13. In situ measurement of the effect of LiOH on the stability of zircaloy-2 surface film in PWR water

    Energy Technology Data Exchange (ETDEWEB)

    Saario, T; Taehtinen, S [Technical Research Centre of Finland, Espoo (Finland)

    1997-02-01

    Surface films on the metals play a major role in corrosion assisted cracking. A new method called Contact Electric Resistance (CER) method has been recently developed for in situ measurement of the electric resistance of surface films in high temperature and high pressure environments. The technique has been used to determine in situ the electric resistance of films on metals when in contact with water and dissolved anions, during formation and destruction of oxides and hydrides and during electroplating of metals. Electric resistance data can be measured with a frequency of the order of one hertz, which makes it possible to investigate in situ the kinetics of surface film related processes which are dependent on the environment, temperature, pH and electrochemical potential. This paper presents the results of the CER investigation on the effects of LiOH on the stability of Zircaloy-2 surface film in water with 2000 ppm H{sub 3}BO{sub 3}. At 300 deg. C the LiOH concentrations higher than 10{sup -2} M (roughly 70 ppm of Li{sup +}) were found to markedly reduce the electric resistance of the Zircaloy-2 surface film during a test period of less than two hours. The decrease of the film resistance is very abrupt, possibly indicating a phase transformation. Moreover, the advantages of the CER technique over the other competing techniques which rely on the measurement of current are discussed. (author).

  14. Vectorial electron transfer for improved hydrogen evolution by mercaptopropionic-acid-regulated CdSe quantum-dots-TiO2 -Ni(OH)2 assembly.

    Science.gov (United States)

    Yu, Shan; Li, Zhi-Jun; Fan, Xiang-Bing; Li, Jia-Xin; Zhan, Fei; Li, Xu-Bing; Tao, Ye; Tung, Chen-Ho; Wu, Li-Zhu

    2015-02-01

    A visible-light-induced hydrogen evolution system based on a CdSe quantum dots (QDs)-TiO2 -Ni(OH)2 ternary assembly has been constructed under an ambient environment, and a bifunctional molecular linker, mercaptopropionic acid, is used to facilitate the interaction between CdSe QDs and TiO2 . This hydrogen evolution system works effectively in a basic aqueous solution (pH 11.0) to achieve a hydrogen evolution rate of 10.1 mmol g(-1)  h(-1) for the assembly and a turnover frequency of 5140 h(-1) with respect to CdSe QDs (10 h); the latter is comparable with the highest value reported for QD systems in an acidic environment. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and control experiments demonstrate that Ni(OH)2 is an efficient hydrogen evolution catalyst. In addition, inductively coupled plasma optical emission spectroscopy and the emission decay of the assembly combined with the hydrogen evolution experiments show that TiO2 functions mainly as the electron mediator; the vectorial electron transfer from CdSe QDs to TiO2 and then from TiO2 to Ni(OH)2 enhances the efficiency for hydrogen evolution. The assembly comprises light antenna CdSe QDs, electron mediator TiO2 , and catalytic Ni(OH)2 , which mimics the strategy of photosynthesis exploited in nature and takes us a step further towards artificial photosynthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Growth and characterization of Al{sub 2}O{sub 3} films on fluorine functionalized epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Zachary R., E-mail: ZRobinso@Brockport.edu [Department of Physics, The College at Brockport, Brockport, New York 14420 (United States); Jernigan, Glenn G.; Wheeler, Virginia D.; Hernández, Sandra C.; Eddy, Charles R. [U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Mowll, Tyler R.; Ong, Eng Wen [College of Nanoscale Science and Engineering, University at Albany-SUNY, Albany, New York 12203 (United States); Ventrice, Carl A. [College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York 12203 (United States); Geisler, Heike [Department of Chemistry and Biochemistry, SUNY Oneonta, Oneonta, New York 13820 (United States); Pletikosic, Ivo; Yang, Hongbo; Valla, Tonica [Brookhaven National Laboratory, Brookhaven, New York 11973 (United States)

    2016-08-21

    Intelligent engineering of graphene-based electronic devices on SiC(0001) requires a better understanding of processes used to deposit gate-dielectric materials on graphene. Recently, Al{sub 2}O{sub 3} dielectrics have been shown to form conformal, pinhole-free thin films by functionalizing the top surface of the graphene with fluorine prior to atomic layer deposition (ALD) of the Al{sub 2}O{sub 3} using a trimethylaluminum (TMA) precursor. In this work, the functionalization and ALD-precursor adsorption processes have been studied with angle-resolved photoelectron spectroscopy, low energy electron diffraction, and X-ray photoelectron spectroscopy. It has been found that the functionalization process has a negligible effect on the electronic structure of the graphene, and that it results in a twofold increase in the adsorption of the ALD-precursor. In situ TMA-dosing and XPS studies were also performed on three different Si(100) substrates that were terminated with H, OH, or dangling Si-bonds. This dosing experiment revealed that OH is required for TMA adsorption. Based on those data along with supportive in situ measurements that showed F-functionalization increases the amount of oxygen (in the form of adsorbed H{sub 2}O) on the surface of the graphene, a model for TMA-adsorption on graphene is proposed that is based on a reaction of a TMA molecule with OH.

  16. Tunable band gap and optical properties of surface functionalized Sc2C monolayer

    International Nuclear Information System (INIS)

    Wang Shun; Du Yu-Lei; Liao Wen-He

    2017-01-01

    Using the density functional theory, we have investigated the electronic and optical properties of two-dimensional Sc 2 C monolayer with OH, F, or O chemical groups. The electronic structures reveal that the functionalized Sc 2 C monolayers are semiconductors with a band gap of 0.44–1.55 eV. The band gap dependent optical parameters, like dielectric function, absorption coefficients, reflectivity, loss function, and refraction index were also calculated for photon energy up to 20 eV. At the low-energy region, each optical parameter shifts to red, and the peak increases obviously with the increase of the energy gap. Consequently, Sc 2 C monolayer with a tunable band gap by changing the type of surface chemical groups is a promising 2D material for optoelectronic devices. (paper)

  17. Unfolding the Quantum Nature of Proton Bound Symmetric Dimers of (MeOH)2H+ and (Me2O)2H+: a Theoretical Study

    Science.gov (United States)

    Tan, Jake Acedera; Kuo, Jer-Lai

    2014-06-01

    A proton under a tug of war between two competing Lewis bases is a common motif in biological systems and proton transfer processes. Over the past decades, model compounds for such motifs can be prepared by delicate stoichiometric control of salt solutions. Unfortunately, condensed phase studies, which aims to identify the key vibrational signatures are complicated to analyze. As a result, gas-phase studies do provide promising insights on the behavior of the shared proton. This study attempts to understand the quantum nature of the shared proton under theoretical paradigms. Proton bound symmetric dimers of (MeOH)2H+ and (Me2O)2H+ are chosen as the model compounds. The simulation is performed using Density Functional Theory (DFT) at the B3LYP level with 6-311+G(d,p) as the basis set. It was found out that stretching mode of shared proton couples with several other normal modes and its corresponding oscillator strength do distribute to other normal modes. J.R. Roscioli, L.R. McCunn and M.A. Johnson. Science 2007, 316, 249 T.E. DeCoursey. Physiol. Rev., 2003, 83, 475 E.S. Stoyanov. Psys. Chem. Phys., 2000,2,1137

  18. Chemical synthesis of Fe{sub 2}O{sub 3} thin films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Kulal, P.M.; Dubal, D.P.; Lokhande, C.D. [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Fulari, V.J., E-mail: vijayfulari@gmail.com [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2011-02-03

    Research highlights: > Simple chemical synthesis of Fe{sub 2}O{sub 3}. > Formation of amorphous and hydrous Fe{sub 2}O{sub 3}. > Potential candidate for supercapacitors. - Abstract: Fe{sub 2}O{sub 3} thin films have been prepared by novel chemical successive ionic layer adsorption and reaction (SILAR) method. Further these films were characterized for their structural, morphological and optical properties by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrum, scanning electron microscopy (SEM), wettability test and optical absorption studies. The XRD pattern showed that the Fe{sub 2}O{sub 3} films exhibit amorphous in nature. Formation of iron oxide compound was confirmed from FTIR studies. The optical absorption showed existence of direct optical band gap of energy 2.2 eV. Fe{sub 2}O{sub 3} film surface showed superhydrophilic nature with water contact angle less than 10{sup o}. The supercapacitive properties of Fe{sub 2}O{sub 3} thin film investigated in 1 M NaOH electrolyte showed supercapacitance of 178 F g{sup -1} at scan rate 5 mV/s.

  19. Synthesis and cathodoluminescence characterization of ZrO2:Er3+ films

    International Nuclear Information System (INIS)

    Martínez-Hernández, A.; Guzmán-Mendoza, J.; Rivera-Montalvo, T.; Sánchez-Guzmán, D.; Guzmán-Olguín, J.C.; García-Hipólito, M.; Falcony, C.

    2014-01-01

    Trivalent erbium doped zirconium oxide films were deposited by the ultrasonic spray pyrolysis technique. Films were deposited using zirconium tetrachloride octahydrate (ZrCl 4 O·8H 2 O) and erbium nitrate hexahydrate ((NO 3 ) 3 Er·6H 2 O) as precursors and deionized water as solvent. The dopant concentrations in the spray solution were 1, 3, 5, 10 and 15 at% in ratio to zirconium content. The films were deposited on corning glass substrates at different temperatures from 400 up to 550 °C. Films deposited at temperatures lower than 400 °C were amorphous, however, as substrate temperatures are increased, the ZrO 2 films presented a better crystallinity and showed a tetragonal phase. Cathodoluminescence (CL) emission spectra showed bands centred at 524, 544 and 655 nm associated with the electronic transition of Er 3+ . - Highlights: • The films of ZrO 2 :Er 3+ were obtained by spray pyrolysis. • Emission spectra of ZrO 2 :Er 3+ films were reported. • Cathodoluminescence of ZrO 2 :Er 3+ films was analyzed. • Cathodoluminescence of ZrO 2 :Er 3+ films showed strong dependence on substrate temperature and electron voltage

  20. LPG and NH3 Sensing Properties of SnO2 Thick Film Resistors Prepared by Screen Printing Technique

    Directory of Open Access Journals (Sweden)

    A. S. GARDE

    2010-11-01

    Full Text Available The gas sensing behavior of SnO2 thick film resistors deposited on alumina substrates has been investigated for LPG and NH3 gas. The standard screen printing technology was used to prepare the thick films. The films were fired at optimized temperature of 780 0C for 30 minutes. The material characterization was performed by XRD, SEM, FTIR, UV and EDAX for elemental analysis. IR spectroscopy analysis at 2949.26 cm-1 showed the peak assigned to the –Sn-H vibration due to the effect of hybridization i.e. sp3 and the sharp peak at 3734.31 cm-1 assigned to –Sn-OH stretching vibration due to hydrogen bonding. The variation of D.C electrical resistance of SnO2 film samples was measured in air as well as in LPG and NH3 gas atmosphere as a function of temperature. The SnO2 film samples show negative temperature coefficient of résistance. The SnO2 film samples showed the highest sensitivity to 600 ppm of LPG at 230 0C and NH3 at 370 0C. The effect of microstructure on sensitivity, response time and recovery time of the sensor in the presence of LPG and NH3 gases were studied and discussed.

  1. Ordered Fe(II)Ti(IV)O3 Mixed Monolayer Oxide on Rutile TiO2(011).

    Science.gov (United States)

    Halpegamage, Sandamali; Ding, Pan; Gong, Xue-Qing; Batzill, Matthias

    2015-08-25

    Oxide monolayers supported or intermixed with an oxide support are potential nanocatalysts whose properties are determined by the interplay with the support. For fundamental studies of monolayer oxides on metal oxide supports, well-defined systems are needed, but so far, the synthesis of monolayer oxides with long-range order on single-crystal oxide surfaces is rare. Here, we show by a combination of scanning tunneling microscopy, photoemission spectroscopy, and density functional theory (DFT)-based computational analysis that the rutile TiO2(011) surface supports the formation of an ordered mixed FeTiO3 monolayer. Deposition of iron in a slightly oxidizing atmosphere (10(-8) Torr O2) and annealing to 300 °C results in a well-ordered surface structure with Fe in a 2+ charge state and Ti in a 4+ charge states. Low-energy ion scattering suggests that the cation surface composition is close to half Fe and half Ti. This surface is stable in ultrahigh vacuum to annealing temperatures of 300 °C before the iron is reduced. DFT simulations confirm that a surface structure with coverage of 50% FeO units is stable and forms an ordered structure. Although distinct from known bulk phases of the iron-titanium oxide systems, the FeTiO3 monolayer exhibits some resemblance to the ilmenite structure, which may suggest that a variety of different mixed oxide phases (of systems that exist in a bulk ilmenite phase) may be synthesized in this way on the rutile TiO2(011) substrate.

  2. Roles of free radicals in NO oxidation by Fenton system and the enhancement on NO oxidation and H2O2 utilization efficiency.

    Science.gov (United States)

    Zhao, Haiqian; Dong, Ming; Wang, Zhonghua; Wang, Huaiyuan; Qi, Hanbing

    2018-06-20

    Low H 2 O 2 utilization efficiency is the main problem when Fenton system was used to oxidize NO in flue gas. To understand the behavior of the free radicals during NO oxidation process in Fenton system is crucial to solving this problem. The oxidation capacity of ·OH and HO 2 · on NO in Fenton system was compared and the useless consumption path of ·OH and HO 2 · that caused the low utilization efficiency of H 2 O 2 were studied. A method to enhance the oxidation ability and H 2 O 2 utilization efficiency by adding reducing additives in Fenton system was proposed. The results showed that both of ·OH and HO 2 · were active substances that oxidize NO. However, the oxidation ability of ·OH radicals was stronger. The vast majority of ·OH and HO 2 · was consumed by rapid reaction ·OH+HO 2 ·→H 2 O+O 2 , which was the primary reason for the low utilization efficiency of H 2 O 2 in Fenton system. Hydroxylamine hydrochloride and ascorbic acid could accelerate the conversion of Fe 3+ to Fe 2+ , thereby increase the generation rate of ·OH and decrease the generation rate of HO 2 ·. As a result, the oxidation ability and H 2 O 2 utilization efficiency were enhanced.

  3. Revisit the landscape of protonated water clusters H+(H2O)n with n = 10-17: An ab initio global search

    Science.gov (United States)

    Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun

    2018-05-01

    Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H+(H2O)n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H2O molecule to form a H3O+ ion in all H+(H2O)10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H+(H2O)10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H3O+ ion since the Wiberg bond order of the O-H bond in the H3O+ ion is smaller than that in H2O molecules, which causes a red shift of the O-H stretching mode in the H3O+ ion.

  4. Direct Synthesis of H2O2 over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H2O2-ODS of Fuel

    International Nuclear Information System (INIS)

    Zhang, Han; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Hu, Shaozheng; Liu, Guangliang; Chen, Ping; Zhao, Zhixi

    2013-01-01

    Direct synthesis of H 2 O 2 and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active Au 0 species for H 2 O 2 synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in H 2 O 2 synthesis as CH 3 OH/H 2 O ratio of solvent changed. H 2 O 2 decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of O 2 /H 2 ratio on H 2 O 2 concentration, H 2 conversion and H 2 O 2 selectivity revealed a relationship between H 2 O 2 generation and H2 consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of O 2 /H 2 ratio and 60 .deg. C. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, H 2 conversion and oxidative desulfurization selectivity of H 2 were presented

  5. Sulfur isotope fractionation during oxidation of sulfur dioxide: gas-phase oxidation by OH radicals and aqueous oxidation by H2O2, O3 and iron catalysis

    Directory of Open Access Journals (Sweden)

    J. N. Crowley

    2012-01-01

    Full Text Available The oxidation of SO2 to sulfate is a key reaction in determining the role of sulfate in the environment through its effect on aerosol size distribution and composition. Sulfur isotope analysis has been used to investigate sources and chemical processes of sulfur dioxide and sulfate in the atmosphere, however interpretation of measured sulfur isotope ratios is challenging due to a lack of reliable information on the isotopic fractionation involved in major transformation pathways. This paper presents laboratory measurements of the fractionation factors for the major atmospheric oxidation reactions for SO2: Gas-phase oxidation by OH radicals, and aqueous oxidation by H2O2, O3 and a radical chain reaction initiated by iron. The measured fractionation factor for 34S/32S during the gas-phase reaction is αOH = (1.0089±0.0007−((4±5×10−5 T(°C. The measured fractionation factor for 34S/32S during aqueous oxidation by H2O2 or O3 is αaq = (1.0167±0.0019−((8.7±3.5 ×10−5T(°C. The observed fractionation during oxidation by H2O2 and O3 appeared to be controlled primarily by protonation and acid-base equilibria of S(IV in solution, which is the reason that there is no significant difference between the fractionation produced by the two oxidants within the experimental error. The isotopic fractionation factor from a radical chain reaction in solution catalysed by iron is αFe = (0.9894±0.0043 at 19 °C for 34S/32S. Fractionation was mass-dependent with regards to 33S/32S for all the reactions investigated. The radical chain reaction mechanism was the only measured reaction that had a faster rate for the light isotopes. The results presented in this study will be particularly useful to determine the importance of the transition metal-catalysed oxidation pathway compared to other oxidation pathways, but other main oxidation pathways can not be distinguished based on stable sulfur isotope measurements alone.

  6. An efficient route to Cu_2O nanorod array film for high-performance Li-ion batteries

    International Nuclear Information System (INIS)

    Yang, Yumei; Wang, Kun; Yang, Zeheng; Zhang, Yingmeng; Gu, Heyun; Zhang, Weixin; Li, Errui; Zhou, Chen

    2016-01-01

    Fabrication of well-organized one-dimensional nanostructured arrays on conducting substrates as binder free electrodes allows us to synergize and integrate multi-functionalities into lithium ion batteries. In this contribution, we report a metal-induced thermal reduction (MITR) method to prepare free-standing Cu_2O nanorod array film with average diameters of 400 ± 100 nm and lengths of several microns on copper substrates by direct thermal reduction of Cu(OH)_2 nanorod arrays on copper foils in nitrogen atmosphere at 500 °C. The presence of Cu substrates reduces the Cu(OH)_2 to Cu_2O and decreases the reduction temperature significantly through changing the reaction Gibbs energy. Compared with some previously-reported methods about thermal reduction, the MITR method is facile, controllable, efficient and low energy consumption. The free-standing Cu_2O nanorod array film on Cu substrates as anode can achieve high rate capability (315 mAh g"−"1 at 10 C) and good cyclability (358 mAh g"−"1 after 200 cycles at 1 C), demonstrating their excellent electrochemical performance in lithium ion batteries, which results from relatively faster electron and ion transport, easier electrolyte diffusion and better accommodation of strains from the repeated conversion reactions based on their one-dimensional nanostructured arrays. - Highlights: • A metal-induced thermal reduction method was used to prepare Cu_2O nanorod array film. • Copper substrate takes an important part in the conversion of Cu(OH)_2 to Cu_2O. • The Cu_2O films show excellent electrochemical properties as anode for Li-ion battery.

  7. Study of Room Temperature H2S Gas Sensing Behavior of CuO-modified BSST Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    H. M. Baviskar

    2008-05-01

    Full Text Available Thick films of (Ba0.1Sr0.9(Sn0.5Ti0.5O3 referred as BSST, were prepared by screen-printing technique. The preparation, characterization and gas sensing properties of pure and CuO-BSST mixed oxide semiconductors have been investigated. The mixed oxides were obtained by dipping the pure BSST thick films into 0.01 M aqueous solution of CuCl2, for different intervals of time. Pure BSST was observed to be less sensitive to H2S gas. However, mixed oxides of CuO and BSST were observed to be highly sensitive to H2S gas. Upon exposure to H2S gas, the barrier height of CuO-BSST intergranular regions decreases markedly due to the chemical transformation of CuO into well conducting CuS leading to a drastic decrease in resistance. The crucial gas response was found to H2S gas at room temperature and no cross sensitivity was observed to other hazardous and polluting gases. The effects of microstructure and doping concentration on the gas response, selectivity, response and recovery of the sensor in the presence of H2S gas were studied and discussed.

  8. Characterization of RuO sub 2 electrodes for ferroelectric thin films prepared by metal-organic chemical-vapor deposition using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3

    CERN Document Server

    Lee, J M; Shin, J C; Hwang, C S; Kim, H J; Suk, C G

    1999-01-01

    Pure and conducting RuO sub 2 thin films were deposited on Si substrates at 250 approx 450 .deg. C using Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 as a precursor by low-pressure metal-organic chemical-vapor deposition (LP-MOCVD). At a lower deposition temperature,smoother and denser RuO sub 2 thin films were deposited. The RuO sub 2 thin films, which were crack free, adhered well onto the substrates and showed very low resistivities around 45 approx 60 mu OMEGA cm. RuO sub 2 thin films on (Ba, Sr)/TiO sub 3 /Pt/SiO sub 2 /Si showed good properties, indicating that MOCVD RuO sub 2 thin films from Ru(C sub 1 sub 1 H sub 1 sub 9 O sub 2) sub 3 can be applied as electrodes of high-dielectric thin films for capacitors in ultra-large-scale DRAMs.

  9. OH/H2O Detection Capability Evaluation on Chang'e-5 Lunar Mineralogical Spectrometer (LMS)

    Science.gov (United States)

    Liu, Bin; Ren, Xin; Liu, Jianjun; Li, Chunlai; Mu, Lingli; Deng, Liyan

    2016-10-01

    The Chang'e-5 (CE-5) lunar sample return mission is scheduled to launch in 2017 to bring back lunar regolith and drill samples. The Chang'e-5 Lunar Mineralogical Spectrometer (LMS), as one of the three sets of scientific payload installed on the lander, is used to collect in-situ spectrum and analyze the mineralogical composition of the samplingsite. It can also help to select the sampling site, and to compare the measured laboratory spectrum of returned sample with in-situ data. LMS employs acousto-optic tunable filters (AOTFs) and is composed of a VIS/NIR module (0.48μm-1.45μm) and an IR module (1.4μm -3.2μm). It has spectral resolution ranging from 3 to 25 nm, with a field of view (FOV) of 4.24°×4.24°. Unlike Chang'e-3 VIS/NIR Imaging Spectrometer (VNIS), the spectral coverage of LMS is extended from 2.4μm to 3.2μm, which has capability to identify H2O/OH absorption features around 2.7μm. An aluminum plate and an Infragold plate are fixed in the dust cover, being used as calibration targets in the VIS/NIR and IR spectral range respectively when the dust cover is open. Before launch, a ground verification test of LMS needs to be conducted in order to: 1) test and verify the detection capability of LMS through evaluation on the quality of image and spectral data collected for the simulated lunar samples; and 2) evaluate the accuracy of data processing methods by the simulation of instrument working on the moon. The ground verification test will be conducted both in the lab and field. The spectra of simulated lunar regolith/mineral samples will be collected simultaneously by the LMS and two calibrated spectrometers: a FTIR spectrometer (Model 102F) and an ASD FieldSpec 4 Hi-Res spectrometer. In this study, the results of the LMS ground verification test will be reported, and OH/H2O Detection Capability will be evaluated especially.

  10. Carbon-14 immobilization via the Ba(OH)28H2O process

    International Nuclear Information System (INIS)

    Haag, G.L.; Nehls, J.W. Jr.; Young, G.C.

    1982-01-01

    The airborne release of 14 C from various nuclear facilities has been identified as a potential biohazard due to the long half-life of 14 C (5730 yrs) and the ease in which it may be assimilated into the biosphere. At Oak Ridge National Laboratory, technology is under development, as part of the Airborne Waste Management Program, for the removal and immobilization of this radionuclide. Prior studies have indicated that the 14 C will likely exist in the oxidized form as CO 2 and will contribute slightly to the bulk CO 2 concentration of the gas stream, which is airlike in nature (approx. 330 ppMv CO 2 ). The technology under development utilizes the CO 2 - Ba(OH) 2 8H 2 O gas-solid reaction with the mode of gas-solid contacting being a fixed bed. The product, BaCO 3 , possessing excellent thermal and chemical stability, prerequisites for the long-term disposal of nuclear wastes. For optimal process operation, studies have indicated that an operating window of adequate size does exist. When operating within the window, high CO 2 removal efficiency (effluent concentrations 99%), and an acceptable pressure drop across the bed (3 kPa/m at 13 cm/s superficial velocity) are possible. This paper will address three areas of experimental investigation. These areas are (1) micro-scale studies on 150-mg samples to provide information concerning surface properties, kinetics, and equilibrium vapor pressures, (2) macro-scale studies on large fixed beds (4.2 kg reactant) to determine the effects of humidity, temperature, and gas flow-rate upon bed pressure drop and CO 2 breakthrough, and (3) the design, construction, and initial operation of a pilot unit capable of continuously processing a 34 m 3 /h (20 ft 3 /min) air-based gas stream

  11. Kinetic Control of Intralayer Cobalt Coordination in Layered Hydroxides: CoxoctCoxtet(OH)2(Cl)x(H2O)n

    International Nuclear Information System (INIS)

    Neilson, James R.; Schwenzer, Birgit; Seshadri, Ram; Morse, Daniel E.

    2009-01-01

    We report the synthesis and characterization of new structural variants of the isotypic compound with the generic chemical formula, Co 1-0.5x oct Co x tet (OH) 2 (Cl) x (H 2 O) n , all modifications of an α-Co(OH) 2 lattice. We show that the occupancy of tetrahedrally coordinated cobalt sites and associated chloride ligands, x, is modulated by the rate of formation of the respective layered hydroxide salts from kinetically controlled aqueous hydrolysis at an air-water interface. This new level of structural control is uniquely enabled by the slow diffusion of a hydrolytic catalyst, a simple technique. Independent structural characterizations of the compounds separately describe various attributes of the materials on different length scales, revealing details hidden by the disordered average structures. The precise control over the population of distinct octahedrally and tetrahedrally coordinated cobalt ions in the lattice provides a gentle, generic method for modulating the coordination geometry of cobalt in the material without disturbing the lattice or using additional reagents. A mechanism is proposed to reconcile the observation of the kinetic control of the structure with competing interactions during the initial stages of hydrolysis and condensation.

  12. Realisation and crossed molecular beams study of H2/O chemical reactions at several excited states

    International Nuclear Information System (INIS)

    Marx, Jacqueline

    1986-01-01

    This work is devoted to the study of the reactive collision O + H 2 OH + H in a crossed beam experiment. This process including several channels taken a part in the chemistry of the upper atmosphere as well as in the combustion of hydrogen. According to the electronic or vibrational state of the reactants, the OH radical is produced in its ground electronic state OH (X 2 π) or in its first excited state OH (A 2 Σ + ). When the reactants are in their ground state, the reaction is endothermic in the conditions of the experiment (center of mass kinetic energy ≅ 0.12 eV). The following reactions have been obtained: O( 1 D) +H 2 (v=O) → OH (X 2 π) +H( 2 S) and O( 1 D) +H 2 (v≥5) → OH (A 2 Σ + ) +H( 2 S). The atomic oxygen is produced in its excited state O( 1 D) in a radio-frequency discharge which dissociates the molecular oxygen seeded in a carrier gas (He or Ar) and the hydrogen molecules are excited vibrationally by electron bombardment. The first reaction is studied by time-of-flight measurements. In this way, it has been possible to observe the different vibrational levels on which the OH radical is produced. The analysis of this vibrational distribution shows the competition between the abstraction and insertion-dissociation mechanisms. In the second reaction, the analysis of the spontaneous fluorescence of OH (A 2 Σ + ) reveals a very hot and non-Boltzmann rotational excitation. (author) [fr

  13. Novel optical and structural properties of porous GaAs formed by anodic etching of n±GaAs in a HF:C_2H_5OH:HCl:H_2O_2:H_2O electrolyte: effect of etching time

    International Nuclear Information System (INIS)

    Naddaf, M.; Saad, M.

    2014-01-01

    Porous GaAs layers have been formed by anodic etching of n±type GaAs (10.0) substrates in a HF:C_2H_5OH:HCl:H_2O_2:H_2O electrolyte. A dramatic impact of etching time on the optical and structural properties of porous GaAs layer is demonstrated. The nano/micro-features of porous GaAs layers are revealed by scanning electron microscopy (SEM) imaging. Two-peak room temperature photoluminescence (PL), "blue-green"and "green-yellow", is obtained in all prepared porous GaAs samples. Proper adjustment of etching time is found to produce a white color layer, instead of the usual dark gray color of porous GaAs. This is found to cause vast enhancement in the intensity of the visible PL in porous GaAs layer. Chemical composition and structural characterization by means of X-ray photoelectron spectroscopic (XPS), X-ray diffraction (XRD), and micro-Raman spectroscopy, confirm that this layer is characterized with monoclinic β-Ga_2O_3 rich surface. Etching time induced-modification of structural and chemical properties of porous GaAs layer is discussed and correlated to its PL behavior. It is inferred that the "blue-green"PL in porous GaAs can be ascribed to different degrees of quantum confinement in GaAs nano crystallites, whereas, the "green-yellow"PL is highly influenced by the As_2O_3 and Ga_2O_3, content in the porous GaAs layer. In addition, the reflectance measurements reveal an anti-refection trend of behavior of porous GaAs layers in the spectral range (500-1,100 nm). (author)

  14. Dual level reaction-path dynamics calculations on the C2H6 + OH → C2H5 + H2O reaction

    International Nuclear Information System (INIS)

    Coitino, E.L.; Truhlar, D.G.

    1996-01-01

    Interpolated Variational Transition State Theory with Multidimensional Tunneling contributions (IVTST/MT) has been applied to the reaction of C 2 H 6 + OH, and it yields rate constants that agree well with the available experimental information. The main disadvantage of this method is the difficulty of interpolating all required information from a few points along the reaction path. A more recent alternative is Variational Transition State Theory with Multidimensional Tunneling and Interpolated Corrections (VTST/MT-IC, also called dual-level direct dynamics), in which the reaction-path properties are first determined at an economical (lower) level of theory and then open-quotes correctedclose quotes using more accurate information obtained at a higher level for a selected number of points on the reaction path. The VTST/MT-IC method also allows for interpolation through die wider reaction swath when large-curvature tunneling occurs. In the present work we examine the affordability/accuracy tradeoff for several combinations of higher and lower levels for VTST/MT-IC reaction rate calculations on the C 2 H 6 + OH process. Various levels of theory (including NDDO-SRP and ab initio ROMP2, UQCISD, UQCISD(T), and UCCSD) have been employed for the electronic structure calculations. We also compare several semiclassical approaches implemented in the POLYRATE and MORATE programs for taking tunneling effects into account

  15. Structures of sub-monolayered silicon carbide films

    International Nuclear Information System (INIS)

    Baba, Y.; Sekiguchi, T.; Shimoyama, I.; Nath, Krishna G.

    2004-01-01

    The electronic and geometrical structures of silicon carbide thin films are presented. The films were deposited on graphite by ion-beam deposition using tetramethylsilane (TMS) as an ion source. In the Si K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra for sub-monolayered film, sharp peaks due to the resonance from Si 1s to π*-like orbitals were observed, suggesting the existence of Si=C double bonds. On the basis of the polarization dependencies of the Si 1s → π* peak intensities, it is elucidated that the direction of the π*-like orbitals is just perpendicular to the surface. We conclude that the sub-monolayered SiC x film has a flat-lying hexagonal structure of which configuration is analogous to the single sheet of graphite

  16. Free-standing, flexible β-Ni(OH)2/electrochemically-exfoliated graphene film electrode for efficient oxygen evolution

    Science.gov (United States)

    Wang, Lanlan; Zhang, Jian; Jiang, Weitao; Zhao, Hong; Liu, Hongzhong

    2018-03-01

    The oxidation of water into molecular oxygen (oxygen evolution reaction, OER) is a pivotal reaction in many energy conversion devices. The high cost of IrO2, however, seriously hinder its large-scale applications in water oxidation. Here, we have at first reported a free-standing and flexible film electrode consisting of 2D β-Ni(OH)2/electrochemically-exfoliated graphene hybrid nanosheets (NiG-2), which is synthesized by a solvothermal reaction and an assembly process. The as-obtained NiG-2 film electrode exhibited an excellent electrocatalytic OER activity with an extremely low OER onset overpotential of ∼250 mV in a 1 M KOH aqueous solution, which is lower than these of the commercial Ir/C (370 mV at 10 mA cm-2) catalyst.

  17. Study of the photophysical properties of composite film assembled of porphyrin and TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X -S; Kang, S -Z; Liu, H -G; Mu, J [Shandong Univ., Jinan (China). Key Lab. for Colloid and Interface Chem. of Education Ministry

    1999-09-08

    In this paper, the formation, structure, and photophysical properties of functional mixed film of 5,10,15,20-tetra-4-(2-decanoic acid)phenyl porphyrin (TDPP) with TiO{sub 2} nanoparticles formed from the 2D sol-gel process of tetrabutoxyltitanium (TBT) at the air/water interface is reported. The composite multilayer films were assembled by transferring the mixed monolayer onto quartz plates. The diameter distribution and crystallinity of TiO{sub 2} particles were estimated by TEM observation and electron diffraction. The sensitization of TDPP upon TiO{sub 2} nanoparticles was confirmed by the spectral changes of UV-visible absorption and fluorescence of TDPP in the composite films. Furthermore the photosensitization greatly affected the photocatalytic activity of TiO{sub 2} particles with respect to the degradation of methylene blue (MO). (orig.)

  18. Ultrafast atomic layer-by-layer oxygen vacancy-exchange diffusion in double-perovskite LnBaCo2O5.5+δ thin films.

    Science.gov (United States)

    Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu

    2014-04-22

    Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.

  19. Redetermination of eveite, Mn2AsO4(OH, based on single-crystal X-ray diffraction data

    Directory of Open Access Journals (Sweden)

    Yongbo W. Yang

    2011-12-01

    Full Text Available The crystal structure of eveite, ideally Mn2(AsO4(OH [dimanganese(II arsenate(V hydroxide], was refined from a single crystal selected from a co-type sample from Långban, Filipstad, Varmland, Sweden. Eveite, dimorphic with sarkinite, is structurally analogous with the important rock-forming mineral andalusite, Al2OSiO4, and belongs to the libethenite group. Its structure consists of chains of edge-sharing distorted [MnO4(OH2] octahedra (..2 symmetry extending parallel to [001]. These chains are cross-linked by isolated AsO4 tetrahedra (..m symmetry through corner-sharing, forming channels in which dimers of edge-sharing [MnO4(OH] trigonal bipyramids (..m symmetry are located. In contrast to the previous refinement from Weissenberg photographic data [Moore & Smyth (1968. Am. Mineral. 53, 1841–1845], all non-H atoms were refined with anisotropic displacement parameters and the H atom was located. The distance of the donor and acceptor O atoms involved in hydrogen bonding is in agreement with Raman spectroscopic data. Examination of the Raman spectra for arsenate minerals in the libethenite group reveals that the position of the peak originating from the O—H stretching vibration shifts to lower wavenumbers from eveite, to adamite, zincolivenite, and olivenite.

  20. Thermal Measurement during Electrolysis of Pd-Ni Thin-film -Cathodes in Li2SO4/H2O Solution

    Science.gov (United States)

    Castano, C. H.; Lipson, A. G.; S-O, Kim; Miley, G. H.

    2002-03-01

    Using LENR - open type calorimeters, measurements of excess heat production were carried out during electrolysis in Li_2SO_4/H_2O solution with a Pt-anode and Pd-Ni thin film cathodes (2000-8000 Åthick) sputtered on the different dielectric substrates. In order to accurately evaluate actual performance during electrolysis runs in the open-type calorimeter used, considering effects of heat convection, bubbling and possible H_2+O2 recombination, smooth Pt sheets were used as cathodes. Pt provides a reference since it does not produce excess heat in the light water electrolyte. To increase the accuracy of measurements the water dissociation potential was determined for each cathode taking into account its individual over-voltage value. It is found that this design for the Pd-Ni cathodes resulted in the excess heat production of ~ 20-25 % of input power, equivalent to ~300 mW. In cases of the Pd/Ni- film fracture (or detachment from substrate) no excess heat was detected, providing an added reference point. These experiments plus use of optimized films will be presented.

  1. Cross sections of the O++H2OH++H ion-molecule reaction and isotopic variants (D2, HD): Quasiclassical trajectory study and comparison with experiments

    International Nuclear Information System (INIS)

    Martinez, Rodrigo; Sierra, Jose Daniel; Gonzalez, Miguel

    2005-01-01

    A dynamics study [cross section and microscopic mechanism versus collision energy (E T )] of the reaction O + +H 2OH + +H, which plays an important role in Earth's ionosphere and interstellar chemistry, was conducted using the quasiclassical trajectory method, employing an analytical potential energy surface (PES) recently derived by our group [R. Martinez et al., J. Chem. Phys. 120, 4705 (2004)]. Experimental excitation functions for the title reaction, as well as its isotopic variants with D 2 and HD, were near-quantitatively reproduced in the calculations in the very broad collision energy range explored (E T =0.01-6.0 eV). Intramolecular and intermolecular isotopic effects were also examined, yielding data in good agreement with experimental results. The reaction occurs via two microscopic mechanisms (direct and nondirect abstraction). The results were satisfactorily interpreted based on the reaction probability and the maximum impact parameter dependences with E T , and considering the influence of the collinear [OHH] + absolute minimum of the PES on the evolution from reactants to products. The agreement between theory and experiment suggests that the reaction mainly occurs through the lowest energy PES and nonadiabatic processes are not very important in the wide collision energy range analyzed. Hence, the PES used to describe this reaction is suitable for both kinetics and dynamics studies

  2. Highly stable hydrogenated gallium-doped zinc oxide thin films grown by DC magnetron sputtering using H2/Ar gas

    International Nuclear Information System (INIS)

    Takeda, Satoshi; Fukawa, Makoto

    2004-01-01

    The effects of water partial pressure (P H 2 O ) on electrical and optical properties of Ga-doped ZnO films grown by DC magnetron sputtering were investigated. With increasing P H 2 O , the resistivity (ρ) of the films grown in pure Ar gas (Ar-films) significantly increased due to the decrease in both free carrier density and Hall mobility. The transmittance in the wavelength region of 300-400 nm for the films also increased with increasing P H 2 O . However, no significant P H 2 O dependence of the electrical and optical properties was observed for the films grown in H 2 /Ar gas mixture (H 2 /Ar-films). Secondary ion mass spectrometry (SIMS) and X-ray diffraction (XRD) analysis revealed that hydrogen concentration in the Ar-films increased with increasing P H 2 O and grain size of the films decreases with increasing the hydrogen concentration. These results indicate that the origin of the incorporated hydrogen is attributed to the residual water vapor in the coating chamber, and that the variation of ρ and transmittance along with P H 2 O of the films resulted from the change in the grain size. On the contrary, the hydrogen concentration in H 2 /Ar-films was almost constant irrespective of P H 2 O and the degree of change in the grain size of the films versus P H 2 O was much smaller than that of Ar-films. These facts indicate that the hydrogen primarily comes from H 2 gas and the adsorption species due to H 2 gas preferentially adsorb to the growing film surface over residual water vapor. Consequently, the effects of P H 2 O on the crystal growth are reduced

  3. Determination of the hydrogen positions in the novel barium boroarsenate Ba[B{sub 2}As{sub 2}O{sub 8}(OH){sub 2}] by combined single crystal X-ray and powder neutron investigations

    Energy Technology Data Exchange (ETDEWEB)

    Lieb, Alexandra [School of Chemistry, University of Southampton (United Kingdom); Fakultaet fuer Verfahrens- und Systemtechnik, Lehrstuhl fuer Technische Chemie, Otto-von-Guericke-Universitaet, Magdeburg (Germany); Weller, Mark T. [School of Chemistry, University of Southampton (United Kingdom); Department of Chemistry, University of Bath (United Kingdom)

    2017-11-17

    The boroarsenate Ba[B{sub 2}As{sub 2}O{sub 8}(OH){sub 2}] was obtained by the reaction of NH{sub 4}H{sub 2}AsO{sub 4}, B(OH){sub 3} and BaBr{sub 2}.2H{sub 2}O in the melt. Ba[B{sub 2}As{sub 2}O{sub 8}(OH){sub 2}] was obtained as thin colorless needles, together with spherical crystals of BAsO{sub 4} as by-product, grown on a pellet of Ba[BAsO{sub 5}]. The products could be separated mechanically. For neutron scattering experiments a sample was prepared with {sup 11}B(OH){sub 3} as a starting material. The crystal structure of Ba[B{sub 2}As{sub 2}O{sub 8}(OH){sub 2}] was determined by single-crystal X-ray diffraction and exhibits a layer structure with an unprecedented layer topology. The exact positions of the hydrogen atoms were determined using combined single-crystal X-ray and powder neutron diffraction investigations. Ba[B{sub 2}As{sub 2}O{sub 8}(OH){sub 2}] was further characterized by IR spectroscopy and EDX analysis. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Facile and Scalable Synthesis of Zn3V2O7(OH)2·2H2O Microflowers as a High-Performance Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Yan, Haowu; Luo, Yanzhu; Xu, Xu; He, Liang; Tan, Jian; Li, Zhaohuai; Hong, Xufeng; He, Pan; Mai, Liqiang

    2017-08-23

    The employment of nanomaterials and nanotechnologies has been widely acknowledged as an effective strategy to enhance the electrochemical performance of lithium-ion batteries (LIBs). However, how to produce nanomaterials effectively on a large scale remains a challenge. Here, the highly crystallized Zn 3 V 2 O 7 (OH) 2 ·2H 2 O is synthesized through a simple liquid phase method at room temperature in a large scale, which is easily realized in industry. Through suppressing the reaction dynamics with ethylene glycol, a uniform morphology of microflowers is obtained. Owing to the multiple reaction mechanisms (insertion, conversion, and alloying) during Li insertion/extraction, the prepared electrode delivers a remarkable specific capacity of 1287 mA h g -1 at 0.2 A g -1 after 120 cycles. In addition, a high capacity of 298 mA h g -1 can be obtained at 5 A g -1 after 1400 cycles. The excellent electrochemical performance can be attributed to the high crystallinity and large specific surface area of active materials. The smaller particles after cycling could facilitate the lithium-ion transport and provide more reaction sites. The facile and scalable synthesis process and excellent electrochemical performance make this material a highly promising anode for the commercial LIBs.

  5. Fluorination of Boron-Doped Diamond Film Electrodes for Minimization of Perchlorate Formation.

    Science.gov (United States)

    Gayen, Pralay; Chaplin, Brian P

    2017-08-23

    This research investigated the effects of surface fluorination on both rates of organic compound oxidation (phenol and terephthalic acid (TA)) and ClO 4 - formation at boron-doped diamond (BDD) film anodes at 22 °C. Different fluorination methods (i.e., electrochemical oxidation with perfluorooctanoic acid (PFOA), radio frequency plasma, and silanization) were used to incorporate fluorinated moieties on the BDD surface, which was confirmed by X-ray photoelectron spectroscopy (XPS). The silanization method was found to be the most effective fluorination method using a 1H,1H,2H,2H-perfluorodecyltrichlorosilane precursor to form a self-assembled monolayer (SAM) on the oxygenated BDD surface. The ClO 4 - formation decreased from rates of 0.45 ± 0.03 mmol m -2 min -1 during 1 mM NaClO 3 oxidation and 0.28 ± 0.01 mmol m -2 min -1 during 10 mM NaCl oxidation on the BDD electrode to below detectable levels (layer on the BDD surface that inhibited charge transfer via steric hindrance and hydrophobic effects. The surface coverages and thicknesses of the fluorinated films controlled the charge transfer rates, which was confirmed by estimates of film thicknesses using XPS and density functional theory simulations. The aliphatic silanized electrode also showed very high stability during OH • production. Perchlorate formation rates were below the detection limit (<0.12 μmoles m -2 min -1 ) for up to 10 consecutive NaClO 3 oxidation experiments.

  6. Raman spectra from very concentrated aqueous NaOH and from wet and dry, solid, and anhydrous molten, LiOH, NaOH, and KOH.

    Science.gov (United States)

    Walrafen, George E; Douglas, Rudolph T W

    2006-03-21

    High-temperature, high-pressure Raman spectra were obtained from aqueous NaOH solutions up to 2NaOHH2O, with X(NaOH)=0.667 at 480 K. The spectra corresponding to the highest compositions, X(NaOH)> or =0.5, are dominated by H3O2-. An IR xi-function dispersion curve for aqueous NaOH, at 473 K and 1 kbar, calculated from the data of Franck and Charuel indicates that the OH- ion forms H3O2- by preferential H bonding with nonhydrogen-bonded OH groups. Raman spectra from wet to anhydrous, solid LiOH, NaOH, and KOH yield sharp, symmetric OH- stretching peaks at 3664, 3633, and 3596 cm(-1), respectively, plus water-related, i.e., H3O2-, peaks near LiOH, 3562 cm(-1), NaOH, 3596 cm(-1), and, KOH, 3500 cm(-1). Absence of H3O2- peaks from the solid assures that the corresponding melt is anhydrous. Raman spectra from the anhydrous melts yield OH- stretching peak frequencies: LiOH, 3614+/-4 cm(-1), 873 K; NaOH, 3610+/-2 cm(-1), 975 K; and, KOH, 3607+/-2 cm(-1), 773 K, but low-frequency asymmetry due to ion-pair interactions is present which is centered near 3550 cm(-1). The ion-pair-related asymmetry corresponds to the sole IR maximum near 3550 cm(-1) from anhydrous molten NaOH, at 623 K. Bose-Einstein correction of published low-frequency Raman data from molten LiOH revealed an acoustic phonon, near 205 cm(-1), related to restricted translation of OH- versus Li+, and an optical phonon, at 625 cm(-1) and tau approximately 0.05 ps, due to protonic precession and/or pendular motion. Strong H bonding between water and the O atom of OH- forms H3O2-, but the proton of OH- does not bond with H significantly. Large Raman bandwidths (aqueous solutions) are explained in terms of inhomogeneous broadening due to proton transfer in a double well. Vibrational assignments are presented for H3O2-.

  7. Interplay of Electronic Cooperativity and Exchange Coupling in Regulating the Reactivity of Diiron(IV)-oxo Complexes towards C-H and O-H Bond Activation.

    Science.gov (United States)

    Ansari, Azaj; Ansari, Mursaleem; Singha, Asmita; Rajaraman, Gopalan

    2017-07-26

    Activation of inert C-H bonds such as those of methane are extremely challenging for chemists but in nature, the soluble methane monooxygenase (sMMO) enzyme readily oxidizes methane to methanol by using a diiron(IV) species. This has prompted chemists to look for similar model systems. Recently, a (μ-oxo)bis(μ-carboxamido)diiron(IV) ([Fe IV 2 O(L) 2 ] 2+ L=N,N-bis-(3',5'-dimethyl-4'-methoxypyridyl-2'-methyl)-N'-acetyl-1,2-diaminoethane) complex has been generated by bulk electrolysis and this species activates inert C-H bonds almost 1000 times faster than mononuclear Fe IV =O species and at the same time selectively activates O-H bonds of alcohols. The very high reactivity and selectivity of this species is puzzling and herein we use extensive DFT calculations to shed light on this aspect. We have studied the electronic and spectral features of diiron {Fe III -μ(O)-Fe III } +2 (complex I), {Fe III -μ(O)-Fe IV } +3 (II), and {Fe IV -μ(O)-Fe IV } +4 (III) complexes. Strong antiferromagnetic coupling between the Fe centers leads to spin-coupled S=0, S=3/2, and S=0 ground state for species I-III respectively. The mechanistic study of the C-H and O-H bond activation reveals a multistate reactivity scenario where C-H bond activation is found to occur through the S=4 spin-coupled state corresponding to the high-spin state of individual Fe IV centers. The O-H bond activation on the other hand, occurs through the S=2 spin-coupled state corresponding to an intermediate state of individual Fe IV centers. Molecular orbital analysis reveals σ-π/π-π channels for the reactivity. The nature of the magnetic exchange interaction is found to be switched during the course of the reaction and this offers lower energy pathways. Significant electronic cooperativity between two metal centers during the course of the reaction has been witnessed and this uncovers the reason behind the efficiency and selectivity observed. The catalyst is found to prudently choose the desired spin

  8. Function of NaOH hydrolysis in electrospinning ZnO nanofibers via using polylactide as templates

    International Nuclear Information System (INIS)

    Liu, Mengzhu; Wang, Yongpeng; Cheng, Zhiqiang; Song, Lihua; Zhang, Mingyue; Hu, Meijuan; Li, Junfeng

    2014-01-01

    Graphical abstract: - Highlights: • PLA was used as templates to electrospin ZnO nanofibers for the first time. • Without NaOH hydrolysis, only ZnO film was prepared. • Under function of NaOH, ZnO nanofibers were obtained. • The function of NaOH was discussed. • ZnO nanofibers showed much higher photocatalytical efficiency than ZnO film. - Abstract: Mixture of polylactide (8 wt%), zinc acetate (6 wt%) and hexafluoroisopropanol was first used as electrospinning solution to fabricate ZnO nanofibers. Unfortunately, after direct calcination of the precursor polylactide/zinc acetate nanofibers, only ZnO film was prepared. Surprisingly, when the precursor fibers were pre-hydrolyzed with NaOH, ZnO nanofibers with diameter of 678 nm were obtained. The mechanism analysis showed that the preserve of fiber structure was attributed to the formation of zinc polylactic acid in the process of hydrolyzation. After characterized by scanning electron microscope and transmission electron microscope, the ZnO film was found to be an aggregation of irregular nanoparticles and the ZnO nanofiber was a necklace-like arrangement of cylindrical grains. X-ray diffraction and photoluminescence measurements indicated that the crystalline quality of the ZnO nanofibers was higher than the film. Furthermore, photocatalytic performance of the ZnO samples was investigated. Comparing with ZnO film, ZnO nanofibers exhibited much higher activity

  9. Synthesis, structure, and spectroscopic and magnetic characterization of [Mn12O12(O2CCH2But)16(MeOH)4]·MeOH, a Mn12 single-molecule magnet with true axial symmetry.

    Science.gov (United States)

    Lampropoulos, Christos; Murugesu, Muralee; Harter, Andrew G; Wernsdofer, Wolfgang; Hill, Stephen; Dalal, Naresh S; Reyes, Arneil P; Kuhns, Philip L; Abboud, Khalil A; Christou, George

    2013-01-07

    The synthesis and properties are reported of a rare example of a Mn(12) single-molecule magnet (SMM) in truly axial symmetry (tetragonal, I4). [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(MeOH)(4)]·MeOH (3·MeOH) was synthesized by carboxylate substitution on [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)]·2MeCO(2)H·4H(2)O (1). The complex was found to possess an S = 10 ground state, as is typical for the Mn(12) family, and displayed both frequency-dependent out-of-phase AC susceptibility signals and hysteresis loops in single-crystal magnetization vs DC field sweeps. The loops also exhibited quantum tunneling of magnetization steps at periodic field values. Single-crystal, high-frequency electron paramagnetic resonance spectra on 3·MeOH using frequencies up to 360 GHz revealed perceptibly sharper signals than for 1. Moreover, careful studies as a function of the magnetic field orientation did not reveal any satellite peaks, as observed for 1, suggesting that the crystals of 3 are homogeneous and do not contain multiple Mn(12) environments. In the single-crystal (55)Mn NMR spectrum in zero applied field, three well-resolved peaks were observed, which yielded hyperfine and quadrupole splitting at three distinct sites. However, observation of a slight asymmetry in the Mn(4+) peak was detectable, suggesting a possible decrease in the local symmetry of the Mn(4+) site. Spin-lattice (T(1)) relaxation studies were performed on single crystals of 3·MeOH down to 400 mK in an effort to approach the quantum tunneling regime, and fitting of the data using multiple functions was employed. The present work and other recent studies continue to emphasize that the new generation of truly high-symmetry Mn(12) complexes are better models for thorough investigation of the physical properties of SMMs than their predecessors such as 1.

  10. Investigation of TiO2 nanoparticles translocation through a Caco-2 monolayer

    International Nuclear Information System (INIS)

    Brun, E; Jugan, M-L; Carriere, M; Herlin-Boime, N; Jaillard, D; Fayard, B; Flank, A-M; Mabondzo, A

    2011-01-01

    Nanoparticles (NPs) are introduced in a growing number of commercial products, including food and beverage but their effects on gastrointestinal tract are poorly investigated. Here we focused on the translocation of TiO 2 NPs through Caco-2 monolayers exposed to anatase and rutile NPs up to 24 h. Internalization was followed by transmission electronic microscopy and μ-XRF elemental mapping, coupled to XAS analysis of Ti atoms environment. This innovative technique is among the best techniques to get insights on NP fate after internalization. The originality of this project relies on the panel of microscopy techniques implemented to investigate digestive barrier translocation, bringing together biologists, chemists and physicists in a pluridisciplinary research program.

  11. Influence of molecular packing on the corrosion inhibition properties of self-assembled octadecyltrichlorosilane monolayers on silicon

    International Nuclear Information System (INIS)

    Hsieh, Shuchen; Chao, Wei-Jay; Lin, Pei-Ying; Hsieh, Chiung-Wen

    2014-01-01

    Highlights: •Molecular packing plays an important role in determining SAM film properties. •Loose-packed OTS monolayers on silicon were corroded by exposure to KMnO 4 . •Dense-packed OTS SAM films exhibited excellent corrosion protection efficacy. -- Abstract: The corrosion inhibition properties of octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) on silicon were investigated. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), contact angle (CA), and lateral force microscopy (LFM) were used to determine the OTS film formation time, packing density, and corrosion protection efficacy. The OTS films reached adsorption saturation after 15 s; however, the molecular density continued to increase up to 24 h. The films were exposed to the strong oxidant KMnO 4 , and while 15-s film samples exhibited corrosion after a 1 min exposure, samples with films grown for 24 h were protected even after 24 h

  12. The first study of antiferromagnetic eosphorite-childrenite series (Mn{sub 1−x}Fe{sub x})AlP(OH){sub 2}H{sub 2}O (x=0.5)

    Energy Technology Data Exchange (ETDEWEB)

    Behal, D. [Sektion Kristallographie, Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München (LMU), Theresienstrasse 41, D-80333 Munich (Germany); Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München (TUM), Lichtenbergstrasse 1, D-85748 Garching (Germany); Röska, B. [Sektion Kristallographie, Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München (LMU), Theresienstrasse 41, D-80333 Munich (Germany); Park, S.-H., E-mail: sohyun.park@lmu.de [Sektion Kristallographie, Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universität München (LMU), Theresienstrasse 41, D-80333 Munich (Germany); Pedersen, B. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München (TUM), Lichtenbergstrasse 1, D-85748 Garching (Germany); Benka, G.; Pfleiderer, Ch. [Chair E21, Physik-Department, Technische Universität München (TUM), James-Franck-Strasse 1, D-85748 Garching (Germany); Wakabayashi, Y.; Kimura, T. [Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan)

    2017-04-15

    This study presents for the first time the antiferromagnetic structure of the eosphorite-childrenite series (Mn{sub 1-x}Fe{sub x})AlPO{sub 4}(OH){sub 2}H{sub 2}O (x=0.5), based on neutron single crystal diffraction at 3 K in combination with group theoretical representation analysis. The new magnetic structure is described in the magnetic space group P{sub C}mnb, maintaining the atomistic unit cell size (a×b×c) with a ~6.9 Å, b ~10.4 Å, c ~13.4 Å. Mn-rich and Fe-rich zones within solid solution crystals are expanded up to several hundred micrometers, as seen in electron microprobe and polarisation microscopy. Magnetic susceptibility and specific heat measurements on two different eosphorite-childrenite crystals show the magnetic transition temperature between 6.5 K and 6.8 K as the Mn{sup 2+}/Fe{sup 2+} ratio varies over single compositional zones. Below the Néel temperature, a magnetic field between 1.5 T and 2 T parallel to the a-axis causes a 180° spin-flip, reaching the saturation (5.25 μ{sub B} pfu) toward high magnetic fields. - Highlights: • New magnetic structure of (Mn{sub 1-x}Fe{sub x})AlPO{sub 4}(OH){sub 2}H{sub 2}O (x=0.5). • Magnetic phase transition at 6.5–6.6 K. • Magnetic interaction anisotropy in (Mn{sub 0.5}Fe{sub 0.5})AlPO{sub 4}(OH){sub 2}H{sub 2}O. • Compositional zones in the eosphorite-childrenite series.

  13. 40 CFR 721.10018 - Calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Calcium hydroxide oxide silicate (Ca6... New Uses for Specific Chemical Substances § 721.10018 Calcium hydroxide oxide silicate (Ca6(OH)2O2... substance identified as calcium hydroxide oxide silicate (Ca6(OH)2O2(Si2O5)3) (PMN P-01-442; CAS No. 13169...

  14. Photodegradation and toxicity changes of antibiotics in UV and UV/H{sub 2}O{sub 2} process

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuan [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Hu Chun, E-mail: huchun@rcees.ac.cn [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Xuexiang, Hu; Dongbin, Wei; Yong, Chen; Jiuhui, Qu [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China)

    2011-01-30

    The photodegradation of three antibiotics, oxytetracycline (OTC), doxycycline (DTC), and ciprofloxacin (CIP) in UV and UV/H{sub 2}O{sub 2} process was investigated with a low-pressure UV lamp system. Experiments were performed in buffered ultrapure water (UW), local surface water (SW), and treated water from local municipal drinking water treatment plant (DW) and wastewater treatment plant (WW). The efficiency of UV/H{sub 2}O{sub 2} process was affected by water quality. For all of the three selected antibiotics, the fastest degradation was observed in DW, and the slowest degradation occurred in WW. This phenomenon can be explained by R{sub OH,UV}, defined as the experimentally determined {center_dot}OH radical exposure per UV fluence. The R{sub OH,UV} values represent the background {center_dot}OH radical scavenging in water matrix, obtained by the degradation of para-chlorobenzoic acid (pCBA), a probe compound. In natural water, the indirect degradation of CIP did not significantly increase with the addition of H{sub 2}O{sub 2} due to its effective degradation by UV direct photolysis. Moreover, the formation of several photoproducts and oxidation products of antibiotics in UV/H{sub 2}O{sub 2} process was identified using GC-MS. Toxicity assessed by Vibrio fischer (V. fischer), was increased in UV photolysis, for the photoproducts still preserving the characteristic structure of the parent compounds. While in UV/H{sub 2}O{sub 2} process, toxicity increased first, and then decreased; nontoxic products were formed by the oxidation of {center_dot}OH radical. In this process, detoxification was much easier than mineralization for the tested antibiotics, and the optimal time for the degradation of pollutants in UV/H{sub 2}O{sub 2} process would be determined by parent compound degradation and toxicity changes.

  15. Synthesis of Zn{sub 3}(OH){sub 2}V{sub 2}O{sub 7}.nH{sub 2}O hierarchical nanostructures and their photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Ni Shibing; Zhou Guo; Wang Xinghui; Sun Xiaolei; Yang Feng; Liu Yingqi [Department of Physics, Lanzhou University, Lanzhou 730000 (China); He Deyan, E-mail: hedy@lzu.edu.cn [Department of Physics, Lanzhou University, Lanzhou 730000 (China)

    2010-04-15

    The controlled synthesis of Zn{sub 3}(OH){sub 2}V{sub 2}O{sub 7}.nH{sub 2}O hierarchical structures has been successfully realized in a large scale via a simple hydrothermal method. It was demonstrated that the morphologies of the final products are significantly affected by the quantity of hexamethylenetetramine, reaction temperature and reaction time. Optimum amount of sodium sulfate plays a crucial role in the development of crystallinity of the products. The morphology evolvement and the growth mechanism were discussed, and sulfate induced oriented attachment and temperature facilitated Ostwald ripening process were proposed for the possible formation mechanism. The structure and morphology of those products were characterized by X-ray diffraction (XRD), Raman spectrum, field-emission scanning electron microscopy (FE-SEM) equipped with energy dispersion spectrum (EDS). Furthermore, the photoluminescence properties of those products were researched. Excellent visible light emission ranging from 400 to 700 nm was exhibited via room temperature photoluminescence (PL) measurement.

  16. Synthesis and structure determination of new open-framework chromium carboxylate MIL-105 or CrIII(OH).{O2C-C6(CH3)4-CO2}.nH2O

    International Nuclear Information System (INIS)

    Serre, Christian; Millange, Franck; Devic, Thomas; Audebrand, Nathalie; Van Beek, Wouter

    2006-01-01

    Two new three-dimensional chromium(III) dicarboxylate, MIL-105 or Cr III (OH).{O 2 C-C 6 (CH 3 ) 4 -CO 2 }.nH 2 O, have been obtained under hydrothermal conditions, and their structures solved using X-ray powder diffraction data. Both solids are structural analogs of the known Cr benzenedicarboxylate compound (MIL-53). Both contain trans corner-sharing CrO 4 (OH) 2 octahedral chains connected by tetramethylterephthalate di-anions. Each chain is linked by the ligands to four other chains to form a three-dimensional framework with an array of 1D pores channels. The pores of the high temperature form of the solid, MIL-105ht, are empty. However, MIL-105ht re-hydrates at room temperature to finally give MIL-105lt with pores channels filled with free water molecules (lt: low temperature form; ht: high temperature form). The thermal behaviour of the two solids has been investigated using TGA. Crystal data for MIL-105ht: monoclinic space group C2/c with a = 19.653(1) A, b = 9.984(1) A, c = 6.970(1) A, β = 110.67(1) o and Z = 4. Crystal data for MIL-105lt: orthorhombic space group Pnam with a = 17.892(1) A, b = 11.165(1) A, c = 6.916(1) A and Z = 4

  17. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process.

    Science.gov (United States)

    Wang, Huijiao; Zhan, Juhong; Yao, Weikun; Wang, Bin; Deng, Shubo; Huang, Jun; Yu, Gang; Wang, Yujue

    2018-03-01

    Pharmaceutical abatement in a groundwater (GW), surface water (SW), and secondary effluent (SE) by conventional ozonation, the conventional peroxone (O 3 /H 2 O 2 ), and the electro-peroxone (E-peroxone) processes was compared in batch tests. SE had significantly more fast-reacting dissolved organic matter (DOM) moieties than GW and SW. Therefore, O 3 decomposed much faster in SE than in GW and SW. At specific ozone doses of 0.5-1.5 mg O 3 /mg dissolved organic carbon (DOC), the application of O 3 /H 2 O 2 and E-peroxone process (by adding external H 2 O 2 stocks or in-situ generating H 2 O 2 from cathodic O 2 reduction during ozonation) similarly enhanced the OH yield from O 3 decomposition by ∼5-12% and 5-7% in GW and SW, respectively, compared to conventional ozonation. In contrast, due to the slower reaction kinetics of O 3 with H 2 O 2 than O 3 with fast-reacting DOM moieties, the addition or electro-generation of H 2 O 2 hardly increased the OH yield (<4% increases) in SE. Corresponding to the changes in the OH yields, the abatement efficiencies of ozone-resistant pharmaceuticals (ibuprofen and clofibric acid) increased evidently in GW (up to ∼14-18% at a specific ozone dose of 1.5 mg O 3 /mg DOC), moderately in SW (up to 6-10% at 0.5 mg O 3 /mg DOC), and negligibly in SE during the O 3 /H 2 O 2 and E-peroxone treatment compared to conventional ozonation. These results indicate that similar to the conventional O 3 /H 2 O 2 process, the E-peroxone process can more pronouncedly enhance O 3 transformation to OH, and thus increase the abatement efficiency of ozone-resistant pharmaceuticals in water matrices exerting relatively high ozone stability (e.g., groundwater and surface water with low DOM contents). Therefore, by installing electrodes in existing ozone reactors, the E-peroxone process may provide a convenient way to enhance pharmaceutical abatement in drinking water applications, where groundwater and surface water with low DOM contents are used as

  18. Laboratory studies of H2SO4/H2O binary homogeneous nucleation from the SO2+OH reaction: evaluation of the experimental setup and preliminary results

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2008-08-01

    Full Text Available Binary homogeneous nucleation (BHN of sulphuric acid and water (H2SO4/H2O is one of the most important atmospheric nucleation processes, but laboratory observations of this nucleation process are very limited and there are also large discrepancies between different laboratory studies. The difficulties associated with these experiments include wall loss of H2SO4 and uncertainties in estimation of H2SO4 concentration ([H2SO4] involved in nucleation. We have developed a new laboratory nucleation setup to study H2SO4/H2O BHN kinetics and provide relatively constrained [H2SO4] needed for nucleation. H2SO4 is produced from the SO2+OH→HSO3 reaction and OH radicals are produced from water vapor UV absorption. The residual [H2SO4] were measured at the end of the nucleation reactor with a chemical ionization mass spectrometer (CIMS. Wall loss factors (WLFs of H2SO4 were estimated by assuming that wall loss is diffusion limited and these calculated WLFs were in good agreement with simultaneous measurements of the initial and residual [H2SO4] with two CIMSs. The nucleation zone was estimated from numerical simulations based on the measured aerosol sizes (particle diameter, Dp and [H2SO4]. The measured BHN rates (J ranged from 0.01–220 cm−3 s−1 at the initial and residual [H2SO4] from 108−1010 cm−3, a temperature of 288 K and relative humidity (RH from 11–23%; J increased with increasing [H2SO4] and RH. J also showed a power dependence on [H2SO4] with the exponential power of 3–8. These power dependences are consistent with other laboratory studies under similar [H2SO4] and RH, but different from atmospheric field observations which showed that particle number concentrations are often linearly dependent on [H2SO4]. These results, together with a higher [H2SO4] threshold (108–109 cm−3 needed to produce the unit J measured from the laboratory studies compared to the atmospheric conditions (106–107 cm−3, imply that H2SO4/H2O BHN alone is

  19. Low-temperature sputtering of crystalline TiO2 films

    International Nuclear Information System (INIS)

    Musil, J.; Herman, D.; Sicha, J.

    2006-01-01

    This article reports on the investigation of reactive magnetron sputtering of transparent, crystalline titanium dioxide films. The aim of this investigation is to determine a minimum substrate surface temperature T surf necessary to form crystalline TiO 2 films with anatase structure. Films were prepared by dc pulsed reactive magnetron sputtering using a dual magnetron operating in bipolar mode and equipped with Ti(99.5) and ceramic Ti 5 O 9 targets. The films were deposited on unheated glass substrates and their structure was characterized by x-ray diffraction and surface morphology by atomic force microscopy. Special attention is devoted to the measurement of T surf using thermostrips pasted to the glass substrate. It was found that (1) T surf is considerably higher (approximately by 100 deg. C or more) than the substrate temperature T s measured by the thermocouple incorporated into the substrate holder and (2) T surf strongly depends on the substrate-to-target distance d s-t , the magnetron target power loading, and the thermal conductivity of the target and its cooling. The main result of this study is the finding that (1) the crystallization of sputtered TiO 2 films depends not only on T surf but also on the total pressure p T of sputtering gas (Ar+O 2 ), partial pressure of oxygen p O 2 , the film deposition rate a D , and the film thickness h (2) crystalline TiO 2 films with well developed anatase structure can be formed at T surf =160 deg. C and low values of a D ≅5 nm/min (3) the crystalline structure of TiO 2 film gradually changes from (i) anatase through (ii) anatase+rutile mixture, and (iii) pure rutile to x-ray amorphous structure at T surf =160 deg. C and p T =0.75 Pa when p O 2 decreases and a D increases above 5 nm/min, and (4) crystallinity of the TiO 2 films decreases with decreasing h and T surf . Interrelationships between the structure of TiO 2 film, its roughness, T surf , and a D are discussed in detail. Trends of next development are

  20. Ab Initio Chemical Kinetics for the CH3 + O((3)P) Reaction and Related Isomerization-Decomposition of CH3O and CH2OH Radicals.

    Science.gov (United States)

    Xu, Z F; Raghunath, P; Lin, M C

    2015-07-16

    The kinetics and mechanism of the CH3 + O reaction and related isomerization-decomposition of CH3O and CH2OH radicals have been studied by ab initio molecular orbital theory based on the CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ, CCSD/aug-cc-pVDZ, and G2M//B3LYP/6-311+G(3df,2p) levels of theory. The predicted potential energy surface of the CH3 + O reaction shows that the CHO + H2 products can be directly generated from CH3O by the TS3 → LM1 → TS7 → LM2 → TS4 path, in which both LM1 and LM2 are very loose and TS7 is roaming-like. The result for the CH2O + H reaction shows that there are three low-energy barrier processes including CH2O + H → CHO + H2 via H-abstraction and CH2O + H → CH2OH and CH2O + H → CH3O by addition reactions. The predicted enthalpies of formation of the CH2OH and CH3O radicals at 0 K are in good agreement with available experimental data. Furthermore, the rate constants for the forward and some key reverse reactions have been predicted at 200-3000 K under various pressures. Based on the new reaction pathway for CH3 + O, the rate constants for the CH2O + H and CHO + H2 reactions were predicted with the microcanonical variational transition-state/Rice-Ramsperger-Kassel-Marcus (VTST/RRKM) theory. The predicted total and individual product branching ratios (i.e., CO versus CH2O) are in good agreement with experimental data. The rate constant for the hydrogen abstraction reaction of CH2O + H has been calculated by the canonical variational transition-state theory with quantum tunneling and small-curvature corrections to be k(CH2O + H → CHO + H2) = 2.28 × 10(-19) T(2.65) exp(-766.5/T) cm(3) molecule(-1) s(-1) for the 200-3000 K temperature range. The rate constants for the addition giving CH3O and CH2OH and the decomposition of the two radicals have been calculated by the microcanonical RRKM theory with the time-dependent master equation solution of the multiple quantum well system in the 200-3000 K temperature range at 1 Torr to

  1. Gauthierite, KPb[(UO{sub 2}){sub 7}O{sub 5}(OH){sub 7}].8H{sub 2}O, a new uranyl-oxide hydroxy-hydrate mineral from Shinkolobwe with a novel uranyl-anion sheet-topology

    Energy Technology Data Exchange (ETDEWEB)

    Olds, Travis A. [Notre Dame Univ., IN (United States). Dept. of Civil and Environmental Engineering and Earth Sciences; Plasil, Jakub [ASCR, Prague (Czech Republic). Inst. of Physics; Kampf, Anthony R. [Natural History Museum of Los Angeles County, Los Angeles, CA (United States). Mineral Sciences Dept.; Skoda, Radek [Masaryk Univ., Brno (Czech Republic). Dept. of Geological Sciences; Burns, Peter C. [Notre Dame Univ., IN (United States). Dept. of Civil and Environmental Engineering and Earth Sciences; Notre Dame Univ., IN (United States). Dept. of Chemistry and Biochemistry,; Cejka, Jiri [National Museum, Prague (Czech Republic). Dept. of Mineralogy and Petrology; Bourgoin, Vincent; Boulliard, Jean-Claude [Pierre et Marie Curie Univ., Paris (France). Association Jean Wyart, Collection des Mineraux de Jussieu

    2017-03-15

    Gauthierite, KPb[(UO{sub 2}){sub 7}O{sub 5}(OH){sub 7}].8H{sub 2}O, is a new uranyl-oxide hydroxy-hydrate mineral from the Shinkolobwe Mine, Democratic Republic of Congo, Africa. It occurs on a matrix of uraninite-bearing quartz gangue associated with soddyite and a minor metazeunerite.metatorbernite series mineral. It is a product of oxidation.hydration weathering of uraninite. Gauthierite is monoclinic, P2{sub 1}/c, with a = 29.844(2) Aa, b = 14.5368(8) Aa, c = 14.0406(7) Aa, β = 103.708(6) , V = 5917.8(6)Aa{sup 3} and Z = 8. Prismatic crystals have pronounced lengthwise striations and reach about 1mm in length. Gauthierite is yellowish orange with a light orange streak and vitreous lustre. The Mohs hardness is ∝ 3 to 4. It is brittle with an uneven fracture and perfect cleavage on {0 1 0}. The calculated density based on the empirical formula is 5.437 g/cm{sup 3}. Optically, gauthierite is biaxial (-), with α = 1.780(5), β = 1.815(5), γ = 1.825(5) (white light), 2V{sub meas.} = 58(1) ; dispersion is extreme (r>>v). The optical orientation is X = b, Y∼a{sup *}, Z∼c (or X = b, Y and a=14 in obtuse β); it is pleochroic with X very pale yellow, Y and Z orange-yellow; X<2}O 1.29, PbO 7.17, UO{sub 3} 82.10, H{sub 2}O 8.78 (structure), total 99.34 wt.%. The empirical formula (based on 34 O a.p.f.u.) is: K{sub 0.67}Pb{sub 0.78}U{sub 7}O{sub 34}H{sub 23.77}. The ideal formula is KPb[(UO{sub 2}){sub 7}O{sub 5}(OH){sub 7}](H{sub 2}O){sub 8}, which requires K{sub 2}O 1.90, PbO 9.00, UO{sub 3} 80.74, H{sub 2}O 8.35, total 100 wt.%. Raman and infrared spectral data confirm the presence of UO{sub 2}{sup 2+}, OH{sup -} and molecular H{sub 2}O. The eight strongest powder X-ray diffraction lines are [d{sub obs} in Aa (hkl) I{sub rel}]: 7.28 (020,400) 49, 3.566 (040, -802, -204) 67, 3.192 (622, -224) 100, 2.541 (-842,-244) 18, 2.043 (406) 14, 2.001 (662,-264, 14.2.0) 23, 1.962 (426,-146) 14, and 1

  2. Oxalate molecule as the trap for gamma-irradiation energy in the amorphous aluminosilicate Al2(OH)6H4SiO4

    International Nuclear Information System (INIS)

    Nothig-Laslo, V.; Horvath, L.; Bilinski, H.

    1990-01-01

    Paramagnetic species which were the products of gamma irradiation at 77 K and at room temperature were studied by ESR spectroscopy in the amorphous aluminosilicate, Al2(OH)6H4SiO4, prepared in the presence and in the absence of oxalate ion. The aluminosilicate precipitated from the solution containing the oxalate ion in 10(-4) mol dm-3 concentration contained the oxalate only in trace amounts. When gamma-irradiated at 77 K and at room temperature, this compound gave the stable paramagnetic species represented by the single ESR line centered at g = 2.000. We ascribe this spectrum to the CO2- radical formed from the oxalate ion. The same aluminosilicate prepared in the absence of the oxalate either produced no stable paramagnetic product after gamma irradiation at room temperature or resulted in composite ESR spectra, indicating the presence of several paramagnetic species if irradiated at 77 K. Complex ESR spectra were transformed by heating to the stable paramagnetic centers which differed from the one obtained from oxalate ion. We conclude that in Al2(OH)6H4SiO4 oxalate acts as a trap for the gamma-radiation energy

  3. Crystal structures of Th(OH)PO4, U(OH)PO4 and Th2O(PO4)2. Condensation mechanism of M(IV)(OH)PO4 (M= Th, U) into M2O(PO4)2

    International Nuclear Information System (INIS)

    Dacheux, N.; Clavier, N.; Wallez, G.; Quarton, M.

    2007-01-01

    Three new crystal structures, isotypic with β-Zr 2 O(PO 4 ) 2 , have been resolved by the Rietveld method. All crystallize with an orthorhombic cell (S.G.: Cmca) with a = 7.1393(2) Angstroms, b = 9.2641(2) Angstroms, c 12.5262(4) Angstroms, V = 828.46(4) (Angstroms) 3 and Z = 8 for Th(OH)PO 4 ; a = 7.0100(2) Angstroms, b = 9.1200(2) Angstroms, c = 12.3665(3) Angstroms, V 790.60(4) (Angstroms) 3 and Z = 8 for U(OH)PO 4 ; a 7.1691(3) Angstroms, b 9.2388(4) Angstroms, c = 12.8204(7) Angstroms, V 849.15(7) (Angstroms) 3 and Z = 4 for Th 2 O(PO 4 ) 2 . By heating, the M(OH)PO 4 (M Th, U) compounds condense topotactically into M 2 O(PO 4 ) 2 , with a change of the environment of the tetravalent cation that lowers from 8 to 7 oxygen atoms. The lower stability of Th 2 O(PO 4 ) 2 compared to that of U 2 O(PO 4 ) 2 seems to result from this unusual environment for tetravalent thorium. (authors)

  4. Study on the Preparation and Properties of Colored Iron Oxide Thin Films

    International Nuclear Information System (INIS)

    Zhao Xianhui; Li Changhong; Liu Qiuping; He Junjing; Wang Hai; Liang Song; Duan Yandong; Liu Su

    2013-01-01

    Colored iron oxide thin films were prepared using Sol-gel technique. The raw materials were tetraethyl orthosilicate (TEOS), etoh ehanol (EtOH), iron nitrate, and de-ionized water. Various properties were measured and analysed, including the colour of thin films, surface topography, UV-Visible spectra, corrosion resistance and hydrophobicity. To understand how these properties influenced the structural and optical properties of Fe 2 O 3 thin films, Scanning Electron Microscope (SEM), UV Spectrophotometer and other facilities were employed. Many parameters influence the performance of thin films, such as film layers, added H 2 O content, and the amount of polydimethylsiloxane (PDMS). When the volume ratio of TEOS, EtOH and H 2 O was 15: 13: 1, the quality of Fe(NO 3 ) 3 ·9H 2 O was 6g, and pH value was 3, reddish and uniform Fe 2 O 3 thin films with excellent properties were produced. Obtained thin films possessed corrosion resistance in hydrochloric acid with pH=l and the absorption edge wavelength was ∼350.2nm. Different H 2 O contents could result in different morphologies of Fe 2 O 3 nanoparticles. When 1.5 ml PDMS was added into the Sol, thin films possessed hydrophobiliry without dropping. Coating with different layers, thin films appeared different morphologies. Meanwhile, with the increment of film layers, the absorbance increased gradually.

  5. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H(2) and O(2).

    Science.gov (United States)

    Yamanaka, Ichiro; Onisawa, Takeshi; Hashimoto, Toshikazu; Murayama, Toru

    2011-04-18

    The effects of the type of fuel-cell reactors (undivided or divided by cation- and anion-exchange membranes), alkaline electrolytes (LiOH, NaOH, KOH), vapor-grown carbon fiber (VGCF) cathode components (additives: none, activated carbon, Valcan XC72, Black Pearls 2000, Seast-6, and Ketjen Black), and the flow rates of anolyte (0, 1.5, 12 mL h(-1)) and catholyte (0, 12 mL h(-1)) on the formation of hydrogen peroxide were studied. A divided fuel-cell system, O(2) (g)|VGCF-XC72 cathode|2 M NaOH catholyte|cation-exchange membrane (Nafion-117)|Pt/XC72-VGCF anode|2 M NaOH anolyte at 12 mL h(-1) flow|H(2) (g), was effective for the selective formation of hydrogen peroxide, with 130 mA cm(-2) , a 2 M aqueous solution of H(2)O(2)/NaOH, and a current efficiency of 95 % at atmospheric pressure and 298 K. The current and formation rate gradually decreased over a long period of time. The cause of the slow decrease in electrocatalytic performance was revealed and the decrease was stopped by a flow of catholyte. Cyclic voltammetry studies at the VGCF-XC72 electrode indicated that fast diffusion of O(2) from the gas phase to the electrode, and quick desorption of hydrogen peroxide from the electrode to the electrolyte were essential for the efficient formation of solutions of H(2)O(2)/NaOH. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Prediction of absolute infrared intensities for the fundamental vibrations of H2O2

    Science.gov (United States)

    Rogers, J. D.; Hillman, J. J.

    1981-01-01

    Absolute infrared intensities are predicted for the vibrational bands of gas-phase H2O2 by the use of a hydrogen atomic polar tensor transferred from the hydroxyl hydrogen atom of CH3OH. These predicted intensities are compared with intensities predicted by the use of a hydrogen atomic polar tensor transferred from H2O. The predicted relative intensities agree well with published spectra of gas-phase H2O2, and the predicted absolute intensities are expected to be accurate to within at least a factor of two. Among the vibrational degrees of freedom, the antisymmetric O-H bending mode nu(6) is found to be the strongest with a calculated intensity of 60.5 km/mole. The torsional band, a consequence of hindered rotation, is found to be the most intense fundamental with a predicted intensity of 120 km/mole. These results are compared with the recent absolute intensity determinations for the nu(6) band.

  7. Room temperature atomic layerlike deposition of ZnS on organic thin films: Role of substrate functional groups and precursors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhiwei; Walker, Amy V., E-mail: amy.walker@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, RL10, 800 W. Campbell Rd., Richardson, Texas 75080 (United States)

    2015-09-15

    The room temperature atomic layerlike deposition (ALLD) of ZnS on functionalized self-assembled monolayers (SAMs) was investigated, using diethyl zinc (DEZ) and in situ generated H{sub 2}S as reactants. Depositions on SAMs with three different terminal groups, –CH{sub 3,} –OH, and –COOH, were studied. It was found that the reaction of DEZ with the SAM terminal group is critical in determining the film growth rate. Little or no deposition is observed on –CH{sub 3} terminated SAMs because DEZ does not react with the methyl terminal group. ZnS does deposit on both –OH and –COOH terminated SAMs, but the grow rate on –COOH terminated SAMs is ∼10% lower per cycle than on –OH terminated SAMs. DEZ reacts with the hydroxyl group on –OH terminated SAMs, while on –COOH terminated SAMs it reacts with both the hydroxyl and carbonyl bonds of the terminal groups. The carbonyl reaction is found to lead to the formation of ketones rather than deposition of ZnS, lowering the growth rate on –COOH terminated SAMs. SIMS spectra show that both –OH and –COOH terminated SAMs are covered by the deposited ZnS layer after five ALLD cycles. In contrast to ZnO ALLD where the composition of the film differs for the first few layers on –COOH and –OH terminated SAMs, the deposited film composition is the same for both –COOH and –OH terminated SAMs. The deposited film is found to be Zn-rich, suggesting that the reaction of H{sub 2}S with the Zn-surface adduct may be incomplete.

  8. The investigation of adsorption and dissociation of H2O on Li2O (111) by ab initio theory

    Science.gov (United States)

    Kong, Xianggang; Yu, You; Ma, Shenggui; Gao, Tao; Lu, Tiecheng; Xiao, Chengjian; Chen, Xiaojun; Zhang, Chuanyu

    2017-06-01

    The adsorption and dissociation mechanism of H2O molecule on the Li2O (111) surface have been systematically studied by using the density functional theory calculations. The parallel and vertical configurations of H2O at six different symmetry adsorption sites on the Li2O (111) surface are considered. In our calculations, it is suggested that H2O can dissociate on the perfect Li2O surface, of which the corresponding adsorption energy is 1.118 eV. And the adsorption energy decrease to be 0.241 eV when oxygen atom of H2O bonds to lithium atom of the slab. The final configurations are sensitive to the initial molecular orientation. By Bader charge analysis, the charge transfer from slab to adsorbed H2O/OH can be found due to the downward shift of lowest-unoccupied molecular orbital. We also analyze the vibrational frequencies at the Brillouin Zone centre for H2O molecule adsorbed on the stoichiometric surface. Due to the slightly different structure parameters, the calculated values of the vibrational frequencies of hydroxyl group range from 3824 to 3767 cm-1. Our results agree well with experimental results performed in FT-IR spectrum, which showed that an absorption peak of OH group appeared at 3677 cm-1 at room temperature.

  9. Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Malcho, Phillip; Andersen, Jonas

    2014-01-01

    , it directed the growth of Cu2(OH)3Cl to provide pure clinoatacamite without the presence of related poly- morphs. The products were characterized by transmission electron microscopy, infrared spectroscopy, ultraviolet–visible light spectroscopy, X-ray powder diffraction (XRD), scanning transmission X......-ray microscopy and atomic force microscopy. Infrared spectroscopy was essential for characterization of closely related polymorphs of Cu2(OH)3Cl indistinguishable by XRD. A plausible mechanism has been proposed and discussed for the formation of the CuO and Cu2(OH)3Cl nanostructures....

  10. H2O masers in star-forming regions

    International Nuclear Information System (INIS)

    Downes, D.

    1985-01-01

    Water vapour near star forming regions was first detected by Cheung et al. (1969) and shortly thereafter was recognised to be maser emission. In spite of this 15 year history of H 2 O observations, the problem of interpreting such strong H 2 O masers as W49 and Orion is still very acute. Not one of the models now available can explain in an unconstrained fashion why a very large maser flux can emanate from clouds of such small size. Whereas some models proposed to explain OH masers have retained their plausibility under the pressure of new observations, H 2 O models have not. The author outlines the background of the H 2 O problem, stating that the strongest of the masers discovered are still not satisfactorily explained today. (Auth.)

  11. Doped Sc2C(OH)2 MXene: new type s-pd band inversion topological insulator.

    Science.gov (United States)

    Balcı, Erdem; Akkuş, Ünal Özden; Berber, Savas

    2018-04-18

    The electronic structures of Si and Ge substitutionally doped Sc 2 C(OH) 2 MXene monolayers are investigated in density functional theory. The doped systems exhibit band inversion, and are found to be topological invariants in Z 2 theory. The inclusion of spin orbit coupling results in band gap openings. Our results point out that the Si and Ge doped Sc 2 C(OH) 2 MXene monolayers are topological insulators. The band inversion is observed to have a new mechanism that involves s and pd states.

  12. Doped Sc2C(OH)2 MXene: new type s-pd band inversion topological insulator

    Science.gov (United States)

    Balcı, Erdem; Özden Akkuş, Ünal; Berber, Savas

    2018-04-01

    The electronic structures of Si and Ge substitutionally doped Sc2C(OH)2 MXene monolayers are investigated in density functional theory. The doped systems exhibit band inversion, and are found to be topological invariants in Z 2 theory. The inclusion of spin orbit coupling results in band gap openings. Our results point out that the Si and Ge doped Sc2C(OH)2 MXene monolayers are topological insulators. The band inversion is observed to have a new mechanism that involves s and pd states.

  13. Thermal stability of polyoxometalate compound of Keggin K8[2-SiW11O39]∙nH2O supported with SiO2

    Directory of Open Access Journals (Sweden)

    Yunita Sari M A

    2017-06-01

    Full Text Available Synthesis through sol-gel method and characterization of polyoxometalate compound of K8[b2-SiW11O39]∙nH2O supported with SiO2 have been done. The functional groups of polyoxometalate compound  was characterized by FT-IR spectrophotometer for the fungtional groups and the degree’s of crystalinity  using XRD. The acidity of K8[b2-SiW11O39]∙nH2O/SiO2 was determined qualitative analysis using ammonia and pyridine adsorption and the quantitative analysis using potentiometric titration method. The results of FT-IR spectrum of K8[b2-SiW11O39]∙nH2O appeared at  wavenumber 987.55 cm-1 (W=O, 864.11 cm-1 (W-Oe-W, 756.1 cm-1 (W-Oc-W, 3425.58 cm-1 (O-H, respectively and spectrum of  K8[b2-SiW11O39]SiO2 appeared at wavenumber  956.69 cm-1 (W=O, 864.11 cm-1 (W-Oe-W, 3448.72 cm-1 (O-H, respectively. The diffraction of XRD pattern of K8[b2-SiW11O39]∙nH2O and K8[b2-SiW11O39]∙nH2O/SiO2 compounds show high crystalinity. The acidic properties showed K8[b2-SiW11O39]∙nH2O/SiO2 more acidic compared to K8[b2-The SiW11O39]∙nH2O. The qualitative analysis showed pyridine compound adsorbed more of polyoxometalate compound of K8[b2-SiW11O39]∙nH2O/SiO2. Analysis of stability showed that the K8[b2-SiW11O39]∙nH2O/SiO2 at temperature 500°C has structural changes compare to 200-400oC which was indicated from vibration at wavenumber 800-1000 cm-1. Keywords : K8[b2-SiW11O39]∙nH2O, polyoxometalate, SiO2.

  14. Preparation of n-type semiconductor SnO2 thin films

    International Nuclear Information System (INIS)

    Rahal, Achour; Benramache, Said; Benhaoua, Boubaker

    2013-01-01

    We studied fluorine-doped tin oxide on a glass substrate at 350°C using an ultrasonic spray technique. Tin (II) chloride dehydrate, ammonium fluoride dehydrate, ethanol and NaOH were used as the starting material, dopant source, solvent and stabilizer, respectively. The SnO 2 : F thin films were deposited at 350°C and a pending time of 60 and 90 s. The as-grown films exhibit a hexagonal wurtzite structure and have (101) orientation. The G = 31.82 nm value of the grain size is attained from SnO 2 : F film grown at 90 s, and the transmittance is greater than 80% in the visible region. The optical gap energy is found to measure 4.05 eV for the film prepared at 90 s, and the increase in the electrical conductivity of the film with the temperature of the sample is up to a maximum value of 265.58 (Ω·cm) −1 , with the maximum activation energy value of the films being found to measure 22.85 meV, indicating that the films exhibit an n-type semiconducting nature. (semiconductor materials)

  15. Structure and morphology of pentacene thin films - from sub-monolayers to application relevant multilayers

    International Nuclear Information System (INIS)

    Resel, R.; Werzer, O.; Nabok, D.; Puschnig, P.; Ambrosch-Draxl, C.; Smilgies, D.; Haase, A.; Stadlober, B.

    2008-01-01

    Full text: The conjugated molecule pentacene is one of the most prominent material for application in organic thin film transistors. Charge carrier mobilities of about 1 cm 2 /Vs are realized in different device geometries which are used in integrated circuits. The device performance depends on the detailed structure and morphology of the pentacene thin films. This work presents an combined atomic force microscopy / x-ray scattering study on the formation of pentacene thin films starting from sub-monolayer coverage to the first closed monolayer to finally multilayer structures as they are used in device structures. Thin films of pentacene are prepared on oxidized silicon wafer with nominal thicknesses between 0.2 nm up to 180 nm. The films are investigated ex-situ by x-ray reflectivity and grazing incidence diffraction. In the sub-monolayer regime the formation of separated islands with up-right standing molecules are observed. The islands show typically dendritic shape with a separation of 2 μm from each other. With increasing coverage the dendritic islands coalescent until the first monolayer closes. Fitting of the x-ray reflectivity reveals that an additional layer between the substrate and the up-right standing pentacene molecules is present. During the formation of the second monolayer crystalline islands are formed. The crystallites grow in lateral and vertical size with increasing film thickness. The crystal structure of pentacene within the films is a surface induced phase. The crystal structure of this metastable phase could be solved by a combined experimental and theoretical approach. At a nominal film thickness of about 40 nm the equilibrium bulk structure of pentacene appears; both phases remain existent up the thickest films investigated in this study. (author)

  16. Phase diagrams and physicochemical properties of Li+,K+(Rb+)//borate-H2O systems at 323 K

    Science.gov (United States)

    Feng, Shan; Yu, Xudong; Cheng, Xinglong; Zeng, Ying

    2017-11-01

    The phase and physicochemical properties diagrams of Li+,K+(Rb+)//borate-H2O systems at 323 K were constructed using the experimentally measured solubilities, densities, and refractive indices. The Schreinemakers' wet residue method and the X-ray diffraction were used for the determination of the compositions of solid phase. Results show that these two systems belong to the hydrate I type, with no solid solution or double salt formation. The borate phases formed in our experiments are RbB5O6(OH)4 · 2H2O, Li2B4O5(OH)4 · H2O, and K2B4O5(OH)4 · 2H2O. Comparison between the stable phase diagrams of the studied system at 288, 323, and 348 K show that in this temperature range, the crystallization form of salts do not changed. With the increase in temperature, the crystallization field of Li2B4O5(OH)4 · H2O salt at 348 K is obviously larger than that at 288 K. In the Li+,K+(Rb+)//borate-H2O systems, the densities and refractive indices of the solutions (at equilibrium) increase along with the mass fraction of K2B4O7 (Rb2B4O7), and reach the maximum values at invariant point E.

  17. Structure of H2/O2/N2 flames at atmospheric pressure studied by molecular beam mass spectrometry and modeling

    NARCIS (Netherlands)

    Knyazkov, D.A.; Korobeinichev, O.P.; Shmakov, A.G.; Rybitskaya, I.V.; Bolshova, T.A.; Chernov, D.A.; Konnov, A.A.

    2009-01-01

    Structure of laminar premixed flat H2/O2/N2 flames with different equivalence ratios at atmospheric pressure isinvestigated experimentally and by numerical modeling. Concentration profiles of stable species (H2, O2, H2O) as well as of H atoms and OH radicals in the flames were measured using

  18. A facial approach combining photosensitive sol–gel with self-assembly method to fabricate superhydrophobic TiO{sub 2} films with patterned surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zongfan, E-mail: duanzf@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Shaanxi Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048 (China); Zhao, Zhen; Luo, Dan; Zhao, Maiqun [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Zhao, Gaoyang, E-mail: Zhaogy@xaut.edu.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Shaanxi Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Patterned TiO{sub 2} films were prepared by photosensitive sol–gel method. • Surface had quasi micro-lens array structure, leading to superhydrophobicity. • The surface with the lowest period exhibited the highest contact angel of 163°. • UV irradiation induced the conversion to superhydrophilicity. - Abstract: Superhydrophobic TiO{sub 2} films with micro-patterned surface structure was prepared through a facial approach combining photosensitive sol–gel method with following surface modification by 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTCS). The patterned surface possessed quasi micro-lens array structure resembling processus mastoideus of lotus, leading to excellent hydrophobicity. The relationship between hydrophobic performance and the period of the micro-patterned TiO{sub 2} surface was investigated. The water contact angles (CAs) of micro-patterned TiO{sub 2} surface increased with the decrease of the periods, and the patterned surface with the lowest period of 0.83 μm showed the highest CA of 163°. It suggests that this approach would offer an advantage to control the wettability properties of superhydrophobic surfaces by adjusting the fine pattern structure. Furthermore, the superhydrophobic state could be converted to the state of superhydrophilicity under ultraviolet (UV) illumination as a result of the photocatalytic decomposition of the PFOTCS monolayer on the micro-patterned TiO{sub 2} Surface.

  19. Amorphous and crystalline In{sub 2}O{sub 3}-based transparent conducting films for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Koida, Takashi [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2017-02-15

    We reported solar cells with reduced electrical and optical losses using hydrogen-doped In{sub 2}O{sub 3} (In{sub 2}O{sub 3}:H) transparent conducting layers with low sheet resistance and high transparence characteristics. The transparent conducting oxide (TCO) films were prepared by solid-phase crystallization of amorphous (a-) In{sub 2}O{sub 3}:H films grown by magnetron sputtering. The polycrystalline (poly-) In{sub 2}O{sub 3}:H films exhibited electron mobilities (over 100 cm{sup 2}V{sup -1} s{sup -1}) 2 and 3 times greater than those of conventional TCO films. This paper describes (i) the current status of the electrical properties of In{sub 2}O{sub 3}-based TCO; (ii) the structural and optoelectrical properties of the a-In{sub 2}O{sub 3}:H and poly-In{sub 2}O{sub 3}:H films, focusing on the inhomogeneity and stability characteristics of the films; and (iii) the electrical properties of bilayer TCO. The potential of these high mobility TCO films for solar cells was also described. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. A simple method to tune graphene growth between monolayer and bilayer

    Directory of Open Access Journals (Sweden)

    Xiaozhi Xu

    2016-02-01

    Full Text Available Selective growth of either monolayer or bilayer graphene is of great importance. We developed a method to readily tune large area graphene growth from complete monolayer to complete bilayer. In an ambient pressure chemical vapor deposition process, we used the sample temperature at which to start the H2 flow as the control parameter and realized the change from monolayer to bilayer growth of graphene on Cu foil. When the H2 starting temperature was above 700°C, continuous monolayer graphene films were obtained. When the H2 starting temperature was below 350°C, continuous bilayer films were obtained. Detailed characterization of the samples treated under various conditions revealed that heating without the H2 flow caused Cu oxidation. The more the Cu substrate oxidized, the less graphene bilayer could form.

  1. Characterization of anodic SiO2 films on P-type 4H-SiC

    International Nuclear Information System (INIS)

    Woon, W.S.; Hutagalung, S.D.; Cheong, K.Y.

    2009-01-01

    The physical and electronic properties of 100-120-nm thick anodic silicon dioxide film grown on p-type 4H-SiC wafer and annealed at different temperatures (500, 600, 700, and 800 deg. C ) have been investigated and reported. Chemical bonding of the films has been analyzed by Fourier transform infra red spectroscopy. Smooth and defect-free film surface has been revealed under field emission scanning electron microscope. Atomic force microscope has been used to study topography and surface roughness of the films. Electronic properties of the film have been investigated by high frequency capacitance-voltage and current-voltage measurements. As the annealing temperature increased, refractive index, dielectric constant, film density, SiC surface roughness, effective oxide charge, and leakage current density have been reduced until 700 deg. C . An increment of these parameters has been observed after this temperature. However, a reversed trend has been demonstrated in porosity of the film and barrier height between conduction band edge of SiO 2 and SiC

  2. Ab initio calculations of PbTiO{sub 3}/SrTiO{sub 3} (001) heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Eglitis, R.I.; Piskunov, S.; Zhukovskii, Yu.F. [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., 1063 Riga (Latvia)

    2016-12-15

    We performed ab initio calculations for the PbTiO{sub 3}/SrTiO{sub 3} (001) heterostructures. For both PbO and TiO{sub 2}-terminations of the PbTiO{sub 3} (001) thin film, augmented on the SrTiO{sub 3} (001) substrate, the magnitudes of atomic relaxations Δz increases as a function of the number of augmented monolayers. For both terminations of the augmented PbTiO{sub 3} (001) nanothin film, all upper, third and fifth monolayers are displaced inwards (Δz is negative), whereas all second, fourth and sixth monolayers are displaced outwards (Δz is positive). The B3PW calculated PbTiO{sub 3}/SrTiO{sub 3} (001) heterostructure band gaps, independently from the number of augmented layers, are always smaller than the PbTiO{sub 3} and SrTiO{sub 3} bulk band gaps. For both PbO and TiO{sub 2}-terminated PbTiO{sub 3}/SrTiO{sub 3}(001) heterostructures, their band gaps are reduced due to the increased number of PbTiO{sub 3} (001) monolayers. The band gaps of PbO-terminated augmented PbTiO{sub 3} (001) films are always larger than those for TiO{sub 2}-terminated PbTiO{sub 3} (001) thin films. The only exception is the case of 7-layer PbO-terminated and 8-layer TiO{sub 2}-terminated augmented PbTiO{sub 3} (001) thin films, where their band gaps both are equal to 2.99 eV. For each monolayer of the SrTiO{sub 3} (001) substrate, charge magnitudes always are more than several times larger, than for each monolayer in the augmented PbTiO{sub 3} (001) thin film. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Active sites and mechanisms for H2O2 decomposition over Pd catalysts

    Science.gov (United States)

    Plauck, Anthony; Stangland, Eric E.; Dumesic, James A.; Mavrikakis, Manos

    2016-01-01

    A combination of periodic, self-consistent density functional theory (DFT-GGA-PW91) calculations, reaction kinetics experiments on a SiO2-supported Pd catalyst, and mean-field microkinetic modeling are used to probe key aspects of H2O2 decomposition on Pd in the absence of cofeeding H2. We conclude that both Pd(111) and OH-partially covered Pd(100) surfaces represent the nature of the active site for H2O2 decomposition on the supported Pd catalyst reasonably well. Furthermore, all reaction flux in the closed catalytic cycle is predicted to flow through an O–O bond scission step in either H2O2 or OOH, followed by rapid H-transfer steps to produce the H2O and O2 products. The barrier for O–O bond scission is sensitive to Pd surface structure and is concluded to be the central parameter governing H2O2 decomposition activity. PMID:27006504

  4. Nitrogen and europium doped TiO2 anodized films with applications in photocatalysis

    International Nuclear Information System (INIS)

    Chi, Choong-Soo; Choi, Jinwook; Jeong, Yongsoo; Lee, Oh Yeon; Oh, Han-Jun

    2011-01-01

    Micro-arc oxidation method is a useful process for mesoporous titanium dioxide films. In order to improve the photocatalytic activity of the TiO 2 film, N-Eu co-doped titania catalyst was synthesized by micro-arc oxidation in the H 2 SO 4 /Eu(NO 3 ) 3 mixture solution. The specific surface area and the roughness of the anodic titania film fabricated in the H 2 SO 4 /Eu(NO 3 ) 3 electrolyte, were increased compared to that of the anodic TiO 2 film prepared in H 2 SO 4 solution. The absorbance response of N-Eu titania film shows a higher adsorption onset toward visible light region, and the incorporated N and Eu ions during anodization as a dopant in the anodic TiO 2 film significantly enhanced the photocatalytic activity for dye degradation. After dye decomposition test for 3 h, dye removal rates for the anodic TiO 2 film were 60.7% and 90.1% for the N-Eu doped titania film. The improvement of the photocatalytic activity was ascribed to the synergistic effects of the surface enlargement and the new electronic state of the TiO 2 band gap by N and Eu co-doping.

  5. Photocatalysis and characterization of the gel-derived TiO{sub 2} and P-TiO{sub 2} transparent thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hsuan-Fu, E-mail: hfyu@mail.tku.edu.tw [Department of Chemical and Materials Engineering, Ceramic Materials Laboratory, Tamkang University, Taipei 25137, Taiwan (China); Energy and Opto-Electronic Materials Research Center, Tamkang University, Taipei 25137, Taiwan (China); Wang, Chang-Wen [Department of Chemical and Materials Engineering, Ceramic Materials Laboratory, Tamkang University, Taipei 25137, Taiwan (China)

    2011-07-29

    The gel-derived TiO{sub 2} and P-TiO{sub 2} transparent films coated on fused-SiO{sub 2} substrates were prepared using a spin-coating technique. Effects of phosphorus dopants and calcination temperature on crystal structure, crystallite size, microstructure, light transmittance and photocatalytic activity of the films were investigated. By introducing P atoms to Ti-O framework, the growth of anatase crystallites was hindered and the crystal structure of anatase-TiO{sub 2} could withstand temperature up to 900 deg. C. The photocatalytic activities of the prepared films were characterized using the characteristic time constant ({tau}) for the photocatalytic reaction. The titania film with a smaller {tau} value possesses a higher photocatalytic ability. After exposing to 365-nm UV light for 12 h, the P-TiO{sub 2} films calcined between 600 deg. C and 900 deg. C can photocatalytically decomposed {>=} 84 mol% of the methylene blue in water with corresponding {tau} {<=} 7.1 h, which were better than the pure TiO{sub 2} films prepared at the same calcination temperature.

  6. UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film.

    Science.gov (United States)

    Huang, Jinyu; Du, Yu; Wang, Quan; Zhang, Hao; Geng, Youfu; Li, Xuejin; Tian, Xiaoqing

    2017-12-26

    ZnO film was deposited by the magnetron sputtering method. The thickness of ZnO film is approximately 2 μm. The influence of UV light illumination on C₂H₅OH sensing properties of ZnO film was investigated. Gas sensing results revealed that the UV-illuminated ZnO film displays excellent C₂H₅OH characteristics in terms of high sensitivity, excellent selectivity, rapid response/recovery, and low detection limit down to 0.1 ppm. The excellent sensing performance of the sensor with UV activation could be attributed to the photocatalytic oxidation of ethanol on the surface of the ZnO film, the planar film structure with high utilizing efficiency of UV light, high electron mobility, and a good surface/volume ratio of of ZnO film with a relatively rough and porous surface.

  7. The H2O/D2O exchange across vesicular lipid bilayers

    International Nuclear Information System (INIS)

    Engelbert, H.P.; Lawaczek, R.

    1985-01-01

    A new method to measure the water (D 2 O/H 2 O) permeation across vesicular lipid bilayers is described. The method is based on the solvent isotope effect of the light scattering which is a consequence of the different indices of refraction of D 2 O and H 2 O. Unilamellar lipid vesicles in excess of H 2 O are rapidly mixed with D 2 O or vice versa. As result of the H 2 O/D 2 O exchange across the vesicular bilayer the light scattering signal has a time dependent, almost single exponential component allowing the deduction of the exchange relaxation rate and, at known size, of the permeability coefficient. The experimental results are in accord with calculations from the Mie theory of light scattering for coated spheres. The method is applicable for large vesicles where the permeation is the rate-limiting step. Size separations are performed by a flow dialysis through a sequence of pore-membrane-filters. For dimyristoyl-lecithin bilayers the water permeability-coefficient is 1.9 . 10 -5 cm/s in the crystalline phase and increases by a factor of 10-100 in the liquid-crystalline state. The temperature dependence of the permeation exhibits a sharp change at the phase transition. For binary mixtures of lecithins this sharp change follows the solidus curve of the non-ideal phase diagram determined by spectroscopic techniques. (orig.)

  8. Properties of a-C:H:O plasma polymer films deposited from acetone vapors

    Energy Technology Data Exchange (ETDEWEB)

    Drabik, M., E-mail: martin.drabik@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Celma, C. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Kousal, J.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Hegemann, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland)

    2014-12-31

    To gain insight into the deposition and stability of oxygen-containing plasma polymer films, the properties of amorphous oxygenated hydrocarbon (a-C:H:O) plasma polymer coatings deposited from acetone vapors under various experimental conditions are investigated. Apart from the discharge power, the influence of the reactive carbon dioxide (CO{sub 2}) gas on the structure of the resulting films is studied. It is found by characterization using X-ray Photoelectron Spectroscopy and Fourier-Transform Infrared Spectroscopy that the experimental conditions particularly influence the amount of oxygen in the deposited a-C:H:O plasma polymer films. The O/C elemental ratio increases with increasing amount of CO{sub 2} in the working gas mixture (up to 0.2 for 24 sccm of CO{sub 2} at 30 W) and decreases with increasing RF discharge power (down to 0.17 for 50 W). Furthermore, the nature of bonds between the oxygen and carbon atoms has been examined. Only low amounts of double and triple bonded carbon are observed. This has a particular influence on the aging of the plasma polymer films which is studied both in ambient air and in distilled water for up to 4 months. Overall, stable a-C:H:O plasma polymer films are deposited comprising low amounts (up to about 5%) of ester/carboxyl groups. - Highlights: • Hydrocarbon plasma polymer films with variable oxygen content can be prepared. • Stable oxygenated hydrocarbon plasma polymers contain max 5% of ester/carboxyl groups. • Acetone-derived plasma polymer films can be used as permanent hydrophilic surfaces.

  9. Influence of growth time on crystalline structure, morphologic and optical properties of In2O3 thin films

    Science.gov (United States)

    Attaf, A.; Bouhdjar, A.; Saidi, H.; Benkhetta, Y.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-03-01

    Indium oxide (In2O3) thin films are successfully deposited on glass substrate at different deposition timings by ultrasonic spray technique using Indium chloride (InCl3) material source witch is prepared with dissolvent Ethanol (C2H5-OH), the physical properties of these films are characterized by XRD, MEB,UV-visible. XRD analysis revealed that the films are polycrystalline in nature having centered cubic crystal structure and symmetry space group I213 with a preferred grain orientation along to (222) plane when the deposition time changes from 4 to 10 min but after t = 10 min, especially when t = 13 min we found that the majority of grains preferred the plane (400). The maximum value of grain size D = 61,51 nm is attained for In2O3 films grown at t =10 min. the average transmittance is about 72%, The optical gap energy is found to decrease from 3.8 to 3.66 eV with growth time Increased from 4 to 10 min but after t = 10 min the value of Eg will increase to 3.72 eV. A systematic study on the influence of growth time on the properties of In2O3 thin films deposited by ultrasonic spray at 400 °C has been reported.

  10. Crystal structure and magnetism of Fe2(OH)[B2O4(OH)

    DEFF Research Database (Denmark)

    Kurayoshi, Yotaro; Hara, Shigeo; Sato, Hirohiko

    2014-01-01

    The structure and magnetism of Fe2(OH)[B2O4(OH)] are reported. Powder x-ray diffraction reveals a characteristic structure containing two crystallographically independent zigzag-ladder chains of magnetic Fe2+ ions. Magnetization measurements reveal a phase transition at 85 K, below which a weak...... spontaneous magnetization (approximate to 0.15 μB/Fe) appears. Below 85 K, magnetization increases with decreasing temperature down to 70 K, below which it decreases and approaches a constant value at low temperature. The Mossbauer spectrum at room temperature is composed of two paramagnetic doublets...... corresponding to the two crystallographic Fe2+ sites. Below 85 K, each doublet undergoes further splitting because of the magnetic hyperfine fields. The temperature dependence of the hyperfine field is qualitatively different for the two distinguishable Fe2+ sites. This is responsible for the anomalous...

  11. Investigation of TiO{sub 2} nanoparticles translocation through a Caco-2 monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E; Jugan, M-L; Carriere, M [Laboratoire de Structure et Dynamique par Resonance Magnetique, UMR3299 CEA-CNRS, Saclay (France); Herlin-Boime, N [Laboratoire Francis Perrin, URA2453 CEA-CNRS, Saclay (France); Jaillard, D [Centre Commun de Microscopie Electronique d' Orsay, UMR8195 CNRS-univ. Paris Sud, Orsay (France); Fayard, B [ID21 beamline, ESRF, Grenoble, France and Laboratoire de Physique du Solide, UMR8502 CNRS-univ. Paris Sud, Orsay (France); Flank, A-M [LUCIA beamline, SOLEIL synchrotron, Saint-Aubin (France); Mabondzo, A, E-mail: marie.carriere@cea.fr [Laboratoire d' Etude du Metabolisme du Medicament, CEA, Saclay (France)

    2011-07-06

    Nanoparticles (NPs) are introduced in a growing number of commercial products, including food and beverage but their effects on gastrointestinal tract are poorly investigated. Here we focused on the translocation of TiO{sub 2} NPs through Caco-2 monolayers exposed to anatase and rutile NPs up to 24 h. Internalization was followed by transmission electronic microscopy and {mu}-XRF elemental mapping, coupled to XAS analysis of Ti atoms environment. This innovative technique is among the best techniques to get insights on NP fate after internalization. The originality of this project relies on the panel of microscopy techniques implemented to investigate digestive barrier translocation, bringing together biologists, chemists and physicists in a pluridisciplinary research program.

  12. Fabrication of highly sensitive and selective H{sub 2} gas sensor based on SnO{sub 2} thin film sensitized with microsized Pd islands

    Energy Technology Data Exchange (ETDEWEB)

    Van Toan, Nguyen; Viet Chien, Nguyen; Van Duy, Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet Road, Hanoi (Viet Nam); Si Hong, Hoang [School of Electrical Engineering (SEE), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam); Nguyen, Hugo [Division of Microsystems Technology, Department of Engineering Sciences, Uppsala University, 75237 Uppsala (Sweden); Duc Hoa, Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet Road, Hanoi (Viet Nam); Van Hieu, Nguyen, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet Road, Hanoi (Viet Nam)

    2016-01-15

    Highlights: • H{sub 2} gas sensors based on SnO{sub 2} thin film sensitized with Pd islands were fabricated. • The sensors could monitor hazardous H{sub 2}n gas at low concentrations of 25–250 ppm. • H{sub 2} response of Pd/SnO{sub 2} is higher than that of Pt/SnO{sub 2} and Au/SnO{sub 2} sensors. • Enhancement of sensor performance was discussed based on spillover and diffusion mechanisms. - Abstract: Ultrasensitive and selective hydrogen gas sensor is vital component in safe use of hydrogen that requires a detection and alarm of leakage. Herein, we fabricated a H{sub 2} sensing devices by adopting a simple design of planar-type structure sensor in which the heater, electrode, and sensing layer were patterned on the front side of a silicon wafer. The SnO{sub 2} thin film-based sensors that were sensitized with microsized Pd islands were fabricated at a wafer-scale by using a sputtering system combined with micro-electronic techniques. The thicknesses of SnO{sub 2} thin film and microsized Pd islands were optimized to maximize the sensing performance of the devices. The optimized sensor could be used for monitoring hydrogen gas at low concentrations of 25–250 ppm, with a linear dependence to H{sub 2} concentration and a fast response and recovery time. The sensor also showed excellent selectivity for monitoring H{sub 2} among other gases, such as CO, NH{sub 3}, and LPG, and satisfactory characteristics for ensuring safety in handling hydrogen. The hydrogen sensing characteristics of the sensors sensitized with Pt and Au islands were also studied to clarify the sensing mechanisms.

  13. Structural, morphological, optical and photoluminescence properties of HfO2 thin films

    International Nuclear Information System (INIS)

    Ma, C.Y.; Wang, W.J.; Wang, J.; Miao, C.Y.; Li, S.L.; Zhang, Q.Y.

    2013-01-01

    Nanocrystalline monoclinic HfO 2 films with an average crystal size of 4.2–14.8 nm were sputter deposited under controlled temperatures and their structural characteristics and optical and photoluminescence properties have been evaluated. Structural investigations indicate that monoclinic HfO 2 films grown at higher temperatures above 400 °C are highly oriented along the (− 111) direction. The lattice expansion increases with diminishing HfO 2 crystalline size below 6.8 nm while maximum lattice expansion occurs with highly oriented monoclinic HfO 2 of crystalline size about 14.8 nm. The analysis of atomic force microscopy shows that the film growth at 600 °C can be attributed to the surface-diffusion-dominated growth. The intensity of the shoulderlike band that initiates at ∼ 5.7 eV and saturates at 5.94 eV shows continued increase with increasing crystalline size, which is intrinsic to nanocrystalline monoclinic HfO 2 films. Optical band gap varies in the range 5.40 ± 0.03–5.60 ± 0.03 eV and is slightly decreased with the increase in crystalline size. The luminescence band at 4.0 eV of HfO 2 films grown at room temperature can be ascribed to the vibronic transition of excited OH · radical while the emission at 3.2–3.3 eV for the films grown at all temperatures was attributed to the radiative recombination at impurity and/or defect centers. - Highlights: • Nanocrystalline monoclinic HfO 2 films were sputter deposited. • Structural, optical and photoluminescence properties were studied. • To analyze the scaling behavior using the power spectral density • Optical and photoluminescence properties strongly depend on film growth temperature

  14. Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer

    Science.gov (United States)

    Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming

    2018-03-01

    Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.

  15. Topotactic transition of α-Co(OH)2 to β-Co(OH)2 anchored on CoO nanoparticles during electrochemical water oxidation: synergistic electrocatalytic effects.

    Science.gov (United States)

    Kundu, Sumana; Malik, Bibhudatta; Prabhakaran, Amrutha; Pattanayak, Deepak K; Pillai, Vijayamohanan K

    2017-08-29

    Herein, we report a single step, anionic surfactant-assisted, low temperature-hydrothermal synthetic strategy of CoO nanoparticles anchored on β-Co(OH) 2 nanosheets which show a low overpotential (295 mV @ 10 mA cm -2 ) for the oxygen evolution reaction (OER). They also demonstrate much better kinetic parameters compared to the state-of-the-art RuO 2 . Interestingly, under the OER operational conditions (in alkaline medium), the topotactic transformation of α-Co(OH) 2 to a stable Brucite-like β-Co(OH) 2 phase leads to a synergistic interaction between the β-Co(OH) 2 sheets on the CoO nanoparticles for enhancing the OER electrocatalytic activity.

  16. Influence of annealing temperature on passivation performance of thermal atomic layer deposition Al2O3 films

    International Nuclear Information System (INIS)

    Zhang Xiang; Liu Bang-Wu; Li Chao-Bo; Xia Yang; Zhao Yan

    2013-01-01

    Chemical and field-effect passivation of atomic layer deposition (ALD) Al 2 O 3 films are investigated, mainly by corona charging measurement. The interface structure and material properties are characterized by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), respectively. Passivation performance is improved remarkably by annealing at temperatures of 450 °C and 500 °C, while the improvement is quite weak at 600 °C, which can be attributed to the poor quality of chemical passivation. An increase of fixed negative charge density in the films during annealing can be explained by the Al 2 O 3 /Si interface structural change. The Al—OH groups play an important role in chemical passivation, and the Al—OH concentration in an as-deposited film subsequently determines the passivation quality of that film when it is annealed, to a certain degree. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in H2O and D2O. Acid-base and metal ion catalysis

    International Nuclear Information System (INIS)

    Pocker, Y.; Bjorkquist, D.W.

    1977-01-01

    The approach to equilibrium between carbon dioxide and bicarbonate has been followed by zero-order kinetics both from direction of CO 2 hydration and HCO 3 - dehydration. The rates are monitored at 25.0 0 C using stopped-flow indicator technique in H 2 O as well as D 2 O. The hydration of CO 2 is subject to catalysis by H 2 O (k 0 = 2.9 x 10 -2 s -1 ) and OH - (k/sub OH - / = 6.0 x 10 3 M -1 s -1 ). The value of 0.63 for the ratio k/sub OH - //k/sub OD - / is consistent with a mechanism utilizing a direct nucleophilic attack of OH - on CO 2 . In reverse direction HCO 3 - dehydration is catalyzed predominantly by H 3 O + (k/sub H 3 O + / 4.1 x 10 4 M -1 s -1 ) and to a much lesser degree by H 2 O (k 0 = 2 x 10 -4 s -1 ). The value of 0.56 for ratio k/sub H 3 O + //kD 3 O + / indicates that HCO 3 - may be protonated either in a preequilibrium step or in a rate-determining dehydration step. Both the hydration of CO 2 and the dehydration of bicarbonate are subject to general catalysis. For CO 2 , dibasic phosphate, a zinc imidazole complex, and a copper imidazole complex all enhanced the rate of hydration with respective rate coefficients of 3 x 10 -1 , 6.0, and 2.5 M -1 s -1 . For bicarbonate, monobasic phosphate catalyzed the rate of dehydration (k/sub H 2 PO 4 - / = 1 x 10 -1 M -1 s -1 ). Additionally in going from an ionic strength of 0.1 to 1.0 there was a negligible salt effect for the water-catalyzed hydration of CO 2 . However, the rate constant for the hydronium ion catalyzed dehydration of HCO 3 - was reduced from 4.1 x 10 4 M -1 s -1 to 2.3 x 10 4 M -1 s -1 for the same change in ionic strength. Finally the rate of CO 2 uptake by the complex Co(NH 3 ) 5 OH 2 3+ was followed spectrophotometrically both in H 2 O and D 2 O to determine the solvent isotope effect for a reaction known to involve a nucleophilic attack of a Co(III)-hydroxo complex on CO 2

  18. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    Science.gov (United States)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  19. Sonolytic Oxidation of Tc(IVO2nH2O Nanoparticles to Tc(VIIO4 in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    M. Zakir

    2010-04-01

    Full Text Available Sonolysis of a hydrosol of TcO2nH2O was investigated in the Ar- or He- atmosphere. Colloidal TcO2nH2O nanoparticles were irradiated with a 200 kHz and 1.25 W/cm2 ultrasound. It was found that the TcO2nH2O colloids dispersed in an aqueous solution (under Ar or He atmosphere was completely dissolved by ultrasonic irradiation (200 kHz, 200 W. The original brownish black color of the suspension slowly disappeared leaving behind a colorless solution. This change suggests that oxidation of Tc(IV to Tc(VII takes place. The oxidation was almost complete during 30 minutes sonication time under argon atmosphere for initial concentration of 6.0E-5 M. Addition of t-butyl alcohol, an effective radical scavenger which readily reacts with OH radicals, supressed the dissolution of TcO2nH2O colloids. This reaction indicates that TcO2nH2O molecules are oxidized by OH radicals produced in cavitation bubbles.

  20. Towards a Quantum Dynamical Study of the H_2O+H_2O Inelastic Collision: Representation of the Potential and Preliminary Results

    Science.gov (United States)

    Ndengue, Steve Alexandre; Dawes, Richard

    2017-06-01

    Water, an essential ingredient of life, is prevalent in space and various media. H_2O in the gas phase is the major polyatomic species in the interstellar medium (ISM) and a primary target of current studies of collisional dynamics. In recent years a number of theoretical and experimental studies have been devoted to H_2O-X (with X=He, H_2, D_2, Ar, ?) elastic and inelastic collisions in an effort to understand rotational distributions of H_2O in molecular clouds. Although those studies treated several abundant species, no quantum mechanical calculation has been reported to date for a nonlinear polyatomic collider. We present in this talk the preliminary steps toward this goal, using the H_2O molecule itself as our collider, the very accurate MB-Pol surface to describe the intermolecular interaction and the MultiConfiguration Time Dependent (MCTDH) algorithm to study the dynamics. One main challenge in this effort is the need to express the Potential Energy Surface (PES) in a sum-of-products form optimal for MCTDH calculations. We will describe how this was done and present preliminary results of state-to-state probabilities.

  1. Reaction mechanisms at 4H-SiC/SiO2 interface during wet SiC oxidation

    Science.gov (United States)

    Akiyama, Toru; Hori, Shinsuke; Nakamura, Kohji; Ito, Tomonori; Kageshima, Hiroyuki; Uematsu, Masashi; Shiraishi, Kenji

    2018-04-01

    The reaction processes at the interface between SiC with 4H structure (4H-SiC) and SiO2 during wet oxidation are investigated by electronic structure calculations within the density functional theory. Our calculations for 4H-SiC/SiO2 interfaces with various orientations demonstrate characteristic features of the reaction depending on the crystal orientation of SiC: On the Si-face, the H2O molecule is stable in SiO2 and hardly reacts with the SiC substrate, while the O atom of H2O can form Si-O bonds at the C-face interface. Two OH groups are found to be at least necessary for forming new Si-O bonds at the Si-face interface, indicating that the oxidation rate on the Si-face is very low compared with that on the C-face. On the other hand, both the H2O molecule and the OH group are incorporated into the C-face interface, and the energy barrier for OH is similar to that for H2O. By comparing the calculated energy barriers for these reactants with the activation energies of oxide growth rate, we suggest the orientation-dependent rate-limiting processes during wet SiC oxidation.

  2. Kinetics of the Reaction of CH3O2 Radicals with OH Studied over the 292-526 K Temperature Range.

    Science.gov (United States)

    Yan, Chao; Kocevska, Stefani; Krasnoperov, Lev N

    2016-08-11

    Reaction of methyl peroxy radicals with hydroxyl radicals, CH3O2 + OH → CH3O + HO2 (1a) and CH3O2 + OH → CH2OO + H2O (1b) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 292-526 K temperature range and pressure 1 bar (bath gas He). Hydroxyl radicals were generated in the reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N2O at 193.3 nm, with H2O. Methyl peroxy radicals were generated in the reaction of methyl radicals, CH3, produced in the photolysis of acetone at 193.3 nm, and subsequent reaction of CH3 with O2. Temporal profiles of OH were monitored via transient absorption of light from a DC discharge H2O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The overall rate constant of the reaction is k1a+1b = (8.4 ± 1.7) × 10(-11)(T/298 K)(-0.81) cm(3) molecule(-1) s(-1) (292-526 K). The branching ratio of channel 1b at 298 K is less than 5%.

  3. The investigation of adsorption and dissociation of H2O on Li2O (111) by ab initio theory

    International Nuclear Information System (INIS)

    Kong, Xianggang; Yu, You; Ma, Shenggui; Gao, Tao; Lu, Tiecheng; Xiao, Chengjian; Chen, Xiaojun; Zhang, Chuanyu

    2017-01-01

    Highlights: • The adsorption structures of H 2 O on Li 2 O (111) are obtained by calculations. • By Bader charge analysis, the charge translation from slab to adsorbate is found. • The vibrational frequencies of adsorbate are in line with the experimental values. - Abstract: The adsorption and dissociation mechanism of H 2 O molecule on the Li 2 O (111) surface have been systematically studied by using the density functional theory calculations. The parallel and vertical configurations of H 2 O at six different symmetry adsorption sites on the Li 2 O (111) surface are considered. In our calculations, it is suggested that H 2 O can dissociate on the perfect Li 2 O surface, of which the corresponding adsorption energy is 1.118 eV. And the adsorption energy decrease to be 0.241 eV when oxygen atom of H 2 O bonds to lithium atom of the slab. The final configurations are sensitive to the initial molecular orientation. By Bader charge analysis, the charge transfer from slab to adsorbed H 2 O/OH can be found due to the downward shift of lowest-unoccupied molecular orbital. We also analyze the vibrational frequencies at the Brillouin Zone centre for H 2 O molecule adsorbed on the stoichiometric surface. Due to the slightly different structure parameters, the calculated values of the vibrational frequencies of hydroxyl group range from 3824 to 3767 cm −1 . Our results agree well with experimental results performed in FT-IR spectrum, which showed that an absorption peak of OH group appeared at 3677 cm −1 at room temperature.

  4. Antimicrobial activity study of a μ3-oxo bridged [Fe3O(PhCO2)6(MeOH)3](NO3)(MeOH)2] cluster

    Science.gov (United States)

    Pathak, Sayantan; Jana, Barun; Mandal, Manab; Mandal, Vivekananda; Ghorai, Tanmay K.

    2017-11-01

    Synthesis, characterization and antimicrobial activity of a tri-nuclear μ3-Oxobridged Fe(III) cluster [Fe3O(PhCO2)6(MeOH)3](NO3)(MeOH)2(1) is reported. Cluster 1 is synthesized in a single pot reaction among Fe(NO3)3·9H2O, C6H5COOH, NaN3 (1:4:1) in MeOH. Single crystal X-ray diffraction studies of the isolated crystals show that it is μ3-Oxo bridged trimeric assembly of three Fe atoms via bridging benzoate anions. Furthermore, BVS calculations show that all three Fe atoms in complex 1 are in +3 oxidation state and are surrounded by benzoate anions and methanol in octahedral environment. The oxidation state of iron is also confirmed from the cyclic voltamogram. FT-IR spectroscopy and CHN analysis of the isolated crystals further supports the functional group attached to the periphery of the complex. The nanomolecular size of complex 1 is 1.29 nm. The antimicrobial efficiency studies of the complex 1 show significant inhibition of the growth of the organisms, viz. B. cereus MTCC 1272, S. epidermidis MTCC 3086 and S. typhimurium MTCC 98 and produced 23 ± 1.93 mm, 16 ± 1.77 mm and 12 ± 2.42 mm inhibition zones respectively. However, it shows zero inhibition to the strain of E. coli MTCC 723.

  5. Kinetics and Efficiency of H2O2 Activation by Iron-Containing Minerals and Aquifer Materials

    Science.gov (United States)

    Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.

    2014-01-01

    To gain insight into factors that control H2O2 persistence and ˙OH yield in H2O2-based in situ chemical oxidation systems, the decomposition of H2O2 and transformation of phenol were investigated in the presence of iron-containing minerals and aquifer materials. Under conditions expected during remediation of soil and groundwater, the stoichiometric efficiency, defined as the amount of phenol transformed per mole of H2O2 decomposed, varied from 0.005 to 0.28%. Among the iron-containing minerals, iron oxides were 2 to 10 times less efficient in transforming phenol than iron-containing clays and synthetic iron-containing catalysts. In both iron-containing mineral and aquifer materials systems, the stoichiometric efficiency was inversely correlated with the rate of H2O2 decomposition. In aquifer materials systems, the stoichiometric efficiency was also inversely correlated with the Mn content, consistent with the fact that the decomposition of H2O2 on manganese oxides does not produce ˙OH. Removal of iron and manganese oxide coatings from the surface of aquifer materials by extraction with citrate-bicarbonate-dithionite slowed the rate of H2O2 decomposition on aquifer materials and increased the stoichiometric efficiency. In addition, the presence of 2 mM of dissolved SiO2 slowed the rate of H2O2 decomposition on aquifer materials by over 80% without affecting the stoichiometric efficiency. PMID:23047055

  6. Impregnated cathode coated with tungsten thin film containing Sc2O3

    International Nuclear Information System (INIS)

    Yamamoto, S.; Taguchi, S.; Watanabe, I.; Kawase, S.

    1987-01-01

    An impregnated cathode of a novel structure is proposed, fabricated, and evaluated. A thin tungsten film 100--400 nm in thickness containing various amounts of Sc 2 O 3 is coated on a standard impregnated cathode composed of a porous tungsten body in which electron emissive materials are impregnated. The electron emission property measured with a diode configuration is found to be dependent on Sc 2 O 3 content and surface atom distribution. Surface atom distribution is depicted by means of Auger electron spectroscopy. For high electron emission enhancement it is necessary for Sc 2 O 3 content to be 2.5--6.5 wt. % and for a layer of the order of a monolayer in thickness composed of Ba, Sc, and O to develop on the cathode surface

  7. Descent Without Modification? The Thermal Chemistry of H2O2 on Europa and Other Icy Worlds

    Science.gov (United States)

    Loeffler, Mark Josiah; Hudson, Reggie Lester

    2015-01-01

    The strong oxidant H2O2 is known to exist in solid form on Europa and is suspected to exist on several other Solar System worlds at temperatures below 200 K. However, little is known of the thermal chemistry that H2O2 might induce under these conditions. Here, we report new laboratory results on the reactivity of solid H2O2 with eight different compounds in H2O-rich ices. Using infrared spectroscopy, we monitored compositional changes in ice mixtures during warming. The compounds CH4 (methane), C3H4 (propyne), CH3OH (methanol), and CH3CN (acetonitrile) were unaltered by the presence of H2O2 in ices, showing that exposure to either solid H2O2 or frozen H2O+H2O2 at cryogenic temperatures will not oxidize these organics, much less convert them to CO2. This contrasts strongly with the much greater reactivity of organics with H2O2 at higher temperatures, and particularly in the liquid and gas phases. Of the four inorganic compounds studied, CO, H2S, NH3, and SO2, only the last two reacted in ices containing H2O2, NH3 making NHþ 4 and SO2 making SO2 4 by H+ and e - transfer, respectively. An important astrobiological conclusion is that formation of surface H2O2 on Europa and that molecule's downward movement with H2O-ice do not necessarily mean that all organics encountered in icy subsurface regions will be destroyed by H2O2 oxidation.

  8. Crystal structure of a new polar borate Na{sub 2}Ce{sub 2}[BO{sub 2}(OH)][BO{sub 3}]{sub 2} · H{sub 2}O with isolated boron triangles

    Energy Technology Data Exchange (ETDEWEB)

    Topnikova, A. P.; Belokoneva, E. L., E-mail: elbel@geol.msu.ru; Dimitrova, O. V.; Volkov, A. S. [Moscow State University, Faculty of Geology (Russian Federation)

    2016-11-15

    Crystals of a new polar borate Na{sub 2}Ce{sub 2}[BO{sub 2}(OH)][BO{sub 3}]{sub 2} · H{sub 2}O were prepared by hydrothermal synthesis. The crystals are orthorhombic, a = 7.2295(7) Å, b = 11.2523(8) Å, c = 5.1285(6) Å, Z = 2, sp. gr. C2mm (Amm2), R = 0.0253. The formula of the compound was derived from the structure determination. The Ce and Na atoms are coordinated by nine and six O atoms, respectively. The Ce position is split, and a small amount of Ce is incorporated into the Na1 site with the isomorphous substitution for Na. The anionic moieties exist as isolated BO{sub 3} and BO{sub 2}(OH) triangles. The planes of the BO{sub 2}(OH) triangles with mm2 symmetry are parallel to the ab plane. The planes of the BO{sub 3} triangles with m symmetry are perpendicular to the ab plane and are rotated in a diagonal way. The splitting of the Ce positions and the polar arrangement of the BO{sub 2}(OH) triangles, water molecules, and Na atoms are observed along the polar a axis. The new structure is most similar to the new borate NaCa{sub 4}[BO{sub 3}]{sub 3} (sp. gr. Ama2), in which triangles of one type are arranged in a polar fashion along the c axis. Weak nonlinear-optical properties of both polar borates are attributed to the quenching of the second-harmonic generation due to the mutually opposite orientation of two-thirds of B triangles in the unit cell.

  9. TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light

    Directory of Open Access Journals (Sweden)

    Ting-Wei Liao

    2018-01-01

    Full Text Available In this study, we applied cluster beam deposition (CBD as a new approach for fabricating efficient plasmon-based photocatalytic materials. Au nanoclusters (AuNCs produced in the gas phase were deposited on TiO2 P25-coated silicon wafers with coverage ranging from 2 to 8 atomic monolayer (ML equivalents. Scanning Electron Microscopy (SEM images of the AuNCs modified TiO2 P25 films show that the surface is uniformly covered by the AuNCs that remain isolated at low coverage (2 ML, 4 ML and aggregate at higher coverage (8 ML. A clear relationship between AuNCs coverage and photocatalytic activity towards stearic acid photo-oxidation was measured, both under ultraviolet and green light illumination. TiO2 P25 covered with 4 ML AuNCs showed the best stearic acid photo-oxidation performance under green light illumination (Formal Quantum Efficiency 1.6 × 10−6 over a period of 93 h. These results demonstrate the large potential of gas-phase AuNCs beam deposition technology for the fabrication of visible light active plasmonic photocatalysts.

  10. Photoinduced properties of nanocrystalline TiO2 sol–gel derived ...

    Indian Academy of Sciences (India)

    Administrator

    photocatalysis, sterilizing, solar energy cells, gas sensors, self-cleaning effect etc ... The production of nanostructure films is nowadays an established method and .... and hydrogen bonds interactions between H2O and –OH will be increased.

  11. The Effects of Anchor Groups on (1) TiO2-Catalyzed Photooxidation and (2) Linker-Assisted Assembly on TiO2

    Science.gov (United States)

    Anderson, Ian Mark

    Quantum dot-sensitized solar cells (QDSSCs) are a popular target for research due to their potential for highly efficient, easily tuned absorption. Typically, light is absorbed by quantum dots attached to a semiconductor substrate, such as TiO2, via bifunctional linker molecules. This research aims to create a patterned monolayer of linker molecules on a TiO2 film, which would in turn allow the attachment of a patterned layer of quantum dots. One method for the creation of a patterned monolayer is the functionalization of a TiO2 film with a linker molecule, followed by illumination with a laser at 355 nm. This initiates a TiO 2-catalyzed oxidation reaction, causing loss of surface coverage. A second linker molecule can then be adsorbed onto the TiO2 surface in the illuminated area. Towards that end, the behaviors of carboxylic and phosphonic acids adsorbed on TiO2 have been studied. TiO2 films were functionalized by immersion in solutions a single adsorbate and surface coverage was determined by IR spectroscopy. It is shown that phosphonic acids attain higher surface coverage than carboxylic acids, and will displace them from TiO2 when in a polar solvent. Alkyl chain lengths, which can influence stabilities of monolayers, are shown not to have an effect on this relationship. Equilibrium binding data for the adsorption of n-hexadecanoic acid to TiO2 from a THF solution are presented. It is shown that solvent polarity can affect monolayer stability; carboxylates and phosphonates undergo more desorption into polar solvents than nonpolar. Through illumination, it was possible to remove nearly all adsorbed linkers from TiO2. However, the illuminated areas were found not to be receptive to attachment by a second adsorbate. A possible reason for this behavior is presented. I also report on the synthesis and characterization of a straight-chain, thiol-terminated phosphonic acid. Initial experiments involving monolayer formation and quantum dot attachment are presented

  12. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films

    Science.gov (United States)

    Katayama, Tsukasa; Chikamatsu, Akira; Yamada, Keisuke; Shigematsu, Kei; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2016-08-01

    Oxyhydride SrVO2H epitaxial thin films were fabricated on SrTiO3 substrates via topotactic hydridation of oxide SrVO3 films using CaH2. Structural and composition analyses suggested that the SrVO2H film possessed one-dimensionally ordered V-H--V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO2H film was reversible to SrVO3 by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V3+ valence state in the SrVO2H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  13. Study of interfacial strain at the α-Al2O3/monolayer MoS2 interface by first principle calculations

    Science.gov (United States)

    Yu, Sheng; Ran, Shunjie; Zhu, Hao; Eshun, Kwesi; Shi, Chen; Jiang, Kai; Gu, Kunming; Seo, Felix Jaetae; Li, Qiliang

    2018-01-01

    With the advances in two-dimensional (2D) transition metal dichalcogenides (TMDCs) based metal-oxide-semiconductor field-effect transistor (MOSFET), the interface between the semiconductor channel and gate dielectrics has received considerable attention due to its significant impacts on the morphology and charge transport of the devices. In this study, first principle calculations were utilized to investigate the strain effect induced by the interface between crystalline α-Al2O3 (0001)/h-MoS2 monolayer. The results indicate that the 1.3 nm Al2O3 can induce a 0.3% tensile strain on the MoS2 monolayer. The strain monotonically increases with thicker dielectric layers, inducing more significant impact on the properties of MoS2. In addition, the study on temperature effect indicates that the increasing temperature induces monotonic lattice expansion. This study clearly indicates that the dielectric engineering can effectively tune the properties of 2D TMDCs, which is very attractive for nanoelectronics.

  14. Siudaite, Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O: a new eudialyte-group mineral from the Khibiny alkaline massif, Kola Peninsula

    Science.gov (United States)

    Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Kruszewski, Łukasz; Aksenov, Sergey M.; Rusakov, Vyacheslav S.; Britvin, Sergey N.; Vozchikova, Svetlana A.

    2018-03-01

    The new eudialyte-group mineral siudaite, ideally Na8(Mn2+ 2Na)Ca6Fe3+ 3Zr3NbSi25O74(OH)2Cl·5H2O, was discovered in a peralkaline pegmatite situated at the Eveslogchorr Mt., Khibiny alkaline massif, Kola Peninsula, Russia. The associated minerals are aegirine, albite, microcline, nepheline, astrophyllite, and loparite-(Ce). Siudaite forms yellow to brownish-yellow equant anhedral grains up to 1.5 cm across. Its lustre is vitreous, and the streak is white. Cleavage is none observed. The Mohs' hardness is 4½. Density measured by hydrostatic weighing is 2.96(1) g/cm3. Density calculated using the empirical formula is equal to 2.973 g/cm3. Siudaite is nonpleochroic, optically uniaxial, negative, with ω = 1.635(1) and ɛ = 1.626(1) (λ = 589 nm). The IR spectrum is given. The chemical composition of siudaite is (wt%; electron microprobe, H2O determined by HCN analysis): Na2O 8.40, K2O 0.62, CaO 9.81, La2O3 1.03, Ce2O3 1.62, Pr2O3 0.21, Nd2O3 0.29, MnO 6.45, Fe2O3 4.51. TiO2 0.54, ZrO2 11.67, HfO2 0.29, Nb2O5 2.76, SiO2 47.20, Cl 0.54, H2O 3.5, -O = Cl - 0.12, total 99.32. According to Mössbauer spectroscopy data, all iron is trivalent. The empirical formula (based on 24.5 Si atoms pfu, in accordance with structural data) is [Na7.57(H2O)1.43]Σ9(Mn1.11Na0.88Ce0.31La0.20Nd0.05Pr0.04K0.41)Σ3(H2O)1.8(Ca5.46Mn0.54)Σ6(Fe3+ 1.76Mn2+ 1.19)Σ2.95Nb0.65(Ti0.20Si0.50)Σ0.71(Zr2.95Hf0.04Ti0.01)Σ3Si24.00Cl0.47O70(OH)2Cl0.47·1.82H2O. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is trigonal, space group R3m, with a = 14.1885(26) Å, c = 29.831(7) Å, V = 5200.8(23) Å3 and Z = 3. Siudaite is chemically related to georgbarsanovite and is its analogue with Fe3+-dominant M2 site. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 6.38 (60) (-114), 4.29 (55) (-225), 3.389 (47) (131), 3.191 (63) (-228). 2.963 (100) (4-15), 2.843 (99) (-444), 2.577 (49) (3-39). Siudaite is named after the Polish

  15. Growth and structure of water on SiO2 films on Si investigated byKelvin probe microscopy and in situ X-ray Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Verdaguer, A.; Weis, C.; Oncins, G.; Ketteler, G.; Bluhm, H.; Salmeron, M.

    2007-06-14

    The growth of water on thin SiO{sub 2} films on Si wafers at vapor pressures between 1.5 and 4 torr and temperatures between -10 and 21 C has been studied in situ using Kelvin Probe Microscopy and X-ray photoemission and absorption spectroscopies. From 0 to 75% relative humidity (RH) water adsorbs forming a uniform film 4-5 layers thick. The surface potential increases in that RH range by about 400 mV and remains constant upon further increase of the RH. Above 75% RH the water film grows rapidly, reaching 6-7 monolayers at around 90% RH and forming a macroscopic drop near 100%. The O K-edge near-edge X-ray absorption spectrum around 75% RH is similar to that of liquid water (imperfect H-bonding coordination) at temperatures above 0 C and ice-like below 0 C.

  16. On the Formation of the C{sub 2}H{sub 6}O Isomers Ethanol (C{sub 2}H{sub 5}OH) and Dimethyl Ether (CH{sub 3}OCH{sub 3}) in Star-forming Regions

    Energy Technology Data Exchange (ETDEWEB)

    Bergantini, Alexandre; Maksyutenko, Pavlo; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [Department of Chemistry, University of Hawaii at Mānoa, Honolulu, HI 96822 (United States)

    2017-06-01

    The structural isomers ethanol (CH{sub 3}CH{sub 2}OH) and dimethyl ether (CH{sub 3}OCH{sub 3}) were detected in several low-, intermediate-, and high-mass star-forming regions, including Sgr B2, Orion, and W33A, with the relative abundance ratios of ethanol/dimethyl ether varying from about 0.03 to 3.4. Until now, no experimental data regarding the formation mechanisms and branching ratios of these two species in laboratory simulation experiments could be provided. Here, we exploit tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) to detect and analyze the production of complex organic molecules (COMs) resulting from the exposure of water/methane (H{sub 2}O/CH{sub 4}) ices to energetic electrons. The main goal is to understand the formation mechanisms in star-forming regions of two C{sub 2}H{sub 6}O isomers: ethanol (CH{sub 3}CH{sub 2}OH) and dimethyl ether (CH{sub 3}OCH{sub 3}). The results show that the experimental branching ratios favor the synthesis of ethanol versus dimethyl ether (31 ± 11:1). This finding diverges from the abundances observed toward most star-forming regions, suggesting that production routes on interstellar grains to form dimethyl ether might be missing; alternatively, ethanol can be overproduced in the present simulation experiments, such as via radical–radical recombination pathways involving ethyl and hydroxyl radicals. Finally, the PI-ReTOF-MS data suggest the formation of methylacetylene (C{sub 3}H{sub 4}), ketene (CH{sub 2}CO), propene (C{sub 3}H{sub 6}), vinyl alcohol (CH{sub 2}CHOH), acetaldehyde (CH{sub 3}CHO), and methyl hydroperoxide (CH{sub 3}OOH), in addition to ethane (C{sub 2}H{sub 6}), methanol (CH{sub 3}OH), and CO{sub 2} detected from infrared spectroscopy. The yield of all the confirmed species is also determined.

  17. Investigation of SiO{sub 2} film growth on 4H-SiC by direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3} and H{sub 2}O vapor at varied process durations

    Energy Technology Data Exchange (ETDEWEB)

    Poobalan, Banu [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia); Moon, Jeong Hyun; Kim, Sang-Cheol; Joo, Sung-Jae; Bahng, Wook; Kang, In Ho; Kim, Nam-Kyun [Power Semiconductor Research Centre, Korea Electrotechnology Research Institute, PO Box 20, Changwon, Gyungnam 641120 (Korea, Republic of); Cheong, Kuan Yew, E-mail: cheong@eng.usm.my [Electronic Materials Research Group, School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang (Malaysia)

    2014-11-03

    This study has revealed that HNO{sub 3} and H{sub 2}O vapors can be utilized as direct thermal oxidation or postoxidation annealing agents at a temperature above 1000 °C; as they play a major role in simultaneous oxidation/nitridation/hydrogenation processes at the bulk oxide and SiO{sub 2}/SiC interface. The varied process durations of the above-mentioned techniques contribute to the development of thicker gate oxides for high power device applications with improved electrical properties, lower interface-state density and higher breakdown voltage as compared to oxides grown through a more conventional wet (H{sub 2}O vapor only) oxidation technique. The study highlights the effects of hydrogen and nitrogen species on the passivation of structural defects at the bulk oxide and the SiO{sub 2}/SiC interface, which are revealed through the use of Time-of-Flight Secondary Ion Mass Spectroscopy and X-ray Photoelectron Spectroscopy. The physical properties of the substrate after oxide removal show that the surface roughness decreases as the process durations increase with longer hours of H{sub 2}O and HNO{sub 3} vapor exposures on the samples, which is mainly due to the significant reduction of carbon content at the SiO{sub 2}/SiC interface. - Highlights: • Direct thermal oxidation and postoxidation annealing techniques in HNO{sub 3}/H{sub 2}O vapor • SiO{sub 2} film growth in H{sub 2}O/HNO{sub 3}vapor at varied process durations • Thicker SiO{sub 2} film growth via annealing than direct growth in HNO{sub 3}/H{sub 2}O vapor • Nitrogen and hydrogen as passivation elements in SiO{sub 2}/SiC interface and SiO{sub 2} bulk • Significant reduction of carbon and Si-dangling bonds at the SiC/SiO{sub 2} interface.

  18. Zn-Fe-CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole.

    Science.gov (United States)

    Liu, Yong; Fan, Qin; Wang, Jianlong

    2018-01-15

    A novel Fenton-like catalyst (Zn-Fe-CNTs) capable of converting O 2 to H 2 O 2 and further to OH was prepared through infiltration fusion method followed by chemical replacement in argon atmosphere. The catalyst was characterized by SEM, EDS, TEM, XRD and XPS. The reaction between Zn-Fe-CNTs and O 2 in aqueous solution could generate H 2 O 2 in situ, which was further transferred to OH. The Fenton-like degradation of sulfamethoxazole (SMX) using Zn-Fe-CNTs as catalyst was evaluated. The results indicated that Zn-Fe-CNTs had a coral porous structure with a BET area of 51.67m 2 /g, exhibiting excellent adsorption capacity for SMX, which enhanced its degradation. The particles of Zn 0 and Fe 0 /Fe 2 O 3 were observed on the surface of Zn-Fe-CNTs. The mixture of Zn 0 and CNTs could reduce O 2 into H 2 O 2 by micro-electrolysis and Fe 0 /Fe 2 O 3 could catalyze in-situ generation of H 2 O 2 to produce OH through Fenton-like process. When initial pH=1.5, T=25°C, O 2 flow rate=400mL/min, Zn-Fe-CNTs=0.6g/L, SMX=25mg/L and reaction time=10min, the removal efficiency of SMX and TOC was 100% and 51.3%, respectively. The intermediates were detected and the possible pathway of SMX degradation and the mechanism of Zn-Fe-CNTs/O 2 process were tentatively proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure

    KAUST Repository

    Akkerman, Hylke B.

    2013-07-31

    Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5′bis(4-alkylphenyl)-2,2′-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling. © 2013 American Chemical Society.

  20. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure

    KAUST Repository

    Akkerman, Hylke B.; Mannsfeld, Stefan C. B.; Kaushik, Ananth P.; Verploegen, Eric; Burnier, Luc; Zoombelt, Arjan P.; Saathoff, Jonathan D.; Hong, Sanghyun; Atahan-Evrenk, Sule; Liu, Xueliang; Aspuru-Guzik, Alá n; Toney, Michael F.; Clancy, Paulette; Bao, Zhenan

    2013-01-01

    Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5′bis(4-alkylphenyl)-2,2′-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling. © 2013 American Chemical Society.

  1. Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface.

    Science.gov (United States)

    Boulesbaa, Abdelaziz; Borguet, Eric

    2014-02-06

    The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.

  2. Superhydrophilic SnO{sub 2} nanosheet-assembled film

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Yoshitake, E-mail: masuda-y@aist.go.jp; Kato, Kazumi

    2013-10-01

    SnO{sub 2} films were fabricated on fluorine-doped tin oxide (FTO) substrates in aqueous solutions. The films of about 800 nm in thickness grew in the solutions containing SnF{sub 2} of 25 mM at 90 °C for 24 h. They consisted of nanosheets of about 5–10 nm in thickness and about 100–1600 nm in plane size. The films had gradient structure of nanosheets. Smaller nanosheets formed dense structures in a bottom area, while larger nanosheets formed porous structures in a surface area of the films. The SnO{sub 2} films showed higher transparency than bare FTO substrates in a visible light region of 470 to 850 nm. Decrease of reflectance increased transparency. The SnO{sub 2} films had superhydrophilic surfaces of static contact angle below 1°. Nanosheet-assembled structures contributed high hydrophilicity. The surfaces were further modified with light irradiation. High speed camera observation showed that spread speed of water was improved with the irradiation. Removal of surface adsorbed organic molecules and increase in the number of hydroxyl groups brought superhydrophilicity and high spread speed. - Highlights: ► SnO{sub 2} nanosheet films were prepared from aqueous solutions. ► The antireflective films showed superhydrophilicity. ► Crystal growth mechanism of the gradient structures is discussed.

  3. Sensing mechanism of SnO2/ZnO nanofibers for CH3OH sensors: heterojunction effects

    Science.gov (United States)

    Tang, Wei

    2017-11-01

    SnO2/ZnO composite nanofibers were synthesized by a simple electrospinning method. The prepared SnO2/ZnO gas sensors exhibited good linear and high response to methanol. The enhanced sensing behavior of SnO2/ZnO might be associated with the homotypic heterojunction effects formed in n-SnO2/n-ZnO nanograins boundaries. In addition, the possible sensing mechanisms of methanol on SnO2/ZnO surface were investigated by density functional theory in order to make the methanol adsorption and desorption process clear. Zn doped SnO2 model was adopted to approximate the SnO2/ZnO structure because of the calculation power limitations. Calculation results showed that when exposed to methanol, the methanol would react with bridge oxygen O2c , planar O3c and pre adsorbed oxygen vacancy on the lattice surface. The -CH3 and -OH of methanol molecule would both lose one H atom. The lost H atoms bonded with oxygen at the adsorption sites. The final products were HCHO and H2O. Electrons were transferred from methanol to the lattice surface to reduce the resistance of semiconductor gas sensitive materials, which is in agreement with the experimental phenomena. More adsorption models of other interfering gases, such as ethanol, formaldehyde and acetone will be built and calculated to explain the selectivity issue from the perspective of adsorption energy, transferred charge and density of states in the future work.

  4. Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions

    International Nuclear Information System (INIS)

    Chu, H.; Chien, T.W.; Li, S.Y.

    2001-01-01

    The wet scrubbing combined SO x /NO x removal system is an advanced air pollution control device. This study attempts to understand the absorption kinetics in the system. The absorption of diluted SO 2 and simultaneous absorption of diluted SO 2 and NO, as occurs in flue gases, in a stirred tank reactor with KMnO 4 /NaOH solutions were carried out at 50C. The liquid-side and gas-side mass transfer coefficients of the system were determined. The results indicate that the absorption of SO 2 is close to completely gas-film controlled where the NaOH concentration is greater than 0.1 M or the KMnO 4 concentration is greater than 0.05 M. The increasing gas flow rate has a positive effect on the absorption rate of SO 2 . The existence of O 2 has no significant effect on the absorption rate of SO 2 . Adding SO 2 would decrease the absorption rate of NO; however, the addition of NO has no effect on the absorption rate of SO 2

  5. Red-shifting and blue-shifting OH groups on metal oxide surfaces - towards a unified picture.

    Science.gov (United States)

    Kebede, Getachew G; Mitev, Pavlin D; Briels, Wim J; Hermansson, Kersti

    2018-05-09

    We analyse the OH vibrational signatures of 56 structurally unique water molecules and 34 structurally unique hydroxide ions in thin water films on MgO(001) and CaO(001), using DFT-generated anharmonic potential energy surfaces. We find that the OH stretching frequencies of intact water molecules on the surface are always downshifted with respect to the gas-phase species while the OH- groups are either upshifted or downshifted. Despite these differences, the main characteristics of the frequency shifts for all three types of surface OH groups (OHw, OsH and OHf) can be accounted for by one unified expression involving the in situ electric field from the surrounding environment, and the gas-phase molecular properties of the vibrating species (H2O or OH-). The origin behind the different red- and blueshift behaviour can be traced back to the fact that the molecular dipole moment of a gas-phase water molecule increases when an OH bond is stretched, but the opposite is true for the hydroxide ion. We propose that familiarity with the relations presented here will help surface scientists in the interpretation of vibrational OH spectra for thin water films on ionic crystal surfaces.

  6. Solid phase crystallisation of HfO2 thin films

    International Nuclear Information System (INIS)

    Modreanu, M.; Sancho-Parramon, J.; O'Connell, D.; Justice, J.; Durand, O.; Servet, B.

    2005-01-01

    In this paper, we report on the solid phase crystallisation of carbon-free HfO 2 thin films deposited by plasma ion assisted deposition (PIAD). After deposition, the HfO 2 films were annealed in N 2 ambient for 3 h at 350, 550 and 750 deg. C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and atomic force microscopy (AFM) were used for the physical characterisation of as-deposited and annealed HfO 2 . XRD has revealed that the as-deposited HfO 2 film is in an amorphous-like state with only traces of crystalline phase and that the annealed films are in a highly crystalline state. These results are in good agreement with the SE results showing an increase of refractive index by increasing the annealing temperature. XRR results show a significant density gradient over the as-deposited film thickness, which is characteristic of the PIAD method. The AFM measurements show that the HfO 2 layers have a smooth surface even after annealing at 750 deg. C. The present study demonstrates that the solid phase crystallisation of HfO 2 PIAD thin films starts at a temperature as low as 550 deg. C

  7. Translocation of SiO2-NPs across in vitro human bronchial epithelial monolayer

    International Nuclear Information System (INIS)

    George, I; Vranic, S; Boland, S; Borot, M C; Marano, F; Baeza-Squiban, A

    2013-01-01

    Safe development and application of nanotechnologies in many fields require better knowledge about their potential adverse effects on human health. Evidence of abilities of nanoparticles (NPs) to cross epithelial barriers and reach secondary organs via the bloodstream led us to investigate the translocation of SiO 2 NPs of 50 nm (50 nm-SiO 2 -NPs) across human bronchial epithelial cells that are primary targets after exposure to inhaled NPs. We quantified the translocation of fluorescently labelled SiO 2 NPs at non-cytotoxic concentrations (5 and 10 μg/cm 2 ) across Calu-3 epithelial monolayer. After 14 days in culture Calu-3 cells seeded onto 3 μm-polycarbonate Transwell membranes formed an efficient bronchial barrier assessed by measurement of the transepithelial electric resistance and quantification of the permeability of the monolayer. After 24 hours of exposure, we observed a significant translocation of NPs that was more important when the initial NP concentration decreased. Confocal microscopy observations revealed NP uptake by cells and an important NP retention inside the porous membrane. In conclusion, 50 nm-SiO 2 -NPs can cross the human bronchial epithelial barrier without affecting the integrity of the epithelial cell monolayer.

  8. Luminescent properties in films of ZrO2: Dy

    International Nuclear Information System (INIS)

    Martinez, R. C.; Guzman, J.; Rivera, T.; Ceron, P.; Montes, E.; Guzman, D.; Garcia H, M.; Falcony, C.; Azorin, J.

    2014-08-01

    In this work the luminescent characterization of zirconium oxide (ZrO 2 ) films impure with dysprosium (Dy +3 ) is reported, obtained by means of the ultrasonics spray pyrolysis technique. The films were deposited on glass substrates (Corning), in a temperatures interval of 400 to 550 grades C, using as precursor elements Zirconium oxide chloride octahydrate (ZrOCl 2 ·8H 2 O) and Dysprosium tri-chloride (DyCl 3 ), dissolved in deionized water, varying the concentration of the contaminated from the 1 to 20 atomic % with relationship to the zirconium in solution. The luminescent characterization was analyzed by means of photoluminescence and thermoluminescence. The photoluminescence results showed a spectrum with three maxima which correspond to the electronic transitions 4 F 9/2 - 6 H 15/2 , 4 F 9/2 - 6 H 13/2 and 4 F 9/2 - 6 H 11/2 characteristics of the Dy 3+ ion. The thermoluminescence (Tl) response when being exposed to a monochrome UV beam in 240 nm showed a wide curve that exhibits a maxim centered in 200 grades C. The Tl response of ZrO 2 :Dy in function of the dose was shown lineal in the interval of 24 mJ/cm 2 to 432 mJ/cm 2 . A study of the repeatability and dissipation of the ZrO 2 :Dy Tl response is included. Considering the shown previous results we can conclude that the ZrO 2 in film form obtained by spray pyrolysis has luminescent properties in 240 nm. (Author)

  9. Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application

    Directory of Open Access Journals (Sweden)

    Yu Han-Young

    2010-01-01

    Full Text Available Abstract We demonstrate the synthesis of monolayer graphene using thermal chemical vapor deposition and successive transfer onto arbitrary substrates toward transparent flexible conductive film application. We used electron-beam-deposited Ni thin film as a synthetic catalyst and introduced a gas mixture consisting of methane and hydrogen. To optimize the synthesis condition, we investigated the effects of synthetic temperature and cooling rate in the ranges of 850–1,000°C and 2–8°C/min, respectively. It was found that a cooling rate of 4°C/min after 1,000°C synthesis is the most effective condition for monolayer graphene production. We also successfully transferred as-synthesized graphene films to arbitrary substrates such as silicon-dioxide-coated wafers, glass, and polyethylene terephthalate sheets to develop transparent, flexible, and conductive film application.

  10. Ion-Molecule Reaction of Gas-Phase Chromium Oxyanions: CrxOyHz- + H2O

    International Nuclear Information System (INIS)

    Gianotto, Anita Kay; Hodges, Brittany DM; Benson, Michael Timothy; Harrington, Peter Boves; Appelhans, Anthony David; Olson, John Eric; Groenewold, Gary Steven

    2003-01-01

    Chromium oxyanions having the general formula CrxOyHz- play a key role in many industrial, environmental, and analytical processes, which motivated investigations of their intrinsic reactivity. Reactions with water are perhaps the most significant, and were studied by generating CrxOyHz- in the gas phase using a quadrupole ion trap secondary ion mass spectrometer. Of the ions in the Cr1OyHz envelope (y = 2, 3, 4; z = 0, 1), only CrO2- was observed to react with H2O, producing the hydrated CrO3H2- at a slow rate (∼0.07% of the ion-molecule collision constant at 310 K). CrO3-, CrO4-, and CrO4H- were unreactive. In contrast, Cr2O4-, Cr2O5-, and Cr2O5H2- displayed a considerable tendency to react with H2O. Cr2O4- underwent sequential reactions with H2O, initially producing Cr2O5H2- at a rate that was ∼7% efficient. Cr2O5H2- then reacted with a second H2O by addition to form Cr2O6H4- (1.8% efficient) and by OH abstraction to form Cr2O6H3- (0.6% efficient). The reactions of Cr2O5- were similar to those of Cr2O5H2-: Cr2O5- underwent addition to form Cr2O6H2- (3% efficient) and OH abstraction to form Cr2O6H- (<1% efficient). By comparison, Cr2O6- was unreactive with H2O, and in fact, no further H2O addition could be observed for any of the Cr2O6Hz- anions. Hartree-Fock ab initio calculations showed that reactive CrxOyHz- species underwent nucleophilic attack by the incoming H2O molecules, which produced an initially formed adduct in which the water O was bound to a Cr center. The experimental and computational studies suggested that Cr2OyHz- species that have bi- or tricoordinated Cr centers are susceptible to attack by H2O; however, when the metal becomes tetracoordinate, reactivity stops. For the Cr2OyHz- anions the lowest energy structures all contained rhombic Cr2O2 rings with pendant O atoms and/or OH groups. The initially formed [Cr2Oy- + H2O] adducts underwent H rearrangement to a gem O atom to produce stable dihydroxy structures. The calculations indicated that

  11. Quantum spin Hall insulator BiXH (XH = OH, SH) monolayers with a large bulk band gap.

    Science.gov (United States)

    Hu, Xing-Kai; Lyu, Ji-Kai; Zhang, Chang-Wen; Wang, Pei-Ji; Ji, Wei-Xiao; Li, Ping

    2018-05-16

    A large bulk band gap is critical for the application of two-dimensional topological insulators (TIs) in spintronic devices operating at room temperature. On the basis of first-principles calculations, we predict BiXH (X = OH, SH) monolayers as TIs with an extraordinarily large bulk gap of 820 meV for BiOH and 850 meV for BiSH, and propose a tight-binding model considering spin-orbit coupling to describe the electronic properties of BiXH. These large gaps are entirely due to the strong spin-orbit interaction related to the pxy orbitals of the Bi atoms of the honeycomb lattice. The orbital filtering mechanism can be used to understand the topological properties of BiXH. The XH groups simply remove one branch of orbitals (pz of Bi) and reduce the trivial 6-band lattice into a 4-band, which is topologically non-trivial. The topological characteristics of BiXH monolayers are confirmed by nonzero topological invariant Z2 and a single pair of gapless helical edge states in the bulk gap. Owing to these features, the BiXH monolayers of the large-gap TIs are an ideal platform to realize many exotic phenomena and fabricate new quantum devices working at room temperature.

  12. The borosulfates K{sub 4}[BS{sub 4}O{sub 15}(OH)], Ba[B{sub 2}S{sub 3}O{sub 13}], and Gd{sub 2}[B{sub 2}S{sub 6}O{sub 24}

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Peter; Kirchhain, Arno; Hoeppe, Henning A. [Universitaet Augsburg, Institut fuer Physik (Germany)

    2016-03-18

    K{sub 4}[BS{sub 4}O{sub 15}(OH)], Ba[B{sub 2}S{sub 3}O{sub 13}], and Gd{sub 2}[B{sub 2}S{sub 6}O{sub 24}] were obtained by a new synthetic approach. The strategy involves initially synthesizing the complex acid H[B(HSO{sub 4}){sub 4}] which is subsequently reacted in an open system with anhydrous chlorides of K, Ba, and Gd to the respective borosulfates and a volatile molecule (HCl). Furthermore, protonated borosulfates should be accessible by appropriate stoichiometry of the starting materials, particularly in closed systems, which inhibit deprotonation of H[B(HSO{sub 4}){sub 4}] via condensation and dehydration. This approach led to the successful synthesis of the first divalent and trivalent metal borosulfates (Ba[B{sub 2}S{sub 3}O{sub 13}] with band-silicate topology and Gd{sub 2}[B{sub 2}S{sub 6}O{sub 24}] with cyclosilicate topology) and the first hydrogen borosulfate K{sub 4}[BS{sub 4}O{sub 15}(OH)]. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Protonation of octadecylamine Langmuir monolayer by adsorption of halide counterions

    Science.gov (United States)

    Sung, Woongmo; Avazbaeva, Zaure; Lee, Jonggwan; Kim, Doseok

    Langmuir monolayer consisting of octadecylamine (C18H37NH2, ODA) was investigated by heterodyne vibrational sum-frequency generation (HD-VSFG) spectroscopy in conjunction with surface pressure-area (π- A) isotherm, and the result was compared with that from cationic-lipid (DPTAP) Langmuir monolayer. In case of ODA monolayer on pure water, both SF intensity of water OH band and the surface pressure were significantly smaller than those of the DPTAP monolayer implying that only small portion of the amine groups (-NH3+ is protonated in the monolayer. In the presence of sodium halides (NaCl and NaI) in the subphase water, it was found that the sign of Imχ (2) of water OH band remained the same as that of the ODA monolayer on pure water, but there was a substantial increase in the SF amplitude. From this, we propose that surface excess of the halide counterions (Cl- and I-) makes the solution condition near the ODA monolayer/water interface more acidic so that ODA molecules in the monolayer are more positively charged, which works to align the water dipoles at the interface.

  14. Influence of growth time on crystalline structure, morphologic and optical properties of In2O3 thin films

    International Nuclear Information System (INIS)

    Attaf, A.; Bouhdjar, A.; Saidi, H.; Benkhetta, Y.; Bendjedidi, H.; Nouadji, M.; Lehraki, N.

    2015-01-01

    Indium oxide (In 2 O 3 ) thin films are successfully deposited on glass substrate at different deposition timings by ultrasonic spray technique using Indium chloride (InCl 3 ) material source witch is prepared with dissolvent Ethanol (C 2 H 5 -OH), the physical properties of these films are characterized by XRD, MEB,UV-visible. XRD analysis revealed that the films are polycrystalline in nature having centered cubic crystal structure and symmetry space group I2 1 3 with a preferred grain orientation along to (222) plane when the deposition time changes from 4 to 10 min but after t = 10 min, especially when t = 13 min we found that the majority of grains preferred the plane (400). The maximum value of grain size D = 61,51 nm is attained for In 2 O 3 films grown at t =10 min. the average transmittance is about 72%, The optical gap energy is found to decrease from 3.8 to 3.66 eV with growth time Increased from 4 to 10 min but after t = 10 min the value of E g will increase to 3.72 eV. A systematic study on the influence of growth time on the properties of In 2 O 3 thin films deposited by ultrasonic spray at 400 °C has been reported

  15. The Surface Reactions of Ethanol over UO2(100) Thin Film

    KAUST Repository

    Senanayake, Sanjaya D.

    2015-10-08

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH3CH2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C1s, O1s and U4f to investigate the bonding mode, surface composition, electronic structure and probable chemical changes to the stoichiometric-UO2(100) [smooth-UO2(100)] and Ar+-sputtered UO2(100) [rough-UO2(100)] surfaces. Unlike UO2(111) single crystal and UO2 thin film, Ar-ion sputtering of this UO2(100) did not result in noticeable reduction of U cations. The ethanol molecule has C-C, C-H, C-O and O-H bonds, and readily donates the hydroxyl H while interacting strongly with the UO2 surfaces. Upon ethanol adsorption (saturation occurred at 0.5 ML), only ethoxy (CH3CH2O-) species is formed on smooth-UO2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO-) on the Ar+-sputtered UO2(100) surface. All ethoxy and acetate species are removed from the surface between 600 and 700 K.

  16. The Surface Reactions of Ethanol over UO2(100) Thin Film

    KAUST Repository

    Senanayake, Sanjaya D.; Mudiyanselage, Kumudu; Burrell, Anthony K; Sadowski, Jerzy T.; Idriss, Hicham

    2015-01-01

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH3CH2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C1s, O1s and U4f to investigate the bonding mode, surface composition, electronic structure and probable chemical changes to the stoichiometric-UO2(100) [smooth-UO2(100)] and Ar+-sputtered UO2(100) [rough-UO2(100)] surfaces. Unlike UO2(111) single crystal and UO2 thin film, Ar-ion sputtering of this UO2(100) did not result in noticeable reduction of U cations. The ethanol molecule has C-C, C-H, C-O and O-H bonds, and readily donates the hydroxyl H while interacting strongly with the UO2 surfaces. Upon ethanol adsorption (saturation occurred at 0.5 ML), only ethoxy (CH3CH2O-) species is formed on smooth-UO2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO-) on the Ar+-sputtered UO2(100) surface. All ethoxy and acetate species are removed from the surface between 600 and 700 K.

  17. Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode

    Science.gov (United States)

    Yu, Yanhao; Zhang, Zheng; Yin, Xin; Kvit, Alexander; Liao, Qingliang; Kang, Zhuo; Yan, Xiaoqin; Zhang, Yue; Wang, Xudong

    2017-06-01

    Black silicon (b-Si) is a surface-nanostructured Si with extremely efficient light absorption capability and is therefore of interest for solar energy conversion. However, intense charge recombination and low electrochemical stability limit the use of b-Si in photoelectrochemical solar-fuel production. Here we report that a conformal, ultrathin, amorphous TiO2 film deposited by low-temperature atomic layer deposition (ALD) on top of b-Si can simultaneously address both of these issues. Combined with a Co(OH)2 thin film as the oxygen evolution catalyst, this b-Si/TiO2/Co(OH)2 heterostructured photoanode was able to produce a saturated photocurrent density of 32.3 mA cm-2 at an external potential of 1.48 V versus reversible reference electrode (RHE) in 1 M NaOH electrolyte. The enhanced photocurrent relative to planar Si and unprotected b-Si photoelectrodes was attributed to the enhanced charge separation efficiency as a result of the effective passivation of defective sites on the b-Si surface. The 8-nm ALD TiO2 layer extends the operational lifetime of b-Si from less than half an hour to four hours.

  18. Fabrication of a Cu{sub 2}O/Au/TiO{sub 2} composite film for efficient photocatalytic hydrogen production from aqueous solution of methanol and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xi; Dong, Haitai; Hu, Zhe; Qi, Zhong; Li, Laisheng, E-mail: llsh@scnu.edu.cn

    2017-05-15

    Highlights: • A Cu{sub 2}O/Au/TiO{sub 2} film was synthesized successfully. • Hydrogen production of Cu{sub 2}O/Au/TiO{sub 2} film improved significantly. • The highest hydrogen production rate of the film was 125.3 mmol/h/m{sup 2}. • A Z-scheme charge transfer pathway was proposed. - Abstract: A novel Cu{sub 2}O/Au/TiO{sub 2} photocatalyst composite film was fabricated on a copper substrate for photocatalytic hydrogen production. The composite films, Cu{sub 2}O/Au/TiO{sub 2}, were stepwise synthesized by using electrochemical deposition, photodeposition, and coating methods. First, a Cu{sub 2}O film was synthesized using the electrochemical deposition method, after which Au was deposited onto the Cu{sub 2}O film through in-site photodeposition. Finally, TiO{sub 2} was coated on the surface of the Cu{sub 2}O/Au film. Its morphology and surface chemical composition was characterized by SEM, TEM, XRD and XPS. The optical characteristics (UV–Vis DRS, PL spectrum) of the films were also examined. The photocatalytic hydrogen production rate of the Cu{sub 2}O/Au/TiO{sub 2} composite film from a 20% vol. methanol solution increased to125.3 mmol/h/m{sup 2} under 300 W xenon lamp light irradiation. Compared to the TiO{sub 2} (13.5 mmol/h/m{sup 2}) film and Cu{sub 2}O/TiO{sub 2} film (83.2 mmol/h/m{sup 2}), the Cu{sub 2}O/Au/TiO{sub 2} film showed excellent photocatalytic performance for hydrogen generation. The Cu{sub 2}O/Au/TiO{sub 2} film has highly effective photocatalytic properties, which are attributed to the Z-scheme system and can not only enhance the absorption of solar light but also suppress the recombination of photogenerated electron-hole pairs. It is worth noting that by introducing Au into the interface of Cu{sub 2}O/TiO{sub 2}, the surface plasmon resonance (SPR)-induced local electric field formed at the Au site induces a Z-scheme charge transfer pathway inside the composite film (Cu{sub 2}O/Au/TiO{sub 2}), which promotes both the charge of the

  19. Self-assembled monolayers and chemical derivatization of Ba0.5Sr0.5TiO3 thin films: Applications in phase shifter devices

    International Nuclear Information System (INIS)

    Morales-Cruz, Angel L.; Van Keuls, Fred W.; Miranda, Felix A.; Cabrera, Carlos R.

    2005-01-01

    Thin films of barium strontium titanate (Ba 1-x Sr x TiO 3 (BSTO)) have been used in coupled microstrip phase shifters (CMPS) for possible insertion in satellite and wireless communication platforms primarily because of their high dielectric constant, low loss, large tunability, and good structural stability. In an attempt to improve the figure of merit K (phase shift deg /dB of loss) of phase shifters, modification of the metal/BSTO interface of these devices has been done through surface modification of the BSTO layer using a self-assembled monolayer approach. The impact of this nanotechnology promises to reduce RF losses by improving the quality of the metal/BSTO interface. In this study, compounds such as 3-mercaptopropyltrimethoxysilane (MPS), 16-mercaptohexadecanois acid (MHDA) and 3-mercaptopropionic acid (MPA) were used to form the self-assembled monolayers on the BSTO surface. As a result of the previous modification, chemical derivatization of the self-assembled monolayers was done in order to increase the chain length. Chemical derivatization was done using 3-aminopropyltrimethoxysilane (APS) and 16-mercaptohexadecanoic acid. Surface chemical analysis was done to reveal the composition of the derivatization via X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (FT-IR). Low and high frequencies measurements of phase shifters were done in order measure the performance of these devices for insertion in antennas. X-ray photoelectron spectroscopy characterization of modified BSTO thin films with MPS showed a binding energy peak at 162.9 eV, indicative of a possible S-O interaction: sulfur of the mercapto compound, MPS, used to modify the surface with the oxygen site of the BSTO thin film. This interaction is at higher binding energies compared with the thiolate interaction. This behavior is observed with the other mercapto compounds such as: MHDA and MPA. An FT-IR analysis present a band at 780 cm -1 , which is characteristic of an O

  20. Hydroxyl and molecular H2O diffusivity in a haploandesitic melt

    Science.gov (United States)

    Ni, Huaiwei; Xu, Zhengjiu; Zhang, Youxue

    2013-02-01

    H2O diffusion in a haploandesitic melt (a high-silica and Fe-free andesitic melt, NBO/T = 0.173) has been investigated at 1 GPa in a piston-cylinder apparatus. We adopted a double diffusion couple technique, in which one couple was composed of a nominally anhydrous glass with 0.01 wt.% H2O and a hydrous glass with 5.7 wt.% H2O, and the other contained the same nominally anhydrous glass and a hydrous glass with 3.3 wt.% H2O. Both couples were annealed in a single experimental run and hence experienced exactly the same P-T history, which is crucial for constraining the dependence of H2O diffusivity on water content. H2O concentration profiles were measured by both Fourier transform infrared (FTIR) microspectroscopy and confocal Raman microspectroscopy. Nearly identical profiles were obtained from Raman and FTIR methods for profile length >1 mm (produced at 1619-1842 K). By contrast, for profile lengths <100 μm (produced at 668-768 K), FTIR profiles show marked convolution effects compared to Raman profiles. A comparison between the short FTIR and Raman profiles indicates that the real spatial resolution (FWHM) of FTIR analyses is about 28 μm for a 7 μm wide aperture on ˜200 μm thick glasses. While the short profiles are not reliable for quantitative modeling, the long diffusion profiles at superliquidus temperatures can be fit reasonably well by a diffusivity model previously developed for felsic melts, in which molecular H2O (H2Om) is the only diffusive species and its diffusivity (D) increases exponentially with the content of total water (H2Ot). However, there is noticeable misfit of the data at low H2Ot concentrations, suggesting that OH diffusivity (DOH) cannot be neglected in this andesitic melt at high temperatures and low water contents. We hence develop a new fitting procedure that simultaneously fits both diffusion profiles from a single experimental run and accounts for the roles of both OH and H2Om diffusion. With this procedure, DOH/D is constrained

  1. pH sensing in aqueous solutions using a MnO2 thin film electrodeposited on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Cherchour, N.; Deslouis, C.; Messaoudi, B.; Pailleret, A.

    2011-01-01

    An electrolysis technique at a constant potential was used to develop a highly reproducible and fast elaboration method of adherent manganese dioxide thin films on a glassy carbon electrode from aqueous solutions containing sulfuric acid and manganese sulfate. The resulting films were found to have a nanostructured character presumably due rather to birnessite (δ-MnO 2 ) than to γ-MnO 2 , as suggested by their Raman and XRD signatures. They lead to modified electrodes that present an obvious although complex pH dependent potentiometric response. This sensor indeed showed a single slope non-Nernstian linear behaviour over the 1.5-12 pH range for increasing pH direction ('trace'), whereas a Nernstian two slopes linear behaviour was observed for decreasing pH direction ('re-trace'). Preliminary EIS experiments carried out at a pH value of 1.8 seem to reveal a sensitivity mechanism based on proton insertion process at least at highly acidic pH values.

  2. H2O sources in regions of star formation

    International Nuclear Information System (INIS)

    Lo, K.Y.; Burke, B.F.; Haschick, A.D.

    1975-01-01

    Regions and objects believed to be in early stages of stellar formation have been searched for H 2 O 22-GHz line emission with the Haystack 120-foot (37 m) telescope. The objects include radio condensations, infrared objects in H ii regions, and Herbig-Haro objects. Nine new H 2 O sources were detected in the vicinity of such objects, including the Sharpless H ii regions S152, S235, S255, S269, G45.1+0.1, G45.5+0.1, AFCRL infrared object No. 809--2992, and Herbig-Haro objects 1 and 9. The new H 2 O sources detected in H ii regions are associated, but not coincident, with the the radio condensations. Water vapor line emission was detected in approx.25 percent of the regions searched. The association of H 2 O sources with regions of star formation is taken to be real. The spatial relationship of H 2 O sources to infrared objects, radio condensations, class I OH sources, and molecular clouds are discussed. The suggestion is made that an H 2 O source may be excited by a highly obscured star of extreme youth

  3. Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes

    International Nuclear Information System (INIS)

    Ramadoss, Ananthakumar; Kim, Sang Jae

    2014-01-01

    Graphical abstract: - Highlights: • TiO 2 /Co(OH) 2 hierarchical nanostructure was prepared by a combination of hydrothermal and cathodic electrodeposition method. • Hierarchical nanostructure electrode exhibited a maximum capacitance of 274.3 mF cm −2 at a scan rate of 5 mV s −1 . • Combination of Co(OH) 2 nanowall with TiO 2 NR into a single system enhanced the electrochemical behavior of supercapacitor electrode. - Abstract: We report novel hierarchical TiO 2 nanorod (NR)/porous Co(OH) 2 nanowall array electrodes for high-performance supercapacitors fabricated using a two-step process that involves hydrothermal and electrodeposition techniques. Field-emission scanning electron microscope images reveal a bilayer structure consisting of TiO 2 NR arrays with porous Co(OH) 2 nanowalls. Compared with the bare TiO 2 NRs, the hierarchical TiO 2 NRs/Co(OH) 2 electrodes showed improved pseudocapacitive performance in a 2-M KOH electrolyte solution, exhibiting an areal specific capacitance of 274.3 mF cm −2 at a scan rate of 5 mV s −1 . The electrodes exhibited good stability, retaining 82.5% of the initial capacitance after 4000 cycles. The good pseudocapacitive performance of the hierarchical nanostructures is mainly due to the porous structure, which provides fast ion and electron transfer, a large surface area, short ion diffusion paths, and a favourable volume change during the cycling process

  4. Ni2Sr(PO42·2H2O

    Directory of Open Access Journals (Sweden)

    Lahcen El Ammari

    2010-12-01

    Full Text Available The title compound, dinickel(II strontium bis[orthophosphate(V] dihydrate, was obtained under hydrothermal conditions. The crystal structure consists of linear chains ∞1[NiO2/2(OH22/2O2/1] of edge-sharing NiO6 octahedra (overline{1} symmetry running parallel to [010]. Adjacent chains are linked to each other through PO4 tetrahedra (m symmetry and arranged in such a way to build layers parallel to (001. The three-dimensional framework is accomplished by stacking of adjacent layers that are held together by SrO8 polyhedra (2/m symmetry. Two types of O—H...O hydrogen bonds involving the water molecule are present, viz. one very strong hydrogen bond perpendicular to the layers and weak trifurcated hydrogen bonds parallel to the layers.

  5. Direct Synthesis of H{sub 2}O{sub 2} over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H{sub 2}O{sub 2}-ODS of Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Hu, Shaozheng [Northeast Forestry Univ., Harbin (China); Liu, Guangliang [Univ. of Connecticut, Storrs (United States); Chen, Ping; Zhao, Zhixi [Xinjiang Normal Univ., Urumqi (China)

    2013-10-15

    Direct synthesis of H{sub 2}O{sub 2} and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active Au{sup 0} species for H{sub 2}O{sub 2} synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in H{sub 2}O{sub 2} synthesis as CH{sub 3}OH/H{sub 2}O ratio of solvent changed. H{sub 2}O{sub 2} decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of O{sub 2}/H{sub 2} ratio on H{sub 2}O{sub 2} concentration, H{sub 2} conversion and H{sub 2}O{sub 2} selectivity revealed a relationship between H{sub 2}O{sub 2} generation and H2 consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of O{sub 2}/H{sub 2} ratio and 60 .deg. C. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, H{sub 2} conversion and oxidative desulfurization selectivity of H{sub 2} were presented.

  6. The Importance of Surface IrOx in Stabilizing RuO2 for Oxygen Evolution

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Pedersen, Anders Filsøe; Paoli, Elisa Antares

    2018-01-01

    consisting of RuO2 thin films with sub-monolayer (1, 2 and 4 Å) amounts of IrOx deposited on top. Operando extended X-ray absorption fine structure (EXAFS) on the Ir L-3 edge revealed a rutile type IrO2 structure with some Ir sites occupied by Ru, IrOx being at the surface of the RuO2 thin film. We monitor...... corrosion on IrOx/RuO2 thin films by combining electrochemical quartz crystal microbalance (EQCM) with inductively coupled mass spectrometry (ICP-MS). We elucidate the importance of sub-monolayer surface IrOx in minimizing Ru dissolution. Our work shows that we can tune the surface properties of active OER...

  7. Facile synthesis of morphology-controlled Co3O4 nanostructures through solvothermal method with enhanced catalytic activity for H2O2 electroreduction

    Science.gov (United States)

    Cheng, Kui; Cao, Dianxue; Yang, Fan; Xu, Yang; Sun, Gaohui; Ye, Ke; Yin, Jinling; Wang, Guiling

    2014-05-01

    Hydrogen peroxide (H2O2) replaced oxygen (O2) as oxidant has been widely investigated due to its faster reduction kinetics, easier storage and handling than gaseous oxygen. The main challenge of using H2O2 as oxidant is the chemical decomposition. In this article, by using different C2H5OH/H2O volume ratio as the solvent, Co3O4 with different morphologies (nanosheet, nanowire, ultrafine nanowire net, nanobelts, and honeycomb-like) direct growth on Ni foam are synthesized via a simple solvothermal method for the first time. Results show that the introduction of ethanol could obviously improve the catalytic performance toward H2O2 electroreduction. The sample prepared in the solution with the C2H5OH/H2O volume ratio of 1:2 shows the best catalytic performance among the five samples and a current density of 0.214 A cm-2 is observed in 3.0 mol L-1 KOH + 0.5 mol L-1 H2O2 at -0.4 V (vs. Ag/AgCl KCl), which is much larger than that on the other metal oxides reported previously, almost comparable with the precious metals. This electrode of Co3O4 directly grown on Ni foam has superior mass transport property, which combining with its low-cost and facile preparation, make it a promising electrode for fuel cell using H2O2 as the oxidant.

  8. Mesoporous Co{sub 3}O{sub 4} and CoO rate at C topotactically transformed from chrysanthemum-like Co(CO{sub 3}){sub 0.5}(OH).0.11H{sub 2}O and their lithium-storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shenglin; Zeng, Hua Chun [Department of Chemical and Biomolecular Engineering, KAUST-NUS GCR Program, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore (Singapore); Chen, Jun Song; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore (Singapore)

    2012-02-22

    In this work, a novel hydrothermal route is developed to synthesize cobalt carbonate hydroxide, Co(CO{sub 3}){sub 0.5}(OH).0.11H{sub 2}O. In this method, sodium chloride salt is utilized to organize single-crystalline nanowires into a chrysanthemum-like hierarchical assembly. The morphological evolution process of this organized product is investigated by examining different reaction intermediates during the synthesis. The growth and thus the final assembly of the Co(CO{sub 3}){sub 0.5}(OH).0.11H{sub 2}O can be finely tuned by selecting preparative parameters, such as the molar ratio of the starting chemicals, the additives, the reaction time and the temperature. Using the flower-like Co(CO{sub 3}){sub 0.5}(OH).0.11H{sub 2}O as a solid precursor, quasi-single-crystalline mesoporous Co{sub 3}O{sub 4} nanowire arrays are prepared via thermal decomposition in air. Furthermore, carbon can be added onto the spinel oxide by a chemical-vapor-deposition method using acetylene, which leads to the generation of carbon-sheathed CoO nanowire arrays (CoO rate at C). Through comparing and analyzing the crystal structures, the resultant products and their high crystallinity can be explained by a sequential topotactic transformation of the respective precursors. The electrochemical performances of the typical cobalt oxide products are also evaluated. It is demonstrated that tuning of the surface texture and the pore size of the Co{sub 3}O{sub 4} products is very important in lithium-ion-battery applications. The carbon-decorated CoO nanowire arrays exhibit an excellent cyclic performance with nearly 100% capacity retention in a testing range of 70 cycles. Therefore, this CoO rate at C nanocomposite can be considered to be an attractive candidate as an anode material for further investigation. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. UV photolysis of 4-iodo-, 4-bromo-, and 4-chlorophenol: competition between C-Y (Y = halogen) and O-H bond fission.

    Science.gov (United States)

    Sage, Alan G; Oliver, Thomas A A; King, Graeme A; Murdock, Daniel; Harvey, Jeremy N; Ashfold, Michael N R

    2013-04-28

    The wavelength dependences of C-Y and O-H bond fission following ultraviolet photoexcitation of 4-halophenols (4-YPhOH) have been investigated using a combination of velocity map imaging, H Rydberg atom photofragment translational spectroscopy, and high level spin-orbit resolved electronic structure calculations, revealing a systematic evolution in fragmentation behaviour across the series Y = I, Br, Cl (and F). All undergo O-H bond fission following excitation at wavelengths λ ≲ 240 nm, on repulsive ((n∕π)σ∗) potential energy surfaces (PESs), yielding fast H atoms with mean kinetic energies ∼11,000 cm(-1). For Y = I and Br, this process occurs in competition with prompt C-I and C-Br bond cleavage on another (n∕π)σ∗ PES, but no Cl∕Cl∗ products unambiguously attributable to one photon induced C-Cl bond fission are observed from 4-ClPhOH. Differences in fragmentation behaviour at longer excitation wavelengths are more marked. Prompt C-I bond fission is observed following excitation of 4-IPhOH at all λ ≤ 330 nm; the wavelength dependent trends in I∕I∗ product branching ratio, kinetic energy release, and recoil anisotropy suggest that (with regard to C-I bond fission) 4-IPhOH behaves like a mildly perturbed iodobenzene. Br atoms are observed when exciting 4-BrPhOH at long wavelengths also, but their velocity distributions suggest that dissociation occurs after internal conversion to the ground state. O-H bond fission, by tunnelling (as in phenol), is observed only in the cases of 4-FPhOH and, more weakly, 4-ClPhOH. These observed differences in behaviour can be understood given due recognition of (i) the differences in the vertical excitation energies of the C-Y centred (n∕π)σ∗ potentials across the series Y = I bond strength, cf. that of the rival O-H bond, and (ii) the much increased spin-orbit coupling in, particularly, 4-IPhOH. The present results provide (another) reminder of the risks inherent in extrapolating photochemical

  10. Surface Defect Passivation and Reaction of c-Si in H2S.

    Science.gov (United States)

    Liu, Hsiang-Yu; Das, Ujjwal K; Birkmire, Robert W

    2017-12-26

    A unique passivation process of Si surface dangling bonds through reaction with hydrogen sulfide (H 2 S) is demonstrated in this paper. A high-level passivation quality with an effective minority carrier lifetime (τ eff ) of >2000 μs corresponding to a surface recombination velocity of passivation by monolayer coverage of S on the Si surface. However, S passivation of the Si surface is highly unstable because of thermodynamically favorable reaction with atmospheric H 2 O and O 2 . This instability can be eliminated by capping the S-passivated Si surface with a protective thin film such as low-temperature-deposited amorphous silicon nitride.

  11. Origin of the OH vibrational blue shift in the LiOH crystal.

    Science.gov (United States)

    Hermansson, Kersti; Gajewski, Grzegorz; Mitev, Pavlin D

    2008-12-25

    The O-H vibrational frequency in crystalline hydroxides is either upshifted or downshifted by its crystalline surroundings. In the LiOH crystal, the experimental gas-to-solid O-H frequency upshift ("blue shift") is approximately +115 cm(-1). Here plane-wave DFT calculations for the isotope-isolated LiOH crystal have been performed and we discuss the origin of the OH frequency upshift, and the nature of the OH group and the interlayer interactions. We find that (1) the vibrational frequency upshift originates from interactions within the LiOH layer; this OH upshift is slightly lessened by the interlayer interactions; (2) the interlayer O-H - - - H-O interaction is largely electrostatic in character (but there is no hydrogen bonding); (3) the gas-to-solid vibrational shift for OH in LiOH(s) and its subsystems qualitatively adheres to a parabola-like "frequency vs electric field strength" correlation curve, which has a maximum for a positive electric field, akin to the correlation curve earlier found in the literature for an isolated OH(-) ion in an electric field.

  12. Coronary risk factors and myocardial blood flow in patients evaluated for coronary artery disease: a quantitative [15O]H2O PET/CT study

    International Nuclear Information System (INIS)

    Danad, Ibrahim; Appelman, Yolande E.; Haan, Stefan de; Allaart, Cornelis P.; Rossum, Albert C. van; Knaapen, Paul; Raijmakers, Pieter G.; Harms, Hendrik J.; Hoekstra, Otto S.; Lammertsma, Adriaan A.; Lubberink, Mark; Oever, Mijntje L.P. van den; Kuijk, Cornelis van

    2012-01-01

    There has been increasing interest in quantitative myocardial blood flow (MBF) imaging over the last years and it is expected to become a routinely used technique in clinical practice. Positron emission tomography (PET) using [ 15 O]H 2 O is the established gold standard for quantification of MBF in vivo. A fundamental issue when performing quantitative MBF imaging is to define the limits of MBF in a clinically suitable population. The aims of the present study were to determine the limits of MBF and to determine the relationship among coronary artery disease (CAD) risk factors, gender and MBF in a predominantly symptomatic patient cohort without significant CAD. A total of 128 patients (mean age 54 ± 10 years, 50 men) with a low to intermediate pretest likelihood of CAD were referred for noninvasive evaluation of CAD using a hybrid PET/computed tomography (PET/CT) scanner. MBF was quantified with [ 15 O]H 2 O at rest and during adenosine-induced hyperaemia. Obstructive CAD was excluded in these patients by means of invasive or CT-based coronary angiography. Global average baseline MBF values were 0.91 ± 0.34 and 1.09 ± 0.30 ml.min -1 .g -1 (range 0.54-2.35 and 0.59-2.75 ml.min -1 .g -1 ) in men and women, respectively (p -1 .g -1 in men and women, respectively; p = 0.08). Global average hyperaemic MBF values were 3.44 ± 1.20 ml.min -1 .g -1 in the whole study population, and 2.90 ± 0.85 and 3.78 ± 1.27 ml.min -1 .g -1 (range 1.52-5.22 and 1.72-8.15 ml.min -1 .g -1 ) in men and women, respectively (p < 0.001). Multivariate analysis identified male gender, age and body mass index as having an independently negative impact on hyperaemic MBF. Gender, age and body mass index substantially influence reference values and should be corrected for when interpreting hyperaemic MBF values. (orig.)

  13. Keggin type polyoxometalate H4[αSiW12O40].nH2O as intercalant for hydrotalcite

    Directory of Open Access Journals (Sweden)

    Neza Rahayu Palapa

    2017-06-01

    Full Text Available The synthesis of hydrotalcite and polyoxometalate H4[αSiW12O40].nH2O with the ratio (2:1, (1:1, (1:2 and (1:3 has been done. The product of intercalation was characterized using FT-IR spectrophotometer, XRD, and TG-DTA. Polyoxometalate H4[αSiW12O40].nH2O intercalated layered double hydroxide was optimised to use as adsorbent Congo red dye. Characterization using FT-IR was not showing the optimal insertion process. The result using XRD characterization was showed successful of polyoxometalate H4[αSiW12O40].nH2O inserted layered double hydroxide with a ratio (1:1 which the basal spacing was expanded from 7,8 Ȧ to 9,81 Ȧ. Furthermore, the thermal analysis was performed using TG-DTA. The result show that the decomposition of polyoxometalate H4[αSiW12O40].nH2O intercalated  hydrotalcite with ratio (1:1 was occured at 80oC to 400oC with a loss of OH in the layer at 150oC to 220oC, and then the decomposition of the compound polyoxometalate H4[αSiW12O40].nH2O at 350oC to 420oC. Keywords: Hydrotalcite, Layered Double Hydroxide, Polyoxometalate, Intercalation

  14. Structural and electronic properties of polar MnO ultrathin film grown on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Asish K., E-mail: asish.kundu@saha.ac.in; Menon, Krishnakumar S. R. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 70064 (India)

    2016-05-23

    Surface electronic structure of ultrathin polar MnO film was studied by Low-energy Electron Diffraction (LEED) and Photoemission Spectroscopic (PES) techniques. Epitaxial monolayer to facet formation with increasing film thickness has been observed by LEED. Our LEED result shows p(2x2) surface reconstruction along with facet formation, stabilize the polar MnO(111) surface. The core levels and the valence band electronic structure of MnO films have been studied as a function of film thickness using X-ray and ultraviolet photoelectron spectroscopy techniques.

  15. PHOTO-ELECTROCHEMICAL QUANTUM EFFICIENCY OF TiO2 THIN FILMS : EFFECT OF CRISTAL STRUCTURE, PLASMA HYDROGENATION AND SURFACE PHOTOETCHING

    Directory of Open Access Journals (Sweden)

    E TEYAR

    2007-12-01

    a proportion 1 to 9. The cyclic voltametry and the impedance spectroscopy showed that the incorporation of hydrogen by plasma in TiO2 films decreases  photoelectrochemical quantum efficiency in NaOH electrolyte and increases the doping concentration. The photoelectrochemical quantum efficiency in NaOH electrolyte of photoetched films in H2SO4 at full UV light increased two times greater than of non photoetched one (26.7% versus 14%.

  16. Infrared spectroscopy of self-assembled monolayer films on silicon

    Science.gov (United States)

    Rowell, N. L.; Tay, Lilin; Boukherroub, R.; Lockwood, D. J.

    2007-07-01

    Infrared vibrational spectroscopy in an attenuated total reflection (ATR) geometry has been employed to investigate the presence of organic thin layers on Si-wafer surfaces. The phenomena have been simulated to show there can be a field enhancement with the presented single-reflection ATR (SR-ATR) approach which is substantially larger than for conventional ATR or specular reflection. In SR-ATR, a discontinuity of the field normal to the film contributes a field enhancement in the lower index thin film causing a two order of magnitude increase in sensitivity. SR-ATR was employed to characterize a single monolayer of undecylenic acid self-assembled on Si(1 1 1) and to investigate a two monolayer system obtained by adding a monolayer of bovine serum albumin protein.

  17. Photocatalytic properties of nano-structured TiO2-carbon films obtained by means of electrophoretic deposition

    International Nuclear Information System (INIS)

    Peralta-Hernandez, J.M.; Manriquez, J.; Meas-Vong, Y.; Rodriguez, Francisco J.; Chapman, Thomas W.; Maldonado, Manuel I.; Godinez, Luis A.

    2007-01-01

    Recent studies have shown that the light-absorption and photocatalytic efficiencies of TiO 2 can be improved by coupling TiO 2 nano-particles with nonmetallic dopants, such as carbon. In this paper, we describe the electrophoretic preparation of a novel TiO 2 -carbon nano-composite photocatalyst on a glass indium thin oxide (ITO) substrate. The objective is to take better advantage of the (e - /h + ) pair generated by photoexcitation of semiconducting TiO 2 particles. The transfer of electrons (e - ) into adjacent carbon nano-particles promotes reduction of oxygen to produce hydrogen peroxide (H 2 O 2 ) which, in the presence of iron ions, can subsequently form hydroxyl radicals ( · OH) via the Fenton reaction. At the same time, · OH is formed from water by the (h + ) holes in the TiO 2 . Thus, the · OH oxidant is produced by two routes. The efficiency of this photolytic-Fenton process was tested with a model organic compound, Orange-II (OG-II) azo dye, which is employed in the textile industry

  18. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix

    International Nuclear Information System (INIS)

    Zhang, Ai; Li, Yongmei

    2014-01-01

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using ultraviolet light (UV), hydrogen peroxide (H 2 O 2 ), and the combined UV/H 2 O 2 processes. Effects of initial EDC concentration, H 2 O 2 dosage, and pH value were investigated. Particularly, the effects of 11 metal ions and humic acid (HA) contained in a sludge matrix on EDC degradation were evaluated. A pseudo-first-order kinetic model was used to describe the EDC degradation during UV, H 2 O 2 , and UV/H 2 O 2 treatments of WAS. The results showed that the degradation of the 6 EDCs during all the three oxidation processes fitted well with pseudo-first-order kinetics. Compared with the sole UV irradiation or H 2 O 2 oxidation process, UV/H 2 O 2 treatment was much more effective for both EDC degradation and WAS solubilization. Under their optimal conditions, the EDC degradation rate constants during UV/H 2 O 2 oxidation were 45–197 times greater than those during UV irradiation and 11–53 times greater than those during H 2 O 2 oxidation. High dosage of H 2 O 2 and low pH were favorable for the degradation of EDCs. Under the conditions of pH = 3, UV wavelength = 253.7 nm, UV fluence rate = 0.069 mW cm −2 , and H 2 O 2 dosage = 0.5 mol L −1 , the removal efficiencies of E1, E2, EE2, E3, BPA, and NP in 2 min were 97%, 92%, 95%, 94%, 89%, and 67%, respectively. The hydroxyl radical (·OH) was proved to take the most important role for the removal of EDCs. Metal ions in sludge could facilitate the removal of EDCs during UV/H 2 O 2 oxidation. Fe, Ag, and Cu ions had more obvious effects compared with other metal ions. The overall role of HA was dependent on the balance between its competition as organics and its catalysis/photosensitization effects. These indicate that the sludge matrix plays an important role in the degradation of EDCs. - Highlights:

  19. Spectral Sensitization of TiO2 Substrates by Monolayers of Porphyrin Heterodimers

    NARCIS (Netherlands)

    Koehorst, R.B.M.; Boschloo, G.K.; Savenije, T.J.; Goossens, A.; Schaafsma, T.J.

    2000-01-01

    Photoelectrochemical cells have been constructed by depositing monolayers of oriented covalently linked zinc/free base porphyrin heterodimers onto ~30 nm nonporous layers of TiO2 on ITO, deposited by metal-organic chemical vapor deposition (MO-CVD), and onto ~100 nm porous, nanostructured TiO2

  20. Warm H2O and OH Disk Emission in V1331 Cyg

    Science.gov (United States)

    Doppmann, Greg W.; Najita, Joan R.; Carr, John S.; Graham, James R.

    2011-09-01

    We present high-resolution (R = 24, 000) L-band spectra of the young intermediate-mass star V1331 Cyg obtained with NIRSPEC on the Keck II telescope. The spectra show strong, rich emission from water and OH that likely arises from the warm surface region of the circumstellar disk. We explore the use of the new BT2 water line list in fitting the spectra, and we find that it does a much better job than the well-known HITRAN water line list in the observed wavelength range and for the warm temperatures probed by our data. By comparing the observed spectra with synthetic disk emission models, we find that the water and OH emission lines have similar widths (FWHM ~= 18 km s-1). If the line widths are set by disk rotation, the OH and water emission lines probe a similar range of disk radii in this source. The water and OH emission are consistent with thermal emission for both components at a temperature ~1500 K. The column densities of the emitting water and OH are large, ~1021 cm-2 and ~1020 cm-2, respectively. Such a high column density of water is more than adequate to shield the disk midplane from external UV irradiation in the event of complete dust settling out of the disk atmosphere, enabling chemical synthesis to continue in the midplane despite a harsh external UV environment. The large OH-to-water ratio is similar to expectations for UV irradiated disks, although the large OH column density is less easily accounted for. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. Chemical Vapor Transport Deposition of Molybdenum Disulfide Layers Using H2O Vapor as the Transport Agent

    Directory of Open Access Journals (Sweden)

    Shichao Zhao

    2018-02-01

    Full Text Available Molybdenum disulfide (MoS2 layers show excellent optical and electrical properties and have many potential applications. However, the growth of high-quality MoS2 layers is a major bottleneck in the development of MoS2-based devices. In this paper, we report a chemical vapor transport deposition method to investigate the growth behavior of monolayer/multi-layer MoS2 using water (H2O as the transport agent. It was shown that the introduction of H2O vapor promoted the growth of MoS2 by increasing the nucleation density and continuous monolayer growth. Moreover, the growth mechanism is discussed.

  2. Sensing mechanism of SnO2/ZnO nanofibers for CH3OH sensors: heterojunction effects

    International Nuclear Information System (INIS)

    Tang, Wei

    2017-01-01

    SnO 2 /ZnO composite nanofibers were synthesized by a simple electrospinning method. The prepared SnO 2 /ZnO gas sensors exhibited good linear and high response to methanol. The enhanced sensing behavior of SnO 2 /ZnO might be associated with the homotypic heterojunction effects formed in n -SnO 2 / n -ZnO nanograins boundaries. In addition, the possible sensing mechanisms of methanol on SnO 2 /ZnO surface were investigated by density functional theory in order to make the methanol adsorption and desorption process clear. Zn doped SnO 2 model was adopted to approximate the SnO 2 /ZnO structure because of the calculation power limitations. Calculation results showed that when exposed to methanol, the methanol would react with bridge oxygen O 2c , planar O 3c and pre adsorbed oxygen vacancy on the lattice surface. The –CH 3 and –OH of methanol molecule would both lose one H atom. The lost H atoms bonded with oxygen at the adsorption sites. The final products were HCHO and H 2 O. Electrons were transferred from methanol to the lattice surface to reduce the resistance of semiconductor gas sensitive materials, which is in agreement with the experimental phenomena. More adsorption models of other interfering gases, such as ethanol, formaldehyde and acetone will be built and calculated to explain the selectivity issue from the perspective of adsorption energy, transferred charge and density of states in the future work. (paper)

  3. Rhodium(II-Catalysed Intramolecular O-H Insertion of a-Diazo-g-Azido-d-Hydroxy-b-Ketoesters: Evidence for a Novel Sigmatropic Rearrangement of an Allylic Azide Intermediate

    Directory of Open Access Journals (Sweden)

    Padwa Albert

    1999-01-01

    Full Text Available The Rh2(OAc4 catalyzed intramolecular O-H insertion reaction of delta-hydroxy-alpha-diazoesters affords 3(2H-furanone-2-carboxylates in good yield but with moderate selectivity (d.e. ca 60%. The initially formed 2,5-substituted cis-furanones were found to epimerize to the corresponding 2,5-trans isomers when subjected to silica gel chromatography. The Rh2(OAc4 catalyzed decomposition of gamma-azido-delta-hydroxy-alpha-diazoesters also furnished 3(2H-furanone-2-carboxylates. These compounds are derived by a sequential O-H insertion reaction followed by a concerted [3,3]-sigmatropic shift of the allylic azide intermediate.

  4. Preparation and Characterization of Epitaxial VO2 Films on Sapphire Using Postepitaxial Topotaxy Route via Epitaxial V2O3 Films

    Science.gov (United States)

    Yamaguchi, Iwao; Manabe, Takaaki; Tsuchiya, Tetsuo; Nakajima, Tomohiko; Sohma, Mitsugu; Kumagai, Toshiya

    2008-02-01

    Epitaxial VO2 films were prepared on the C-planes of α-Al2O3 substrates by a metal organic deposition (MOD) process. It was difficult to obtain the single phase of (010)M-oriented VO2 films, in which the subscript M refers to the monoclinic indices, by the heat treatment of amorphous precursor films in the VO2-stable region after the pyrolysis of the coating solution. The product films consisted of discontinuous circular grains of 1-2 µm size on the substrate surface. Therefore, we prepared the (010)M-oriented epitaxial VO2 films using postepitaxial topotaxy (PET), that is, topotactic oxidation of (0001)-oriented epitaxial V2O3 films. First, epitaxial V2O3(0001) films were obtained by MOD starting with a vanadium naphthenate solution. Second, the epitaxial V2O3(0001) films were topotactically oxidized at 500 °C in an Ar-O2 gas mixture with pO2 = 10-4 atm to obtain (010)M-oriented epitaxial VO2 films. The epitaxial relationships were VO2(010)M ∥ α-Al2O3(0001) and VO2[100]M ∥ α-Al2O3[0110], [1010], [1100]. The VO2(010)M films exhibited metal-semiconductor transitions with hysteresis loops at 60-80 °C. The resistivity change before and after the transition of the VO2(010)M film oxidized for 6 h was three orders of magnitude.

  5. Enhanced tribology durability of a self-assembled monolayer of alkylphosphonic acid on a textured copper substrate

    International Nuclear Information System (INIS)

    Wan Yong; Wang Yinhu; Zhang Quan; Wang Zhongqian; Xu Zhen; Liu Changsong; Zhang Junyan

    2012-01-01

    Highlights: ► A textured surface is prepared on the copper substrate by chemical etching. ► The alkylphosphonic acid is assembled on the etched copper substrate. ► Combining texturing and alkylphosphonic acid coating render the films hydrophobicity. ► The dual-layer films possess low friction with extremely long duration. - Abstract: A simple two-step process was developed to render the copper surface with lower friction and long durability. The copper substrate was immersed in a 0.01 M NaOH solution to fabricate a textured Cu 2 O film. A self-assembled monolayer of alkylphosphonic acid was then deposited on the Cu 2 O film to acquire high hydrophobicity. Scanning electron microscopy, Fourier transform infrared microscopy and water contact angle measurements were used to analyze the morphological features, the chemical composition and hydrophobicity of freshly prepared samples, respectively. Moreover, the friction-reducing behavior of the organic-inorganic composite film sliding against steel was evaluated in a ball-on-plate configuration. It was found that the alkylphosphonic acid films on the textured Cu 2 O film led to decreased friction with significantly extended life. For a constant load, the increase in chain length of alkylphosphonic acid yields the films that are dramatically more stable against tribological deformation and provide low coefficients of friction over much longer periods of time.

  6. Reactions of electronically excited molecular nitrogen with H2 and H2O molecules: theoretical study

    Science.gov (United States)

    Pelevkin, Alexey V.; Sharipov, Alexander S.

    2018-05-01

    Comprehensive quantum chemical analysis with the usage of the second-order perturbation multireference XMCQDPT2 approach was carried out to study the processes in the   +  H2 and   +  H2O systems. The energetically favorable reaction pathways have been revealed based on the exploration of potential energy surfaces. It has been shown that the reactions   +  H2 and   +  H2O occur with small activation barriers and, primarily, lead to the formation of N2H  +  H and N2H  +  OH products, respectively. Further, the interaction of these species could give rise to the ground state and H2 (or H2O) products, however, the estimations, based on RRKM theory and dynamic reaction coordinate calculations, exhibited that the   +  H2 and   +  H2O reactions lead to the dissociative quenching predominately. Appropriate rate constants for revealed reaction channels have been estimated by using a canonical variational theory and capture approximation. Corresponding three-parameter Arrhenius expressions for the temperature range T  =  300  ‑  3000 K were reported.

  7. Improved transparent-conducting properties in N2- and H2- annealed GaZnO thin films grown on glass substrates

    International Nuclear Information System (INIS)

    Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon

    2012-01-01

    The effects of N 2 - and H 2 - annealing on the transparent-conducting properties of Ga-doped ZnO (GaZnO) were examined. The as-grown GaZnO thin film, which was deposited on a soda-lime glass substrate by r.f. magnetron sputtering, exhibited moderate transparent-conducting properties: a resistivity of ∼10 0 Ω·cm and an optical transmittance of ∼86%. After annealing in N 2 or H 2 , the GaZnO samples showed great improvements in both the electrical and the optical properties. Particularly, in the H 2 -annealed sample, a dramatic decrease in the resistivity (7 x 10 -4 Ω·cm) with a considerable increase in the carrier concentration (4.22 x 10 21 cm -3 ) was observed. This is attributed to both an increase in the number of Ga-O bonds and a reduction in the number of chemisorbed oxygen atoms though H 2 annealing. The sample revealed an enhanced optical transmittance (∼91%), which comes from the Burstein-Moss effect. Namely, a blue-shift of the optical absorption edge, which results from the increased carrier concentration, was observed in the H 2 -annealed sample. The results suggest that hydrogen annealing can help improve the transparent conducting properties of GaZnO via a modification of the electrochemical bonding structures.

  8. Photogeneration of H2O2 in SPEEK/PVA aqueous polymer solutions.

    Science.gov (United States)

    Little, Brian K; Lockhart, PaviElle; Slaten, B L; Mills, G

    2013-05-23

    Photolysis of air-saturated aqueous solutions containing sulphonated poly(ether etherketone) and poly(vinyl alcohol) results in the generation of hydrogen peroxide. Consumption of oxygen and H2O2 formation are initially concurrent processes with a quantum yield of peroxide generation of 0.02 in stirred or unstirred solutions within the range of 7 ≤ pH ≤ 9. The results are rationalized in terms of O2 reduction by photogenerated α-hydroxy radicals of the polymeric ketone in competition with radical-radical processes that consume the macromolecular reducing agents. Generation of H2O2 is controlled by the photochemical transformation that produces the polymer radicals, which is most efficient in neutral and slightly alkaline solutions. Quenching of the excited state of the polyketone by both H3O(+) and OH(-) affect the yields of the reducing macromolecular radicals and of H2O2. Deprotonation of the α-hydroxy polymeric radicals at pH > 9 accelerate their decay and contribute to suppressing the peroxide yields in basic solutions. Maxima in [H2O2] are observed when illuminations are performed with static systems, where O2 reduction is faster than diffusion of oxygen into the solutions. Under such conditions H2O2 can compete with O2 for the reducing radicals resulting in a consumption of the peroxide.

  9. Variational transition-state theory study of the rate constant of the DMS·OH scavenging reaction by O2.

    Science.gov (United States)

    Ramírez-Anguita, Juan M; González-Lafont, Àngels; Lluch, José M

    2011-07-30

    The chemical tropospheric dimethyl sulfide (DMS, CH3SCH3) degradation involves several steps highly dependent on the environmental conditions. So, intensive efforts have been devoted during the last years to enhance the understanding of the DMS oxidation mechanism under different conditions. The reaction of DMS with OH is considered to be the most relevant process that initiates the whole oxidation process. The experimental observations have been explained by a two-channel mechanism consisting of a H-abstraction process leading to CH3S(O)CH3 and HO2 and an addition reaction leading to the DMS·OH adduct. In the presence of O2, the DMS·OH adduct is competitively scavenged increasing the contribution of the addition channel to the overall DMS oxidation. Recent experimental measurements have determined from a global fit that the rate constant of this scavenging process is independent of pressure and temperature but this rate constant cannot be directly measured. In this article, a variational transition-state theory calculation of the low- and high-pressure rate constants for the reaction between DMS·OH and O2 has been carried out as a function of temperature. Our proposal is that the slight temperature dependence of the scavenging rate constant can only be explained if the H-abstraction bottleneck is preceded by a dynamical bottleneck corresponding to the association process between the DMS·OH adduct and the O2 molecule. The agreement between the low-pressure and high-pressure rate constants confirms the experimental observations. Copyright © 2011 Wiley Periodicals, Inc.

  10. Size-selective electrocatalytic activity of (Pt)n/MoS2for oxygen reduction reaction

    DEFF Research Database (Denmark)

    Bothra, Pallavi; Pandey, Mohnish; Pati, Swapan K.

    2016-01-01

    In the present work, we have investigated the electrocatalytic activity of the oxygen reduction reaction (ORR), O2 + 4H+ + 4e− → 2H2O, for (Pt)n clusters (n = 1, 2, 3, 5, 7, 10 and 12) adsorbed on semiconducting (2H) and metallic (1T) MoS2 monolayers using first principles density functional theory....... We have considered four elementary reactions involved in ORR within a unified electrochemical thermodynamic framework and the corresponding Gibbs adsorption free energies of the key intermediates (*OOH, *O, *OH) associated with each step have been calculated. The results indicate that the reduction...... of adsorbed hydroxyl (*OH) to water (*OH + H+ + e− → H2O) is the bottleneck step in the ORR process. The adsorption free energy of *OH (ΔG*OH) is found to be the thermodynamic descriptor for the present systems. Eventually, the ORR activity has been described as a function of ΔG*OH and a volcano plot...

  11. Structural Modification of Sol-Gel Synthesized V2O5 and TiO2 Thin Films with/without Erbium Doping

    Directory of Open Access Journals (Sweden)

    Fatma Pınar Gökdemir

    2014-01-01

    Full Text Available Comparative work of with/without erbium- (Er- doped vanadium pentoxide (V2O5 and titanium dioxide (TiO2 thin films were carried out via sol-gel technique by dissolving erbium (III nitrate pentahydrate (Er(NO33·5H2O in vanadium (V oxoisopropoxide (OV[OCH(CH32]3 and titanium (IV isopropoxide (Ti[OCH(CH32]4. Effect of Er doping was traced by Fourier transform IR (FTIR, thermogravimetric/differential thermal (TG/DTA, and photoluminescence measurements. UV-Vis transmission/absorption measurement indicated a blue shift upon Er doping in V2O5 film due to the softening of V=O bond while appearance of typical absorption peaks in Er-doped TiO2 film. Granule size of the films increased (reduced upon Er substitution on host material compared to undoped V2O5 and TiO2 films, respectively.

  12. Synthesis and Characterization of TiO2(B Nanotubes Prepared by Hydrothermal Method Using [Ti8O12(H2O24]Cl8.HCl.7H2O as Precursor

    Directory of Open Access Journals (Sweden)

    Hari Sutrisno

    2010-04-01

    Full Text Available Low-dimension TiO2-related material has been synthesized by hydrothermal treatment of [Ti8O12(H2O24]Cl8.HCl.7H2O crystal as precursor in a 10 M NaOh aqueous solution at 150 C for 24 h. Characterization of the obtained product was carried out by a range of techniques including X-ray diffraction (XRD, high resolution scanning electron microscopy (HRSEM, high resolution transmission electron microscopy (HRTEM, Raman spectroscopy and nitrogen adsorption-desorption isotherm (Brunauer-Emmett-Teller (BET-Barret-Joyner-Halender (BJH. From HRTEM, XRD and Raman spectra showed that the obtained product has a TiO2(B structure. According to HRTEM observations, it was found that TiO2(B has nanotubular structure with approximately 5-8 nm in outer and 3-6 nm in inner diameter. The BET surface area of TiO2(B nanotubes is quiet large, values of 418.3163 m2/g being obtained. Pore structure analyisis by the BJH method showed that the average pore diameter of TiO2(B nanotubes has 5.5781 nm.

  13. Characteristics of RuO2-SnO2 nanocrystalline-embedded amorphous electrode for thin film microsupercapacitors

    International Nuclear Information System (INIS)

    Kim, Han-Ki; Choi, Sun-Hee; Yoon, Young Soo; Chang, Sung-Yong; Ok, Young-Woo; Seong, Tae-Yeon

    2005-01-01

    The characteristics of RuO 2 -SnO 2 nanocrystalline-embedded amorphous electrode, grown by DC reactive sputtering, was investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM), and transmission electron diffraction (TED) examination results showed that Sn and Ru metal cosputtered electrode in O 2 /Ar ambient have RuO 2 -SnO 2 nanocrystallines in an amorphous oxide matrix. It is shown that the cyclic voltammorgram (CV) result of the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film in 0.5 M H 2 SO 4 liquid electrolyte is similar to a bulk-type supercapacitor behavior with a specific capacitance of 62.2 mF/cm 2 μm. This suggests that the RuO 2 -SnO 2 nanocrystalline-embedded amorphous film can be employed in hybrid all-solid state energy storage devises as an electrode of supercapacitor

  14. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles

    International Nuclear Information System (INIS)

    Chowdhuri, Arijit; Gupta, Vinay; Sreenivas, K.; Kumar, Rajeev; Mozumdar, Subho; Patanjali, P. K.

    2004-01-01

    CuO nanoparticles on sputtered SnO 2 thin-film surface exhibit a fast response speed (14 s) and recovery time (61 s) for trace level (20 ppm) H 2 S gas detection. The sensitivity of the sensor (S∼2.06x10 3 ) is noted to be high at a low operating temperature of 130 deg. C. CuO nanoparticles on SnO 2 allow effective removal of excess adsorbed oxygen from the uncovered SnO 2 surface due to spillover of hydrogen dissociated from the H 2 S-CuO interaction

  15. Slow positron beam study of hydrogen ion implanted ZnO thin films

    Science.gov (United States)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  16. Simultaneous ultra-long data retention and low power based on Ge10Sb90/SiO2 multilayer thin films

    Science.gov (United States)

    You, Haipeng; Hu, Yifeng; Zhu, Xiaoqin; Zou, Hua; Song, Sannian; Song, Zhitang

    2018-02-01

    In this article, Ge10Sb90/SiO2 multilayer thin films were prepared to improve thermal stability and data retention for phase change memory. Compared with Ge10Sb90 monolayer thin film, Ge10Sb90 (1 nm)/SiO2 (9 nm) multilayer thin film had higher crystallization temperature and resistance contrast between amorphous and crystalline states. Annealed Ge10Sb90 (1 nm)/SiO2 (9 nm) had uniform grain with the size of 15.71 nm. After annealing, the root-mean-square surface roughness for Ge10Sb90 (1 nm)/SiO2 (9 nm) thin film increased slightly from 0.45 to 0.53 nm. The amorphization time for Ge10Sb90 (1 nm)/SiO2 (9 nm) thin film (2.29 ns) is shorter than Ge2Sb2Te5 (3.56 ns). The threshold voltage of a cell based on Ge10Sb90 (1 nm)/SiO2 (9 nm) (3.57 V) was smaller than GST (4.18 V). The results indicated that Ge10Sb90/SiO2 was a promising phase change thin film with high thermal ability and low power consumption for phase change memory application.

  17. Faceting of (001) CeO2 Films: The Road to High Quality TFA-YBa2Cu3O7 Multilayers

    International Nuclear Information System (INIS)

    Coll, M; Gazquez, J; Sandiumenge, F; Pomar, A; Puig, T; Obradors, X; Espinos, J P; Gonzalez-Elipe, A R

    2006-01-01

    CeO 2 films are technologically important as a buffer layer for the integration of superconducting YBa 2 Cu 3 O 7 films on biaxially textured Ni substrates. The growth of YBa 2 Cu 3 O 7 layers on the CeO 2 cap layers by the trifluoroacetate (TFA) route remains a critical issue. To improve the accommodation of YBa 2 Cu 3 O 7 on CeO 2 , surface conditioning or CeO 2 is required. In this work we have applied ex-situ post-processes at different atmospheres to the CeO 2 layers deposited on YSZ single crystals using rf sputtering. XPS analysis showed that post-annealing CeO 2 layer in Ar/H 2 /H 2 O catalyses in an unexpected way the growth of (001)- terraces. We also report on the growth conditions of YBa 2 Cu 3 O 7 -TFA on CeO 2 buffered YSZ single crystal grown by chemical solution deposition and we compare them with those leading to optimized YBa 2 Cu 3 O 7 -TFA films on LaAlO 3 single crystals. Critical currents up to 1.6 MA/cm 2 at 77 K have been demonstrated in 300 nm thick YBa 2 Cu 3 O 7 layers on CeO 2 /YSZ system. The optimized processing conditions have then been applied to grow YBa 2 Cu 3 O 7 -TFA films on Ni substrates having vacuum deposited cap layers of CeO 2

  18. Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns.

    Science.gov (United States)

    Wang, Bin; Huang, Ming; Tao, Li; Lee, Sun Hwa; Jang, A-Rang; Li, Bao-Wen; Shin, Hyeon Suk; Akinwande, Deji; Ruoff, Rodney S

    2016-01-26

    We explored a support-free method for transferring large area graphene films grown by chemical vapor deposition to various fluoric self-assembled monolayer (F-SAM) modified substrates including SiO2/Si wafers, polyethylene terephthalate films, and glass. This method yields clean, ultrasmooth, and high-quality graphene films for promising applications such as transparent, conductive, and flexible films due to the absence of residues and limited structural defects such as cracks. The F-SAM introduced in the transfer process can also lead to graphene transistors with enhanced field-effect mobility (up to 10,663 cm(2)/Vs) and resistance modulation (up to 12×) on a standard silicon dioxide dielectric. Clean graphene patterns can be realized by transfer of graphene onto only the F-SAM modified surfaces.

  19. Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n](2 - n) (n + m = 5).

    Science.gov (United States)

    Ingram, Kieran I M; Häller, L Jonas L; Kaltsoyannis, Nikolas

    2006-05-28

    Gradient corrected density functional theory has been used to calculate the geometric and electronic structures of the family of molecules [UO2(H2O)m(OH)n](2 - n) (n + m = 5). Comparisons are made with previous experimental and theoretical structural and spectroscopic data. r(U-O(yl)) is found to lengthen as water molecules are replaced by hydroxides in the equatorial plane, and the nu(sym) and nu(asym) uranyl vibrational wavenumbers decrease correspondingly. GGA functionals (BP86, PW91 and PBE) are generally found to perform better for the cationic complexes than for the anions. The inclusion of solvent effects using continuum models leads to spurious low frequency imaginary vibrational modes and overall poorer agreement with experimental data for nu(sym) and nu(asym). Analysis of the molecular orbital structure is performed in order to trace the origin of the lengthening and weakening of the U-O(yl) bond as waters are replaced by hydroxides. No evidence is found to support previous suggestions of a competition for U 6d atomic orbitals in U-O(yl) and U-O(hydroxide)pi bonding. Rather, the lengthening and weakening of U-O(yl) is attributed to reduced ionic bonding generated in part by the sigma-donating ability of the hydroxide ligands.

  20. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    Science.gov (United States)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4