WorldWideScience

Sample records for h215o positron emission

  1. Temporal dynamics of cortical and subcortical responses to apomorphine in Parkinson disease: an H2(15)O PET study

    NARCIS (Netherlands)

    Hosey, Lara A.; Thompson, Jennifer L. W.; Metman, Leonard Verhagen; van den Munckhof, Pepyn; Braun, Allen R.

    2005-01-01

    H2(15)O positron emission tomography (PET) was used to study the temporal course of central nervous system (CNS) responses to apomorphine in patients with idiopathic Parkinson disease (PD). Agonist-induced changes in regional cerebral blood flow (rCBF) were evaluated within

  2. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect

    International Nuclear Information System (INIS)

    Iida, H.; Kanno, I.; Takahashi, A.

    1988-01-01

    An in vivo technique was developed for measuring the absolute myocardial blood flow with H 2 15 O and dynamic positron-emission tomography. This technique was based on a new model involving the concept of the tissue fraction, which was defined as the fraction of the tissue mass in the volume of the region of interest. The myocardium was imaged dynamically by positron-emission tomography, starting at the time of intravenous bolus injection of H 2 15 O. The arterial input function was measured continuously with a beta-ray detector. A separate image after C 15 O inhalation was also obtained for correction of the H 2 15 O radioactivity in the blood. The absolute myocardial blood flow and the tissue fraction were calculated for 15 subjects with a kinetic technique under region-of-interest analysis. These results seem consistent with their coronary angiographic findings. The mean value of the measured absolute myocardial blood flows in normal subjects was 0.95 +/- 0.09 ml/min/g. This technique detected a diffuse decrease of myocardial blood flow in patients with triple-vessel disease

  3. A noninvasive approach to quantitative functional brain mapping with H215O and positron emission tomography

    International Nuclear Information System (INIS)

    Fox, P.T.; Mintun, M.A.; Raichle, M.E.; Herscovitch, P.

    1984-01-01

    Positron emission tomographic (PET) measurements of regional cerebral blood flow (rCBF) with intravenously administered 15 O-labeled water and an adaptation of the Kety autoradiographic model are well suited to the study of functional-anatomical correlations within the human brain. This model requires arterial blood sampling to determine rCBF from the regional tissue radiotracer concentration (Cr) recorded by the tomograph. Based upon the well-defined, nearly linear relation between Cr and rCBF inherent in the model, we have developed a method for estimating changes in rCBF from changes in Cr without calculating true rCBF and thus without arterial sampling. This study demonstrates that quantitative functional brain mapping does not require the determination of rCBF from Cr when regional neuronal activation is expressed as the change in rCBF from an initial, resting-state measurement. Patterned-flash visual stimulation was used to produce a wide range of increases in rCBF within the striate cortex. Changes in occipital rCBF were found to be accurately estimated directly from Cr over a series of 56 measurements on eight subjects. This adaptation of the PET/autoradiographic method serves to simplify its application and to make it more acceptable to the subject

  4. Demonstration of decreased posterior cingulate perfusion in mild Alzheimer's disease by means of H215O positron emission tomography

    International Nuclear Information System (INIS)

    Ishii, Kazunari; Sasaki, Masahiro; Yamaji, Shigeru; Sakamoto, Setsu; Kitagaki, Hajime; Mori, Etsuro

    1997-01-01

    Although decreased posterior cingulate metabolism in Alzheimer's disease (AD) has been previously reported, there have been no reports on posterior cingulate perfusion. In this study we evaluated posterior cingulate perfusion as a relative value using statistical parametric maps (SPMs) and as an absolute value using conventional region of interest (ROI) settings. Twenty-eight subjects, including 14 patients with mild AD (mean age: 66.4±12.1 years) and 14 normal controls (65.9±7.3 years) were studied. Regional cerebral blood flow (CBF) was measured with H 2 15 O and positron emission tomography (PET). In the SPM analysis, the left posterior cingulate and left parietotemporal CBFs were significantly decreased in the patients with mild AD (P<0.001). At a lower statistical threshold (P<0.05), the right posterior cingulate and right parietotemporal CBFs were also significantly decreased in the AD patients. In the ROI studies, the left parietal and posterior cingulate CBFs in the patients with mild AD were significantly lower than those of the normal controls by analysis of variance and post-hoc Scheffe's test (P<0.001). We conclude that posterior cingulate perfusion is decreased in mild AD, reflecting the pathological changes and metabolic reduction in the posterior cingulate gyrus that have previously been reported to occur in mild AD. (orig.). With 1 fig., 2 tabs

  5. Preamputation evaluation of lower-limb skeletal muscle perfusion with H(2) (15)O positron emission tomography.

    Science.gov (United States)

    Scremin, Oscar U; Figoni, Stephen F; Norman, Keith; Scremin, A M Erika; Kunkel, Charles F; Opava-Rutter, Dorene; Schmitter, Eric D; Bert, Alberto; Mandelkern, Mark

    2010-06-01

    To establish whether muscle blood flow (MBF) measurements with O-water positron emission tomography could reliably identify patients with critical limb ischemia and detect and quantify a distal deficit in skeletal MBF in these cases. O-water positron emission tomography scans were performed at rest or during unloaded ankle plantar and dorsiflexion exercise of the diseased leg in 17 subjects with leg ischemia or on a randomly selected leg of 18 age-matched healthy control subjects. TcPO2 was evaluated with Novametrix monitors and perfusion of skin topically heated to 44 degrees C and adjacent nonheated areas with a Moor Instruments laser Doppler imaging scanner. The enhancement of MBF induced by exercise was significantly lower in ischemic than in normal legs, and the sensitivity and specificity of this phenomenon were similar to those of laser Doppler imaging or TcPO2 in identifying ischemia subjects. In addition, the exercise MBF deficit was predominant at the distal-leg levels, indicating the ability of the technique to help determine the correct level of amputation. Skeletal MBF of legs with severe ischemia can be detected accurately with O-water positron emission tomography and could add valuable information about viability of skeletal muscle in the residual limb when deciding the level of an amputation.

  6. Photoluminescence and positron annihilation spectroscopic investigation on a H+ irradiated ZnO single crystal

    Science.gov (United States)

    Sarkar, A.; Chakrabarti, Mahuya; Sanyal, D.; Bhowmick, D.; Dechoudhury, S.; Chakrabarti, A.; Rakshit, Tamita; Ray, S. K.

    2012-08-01

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H+ ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a ‘hydrogen at oxygen vacancy’ type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ˜4 × 1017 cm-3 (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ˜175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed.

  7. Photoluminescence and positron annihilation spectroscopic investigation on a H+ irradiated ZnO single crystal

    International Nuclear Information System (INIS)

    Sarkar, A; Chakrabarti, Mahuya; Sanyal, D; Bhowmick, D; Dechoudhury, S; Chakrabarti, A; Rakshit, Tamita; Ray, S K

    2012-01-01

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H + ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a ‘hydrogen at oxygen vacancy’ type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ∼4 × 10 17 cm -3 (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ∼175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed. (paper)

  8. Photoluminescence and positron annihilation spectroscopic investigation on a H(+) irradiated ZnO single crystal.

    Science.gov (United States)

    Sarkar, A; Chakrabarti, Mahuya; Sanyal, D; Bhowmick, D; Dechoudhury, S; Chakrabarti, A; Rakshit, Tamita; Ray, S K

    2012-08-15

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H(+) ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a 'hydrogen at oxygen vacancy' type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ∼4 × 10(17) cm(-3) (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ∼175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed.

  9. Measurement of brain pH with positron emission tomography

    International Nuclear Information System (INIS)

    Buxton, R.B.; Alpert, N.M.; Ackerman, R.H.; Wechsler, L.R.; Elmaleh, D.R.; Correia, J.A.

    1985-01-01

    With positron emission tomography (PET) it is now possible to measure local brain pH noninvasively in humans. The application of PET to the determination of pH is relatively new, so only a handful of papers on the subject have appeared in print. This chapter reviews the current strategies for measuring brain pH with PET, discuss methodological problems, and present initial results

  10. Comparison of Global Cerebral Blood Flow Measured by Phase-Contrast Mapping MRI with O-15-H2O Positron Emission Tomography

    DEFF Research Database (Denmark)

    Vestergaard, Mark Bitsch; Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob

    2017-01-01

    Purpose To compare mean global cerebral blood flow (CBF) measured by phase-contrast mapping magnetic resonance imaging (PCM MRI) and by 15O-H2O positron emission tomography (PET) in healthy subjects. PCM MRI is increasingly being used to measure mean global CBF, but has not been validated in vivo...... against an accepted reference technique. Materials and Methods Same-day measurements of CBF by 15O-H2O PET and subsequently by PCM MRI were performed on 22 healthy young male volunteers. Global CBF by PET was determined by applying a one-tissue compartment model with measurement of the arterial input...... function. Flow was measured in the internal carotid and vertebral arteries by a noncardiac triggered PCM MRI sequence at 3T. The measured flow was normalized to total brain weight determined from a volume-segmented 3D T1-weighted anatomical MR-scan. Results Mean CBF was 34.9 ± 3.4 mL/100 g/min measured...

  11. Positron emission tomography

    NARCIS (Netherlands)

    Paans, AMJ

    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation using a

  12. Positron emission tomography

    International Nuclear Information System (INIS)

    Dvorak, O.

    1989-01-01

    The principle is briefly described of positron emission tomography, and its benefits and constraints are listed. It is emphasized that positron emission tomography (PET) provides valuable information on metabolic changes in the organism that are otherwise only very difficult to obtain, such as brain diagnosis including relationships between mental disorders and the physiology and pathophysiology of the brain. A PET machine is to be installed in Czechoslovakia in the near future. (L.O.)

  13. Experimental investigation of slow-positron emission from 4H-SiC and 6H-SiC surfaces

    International Nuclear Information System (INIS)

    Ling, C.C.; Beling, C.D.; Fung, S.; Weng, H.M.

    2002-01-01

    Slow-positron emission from the surfaces of as-grown n-type 4H-SiC and 6H-SiC (silicon carbide) with a conversion efficiency of ∼10 -4 has been observed. After 30 min of 1000 deg. C annealing in forming gas, the conversion efficiency of the n-type 6H-SiC sample was observed to be enhanced by 75% to 1.9x10 -4 , but it then dropped to ∼10 -5 upon a further 30 min annealing at 1400 deg. C. The positron work function of the n-type 6H-SiC was found to increase by 29% upon 1000 deg. C annealing. For both p-type 4H-SiC and p-type 6H-SiC materials, the conversion efficiency was of the order of ∼10 -5 , some ten times lower than that for the n-type materials. This was attributed to the band bending at the p-type material surface which caused positrons to drift away from the positron emitting surface. (author)

  14. In-situ positron emission of CO oxidation

    NARCIS (Netherlands)

    Vonkeman, K.A.; Jonkers, G.; Wal, van der S.W.A.; Santen, van R.A.

    1993-01-01

    Using a Neuro ECAT positron tomog., the Positron Emission computed Tomog. (PET) was utilized to image the catalytic oxidn. of CO by using CO and CO2, labeled with short lived positron emitting nuclides. Studies were performed over highly dispersed CeO2/g-Al2O3 supported Pt and Rh catalysts. With a

  15. Tomography by positrons emission

    International Nuclear Information System (INIS)

    Mosconi, Sergio L.

    1999-01-01

    The tomography by positrons emission is a technology that allows to measure the concentration of positrons emission in a tri dimensional body through external measurements. Among the isotope emissions have carbon isotopes are ( 11 C), of the oxygen ( 15 O), of the nitrogen ( 13 N) that are three the element that constitute the base of the organic chemistry. Theses have on of the PET's most important advantages, since many biological interesting organic molecules can be tracer with these isotopes for the metabolism studies 'in vivo' through PET, without using organic tracers that modify the metabolism. The mentioned isotopes, also possess the characteristic of having short lifetime, that constitute on of PET's advantages from the dosimetric point of view. Among 11 C, 15 O, and 13 N, other isotopes that can be obtained of a generator as the 68 Ga and 82 Rb

  16. In-situ positron emission of CO oxidation

    OpenAIRE

    Vonkeman, K.A.; Jonkers, G.; Wal, van der, S.W.A.; Santen, van, R.A.

    1993-01-01

    Using a Neuro ECAT positron tomog., the Positron Emission computed Tomog. (PET) was utilized to image the catalytic oxidn. of CO by using CO and CO2, labeled with short lived positron emitting nuclides. Studies were performed over highly dispersed CeO2/g-Al2O3 supported Pt and Rh catalysts. With a math. model of the reaction kinetics, based on the elementary steps of the catalytic reaction and partially on literature surface science data, the effect of CeO2 promotion and the presence of NO we...

  17. Cardiac positron emission tomography

    International Nuclear Information System (INIS)

    Eftekhari, M.; Ejmalian, G.

    2003-01-01

    Positron emission tomography is an intrinsically tool that provide a unique and unparalleled approach for clinicians and researchers to interrogate the heart noninvasively. The ability to label substances of physiological interest with positron-emitting radioisotopes has permitted insight into normal blood flow and metabolism and the alterations that occur with disease states. Positron emission tomography of the heart has evolved as a unique, noninvasive approach for the assessment of myocardial perfusion, metabolism, and function. Because of the intrinsic quantitative nature of positron emission tomography measurements as well as the diverse compounds that can be labeled with positron- emitting radioisotopes, studies with positron emission tomography have provided rich insight into the physiology of the heart under diverse conditions

  18. Positron emission tomography

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.

    1985-01-01

    This book contains 24 selections. Some of the titles are: Positron Emission Tomography Instrumentation, Generator Systems for Positron Emitters, Reconstruction Algorithms, Cerebral Glucose Consumption: Methodology and Validation, Cerebral Blood Flow Tomography Using Xenon-133 Inhalation: Methods and Clinical Applications, PET Studies of Stroke, Cardiac Positron Emission Tomography, and Use of PET in Oncology

  19. Positron emission tomography

    CERN Document Server

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  20. Bone Metabolism after Total Hip Revision Surgery with Impacted Grafting: Evaluation using H215O and [18F]fluoride PET; A Pilot Study

    NARCIS (Netherlands)

    Temmerman, Olivier; Raijmakers, Pieter; Heyligers, Ide; Comans, Emile; Lubberink, Mark; Teule, Gerrit; Lammertsma, Adriaan

    2008-01-01

    Purpose: To evaluate bone blood flow and bone formation in patients after total hip revision surgery with impacted bone grafting using H2 15O and [18F]fluoride positron emission tomography (PET). Procedures: To asses bone blood flow and bone metabolism in bone allograft after impaction grafting,

  1. Positron emission tomography

    International Nuclear Information System (INIS)

    Paans, A.M.J.

    1981-01-01

    Positron emitting radiopharmaceuticals have special applications in in-vivo studies of biochemical processes. The combination of a cyclotron for the production of radionuclides and a positron emission tomograph for the registration of the distribution of radioactivity in the body enables the measurement of local radioactivity concentration in tissues, and opens up new possibilities in the diagnosis and examination of abnormalities in the metabolism. The principles and procedures of positron emission tomography are described and the necessary apparatus considered, with emphasis on the positron camera. The first clinical applications using 55 Co bloemycine for tumor detection are presented. (C.F.)

  2. Low energy scattering of positrons by H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Arretche, F., E-mail: fsc1sem@fsc.ufsc.b [Departamento de Fisica, Universidade do Estado de Santa Catarina, 89223-100, Joinville, Santa Catarina (Brazil); Tenfen, W.; Mazon, K.T.; Michelin, S.E. [Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, Santa Catarina (Brazil); Lima, M.A.P. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Unicamp, 13083-970, Campinas, Sao Paulo (Brazil); Lee, M.-T. [Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905, Sao Carlos, Sao Paulo (Brazil); Machado, L.E. [Departamento de Fisica, Universidade Federal de Sao Carlos, 13565-905, Sao Carlos, Sao Paulo (Brazil); Fujimoto, M.M. [Departamento de Fisica, Universidade Federal do Parana, 13565-905, Curitiba, Parana (Brazil); Pessoa, O.A. [Departamento de Fisica, Universidade do Estado de Santa Catarina, 89111-100, Sao Bento do Sul, Santa Catarina (Brazil)

    2010-01-15

    We present a theoretical investigation on elastic positron-H{sub 2}O collisions. More specifically, differential and integral cross sections in the 0-10 eV energy range are reported. The calculations were performed using two theoretical approaches, namely, the Schwinger multichannel method and the method of continued fractions. The positron-molecule interaction dynamics is described by using a potential composed of static and correlation-polarization contributions. Comparison of our calculated results with the recent experimental of Zecca et al. [J. Phys. B 39 (2006) 1597] and theoretical results is encouraging.

  3. Functional brain mapping using H215O positron emission tomography (II): mapping of human working memory

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Lee, Sang Kun; Nam, Hyun Woo; Kim, Seok Ki; Park, Kwang Suk; Jeong, Jae Min; Chung, June Key; Lee, Myung Chul

    1998-01-01

    To localize and compare the neural basis of verbal and visual human working memory, we performed functional activation study using H 2 15 O PET. Repeated H 2 15 O PET scans with one control and three different activation tasks were performed on six right-handed normal volunteers. Each activation task was composed of 13 matching trials. On each trial, four targets, a fixation dot and a prove were presented sequentially and subject's tasks was to press a response button to indicate whether or not the prove was one of the previous targets. Short meaningful Korean words, simple drawings and monochromic pictures of human faces were used as matching objects for verbal or visual memory. All the images were spatially normalized and the differences between control and activation states were statistically analyzed using SPM96. Statistical analysis of verbal memory activation with short words showed activation in the left Broca's area, premotor cortex, cerebellum and right cingulate gyrus. In verbal memory with simple drawing, activation was shown in the larger regions including where activated with short words and left superior temporal cortex, basal ganglia, thalamus, prefrontal cortex, anterior portion of right superior temporal gyrus and right infero-lateral frontal cortex. On the other hand, the visual memory task activated predominantly right-sided structures, especially inferior frontal cortex, supplementary motor cortex and superior parietal cortex. The results are consistent with the hypothesis of the laterality and dissociation of the verbal and visual working memory from the invasive electrophysiological studies and emphasize the pivotal role of frontal cortex and cingulate gyrus in working memory system

  4. Positron emission tomography

    International Nuclear Information System (INIS)

    Bolwig, T.G.; Haunsoe, S.; Dahlgaard Hove, J.; Hesse, B.; Hoejgard, L.; Jensen, M.; Paulson, O.B.; Hastrup Svendsen, J.; Soelvsten Soerensen, S.

    1994-01-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ( 11 C), oxygen ( 15 O), and nitrogen ( 13 N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.)

  5. Positron emission tomography

    International Nuclear Information System (INIS)

    Wienhard, K.; Heiss, W.D.

    1984-01-01

    The principles and selected clinical applications of positron emission tomography are described. In this technique a chemical compound is labeled with a positron emitting isotope and its biochemical pathway is traced by coincidence detection of the two annihilation photons. The application of the techniques of computed tomography allows to reconstruct the spatial distribution of the radioactivity within a subject. The 18 F-deoxyglucose method for quantitative measurement of local glucose metabolism is discussed in order to illustrate the possibilities of positron emission tomography to record physiological processes in vivo. (orig.) [de

  6. Design of steady-state positron emission tomography protocols for neurobehavioral studies: CO15O and 19Ne

    International Nuclear Information System (INIS)

    Kearfott, K.J.; Rottenberg, D.A.; Volpe, B.T.

    1983-01-01

    Although the [ 18 F]-2-fluoro-2-deoxyglucose positron emission tomographic technique for measuring regional glucose metabolic rate has been successfully employed for neurobehavioral studies, the long (greater than 30 min) equilibration time required may complicate the interpretation of experimental results. Positron emission tomography neurobehavioral protocols employing the continuous inhalation of CO 15 O and 19 Ne were developed for measuring regional cerebral blood flow during multiple control and stimulation periods. Timing, lung absorbed dose, statistical accuracy, and resolution were considered. Studies with 19 Ne require shorter equilibration and stimulation times than do CO 15 O studies but entail higher absorbed doses and yield poorer imaging statistics

  7. Positron emission tomography

    International Nuclear Information System (INIS)

    Iio, Masahiro

    1982-01-01

    Utilization of positron emission tomography was reviewed in relation to construction and planned construction of small-size medical cyclotrons, planned construction of positron cameras and utilization of short-lived radionuclides. (Chiba, N.)

  8. The metabolism of the human brain studied with positron emission tomography

    International Nuclear Information System (INIS)

    Greitz, T.; Ingvar, D.H.; Widen, L.

    1985-01-01

    This volume presents coverage of the use of positron emission tomography (PET) to study the human brain. The contributors assess new developments in high-resolution positron emission tomography, cyclotrons, radiochemistry, and tracer kinetic models, and explore the use of PET in brain energy metabolism, blood flow, and protein synthesis measurements, receptor analysis, and pH determinations, In addition, they discuss the relevance and applications of positron emission tomography from the perspectives of physiology, neurology, and psychiatry

  9. Positron emission tomography in drug development and drug evaluation

    NARCIS (Netherlands)

    Paans, AMJ; Vaalburg, W

    2000-01-01

    Positron Emission Tomography (PET) is an imaging modality which can determine biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labeled with positron emitting radionuclides as C-11, N-13, O-15 and F-18 and by measuring the annihilation radiation

  10. Positron emission tomography

    International Nuclear Information System (INIS)

    Chandrasekhar, Preethi; Himabindu, Pucha

    2000-01-01

    Positron Emission Tomography (PET) is a non-invasive nuclear imaging technique used to study different molecular pathways and anatomical structures. PET has found extensive applications in various fields of medicine viz. cardiology, oncology, psychiatry/psychology, neuro science and pulmonology. This study paper basically deals with the physics, chemistry and biology behind the PET technique. It discusses the methodology for generation of the radiotracers responsible for emission of positrons and the annihilation and detection techniques. (author)

  11. Positron emission tomography. Positronemisionstomografi

    Energy Technology Data Exchange (ETDEWEB)

    Bolwig, T G; Haunsoe, S; Dahlgaard Hove, J; Hesse, B; Hoejgard, L; Jensen, M; Paulson, O B; Hastrup Svendsen, J; Soelvsten Soerensen, S

    1994-10-01

    Positron emission tomography (PET) is a method for quantitative imaging of regional physiological and biochemical parameters. Positron emitting radioactive isotopes can be produced by a cyclotron, eg. the biologically important carbon ([sup 11]C), oxygen ([sup 15]O), and nitrogen ([sup 13]N) elements. With the tomographic principles of the PET scanner the quantitative distribution of the administered isotopes can be determined and images can be provided as well as dynamic information on blood flow, metabolism and receptor function. In neurology PET has been used for investigations on numerous physiological processes in the brain: circulation, metabolism and receptor studies. In Parkinson's disease PET studies have been able to localize the pathology specifically, and in early stroke PET technique can outline focal areas with living but non-functioning cells, and this could make it possible to intervene in this early state. With positron emission tomography a quantitative evaluation of myocardial blood flow, glucose and fatty acid metabolism can be made as well as combined assessments of blood flow and metabolism. Combined studies of blood flow and metabolism can determine whether myocardial segments with abnormal motility consist of necrotic or viable tissue, thereby delineating effects of revascularisation. In the future it will probably be possible to characterize the myocardial receptor status in different cardiac diseases. The PET technique is used in oncology for clinical as well as more basic research on tumor perfusion and metabolism. Further, tumor uptake of positron labelled cytotoxic drugs might predict the clinical benefit of treatment. (au) (19 refs.).

  12. Positron emission tomography

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Diksic, M.; Meyer, E.; Feindel, W.H.

    1984-01-01

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. The most recent trends are reviewed in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography. (author)

  13. Cortical activation in profoundly deaf patients during cochlear implant stimulation demonstrated by H2(15)O PET

    International Nuclear Information System (INIS)

    Herzog, H.; Lamprecht, A.; Kuehn, A.R.; Roden, W.; Vosteen, K.H.; Feinendegen, L.E.

    1991-01-01

    Cochlear implants (CIs) are used to provide sensations of sound to profoundly deaf patients. The performance of the CI is assessed mainly by the subjective reports of patients. The aim of this study was to look for objective cortical responses to the stimulation of the CI. Two postlingually and two prelingually deaf patients were investigated by positron emission tomography (PET) using 15 O-labeled water (H 2 15 O) to determine the regional cerebral blood flow (rCBF). Instead of quantifying rCBF in absolute terms, it was estimated by referring the regional tissue concentration of H 2 15 O to the mean whole brain concentration. CI stimulation encoded from white noise and sequential words led to an increased rCBF in the primary and secondary (Wernicke) auditory cortex. Relative elevations of up to 33% were observed bilaterally, although they were higher contralateral to the CI. These results were obtained not only in the postlingually deaf patients but also in two patients who had never been able to hear. Thus, it could be demonstrated that PET measurements of cerebral H 2 15 O distribution yield objective responses of the central auditory system during electrical stimulation by CIs in profoundly deaf patients

  14. Preoperative mapping of cortical motor function: prospective comparison of functional magnetic resonance imaging and [15O]-H2O-positron emission tomography in the same co-ordinate system.

    Science.gov (United States)

    Reinges, Marcus H T; Krings, Timo; Meyer, Philipp T; Schreckenberger, Mathias; Rohde, Veit; Weidemann, Jürgen; Sabri, Osama; Mulders, Edith J M; Buell, Udalrich; Thron, Armin; Gilsbach, Joachim M

    2004-10-01

    Two of the most widely accepted approaches to map eloquent cortical areas preoperatively are positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). As yet, no study has compared these two modalities within the same frame of reference in tumour patients. We employed [15O]-H2O-PET and fMRI in patients undergoing presurgical evaluation and compared the results with those obtained by direct electrical cortical stimulation (DECS). Twenty-five patients with tumours of different aetiology near the central region were investigated. fMRI and PET were processed using the same methods, i.e. statistical parametric mapping (SPM) without anatomical normalization, and transformed into the same frame of reference. fMRI activity was found in more cranial and lateral sections, i.e. closer to the brain surface, in comparison with PET, which demonstrated parenchymal activation. The mean localization difference between fMRI and PET was 8.1 +/- 4.6 mm (range, 2-18 mm). fMRI and [15O]-H2O-PET could reliably identify the central sulcus, as demonstrated by DECS. fMRI and [15O]-H2O-PET demonstrate comparable results and are sensitive and reliable tools to map the central region, especially in cases of infiltrating brain tumours. However, fMRI is more prone to artefacts, such as the visualization of draining veins, which may explain the more cranial and lateral activation visualized by fMRI, whereas PET depicts capillary perfusion changes and therefore shows activation closer to the parenchyma.

  15. Simulation of the annihilation emission of galactic positrons; Modelisation de l'emission d'annihilation des positrons Galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, W

    2008-01-15

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  16. Sex differences in absolute myocardial perfusion. Non-invasive H2(15)O-PET in young healthy adults.

    Science.gov (United States)

    Range, Felix T; Kies, Peter; Schäfers, Klaus P; Breithardt, Günter; Schober, Otmar; Wichter, Thomas; Schäfers, Michael A

    2016-09-26

    To investigate sex differences in myocardial perfusion especially in healthy individuals since former studies are rare and findings are controversial. Participants, methods: 26 subjects were enrolled: 16 healthy women (age: 34 ±7 years) were compared with 10 healthy men (age: 34 ± 3 years; p = ns). Myocardial blood flow (MBF) and coronary vascular resistance (CVR) were quantified at rest, during adenosine infusion and cold-pressor-testing, using positron emission tomography and radioactive-labelled water (H2(15)O-PET). Women showed higher MBF than men at rest (1.10 ± 0.18 vs. 0.85 ± 0.20 ml/min/ml; p = 0.003) and cold-stress (1.39 ± 0.38 vs. 1.06 ± 0.28 ml/min/ml; p = 0.026). Corrected for rate-pressure-product, baseline findings maintained significance (1.41 ± 0.33 vs. 1.16 ± 0.19 ml/min/ml; p = 0.024). CVR was lower in women at baseline (81 ± 14 vs. 107 ± 22 mmHg*ml(-1)*min*ml; p = 0.006) and during cold-pressor-testing (71 ± 17 vs. 91 ± 20 mmHg*ml(-1)*min*ml; p = 0.013). Under adenosine neither maximal MBF (4.06 ± 1.0 vs. 3.91 ± 0.88 ml/min/ml; p = ns) nor coronary flow reserve (3.07 ± 1.12 vs. 3.44 ± 0.92; p = ns) nor CVR (24 ± 8 vs. 24 ± 6 mmHg*ml(-1)*min*ml; p = ns) showed sex-related differences. Women show higher myocardial perfusion and lower coronary vascular resistance than men in physiologic states. Maximum perfusion and vasodilation under adenosine are not sex-specific.

  17. The correlation between the rise of the tumor temperature during the hyperthermia treatment and the tumor blood flow measured by dynamic CT and 15O gas-positron emission tomography

    International Nuclear Information System (INIS)

    Hattori, Hideyuki

    1993-01-01

    This study was designed to determine the correlation between the rise of tumor temperature during hyperthermia treatment and the blood flow of the tumors measured by dynamic CT (DCT) and 15 O gas-positron emission tomography. In this report, we observed 20 patients with malignant tumors which underwent hyperthermia treatment. In each case, the temperature of the tumor was monitored with a photofiber sensor. DCT's and 15 O gas-positron emission tomographies were applied before the hyperthermia treatment. During the DCT, the tumor blood flow of each tumor was estimated by analyzing the time-dependent activity curve after a bolus injection. During the 15 O gas-positron emission tomography, the tumor blood flow was estimated by the C 15 O 2 -steady-state method. The value of the tumor blood flow estimated by DCT were proportional to those calculated by the 15 O gas-positron emission tomography. These values were inversely proportional to the rise of the temperature of the tumors during hyperthermia treatment. Our results imply that DCT as well as the 15 O gas-positron emission tomography can be used for the prediction of the tumor temperature rise during the hyperthermia treatment. (author)

  18. Structural characterization of H plasma-doped ZnO single crystals by positron annihilation spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Anwand, Wolfgang; Brauer, Gerhard; Cowan, Thomas E. [Institut fuer Strahlenphysik, Forschungszentrum Dresden-Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Grambole, Dieter; Skorupa, Wolfgang [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, P.O. Box 510 119, 01314 Dresden (Germany); Cizek, Jakub; Kuriplach, Jan; Prochazka, Ivan [Department of Low Temperature Physics, Charles University, V Holesovickach 2, 18000 Prague (Czech Republic); Egger, Werner; Sperr, Peter [Institut fuer Angewandte Physik und Messtechnik, Fakultaet fuer Luft- und Raumfahrttechnik, Universitaet der Bundeswehr, Heisenbergweg 39, 85579 Neubiberg (Germany)

    2010-11-15

    Nominally undoped, hydrothermally grown ZnO single crystals have been investigated before and after exposure to remote H plasma. Structural characterizations have been made by various positron annihilation spectroscopies (continuous and pulsed slow positron beams, conventional lifetime). The content of bound hydrogen (H-b) before and after the remote H plasma treatment at the polished side of the crystals was determined at depths of 100 and 600 nm, respectively, using nuclear reaction analysis. At a depth of 100 nm, H-b increased from (11.8{+-}2.5) to (48.7{+-}7.6) x 10{sup 19} cm{sup -3} after remote H plasma treatment, whereas at 600 nm no change in H-b was observed. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. A positron emission tomography study of cardiac sequelae in children with Kawasaki disease, 1

    International Nuclear Information System (INIS)

    Ohmochi, Yutaka

    1994-01-01

    This study quantitatively measured regional myocardial blood flow (MBF) and perfusable tissue fraction (pTF) in 25 children (mean age: 17.2±2.7) with Kawasaki disease using positron emission tomography and H 2 15 O. Patients were divided into three groups based on coronary angiographic findings. Group 1 consisted of 11 patients with normal coronary angiograms; Group 2, 7 patients with stenotic coronary lesions. There were no significant differences in MBF and pTF among 5 divided regions on the left ventricular wall. Average MBF at rest in Group 1 was 0.91±0.19 ml/min/g. There was a poor correlation between MBF estimated positron emission tomography and patient's age in Group 1. (r=-0.374, Y=-0.0234X + 1.254: p 2 15 O, to determine the functional capacity of coronary artery lesions and myocardial damage in children with Kawasaki disease. (author)

  20. Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets

    DEFF Research Database (Denmark)

    Andersen, Julie B; Henning, William S; Lindberg, Ulrich

    2015-01-01

    Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic-ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous (15)O-water positron emission tomography (PET) and single TI pulsed...

  1. Functional brain mapping using H215O positron emission tomography (I): statistical parametric mapping method

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Lee, Jae Sung; Kim, Kyeong Min; Chung, June Key; Lee, Myung Chul

    1998-01-01

    We investigated the statistical methods to compose the functional brain map of human working memory and the principal factors that have an effect on the methods for localization. Repeated PET scans with successive four tasks, which consist of one control and three different activation tasks, were performed on six right-handed normal volunteers for 2 minutes after bolus injections of 925 MBq H 2 15 O at the intervals of 30 minutes. Image data were analyzed using SPM96 (Statistical Parametric Mapping) implemented with Matlab (Mathworks Inc., U.S.A.). Images from the same subject were spatially registered and were normalized using linear and nonlinear transformation methods. Significant difference between control and each activation state was estimated at every voxel based on the general linear model. Differences of global counts were removed using analysis of covariance (ANCOVA) with global activity as covariate. Using the mean and variance for each condition which was adjusted using ANCOVA, t-statistics was performed on every voxel. To interpret the results more easily, t-values were transformed to the standard Gaussian distribution (Z-score). All the subjects carried out the activation and control tests successfully. Average rate of correct answers was 95%. The numbers of activated blobs were 4 for verbal memory I, 9 for verbal memory II, 9 for visual memory, and 6 for conjunctive activation of these three tasks. The verbal working memory activates predominantly left-sided structures, and the visual memory activates the right hemisphere. We conclude that rCBF PET imaging and statistical parametric mapping method were useful in the localization of the brain regions for verbal and visual working memory

  2. Positron emission tomography with Positome, 2

    International Nuclear Information System (INIS)

    Nukui, Hideaki; Yamamoto, Y.L.; Thompson, C.J.; Feindel, W.

    1979-01-01

    Positron emission tomography with Positome II using 68 Ga-EDTA was performed in cases with brain tumor and cerebral arteriovenous malformation. A significant focal uptake in static study and hemodynamic changes in dynamic study were noted in all cases except one case with intracranial lipoma. Comparing this method with sup(99m) Tc-pertechnetate cerebral image study and computerized axial tomography, the diagnostic rate for detecting brain tumor was almost equal in all of these three methods. However, detecting and localizing was easier and clearer in static positron emission tomography with 68 Ga-EDTA than in sup(99m) Tc-pertechnetate cerebral image and computerized axial tomography without infusion of contrast medium. Furthermore, static positron emission tomography with 68 Ga-EDTA was superior to computerized axial tomography without infusion of contrast medium for detecting cerebral arteriovenous malformation. Concerning dynamic positron emission tomography with 68 Ga-EDTA, semiquantitative values obtained by this method correlated well with findings of computerized axial tomography and was thought to be more precise and in detail than the findings of sup(99m) Tc-pertechnetate cerebral image study. Summation of the previous studies about dynamic positron emission tomography with 77 Kr in occlusive cerebrovascular disease is also reported. In conclusion, static positron emission tomography with 68 Ga-EDTA is a very useful diagnostic method for detecting and localizing brain tumor and cerebral arteriovenous malformation without any attendant complications. Furthermore, a good combination of static and dynamic positron emission tomography and computerized axial tomography appear to be outstandingly effective for not only detecting the lesion but also understanding the pathophysiological aspect in cases with various intracranial lesions. (author)

  3. The renal blood flow reserve in healthy humans and patients with atherosclerotic renovascular disease measured by positron emission tomography using [15O]H2O.

    Science.gov (United States)

    Päivärinta, Johanna; Koivuviita, Niina; Oikonen, Vesa; Iida, Hidehiro; Liukko, Kaisa; Manner, Ilkka; Löyttyniemi, Eliisa; Nuutila, Pirjo; Metsärinne, Kaj

    2018-06-11

    Microvascular function plays an important role in ARVD (atherosclerotic renovascular disease). RFR (renal flow reserve), the capacity of renal vasculature to dilate, is known to reflect renal microvascular function. In this pilot study, we assessed PET (positron emission tomography)-based RFR values of healthy persons and renal artery stenosis patients. Seventeen patients with ARVD and eight healthy subjects were included in the study. Intravenous enalapril 1 mg was used as a vasodilatant, and the maximum response (blood pressure and RFR) to it was measured at 40 min. Renal perfusion was measured by means of oxygen-15-labeled water PET. RFR was calculated as a difference of stress flow and basal flow and was expressed as percent [(stress blood flow - basal blood flow)/basal blood flow] × 100%. RFR of the healthy was 22%. RFR of the stenosed kidneys of bilateral stenosis patients (27%) was higher than that of the stenosed kidneys of unilateral stenosis patients (15%). RFR of the contralateral kidneys of unilateral stenosis patients was 21%. There was no difference of statistical significance between RFR values of ARVD subgroups or between ARVD subgroups and the healthy. In the stenosed kidneys of unilateral ARVD patients, stenosis grade of the renal artery correlated negatively with basal (p = 0.04) and stress flow (p = 0.02). Dispersion of RFR values was high. This study is the first to report [ 15 O]H 2 O PET-based RFR values of healthy subjects and ARVD patients in humans. The difference between RFR values of ARVD patients and the healthy did not reach statistical significance perhaps because of high dispersion of RFR values. [ 15 O]H 2 O PET is a valuable non-invasive and quantitative method to evaluate renal blood flow though high dispersion makes imaging challenging. Larger studies are needed to get more information about [ 15 O]H 2 O PET method in evaluation of renal blood flow.

  4. Simplified quantitative determination of cerebral perfusion reserve with H215O PET and acetazolamide

    International Nuclear Information System (INIS)

    Arigoni, M.; Kneifel, S.; Burger, C.; Buck, A.; Fandino, J.; Khan, N.

    2000-01-01

    The measurement of regional cerebral blood from (rCBF) and perfusion reserve (PR) with H 2 15 O positron emission tomography (PET) and acetazolamide challenge is of importance in evaluating patients with cerebrovascular disease and is thought to be useful in selecting patients for possible vascular surgery. Full quantitative assessment of rCBF with PET requires arterial blood sampling, which is inconvenient in a clinical setting. In this work, we present a simple non-invasive method with which to quantitatively evaluate PR in one PET session lasting no more than 30 min. In ten patients with cerebrovascular disease, rCBF was measured with H 2 15 O PET under the baseline condition and after administration of 1 g acetazolamide using a standard technique involving arterial blood sampling. The activity accumulated over 60 s was normalized to injected activity per kilogram body weight (nAA) and compared with rCBF in eight different brain regions. A high linear correlation was found for PR based on nAA (PR nAA ) and rCBF (PR rCBF ) (PR nAA =0.843 PR rCBF + 0.092, r=0.83, Pearson's correlation coefficient). Bland-Altman analyses further confirmed that PR nAA reflects PR in a quantitative manner. These results demonstrate that the method based on normalized counts allows the quantitative assessment of PR without blood sampling. (orig.)

  5. Simulation of the annihilation emission of galactic positrons; Modelisation de l'emission d'annihilation des positrons Galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, W

    2008-01-15

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  6. New Possibilities of Positron-Emission Tomography

    Science.gov (United States)

    Volobuev, A. N.

    2018-01-01

    The reasons for the emergence of the angular distribution of photons generated as a result of annihilation of an electron and a positron in a positron-emission tomograph are investigated. It is shown that the angular distribution of the radiation intensity (i.e., the probability of photon emission at different angles) is a consequence of the Doppler effect in the center-of-mass reference system of the electron and the positron. In the reference frame attached to the electron, the angular distribution of the number of emitted photons does not exists but is replaced by the Doppler shift of the frequency of photons. The results obtained in this study make it possible to extend the potentialities of the positron-emission tomograph in the diagnostics of diseases and to obtain additional mechanical characteristics of human tissues, such as density and viscosity.

  7. Instrumentation for positron emission tomography

    International Nuclear Information System (INIS)

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.

    1984-01-01

    Positron emission tomography with a spatial resolution of 2 mm full width at half maximum for quantitation in regions of interest 4 mm in diameter will become possible with the development of detectors that achieve ultrahigh resolution. Improved resolution will be possible using solid-state photodetectors for crystal identification or photomultiplier tubes with many small electron multipliers. Temporal resolution of 2 seconds and gating of cyclic events can be accomplished if statistical requirements are met. The major physical considerations in achieving high-resolution positron emission tomography are the degradation in resolution resulting from positron range, emission angle, parallax error, detector sampling density, the sensitivity of various detector materials and packing schemes, and the tradeoff between temporal resolution and statistical accuracy. The accuracy of data required for physiological models depends primarily on the fidelity of spatial sampling independent of statistical constraints

  8. Positron emission tomography. Basic principles

    International Nuclear Information System (INIS)

    Rodriguez, Jose Luis; Massardo, Teresa; Gonzalez, Patricio

    2001-01-01

    The basic principles of positron emission tomography (PET) technique are reviewed. lt allows to obtain functional images from gamma rays produced by annihilation of a positron, a positive beta particle. This paper analyzes positron emitters production in a cyclotron, its general mechanisms, and the various detection systems. The most important clinical applications are also mentioned, related to oncological uses of fluor-l8-deoxyglucose

  9. Investigation of positron moderator materials for electron-linac-based slow positron beamlines

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki; Uedono, Akira

    1998-01-01

    Positron re-emission properties were studied on moderator materials in order to improve the positron moderation system of electron-linac-based intense slow positron beamlines. The re-emitted positron fraction was measured on tungsten, SiC, GaN, SrTiO 3 , and hydrogen-terminated Si with a variable-energy pulsed positron beam. The results suggested that tungsten is the best material for the primary moderator of the positron beamlines while epitaxially grown n-type 6H-SiC is the best material for the secondary moderator. Defect characterization by monoenergetic positron beams and surface characterization by Auger electron spectroscopy were carried out to clarify the mechanism of tungsten moderator degradation induced by high-energy electron irradiation. The characterization experiments revealed that the degradation is due to both radiation-induced vacancy clusters and surface carbon impurities. For the restoration of degraded tungsten moderators, oxygen treatment at ∼900degC is effective. Furthermore, it was found that oxygen at the tungsten surface inhibits positronium formation; as a result, it can increase the positron re-emission fraction. (author)

  10. Compressive effect of the magnetic field on the positron range in commonly used positron emitters simulated using Geant4

    Science.gov (United States)

    Li, Chong; Cao, Xingzhong; Liu, Fuyan; Tang, Haohui; Zhang, Zhiming; Wang, Baoyi; Wei, Long

    2017-11-01

    The compressive effect of a magnetic field on the positron range from commonly used positron emitters in PET (Positron Emission Tomography) was simulated using the Geant4 toolkit with H2O as the environmental material. The compression of the positron range, which was different in the directions parallel and perpendicular to the magnetic field, showed finite final variation of relative change rate versus the magnetic field. The variation greatly depended on the positron-emission energy spectrum in the same medium. Furthermore, the volume of the positron annihilation point was dramatically compressed as the magnetic field was set in the range of 3-6T. It was more prominent for 82Rb , which is generally used as a positron source in PET technology.

  11. Simulation of the annihilation emission of galactic positrons

    International Nuclear Information System (INIS)

    Gillard, W.

    2008-01-01

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  12. Positron emission intensities in the decay of 64Cu, 76Br and 124I

    International Nuclear Information System (INIS)

    Qaim, S.M.; Bisinger, T.; Hilgers, K.; Nayak, D.; Coenen, H.H.

    2007-01-01

    The relatively long-lived positron emitters 64 Cu (t 1/2 = 12.7 h), 76 Br (t 1/2 = 16.2 h) and 124 I (t 1/2 = 4.18 d) are finding increasing applications in positron emission tomography (PET). For precise determination of their positron emission intensities, each radionuclide was prepared via a charged particle induced reaction in a ''no-carrier-added'' form and with high radionuclidic purity. It was then subjected to γ-ray and X-ray spectroscopy as well as to anticoincidence beta and γγ-coincidence counting. The positron emission intensities measured were: 64 Cu (17.8 ± 0.4)%, 76 Br (58.2 ± 1.9)% and 124 I (22.0 ± 0.5)%. The intensity of the weak 1346 keV γ-ray emitted in the decay of 64 Cu was determined as (0.54 ± 0.03)%. Some implications of the precisely determined nuclear data are discussed. (orig.)

  13. Positron emission tomography now and in the future

    International Nuclear Information System (INIS)

    Vaalburg, W.

    1987-01-01

    A survey is given of positron emission tomography used in nuclear medicine. The production of positron emitting radionuclides is discussed. The development of positron detectors is described. The application of positron emission tomography in cardiology, oncology and neurology is treated. The authors conclude that PET is a unique method to examine metabolic processes, although the method is still in its infancy. 7 refs.; 1 table

  14. Positron emission computed tomography

    International Nuclear Information System (INIS)

    Grover, M.; Schelbert, H.R.

    1985-01-01

    Regional mycardial blood flow and substrate metabolism can be non-invasively evaluated and quantified with positron emission computed tomography (Positron-CT). Tracers of exogenous glucose utilization and fatty acid metabolism are available and have been extensively tested. Specific tracer kinetic models have been developed or are being tested so that glucose and fatty acid metabolism can be measured quantitatively by Positron-CT. Tracers of amino acid and oxygen metabolism are utilized in Positron-CT studies of the brain and development of such tracers for cardiac studies are in progress. Methods to quantify regional myocardial blood flow are also being developed. Previous studies have demonstrated the ability of Positron-/CT to document myocardial infarction. Experimental and clinical studies have begun to identify metabolic markers of reversibly ischemic myocardium. The potential of Positron-CT to reliably detect potentially salvageable myocardium and, hence, to identify appropriate therapeutic interventions is one of the most exciting applications of the technique

  15. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Budinger, T.F.; Yano, Y.; Mathis, C.A.; Moyer, B.R.; Huesman, R.H.; Derenzo, S.E.

    1983-01-01

    Positron emission tomography (PET) offers the opportunity to noninvasively measure heart muscle blood perfusion, oxygen utilization, metabolism of fatty acids, sugars and amino acids. This paper reviews physiological principles which are basic to PET instrumentation for imaging the heart and gives examples of the application of positron emission tomography for measuring myocardial flow and metabolism. 33 references, 11 figures, 1 table

  16. Staging Hemodynamic Failure With Blood Oxygen-Level-Dependent Functional Magnetic Resonance Imaging Cerebrovascular Reactivity: A Comparison Versus Gold Standard (15O-)H2O-Positron Emission Tomography.

    Science.gov (United States)

    Fierstra, Jorn; van Niftrik, Christiaan; Warnock, Geoffrey; Wegener, Susanne; Piccirelli, Marco; Pangalu, Athina; Esposito, Giuseppe; Valavanis, Antonios; Buck, Alfred; Luft, Andreas; Bozinov, Oliver; Regli, Luca

    2018-03-01

    Increased stroke risk correlates with hemodynamic failure, which can be assessed with ( 15 O-)H 2 O positron emission tomography (PET) cerebral blood flow (CBF) measurements. This gold standard technique, however, is not established for routine clinical imaging. Standardized blood oxygen-level-dependent (BOLD) functional magnetic resonance imaging+CO 2 is a noninvasive and potentially widely applicable tool to assess whole-brain quantitative cerebrovascular reactivity (CVR). We examined the agreement between the 2 imaging modalities and hypothesized that quantitative CVR can be a surrogate imaging marker to assess hemodynamic failure. Nineteen data sets of subjects with chronic cerebrovascular steno-occlusive disease (age, 60±11 years; 4 women) and unilaterally impaired perfusion reserve on Diamox-challenged ( 15 O-)H 2 O PET were studied and compared with a standardized BOLD functional magnetic resonance imaging+CO 2 examination within 6 weeks (8±19 days). Agreement between quantitative CBF- and CVR-based perfusion reserve was assessed. Hemodynamic failure was staged according to PET findings: stage 0: normal CBF, normal perfusion reserve; stage I: normal CBF, decreased perfusion reserve; and stage II: decreased CBF, decreased perfusion reserve. The BOLD CVR data set of the same subjects was then matched to the corresponding stage of hemodynamic failure. PET-based stage I versus stage II could also be clearly separated with BOLD CVR measurements (CVR for stage I 0.11 versus CVR for stage II -0.03; P the affected hemisphere and middle cerebral artery territory ( P the affected hemisphere and middle cerebral artery territory and for identifying hemodynamic failure stage II. BOLD CVR may, therefore, be considered for prospective studies assessing stroke risk in patients with chronic cerebrovascular steno-occlusive disease, in particular because it can potentially be implemented in routine clinical imaging. © 2018 American Heart Association, Inc.

  17. NMF on positron emission tomography

    DEFF Research Database (Denmark)

    Bödvarsson, Bjarni; Hansen, Lars Kai; Svarer, Claus

    2007-01-01

    In positron emission tomography, kinetic modelling of brain tracer uptake, metabolism or binding requires knowledge of the cerebral input function. Traditionally, this is achieved with arterial blood sampling in the arm or as shown in (Liptrot, M, et al., 2004) by non-invasive K-means clustering....... We propose another method to estimate time-activity curves (TAC) extracted directly from dynamic positron emission tomography (PET) scans by non-negative matrix factorization (NMF). Since the scaling of the basis curves is lost in the NMF the estimated TAC is scaled by a vector alpha which...

  18. Positron emission tomography in oncology

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This report describes the current and potential uses of positron emission tomography in clinical medicine and research related to oncology. Assessment will be possible of metabolism and physiology of tumors and their effects on adjacent tissues. Specific probes are likely to be developed for target sites on tumors, including monoclonal antibodies and specific growth factors that recognize tumors. To date, most oncological applications of positron emission tomography tracers have been qualitative; in the future, quantitative metabolic measurements should aid in the evaluation of tumor biology and response to treatment

  19. F-18-fluorodeoxyglucose-positron emission tomography in colorectal cancer

    International Nuclear Information System (INIS)

    Joerg, L.; Langsteger, W.

    2002-01-01

    Whole-body positron emission tomography (PET) with the radiolabeled glucose analog F-18-fluorodeoxyglucose (F-18-FDG) is a sensitive diagnostic tool that images tumors based on increased uptake of glucose. Several recent publications have shown that F-18-fluorodeoxyglucose-positron emission tomography is more sensitive than computed-tomography (CT) in detecting colorectal cancer. In patients with increasing CEA (carcinoembryonic antigen) and no evidence of recurrent disease on CT F-18-fluorodeoxyglucose-positron emission tomography often detects recurrent cancer. In all, patient management seems to be changed in about 25 % of patients who undergo F-18-fluorodeoxyglucose-positron emission tomography in addition to standard staging procedure. Limited reports to date on both chemotherapy and radiotherapy support the role of F-18-fluorodeoxyglucose-positron emission tomography in assessing treatment response. Also regarding preoperative staging of primary colorectal cancer the literature is very limited. (author)

  20. Positron emission tomography - a new approach to brain chemistry

    International Nuclear Information System (INIS)

    Jacobson, H.G.

    1988-01-01

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission

  1. Positron-molecule interactions and corresponding positron attachment to molecules. As a basis for positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Tachikawa, Masanori; Kimura, Mineo; Pichl, Lukas

    2007-01-01

    Through positron and electron interactions, they annihilate emitting primarily two gamma rays with 180-degree opposite directions. Positron spectroscopy using the characteristics of these gamma rays has been employed for analyzing various properties of material as well as for positron emission tomography (PET). However, its fundamental physics of positron-electron interactions and resulting features of emitting gamma rays are not well understood. By obtaining better understanding of positron interactions, it should become possible to provide the firm bases for positron spectroscopy in finer accuracy and quality. Here, we propose a significant mechanism for positron annihilation through positron attachment process, which may help increase the quality of positron spectroscopy. (author)

  2. A Comparison of Cerebral Blood Flow in Migraineurs During Headache, Headache-Free and Treatment Periods

    National Research Council Canada - National Science Library

    Bednarczyk, Edward

    1999-01-01

    ...: Otherwise healthy patients with a minimum of one migraine headache per month (IHS criteria) were scanned using H215O, and positron emission tomography, within 24 hours of the onset of migraine headache...

  3. Positron emission tomography studies of brain receptors

    International Nuclear Information System (INIS)

    Maziere, B.; Maziere, M.

    1991-01-01

    Probing the regional distribution and affinity of receptors in the brain, in vivo, in human and non human primates has become possible with the use of selective ligands labelled with positron emitting radionuclides and positron emission tomography (PET). After describing the techniques used in positron emission tomography to characterize a ligand receptor binding and discussing the choice of the label and the limitations and complexities of the in vivo approach, the results obtained in the PET studies of various neurotransmission systems: dopaminergic, opiate, benzodiazepine, serotonin and cholinergic systems are reviewed

  4. Positron emission tomography

    International Nuclear Information System (INIS)

    Pavuk, M.

    2003-12-01

    The aim of this project is to provide a simple summary of new trends in positron emission tomography and its basic physical principles. It provides thereby compendious introduction of the trends of the present development in diagnostics using PET systems. A review of available literature was performed. (author)

  5. Fundamentals of positron emission tomography

    International Nuclear Information System (INIS)

    Ostertag, H.

    1989-01-01

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The methods is based on: (1) Radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. (orig.) [de

  6. Positron-annihilation-induced ion desorption from TiO2(110)

    Science.gov (United States)

    Tachibana, T.; Hirayama, T.; Nagashima, Y.

    2014-05-01

    We have investigated the positron-stimulated desorption of ions from a TiO2(110) surface. Desorbed O+ ions were detected in coincidence with the emission of annihilation γ rays. The energy dependence of the ion yields shows that the O+ ions were detected at energies much lower than the previously reported threshold for electron impact desorption corresponding to the excitation energy of Ti(3p) core electrons. These results provide evidence that core-hole creation by positron annihilation with electrons in the core levels leads to ion desorption.

  7. Positron annihilation studies in ZnO nanoparticles

    Science.gov (United States)

    Sharma, S. K.; Pujari, P. K.; Sudarshan, K.; Dutta, D.; Mahapatra, M.; Godbole, S. V.; Jayakumar, O. D.; Tyagi, A. K.

    2009-04-01

    We report results on positron annihilation spectroscopic (PAS) studies using lifetime and coincidence Doppler broadening techniques in zinc oxide (ZnO) nanoparticles (4 to 40 nm) synthesized by solid state pyrolytic reaction followed by annealing in the temperature range of 200 ∘C to 800 ∘C. Positron lifetime in the nanoparticles are observed to be higher than bulk lifetime in all the cases. Theoretical calculation of lifetime indicates the presence of either Zn or (Zn, O) vacancy clusters which migrate and anneal out at high temperature. Comparison of ratio spectra from coincidence Doppler broadening measurement and calculated electron momentum distribution indicates the presence of either Zn or (Zn, O) vacancies. In addition, photoluminescence (PL) measurements have been carried out to examine the role of defects on the intensity of emission in the visible region.

  8. Clinical applications of positron emission tomography at Montreal Neurological Institute

    International Nuclear Information System (INIS)

    Morgan, P.P.

    1983-01-01

    The Montreal Neurological Institute occupies a leading position in positron emission tomography (PET) of the brain with the help of the following three techological gains: they have acquired a 'Therascan' positron emission tomograph manufactured by Atomic Energy of Canada Ltd.; also, a 'Baby Cyclotron' manufactured by Japan Steel Works Ltd.; and they have written a computer program to display the results in colour. Four short-lived isotopes are used; 11 C, 15 O, 18 F, 13 N. Studies of the oxygen uptake of tumours, their glucose metabolism (as monitored by 18 F labelled 2-fluoro-2-deoxyglucose), and their uptake of therapeutic agents, provide valuable research and diagnostic information. PET is also being used to study epilepsy and cerebrovascular disease

  9. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    Science.gov (United States)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  10. Positron emission tomography imaging--technical considerations

    International Nuclear Information System (INIS)

    Muehllehner, G.; Karp, J.S.

    1986-01-01

    Positron imaging instrumentation has improved rapidly in the last few years. Scanners currently under development are beginning to approach fundamental limits set by positron range and noncolinearity effects. This report reviews the latest developments in positron emission tomography (PET) instrumentation, emphasizing the development of coding schemes that reduce the complexity and cost of high-resolution scanners. The relative benefits of using time-of-flight (TOF) information is discussed as well. 68 references

  11. First image from a combined positron emission tomography and field-cycled MRI system.

    Science.gov (United States)

    Bindseil, Geron A; Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Chronik, Blaine A

    2011-07-01

    Combining positron emission tomography and MRI modalities typically requires using either conventional MRI with a MR-compatible positron emission tomography system or a modified MR system with conventional positron emission tomography. A feature of field-cycled MRI is that all magnetic fields can be turned off rapidly, enabling the use of conventional positron emission tomography detectors based on photomultiplier tubes. In this demonstration, two photomultiplier tube-based positron emission tomography detectors were integrated with a field-cycled MRI system (0.3 T/4 MHz) by placing them into a 9-cm axial gap. A positron emission tomography-MRI phantom consisting of a triangular arrangement of positron-emitting point sources embedded in an onion was imaged in a repeating interleaved sequence of ∼1 sec MRI then 1 sec positron emission tomography. The first multimodality images from the combined positron emission tomography and field-cycled MRI system show no additional artifacts due to interaction between the systems and demonstrate the potential of this approach to combining positron emission tomography and MRI. Copyright © 2010 Wiley-Liss, Inc.

  12. Positron emission tomography

    International Nuclear Information System (INIS)

    Lindback, Stig

    1995-01-01

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body

  13. Positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lindback, Stig [GEMS PET Systems AB, Uppsala (Sweden)

    1995-07-15

    Positron Emission Tomography (PET) is an advanced nuclear medicine technique used for research at major centres. Unique diagnostic information is obtained from tomographic measurements of the biochemistry and physiology of tissues and organs. In theory, diseases are related to biochemical changes and these can be observed with PET long before any anatomical changes are detectable. In PET the radioactive component is a positron-emitting isotope or 'tracer'. The positrons annihilate with electrons in the body to produce two gamma rays 180° apart; coincidence detection of these gammas provides a very efficient method of determining the spatial distribution of the radioisotope tracer. Because physiological measurements are usually required in a single imaging session, very short-lived isotopes are used to label the tracer molecules; isotope production and labelling is usually carried out in situ. The most commonly used radionuclides are carbon- 11 (half-life 20 minutes), nitrogen-13 (10 minutes), oxygen-15 (2 minutes), and fluorine-18 (110 minutes). A PET system has three major components: - a particle accelerator with targets for production of the positron-emitting isotopes; - chemistry modules for synthesis and labelling of the desired tracers; - and a PET camera for in-vivo measurements of the distribution of the tracer in the body.

  14. Observations of interstellar H2O emission at 183 Gigahertz

    International Nuclear Information System (INIS)

    Waters, J.W.; Gustincic, J.J.; Kakar, R.K.; Kuiper, T.B.H.; Roscoe, H.K.; Swanson, P.N.; Rodriguez Kuiper, E.N.; Kerr, A.R.; Thaddeus, P.

    1980-01-01

    Line emission at 183 GHz by the 3 13 --2 20 rotational transition of water vapor has been detected from the Orion Nebula with the NASA Kuiper Airborne Observatory 91 cm telescope. The peak antenna temperature of the line is 15 K, its LSR velocity is 8 km s -1 , and its width is 15 km s -1 . The velocity profile has characteristics similar to those for CO:a narrow (approx.4 km s -1 ) ''spike'' centered at 9.5 km s -1 and a broad ''plateau'' with flaring wings centered at approx.8 km s -1 . Our 7'.5 antenna beam did not resolve the source. The 183 GHz H 2 O plateau emission appears enhanced above that expected for thermal excitation if it originates from the no greater than 1' region characteristic of plateau emission from all other observed molecules. The spike emission is consistent with an optically thick source of the approximated size of the well-known molecular ridge in Orion having the H 2 O in thermal equilibrium at Tapprox. =50 K. If this is the case, then the H 2 O column density giving rise to the spike is N/sub H/2/sub O/> or =3 x 10 17 cm -2 . An excitation calculation implies N/sub H/2/sub O/approx. =10 18 cm -2 for a source the size of the molecular ridge. These results imply that H 2 O is one of the more abundant species in the Orion Molecualr Cloud.H 2 O emission at 183 GHz was not detected in Sgr A, Sgr B2, W3, W43, W49, W51, DR 21, NGC 1333, NGC 7027, GL 2591, or the rho Oph cloud; it may have been detected in M17

  15. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET

    DEFF Research Database (Denmark)

    IIda, H.; Law, I.; Pakkenberg, B.

    2000-01-01

    Limited spatial resolution of positron emission tomography (PET) can cause significant underestimation in the observed regional radioactivity concentration (so-called partial volume effect or PVE) resulting in systematic errors in estimating quantitative physiologic parameters. The authors have...... formulated four mathematical models that describe the dynamic behavior of a freely diffusible tracer (H215O) in a region of interest (ROI) incorporating estimates of regional tissue flow that are independent of PVE. The current study was intended to evaluate the feasibility of these models and to establish...... a methodology to accurately quantify regional cerebral blood flow (CBF) corrected for PVE in cortical gray matter regions. Five monkeys were studied with PET after IV H2(15)O two times (n = 3) or three times (n = 2) in a row. Two ROIs were drawn on structural magnetic resonance imaging (MRI) scans and projected...

  16. Basic principles of 18F-fluoro-deoxyglucose positron emission tomography

    International Nuclear Information System (INIS)

    Standke, R.

    2002-01-01

    Positron emission tomography uses photons to receive regional information about dynamic, physiologic, and biochemical processes in the living body. A positron decay is measured indirectly by the simultaneous registration of both gamma rays created by the annihilation. The event is counted, if two directly opposite located detectors register gamma rays in coincidence. Unfortunately the detectors of a positron emission tomography system do not register only true coincident events. There are also scattered and random coincidences. Different types of positron tomographs are presented and scintillation crystals, which are in use for positron emission tomography are discussed. The 2D- and 3D-acquisition methods are described as well as preprocessing methods, such as correction for attenuation, scatter and dead time. For quantification the relative parameter standard uptake value (SUV) is explained. Finally hybrid systems, such as combined positron emission tomography/computed tomography scanners and the use of computed tomography data for attenuation correction are introduced. (author)

  17. Positron emission tomography for the assessment of myocardial viability

    International Nuclear Information System (INIS)

    Schelbert, H.R.

    1991-01-01

    The detection of viable myocardium or ischemically injured myocardium with a reversible impairment of contractile function remains clinically important but challenging. Detection of reversible dysfunction and distinction from irreversible tissue injury by positron emission tomography is based on identification of preserved or even enhanced glucose metabolism with F-18 2-fluoro 2-deoxyglucose. Regional patterns of myocardial glucose utilization and blood flow, defined as perfusion-metabolism mismatches or matches, on positron emission tomography in patients with chronic or even acute ischemic heart disease are highly accurate in predicting the functional outcome after interventional revascularization. Compared with thallium-201 redistribution scintigraphy, positron emission tomography appears to be diagnostically more accurate, especially in patients with severely impaired left ventricular function. While larger clinical trials are needed for further confirmation, positron emission tomography has already proved clinically useful for stratifying patients with poor left ventricular function to the most appropriate therapeutic approach

  18. Positron emission tomography

    International Nuclear Information System (INIS)

    Marchenkov, N.S.

    2000-01-01

    The foundations of the positron emission tomography (PET), widely used for the medical diagnostics, are considered. The brief description of the cyclotron for production of radionuclides, applied in the PET, the target devices for manufacturing the position emitters, the moduli for the radiopharmaceuticals synthesis (RPS) for the PET is presented. The necessity and concept of complete automation of the RPS for the PET are discussed [ru

  19. Positronium formation and hydrated positron reactions in H2O, D2O, 1.74 M PPS/H2O and 1.74 M PPS/D2O solutions of Cl−, Br− and I−

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Pedersen, Niels Jørgen

    1986-01-01

    Angular correlation of annihilation photons were measured for H2O, D2O, 1.74 M PPS/H2O and 1.74 M PPS/D2O solutions of Cl−, Br− and I−. The three components of the angular correlation spectra for D2O and H2O were nearly identical in shape. The positronium (Ps) yields for the H2O and D2O solutions...... before annihilation (lifetime 400 ps) was determined for the three halides in the four solvents. Simple kinetic equations (“trapping model”) with time dependent rate constant, solved analytically, could explain the [X−, e+] formation in H2O fairly well for concentrations below 0.03 M X−, if a diffusion...... controlled reaction with positron diffusion constant D = 5 × 10−5 cm2/s and reaction radius R = 1 nm were assumed. The three halides gave roughly identical [X−, e+] formation below 0.03 M X−. The difference between the four solutions could be explained partly only in terms of viscosity change for the model...

  20. Quantitative agreement between [(15)O]H2O PET and model free QUASAR MRI-derived cerebral blood flow and arterial blood volume

    NARCIS (Netherlands)

    Heijtel, D. F. R.; Petersen, E. T.; Mutsaerts, H. J. M. M.; Bakker, E.; Schober, P.; Stevens, M. F.; van Berckel, B. N. M.; Majoie, C. B. L. M.; Booij, J.; van Osch, M. J. P.; van Bavel, E. T.; Boellaard, R.; Lammertsma, A. A.; Nederveen, A. J.

    2016-01-01

    The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week

  1. Preclinical and clinical evaluation of O-[11C]methyl-L-tyrosine for tumor imaging by positron emission tomography

    International Nuclear Information System (INIS)

    Ishiwata, Kiichi; Tsukada, Hideo; Kubota, Kazuo; Nariai, Tadashi; Harada, Norihiro; Kawamura, Kazunori; Kimura, Yuichi; Oda, Keiichi; Iwata, Ren; Ishii, Kenji

    2005-01-01

    We performed preclinical and clinical studies of O-[ 11 C]methyl-L-tyrosine, a potential tracer for imaging amino acid transport of tumors by positron emission tomography (PET). Examinations of the radiation-absorbed dose by O-[ 11 C]methyl-L-tyrosine and the acute toxicity and mutagenicity of O-methyl-L-tyrosine showed suitability of the tracer for clinical use. The whole-body imaging of monkeys and healthy humans by PET showed low uptake of O-[ 11 C]methyl-L-tyrosine in all normal organs except for the urinary track and bladder, suggesting that the O-[ 11 C]methyl-L-tyrosine PET has the potential for tumor imaging in the whole-body. Finally, the brain tumor imaging was preliminarily demonstrated

  2. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. Theory, error analysis, and stereologic comparison

    DEFF Research Database (Denmark)

    Lida, H; Law, I; Pakkenberg, B

    2000-01-01

    Limited spatial resolution of positron emission tomography (PET) can cause significant underestimation in the observed regional radioactivity concentration (so-called partial volume effect or PVE) resulting in systematic errors in estimating quantitative physiologic parameters. The authors have...... formulated four mathematical models that describe the dynamic behavior of a freely diffusible tracer (H215O) in a region of interest (ROI) incorporating estimates of regional tissue flow that are independent of PVE. The current study was intended to evaluate the feasibility of these models and to establish...... a methodology to accurately quantify regional cerebral blood flow (CBF) corrected for PVE in cortical gray matter regions. Five monkeys were studied with PET after IV H2(15)O two times (n = 3) or three times (n = 2) in a row. Two ROIs were drawn on structural magnetic resonance imaging (MRI) scans and projected...

  3. Application of mathematical removal of positron range blurring in positron emission tomography

    International Nuclear Information System (INIS)

    Haber, S.F.; Derenzo, S.E.; Uber, D.

    1990-01-01

    The range of positrons in tissue is an important limitation to the ultimate spatial resolution achievable in positron emission tomography. In this work the authors have applied a Fourier deconvolution technique to remove range blurring in images taken by the Donner 600-crystal positron tomograph. Using phantom data, the authors have found significant improvement in the image quality and the FWHM for both 68 Ga and 82 Rb. These were successfully corrected so that the images and FWHM almost matched those of 18 F which has negligible positron range. However, statistical noise was increased by the deconvolution process and it was not practical to recover the full spatial resolution of the tomograph

  4. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Law, Ian; Wiltschiøtz, Gordon

    2002-01-01

    to other forms of altered awareness, for example, relaxation meditation than to deeper sleep stages. We are of the opinion that stage-1 sleep represents the dreaming state of wakefulness, while rapid eye movement (REM) sleep reflects the dreaming state of the unaware, sleeping brain.......This is the first report on the distribution of regional cerebral blood flow (rCBF) changes during stage-1 sleep or somnolence. Two hypotheses were tested: (A) that rCBF differed between the awake relaxed state and stage-1 sleep, (B) that hypnagogic hallucinations frequently experienced at sleep...... onset would be accompanied by measurable changes in rCBF using positron emission tomography (PET). Eight subjects were PET-scanned with (15)O-labeled water injection in three conditions: awake, stage-1 sleep with reportable experiences and stage-1 sleep without reportable experiences...

  5. Positron emission tomography imaging of gene expression

    International Nuclear Information System (INIS)

    Tang Ganghua

    2001-01-01

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  6. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each ring contains a plurality of scintillation detectors which are positioned around an inner circumference with a septum ring extending inwardly from the inner circumference along each outer edge of each ring. An additional septum ring is positioned in the middle of each ring of detectors and parallel to the other septa rings, whereby the inward extent of all the septa rings may be reduced by one-half and the number of detectors required in each ring is reduced. The additional septa reduces the costs of the positron camera and improves its performance

  7. Radiopharmaceutical chemistry for positron emission tomography

    NARCIS (Netherlands)

    Elsinga, PH

    Radiopharmaceutical chemistry includes the selection, preparation, and preclinical evaluation of radiolabeled compounds. This paper describes selection criteria for candidates for positron emission tomography (PET) investigations. Practical aspects of nucleophilic and electrophilic

  8. Preclinical and clinical evaluation of O-[{sup 11}C]methyl-L-tyrosine for tumor imaging by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan)]. E-mail: ishiwata@pet.tmig.or.jp; Tsukada, Hideo [Central Research Laboratory, Hamamatsu Photonics K.K., Hamakita 434-8601 (Japan); Kubota, Kazuo [Department of Radiology, Division of Nuclear Medicine, International Medical Center of Japan, Shinjuku-ku, Tokyo 162-8655 (Japan); Nariai, Tadashi [Department of Neurosurgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519 (Japan); Harada, Norihiro [Department of Radiology, Division of Nuclear Medicine, International Medical Center of Japan, Shinjuku-ku, Tokyo 162-8655 (Japan); Kawamura, Kazunori [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan); SHI Accelerator Service Ltd., Shinagawa-ku, Tokyo 141-8686 (Japan); Kimura, Yuichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan); Oda, Keiichi [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan); Iwata, Ren [CYRIC, Tohoku University, Aoba-ku, Sendai 980-8578 (Japan); Ishii, Kenji [Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0022 (Japan)

    2005-04-01

    We performed preclinical and clinical studies of O-[{sup 11}C]methyl-L-tyrosine, a potential tracer for imaging amino acid transport of tumors by positron emission tomography (PET). Examinations of the radiation-absorbed dose by O-[{sup 11}C]methyl-L-tyrosine and the acute toxicity and mutagenicity of O-methyl-L-tyrosine showed suitability of the tracer for clinical use. The whole-body imaging of monkeys and healthy humans by PET showed low uptake of O-[{sup 11}C]methyl-L-tyrosine in all normal organs except for the urinary track and bladder, suggesting that the O-[{sup 11}C]methyl-L-tyrosine PET has the potential for tumor imaging in the whole-body. Finally, the brain tumor imaging was preliminarily demonstrated.

  9. Positron bound states on hydride ions in thermochemically reduced MgO single crystals

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1996-01-01

    Positron-lifetime and Doppler-broadening techniques were used to unambiguously identify positronium hydrides in thermochemically reduced MgO crystals at low temperatures. Positrons trapped at H - ions, forming PsH, yield a lifetime of (640±40) ps, independent of temperature. Complementary evidence for this identification was provided by Doppler-broadening experiments, in which positrons were trapped at H 2- sites at low temperatures. The H 2- ions were formed via H - +e - →H 2- by the capturing of an electron released from Fe + impurity under blue-light stimulation. copyright 1996 The American Physical Society

  10. Recent developments in positron emission tomography (PET) instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs.

  11. Recent developments in positron emission tomography (PET) instrumentation

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs

  12. The practicality of high magnification imaging by positron emission

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Pendyala, S.

    1988-01-01

    The positron emission microscope has the capability of contrasting areas having high concentrations of monatomic vacancies and other defects. Since the positrons traveling through the specimen will have energies of the same magnitude as that of valence electrons, image contrast will be sensitive to the chemistry of the specimen. In the near future resolutions of 10 nm or lower will be achieved. Whether or not optical aberrations will permit one atom resolution is not clear. For one atom resolution to be obtained positron emission fluxes must be brightness enhanced to 10 11 sec/sup/minus/1/cm/sup/minus/2/ or greater. 5 refs., 1 fig

  13. Investigation on photoluminescence, electrical and positron lifetime of Eu"3"+ activated Gd_2O_3 phosphors

    International Nuclear Information System (INIS)

    Selvalakshmi, Thangaraj; Sellaiyan, Selvakumar; Uedono, Akira; Chandra Bose, Arumugam

    2015-01-01

    In the present study, red emitting Gd_2O_3:Eu"3"+ phosphors are prepared by citrate-based sol–gel process and the as-prepared samples are annealed at various annealing temperatures. The photoluminescence properties of Gd_2O_3:Eu"3"+ is explained from the excitation and emission spectra. The excitation spectra include peaks corresponding to charge transfer and 4f–4f transitions of Eu"3"+ and Gd"3"+. The phosphors exhibit a weak energy transfer process from Gd"3"+ to Eu"3"+. Under the excitation of 254 nm, a sharp red emission peak is observed at 611 nm and the emission intensity increases with the annealing temperature. The presence of defects in the phosphor is investigated by positron annihilation lifetime and Doppler broadening spectroscopy. The relation between visible emission and lattice defects of the phosphors is presented. The electrical and dielectric properties of the phosphor are also discussed in detail. Such red emitting phosphors pave the way towards the fabrication of light emitting diodes (LEDs). - Highlights: • Positron annihilation lifetime spectroscopy of Gd_2O_3:Eu"3"+. • Relation between positron lifetime and photoluminescence. • Conductivity and dielectric properties of Gd_2O_3:Eu"3"+.

  14. Ionization and positron emission in giant quasiatoms

    International Nuclear Information System (INIS)

    Soff, G.; Reinhardt, J.; Reus, T. de; Wietschorke, K.H.; Schaefer, A.; Mueller, B.; Greiner, W.; Mueller, U.; Schlueter, P.

    1985-07-01

    Electron excitation processes in superheavy quasiatoms are treated within a relativistic framework. Theoretical results on K-hole production rates as well as delta-electron and positron spectra are compared with experimental data. It is demonstrated that the study of heavy ion collisions with nuclear time delay promises a signature for the spontaneous positron formation in overcritical systems. Corresponding experimental results are confronted with our theoretical hypothesis. Recent speculations on the origin of the observed peak structures in positron spectra are critically reviewed. Atomic excitations are also employed to obtain information on the course of a nuclear reaction. Using a semiclassical picture we calculate the emission of delta-electrons and positrons in deep-inelastic nuclear reactions. Furthermore some consequences of conversion processes in giant systems are investigated. (orig.)

  15. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.; DILMANIAN, F.A.; PEGGS, S.G.; SCHLYEER, D.J.; VASKA, P.

    2002-01-01

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12 C, 14 N, and 16 O. These radioisotopes, mainly 11 C, 13 N and 15 O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner

  16. Positron emission tomography of the lung

    International Nuclear Information System (INIS)

    Wollmer, P.

    1984-01-01

    Positron emission tomography enables the distribution of positron emitting isotopes to be imaged in a transverse plane through the body and the regional concentration of the isotope to be measured quantitatively. This thesis reports some applications of positron emission tomography to studies of pulmonary pathophysiology. Measurements in lung phantoms showed that regional lung density could be measured from a transmission tomogram obtained with an external source of positron emitting isotope. The regional, fractional blood volume was measured after labelling the blood with carbon-11-monoxide. Regional extravascular lung density (lung tissue and interstitial water per unit thoracic volume) was obtained by subtracting fractional blood volume from lung density. Measurements in normal subjects revealed large regional variations in lung density and fractional blood volume in the supine posture. Extravascular lung density showed a more uniform distribution. The technique has been used to study patients with chronic interstitial pulmonary oedema, pulmonary sarcoidosis and fibrosis, pulmonary arterial hypertension and patients with intracardiac, left-to-right shunt. Tomographic measurements of pulmonary tissue concentration of radionuclides are difficult, since corrections for the blood content and the inflation of the lung must be applied. A simultaneous measurement of lung density and fractional blood volume allows such corrections to be made and the extravascular tracer concentration to be calculated. This has been applied to measurements of the tissue penetration of carbon-11-labelled erythromycin in patients with lobar pneumonia. (author)

  17. Positron emission tomography. Present status and Romanian perspectives

    International Nuclear Information System (INIS)

    Constantinescu, B.; Lungu, V.

    1995-01-01

    Basic principles of the positron emission tomography (PET) are summarised. The main PET methods using short-lived radioisotopes (i.e. 11 C, 13 N, 15 O, 18 F) are briefly reviewed. Three types of particle accelerators for radioisotopes production and medical uses (including radiotherapy), corresponding to the proton energy (E p p p < 200 MeV) are presented. PET imaging equipment and procedures are discussed. Main radiopharmaceuticals based on beta decay for PET studies and their role in medicine is also described. Finally, perspectives for a PET program in Romania (Cyclotron + Radiochemistry + Tomograph ) are discussed. (author)

  18. Measurement of brain pH using 11CO2 and positron emission tomography

    International Nuclear Information System (INIS)

    Buxton, R.B.; Wechsler, L.R.; Alpert, N.M.; Ackerman, R.H.; Elmaleh, D.R.; Correia, J.A.

    1984-01-01

    We have examined the feasibility of measuring local brain pH in vivo with 11 CO 2 and positron emission tomography. In particular, we have addressed two objections that have been raised against this method: the assumed need to estimate local tissue PCO 2 and the rapid fixation of 11 C in tissue. From a reexamination of the basic theory, we argue that after administration of 11 CO 2 the time-dependent distribution of 11 C between tissue and blood is independent of the distribution of CO 2 already in the body, making it unnecessary to estimate local tissue PCO 2 . Assuming that the blood--brain barrier is impermeable to bicarbonate ions, there will be equal partial pressures of 11 CO 2 in blood and tissue at equilibrium. To overcome the problem of fixation in the tissue we have developed a kinetic model of the time-dependent distribution of 11 C that accounts for regional variations in blood flow, CO 2 extraction, pH, and rate of fixation. The values of the model parameters can be estimated from sequential measurements of tissue activity concentration during administration of 11 CO 2 . Tissue pH can then be calculated from one of the parameter values, a measurement of arterial pH, and known constants. Numerical calculations based on the kinetic model with assumed values of the parameters were used to optimize the experimental design. The calculations show that problems with fixation are much less severe with continuous infusion of activity than with bolus administration. During infusion the tissue curve depends strongly on tissue pH but only weakly on the rate of fixation

  19. RELIABILITY OF POSITRON EMISSION TOMOGRAPHY-COMPUTED TOMOGRAPHY IN EVALUATION OF TESTICULAR CARCINOMA PATIENTS.

    Science.gov (United States)

    Nikoletić, Katarina; Mihailović, Jasna; Matovina, Emil; Žeravica, Radmila; Srbovan, Dolores

    2015-01-01

    The study was aimed at assessing the reliability of 18F-fluorodeoxyglucose positron emission tomography-computed tomography scan in evaluation of testicular carcinoma patients. The study sample consisted of 26 scans performed in 23 patients with testicular carcinoma. According to the pathohistological finding, 14 patients had seminomas, 7 had nonseminomas and 2 patients had a mixed histological type. In 17 patients, the initial treatment was orchiectomy+chemotherapy, 2 patients had orchiectomy+chemotherapy+retroperitoneal lymph node dissection, 3 patients had orchiectomy only and one patient was treated with chemotherapy only. Abnormal computed tomography was the main cause for the oncologist to refer the patient to positron emission tomography-computed tomography scan (in 19 scans), magnetic resonance imaging abnormalities in 1 scan, high level oftumor markers in 3 and 3 scans were perforned for follow-up. Positron emission tomography-computed tomography imaging results were compared with histological results, other imaging modalities or the clinical follow-up of the patients. Positron emission tomography-computed tomography scans were positive in 6 and negative in 20 patients. In two patients, positron emission tomography-computed tomography was false positive. There were 20 negative positron emission omography-computed tomography scans perforned in 18 patients, one patient was lost for data analysis. Clinically stable disease was confirmed in 18 follow-up scans performed in 16 patients. The values of sensitivty, specificity, accuracy, and positive- and negative predictive value were 60%, 95%, 75%, 88% and 90.5%, respectively. A hgh negative predictive value obtained in our study (90.5%) suggests that there is a small possibility for a patient to have future relapse after normal positron emission tomography-computed tomography study. However, since the sensitivity and positive predictive value of the study ire rather low, there are limitations of positive

  20. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    International Nuclear Information System (INIS)

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J.

    1990-01-01

    Sites of uptake, storage, and metabolism of [ 18 F]fluorodopamine and excretion of [ 18 F]fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of [ 18 F]-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of [ 18 F]fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function

  1. Analysis of human cerebral functions using positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Shibasaki, Takashi

    1984-01-01

    Positron emission tomography has two major advantages to analyse human cerebral functions in vivo. First, we can see the distribution of a variety of substance in the living (and doing something) human brain. Positron emitters, 11 C, 13 N, 15 O and 18 F, are made by medical cyclotron and are elements of natural substrates or easily tagged to substrate. Second, the distribution of the tracer is calculated to make a quantitative functional map in a reasonable spatial resolution over the entire brain in the same time. Not only cortical areas but also deeper structures show regional cerebral blood flow (rCBF) or local cerebral metabolic rates (LCMRs). Nowadays, PET is put to practical use for determination of mainly rCBF, LCMR for glucose (LCMRsub(glu)), LCMR for oxygen (LCMRsub(o2)) and regional cerebral blood volume (rCBV). There have been many other pilot studies, such as estimation of distribution of given neurotransmitters or modulators in the brain which also confirms the substances' role in the neuronal function, and observation of protein synthesis relating to memory function. (J.P.N.)

  2. Positron emission tomography of malignant tumours at head and neck. Evaluation of the diagnostic value of positron emission tomography by comparison with computed tomography

    International Nuclear Information System (INIS)

    Kettler, Nele

    2011-01-01

    Imaging methods for early, accurate diagnosis and aftercare of malignant growths is currently one of the most important research topics. The objective of this thesis is to evaluate the diagnostic value of FDG-positron emission tomography by comparison with computed tomography for patients with squamous cell carcinoma, malignant melanoma or sarcoma at head and neck. Measurement criteria are sensitivity and specificity. A retrospective evaluation of 100 examinations on 85 patients of University clinic Aachen was performed. The examination reports were supported by reports from histology, positron emission tomography and computed tomography. In each case, the histological results were assumed to provide a reliable benchmark. Sensitivity and specificity for the primary tumour site, metastatic lymphatic nodes and defined anatomic structures were compared across all patients. Comparisons were also performed on sub groups separated by gender, cancer type and the time and frequency at which tumours arose. The statistic analysis was done with MedCalc. Results: The results for sensitivity and specificity of the primary tumour site were 86.42% and 42.86%, and 64.71% and 66.07%, for positron emission tomography and computed tomography respectively. The results for the lymphatic nodes were 51.52% and 92.86% and 64.71% and 66.07%. When the constituent anatomic structures were evaluated separately, the specificity was significantly higher. The separation by gender showed no difference. Because the classification by tumor type resulted in samples that were of varying size, a comparison was difficult. For the diagnosis of primary tumours, the examination with positron emission tomography was superior, whereas computed tomography proved more effective for the diagnosis of recurrent tumours. For the diagnosis of the main tumour site, both methods were shown to be equally suitable. For the assessment of lymphatic nodes, positron emission tomography was superior to computed tomography

  3. Clinical impact of 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of neurological diseases

    International Nuclear Information System (INIS)

    Buck, A.; Kamel, E.

    2002-01-01

    In this review it will be discussed in which neurological disorders positron emission tomography can yield important diagnostic information. Because positron emission tomography is an expensive method indications have to be cleary defined. One important question concerns the differentiation of tumor recurrence and scar due to radiation therapy or an operation. The grading of brain tumors is another application. In HIV patients fluorodeoxyglucose positron emission tomography can separate lymphoma and toxoplasmosis. In the evaluation of dementia positron emission tomography can help to clarify the differential diagnosis. Another important area is the presurgical evaluation of epilepsy patients and patients with cerebrovascular disease in whom a surgical revascularization procedure is planned. In extrapyramidal disorders, positron emission tomography can often help to establish the final diagnosis. (author)

  4. Comparison of Diagnostic Performance of Three-Dimensional Positron Emission Mammography versus Whole Body Positron Emission Tomography in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Dong Dai

    2017-01-01

    Full Text Available Objective. To compare the diagnostic performance of three-dimensional (3D positron emission mammography (PEM versus whole body positron emission tomography (WBPET for breast cancer. Methods. A total of 410 women with normal breast or benign or highly suspicious malignant tumors were randomized at 1 : 1 ratio to undergo 3D-PEM followed by WBPET or WBPET followed by 3D-PEM. Lumpectomy or mastectomy was performed on eligible participants after the scanning. Results. The sensitivity and specificity of 3D-PEM were 92.8% and 54.5%, respectively. WBPET showed a sensitivity of 95.7% and specificity of 56.8%. After exclusion of the patients with lesions beyond the detecting range of the 3D-PEM instrument, 3D-PEM showed higher sensitivity than WBPET (97.0% versus 95.5%, P = 0.913, particularly for small lesions (<1 cm (72.0% versus 60.0%, P = 0.685. Conclusions. The 3D-PEM appears more sensitive to small lesions than WBPET but may fail to detect lesions that are beyond the detecting range. This study was approved by the Ethics Committee (E2012052 at the Tianjin Medical University Cancer Institute and Hospital (Tianjin, China. The instrument positron emission mammography (PEMi was approved by China State Food and Drug Administration under the registration number 20153331166.

  5. Neural Correlates of Exposure to Traumatic Pictures and Sound in Vietnam Combat Veterans with and without Posttraumatic Stress Disorder: A Positron Emission Tomography Study

    Science.gov (United States)

    Bremner, J. Douglas; Staib, Lawrence H.; Kaloupek, Danny; Southwick, Steven M.; Soufer, Robert; Charney, Dennis S.

    2011-01-01

    Background Patients with posttraumatic stress disorder (PTSD) show a reliable increase in PTSD symptoms and physiological reactivity following exposure to traumatic pictures and sounds. In this study neural correlates of exposure to traumatic pictures and sounds were measured in PTSD. Methods Positron emission tomography and H2[15O] were used to measure cerebral blood flow during exposure to combat-related and neutral pictures and sounds in Vietnam combat veterans with and without PTSD. Results Exposure to traumatic material in PTSD (but not non-PTSD) subjects resulted in a decrease in blood flow in medial prefrontal cortex (area 25), an area postulated to play a role in emotion through inhibition of amygdala responsiveness. Non-PTSD subjects activated anterior cingulate (area 24) to a greater degree than PTSD patients. There were also differences in cerebral blood flow response in areas involved in memory and visuospatial processing (and by extension response to threat), including posterior cingulate (area 23), precentral (motor) and inferior parietal cortex, and lingual gyrus. There was a pattern of increases in PTSD and decreases in non-PTSD subjects in these areas. Conclusions The findings suggest that functional alterations in specific cortical and subcortical brain areas involved in memory, visuospatial processing, and emotion underlie the symptoms of patients with PTSD. PMID:10202567

  6. Effectiveness of lead aprons in positron emission tomography

    International Nuclear Information System (INIS)

    Bezerra Fonseca, R.; Amaral, A.

    2008-01-01

    Full text: In the last two decades, Positron Emission Tomography (PET) has emerged as clinical diagnostic technique, becoming one of the fastest growing imaging tools in modern nuclear medicine. Because 511 keV annihilation photon energy is much higher than the photon with mean energy of 140 keV emitted in Single Photon Computed Tomography (SPECT), medical staff working in PET studies receive a higher dose than those working only with SPECT tracers do. As a result, special attention must be paid to keep radiation exposure as low as reasonably achievable (ALARA principle). Lead equivalent apron is the principal personal protective equipment for technologists occupationally exposed to ionizing radiation in medical procedures and may be an important component in the ALARA program. However, in practices involving PET, 0.5 mm lead equivalent aprons have been used regardless of photon's energy. In this context, this work was designed for evaluating radioprotective effectiveness of such aprons in PET procedures. For this, the operational quantities personal dose equivalent H p (0.07) and H p (10) have been assessed by using MCNP4C code in a model of individual exposure to small source of 511 keV photons, representing the situation of injection of the radiopharmaceutical, in two situations: technologists wearing and not wearing 0.5 mm lead aprons. To represent the technologist a mathematical anthropomorphic phantom was employed, and the simulated source to subject distances varied between 40 to 100 cm, in steps of 10 cm. The results showed no significant differences between the values obtained for H p (10) in the two situations, pointing out that that there is no radioprotective influence of wearing such aprons on PET practices. Compared to simulations without such device, H p (0.07) increased up about 26% when technologist is wearing radioprotective aprons, depending on the source to subject distance. On the basis of this work, 0.5 mm lead equivalent aprons should not be

  7. Positron emission tomography in oncology. Council on Scientific Affairs

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This report describes the current and potential uses of positron emission tomography in clinical medicine and research related to oncology. Assessment will be possible of metabolism and physiology of tumors and their effects on adjacent tissues. Specific probes are likely to be developed for target sites on tumors, including monoclonal antibodies and specific growth factors that recognize tumors. To date, most oncological applications of positron emission tomography tracers have been qualitative; in the future, quantitative metabolic measurements should aid in the evaluation of tumor biology and response to treatment. 41 references

  8. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector rings positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom. Each detector ring or offset ring includes a plurality of photomultiplier tubes and a plurality of scintillation crystals are positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring is offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. The offset detector ring geometry reduces the costs of the positron camera and improves its performance

  9. 18 F-Labeling of Sensitive Biomolecules for Positron Emission Tomography.

    Science.gov (United States)

    Krishnan, Hema S; Ma, Longle; Vasdev, Neil; Liang, Steven H

    2017-11-07

    Positron emission tomography (PET) imaging study of fluorine-18 labeled biomolecules is an emerging and rapidly growing area for preclinical and clinical research. The present review focuses on recent advances in radiochemical methods for incorporating fluorine-18 into biomolecules via "direct" or "indirect" bioconjugation. Recently developed prosthetic groups and pre-targeting strategies, as well as representative examples in 18 F-labeling of biomolecules in PET imaging research studies are highlighted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A sol-gel method for preparing ZnO quantum dots with strong blue emission

    International Nuclear Information System (INIS)

    Chen Zhong; Li Xiaoxia; Du Guoping; Chen Nan; Suen, Andy Y.M.

    2011-01-01

    ZnO quantum dots (QDs) with strong blue emission have been successfully synthesized by sol-gel method, and their crystal structures, sizes, and photoluminescence properties were characterized by X-ray diffractometer, scanning electron microscope, and ultraviolet-visible spectroscopy. It has been found that ZnO QDs had a hexagonal wurtzite crystal structure, and their average diameter was about 16.0-32.2 nm. Both the reaction time and temperature were found to have a strong influence on the average size and photoluminescence properties of ZnO QDs. Longer reaction time and higher reaction temperature resulted in larger average size for ZnO QDs. It has been shown that at reaction temperature 60 deg. C the emission intensity for ZnO QDs increased first with reaction time before 7 h and then decreased after 7 h. For the same reaction time 7 h, ZnO QDs synthesized at 60 deg. C showed the strongest emission intensity. It was found that annealing in nitrogen, vacuum, and air all resulted in an increase of the size of ZnO QDs and a reduction in their photoluminescence. The dependence of the size and properties of ZnO QDs on the reaction parameters as well as the annealing conditions has been discussed. - Highlights: → ZnO quantum dots (QDs) with strong blue emission were prepared by sol-gel method. → ZnO QDs had a pure spectral blue with the chromaticity coordinates (0.166, 0.215). → Optimal reaction time and temperature were 7 h and 60 deg. C, respectively.

  11. Homotopic non-local regularized reconstruction from sparse positron emission tomography measurements

    International Nuclear Information System (INIS)

    Wong, Alexander; Liu, Chenyi; Wang, Xiao Yu; Fieguth, Paul; Bie, Hongxia

    2015-01-01

    Positron emission tomography scanners collect measurements of a patient’s in vivo radiotracer distribution. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule, and the tomograms must be reconstructed from projections. The reconstruction of tomograms from the acquired PET data is an inverse problem that requires regularization. The use of tightly packed discrete detector rings, although improves signal-to-noise ratio, are often associated with high costs of positron emission tomography systems. Thus a sparse reconstruction, which would be capable of overcoming the noise effect while allowing for a reduced number of detectors, would have a great deal to offer. In this study, we introduce and investigate the potential of a homotopic non-local regularization reconstruction framework for effectively reconstructing positron emission tomograms from such sparse measurements. Results obtained using the proposed approach are compared with traditional filtered back-projection as well as expectation maximization reconstruction with total variation regularization. A new reconstruction method was developed for the purpose of improving the quality of positron emission tomography reconstruction from sparse measurements. We illustrate that promising reconstruction performance can be achieved for the proposed approach even at low sampling fractions, which allows for the use of significantly fewer detectors and have the potential to reduce scanner costs

  12. 77 FR 21783 - Guidance on Media Fills for Validation of Aseptic Preparations for Positron Emission Tomography...

    Science.gov (United States)

    2012-04-11

    ...] Guidance on Media Fills for Validation of Aseptic Preparations for Positron Emission Tomography Drugs... Aseptic Preparations for Positron Emission Tomography (PET) Drugs.'' This guidance is intended to help... Preparations for Positron Emission Tomography (PET) Drugs.'' Most PET drugs are designed for parenteral...

  13. The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in resectable pancreatic cancer.

    Science.gov (United States)

    Crippa, Stefano; Salgarello, Matteo; Laiti, Silvia; Partelli, Stefano; Castelli, Paola; Spinelli, Antonello E; Tamburrino, Domenico; Zamboni, Giuseppe; Falconi, Massimo

    2014-08-01

    The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in pancreatic ductal adenocarcinoma is debated. We retrospectively assessed the value of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in addition to conventional imaging as a staging modality in pancreatic cancer. (18)Fluoro-deoxyglucose positron emission tomography/computed tomography was performed in 72 patients with resectable pancreatic carcinoma after multi-detector computed tomography positron emission tomography was considered positive for a maximum standardized uptake value >3. Overall, 21% of patients had a maximum standardized uptake value ≤ 3, and 60% of those had undergone neoadjuvant treatment (P=0.0001). Furthermore, 11% of patients were spared unwarranted surgery since positron emission tomography/computed tomography detected metastatic disease. All liver metastases were subsequently identified with contrast-enhanced ultrasound. Sensitivity and specificity of positron emission tomography/computed tomography for distant metastases were 78% and 100%. The median CA19.9 concentration was 48.8 U/mL for the entire cohort and 292 U/mL for metastatic patients (P=0.112). The widespread application of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in patients with resectable pancreatic carcinoma seems not justified. It should be considered in selected patients at higher risk of metastatic disease (i.e. CA19.9>200 U/mL) after undergoing other imaging tests. Neoadjuvant treatment is significantly associated with low metabolic activity, limiting the value of positron emission tomography in this setting. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  14. Oxygen-15 labelled water production for positron emission tomography

    International Nuclear Information System (INIS)

    Janus, A.; Sachinidis, J.I.; Chan, J.G.; Tochon-Danguy, H.J.

    1998-01-01

    Full text: Functional imaging using positron emission tomography (PET) and 15 O-labelled compounds is both scientifically and clinically challenging. The short half-life of oxygen-15 (t 1/2 = 2 min) allows for multiple administration to a patient without exceeding acceptable levels of absorbed radiation dose and without excessive delay between administrations. The clinical usefulness of [ 15 O]-labelled water for cerebral blood flow measurements has been well established. Here we report the development and construction of a [ 15 O]water generator based on an earlier design from Hammersmith Hospital, London. The cyclotron produces a continuous flow of [ 15 O]O 2 gas by the irradiation of a natural nitrogen target (1% O 2 in N 2 ) with a 5 MeV deuteron beam, via the nuclear reaction ( 14 N(d,n) 15 O). The radioactive gas is then mixed with 5% hydrogen in nitrogen and piped to the water generator located in the scanner room. The O 2 /N 2 gas mixture is reacted over a palladium catalyst at 1500 deg C to produce [ 15 O]H 2 O vapour. The vapour passes through an exchanger where it diffuses across a semi-permeable membrane (cellulose acetate) into saline solution. At the optimum gas flow- rate of 500 mL/min, more than 95% of the radioactive oxygen is converted to radioactive water. Waste radioactive gas is piped back to the cyclotron vault to decay before release into the atmosphere. The saline solution (0.9% NaCl) is pumped continuously through the system at 6 mL/min with an infusion pump (3M AVI470). The present system has been in operation for more than a year and has been used for clinical evaluation of stroke patients and for brain activation research studies

  15. Interface properties of 4H-SiC MOS structures studied by a slow positron beam

    International Nuclear Information System (INIS)

    Maekawa, M.; Kawasuso, A.; Ichimiya, A.; Yoshikawa, M.

    2004-01-01

    Interfacial defects existing near the SiO 2 /SiC interface are an important issue for fabrication of high performance SiC devices. We investigate a thermally grown SiO 2 /SiC layer of 4H-SiC MOS structure by positron annihilation spectroscopy. The Doppler broadening of annihilation quanta was measured as a function of the incident positron energy and the gate bias. Applying a negative gate bias, significant increases in S-parameters were observed. This indicates the migration of implanted positrons towards the SiO 2 /SiC interface and annihilation at interfacial defects. Ultraviolet (UV) ray irradiation was used to extract the influence of the positron trapping to the interfacial states. S-parameters in the interface region were reduced by UV irradiation. This shows that positron trapping probability decreased because the charge state of interfacial defects changed to positive. From the recovery of S-parameters after 24 hours, the interfacial states discharge slowly and exist in large quantities, because the changes of S-parameter by the UV irradiation are larger than changes induced by bias change. (orig.)

  16. Features and applications of positron emission tomography

    International Nuclear Information System (INIS)

    Fan Mingwu

    1997-01-01

    Positron emission tomography, the so-called world's smartest camera, is based on a NaI or BGO detector and imaging of positron-emitting radioisotopes which are introduced as a tracer into the regional tissue or organ of interest. With the aid of a computer visual images of a series of these distributions can be built into a picture of the functional status of the tissue or organ being imaged. This highly accurate imaging technique is already widely used for clinical diagnostics heart disease, brain disorder, tumors and so on

  17. Positron annihilation spectroscopic studies of 6H silicon carbide

    International Nuclear Information System (INIS)

    Hu, Y.F.; Lam, C.H.; Ling, C.C.; Fung, S.; Beling, C.D.; Weng, H.M.

    2001-01-01

    Positron lifetime measurements have been performed on p-type and n-type 6H-SiC with temperatures varying from 10 K to 290 K. The V C V Si divacancy is observed in both types of 6H-SiC where the V Si related defect is only found in the n-type material. Positron trapping into a defect with lifetime value close to the bulk was found to compete with positron trapping into V Si or V C V Si at temperatures lower than 80 K. The positron diffusion length of the 1400 C annealed n-type 6H-SiC has also been measured at different temperatures with the use of a positron beam. Positron diffusion was found to be limited by acoustic phonon scattering at T=150-300 K. However, at T=50-150 K, D + follows T 2.12±0.02 and the details of the physical process is not yet known. (orig.)

  18. Amyloid-β positron emission tomography imaging probes

    DEFF Research Database (Denmark)

    Kepe, Vladimir; Moghbel, Mateen C; Långström, Bengt

    2013-01-01

    , a number of factors appear to preclude these probes from clinical utilization. As the available "amyloid specific" positron emission tomography imaging probes have failed to demonstrate diagnostic value and have shown limited utility for monitoring therapeutic interventions in humans, a debate...

  19. Positron annihilation in SiO 2-Si studied by a pulsed slow positron beam

    Science.gov (United States)

    Suzuki, R.; Ohdaira, T.; Uedono, A.; Kobayashi, Y.

    2002-06-01

    Positron and positronium (Ps) behavior in SiO 2-Si have been studied by means of positron annihilation lifetime spectroscopy (PALS) and age-momentum correlation (AMOC) spectroscopy with a pulsed slow positron beam. The PALS study of SiO 2-Si samples, which were prepared by a dry-oxygen thermal process, revealed that the positrons implanted in the Si substrate and diffused back to the interface do not contribute to the ortho-Ps long-lived component, and the lifetime spectrum of the interface has at least two components. From the AMOC study, the momentum distribution of the ortho-Ps pick-off annihilation in SiO 2, which shows broader momentum distribution than that of crystalline Si, was found to be almost the same as that of free positron annihilation in SiO 2. A varied interface model was proposed to interpret the results of the metal-oxide-semiconductor (MOS) experiments. The narrow momentum distribution found in the n-type MOS with a negative gate bias voltage could be attributed to Ps formation and rapid spin exchange in the SiO 2-Si interface. We have developed a two-dimensional positron lifetime technique, which measures annihilation time and pulse height of the scintillation gamma-ray detector for each event. Using this technique, the positronium behavior in a porous SiO 2 film, grown by a sputtering method, has been studied.

  20. Application of spectroscopy and positron annihilation methods in studies of the gel-glasses materials

    International Nuclear Information System (INIS)

    Legendziewicz, J.; Guzik, M.; Glinski, J.; Jerie, K.; Baranowski, A.; Kochel, A.

    2008-01-01

    The results of optical spectroscopy (absorption and emission) and positron annihilation investigations of glasses are presented and discussed. The alcoholic sol-gel method was adapted for the incorporation of Ln(III) into silica gel network and the resulting gels were prepared with chlorides of selected lanthanides (cerium, praseodymium, europium, ytterbium) and with or without some addition of ethylene glycol. During the sol-gel process, a new type of compound with general formula of C 12 H 24 Cl 3 O 12 Pr 2 , 3(Cl) was crystallized. Its crystal structure was determined by X-ray diffraction studies what helps understanding the silica network structure. Measurements of absorption, emission and emission excitation spectra were carried out at 4 and 293 K. The optical properties of gels were compared with the spectroscopic data of C 12 H 24 Cl 3 O 12 Pr 2 , 3(Cl) single crystal. The experimental results of positron annihilation investigations were correlated with those from optical spectroscopy

  1. Positron transaxial emission tomograph with computerized image reconstruction

    International Nuclear Information System (INIS)

    Jatteau, Michel.

    1981-01-01

    This invention concerns a positron transaxial emission tomography apparatus with computerized image reconstruction, like those used in nuclear medicine for studying the metabolism of organs, in physiological examinations and as a diagnosis aid. The operation is based on the principle of the detection of photons emitted when the positrons are annihilated by impact with an electron. The appliance is mainly composed of: (a) - a set of gamma ray detectors distributed on a polygonal arrangement around the body area to be examined, (b) - circuits for amplifying the signals delivered by the gamma ray detectors, (c) - computers essentially comprising energy integration and discrimination circuits and provided at the output of the detectors for calculating and delivering, as from the amplified signals, information on the position and energy relative to each occurrence constituted by the detections of photons, (d) - time coincidence circuits for selecting by emission of detector validation signals, only those occurrences, among the ensemble of those detected, which effectively result from the annihilation of positrons inside the area examined, (e) - a data processing system [fr

  2. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Budinger, T.F.; Yano, Y.; Moyer, B.R.; Mathis, C.A.; Ganz, E.; Huesman, R.H.; Derenzo, S.E.

    1982-01-01

    Positron emission tomography (PET) of the heart can measure blood perfusion, metabolism of fatty acids, metabolism of sugars, uptake of amino acids and can quantitate infarction volume. The principles which are basic to PET instrumentation and procedures for quantitative studies of the heart muscle with examples of measurements of myocardial flow and metabolism, are reviewed

  3. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Budinger, T.F.; Yano, Y.; Huesman, R.H.; Derenzo, S.E.; Moyer, B.R.; Mathis, C.A.; Ganz, E.; Knittel, B.

    1983-01-01

    Positron emission tomography (PET) of the heart can measure blood perfusion, metabolism of fatty acids, metabolism of sugars, uptake of amino acids and can quantitate infarction volume. The principles are reviewed which are basic to PET instrumentation and procedures for quantitative studies of human physiology with examples of measurements of myocardial flow and metabolism

  4. Positron Emission Tomography: Principles, Technology, and Recent Developments

    Science.gov (United States)

    Ziegler, Sibylle I.

    2005-04-01

    Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.

  5. Simultaneous emission and transmission scanning in positron emission tomography

    International Nuclear Information System (INIS)

    Satoh, Tomohiko; Tanaka, Kazumi; Kitamura, Keishi; Amano, Masaharu; Miura, Shuichi

    2001-01-01

    Examination by PET (positron emission tomography) scanning, following the dosage of 2-deoxy- 18 F fluoro-D-glucose (FDG), is positively utilized for the diagnosis of cancers, rather than for the purpose of studies. This is because the examination by FDG-PET (PET scanning following the dosage of FDG) ensures higher efficiency in discrimination of cancers, than conventional CT and PET. The method of whole body scanning by PET scanning following the dosage of FDG is effectively utilized not only for discrimination cancers, but also for determining the degree of malignancy of tumors and evaluating the methods of treatment of cancers. In conventional methods for examining the degree of malignancy of tumors and evaluating the methods of cancer treatment, it is necessary to correct for the gamma-ray attenuation, which requires a longer time for examination, increasing the physical and psychological pains of the patients. We have installed the simultaneous emission and transmission scanning capability into the HEADTOME-V of the Shimadzu SET-2000W Series positron emission tomographic scanning instruments, to establish an instrument that permits FDG-PET whole body scanning in actual clinical fields, with minimized physical and psychological pains of patients concerned, yet ensuring an outstandingly high examination efficiency. This report also presents some data obtained by this newly developed instrument and those obtained in practical applications. (author)

  6. Nuclear medicine and positron emission tomography: An overview

    International Nuclear Information System (INIS)

    McCarthy, T.J.; Schwarz, S.W.; Welch, M.J.

    1994-01-01

    Nuclear medicine is the field of medical practice that involves the oral or intravenous administration of radioactive materials for use in diagnosis and therapy. The majority of radiopharmaceutical available are used for diagnostic purposes. These involve the determination of organ function, shape, or position from an image of the radioactivity distribution within an organ or at a location within the body. After administration, the radiopharmaceutical localizes within an organ or target tissue due to its biological or physiologic characteristics. This diagnostic capability is usually the result of the emission of gamma radiation from the radiopharmaceutical localized within an organ. This allows for external detection and imaging using a special type of camera known as a gamma camera. When a positron-emitting radionuclide decays, a positron (positive electron) is emitted from the nucleus. The positron then annihilates with an electron, resulting in the release of energy in the form of two 511-KeV γ-rays at 180 degree to one another. The energy of these photons is sufficient to pass through tissue. Thus, placing a series of detectors around the patient allows technicians to monitor the emission of both of the photons that result from a single positron annihilation. this ultimately allows an accurate quantification of the distribution of radioactivity in the body not possible when only a single γ-ray is emitted

  7. New detector developments for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Ziegler, S.I.; Pichler, B.; Lorenz, E.

    1998-01-01

    The strength of quantitative, functional imaging using positron emission tomography, specially in small animals, is limited due to the spatial resolution. Therefore, various tomograph designs employing new scintillators, light sensors, or coincidence electronic are investigated to improve resolution without losses in sensitivity. Luminous scintillators with short light decay time in combination with novel readout schemes using photomultipliers or semiconductor detectors are currently tested by several groups and are implemented in tomographs for small animals. This review summarises the state of development in high resolution positron emission tomography with a detailed description of a system incorporating avalanche photodiode arrays and small scintillation crystals. (orig.) [de

  8. Positron emission tomography/computed tomography scanning for ...

    African Journals Online (AJOL)

    Background: Although the site of nosocomial sepsis in the critically ill ventilated patient is usually identifiable, it may remain occult, despite numerous investigations. The rapid results and precise anatomical location of the septic source using positron emission tomography (PET) scanning, in combination with computed ...

  9. 76 FR 6143 - Draft Guidance on Positron Emission Tomography Drug Applications-Content and Format for New Drug...

    Science.gov (United States)

    2011-02-03

    ...; formerly Docket No. 00D-0892] Draft Guidance on Positron Emission Tomography Drug Applications--Content and... Applications for Certain Positron Emission Tomography Drug Products; Availability,'' issued on March 10, 2000... and ANDAs.'' The draft guidance is intended to assist manufacturers of certain positron emission...

  10. Physical and technical basis of positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Bauer, R.

    1994-01-01

    Positron emission tomography utilizes the annihilation of positrons, generating pairs of gamma quanta which are emitted in opposing directions. 'Electronic collimation' is performed by coincident detection of both quanta. Thus, there is no need for mechanical collimators and no limiting connection between sensitivity and spatial resolution. Transversal tomograms are reconstructed from the projection data by means of highly sophisticated data processing. The half life of the most positron emitters used in medical applications is short and of the order of some minutes. Therefore, many positron emitters have to be produced on-side by means of a cyclotron. PET is superior to SPECT with respect to physical and technical aspects, but the high costs of PET limit its wide-spread use up to now. (orig.) [de

  11. Scintillation crystals for positron emission tomography having a non reflecting band

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1992-01-01

    This invention relates generally to positron emission tomography, a sub-field of the class of medical imaging techniques using ionizing radiation and image reconstruction techniques; and more particularly to devices which use an array of scintillation detectors to detect the annihilation radiation from positron disintegration and use this information to reconstruct an image of the distribution of positron emitting isotope within a body section. 6 figs

  12. Is positron emission tomography useful in stroke?

    NARCIS (Netherlands)

    DeReuck, J; Leys, D; DeKeyser, J

    Positron emission tomography (PET) has been widely used in the study of stroke and related cerebrovascular diseases. It has shown the various stages leading to cerebral infarction and defined the significance of the ischaemic penumbra. PET scan can predict the clinical outcome of patients with acute

  13. Positron emission tomography in malignant haematological disease

    NARCIS (Netherlands)

    Schot, Bartholomeus Wilhelmus

    2007-01-01

    Positron emission tomography (PET) is a diagnostic technique with a promising role especially in the haemato-oncology. Although its use in the management ; of malignant lymphoma seems to be established already, much about the true potential and drawbacks of FDG-PET in this disease are still unknown.

  14. Evaluation of scintillators and semiconductor detectors to image three-photon positron annihilation for positron emission tomography

    International Nuclear Information System (INIS)

    Abuelhia, E.; Spyrou, N.M.; Kacperski, K.; College University, Middlesex Hospital, London

    2008-01-01

    Positron emission tomography (PET) is rapidly becoming the main nuclear imaging modality of the present century. The future of PET instrumentation relies on semiconductor detectors because of their excellent characteristics. Three-photon positron annihilation has been recently investigated as a novel imaging modality, which demands the crucial high energy resolution of semiconductor detector. In this work the evaluation of the NaI(Tl) scintillator and HPGe and CdZTe semiconductor detectors, to construct a simple three-photon positron annihilation scanner has been explored. The effect of detector and scanner size on spatial resolution (FWHM) is discussed. The characteristics: energy resolution versus count rate and point-spread function of the three-photon positron annihilation image profile from triple coincidence measurements were investigated. (author)

  15. H passivation of Li on Zn-site in ZnO: Positron annihilation spectroscopy and secondary ion mass spectrometry

    Science.gov (United States)

    Johansen, K. M.; Zubiaga, A.; Tuomisto, F.; Monakhov, E. V.; Kuznetsov, A. Yu.; Svensson, B. G.

    2011-09-01

    The interaction of hydrogen (H) with lithium (Li) and zinc vacancies (VZn) in hydrothermally grown n-type zinc oxide (ZnO) has been investigated by positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry. Li on Zn-site (LiZn) is found to be the dominant trap for migrating H atoms, while the trapping efficiency of VZn is considerably smaller. After hydrogenation, where the LiZn acceptor is passivated via formation of neutral LiZn-H pairs, VZn occurs as the prime PAS signature and with a concentration similar to that observed in nonhydrogenated Li-poor samples. Despite a low efficiency as an H trap, the apparent concentration of VZn in Li-poor samples decreases after hydrogenation, as detected by PAS, and evidence for formation of the neutral VZnH2 complex is presented.

  16. Circumstellar H2O maser emission associated with four late-type stars

    International Nuclear Information System (INIS)

    Johnston, K.J.; Spencer, J.H.; Bowers, P.F.

    1985-01-01

    The positions and structure of H2O maser associated with four long-period stars were measured using the VLA, and the results are discussed. The four stars observed were: RX Boo; R Aq1; RR Aq1; and NML Cyg. The spatial resolution of the VLA measurements was 0.07 arcsec. The H2O maser emission features appear as unresolved knots distributed over an area of no more than 0.4 arcsec. The velocity and spatial characteristics of the maser regions in R Aq1 and RR Aq1 were found to change considerably over time. The estimated sizes of the H2O maser emission were 8 x 10 to the 14th for RX Boo, R Aq1, and RR Aq1. The supergiant star NML Cyg had the largest maser region (10 to the 16th) which is comparable to that of VY CMa. The positional accuracy for individual maser features ranged between 0.03 and 0.09 arcsec. However, the precise location of the maser emission relative to the stellar photocenter did not fit the velocity and spatial distributions of the emission and therefore may be inappropriate as a standard for comparisons of stellar reference frames. 20 references

  17. Quantitative cerebral H215O perfusion PET without arterial blood sampling, a method based on washout rate

    International Nuclear Information System (INIS)

    Treyer, Valerie; Jobin, Mathieu; Burger, Cyrill; Buck, Alfred; Teneggi, Vincenzo

    2003-01-01

    The quantitative determination of regional cerebral blood flow (rCBF) is important in certain clinical and research applications. The disadvantage of most quantitative methods using H 2 15 O positron emission tomography (PET) is the need for arterial blood sampling. In this study a new non-invasive method for rCBF quantification was evaluated. The method is based on the washout rate of H 2 15 O following intravenous injection. All results were obtained with Alpert's method, which yields maps of the washin parameter K 1 (rCBF K1 ) and the washout parameter k 2 (rCBF k2 ). Maps of rCBF K1 were computed with measured arterial input curves. Maps of rCBF k2* were calculated with a standard input curve which was the mean of eight individual input curves. The mean of grey matter rCBF k2* (CBF k2* ) was then compared with the mean of rCBF K1 (CBF K1 ) in ten healthy volunteer smokers who underwent two PET sessions on day 1 and day 3. Each session consisted of three serial H 2 15 O scans. Reproducibility was analysed using the rCBF difference scan 3-scan 2 in each session. The perfusion reserve (PR = rCBF acetazolamide -rCBF baseline ) following acetazolamide challenge was calculated with rCBF k2* (PR k2* ) and rCBF K1 (PR K1 ) in ten patients with cerebrovascular disease. The difference CBF k2* -CBF K1 was 5.90±8.12 ml/min/100 ml (mean±SD, n=55). The SD of the scan 3-scan 1 difference was 6.1% for rCBF k2* and rCBF K1 , demonstrating a high reproducibility. Perfusion reserve values determined with rCBF K1 and rCBF k2* were in high agreement (difference PR k2* -PR K1 =-6.5±10.4%, PR expressed in percentage increase from baseline). In conclusion, a new non-invasive method for the quantitative determination of rCBF is presented. The method is in good agreement with Alpert's original method and the reproducibility is high. It does not require arterial blood sampling, yields quantitative voxel-by-voxel maps of rCBF, and is computationally efficient and easy to implement

  18. Combination of dynamic and integral methods for generating reproducible functional CBF images

    International Nuclear Information System (INIS)

    Lammertsma, A.A.; Cunningham, V.J.; Deiber, M.P.; Heather, J.D.; Bloomfield, P.M.; Nutt, J.; Frackowiak, R.S.; Jones, T.

    1990-01-01

    A new method to measure regional CBF is presented, applying both dynamic and integral analyses to a dynamic sequence of positron emission tomographic scans collected during and following the administration of H2(15)O (inhalation of C15O2). The dynamic analysis is used to correct continuously monitored arterial whole-blood activity for delay and dispersion relative to tissue scans. An integral analysis including corrections for this delay and dispersion is then used to calculate CBF on a pixel-by-pixel basis. Normal values and reproducibility over a 2-h period are presented, together with the results of validation and simulation studies. The results indicate that the single-tissue compartment model adequately describes the distribution of H2(15)O in the brain, without recourse to postulating a nonexchanging water pool

  19. Positron emission tomographic imaging of tumors using monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  20. Positron emission tomography in a national research centre

    International Nuclear Information System (INIS)

    Weinreich, R.

    1989-01-01

    The example of the Paul Scherrer Institute shows that positron emission tomography can be implanted successfully as spin-off into an appropriate environment. The adaption to the existing irradiation facilities of the technique of production of the short-lived positron emitters is complex. However, the basic necessities of a tomography programme can be covered. Moreover, the relatively high energy of the institute's injector cyclotron allows additional production of rare-used longer-lived positron emitters. The scanner exceeded the guaranteed specifications. With respect to the somewhat lower availability of beam time compared to a usual baby cyclotron, the research programme must not be very patient-intense. A strong participation of the pharmaceutical industry has directed research priorities into the pharmacological area. (orig.) [de

  1. Positron emission tomography applied to fluidization engineering

    NARCIS (Netherlands)

    Dechsiri, C; Ghione, A; van de Wiel, F; Dehling, HG; Paans, AMJ; Hoffmann, AC

    The movement of particles in a laboratory fluidized bed has been studied using Positron Emission Tomography (PET). With this non-invasive technique both pulses of various shapes and single tracer particles were followed in 3-D. The equipment and materials used made it possible to label actual bed

  2. Electrocardiographic gating in positron emission computed tomography

    International Nuclear Information System (INIS)

    Hoffman, E.J.; Phelps, M.E.; Wisenberg, G.; Schelbert, H.R.; Kuhl, D.E.

    1979-01-01

    Electrocardiographic (ECG) synchronized multiple gated data acquisition was employed with positron emission computed tomography (ECT) to obtain images of myocardial blood pool and myocardium. The feasibility and requirements of multiple gated data acquisition in positron ECT were investigated for 13NH3, ( 18 F)-2-fluoro-2-D-deoxyglucose, and ( 11 C)-carboxyhemoglobin. Examples are shown in which image detail is enhanced and image interpretation is facilitated when ECG gating is employed in the data collection. Analysis of count rate data from a series of volunteers indicates that multiple, statistically adequate images can be obtained under a multiple gated data collection format without an increase in administered dose

  3. Positron and positronium annihilation in silica-based thin films studied by a pulsed positron beam

    International Nuclear Information System (INIS)

    Suzuki, R.; Ohdaira, T.; Kobayashi, Y.; Ito, K.; Shioya, Y.; Ishimaru, T.

    2003-01-01

    Positron and positronium annihilation in silica-based thin films has been investigated by means of measurement techniques with a monoenergetic pulsed positron beam. The age-momentum correlation study revealed that positron annihilation in thermally grown SiO 2 is basically the same as that in bulk amorphous SiO 2 while o-Ps in the PECVD grown SiCOH film predominantly annihilate with electrons of C and H at the microvoid surfaces. We also discuss time-dependent three-gamma annihilation in porous low-k films by two-dimensional positron annihilation lifetime spectroscopy

  4. Positron Emission Tomography Particle tracking using cluster analysis

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2004-01-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method

  5. Positron Emission Tomography Particle tracking using cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham, B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2004-12-01

    Positron Emission Particle Tracking was successfully used in a wide range of industrial applications. This technique primarily uses a single positron emitting tracer particle. However, using multiple particles would provide more comparative information about the physical processes taking place in a system such as mixing or fluidised beds. In this paper, a unique method that enables us to track more than one particle is presented. This method is based on the midpoint of the closest distance between two trajectories or coincidence vectors. The technique presented in this paper employs a clustering method.

  6. 77 FR 71802 - Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Science.gov (United States)

    2012-12-04

    ... Positron Emission Tomography (PET) Drugs.'' The guidance is intended to assist manufacturers of PET drugs... one self-addressed adhesive label to assist that office in processing your requests. See the... ``Investigational New Drug Applications for Positron Emission Tomography (PET) Drugs.'' The guidance summarizes the...

  7. A simulation study of a method to reduce positron annihilation spread distributions using a strong magnetic field in positron emission tomography

    International Nuclear Information System (INIS)

    Iida, H.; Kanno, I.; Miura, S.; Murakami, M.; Takahashi, V.; Kemura, K.

    1986-01-01

    The positron trajectories have been three-dimensionally simulated using a Monte-Carlo method under various strength of the magnetic field. More than 5 tesla of the field confined the positrons effectively, resulting in increase of the probability of the annihilation within a limited small region, hence the higher spatial resolution in positron emission tomography

  8. Relaxed electric dipole moments of polar molecules interacting with a slow positron: H{sub 2}O and CH{sub 3}X (X=F, Cl, Br)

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Mohallem, Jose R, E-mail: rachid@fisica.ufmg.b [Laboratorio de Atomos e Moleculas Especiais, Departamento de FIsica, ICEx, Universidade Federal de Minas Gerais, PO Box 702, 30123-970, Belo Horizonte, MG (Brazil)

    2010-08-14

    The variation in the electric dipole moments of H{sub 2}O, CH{sub 3}F, CH{sub 3}Cl and CH{sub 3}Br as their geometries relax due to interaction with a positron is evaluated. The results are in good agreement with a recently observed empirical dependence of the positron binding energy on molecular properties (Danielson et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235203). For binding energies larger than 100 meV relaxation could alter significantly the analysis of the binding, but it is in the prospect of generating effective potentials for positron scattering by molecules that the effect can be more important.

  9. Mn doping in ZnO nanoparticles: effects investigated by positron lifetime and Doppler broadening studies

    Energy Technology Data Exchange (ETDEWEB)

    Roy, B.; Karmakar, B.; Pal, M. [Department of Physics, University of Burdwan, Golapbag, Burdwan (India); Nambissan, P.M.G. [Saha Institute of Nuclear Physics, Kolkata (India)

    2009-11-15

    Positron lifetime and Doppler broadening measurements in nanocrystalline zinc oxide (ZnO) indicated the negatively charged trivacancy-type defects V{sub Zn+O+Zn} as the predominant positron trapping sites within the nanocrystallites. They got converted to neutral divacancies (V{sub Zn+O}) on doping with manganese (Mn). Further doping resulted in the reduction of the size of the nanocrystallites. At still increased doping concentrations, a new phase ZnMn{sub 2}O{sub 4} was formed. It had a normal spinel structure with positron trapping centers at some of the tetrahedral and octahedral sites. X-ray diffraction and transmission electron micro-scopy studies confirmed these findings. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. N+ ion-implantation-induced defects in ZnO studied with a slow positron beam

    International Nuclear Information System (INIS)

    Chen, Z Q; Sekiguchi, T; Yuan, X L; Maekawa, M; Kawasuso, A

    2004-01-01

    Undoped ZnO single crystals were implanted with multiple-energy N + ions ranging from 50 to 380 keV with doses from 10 12 to 10 14 cm -2 . Positron annihilation measurements show that vacancy defects are introduced in the implanted layers. The concentration of the vacancy defects increases with increasing ion dose. The annealing behaviour of the defects can be divided into four stages, which correspond to the formation and recovery of large vacancy clusters and the formation and disappearance of vacancy-impurity complexes, respectively. All the implantation-induced defects are removed by annealing at 1200 deg. C. Cathodoluminescence measurements show that the ion-implantation-induced defects act as nonradiative recombination centres to suppress the ultraviolet (UV) emission. After annealing, these defects disappear gradually and the UV emission reappears, which coincides with positron annihilation measurements. Hall measurements reveal that after N + implantation, the ZnO layer still shows n-type conductivity

  11. Positron Emission Tomography (PET)

    International Nuclear Information System (INIS)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs

  12. Positron Emission Tomography (PET)

    Science.gov (United States)

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  13. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  14. The Positron-Electron Correlation Energy In ZnO Calculated With The Modified Single Wave Function Of Positron

    International Nuclear Information System (INIS)

    Chau Van Tao; Trinh Hoa Lang; Le Hoang Chien; Nguyen Huu Loc; Nguyen Anh Tuan

    2011-01-01

    Positron-electron correlation energy of the ZnO - positron system is studied on assumption that positron binds with the outer shell electrons of Zinc and Oxygen to form the pseudo ZnO - positron molecule before it annihilates with one of these electrons. In this work, the single wave function for positron is form by LCAO approximation and is modified according to the principle of linear superposition, and by using Variational Quantum Monte Carlo method (VQMC) [7] the correlation energy of this system is estimated with the value E c e-p = - 9.3 ± 1.1 eV. In the theoretical aspect it turns out that this result is more reasonable and closer to those of other methods [3] than the one which is done without modifying the wave function of positron [1]. To confirm this legitimate approach, however, the further calculations of positron annihilation rate in ZnO have to be carried out in our next work. (author)

  15. Advanced Instrumentation for Positron Emission Tomography [PET

    Science.gov (United States)

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  16. An analysis of true- and false-positive results of vocal fold uptake in positron emission tomography-computed tomography imaging.

    Science.gov (United States)

    Seymour, N; Burkill, G; Harries, M

    2018-03-01

    Positron emission tomography-computed tomography with fluorine-18 fluorodeoxy-D-glucose has a major role in the investigation of head and neck cancers. Fluorine-18 fluorodeoxy-D-glucose is not a tumour-specific tracer and can also accumulate in benign pathology. Therefore, positron emission tomography-computed tomography scan interpretation difficulties are common in the head and neck, which can produce false-positive results. This study aimed to investigate patients detected as having abnormal vocal fold uptake on fluorine-18 fluorodeoxy-D-glucose positron emission tomography-computed tomography. Positron emission tomography-computed tomography scans were identified over a 15-month period where reports contained evidence of unilateral vocal fold uptake or vocal fold pathology. Patients' notes and laryngoscopy results were analysed. Forty-six patients were identified as having abnormal vocal fold uptake on positron emission tomography-computed tomography. Twenty-three patients underwent positron emission tomography-computed tomography and flexible laryngoscopy: 61 per cent of patients had true-positive positron emission tomography-computed tomography scans and 39 per cent had false-positive scan results. Most patients referred to ENT for abnormal findings on positron emission tomography-computed tomography scans had true-positive findings. Asymmetrical fluorine-18 fluorodeoxy-D-glucose uptake should raise suspicion of vocal fold pathology, accepting a false-positive rate of approximately 40 per cent.

  17. Serotonin synthesis studied with positron emission tomography, (PET)

    DEFF Research Database (Denmark)

    Honoré, Per Gustaf Hartvig; Lundquist, Pinelopi

    Positron emission tomography (PET) has the potential to study the biosynthesis and release of serotonin (5HT) at brain serotonergic neurons. PET requires probe compounds with specific attributes to enable imaging and quantification of biological processes. This section focuses on probes to measure...

  18. Positron emission CT on post-traumatic epilepsy

    International Nuclear Information System (INIS)

    Tsukiyama, Takashi; Tsubokawa, Takashi; Doi, Nobuyasu; Sato, Kohten; Iio, Masaaki.

    1983-01-01

    Six patients suffering from post-traumatic epilepsy were checked by encephalography (EEG), X-ray CT and cerebral positron emission computed tomography (PECT) using 11 C-carbon dioxide ( 11 CO 2 ) and 11 C-glucoses as indicators of the local cerebral circulation and local cerebral glucose utilization, in order to assess the diagnostic value of PECT in post-traumatic epilepsy. In those patients (4 cases) who had focal electrical abnormalities or X-ray CT lesions, PECT clearly revealed localized regions of decreased cerebral circulation and glucose utilization. A focal hypometabolic zone also appeared in the post-traumatic epilepsy (1 case) which had a normal X-ray CT. One case, who had been treated for several years by medication but showed no EEG change and no abnormality on X-ray CT, revealed a normal circulation and metabolism by RECT. This case did not require any further medication for epilepsy. It is concluded that positron emission CT represents a useful diagnostic method for post-traumatic epilepsy which does not demonstrate any abnormality on X-ray CT. (author)

  19. Positron emission tomography in brain function study

    International Nuclear Information System (INIS)

    Wu Hua

    2006-01-01

    Little has been recognized about the advanced brain function. Recent years several new techniques such as event-related potentials, megnetoencephalography, functional magnetic resonance imaging and positron emission tomography (PET) have been used in the study of brain function. The methodology, application study in normal people and clinical patients of PET in brain function are reviewed. (authors)

  20. Positron emission tomography: a new paradigm in cancer management

    International Nuclear Information System (INIS)

    Paez Gutierrez, Diana Isabel; De los Reyes, Amelia; Llamas Olier, Augusto

    2007-01-01

    The National Cancer Institute (NCI) is currently building a positron emission tomography facility that will house a cyclotron and a PET fusion scanner. lt should be operational as of december 2007, being a cancer dedicated national referral center, the NCI should provide both positron-emitting radiopharmaceuticals and medical services to institutions and patients nationwide. PET technology provides metabolic information that has been documented to be useful in patient care. The properties of positron decay allow accurate imaging of the in vivo distribution of positron-emitting radiopharmaceuticals. a wide array of positron-emitting radiopharmaceuticals has been used to characterize multiple physiologic and pathologic states. The major clinical PET applications are in cancer patients using fluorine-18 fluorodeoxyglucose (FDG). FDG, an analogue of glucose, accumulates in most tumors in a greater amount than it does in normal tissue. PET is being used in diagnosis and follow-up of several malignancies, and the list of articles supporting its use continues to grow. in this article, the instrumentation aspects of PET are described and most of the clinical applications in oncology are described

  1. Positron emission tomography in movement disorders

    International Nuclear Information System (INIS)

    Martin, W.R.W.

    1985-01-01

    Positron emission tomography provides a method for the quantitation of regional function within the living human brain. Studies of cerebral metabolism and blood flow in patients with Huntington's disease, Parkinson's disease and focal dystonia have revealed functional abnormalities within substructures of the basal ganglia. Recent developments permit assessment of both pre-synaptic and post-synaptic function ion dopaminergic pathways. These techniques are now being applied to studies of movement disorders in human subjects

  2. Positron emission tomography in movement disorders

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W R.W.

    1985-02-01

    Positron emission tomography provides a method for the quantitation of regional function within the living human brain. Studies of cerebral metabolism and blood flow in patients with Huntington's disease, Parkinson's disease and focal dystonia have revealed functional abnormalities within substructures of the basal ganglia. Recent developments permit assessment of both pre-synaptic and post-synaptic function in dopaminergic pathways. These techniques are now being applied to studies of movement disorders in human subjects.

  3. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NARCIS (Netherlands)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-01-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern

  4. Positron emission zone plate holography for particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2006-01-15

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported.

  5. Positron emission zone plate holography for particle tracking

    International Nuclear Information System (INIS)

    Gundogdu, O.

    2006-01-01

    Positron Emission Particle Tracking (PEPT) is a powerful non-invasive technique that has been used extensively for tracking a single particle. In this paper, we present a study of zone plate holography method in order to track multiple particles, mainly two particles. The main aim is to use as small number of events as possible in the order to make it possible to track particles in fast moving industrial systems. A zone plate with 100% focal efficiency is simulated and applied to the Positron Emission Tomography (PET) data for multiple particle tracking. A simple trajectory code was employed to explore the effects of the nature of the experimental trajectories. A computer holographic reconstruction code that simulates optical reconstruction was developed. The different aspects of the particle location, particle activity ratios for enabling tagging of particles and zone plate and hologram locations are investigated. The effect of the shot noise is investigated and the limitations of the zone plate holography are reported

  6. Images to visualize the brain. PET: Positron Emission Tomography

    International Nuclear Information System (INIS)

    1992-01-01

    Diagnosis instrument and research tool, Positron Emission Tomography permits advanced technological developments on positron camera, on molecule labelling and principally on very complex 3D image processing. Cyceron Centre in Caen-France works on brain diseases and try to understand the mechanism of observed troubles and to assess the treatment efficiency with PET. Service Hospitalier Frederic Joliot of CEA-France establishes a mapping of cognitive functions in PET as vision areas, anxiety regions, brain organization of language, different attention forms, voluntary actions and motor functions

  7. Study on positron annihilation spectroscopy of methanol synthesis catalyst CuO/ZnO

    International Nuclear Information System (INIS)

    Liu Qisheng; Dai Guohuan; Sun Jiying; Ding Yingru; Yao Jianhua

    1989-01-01

    A new method was developed for determining the solid solubility of a metal oxide series prepared by precipitation using the positron lifetime parameters. The positron lifetime spectra of a series of CuO/ZnO catalysts prepared by precipitation were measured, in which the CuO at % contents were different before and after reducing. The relations between the solid solubility of the catalysts and the positron lifetime parameters were obtained, from which a result of solid solubility of 12 CuO at% after reducing had been found. The viewpoint that the Cu + ion acted as the active centre in the CuO/ZnO catalyst was supported

  8. N{sup +} ion-implantation-induced defects in ZnO studied with a slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z Q [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan (Japan); Sekiguchi, T [Nanomaterials Laboratory, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Yuan, X L [Nanomaterials Laboratory, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Maekawa, M [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan (Japan); Kawasuso, A [Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan (Japan)

    2004-01-21

    Undoped ZnO single crystals were implanted with multiple-energy N{sup +} ions ranging from 50 to 380 keV with doses from 10{sup 12} to 10{sup 14} cm{sup -2}. Positron annihilation measurements show that vacancy defects are introduced in the implanted layers. The concentration of the vacancy defects increases with increasing ion dose. The annealing behaviour of the defects can be divided into four stages, which correspond to the formation and recovery of large vacancy clusters and the formation and disappearance of vacancy-impurity complexes, respectively. All the implantation-induced defects are removed by annealing at 1200 deg. C. Cathodoluminescence measurements show that the ion-implantation-induced defects act as nonradiative recombination centres to suppress the ultraviolet (UV) emission. After annealing, these defects disappear gradually and the UV emission reappears, which coincides with positron annihilation measurements. Hall measurements reveal that after N{sup +} implantation, the ZnO layer still shows n-type conductivity.

  9. ¹⁸F-fluorodeoxyglucose positron emission tomography-computed tomography for the evaluation of bone metastasis in patients with gastric cancer.

    Science.gov (United States)

    Ma, Dae Won; Kim, Jie-Hyun; Jeon, Tae Joo; Lee, Yong Chan; Yun, Mijin; Youn, Young Hoon; Park, Hyojin; Lee, Sang In

    2013-09-01

    The roles of positron emission tomography and bone scanning in identifying bone metastasis in gastric cancer are unclear. We compared the usefulness of positron emission tomography-computed tomography and scanning in detecting bone metastasis in gastric cancer. Data from 1485 patients diagnosed with gastric cancer who had undergone positron emission tomography-computed tomography and scanning were reviewed. Of 170 enrolled patients who were suspected of bone metastasis in either positron emission tomography or scanning, 81.2% were confirmed to have bone metastasis. The sensitivity, specificity, and accuracy were 93.5%, 25.0%, and 80.6%, respectively, for positron emission tomography and 93.5%, 37.5%, and 82.9%, respectively, for scanning. 87.7% of patients with bone metastasis showed positive findings on two modalities. 15.0% of solitary bone metastases were positive on positron emission tomography only. Positron emission tomography was superior to scanning for the detection of synchronous bone metastasis, but the two modalities were similar for the detection of metachronous bone metastasis. The concordance rate of response assessment after treatment between two modalities was moderate. Positron emission tomography-computed tomography may be more effective for the diagnosis of bone metastasis in the initial staging workup. Conversely, bone scanning and positron emission tomography-computed tomography may be similarly effective for the detection of metachronous bone metastasis. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. Positron emitting pharmaceuticals

    International Nuclear Information System (INIS)

    Rajan, M.G.R.

    2012-01-01

    Positron Emission Tomography (PET) imaging of physiology at the molecular level bridges the gap between laboratory science and clinical medicine by providing the most specific and sensitive means for imaging molecular pathways and interactions in tissues of man. PET-imaging requires the use Positron Emitting Radiopharmaceuticals (PRPs), which are radioactively labeled 'true metabolites' i.e., sugars, amino acids, fatty acids etc., essentially made of H, C, N and O which the cells in the body can metabolize. The PET-isotopes: 11 C, 15 O, 13 N and 18 F (instead of H) are cyclotron produced and are short-lived, which places several constraints on the synthesis time for the PRPs, quality control and their clinical use as compared to the conventional 99m Tc- and other SPECT-RPs widely used in nuclear medicine. There are large number of published reports showing the utility of several PRPs labeled with 18 F (T 1/2 = 110 min) and 11 C (T 1/2 = 20 min). A few PRPs have been labeled with 13 N (T 1/2 = 10 min). 15 O (T 1/2 = 2min) is used mostly as H 2 15 O, C 15 or C 15 O 2 . 18 F-radiopharmaceuticals can be made at a medical cyclotron facility and sent to PET -imaging centres, which can be reached in a couple of hours. The sensitivity of PET -imaging has encouraged R and D in several other PRPs, labeled with viz., 68 Ga (generator produced, T 1/2 68 min), 124 I (cyclotron, T 1/2 4.2 d), 82 Rb (generator, T 1/2 75s), 64 Cu (cyclotron, T 1/2 12h), and 94m Tc (cyclotron, T 1/2 52 min). Due to its relevance in several diseases, particularly cancer, PET-imaging has made major scientific contribution to drug development, particularly for neurological diseases and cancer treatment. (author)

  11. Evaluation of the 11CO2 positron emission tomographic method for measuring brain pH. I. pH changes measured in states of altered PCO2

    International Nuclear Information System (INIS)

    Buxton, R.B.; Alpert, N.M.; Babikian, V.; Weise, S.; Correia, J.A.; Ackerman, R.H.

    1987-01-01

    The 11 CO 2 method for measuring local brain pH with positron emission tomography (PET) has been experimentally evaluated, testing the adequacy of the kinetic model and the ability of the method to measure changes in brain pH. Plasma and tissue time/activity curves measured during and following continuous inhalation of 11 CO 2 were fit with a kinetic model that includes effects of tissue pH, blood flow, and fixation of CO 2 into compounds other than dissolved gas and bicarbonate ions. For each of ten dogs, brain pH was measured with PET at two values of PaCO 2 (range 21-67 mm Hg). The kinetic model fit the data well during both inhalation and washout of the label, with residual root mean square (RMS) deviations of the model from the measurements consistent with the statistical quality of the PET data. Brain pH calculated from the PET data shows a linear variation with log(PaCO 2 ). These results were in good agreement with previously reported measurements of brain pH, both in absolute value and in variation with PCO 2 . The interpretation of these pH values in normal and pathological states is discussed

  12. Enhancement of the secondary ion emission from Si by O/sub 2 and H/sub 2/O adsorption

    International Nuclear Information System (INIS)

    Huan, C.H.; Wee, A.T.S.; Tan, K.L.

    1992-01-01

    The positive and negative secondary ion emission of Si are examined as a function of O/sub 2 and H/sub 2/O surface coverage under conditions of simultaneous adsorption and Ar/sup+ ion bombardment. It is found that the ion-molecule mechanism accounts for the adsorbate-induced signals and that yield enhancement by H/sub 2/O adsorption is less effective than O/sub 2 adsorption. (authors)

  13. Positron annihilation study in La2CuO4

    International Nuclear Information System (INIS)

    Kubo, Y.; Asano, S.

    1992-01-01

    The positron annihilation study for La 2 CuO 4 are performed using the full-potential linearized augmented-plane-wave(FLAPW) calculated electron and positron densities. The electron-positron momentum density(EPMD) is computed, and the well known Lock-Crisp-West(LCW) zone folding of the EPMD is produced. In the LCW analysis, small residual variations of order about 3 % are observed. The calculations show that the relative weights of the Fermi surface discontinuities are substantially altered due to the positron preferentially sampling the Cu-O plane region

  14. WE-H-207A-01: Computational Evaluation of High-Resolution 18F Positron Imaging Using Radioluminescence Microscopy with Lu2O3: Eu Thin-Film Scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q; Sengupta, D; Pratx, G [Stanford University, Palo Alto, CA (United States)

    2016-06-15

    Purpose: Radioluminescence microscopy, an emerging and powerful tool for high resolution beta imaging, has been applied to molecular imaging of cellular metabolism to understand tumor biology. A novel thin-film (10 µm thickness) scintillator made of Lu{sub 2}O{sub 3}: Eu has been developed to enhance the system performance. However the advances of radioluminescence imaging with Lu{sub 2}O{sub 3}scintillator compared with that using conventional scintillator have not been explored theoretically to date. To validate the advantages of the thin-film scintillator, this study uses a novel computational simulation framework to evaluate the performance of radioluminescence microscopy using both conventional and thin-film scintillators. Methods: Numerical models for different stages of positron imaging are established. Positron from {sup 18}F passing through the scintillator and its neighbor structures are modeled by Monte-Carlo simulation using Geant4. The propagation and focus of photons by the microscope are modeled by convolution with a depth-varying point spread function generated by the Gibson-Lanni model. Photons focused on the detector plane are then captured and converted into electronic signals by an electron multiplication (EM) CCD camera, which is described by a photosensor model considering various noises and charge amplification. Results: The performance metrics of radioluminescence imaging with a thin-film Lu{sub 2}O{sub 3} and conventional CdWO{sub 4} scintillator are compared, including spatial resolution, sensitivity, positron track area and intensity. The spatial resolution of Lu{sub 2}O{sub 3} system can achieve 10 µm maximally, a 12 µm enhancement from that obtained from CdWO{sub 4} system. Meanwhile, the system with Lu{sub 2}O{sub 3} scintillator can provide a higher mean sensitivity: 40% compared with that (21.5%) obtained from CdWO{sub 4} system. Moreover, the simulation results are in good agreement with previous experimental measurements

  15. Time-of-flight positron emission tomography and associated detectors

    International Nuclear Information System (INIS)

    Vacher, J.; Allemand, R.; Campagnolo, R.

    1983-04-01

    An analysis of the timing capabilities of the detectors (scintillators and photomultipliers) in time-of-flight positron emission tomography is presented. The advantages of BaF 2 compared with CsF for the futur tomographs are evaluated [fr

  16. Positron annihilation studies on BeO powders

    International Nuclear Information System (INIS)

    Brauer, G.; Kerbe, F.; Kajcsos, Z.; Ashry, A.

    1984-01-01

    The sintering behaviour of two differently produced BeO powders is studied by positron annihilation. The positron lifetime in dislocations is found to be tau/sub d/ = (185 +- 2) ps, whereas for the perfect lattice tau/sub c/ = (130 +- 2) ps. (author)

  17. Positron annihilation study on ZnO-based scintillating glasses

    Science.gov (United States)

    Nie, Jiaxiang; Yu, Runsheng; Wang, Baoyi; Ou, Yuwen; Zhong, Yurong; Xia, Fang; Chen, Guorong

    2009-04-01

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO 2-45ZnO- xBaF 2 ( x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components τ1, τ 2, and τ3 are ˜0.23 ns, ˜0.45 ns, and ˜1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF 2 concentration from 5 mol% to 10 mol%, then decreases as BaF 2 further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF 2 contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  18. Alterations in CNS Activity Induced by Botulinum Toxin Treatment in Spasmodic Dysphonia: An H[subscript 2][superscript 15]O PET Study

    Science.gov (United States)

    Ali, S. Omar; Thomassen, Michael; Schulz, Geralyn M.; Hosey, Lara A.; Varga, Mary; Ludlow, Christy L.; Braun, Allen R.

    2006-01-01

    Speech-related changes in regional cerebral blood flow (rCBF) were measured using H[subscript 2][superscript 15]O positron-emission tomography in 9 adults with adductor spasmodic dysphonia (ADSD) before and after botulinum toxin (BTX) injection and 10 age- and gender-matched volunteers without neurological disorders. Scans were acquired at rest…

  19. Attenuation Correction Strategies for Positron Emission Tomography/Computed Tomography and 4-Dimensional Positron Emission Tomography/Computed Tomography

    OpenAIRE

    Pan, Tinsu; Zaidi, Habib

    2013-01-01

    This article discusses attenuation correction strategies in positron emission tomography/computed tomography (PET/CT) and 4 dimensional PET/CT imaging. Average CT scan derived from averaging the high temporal resolution CT images is effective in improving the registration of the CT and the PET images and quantification of the PET data. It underscores list mode data acquisition in 4 dimensional PET and introduces 4 dimensional CT popular in thoracic treatment planning to 4 dimensional PET/CT. ...

  20. Positron emission tomography takes lead

    International Nuclear Information System (INIS)

    Simms, R.

    1989-01-01

    Positron emission tomography (PET)'s ability to detect functional abnormalities before they manifest anatomically is examined and some of its most common applications are outlined. It is emphasised that when PET facility and Australian Nuclear Science and Technology Organization's national cyclotron are established at the Royal Prince Alfred Hospital, the availability of short-lived tracers such as oxygen 15, nitrogen 13 and fluorine 18 would improve the specificity of tests(e.g. for brain tumors or cardiac viability) further. Construction of the cyclotron will start shortly and is due to be completed and operating by the end of 1991

  1. Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils

    DEFF Research Database (Denmark)

    Hansen, Mette; Clough, Tim J.; Elberling, Bo

    2014-01-01

    emissions is poorly studied for agricultural systems. The overall N2O dynamics during flooding of an agricultural soil and the effect of pH and NO3− concentration has been investigated based on a combination of the use of microsensors, stable isotope techniques, KCl extractions and modelling. This study...... within the soil. The magnitude of the emissions are, not surprisingly, positively correlated with the soil NO3− concentration but also negatively correlated with liming (neutral pH). The redox potential of the soil is found to influence N2O accumulation as the production and consumption of N2O occurs...... in narrow redox windows where the redox range levels are negatively correlated with the pH. This study highlights the potential importance of N2O bursts associated with flooding and infers that annual N2O emission estimates for tilled agricultural soils that are temporarily flooded will be underestimated...

  2. The 1943 K emission spectrum of H216O between 6600 and 7050 cm-1

    Science.gov (United States)

    Czinki, Eszter; Furtenbacher, Tibor; Császár, Attila G.; Eckhardt, André K.; Mellau, Georg Ch.

    2018-02-01

    An emission spectrum of H216O has been recorded, with Doppler-limited resolution, at 1943 K using Hot Gas Molecular Emission (HOTGAME) spectroscopy. The wavenumber range covered is 6600 to 7050 cm-1. This work reports the analysis and subsequent assignment of close to 3700 H216O transitions out of a total of more than 6700 measured peaks. The analysis is based on the Measured Active Rotational-Vibrational Energy Levels (MARVEL) energy levels of H216O determined in 2013 and emission line intensities obtained from accurate variational nuclear-motion computations. The analysis of the spectrum yields about 1300 transitions not measured previously and 23 experimentally previously unidentified rovibrational energy levels. The accuracy of the line positions and intensities used in the analysis was improved with the spectrum deconvolution software SyMath via creating a peak list corresponding to the dense emission spectrum. The extensive list of labeled transitions and the new experimental energy levels obtained are deposited in the Supplementary Material of this article as well as in the ReSpecTh (http://www.respecth.hu) information system.

  3. Quantification in dynamic and small-animal positron emission tomography

    NARCIS (Netherlands)

    Disselhorst, Johannes Antonius

    2011-01-01

    This thesis covers two aspects of positron emission tomography (PET) quantification. The first section addresses the characterization and optimization of a small-animal PET/CT scanner. The sensitivity and resolution as well as various parameters affecting image quality (reconstruction settings, type

  4. A new liquid xenon scintillation detector for positron emission tomography

    International Nuclear Information System (INIS)

    Chepel, V.Yu.

    1993-01-01

    A new positron-sensitive detector of annihilation photons filled with liquid xenon is proposed for positron emission tomography. Simultaneous detection of both liquid xenon scintillation and ionization current produces a time resolution of < 1 ns and a position resolution in the tangential direction of the tomograph ring is ∼ 1 mm and in the radial direction is ∼ 5 mm. The advantages of a tomograph with new detectors are discussed. New algorithms of Compton scattering can be used. (author)

  5. Pathophysiological aspects of malignant brain tumors studied with positron emission tomography

    International Nuclear Information System (INIS)

    Jarden, J.O.

    1994-01-01

    To further understand the control of brain tumor fluid balance and pH, the following studies were undertaken. The transport of a water soluble molecule across the brain and tumor capillary endothelium was studied during glucocorticoid and radiation treatment. The brain and brain-tumor acidity (pH) was evaluated as a single measurement in patients receiving a low maintenance dose of glucocorticoid. Transport changes and pH were measured in 61 patients with cerebral tumors using 82 Rubidium ( 82 Rb) and 11 C-Dimethyloxa-zolidindione ( 11 C-DMO), respectively, and Positron Emission Tomography (PET). Supplementary studies of tumor and contralateral brain blood flow and blood volume using the C 15 O 2 /PET and C 15 O/PET technique, respectively, were included to validate the 82 Rb/PET model and obtain further information. A total of 125 PET scans were performed. Supplementary studies were undertaken to estimate delay of blood registration and form distribution of arterial blood isotope activity curves. Blood-to-tumor barrier transport was outlined at baseline and at 6 and 24 hours after the start of glucocorticoid treatment, finding a significant decrease in the transpfort. Radiation treatment (2-6 gray) did not alter the blood-to-tumor barrier transport when restudied within one hour in patients receiving glucocorticoid. The pH in brain tumors was as high as 6.88-7.26, suggesting that tumors are more alkalotic than the normal brain. The permeability surface area product and the permeability coefficient were determined form the 82 Rb/PET transport and C 15 O 2 /PET flow studies. Baseline permeability values were comparable to the literature values both for 82 Rb and potassium. No difference in tissue blood volume was seen between 82 Rb/PET and C 15 O/PET models and was of the same magnitude in the tumor and the contralateral tissue. Aspects of tumor alkalosis, tumor edema production, glucocorticoid edema clearance, and relationship between the anti-edema effect of

  6. Positron annihilation study on ZnO-based scintillating glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nie Jiaxiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China); Yu Runsheng; Wang Baoyi [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Ou Yuwen [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China); Zhong Yurong [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Xia Fang [School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005 (Australia); Chen Guorong, E-mail: grchen@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 20023 (China)

    2009-04-15

    Positron lifetime of ZnO-based scintillating glasses (55 - x)SiO{sub 2}-45ZnO-xBaF{sub 2} (x = 5, 10, 15 mol%) were measured with a conventional fast-fast spectrometer. Three positron lifetime components {tau}{sub 1}, {tau}{sub 2}, and {tau}{sub 3} are {approx}0.23 ns, {approx}0.45 ns, and {approx}1.6 ns, respectively. All the three positron lifetime components first increase with increasing BaF{sub 2} concentration from 5 mol% to 10 mol%, then decreases as BaF{sub 2} further increases to 15 mol%. The result suggests that the glass sample with 10 mol% BaF{sub 2} contains the highest defect density, and is in excellent agreement with glass chemistry, glass density, thermal properties, and calculated crystallinity. Therefore, positron annihilation lifetime measurement is an effective tool for analyzing defects in ZnO-based scintillating glasses.

  7. Cerebral blood flow measured by positron emission tomography during normothermic cardiopulmonary bypass: An experimental porcine study

    DEFF Research Database (Denmark)

    Thomassen, Sisse Anette; Kjaergaard, Benedict; Alstrup, Aage Kristian Olsen

    2018-01-01

    emission tomography (PET) using 15O-labelled water with no pharmacological interventions to maintain the MAP. Methods: Eight pigs (69-71 kg) were connected to normothermic CPB. After 60 minutes (min) with a CPB pump flow of 60 mL/kg/min, the pigs were changed to either 35 mL/kg/min or 47.5 mL/kg/min for 60......Background: Mean arterial blood pressure (MAP) and/or pump flow during normothermic cardiopulmonary bypass (CPB) are the most important factors of cerebral perfusion. The aim of this study was to explore the influence of CPB blood flow on cerebral blood flow (CBF) measured by dynamic positron...... min and, thereafter, all the pigs returned to 60 mL/kg/min for another 60 min. The MAP was measured continuously and the CBF was measured by positron emission tomography (PET) during spontaneous circulation and at each CPB pump flow after 30 min of steady state. Results: Two pigs were excluded due...

  8. Design and Characterization of a Three-Dimensional Positron Annihilation Spectroscopy System Using a Low-Energy Positron Beam

    Science.gov (United States)

    2012-03-22

    Technique Applied to Measure Oxygen -Atom Defects in 6H Silicon Carbide”. 2010. [31] Y. C. Jean , P. E. Mallon and D. M. Schrader. Principles and Applications...that result in β+ emission, by photon interactions with nuclei and subsequent pair production, or by β+ decays from radioactive isotopes made by...reactions for creating positrons [7], some of which are used to to create radioactive isotopes that β+ decay. Regardless of the positron source, positrons

  9. 18F-fluorodeoxyglucose positron emission tomography in colorectal cancer: value in primary staging and follow-up

    International Nuclear Information System (INIS)

    Joerg, L.; Heinisch, M.; Rechberger, E.; Kurz, F.; Klug, R.; Aufschnaiter, M; Hammer, J.; Langsteger, W.

    2002-01-01

    Positron emission tomography using 18 F-fluorodeoxyglucose (FDG-PET) is a encouraging imaging techniques allowing a highly sensitive whole-body search for malignant foci detected by their increased glucose metabolism compared with benign tissues. Several studies are now available that indicate its added value for diagnosis and staging of colorectal cancer. In all, patient management seems to be changed in 20-30 % of patients who undergo fluorodeoxyglucose positron emission tomography in addition to standard staging procedures. Fluorodeoxyglucose positron emission tomography is also useful in monitoring radiation therapy and chemotherapy. Regarding preoperative staging of primary colorectal cancer the literature is very limited. (author)

  10. Optical spectrophotometry of Comet P/Giacobini-Zinner and emission profiles of H2O+

    Science.gov (United States)

    Strauss, M. A.; Mccarthy, P. J.; Spinrad, H.

    1986-01-01

    Two-dimensional CCD spectrograms were obtained of Comet P/Giacobini-Zinner (1984e) on five occasions between July and October 1985. Spatial emission profiles of H2O+ were extracted at 6198 angstroms (the strongest ionic line in the visible spectrum). This emission line traces the extent of the ion, or plasma, tail. The spectrographic slit was placed approximately along the trajectory of the ICE spacecraft on September 11, 1985; the resulting H2O+ profile has a full-width-half-maximum of about 5700 km, about three times that of the plasma density profile measured by ICE, and has a full-width-zero-intensity of about 30,000 km, very similar to the ICE values. H2O production rates for the comet are derived and compared with those of Comet P/Halley (1982i).

  11. Irradiation-induced defects in ZnO studied by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Tuomisto, F.; Saarinen, K.; Look, D.C.

    2004-01-01

    We have used positron annihilation spectroscopy to study the point defects induced by 2 MeV electron irradiation (fluence 6 x 10 17 cm -2 ) in single crystal n-type ZnO samples. The positron lifetime measurements have shown that the zinc vacancies in their doubly negative charge state, which act as dominant compensating centers in the as-grown material, are produced in the irradiation and their contribution to the electrical compensation is important. The lifetime measurements reveal also the presence of competing positron traps with low binding energy and lifetime close to that of the bulk lattice. The analysis of the Doppler broadening of the 511 keV annihilation line indicates that these defects can be identified as neutral oxygen vacancies. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Assessment of pancreatic blood flow with positron emission tomography and oxygen-15 water

    International Nuclear Information System (INIS)

    Kubo, Soichi; Yamamoto, Kazutaka; Magata, Yasutaka; Iwasaki, Yasushi; Tamaki, Nagara; Yonekura, Yoshiharu; Konishi, Junji

    1991-01-01

    Dynamic positron emission tomography (PET) was performed following an intravenous bolus injection of 15 O-water for the assessment of regional pancreatic blood flow in 4 normal volunteers and 11 patients with pancreatic cancer. The regional pancreatic blood flow index (PFI) was calculated by the autoradiographic method assuming the time-activity curves of the aorta as an input function. The mean PFI value was 0.514±0.098 in the normal pancreas but it was decrease in the pancreatic cancer (0.247±0.076) (p 15 O-water permits quantitative assessment of pancreatic blood flow which decreased in both pancreatic cancer and concomitant obstructive pancreatitis distal to the tumor. (author)

  13. 4.5 Tesla magnetic field reduces range of high-energy positrons -- Potential implications for positron emission tomography

    International Nuclear Information System (INIS)

    Wirrwar, A.; Vosberg, H.; Herzog, H.; Halling, H.; Weber, S.; Mueller-Gaertner, H.W.; Forschungszentrum Juelich GmbH

    1997-01-01

    The authors have theoretically and experimentally investigated the extent to which homogeneous magnetic fields up to 7 Tesla reduce the spatial distance positrons travel before annihilation (positron range). Computer simulations of a noncoincident detector design using a Monte Carlo algorithm calculated the positron range as a function of positron energy and magnetic field strength. The simulation predicted improvements in resolution, defined as full-width at half-maximum (FWHM) of the line-spread function (LSF) for a magnetic field strength up to 7 Tesla: negligible for F-18, from 3.35 mm to 2.73 mm for Ga-68 and from 3.66 mm to 2.68 mm for Rb-82. Also a substantial noise suppression was observed, described by the full-width at tenth-maximum (FWTM) for higher positron energies. The experimental approach confirmed an improvement in resolution for Ga-68 from 3.54 mm at 0 Tesla to 2.99 mm FWHM at 4.5 Tesla and practically no improvement for F-18 (2.97 mm at 0 Tesla and 2.95 mm at 4.5 Tesla). It is concluded that the simulation model is appropriate and that a homogeneous static magnetic field of 4.5 Tesla reduces the range of high-energy positrons to an extent that may improve spatial resolution in positron emission tomography

  14. Tomographic evaluation of a dual-head positron emission tomography system

    International Nuclear Information System (INIS)

    Efthimiou, N; Maistros, S; Tripolitis, X; Panayiotakis, G; Samartzis, A; Loudos, G

    2011-01-01

    In this paper we present the performance evaluation results, in the planar and tomographic modes, of a low-cost positron emission tomography camera dedicated to small-animal imaging. The system consists of two pixelated Lu 2 SiO 5 crystals, two Hamamatsu H8500 position sensitive photomultiplier tubes, fast amplification electronics and an FPGA-USB-based read-out system. The parameters that have been studied are (i) saturation as a function of the head distance and photon acceptance angle, (ii) effect of the number of projections and half or complete head's rotation, (iii) spatial resolution as a function of the head distance, (iv) spatial resolution as a function of acceptance angle, (v) system's sensitivity as a function of these parameters and (vi) performance in small mice imaging. Image reconstruction has been carried out using open source software developed by our group (QSPECT), which is designed mainly for SPECT imaging. The results indicate that the system has a linear response for activities up to at least 2 MBq, which are typical in small-animal imaging. Best tomographic spatial resolution was measured to be ∼2 mm. The system has been found suitable for imaging of small mice both in the planar and tomographic modes

  15. Positron Emission Tomography : background, possibilities and perspectives in neuroscience

    NARCIS (Netherlands)

    Paans, AMJ

    Positron Emission Tomography (PET) is a method for determining biochemical and physiological processes in vivo in a quantitative way. This includes the measurement of the pharmacokinetics of labeled drugs and the measurement of the effects of drugs and/or therapy on metabolism. Also deviations of

  16. Potentials of positron emission tomography for regional cerebral blood flow evaluation

    International Nuclear Information System (INIS)

    Depresseux, J.C.

    1982-01-01

    A general overview of the potentials of positron emission tomography and of positron-emitting radiopharmaceuticals for the evaluation of regional cerebral blood flow is proposed and discussed. Specific characteristics of this technique are described, with special stress on conceptual and methodological implications. Four different approaches to the problem of the determination of cerebral blood flow are distinguished: trapping equilibrium methods, steady state equilibrium methods, clearance methods and convoluted kinetic methods [fr

  17. Fluorodeoxyglucose-positron emission tomography/computed tomography imaging features of colloid adenocarcinoma of the lung: a case report.

    Science.gov (United States)

    Wang, ZhenGuang; Yu, MingMing; Chen, YueHua; Kong, Yan

    2017-07-27

    Colloid adenocarcinoma of the lung is a rare subtype of variants of invasive adenocarcinomas. We report the appearance of this unusual entity on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography. A 60-year-old man of Chinese Han nationality coughed with a little white sputum for 1 month. Chest computed tomography showed multiple bilateral subpleural nodules and plaques accompanied by air bronchograms, which were most concentrated in the lower lobe of his right lung. Positron emission tomography indicated increased radioactivity uptake with a maximum standardized uptake value of 3.5. Positron emission tomography/computed tomography showed a soft tissue density lesion in his left adrenal gland with a maximum standardized uptake value of 4.1. The positron emission tomography/computed tomography appearance suggested a primary colloid adenocarcinoma in the lower lobe of his right lung accompanied by intrapulmonary and left adrenal gland metastases. The diagnostic rate of colloid adenocarcinoma can be increased by combining the anatomic and metabolic information of lesions. The advantage of positron emission tomography/computed tomography in the diagnosis of colloid adenocarcinoma, as with other cancers, is the ability to locate extrapulmonary disease, facilitating clinical staging.

  18. Fluorodeoxyglucose and C-Choline positron emission tomography for distinction of metastatic plexopathy and neuritis : a case report

    NARCIS (Netherlands)

    Bartels, Anna L.; Zeebregts, Clark J; Enting, Roeline; Slart, Riemer Hja

    2009-01-01

    INTRODUCTION: Fluorodeoxyglucose positron emission tomography scanning has an established role in the diagnostic work-up of many malignant diseases and also in the evaluation of cancer treatment response. Fluorodeoxyglucose positron emission tomography may, however be non-specific as infectious

  19. Diffusion length of positrons and positronium investigated using a positronbeam with longitudinal geometry

    Science.gov (United States)

    van Petegem, S.; Dauwe, C.; van Hoecke, T.; de Baerdemaeker, J.; Segers, D.

    2004-09-01

    Positronium emission from single crystalline Al2O3 , MgO and vitreous a-SiO2 surfaces was studied as a function of the positron implantation energy E by means of Doppler broadening spectroscopy and Compton-to-peak ratio analysis. When the Ge-detector is in-line with the positron beam, the emission of para-positronium yields a red-shifted fly-away peak with intensity IpPse . An analysis of IpPse versus E for Al2O3 and MgO where no Ps is formed in the bulk (fPs=0) results in positron diffusion lengths L+(Al2O3)=(18±1)nm and L+(MgO)=(14±1)nm , and efficiencies for the emission of Ps by picking up of a surface electron of fpu(Al2O3)=(0.28±0.2) and fpu(MgO)=(0.24±0.2) . For a-SiO2 the bulk Ps fraction is fPs(a-SiO2)=(0.72±0.01) , fpu(a-SiO2)=(0.12±0.01) and the diffusion lengths of positrons, para-positronium and ortho-positronium are L+(SiO2)=(8±2)nm , LpPs(SiO2)=(14.5±2)nm and LoPs(SiO2)=(11±2)=nm . Depending on the specimen-detector geometry the emission of Ps at low implantation energy may cause either an increase or a decrease of the width of the annihilation line shape at low implantation energies.

  20. Theory, development, and applications of the scanning positron microbeam and positron reemission microscope

    International Nuclear Information System (INIS)

    Brandes, G.R.

    1990-01-01

    The theory, design, development, and applications of two new imaging instruments, the scanning positron microbeam (SPM) and positron reemission microscope (PRM), are discussed. The SPM consists of a sectored lens which focuses and rasters the positrons from the beam across the sample. The results of rastering the 10μm x 50μm beam across a test grid demonstrate the SPM's ability to scan a 500μm diameter region and to resolve features with ∼ 5μm resolution. The SPM was used to examine the location of defects in a Si-on-SiO 2 sample. Possible applications to three dimensional defect spectroscopy and the observation of small samples are considered. In the PRM, the positrons from the brightness-enhanced beam are focused at 5keV to an 8/Am diameter spot (FWHM) onto a thin metal single crystal. An image of the opposing side of the film is formed by accelerating and focusing the reemitted thermalized positrons with a cathode lens objective and a projector lens. The final image (real) is a record of the thermal positron emission intensity versus position. Images of surface and subsurface defect structures, taken at magnifications up to 4400x and with a resolution up to 80nm, are presented and discussed. The ultimate resolution capabilities and possible applications of the PRM are examined. The implantation and diffusion process of positrons was studied with the PRM by examining the positron emission profile of 3-9keV positrons implanted into a 2200 angstrom thick Ni single crystal

  1. Positron annihilation induced Auger electron spectroscopic studies of oxide surfaces

    Science.gov (United States)

    Nadesalingam, Manori

    2005-03-01

    Defects on oxide surfaces are well known to play a key role in catalysis. TiO2, MgO, SiO2 surfaces were investigated using Time-Of-Flight Positron induced Auger Electron Spectroscopy (TOF-PAES). Previous work in bulk materials has demonstrated that positrons are particularly sensitive to charged defects. In PAES energetic electron emission results from Auger transitions initiated by annihilation of core electrons with positrons trapped in an image-potential well at the surface. Annealed samples in O2 environment show a strong Auger peak of Oxygen. The implication of these results will be discussed

  2. Cobalt-55 positron emission tomography in recurrent ischaemic stroke

    NARCIS (Netherlands)

    De Reuck, J; Santens, P; Keppens, J; De Bleecker, J; Strijckmans, K; Goethals, P; Lemahieu, [No Value; Korf, J

    The present study investigates if Cobalt-55 (Co-55) positron emission tomography (PET) allows us to distinguish and detect recent, recurrent strokes in patients who had already suffered a previous infarct in the same vascular territory. Fourteen patients with recurrent strokes underwent a Co-55 PET

  3. Positron emission tomography of incidentally detected small pulmonary nodules

    DEFF Research Database (Denmark)

    Fischer, B M; Mortensen, J; Dirksen, A

    2004-01-01

    The aim of this study was to assess the value of fluorodeoxyglucose positron emission tomography (FDG PET) imaging of small pulmonary nodules incidentally detected by spiral computed tomography (CT) in a high-risk population. Ten patients (five females, five males, aged 54-72 years) were recruited...

  4. Positron emission tomography in presurgical diagnosis of partial epilepsies

    International Nuclear Information System (INIS)

    Hajek, M.; Leenders, K.L.; Wieser, H.G.

    1992-01-01

    We present results of studies in which positron emission tomography was applied to the presurgical evaluation of epileptics. Emphasis is placed on results of PET studies with various tracers in partial epilepsies and on the use of PET in age-related epileptic syndromes in children. (orig.) [de

  5. Emission noise spectrum in a premixed H2-O2-N2 flame

    NARCIS (Netherlands)

    Alkemade, C.T.J.; Hooymayers, H.P.; Lijnse, P.L.; Vierbergen, T.J.M.J.

    Experimental noise spectra in the frequency range of 15–105 Hz are reported for the thermal emission of the first resonance doublet of Na and K in a premixed H2-O2-N2 flame, and for the flame background emission. Under certain conditions, low-frequency peaks arise in the noise spectrum below 100 Hz,

  6. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications

    International Nuclear Information System (INIS)

    Pagani, M.; Stone-Elander, S.; Larsson, S.A.

    1997-01-01

    The increasing amount of clinically relevant information obtained by positron emission tomography (PET), primarily with fluorine-18 labelled 2-deoxy-2-fluoro-d-glucose, has generated a demand for new routes for the widespread and cost-efficient use of positron-emitting radiopharmaceuticals. New dual-head single-photon emission tomography (SPET) cameras are being developed which offer coincidence detection with camera heads lacking a collimator or SPET imaging with specially designed collimators and additional photon shielding. Thus, not only satellite PET imaging units but also nuclear medicine units investing in these new SPET/PET systems need to examine all available alternatives for rational radionuclide supplies from host cyclotrons. This article examines 25 ''alternative'' positron-emitting radionuclides, discusses the impact of their decay properties on image quality and reviews methods for their production as well as for their application in imaging techniques. (orig.)

  7. Irradiation-induced defects in ZnO studied by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, F.; Saarinen, K. [Laboratory of Physics, Helsinki University of Technology (Finland); Look, D.C. [Semiconductor Research Center, Wright State University, Dayton, Ohio (United States)

    2004-08-01

    We have used positron annihilation spectroscopy to study the point defects induced by 2 MeV electron irradiation (fluence 6 x 10{sup 17} cm{sup -2}) in single crystal n-type ZnO samples. The positron lifetime measurements have shown that the zinc vacancies in their doubly negative charge state, which act as dominant compensating centers in the as-grown material, are produced in the irradiation and their contribution to the electrical compensation is important. The lifetime measurements reveal also the presence of competing positron traps with low binding energy and lifetime close to that of the bulk lattice. The analysis of the Doppler broadening of the 511 keV annihilation line indicates that these defects can be identified as neutral oxygen vacancies. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting 68Ga-EDTA and 77Kr

    International Nuclear Information System (INIS)

    Yamamoto, Y.L.; Thompson, C.J.; Meyer, E.; Robertson, J.S.; Feindel, W.

    1977-01-01

    Dynamic positron emission tomographic studies were performed on over 120 patients with occlusive cerebrovascular disease, arteriovenous malformations, and brain tumors, using the positron section scanner, consisting of a ring of 32 scintillation detectors. The radiopharmaceuticals were nondiffusible 68 Ga-EDTA for transit time and uptake studies and the diffusible tracer, 77 Kr, for quantitative regional cerebral blood flow studies in every square centimeter of the cross section of the head. The results of dynamic positron emission tomography in correlation with the results from the gamma scintillation camera dynamic studies and computed tomography (CT) scans are discussed

  9. 3D fast reconstruction in positron emission tomography

    International Nuclear Information System (INIS)

    Egger, M.L.; Scheurer, A. Hermann; Joseph, C.; Morel, C.

    1996-01-01

    The issue of long reconstruction times in positron emission tomography (PET) has been addressed from several points of view, resulting in an affordable dedicated system capable of handling routine 3D reconstructions in a few minutes per frame : on the hardware side using fast processors and a parallel architecture, and on the software side, using efficient implementation of computationally less intensive algorithms

  10. Three-dimensional imaging of hidden objects using positron emission backscatter

    International Nuclear Information System (INIS)

    Lee, Dongwon; Cowee, Misa; Fenimore, Ed; Galassi, Mark; Looker, Quinn; Mcneil, Wendy V.; Stonehill, Laura; Wallace, Mark

    2009-01-01

    Positron emission backscatter imaging is a technique for interrogation and three-dimensional (3-D) reconstruction of hidden objects when we only have access to the objects from one side. Using time-of-flight differences in detected direct and backscattered positron-emitted photons, we construct 3-D images of target objects. Recently at Los Alamos National Laboratory, a fully three-dimensional imaging system has been built and the experimental results are discussed in this paper. Quantitative analysis of images reconstructed in both two- and three-dimensions are also presented.

  11. Positron emission computerized tomography: a potential tool for in vivo quantitation of the distribution of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Huebner, K.F.; King, P.; Gibbs, W.D.; Washburn, L.C.; Hayes, R.L.

    1981-01-01

    The principles and some of the difficulties in quantitative positron emission computerized tomography have been discussed. We have shown that randoms and scattered events are a major cause of noise and counting errors in positron emission computerized tomography. The noise has been identified as a convoluting process and a mathematical solution has been presented. Examples of phantom studies and in vivo measurements have demonstrated that the distribution of positron emitting radiopharmaceuticals can be quantitated with much improved accuracy using the deconvolution equation to remove undesired noise

  12. Radiopharmaceuticals in positron emission tomography: Radioisotope productions and radiolabelling procedures at the Austin and Repatriation Medical Centre

    International Nuclear Information System (INIS)

    Tochon-Danguy, H.J.; Sachinidis, J.I.; Chan, J.G.; Cook, M.

    1997-01-01

    Positron Emission Tomography (PET) is a technique that utilizes positron-emitting radiopharmaceuticals to map the physiology, biochemistry and pharmacology of the human body. Positron-emitting radioisotopes produced in a medical cyclotron are incorporated into compounds that are biologically active in the body. A scanner measures radioactivity emitted from a patient's body and provides cross-sectional images of the distribution of these radiolabelled compounds in the body. It is the purpose of this paper to review the variety of PET radiopharmaceuticals currently produced at the Austin and Repatriation Medical Centre in Melbourne. Radioisotope production, radiolabelling of molecules and quality control of radiopharmaceuticals will be discussed. A few examples of their clinical applications will be shown as well. During the last five years we achieved a reliable routine production of various radiopharmaceuticals labelled with the four most important positron-emitters: oxygen-15 (t, 1/2 =2min), nitrogen-13 (t 1/2 = 10 min), carbon-11 (t 1/2 =20 min) and fluorine-18 (t 1/2 = 110 min). These radiopharmaceuticals include [ 15 O]oxygen, [ 15 O]carbon monoxide, [ 15 O]carbon dioxide, [ 15 O]water, [ 13 N]ammonia, [ 11 C]flumazenil, [ 11 C]SCH23390, [ 18 F]fluoromisonidazole and [ 18 F]fluoro-deoxy-glucose ([ 18 F]FDG). In addition, since the half life of [ 18 F] is almost two hours, regional distribution can be done, and the Austin and Repatriation Medical Centre is currently supplying [ 18 F]FDG in routine to other hospitals. Future new radiopharmaceuticals development include a [ 18 F]thymidine analog to measure cell proliferation and a [ 11 C]pyrroloisoquinoline to visualize serotonergic neuron abnormalities. (authors)

  13. Distinguishing tumor recurrence from irradiation sequelae with positron emission tomography in patients treated for larynx cancer

    International Nuclear Information System (INIS)

    Greven, K.M.; Williams, D.W. III; Keyes, J.W. Jr.; McGuirt, W.F.; Harkness, B.A.; Watson, N.E. Jr.; Raben, M.; Frazier, L.C.; Geisinger, K.R.; Capellari, J.O.

    1994-01-01

    Distinguishing persistent or recurrent tumor from postradiation edema, or soft tissue/cartilage necrosis in patients treated for carcinoma of the larynx can be difficult. Because recurrent tumor is often submucosal, multiple deep biopsies may be necessary before a diagnosis can be established. Positron emission tomography with 18F-2-fluro-2-deoxglucose (FDG) was studied for its ability to aid in this problem. Positron emission tomography (18FDG) scans were performed on 11 patients who were suspected of having persistent or recurrent tumor after radiation treatment for carcinoma of the larynx. Patients underwent thorough history and physical examinations, scans with computerized tomography, and pathologic evaluation when indicated. Standard uptake values were used to quantitate the FDG uptake in the larynx. The time between completion of radiation treatment and positron emission tomography examination ranged from 2 to 26 months with a median of 6 months. Ten patients underwent computed tomography (CT) of the larynx, which revealed edema of the larynx (six patients), glottic mass (four patients), and cervical nodes (one patient). Positron emission tomography scans revealed increased FDG uptake in the larynx in five patients and laryngectomy confirmed the presence of carcinoma in these patients. Five patients had positron emission tomography results consistent with normal tissue changes in the larynx, and one patient had increased FDG uptake in neck nodes. This patient underwent laryngectomy, and no cancer was found in the primary site, but nodes were pathologically positive. One patient had slightly elevated FDG uptake and negative biopsy results. The remaining patients have been followed for 11 to 14 months since their positron emission studies and their examinations have remained stable. In patients without tumor, average standard uptake values of the larynx ranged from 2.4 to 4.7, and in patients with tumor, the range was 4.9 to 10.7. 18 refs., 3 figs., 1 tab

  14. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both...

  15. Laparoscopic Scar: a mimicker of Sister Mary Joseph's nodule on positron emission tomography/CT

    International Nuclear Information System (INIS)

    Setty, B.; Blake, M.A.; Holalkere, N.S.; Blaszkowsky, L.S.; Fischman, A.

    2006-01-01

    Positron emission tomography/CT is an established imaging method in the diagnosis and staging of cancers. 18 F -fluoro-2-deoxy-D-glucose (FDG) is the most commonly used radiotracer in positron emission tomography/CT. It is a tumour viability agent and usually its uptake within a lesion reflects the presence of a viable tumour tissue. However, false-positive FDG uptake is known to occur in benign processes of either inflammatory or infectious aetiology. We describe FDG uptake at the site of laparoscopic scar that mimicked Sister Mary Joseph's nodule in a patient with gastric adenocarcinoma. Here, the knowledge of the patient's history and subtle imaging findings helped in accurate staging of the patient. In this case report, we emphasize the value of the knowledge of the patient history and awareness of different pitfalls of FDG to achieve a correct diagnosis on positron emission tomography/CT

  16. Cardiac positron tomography

    International Nuclear Information System (INIS)

    Geltmann, E.M.; Roberts, R.; Sobel, B.E.

    1980-01-01

    Positron emission tomography (PET) performed after the administration of the positron-emitting radionuclides carbon-11 ( 11 C), nitrogen-13 ( 13 N), oxygen-15 ( 15 O) and fluorine-18 ( 18 F) has permitted the improved noninvasive assessment of the regional myocardial metabolism of normal physiologic substrates and intermediates and their cogeners. In experimental animals, the rate of oxidation of 11 C-palmitate correlates closely with other indexes of oxygen consumption, and the extraction of 11 C-palmitate (like that of 18 F-fatty acids and 18 F-fluoredoxyglucose) ist markedly diminished in regions of myocardial ischemia. In both experimental animals and in patients, myocardial infarct site and size, determined by positron emission tomography after the intravenous injection of 11 C-palmitate, correlate closely with the electrocardiographic infarct locus and enzymatically estimated infarct size as well as with the location and extent of regional left ventricular wall motion abnormalities. PET offers promise for assessment of flow as well despite the complexities involved. PET with 13 NH 3 appears to provide one useful qualitative index, although this tracer ist actively metabolized. Because of the quantitative capabilities of positron emission tomography and the rapid progress which is being made in the development of fast scan, multi-slice, and gated instrumentation, this technique is likely to facilitate improved understanding and characterization of regional myocardial metabolism and blood flow in man under physiological and pathophysiological conditions. (orig.) [de

  17. Incidental head and neck findings on 18F-fluoro-deoxy-glucose positron emission tomography computed tomography.

    Science.gov (United States)

    Williams, S P; Kinshuck, A J; Williams, C; Dwivedi, R; Wieshmann, H; Jones, T M

    2015-09-01

    The overlapping risk factors for lung and head and neck cancer present a definite risk of synchronous malignant pathology. This is the first study to specifically review incidental positron emission tomography computed tomography findings in the head and neck region in lung carcinoma patients. A retrospective review was performed of all lung cancer patients who underwent positron emission tomography computed tomography imaging over a five-year period (January 2008 - December 2012), identified from the Liverpool thoracic multidisciplinary team database. Six hundred and nine patients underwent positron emission tomography computed tomography imaging over this period. In 76 (12.5 per cent) scans, incidental regions of avid 18F-fluoro-deoxy-glucose uptake were reported in the head and neck region. In the 28 patients who were fully investigated, there were 4 incidental findings of malignancy. In lung cancer patients undergoing investigative positron emission tomography computed tomography scanning, a significant number will also present with areas of clinically significant 18F-fluoro-deoxy-glucose uptake in the head and neck region. Of these, at least 5 per cent may have an undiagnosed malignancy.

  18. Radiolabeled, Antibody-Conjugated Manganese Oxide Nanoparticles for Tumor Vasculature Targeted Positron Emission Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Zhan, Yonghua; Shi, Sixiang; Ehlerding, Emily B; Graves, Stephen A; Goel, Shreya; Engle, Jonathan W; Liang, Jimin; Tian, Jie; Cai, Weibo

    2017-11-08

    Manganese oxide nanoparticles (Mn 3 O 4 NPs) have attracted a great deal of attention in the field of biomedical imaging because of their ability to create an enhanced imaging signal in MRI as novel potent T 1 contrast agents. In this study, we present tumor vasculature-targeted imaging in mice using Mn 3 O 4 NPs through conjugation to the anti-CD105 antibody TRC105 and radionuclide copper-64 ( 64 Cu, t 1/2 : 12.7 h). The Mn 3 O 4 conjugated NPs, 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105, exhibited sufficient stability in vitro and in vivo. Serial positron emission tomography (PET) and magnetic resonance imaging (MRI) studies evaluated the pharmacokinetics and demonstrated targeting of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 to 4T1 murine breast tumors in vivo, compared to 64 Cu-NOTA-Mn 3 O 4 @PEG. The specificity of 64 Cu-NOTA-Mn 3 O 4 @PEG-TRC105 for the vascular marker CD105 was confirmed through in vivo, in vitro, and ex vivo experiments. Since Mn 3 O 4 conjugated NPs exhibited desirable properties for T 1 enhanced imaging and low toxicity, the tumor-specific Mn 3 O 4 conjugated NPs reported in this study may serve as promising multifunctional nanoplatforms for precise cancer imaging and diagnosis.

  19. Positron-annihilation studies on the YBa2Cu4O8 superconductor

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.; Jean, Y.C.; Hor, P.H.; Meng, R.L.; Xue, Y.Y.; Huang, Z.J.; Chu, C.W.

    1990-01-01

    Positron-lifetime and Doppler-broadened annihilation-radiation line-shape parameter S in YBa 2 Cu 4 O 8 are observed to decrease with temperature below T c . The calculation of the positron-density distribution shows that the maximum of the positron density is in the region between the Cu-O double chains. The correlation between the temperature dependence of annihilation parameters and the positron-density distribution is discussed. The decrease in annihilation parameters below T c is understood in terms of a local electron transfer from the CuO 2 layers to the Cu-O chains in the superconducting state

  20. Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes.

    Science.gov (United States)

    Shaaban, Muhammad; Wu, Yupeng; Khalid, Muhammad Salman; Peng, Qi-An; Xu, Xiangyu; Wu, Lei; Younas, Aneela; Bashir, Saqib; Mo, Yongliang; Lin, Shan; Zafar-Ul-Hye, Muhammad; Abid, Muhammad; Hu, Ronggui

    2018-04-01

    Several studies have been carried out to examine nitrous oxide (N 2 O) emissions from agricultural soils in the past. However, the emissions of N 2 O particularly during amelioration of acidic soils have been rarely studied. We carried out the present study using a rice-rapeseed rotation soil (pH 5.44) that was amended with dolomite (0, 1 and 2 g kg -1 soil) under 60% water filled pore space (WFPS) and flooding. N 2 O emissions and several soil properties (pH, NH 4 + N, NO 3 - -N, and nosZ gene transcripts) were measured throughout the study. The increase in soil pH with dolomite application triggered soil N transformation and transcripts of nosZ gene controlling N 2 O emissions under both water regimes (60% WFPS and flooding). The 60% WFPS produced higher soil N 2 O emissions than that of flooding, and dolomite largely reduced N 2 O emissions at higher pH under both water regimes through enhanced transcription of nosZ gene. The results suggest that ameliorating soil acidity with dolomite can substantially mitigate N 2 O emissions through promoting nosZ gene transcription. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Positron Emission Tomography in Prostate Cancer: Summary of Systematic Reviews and Meta-Analysis.

    Science.gov (United States)

    Jadvar, Hossein

    2015-09-01

    Prostate cancer is a prevalent public health problem worldwide. Over the past decade, there has been tremendous research activity in the potential use of positron emission tomography with a number of radiotracers targeted to various biological aspects of this complex tumor. Systematic reviews and meta-analysis are important contributions to the relevant literature that summarize the evidence while reducing the effect of various sources of bias in the published data. The accumulation of relevant data in this clinical setting has recently provided the opportunity for systematic reviews. In this brief article, I summarize the published systematic reviews and meta-analysis of positron emission tomography in prostate cancer. Most robust evidence suggests a probable role for first-line use of positron emission tomography with radiolabeled choline in restating patients with biochemical relapse of prostate cancer with the diagnostic performance that appears to be positively associated with the serum prostate specific antigen level and velocity. Future systematic reviews will be needed for other emerging radiotracers such as those based on prostate specific membrane antigen and gastrin-releasing peptide receptor.

  2. Application of positron emission tomography in the heart

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This report discusses experimental and clinical applications of positron emission tomography to the heart, including measurements of blood flow to the myocardium and studies of metabolism and experimental injury. Most initial clinical studies have concentrated on ischemic heart disease, but the technique also has potential for investigation of cardiomyopathies, studying the neural control of the heart, and evaluating the effects of drugs on cardiac tissues

  3. Anti-amyloid-β-mediated positron emission tomography imaging in Alzheimer's disease mouse brains.

    Directory of Open Access Journals (Sweden)

    Daniel McLean

    Full Text Available Antibody-mediated imaging of amyloid β (Aβ in Alzheimer's disease (AD offers a promising strategy to detect and monitor specific Aβ species, such as oligomers, that have important pathological and therapeutic relevance. The major current limitation of antibodies as a diagnostic and imaging device is poor blood-brain-barrier permeability. A classical anti-Aβ antibody, 6E10, is modified with 10 kDa polyethylene glycol (PEG and a positron emitting isotope, Copper-64 (t(½ = 12.7 h, and intravenously delivered to the TgCRND8 mouse model of Alzheimer's disease. Modification of 6E10 with PEG (6E10-PEG increases accumulation of 6E10 in brain tissue in both TgCRND8 and wild type control animals. 6E10-PEG differentiates TgCRND8 animals from wild type controls using positron emission tomography (PET and provides a framework for using antibodies to detect pathology using non-invasive medical imaging techniques.

  4. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer.

    Science.gov (United States)

    Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian

    2012-07-01

    To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.

  5. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer

    International Nuclear Information System (INIS)

    Yang Zhongyi; Pan Lingling; Cheng Jingyi; Hu Silong; Xu Junyan; Zhang Yingjian; Ye Dingwei

    2012-01-01

    The objective of this study was to investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity=95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. (author)

  6. Physiopathology of ischemic strokes: the input of positron emission tomography

    International Nuclear Information System (INIS)

    Steinling, M.; Samson, Y.

    1999-01-01

    The tomography by positrons emissions has brought essential physiological and pathological knowledge relative to cerebral vascular accidents in the acute phase, because it is possible to measure the cerebral blood flow, the oxygen extraction rate and the local oxygen consumption. (N.C.)

  7. Requirement for radiation shields of transportation pipe for on line inhalation gases from compact cyclotron in positron emission tomography

    International Nuclear Information System (INIS)

    Hachiya, Takenori; Hagami, Eiichi; Shoji, Yasuaki; Aizawa, Yasuo; Kanno, Iwao; Uemura, Kazuo; Handa, Masahiko; Mori, Junichi; Fukagawa, Akihisa.

    1989-01-01

    In the unit housing of a compact cyclotron and positron emission CT (PET), positron emitting gas such as 15 O, 11 C, C 15 O 2 , C 15 O etc. is supplied from a cyclotron to a PET room through a transportation pipe with an appropriate shield to reduce positron annihilation radiation. This paper discribes the effect of lead and concrete shields with various thickness. Using lead or concrete shield blocks with various thicknesses, radiation leakage through the shield was measured by an ionization chamber type survey meter during continuous and constant supply of 15 O gas of 1.85 GBq/min concentration which is the maximum dose for clinical use. The leakage radiation measured was 213.7, 56.0, 15.3, 5.0 μSv/week for lead shield with 1, 2, 3, and 4 cm thickness, respectively, and 193.3, 30.5 and 5.1 μSv/week for concrete shields with thickness of 10, 20, and 30 cm, respectively. The present study shows that to keep less than 300 μSv/week, which is the permissible dose rate of the boundary zone around the radiation controlled area by Japan Science and Technology Agency, it is required to use more than 8 mm thick lead shield or 7 cm thick concrete for continuous supply of 1.85 GBq/min 15 O gas. (author)

  8. Positron Emission Tomography: Its 65 years

    International Nuclear Information System (INIS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-01-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, preclinical and hybrid scanners (i.e., PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  9. Quantitative agreement between [(15)O]H2O PET and model free QUASAR MRI-derived cerebral blood flow and arterial blood volume.

    Science.gov (United States)

    Heijtel, D F R; Petersen, E T; Mutsaerts, H J M M; Bakker, E; Schober, P; Stevens, M F; van Berckel, B N M; Majoie, C B L M; Booij, J; van Osch, M J P; van Bavel, E T; Boellaard, R; Lammertsma, A A; Nederveen, A J

    2016-04-01

    The purpose of this study was to assess whether there was an agreement between quantitative cerebral blood flow (CBF) and arterial cerebral blood volume (CBVA) measurements by [(15)O]H2O positron emission tomography (PET) and model-free QUASAR MRI. Twelve healthy subjects were scanned within a week in separate MRI and PET imaging sessions, after which quantitative and qualitative agreement between both modalities was assessed for gray matter, white matter and whole brain region of interests (ROI). The correlation between CBF measurements obtained with both modalities was moderate to high (r(2): 0.28-0.60, P QUASAR significantly underestimated CBF by 30% (P QUASAR yielding values that were only 27% of the [(15)O]H2O-derived values (P QUASAR MRI, indicating similar qualitative CBVA and CBF information by both modalities. In conclusion, the results of this study demonstrate that QUASAR MRI and [(15)O]H2O PET provide similar CBF and CBVA information, but with systematic quantitative discrepancies. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Effect of sintering time on the orthorhombic structure and positron lifetime in YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Chen Zhenping; Zhang Jincang; Li Xigui

    2002-01-01

    The effects of sintering time on the orthorhombic structure and positron lifetime parameter in YBa 2 Cu 3 O 7-δ have been studied by XRD, SEM and the positron experiments. It is found that on the condition of 950 degree C/12-72 h, the positron experiment has good stability and reliability. This experiment indicates that the longer sintering time is needed to prepare Y-123 samples

  11. Investigation of 70SiO2-15CaO-10P2O5-5Na2O Glass Composition for Bone Regeneration Applications

    Directory of Open Access Journals (Sweden)

    Vikas Anand

    2014-11-01

    Full Text Available Glass with the composition 70SiO2-15CaO -10P2O5-5Na2O has been prepared by using sol gel technique. Bioactive behavior of the glass sample has been checked by in vitro study using TRIS simulated body fluid. Bioactive properties of the sample has been analyzed by using XRD, Raman, FE-SEM, EDX and Brunauer Emmett Teller studies. pH study has been conducted to check the non- acidic nature of the glass sample. Drug delivery behavior of the sample has been estimated by using gentamicin as an antibiotic. Reported sample has been found to be potential candidate for bone regeneration applications.

  12. Applications of nucleoside-based molecular probes for the in vivo assessment of tumour biochemistry using positron emission tomography (PET

    Directory of Open Access Journals (Sweden)

    Leonard I. Wiebe

    2007-05-01

    Full Text Available Positron emission tomography (PET is a non-invasive nuclear imaging technique. In PET, radiolabelled molecules decay by positron emission. The gamma rays resulting from positron annihilation are detected in coincidence and mapped to produce three dimensional images of radiotracer distribution in the body. Molecular imaging with PET refers to the use of positron-emitting biomolecules that are highly specific substrates for target enzymes, transport proteins or receptor proteins. Molecular imaging with PET produces spatial and temporal maps of the target-related processes. Molecular imaging is an important analytical tool in diagnostic medical imaging, therapy monitoring and the development of new drugs. Molecular imaging has its roots in molecular biology. Originally, molecular biology meant the biology of gene expression, but now molecular biology broadly encompasses the macromolecular biology and biochemistry of proteins, complex carbohydrates and nucleic acids. To date, molecular imaging has focused primarily on proteins, with emphasis on monoclonal antibodies and their derivative forms, small-molecule enzyme substrates and components of cell membranes, including transporters and transmembrane signalling elements. This overview provides an introduction to nucleosides, nucleotides and nucleic acids in the context of molecular imaging.A tomografia por emissão de pósitrons (TEP é uma técnica de imagem não invasiva da medicina nuclear. A TEP utiliza moléculas marcadas com emissores de radiação beta positiva (pósitrons. As radiações gama medidas que resultam do aniquilamento dos pósitrons são detectadas por um sistema de coincidência e mapeadas para produzir uma imagem tridimensional da distribuição do radiotraçador no corpo. A imagem molecular com TEP refere-se ao uso de biomoléculas marcadas com emissor de pósitron que são substratos altamente específicos para alvos como enzimas, proteínas transportadoras ou receptores prot

  13. Positron Emission Tomography imaging with the SmartPET system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom)], E-mail: cooperrj@ornl.gov; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P.; Mather, A.R. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2009-07-21

    The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image.

  14. Positron emission tomography for staging of oesophageal and gastroesophageal malignancy

    NARCIS (Netherlands)

    Kole, AC; Plukker, JT; Nieweg, OE; Vaalburg, W

    Positron emission tomography (PET) with [F-18]-fluoro-2-deoxy-D-glucose (FDG) was prospectively investigated as a means of detecting metastatic disease in patients with oesophageal tumours and compared with computerized tomography (CT), with the surgical findings as a gold standard. Twenty-six

  15. Low-energy positron and electron diffraction and positron-stimulated secondary electron emission from Cu(100)

    International Nuclear Information System (INIS)

    Weiss, A.H.

    1983-01-01

    The results of two series of experiments are reported. In the first, an electrostatically guided beam of low-energy (40-400 eV) positrons, delta/sub p/ was used to study low-energy positron diffraction (LEPD) from a Cu(100) surface under ultrahigh-vacuum conditions. Low-energy electron diffraction (LEED) data were obtained from the same sample in the same apparatus. Comparison of LEPD and LEED intensity versus energy data with model calculations made using computer programs developed by C.B. Duke and collaborators indicated that: LEPD data is adequately modeled using potentials with no exchange-correlation term. The inelastic mean free path, lambda/sub ee/, is shorter for positrons than for electrons at low (< approx.80 eV). LEED is better than LEPD at making a determination of the first-layer spacing of Cu(100) for the particular data set reported. In the second set of experiments, the same apparatus and sample were used to compare positron- and electron-stimulated secondary-electron emission (PSSEE and ESSEE). The results were found to be consistent with existing models of secondary-electron production for metals. The energy distributions of secondary-electrons had broad low-energy (<10 eV) peaks for both positron and electron stimulation. But the PSEE distribution showed no elastic peak. Measurements of secondary-electron angular distributions, found to be cosine-like in both the PSSEE and ESSEE case, were used to obtain total secondary yield ratios, delta, at four beam energies ranging from 40-400 eV. The secondary yield ratio for primary positrons and the yield for primary electrons, delta/sub e/, were similar at these energies. For 400-eV primary particles the secondary yields were found to be delta/sub p/ = 0.94 +/- 0.12 and delta/sub e/ = 0.94 +/- 0./12, giving a ratio of unity for positron-stimulated secondary yield to electron-stimulated secondary yield

  16. Radiopharmaceuticals in positron emission tomography: Radioisotope productions and radiolabelling procedures at the Austin and Repatriation Medical Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J.; Sachinidis, J.I.; Chan, J.G.; Cook, M. [Austin and Repatriation Medical Centre, Melbourne, VIC (Australia). Centre for Positron Emission Tomography

    1997-10-01

    Positron Emission Tomography (PET) is a technique that utilizes positron-emitting radiopharmaceuticals to map the physiology, biochemistry and pharmacology of the human body. Positron-emitting radioisotopes produced in a medical cyclotron are incorporated into compounds that are biologically active in the body. A scanner measures radioactivity emitted from a patient`s body and provides cross-sectional images of the distribution of these radiolabelled compounds in the body. It is the purpose of this paper to review the variety of PET radiopharmaceuticals currently produced at the Austin and Repatriation Medical Centre in Melbourne. Radioisotope production, radiolabelling of molecules and quality control of radiopharmaceuticals will be discussed. A few examples of their clinical applications will be shown as well. During the last five years we achieved a reliable routine production of various radiopharmaceuticals labelled with the four most important positron-emitters: oxygen-15 (t,{sub 1/2}=2min), nitrogen-13 (t{sub 1/2}= 10 min), carbon-11 (t{sub 1/2}=20 min) and fluorine-18 (t{sub 1/2}= 110 min). These radiopharmaceuticals include [{sup 15}O]oxygen, [{sup 15}O]carbon monoxide, [{sup 15}O]carbon dioxide, [{sup 15}O]water, [{sup 13}N]ammonia, [{sup 11}C]flumazenil, [{sup 11}C]SCH23390, [{sup 18}F]fluoromisonidazole and [{sup 18}F]fluoro-deoxy-glucose ([{sup 18}F]FDG). In addition, since the half life of [{sup 18}F] is almost two hours, regional distribution can be done, and the Austin and Repatriation Medical Centre is currently supplying [{sup 18}F]FDG in routine to other hospitals. Future new radiopharmaceuticals development include a [{sup 18}F]thymidine analog to measure cell proliferation and a [{sup 11}C]pyrroloisoquinoline to visualize serotonergic neuron abnormalities. (authors) 23 refs., 2 tabs.

  17. Positron emission tomography/computed tomography surveillance in patients with Hodgkin lymphoma in first remission has a low positive predictive value and high costs.

    Science.gov (United States)

    El-Galaly, Tarec Christoffer; Mylam, Karen Juul; Brown, Peter; Specht, Lena; Christiansen, Ilse; Munksgaard, Lars; Johnsen, Hans Erik; Loft, Annika; Bukh, Anne; Iyer, Victor; Nielsen, Anne Lerberg; Hutchings, Martin

    2012-06-01

    The value of performing post-therapy routine surveillance imaging in patients with Hodgkin lymphoma is controversial. This study evaluates the utility of positron emission tomography/computed tomography using 2-[18F]fluoro-2-deoxyglucose for this purpose and in situations with suspected lymphoma relapse. We conducted a multicenter retrospective study. Patients with newly diagnosed Hodgkin lymphoma achieving at least a partial remission on first-line therapy were eligible if they received positron emission tomography/computed tomography surveillance during follow-up. Two types of imaging surveillance were analyzed: "routine" when patients showed no signs of relapse at referral to positron emission tomography/computed tomography, and "clinically indicated" when recurrence was suspected. A total of 211 routine and 88 clinically indicated positron emission tomography/computed tomography studies were performed in 161 patients. In ten of 22 patients with recurrence of Hodgkin lymphoma, routine imaging surveillance was the primary tool for the diagnosis of the relapse. Extranodal disease, interim positron emission tomography-positive lesions and positron emission tomography activity at response evaluation were all associated with a positron emission tomography/computed tomography-diagnosed preclinical relapse. The true positive rates of routine and clinically indicated imaging were 5% and 13%, respectively (P = 0.02). The overall positive predictive value and negative predictive value of positron emission tomography/computed tomography were 28% and 100%, respectively. The estimated cost per routine imaging diagnosed relapse was US$ 50,778. Negative positron emission tomography/computed tomography reliably rules out a relapse. The high false positive rate is, however, an important limitation and a confirmatory biopsy is mandatory for the diagnosis of a relapse. With no proven survival benefit for patients with a pre-clinically diagnosed relapse, the high costs and low

  18. Contribution of positron emission tomography in pleural disease.

    OpenAIRE

    Duysinx, Bernard; Corhay, Jean-Louis; Larock, Marie-Paule; Withofs, Nadia; Bury, Thierry; Hustinx, Roland; Louis, Renaud

    2010-01-01

    INTRODUCTION: Positron emission tomography (PET) now plays a clear role in oncology, especially in chest tumours. We discuss the value of metabolic imaging in characterising pleural pathology in the light of our own experience and review the literature. BACKGROUND: PET is particularly useful in characterising malignant pleural pathologies and is a factor of prognosis in mesothelioma. Metabolic imaging also provides clinical information for staging lung cancer, in researching the primary tumou...

  19. Positron emission tomography and migraine

    International Nuclear Information System (INIS)

    Chabriat, H.

    1992-01-01

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT 2 serotonin receptors can be studied in migraine patients with PET

  20. Detectors, sampling, shielding, and electronics for positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.

    1981-08-01

    A brief discussion of the important design elements for positron emission tomographs is presented. The conclusions are that the instrumentation can be improved by the use of larger numbers of small, efficient detectors closely packed in many rings, the development of new detector materials, and novel electronic designs to reduce the deadtime and increase maximum event rates

  1. Novel targets for positron emission tomography (PET) radiopharmaceutical tracers for visualization of neuroinflammation

    Science.gov (United States)

    Shchepetkin, I.; Shvedova, M.; Anfinogenova, Y.; Litvak, M.; Atochin, D.

    2017-08-01

    Non-invasive molecular imaging techniques can enhance diagnosis of neurological diseases to achieve their successful treatment. Positron emission tomography (PET) imaging can identify activated microglia and provide detailed functional information based on molecular biology. This imaging modality is based on detection of isotope labeled tracers, which emit positrons. The review summarizes the developments of various radiolabeled ligands for PET imaging of neuroinflammation.

  2. Role and impact of [18F]-fluorodeoxyglucose positron emission tomography in recurrent breast cancer

    International Nuclear Information System (INIS)

    Grahek, D.; Montravers, F.; Aide, N.; Kerrou, K.; Talbot, J.N.

    2004-01-01

    [18F]-fluorodeoxyglucose positron emission tomography is widely used in oncology to detect malignant tissue, assess the extent of the disease and follow up treatment. In breast cancer, recurrence detection seems to be the leading indication of [18F] fluorodeoxyglucose positron emission tomography. This review, including recent publications, aims to evaluate its role to detect the recurrent malignant. tissue when tumour marker levels are isolatedly rising and to evaluate the extent of-the disease. The first impact studies reveal its important role in the management of the patients suspected of breast cancer recurrence. (author)

  3. SIMULTANEOUS OBSERVATIONS OF SiO AND H{sub 2}O MASERS TOWARD KNOWN STELLAR H{sub 2}O MASER SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeheon [Yonsei University Observatory, Seongsan-ro 262, Seodaemun, Seoul 120-749 (Korea, Republic of); Cho, Se-Hyung [Korean VLBI Network Yonsei Radio Astronomy Observatory, Yonsei University, Seongsan-ro 262, Seodaemun, Seoul 120-749 (Korea, Republic of); Kim, Sang Joon, E-mail: jhkim@kasi.re.kr, E-mail: cho@kasi.re.kr, E-mail: sjkim1@khu.ac.kr [Department of Astronomy and Space Science, Kyung Hee University, Seocheon-Dong, Giheung-Gu, Yongin, Gyeonggi-Do 446-701 (Korea, Republic of)

    2013-01-01

    We present the results of simultaneous observations of SiO v = 1, 2, {sup 29}SiO v = 0, J = 1-0, and H{sub 2}O 6{sub 16}-5{sub 23} maser lines toward 152 known stellar H{sub 2}O maser sources using the Yonsei 21 m radio telescope of the Korean VLBI Network from 2009 June to 2011 January. Both SiO and H{sub 2}O masers were detected from 62 sources with a detection rate of 40.8%. The SiO-only maser emission without H{sub 2}O maser detection was detected from 27 sources, while the H{sub 2}O-only maser without SiO maser detection was detected from 22 sources. Therefore, the overall SiO maser emission was detected from 89 sources, resulting in a detection rate of 58.6%. We have identified 70 new detections of the SiO maser emission. For both H{sub 2}O and SiO maser detected sources, the peak and integrated antenna temperatures of SiO masers are stronger than those of H{sub 2}O masers in both Mira variables and OH/IR stars and the relative intensity ratios of H{sub 2}O to SiO masers in OH/IR stars are larger than those in Mira variables. In addition, distributions of 152 observed sources were investigated in the IRAS two-color diagram.

  4. Positron-annihilation studies on the Bi-Sr-Ca-Cu-O superconductor

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.; Ching, W.Y.; Jean, Y.C.; Hor, P.H.; Meng, R.L.; Huang, Z.J.; Chu, C.W.

    1991-01-01

    The results of positron-lifetime measurements as a function of temperature, across T c , and as a function of heat treatment are presented. The lifetime in Bi-Sr-Ca-Cu-O does not show any variation with temperature in the range of 10 to 300 K, a result that is in contrast with other cuprate superconductors. The absence of lifetime variation across T c is understood in terms of the calculated positron-density distribution, which indicates that the maximum of the positron density is in the region between the Bi-O layers with no significant density in the superconducting CuO 2 layers. Positron-lifetime measurements as a function of heat treatment indicate a decrease in lifetime as the annealing temperature is lowered from 800 degree C to 100 degree C. The decrease in lifetime, which is correlated with the increase in the weight of the sample, is explained in terms of the intercalation of the excess oxygen in the region between the Bi-O layers, which is the region probed by the positron

  5. Positron-emitting raionuclides: present and future status

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1979-01-01

    A tabulation of 157 positron-emitting radionuclides that have the physical characteristics deemed appropriate for radiopharmaceutical use in conjunction with positron emission tomography is provided. The most promising radionuclides are within the production capabilities of a variable-energy cyclotron accelerating protons to about 40 MeV and deuterons, helium-3, and helium-4 to compatable energies. To data only 27 positron-emitting radionuclides have been subjected to radiopharmaceutical consideration, whereas only 11 C, 13 N, 15 O, 18 F, 38 K, and 68 Ga have proved to be especially promising. 2 tables

  6. Positron annihilation study of radiation defects in α-Al2O3

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Aono, Yasuhisa; Takenaka, Minoru

    1989-01-01

    Positron annihilation studies have been performed for the radiation-induced defects in α-Al 2 O 3 specimens. Before irradiation polycrystals of α-Al 2 O 3 showed positron annihilation lifetime about 125 psec. But this value was increased by 60 MeV O 6+ ion irradiation to about 155 psec. This is considered to be corresponding to positron lifetime at O-vacancy sites. But, this lifetime disappeared gradually in the period of several months probably because of recombination of vacancies and interstitial atoms at room temperature. On the other hand, it was found that in single crystals positron lifetime before irradiation is between these two values. This is probably due to lack of oxygen atoms in single crystals in the fabrication process and it already has O-vacancies in the matrix before irradiation. (author)

  7. Positron annihilation spectroscopy in doped p-type ZnO

    Science.gov (United States)

    Majumdar, Sayanee; Sanyal, D.

    2011-07-01

    Positron annihilation lifetime (PAL) spectroscopy has been used to investigate the vacancy type defect of the Li and N doped ZnO. The mono-vacancies, shallow -vacancies and open volume defects have been found in both the Li and N doped ZnO. The mono-vacancies, shallow-vacancies and open volume defects increase in N-doped ZnO as the size of N is quite high compared to Li. Positron annihilation study showed that the doping above 1-3% Li and 3-4% N in ZnO are not required in order to achieve low resistivity, high hole concentration and good mobility.

  8. Determination of elemental tissue composition following proton treatment using positron emission tomography

    International Nuclear Information System (INIS)

    Cho, Jongmin; Ibbott, Geoffrey; Gillin, Michael; Gonzalez-Lepera, Carlos; Min, Chul Hee; Zhu, Xuping; El Fakhri, Georges; Paganetti, Harald; Mawlawi, Osama

    2013-01-01

    Positron emission tomography (PET) has been suggested as an imaging technique for in vivo proton dose and range verification after proton induced-tissue activation. During proton treatment, irradiated tissue is activated and decays while emitting positrons. In this paper, we assessed the feasibility of using PET imaging after proton treatment to determine tissue elemental composition by evaluating the resultant composite decay curve of activated tissue. A phantom consisting of sections composed of different combinations of 1 H, 12 C, 14 N, and 16 O was irradiated using a pristine Bragg peak and a 6 cm spread-out Bragg-peak (SOBP) proton beam. The beam ranges defined at 90% distal dose were 10 cm; the delivered dose was 1.6 Gy for the near monoenergetic beam and 2 Gy for the SOBP beam. After irradiation, activated phantom decay was measured using an in-room PET scanner for 30 min in list mode. Decay curves from the activated 12 C and 16 O sections were first decomposed into multiple simple exponential decay curves, each curve corresponding to a constituent radioisotope, using a least-squares method. The relative radioisotope fractions from each section were determined. These fractions were used to guide the decay curve decomposition from the section consisting mainly of 12 C + 16 O and calculate the relative elemental composition of 12 C and 16 O. A Monte Carlo simulation was also used to determine the elemental composition of the 12 C + 16 O section. The calculated compositions of the 12 C + 16 O section using both approaches (PET and Monte Carlo) were compared with the true known phantom composition. Finally, two patients were imaged using an in-room PET scanner after proton therapy of the head. Their PET data and the technique described above were used to construct elemental composition ( 12 C and 16 O) maps that corresponded to the proton-activated regions. We compared the 12 C and 16 O compositions of seven ROIs that corresponded to the vitreous humor, adipose

  9. Positron study of negative charge states in order-disorder ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Troev, T.; Berovsky, K.; Peneva, S. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. for Nuclear Research and Nuclear Energy

    2001-07-01

    The positive positron charge opens the possibility for determining the changes in charge states in technologically important order-disorder ferroelectrics. Here we show that dipole polarization disordering within domains affects the positron annihilation mechanism. The positron lifetime parameters in triglycine sulphate (TGS) (NH{sub 3}CH{sub 2}COOH){sub 3}H{sub 2}SO{sub 4}, Rochelle salt (RS) NaKC{sub 4}H{sub 4}O{sub 6}.4H{sub 2}O and Potassium dihydrogen phosphate (KDP) KH{sub 2}PO{sub 4}, at different temperatures and gamma-irradiation doses depend on the charge point defects. The increase of the positron long lifetime component {tau}{sub 2} is proportional to the temperature and gamma-irradiation dose. In gamma irradiated TGS positrons are trapped in defect electron states of oxigen ions of two radicals CH{sub 2}COO{sup -} and NH{sub 3}CHCOO{sup -}. In RS positrons are trapped also in defect electron states of oxygen ions and OH groups. (orig.)

  10. Simulated annealing image reconstruction for positron emission tomography

    International Nuclear Information System (INIS)

    Sundermann, E.; Lemahieu, I.; Desmedt, P.

    1994-01-01

    In Positron Emission Tomography (PET) images have to be reconstructed from moisy projection data. The noise on the PET data can be modeled by a Poison distribution. In this paper, we present the results of using the simulated annealing technique to reconstruct PET images. Various parameter settings of the simulated annealing algorithm are discussed and optimized. The reconstructed images are of good quality and high contrast, in comparison to other reconstruction techniques. (authors)

  11. MR imaging and positron emission tomography of cortical heterotopia

    Energy Technology Data Exchange (ETDEWEB)

    Bairamian, D.; Di Chiro, G.; Theodore, W.H.; Holmes, M.D.; Dorwart, R.H.; Larson, S.M.

    1985-11-01

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using YF-2-deoxyglucose.

  12. MR imaging and positron emission tomography of cortical heterotopia

    International Nuclear Information System (INIS)

    Bairamian, D.; Di Chiro, G.; Theodore, W.H.; Holmes, M.D.; Dorwart, R.H.; Larson, S.M.

    1985-01-01

    Heterotopia of the gray matter is a developmental malformation in which ectopic cortex is found in the white matter of the brain. A case of a 33-year-old man with cortical heterotopia who had a lifelong history of seizures and psychomotor retardation is reported, including the results of cerebral CT, magnetic resonance imaging, and positron emission tomography using 18 F-2-deoxyglucose

  13. Positron emission tomography camera

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    A positron emission tomography camera having a plurality of detector planes positioned side-by-side around a patient area to detect radiation. Each plane includes a plurality of photomultiplier tubes and at least two rows of scintillation crystals on each photomultiplier tube extend across to adjacent photomultiplier tubes for detecting radiation from the patient area. Each row of crystals on each photomultiplier tube is offset from the other rows of crystals, and the area of each crystal on each tube in each row is different than the area of the crystals on the tube in other rows for detecting which crystal is actuated and allowing the detector to detect more inter-plane slides. The crystals are offset by an amount equal to the length of the crystal divided by the number of rows. The rows of crystals on opposite sides of the patient may be rotated 90 degrees relative to each other

  14. Measurement of regional cerebral glucose utilization in man by positron emission tomography

    International Nuclear Information System (INIS)

    Baron, J.C.

    1986-05-01

    The various methods available for the study of regional cerebral glucose consumption in man by positron emission tomography are described and their applications, limitations and principal physiopathological results are presented [fr

  15. Positron annihilation spectroscopy study on annealing effect of CuO nanoparticles

    International Nuclear Information System (INIS)

    Shi, Jianjian; Wang, Jiaheng; Yang, Wei; Zhu, Zhejie; Wu, Yichu

    2016-01-01

    The microstructure and defects of CuO nanoparticles under isochronal annealing were investigated by positron annihilation spectroscopy (PAS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD and SEM results indicated that the average grain sizes of CuO nanoparticles grew slowly below 800 °C, and then increased rapidly with the annealing temperature from 800 to 1000 °C. Positron lifetime analysis exhibited that positrons were mainly annihilated in mono-vacancies (V Cu , V O ) and vacancy clusters when annealing from 200 to 800 °C. Furthermore, W-S plot of Doppler broadening spectra at different annealing temperatures found that the (W, S) points distributed on two different defect species, which suggested that V − Cu - V + O complexes were produced when the grains grew to bigger size after annealing above 800 °C, and positrons might annihilate at these complexes. (author)

  16. Positron annihilation spectroscopy study on annealing effect of CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianjian; Wang, Jiaheng; Yang, Wei; Zhu, Zhejie; Wu, Yichu, E-mail: ycwu@whu.edu.cn [School of Physics and Technology, Hubei Key Laboratory of Nuclear Solid State Physics, Wuhan University (WHU), Wuhan (China)

    2016-03-15

    The microstructure and defects of CuO nanoparticles under isochronal annealing were investigated by positron annihilation spectroscopy (PAS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD and SEM results indicated that the average grain sizes of CuO nanoparticles grew slowly below 800 °C, and then increased rapidly with the annealing temperature from 800 to 1000 °C. Positron lifetime analysis exhibited that positrons were mainly annihilated in mono-vacancies (V{sub Cu}, V{sub O}) and vacancy clusters when annealing from 200 to 800 °C. Furthermore, W-S plot of Doppler broadening spectra at different annealing temperatures found that the (W, S) points distributed on two different defect species, which suggested that V{sup −}{sub Cu} - V{sup +}{sub O} complexes were produced when the grains grew to bigger size after annealing above 800 °C, and positrons might annihilate at these complexes. (author)

  17. Positron emission tomography of FDG in schizophrenia

    International Nuclear Information System (INIS)

    Sargent, T. III; Kusubov, N.

    1986-01-01

    The use of the Donner dynamic positron emission tomograph to study fluorodeoxyglucose labelled 18 F uptake in the brain of six patients with schizophrenia is reported. The glucose metabolic rate and the local cerebral metabolic rate were calculated. The dynamic brain uptake data and the blood input function were used to calculate rate constants by an iterative least squares fitting program for all regions of interest chosen in the brain. Although the number of patients was small, differences in k3 were statistically significant in several brain regions compared with normal controls

  18. Investigating Serotonergic Function Using Positron Emission Tomography: Overview and Recent Findings

    NARCIS (Netherlands)

    Veltman, D.J.; Ruhe, H.G.; Booij, J.

    2010-01-01

    Mono-aminergic neurotransmitters, in particular serotonin (5-HT), are involved in regulating a large number of psychological and physiological functions, and abnormal 5-HT transmission has been implicated in a wide variety of neuropsychiatric disorders. Positron emission tomography (PET) is a

  19. Readout of scintillator light with avalanche photodiodes for positron emission tomography

    International Nuclear Information System (INIS)

    Chen, Ruru; Fremout, A.; Tavernier, S.; Bruyndonckx, P.; Clement, D.; Loude, J.-F.; Morel, C.

    1999-01-01

    The noise properties and other relevant characteristics of avalanche photodiodes have been investigated with the perspective of replacing photomultiplier tubes in positron emission tomography. It is clearly demonstrated that they are a valid alternative to photomultiplier tubes in this application

  20. Time-of-flight positron emission tomography using optical fiber circuit

    International Nuclear Information System (INIS)

    Yamawaki, Masato; Katsumura, Yousuke; Suzuki, Takenori

    2008-01-01

    The measurement method and system architecture of a new time-of-flight positron emission tomography (TOF-PET) system are proposed. This system collects scintillation light using optical fibers connected directly to scintillators and measures the position of positron annihilation. Many scintillators are placed cylindrically whereby a pair of scintillators detects a pair of γ-rays generated at the positron annihilation point. Optical fiber circuits, most of which are bundles of optical fibers bound clockwise or counterclockwise around the cylinder of scintillators, collect light signals generated by γ-rays. These light signals are amplified by several photomultiplier tubes and processed using a single digital oscilloscope to determine the TOF of the positron annihilation γ-rays. One of the most important factors in the performance of the TOF-PET system is the TOF resolution. When fiber circuits are used for transmitting light signals, the dispersion of light signals and the decrease in light intensity are the major factors in the deterioration of the TOF resolution. The result of the preliminary experiment leads to the conclusion that the use of optical fibers degrades the intensity of light but does not severely degrade the TOF resolution. (author)

  1. Reliability of eye lens dosimetry in workers of a positron emission tomography radiopharmaceutical production facility

    International Nuclear Information System (INIS)

    Silva, Teógenes A. da; Guimarães, Margarete C.; Meireles, Leonardo S.; Teles, Luciana L.D.; Lacerda, Marco Aurélio S.

    2016-01-01

    A new regulatory statement was issued concerning the eye lens radiation protection of persons in planned exposures. A debate was raised on the adequacy of the dosimetric quantity and on its method of measurement. The aim of this work was to establish the individual monitoring procedure with the EYE-D™ holder and a MCP-N LiF:Mg,Cu,P thermoluminescent chip detector for measuring the personal dose equivalent H_p(3) in workers of a Positron Emission Tomography Radiopharmaceutical Production Facility. - Highlights: • New regulatory statement was issued concerning eye lens radiation protection. • The calibration procedure of dosimeters for measuring H_p(3) was studied on a slab and cylindrical phantoms. • H_p(3) measurements in workers in a radiopharmaceutical production facility were done.

  2. Measurement of absolute bone blood flow by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nahmias, C.; Cockshott, W.P.; Garnett, E.S.; Belbeck, L.W.

    1986-03-01

    A method of measuring bone blood flow has been developed using /sup 18/F sodium fluoride and positron emission tomography. The blood flow levels are in line with those obtained experimentally from microsphere embolisation. This investigative method could be applied to elucidate a number of clinical questions involving bone perfusion.

  3. Improved positron emission tomography camera

    International Nuclear Information System (INIS)

    Mullani, N.A.

    1986-01-01

    A positron emission tomography camera having a plurality of rings of detectors positioned side-by-side or offset by one-half of the detector cross section around a patient area to detect radiation therefrom, and a plurality of scintillation crystals positioned relative to the photomultiplier tubes whereby each tube is responsive to more than one crystal. Each alternate crystal in the ring may be offset by one-half or less of the thickness of the crystal such that the staggered crystals are seen by more than one photomultiplier tube. This sharing of crystals and photomultiplier tubes allows identification of the staggered crystal and the use of smaller detectors shared by larger photomultiplier tubes thereby requiring less photomultiplier tubes, creating more scanning slices, providing better data sampling, and reducing the cost of the camera. (author)

  4. Development of a Xanthene-Based Red-Emissive Fluorescent Probe for Visualizing H2O2 in Living Cells, Tissues and Animals.

    Science.gov (United States)

    Zhang, Nan; Dong, Baoli; Kong, Xiuqi; Wang, Chao; Song, Wenhui; Lin, Weiying

    2018-04-25

    Hydrogen peroxide (H 2 O 2 ) plays important roles in the regulation of many biological processes, and the abnormal level of H 2 O 2 has close relation with the initiation and progression of many diseases. Herein, we describe a novel red-emissive fluorescence probe (RhoB) for the visualization of H 2 O 2 in living cells, tissues and animals. RhoB was constructed on the basis of a xanthene-based red-emissive dye, and displayed nearly no fluorescence. After the treatment with H 2 O 2 , RhoB can exhibit red fluorescence with the emission wavelength at 638 nm. RhoB exhibited highly sensitive and selective response to H 2 O 2 . Density functional theory (DFT) calculations were conducted to shed light on the optical properties of RhoB, and natural bond orbital (NBO) calculations demonstrate that the boron atom shows the highest positive electricity and further support the response mechanism. RhoB was successfully applied for imaging of exogenous and endogenous H 2 O 2 in living cells, and also can be utilized for visualizing H 2 O 2 in living tissues and animals.

  5. The Positron Emission Tomography. A diagnostic technique

    International Nuclear Information System (INIS)

    Salvadori, P.

    2001-01-01

    Positron Emission Tomography (PET) is a new imaging modality, which is able to assess non-invasively the biochemical mechanisms, underlying physiological and pathophysiological processes in vivo in humans. The technique relies on the administration of radioactive tracers labeled with short-lived positron emitters, which need to be produced on site via a particle accelerator (cyclotron). Radionuclides are produced upon request and formulated into biologically active organic molecules having precise pharmacokinetics and specificity. The radiotracer can be detected by the PET scanner and represented as tomographic sections (images of body sections) showing its regional distribution and concentration. This makes it possible to address clinical questions concerning occurrence and evolution of many diseases as well as their response to therapy. The ability to image (measure) biological processes and not only anatomy enables PET to explore diseases in the very early stage, including those diseases which are not related to modifications of organ structure (e.g. psychiatric diseases, metabolic disorders, biochemical disfunction). PET plays a major role, in conjunction with the other imaging modalities, to improve diagnosis capabilities and disease mechanism understanding [it

  6. Positron emission tomography in the evaluation of subdural hematomas

    International Nuclear Information System (INIS)

    Ericson, K.; Bergstroem, M.; Eriksson, L.

    1980-01-01

    Fifteen patients with 21 subdural effusions were investigated both with transmission computer assisted tomography (CAT) and positron emission tomography (PET). The tracer in the emission studies was 68 Ga-EDTA. Twelve lesions were visualized both with CAT and PET. Five lesions that were negative or doubtful on CAT were visualized with PET, whereas four lesions negative or doubtful on PET were demonstrated by CAT. The two methods complement each other due to the fact that they are based on different mechanisms: CAT mainly on attenuation of the fluid collection. PET on isotope accumulation, particularly in the hematoma membranes

  7. High-temperature equilibrium vacancy formation in ceramic materials studied by positron annihilation

    International Nuclear Information System (INIS)

    Forster, M.; Claudy, W.; Hermes, H.; Major, J.; Schaefer, H.E.; Koch, M.; Maier, K.; Stoll, H.

    1992-01-01

    Positron lifetime measurements were used in order to study thermal vacancy formation in NiO, YBa 2 Cu 3 O 7-δ , α-Al 2 O 3 , MgO and 6H-SiC at high temperatures. In NiO two increases of the positron trapping rate at 450K and 1200K (po 2 =10 5 Pa) are attributed to the change of charge of neutral extrinsic Ni-vacancies (c ≅ 10 -4 ) into a negative charge state and to the nonstochiometric formation of charged Ni-vacancies at high temperatures. In YBa 2 Cu 3 O 7-δ the oxygen loss or uptake at T > 680K with an activation enthalpy of 1.03eV can be studied by the variation of the positron lifetime with temperature and oxygen partial pressure. In α-Al 2 O 3 the positrons are annihilated from the delocalized free state between 1000K and 2250K and no positron trapping of thermally formed vacancies was detected which may be understood in terms of the theoretically predicted low concentrations of thermal vacancies. In MgO and 6H-SiC positron lifetime measurements were performed up to temperatures of about 2000K

  8. Simulated annealing image reconstruction for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sundermann, E; Lemahieu, I; Desmedt, P [Department of Electronics and Information Systems, University of Ghent, St. Pietersnieuwstraat 41, B-9000 Ghent, Belgium (Belgium)

    1994-12-31

    In Positron Emission Tomography (PET) images have to be reconstructed from moisy projection data. The noise on the PET data can be modeled by a Poison distribution. In this paper, we present the results of using the simulated annealing technique to reconstruct PET images. Various parameter settings of the simulated annealing algorithm are discussed and optimized. The reconstructed images are of good quality and high contrast, in comparison to other reconstruction techniques. (authors). 11 refs., 2 figs.

  9. Detectors for high resolution dynamic positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1985-01-01

    Tomography is the technique of producing a photographic image of an opaque specimen by transmitting a beam of x-rays or gamma rays through the specimen onto an adjacent photographic film. The image results from variations in thickness, density, and chemical composition, of the specimen. This technique is used to study the metabolism of the human brain. This article examines the design of equipment used for high resolution dynamic positron emission tomography. 27 references, 5 figures, 3 tables

  10. The electronics system for the LBNL positron emission mammography (PEM) camera

    CERN Document Server

    Moses, W W; Baker, K; Jones, W; Lenox, M; Ho, M H; Weng, M

    2001-01-01

    Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, all...

  11. Positron emission tomography (PET) in psychiatry

    International Nuclear Information System (INIS)

    Buchsbaum, M.S.

    1984-01-01

    In the past the approach to the brain has been necessarily indirect, employing peripheral fluids to assess central and regional neurochemical processes. Blood, urine, skin and muscle biopsy, and cerebrospinal fluid are valuable reflectors of the neurochemical and neuropharmacological activity of the brain, but are removed in time and place from disordered thought processes and diluted by the products of both functional and dysfunctional brain systems. Biopsy studies have helped in studying the functional disorders of organs like the liver, but they are destructive to the brain and less useful because unlike these organs, the brain has a regional variation in its chemistry. The experimental insights from animal studies focusing on the pharmacology of individual cell groups - in striatum or locus coeruleus, for example - cannot easily or unambigiously be applied to clinical populations. Positron emission tomography (PET) is a versatile approach utilizing the mathematics of x-ray transmission scanning (CT scanning) to produce slice images of radioisotope distribution. PET makes possible a wide range of metabolic studies. Positron emitters such as carbon-11 or fluorine-18 can be used to label glucose, amino acids, drugs, neurotransmitter precursors, and many other molecules and examine their distribution and fate in discrete cell groups

  12. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined.

  13. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    International Nuclear Information System (INIS)

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined

  14. Investigation of granular impact using positron emission particle tracking

    KAUST Repository

    Marston, Jeremy O.

    2015-04-01

    We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.

  15. High-Resolution Denitrification Kinetics in Pasture Soils Link N2O Emissions to pH, and Denitrification to C Mineralization.

    Directory of Open Access Journals (Sweden)

    Md Sainur Samad

    Full Text Available Denitrification in pasture soils is mediated by microbial and physicochemical processes leading to nitrogen loss through the emission of N2O and N2. It is known that N2O reduction to N2 is impaired by low soil pH yet controversy remains as inconsistent use of soil pH measurement methods by researchers, and differences in analytical methods between studies, undermine direct comparison of results. In addition, the link between denitrification and N2O emissions in response to carbon (C mineralization and pH in different pasture soils is still not well described. We hypothesized that potential denitrification rate and aerobic respiration rate would be positively associated with soils. This relationship was predicted to be more robust when a high resolution analysis is performed as opposed to a single time point comparison. We tested this by characterizing 13 different temperate pasture soils from northern and southern hemispheres sites (Ireland and New Zealand using a fully automated-high-resolution GC detection system that allowed us to detect a wide range of gas emissions simultaneously. We also compared the impact of using different extractants for determining pH on our conclusions. In all pH measurements, soil pH was strongly and negatively associated with both N2O production index (IN2O and N2O/(N2O+N2 product ratio. Furthermore, emission kinetics across all soils revealed that the denitrification rates under anoxic conditions (NO+N2O+N2 μmol N/h/vial were significantly associated with C mineralization (CO2 μmol/h/vial measured both under oxic (r2 = 0.62, p = 0.0015 and anoxic (r2 = 0.89, p<0.0001 conditions.

  16. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners.

    Science.gov (United States)

    Kinahan, Paul E; Hasegawa, Bruce H; Beyer, Thomas

    2003-07-01

    A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended. Copyright 2003 Elsevier Inc. All rights reserved.

  17. Unraveling the chemical complexity of biomass burning VOC emissions via H3O+ ToF-CIMS (PTR-ToF): emissions characterization

    Science.gov (United States)

    Koss, A.; Sekimoto, K.; Gilman, J.; Selimovic, V.; Coggon, M.; Zarzana, K. J.; Yuan, B.; Lerner, B. M.; Brown, S. S.; Jimenez, J. L.; Krechmer, J. E.; Warneke, C.; Yokelson, R. J.; De Gouw, J. A.

    2017-12-01

    Gas-phase biomass burning emissions can include hundreds, if not thousands, of unique volatile and intermediate-volatility organic compounds. It is crucial to know the composition of these emissions to understand secondary organic aerosol formation, ozone formation, and human health effects resulting from fires. However, the composition can vary greatly with fuel type and fire combustion process. During the FIREX 2016 laboratory intensive at the US Forest Service Fire Sciences Laboratory in Missoula, Montana, high-resolution H3O+-CIMS (PTR-ToF) was deployed to characterize VOC emissions. More than 500 ion masses were consistently enhanced in each of 58 fires, which included a wide variety of fuel types representative of the western United States. Using a combination of extensive literature review, H3O+ and NO+ CIMS with GC preseparation, comparison to other instruments, and mass spectral context, we were able to identify the VOC contributors to 90% of the instrument signal. This provides unprecedented chemical detail in high time resolution. We present chemical characteristics of emissions, including OH reactivity and volatility, and highlight areas where better identification is needed.

  18. Fundamental limits of positron emission mammography

    International Nuclear Information System (INIS)

    Moses, William W.; Qi, Jinyi

    2001-01-01

    We explore the causes of performance limitation in positron emission mammography cameras. We compare two basic camera geometries containing the same volume of 511 keV photon detectors, one with a parallel plane geometry and another with a rectangular geometry. We find that both geometries have similar performance for the phantom imaged (in Monte Carlo simulation), even though the solid angle coverage of the rectangular camera is about 50 percent higher than the parallel plane camera. The reconstruction algorithm used significantly affects the resulting image; iterative methods significantly outperform the commonly used focal plane tomography. Finally, the characteristics of the tumor itself, specifically the absolute amount of radiotracer taken up by the tumor, will significantly affect the imaging performance

  19. Inhibition of [11C]mirtazapine binding by alpha2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain

    DEFF Research Database (Denmark)

    Smith, Donald F; Dyve, Suzan; Minuzzi, Luciano

    2006-01-01

    Inhibition of [11C]mirtazapine binding by alpha2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain......Inhibition of [11C]mirtazapine binding by alpha2-adrenoceptor antagonists studied by positron emission tomography in living porcine brain...

  20. Development of 68Ga-labeled mannosylated human serum albumin (MSA) as a lymph node imaging agent for positron emission tomography

    International Nuclear Information System (INIS)

    Choi, Jae Yeon; Jeong, Jae Min; Yoo, Byong Chul; Kim, Kyunggon; Kim, Youngsoo; Yang, Bo Yeun; Lee, Yun-Sang; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2011-01-01

    Introduction: Although many sentinel lymph node (SLN) imaging agents labeled with 99m Tc have been developed, no positron-emitting agent has been specifically designed for SLN imaging. Furthermore, the development of the beta probe and the requirement for better image resolution have increased the need for a positron-emitting SLN imaging agent. Here, we describe the development of a novel positron-emitting SLN imaging agent labeled with 68 Ga. Methods: A mannosylated human serum albumin (MSA) was synthesized by conjugating α-D-mannopyranosylphenyl isothiocyanate to human serum albumin in sodium carbonate buffer (pH 9.5), and then 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid was conjugated to synthesize NOTA-MSA. Numbers of mannose and NOTA units conjugated in NOTA-MSA were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. NOTA-MSA was labeled with 68 Ga at room temperature. The stability of 68 Ga-NOTA-MSA was checked in labeling medium at room temperature and in human serum at 37 o C. Biodistribution in normal ICR mice was investigated after tail vein injection, and micro-positron emission tomography (PET) images were obtained after injecting 68 Ga-NOTA-MSA into a tail vein or a footpad. Results: The numbers of conjugated α-D-mannopyranosylphenyl isothiocyanate and 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid units in NOTA-MSA were 10.6 and 6.6, respectively. The labeling efficiency of 68 Ga-NOTA-MSA was greater than 99% at room temperature, and its stability was greater than 99% at 4 h. Biodistribution and micro-PET studies of 68 Ga-NOTA-MSA showed high liver and spleen uptakes after intravenous injection. 68 Ga-NOTA-MSA injected into a footpad rapidly migrated to the lymph node. Conclusions: 68 Ga-NOTA-MSA was successfully developed as a novel SLN imaging agent for PET. NOTA-MSA is easily labeled at high efficiency, and subcutaneously administered 68 Ga-NOTA-MSA was

  1. Positron emission tomography in the management of cervix cancer patients

    International Nuclear Information System (INIS)

    Bonardel, G.; Gontier, E.; Soret, M.; Dechaud, C.; Fayolle, M.; Foehrenbach, H.; Chargari, C.; Bauduceau, O.

    2009-01-01

    Since its introduction in clinical practice in the 1990 s, positron emission tomography (PET), usually with 18 F-fluoro-2-deoxy-D-glucose ( 18 F-F.D.G.), has become an important imaging modality in patients with cancer. For cervix carcinoma, F.D.G.-PET is significantly more accurate than computed tomography (CT) and is recommended for loco-regional lymph node and extra pelvic staging. The metabolic dimension of the technique provides additional prognostic information. Ongoing studies now concentrate on more advanced clinical applications, such as the planning of radiotherapy, the response evaluation after the induction of therapy, the early detection of recurrence. Technical innovations, such as PET cameras with better spatial resolution and hybrid positron emission tomography/computed tomography (PET-CT), available now on the whole territory, provide both anatomic and metabolic information in the same procedure. From the point of view of biological metabolism, new radiopharmaceutical probes are being developed. Those hold promise for future refinements in this field. This article reviews the current applications of F.D.G.-PET in patients with cervix cancer. (authors)

  2. Clinical applications of positron emission tomography in breast cancer patients

    International Nuclear Information System (INIS)

    Roemer, W.; Avril, N.; Schwaiger, M.

    1997-01-01

    Increased glucose metabolism by malignant tissue can be visualized with positron emission tomography (PET), using the radiolabeled glucose analogue F-18 fluorodeoxyglucose (FDG). Depending on the criteria of image interpretation FDG-PET allows detection of breast cancer with a sensitivity of 68% to 94 % and a specificity of 84 % to 97 %. However, sensitivity to visualize small tumors (< 1 cm) is limited. Positron emission tomography demonstrates tumor involvement of regional lymph nodes with high accuracy, predominantly in patients with advanced breast cancer. The sensitivity for the detection of axillary lymph node metastases was 79% with a corresponding specificity of 96 %. Lymph node metastases could not be identified in four of six patients with small primary breast cancer (stage pT1), resulting in a sensitivity of only 33% in these patients. By visualizing primary tumors and metastases in one imaging procedure, PET imaging may allow the effective staging of breast cancer patients. Further studies are needed to define the role of scintigraphic techniques for the diagnostic work-up in patients. (author)

  3. Methods and instrumentation for positron emission tomography

    International Nuclear Information System (INIS)

    Mandelkern, M.A.; Phelps, M.E.

    1988-01-01

    This paper reports on positron emission tomography (PET), a technique for the noninvasive measurement of local tissue concentrations of injected radioactive tracers. Tracer kinetics techniques can be applied to this information to quantify physiologic function in human tissue. In the tracer method, a pharmaceutical is labeled by a radioactive atom. When introduced into the subject that molecule follows a physiologic pathway. The space- and time-dependent distribution of the radionuclide is obtained via an imaging technique. If the radiopharmaceutical is sufficiently analogous to a natural substrate or other substance of interest, a quantitative image can be translated into a physiologic measurement

  4. Human hemispheric infarction studied by positron emission tomography and the 150 continuous inhalation technique

    International Nuclear Information System (INIS)

    Baron, J.-C.; Bousser, M.G.; Comar, D.; Kellershohn, C.

    1979-01-01

    Positron emission tomography (PET) offers an entirely new approach to the study of the pathophysiology of cerebral ischemic disorders. This is so because for the first time it is possible to obtain functional tomographic images that represent cerebral perfusion and metabolism in a regional basis. We report here a study of cerebral blood flow and oxygen extraction by means of the 15 O inhalation technique in a large number of human hemispheric infarctions. PET imaging with this non-invasive technique has permitted the description of hitherto unreported focal patterns of changes in the CBF/EO2 couple that may have important pathophysiologic and prognostic implications

  5. Redução da emissão de CO2, CH4 e H2S através da compostagem de dejetos suínos Reduction emissions of CO2, CH4 and H2S through composting of swine manure

    Directory of Open Access Journals (Sweden)

    Luana G. Sardá

    2010-09-01

    Full Text Available Em conjunto com o crescente desenvolvimento da tecnologia para a produção de suínos ocorreu uma forte exploração e degradação do ambiente, razão pela qual a atividade se transformou em fonte poluidora das regiões produtoras. Buscam-se, então, alternativas que minimizem o potencial poluidor do atual sistema de produção. O trabalho proposto foi comparar o perfil de emissão de dióxido de carbono (CO2, metano (CH4 e gás sulfídrico (H2S do manejo de dejetos suínos nas formas sólida (compostagem e líquida (esterqueira, e avaliar a eficiência do processo de compostagem através dos parâmetros físico-químicos. O ensaio foi implantado no campo experimental da EMBRAPA Suínos e Aves, localizada no município de Concórdia, SC. Contatou-se, na compostagem, uma redução de 7 vezes na emissão de CH4, com relação à esterqueira; a emissão de CO2 representou 78,5% do carbono total mineralizado. Considerando-se que a emissão de H2S foi expressiva apenas no manejo dos dejetos na forma líquida, pode-se afirmar que o manejo dos resíduos na forma sólida é uma alternativa para a redução dos impactos ambientais pela mitigação do efeito estufa e pela redução de odores.In conjunction with the development of technologies for the production of swine meat, a strong exploration and degradation of the environment occurred and the activity became a source of pollution in the producing regions. Therefore, there is a need for alternative technologies that minimize the pollutant potential of the current system of production. The proposed work was to analyze and to compare the emission of carbon dioxide (CO2, methane (CH4 and hydrogen sulfide (H2S between the management of swine manure in solid form (composting and liquid manure (deep pit, and assess the efficiency of the process of composting through the physical and chemical parameters. The test was implemented in the experimental field of Embrapa Suínos e Aves, located in Concordia (SC

  6. Defects in electron irradiated vitreous SiO2 probed by positron annihiliation

    International Nuclear Information System (INIS)

    Uedono, Akira; Tanigawa, Shoichiro; Kawano, Takao; Itoh, Hisayoshi

    1994-01-01

    Defects in 3 MeV electron irradiated vitreous SiO 2 (v-SiO 2 ) were probed by the positron annihilation technique. For unirradiated v-SiO 2 specimens, almost all positrons were found to annihilate from positronium (Ps) states. This high formation probability of Ps was attributed to the trapping of positrons by open-space defects. The formation probability of Ps was decreased by the electron irradiation. The observed inhibition of the Ps formation was attributed to the trapping of positrons by point defects introduced and/or activated by the irradiation. From measurements of the lifetime distribution of Ps, it was found that, by the electron irradiation, the mean size of open-space defects was decreased and the size distribution of such defects was broadened. (Author)

  7. Positron emission tomography in the diagnosis and staging of lung cancer

    DEFF Research Database (Denmark)

    Fischer, B M; Mortensen, J; Højgaard, L

    2001-01-01

    positron emission tomography (PET) and gamma-camera PET in the diagnostic investigation of non-small-cell lung cancer (NSCLC). A systematic literature search was carried out in the MEDLINE and EMBASE databases and the Cochrane Controlled Trials Register. We identified 55 original works on the diagnostic...

  8. A case of skeletal tuberculosis and psoas abscess: disease activity evaluated using 18 F-fluorodeoxyglucose positron emission tomography-computed tomography

    International Nuclear Information System (INIS)

    Kimizuka, Yoshifumi; Hasegawa, Naoki; Ishii, Makoto; Murakami, Koji; Ishioka, Kota; Yagi, Kazuma; Ishii, Ken; Watanabe, Kota; Soejima, Kenzo; Betsuyaku, Tomoko

    2013-01-01

    Psoas abscess complicating tuberculous spondylitis is a rare morbidity in extrapulmonary tuberculosis. There are no established guidelines for evaluating the clinical response of psoas abscess. Although several studies have shown that positron emission tomography-computed tomography with 18 F-fluorodeoxyglucose can play a potential role in diagnosing multifocal tuberculosis and monitoring the clinical response of pulmonary tuberculosis, to our knowledge, this is the first report demonstrating that positron emission tomography-computed tomography is useful for evaluating local inflammation and disease activity of a tuberculous psoas abscess. We report a case of multifocal bone and lymph node tuberculosis with concomitant lumbar psoas abscess in a 77-year-old man, along with a literature review. An initial positron emission tomography-computed tomography scan showed intense 18 F-fluorodeoxyglucose accumulation in the sternum, ribs, vertebrae, and lymph nodes. The patient was successfully treated with antitubercular agents and computed tomography-guided drainage therapy. A follow-up positron emission tomography-computed tomography after abscess drainage and 9 months of antitubercular drug treatment revealed that the majority of lesions improved; however, protracted inflammation surrounding the psoas abscess was still observed. These results indicate that disease activity of psoas abscess can remain, even after successful drainage and antitubercular medication regime of appropriate duration. We have successfully followed up the extent of skeletal tuberculosis complicated with psoas abscess by positron emission tomography-computed tomography. In this patient, positron emission tomography-computed tomography is useful for evaluating the disease activity of tuberculous psoas abscess and for assessing the appropriate duration of antitubercular drug therapy in psoas abscess

  9. Development of radiotracers for imaging NR2B subtype NMDA receptors with positron emission tomography

    International Nuclear Information System (INIS)

    Labas, R.

    2007-01-01

    The aim of this thesis was to develop new radioactive tracers for imaging NR2B subtype NMDA receptors with positron emission tomography. Several compounds including 4-(4-fluoro-benzyl)piperidine and presenting interesting in vivo biological properties were the object of a labelling with a positrons emitter atom ( 11 C or 18 F)

  10. Influence of 18F-fluorodeoxyglucose-positron emission tomography on computed tomography-based radiation treatment planning for oesophageal cancer

    International Nuclear Information System (INIS)

    Everitt, C.; Leong, T.

    2006-01-01

    The addition of positron emission tomography (PET) information to CT-based radiotherapy treatment planning has the potential to improve target volume definition through more accurate localization of the primary tumour and involved regional lymph nodes. This case report describes the first patient enrolled to a prospective study evaluating the effects of coregistered positron emission tomography/CT images on radiotherapy treatment planning for oesophageal cancer. The results show that if combined positron emission tomography/CT is used for radiotherapy treatment planning, there may be alterations to the delineation of tumour volumes when compared to CT alone. For this patient, a geographic miss of tumour would have occurred if CT data alone were used for radiotherapy planning Copyright (2006) Blackwell Publishing Asia Pty Ltd

  11. Effect of high temperature annealing on defects and optical properties of ZnO single crystals

    International Nuclear Information System (INIS)

    Jiang, M.; Wang, D.D.; Zou, B.; Chen, Z.Q.; Kawasuso, A.; Sekiguchi, T.

    2012-01-01

    Hydrothermal grown ZnO single crystals were annealed in N 2 or O 2 between 900 and 1300 C. Positron lifetime measurements reveal a single lifetime in all the ZnO samples before and after annealing. The positron lifetime is about 181 ps after annealing at 900 C in either N 2 or O 2 atmosphere. However, increase of the positron lifetime is observed after further annealing the sample at higher temperatures up to 1300 C, and it has a faster increase in O 2 ambient. Temperature dependence measurements show that the positron lifetime has very slight increase with temperature for the 900 C annealed sample, while it shows notable variation for the sample annealed at 1300 C. This implied that annealing at high temperature introduces additional defects. These defects are supposed to be Zn vacancy-related defects. Cathodoluminescence (CL) measurements indicates enhancement of both UV and green emission after annealing, and the enhancement of green emission is much stronger for the samples annealed in O 2 ambient. The possible origin of green emission is tentatively discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Positron emission tomography tracers for imaging angiogenesis

    International Nuclear Information System (INIS)

    Haubner, Roland; Beer, Ambros J.; Wang, Hui; Chen, Xiaoyuan

    2010-01-01

    Position emission tomography imaging of angiogenesis may provide non-invasive insights into the corresponding molecular processes and may be applied for individualized treatment planning of antiangiogenic therapies. At the moment, most strategies are focusing on the development of radiolabelled proteins and antibody formats targeting VEGF and its receptor or the ED-B domain of a fibronectin isoform as well as radiolabelled matrix metalloproteinase inhibitors or α v β 3 integrin antagonists. Great efforts are being made to develop suitable tracers for different target structures. All of the major strategies focusing on the development of radiolabelled compounds for use with positron emission tomography are summarized in this review. However, because the most intensive work is concentrated on the development of radiolabelled RGD peptides for imaging α v β 3 expression, which has successfully made its way from bench to bedside, these developments are especially emphasized. (orig.)

  13. Positron annihilation at the Si/SiO2 interface

    International Nuclear Information System (INIS)

    Leung, T.C.; Weinberg, Z.A.; Asoka-Kumar, P.; Nielsen, B.; Rubloff, G.W.; Lynn, K.G.

    1992-01-01

    Variable-energy positron annihilation depth-profiling has been applied to the study of the Si/SiO 2 interface in Al-gate metal-oxide-semiconductor (MOS) structures. For both n- and p-type silicon under conditions of negative gate bias, the positron annihilation S-factor characteristic of the interface (S int ) is substantially modified. Temperature and annealing behavior, combined with known MOS physics, suggest strongly that S int depends directly on holes at interface states or traps at the Si/SiO 2 interface

  14. Positron emission tomography of hepatic first-pass metabolism of ammonia in pig

    DEFF Research Database (Denmark)

    Keiding, S; Munk, O L; Roelsgaard, K

    2001-01-01

    Hepatic first-pass metabolism plays a key role in metabolic regulation and drug metabolism. Metabolic processes can be quantified in vivo by positron emission tomography scanning (PET). We wished to develop a PET technique to measure hepatic first-pass metabolism of ammonia. Seven anaesthetised...... pigs were given positron-labelled ammonia, (13)NH(3), into the portal vein and into the vena cava as successive 2-min infusions followed by 22-min dynamic liver scanning. Vena cava infusion data were used to account for recirculation of tracer and metabolites following the portal vein infusion...

  15. Clinical cardiac positron emission tomography: State of the art

    International Nuclear Information System (INIS)

    Gould, K.L.

    1991-01-01

    Cardiac positron emission tomography (PET) has evolved rapidly from a relatively esoteric research tool into clinical applications providing unique, quantitative information on myocardial perfusion, metabolism, and cell membrane function and having a potentially significant impact on cardiovascular medicine. Although there are many different positron radionuclides for imaging diverse myocardial behavior, three radionuclides have reached accepted clinical utility. Cardiac PET using nitrogen-13-ammonia, rubidium-82, and fluoro-18-deoxyglucose has proved accurate and definitive in multiple university and private-practice sites for diagnosing and assessing severity and location of coronary artery disease in symptomatic or asymptomatic patients, for identifying injured but viable myocardium potentially salvageable by revascularization, and for ruling out clinically significant coronary artery stenosis with a high specificity in patients who might otherwise undergo coronary arteriography to document the absence of significant disease. 89 references

  16. Cerebral metabolic data obtained by positron emission tomography in physiological aging. A review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Pellat, J; Hommel, M

    1987-06-18

    Following a summary of the general principles and limitations of metabolic measurements by positron emission tomography and of the different indices used to interpret the data, the authors review the results of published studies on physiological aging. Globally, with strict inclusion criteria absolute metabolic values at rest and under partial sensorial deprivation are little or not modified by age. In contrast, functional interactions between regions, as deduced from metabolic intercorrelations, are perhaps different in elderly people. In any case, positron emission tomography seems to discriminate between normal aging and different patterns of pathological aging. Technical improvements, more refined neuropsychological correlations and the use of dynamic activation paradigms will no doubt provide, in the future, a better definition of normal and pathological aging as positron tomography.

  17. Cerebral metabolic data obtained by positron emission tomography in physiological aging. A review of the literature

    International Nuclear Information System (INIS)

    Pellat, J.; Hommel, M.

    1987-01-01

    Following a summary of the general principles and limitations of metabolic measurements by positron emission tomography and of the different indices used to interpret the data, the authors review the results of published studies on physiological aging. Globally, with strict inclusion criteria absolute metabolic values at rest and under partial sensorial deprivation are little or not modified by age. In contrast, functional interactions between regions, as deduced from metabolic intercorrelations, are perhaps different in elderly people. In any case, positron emission tomography seems to discriminate between normal aging and different patterns of pathological aging. Technical improvements, more refined neuropsychological correlations and the use of dynamic activation paradigms will no doubt provide, in the future, a better definition of normal and pathological aging as positron tomography [fr

  18. Geneva University - The AX-PET experiment : A demonstrator for an axial Positron Emission Tomography

    CERN Multimedia

    Université de Genève

    2012-01-01

    Geneva University École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 14 March 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE 11.15 a.m. - Science II, Auditoire 1S081, 30, quai Ernest-Ansermet, 1211 Genève 4 The AX-PET experiment : A demonstrator for an axial Positron Emission Tomography Dr Chiara CASELLA   ETH Zurich   PET (Positron Emission Tomography) is a tool for in-vivo functional imaging, successfully used since the earliest days of nuclear medicine. It is based on the detection of the two coincident 511 keV photons from the annihilation of a positron, emitted from a radiotracer injected into the body. Tomographic analysis of the coincidence data allows for a 3D reconstructed image of the source distribution. The AX-PET experiment proposes a novel geometrical approach for a PET scanner, in which l...

  19. Metastable self-trapping of positrons in MgO

    Science.gov (United States)

    Monge, M. A.; Pareja, R.; González, R.; Chen, Y.

    1997-01-01

    Low-temperature positron annihilation measurements have been performed on MgO single crystals containing either cation or anion vacancies. The temperature dependence of the S parameter is explained in terms of metastable self-trapped positrons which thermally hop through the crystal lattice. The experimental results are analyzed using a three-state trapping model assuming transitions from both delocalized and self-trapped states to deep trapped states at vacancies. The energy level of the self-trapped state was determined to be (62+/-5) meV above the delocalized state. The activation enthalpy for the hopping process of self-trapped positrons appears to depend on the kind of defect present in the crystals.

  20. Defect layer in SiO2-Sic interface proved by a slow positron beam

    International Nuclear Information System (INIS)

    Maekawa, M.; Kawasuso, A.; Yoshikawa, M.; Miyashita, A.; Suzuki, R.; Ohdaira, T.

    2006-01-01

    The structure of the SiO 2 -4ph-SiC interface layer produced by dry oxidation has been studied by positron annihilation spectroscopy using slow positron beams. From Doppler broadening measurements, the interface layer was clearly distinguished from the SiO 2 and SiC layers and was observed to be defective. At the interface layer, a single long positron lifetime of 451 ps, which is close to the second lifetime in the SiO 2 layer, was obtained, thus suggesting that the structure of the interface layer resembles an amorphous SiO 2 network. A comparison was made between the obtained electron momentum distribution at the interface layer and the theoretical calculation. It was found that positrons annihilate with oxygen valence electrons. By annealing after the oxidation, the annihilation probability of the positrons with oxygen valence electrons and the number of interface traps decreased in the same temperature range, thus suggesting a correlation between interface traps and positron annihilation sites

  1. An automated blood sampling system used in positron emission tomography

    International Nuclear Information System (INIS)

    Eriksson, L.; Bohm, C.; Kesselberg, M.

    1988-01-01

    Fast dynamic function studies with positron emission tomography (PET), has the potential to give accurate information of physiological functions of the brain. This capability can be realised if the positron camera system accurately quantitates the tracer uptake in the brain with sufficiently high efficiency and in sufficiently short time intervals. However, in addition, the tracer concentration in blood, as a function of time, must be accurately determined. This paper describes and evaluates an automated blood sampling system. Two different detector units are compared. The use of the automated blood sampling system is demonstrated in studies of cerebral blood flow, in studies of the blood-brain barrier transfer of amino acids and of the cerebral oxygen consumption. 5 refs.; 7 figs

  2. Corrections of arterial input function for dynamic H215O PET to assess perfusion of pelvic tumours: arterial blood sampling versus image extraction

    International Nuclear Information System (INIS)

    Luedemann, L; Sreenivasa, G; Michel, R; Rosner, C; Plotkin, M; Felix, R; Wust, P; Amthauer, H

    2006-01-01

    Assessment of perfusion with 15 O-labelled water (H 2 15 O) requires measurement of the arterial input function (AIF). The arterial time activity curve (TAC) measured using the peripheral sampling scheme requires corrections for delay and dispersion. In this study, parametrizations with and without arterial spillover correction for fitting of the tissue curve are evaluated. Additionally, a completely noninvasive method for generation of the AIF from a dynamic positron emission tomography (PET) acquisition is applied to assess perfusion of pelvic tumours. This method uses a volume of interest (VOI) to extract the TAC from the femoral artery. The VOI TAC is corrected for spillover using a separate tissue TAC and for recovery by determining the recovery coefficient on a coregistered CT data set. The techniques were applied in five patients with pelvic tumours who underwent a total of 11 examinations. Delay and dispersion correction of the blood TAC without arterial spillover correction yielded in seven examinations solutions inconsistent with physiology. Correction of arterial spillover increased the fitting accuracy and yielded consistent results in all patients. Generation of an AIF from PET image data was investigated as an alternative to arterial blood sampling and was shown to have an intrinsic potential to determine the AIF noninvasively and reproducibly. The AIF extracted from a VOI in a dynamic PET scan was similar in shape to the blood AIF but yielded significantly higher tissue perfusion values (mean of 104.0 ± 52.0%) and lower partition coefficients (-31.6 ± 24.2%). The perfusion values and partition coefficients determined with the VOI technique have to be corrected in order to compare the results with those of studies using a blood AIF

  3. Computed tomography myocardial perfusion vs {sup 15}O-water positron emission tomography and fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Michelle C.; Dweck, Marc R.; Golay, Saroj K. [University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh (United Kingdom); Mirsadraee, Saeed; Weir, Nicholas W.; Fletcher, Alison; Lucatelli, Christophe; Reid, John H. [University of Edinburgh, Clinical Research Imaging Centre, Edinburgh (United Kingdom); MacGillivray, Tom; Van Beek, Edwin J.R.; Newby, David E. [University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh (United Kingdom); University of Edinburgh, Clinical Research Imaging Centre, Edinburgh (United Kingdom); Cruden, Nicholas L.; Henriksen, Peter A.; Uren, Neal [Edinburgh Heart Centre, Royal Infirmary of Edinburgh, Edinburgh (United Kingdom); McKillop, Graham; Patel, Dilip [Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh (United Kingdom); Lima, Joao A.C. [Johns Hopkins Hospital, Departments of Medicine and Radiology, Baltimore, MD (United States)

    2017-03-15

    Computed tomography (CT) can perform comprehensive cardiac imaging. We compared CT coronary angiography (CTCA) and CT myocardial perfusion (CTP) with {sup 15}O-water positron emission tomography (PET) and invasive coronary angiography (ICA) with fractional flow reserve (FFR). 51 patients (63 (61-65) years, 80 % male) with known/suspected coronary artery disease (CAD) underwent 320-multidetector CTCA followed by ''snapshot'' adenosine stress CTP. Of these 22 underwent PET and 47 ICA/FFR. Obstructive CAD was defined as CTCA stenosis >50 % and CTP hypoperfusion, ICA stenosis >70 % or FFR <0.80. PET hyperaemic myocardial blood flow (MBF) was lower in obstructive than non-obstructive territories defined by ICA/FFR (1.76 (1.32-2.20) vs 3.11 (2.44-3.79) mL/(g/min), P < 0.001) and CTCA/CTP (1.76 (1.32-2.20) vs 3.12 (2.44-3.79) mL/(g/min), P < 0.001). Baseline and hyperaemic CT attenuation density was lower in obstructive than non-obstructive territories (73 (71-76) vs 86 (84-88) HU, P < 0.001 and 101 (96-106) vs 111 (107-114) HU, P 0.001). PET hyperaemic MBF corrected for rate pressure product correlated with CT attenuation density (r = 0.579, P < 0.001). There was excellent per-patient sensitivity (96 %), specificity (85 %), negative predictive value (90 %) and positive predictive value (94 %) for CTCA/CTP vs ICA/FFR. CT myocardial attenuation density correlates with {sup 15}O-water PET MBF. CTCA and CTP can accurately identify obstructive CAD. (orig.)

  4. High resolution and high speed positron emission tomography data acquisition

    International Nuclear Information System (INIS)

    Burgiss, S.G.; Byars, L.G.; Jones, W.F.; Casey, M.E.

    1986-01-01

    High resolution positron emission tomography (PET) requires many detectors. Thus, data collection systems for PET must have high data rates, wide data paths, and large memories to histogram the events. This design uses the VMEbus to cost effectively provide these features. It provides for several modes of operation including real time sorting, list mode data storage, and replay of stored list mode data

  5. Positron emission tomography basic sciences

    CERN Document Server

    Townsend, D W; Valk, P E; Maisey, M N

    2003-01-01

    Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book...

  6. Acquisition of resistance to antitumor alkylating agent ACNU: a possible target of positron emission tomography monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Hideya [Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193 (Japan); Research Institute of Brain and Blood Vessels, Akita 010-0874 (Japan); Toyohara, Jun [Radiopharmaceutical Chemistry Section, Department of Medical Imaging, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Kado, Hirotsugu [Research Institute of Brain and Blood Vessels, Akita 010-0874 (Japan); Nakagawa, Takao [Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193 (Japan); Takamatsu, Shinji [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Furukawa, Takako [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Yonekura, Yoshiharu [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Kubota, Toshihiko [Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan)]. E-mail: yfuji@fmsrsa.fukui-med.ac.jp

    2006-01-15

    Early detection of tumor response to chemotherapy is of great importance for appropriate treatment of tumors. In this study, characteristics of two positron emission tomography (PET) tracers, [{sup 18}F]2-fluoro-2-deoxy-D-glucose (FDG) and[{sup 18}F]3'-fluoro-3'-deoxy-thymidine (FLT), in the early detection of tumor cell response as well as tolerance development to chemotherapy was compared using rat C6 glioma cells and 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl) -3-nitrosoureahydrochloride (ACNU). ACNU is an alkylating agent known to induce drug resistance through expression of O {sup 6}-methylguanine-deoxyribonucleic acid methyl transferase (O {sup 6}-MGMT). We established an ACNU-resistant C6 glioma cell line (C6/ACNU) and investigated the effect of ACNU on the uptake of FLT and FDG. In C6 cells, DNA synthesis presented as [{sup 3}H]thymidine ([{sup 3}H]Thd) incorporation into DNA was quickly suppressed by ACNU. In C6/ACNU cells, the suppression was recovered promptly, indicating that DNA alkylation occurs initially but highly expressed O {sup 6}-MGMT repairs DNA, leading to the recovery of DNA synthesis. The patterns of FLT uptake in C6 and C6/ACNU were difficult to distinguish in the very early stage of the treatment, though it was reported that FLT uptake well correlated with proliferation in certain conditions. FDG uptake showed different patterns between the resistant and control cells, with significantly decreased uptake in C6 cells and unchanged uptake in C6/ACNU cells at 18-24 h after the treatment. Though difficult to be directly translated into clinical situation, the present study will provide a base to develop an appropriate protocol to assess tumor response to treatment by PET and to design effective treatment plans.

  7. Positron emission tomography: Physics, instrumentation, and image analysis

    International Nuclear Information System (INIS)

    Porenta, G.

    1994-01-01

    Positron emission tomography (PET) is a noninvasive diagnostic technique that permits reconstruction of cross-sectional images of the human body which depict the biodistribution of PET tracer substances. A large variety of physiological PET tracers, mostly based on isotopes of carbon, nitrogen, oxygen, and fluorine is available and allows the in vivo investigation of organ perfusion, metabolic pathways and biomolecular processes in normal and diseased states. PET cameras utilize the physical characteristics of positron decay to derive quantitative measurements of tracer concentrations, a capability that has so far been elusive for conventional SPECT (single photon emission computed tomography) imaging techniques. Due to the short half lives of most PET isotopes, an on-site cyclotron and a radiochemistry unit are necessary to provide an adequate supply of PET tracers. While operating a PET center in the past was a complex procedure restricted to few academic centers with ample resources. PET technology has rapidly advanced in recent years and has entered the commercial nuclear medicine market. To date, the availability of compact cyclotrons with remote computer control, automated synthesis units for PET radiochemistry, high-performance PET cameras, and userfriendly analysis workstations permits installation of a clinical PET center within most nuclear medicine facilities. This review provides simple descriptions of important aspects concerning physics, instrumentation, and image analysis in PET imaging which should be understood by medical personnel involved in the clinical operation of a PET imaging center. (author)

  8. Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2

    Science.gov (United States)

    Luitel, Homnath; Sarkar, A.; Chakrabarti, Mahuya; Chattopadhyay, S.; Asokan, K.; Sanyal, D.

    2016-07-01

    Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO2 polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO2 sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (VTi, Ti vacancy) in these irradiated TiO2 samples. Ab initio density functional theoretical calculations indicate that in TiO2 magnetic moment can be induced either by creating Ti or O vacancies.

  9. Characterization of ZnO nanostructures: A challenge to positron annihilation spectroscopy and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Gerhard; Anwand, Wolfgang; Grambole, Dieter; Skorupa, Wolfgang [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Egger, Werner; Sperr, Peter [Institut fuer Angewandte Physik und Messtechnik LRT2, Fakultaet fuer Luft- und Raumfahrttechnik, Werner-Heisenberg-Weg 39, Universitaet der Bundeswehr, Neubiberg (Germany); Beinik, Igor; Wang, Lin; Teichert, Christian [Institut fuer Physik, Montanuniversitaet Leoben (Austria); Kuriplach, Jan; Lang, Jan [Department of Low Temperature Physics, Charles University, Prague (Czech Republic); Zviagin, Sergei; Cizmar, Erik [Institut Hochfeld-Magnetlabor, Forschungszentrum Dresden-Rossendorf, Dresden (Germany); Ling, Chi Chung; Hsu, Yuk Fan; Xi, Yan Yan; Chen, Xinyi; Djurisic, Aleksandra B. [Department of Physics, University of Hong Kong, Hong Kong (China)

    2009-11-15

    ZnO nanostructures are of special interest for device applications. However, their structural characterization remains an ongoing challenge. This paper reviews recent efforts and latest achievements in this direction. Results comprise PAS in the form of Slow Positron Implantation Spectroscopy (SPIS) and Pulsed Low Energy Positron Lifetime Spectroscopy (PLEPS), Nuclear Reaction Analysis (NRA), Atomic Force Microscopy (AFM), conductive AFM (C-AFM), Nuclear Magnetic Resonance (NMR), Electron Spin Resonance (ESR), Photoluminescence (PL) spectroscopy, and latest theoretical investigations of structure-related and positron properties of selected defects. The fundamental importance of a relationship between fabrication conditions, native defect formation, and resulting optical and electronic properties is demonstrated by getting either inferior (nanorods) or significantly improved (tetrapods) optical properties compared to single crystal samples, depending on the nanostructure fabrication method. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Imaging of the appearance time of cerebral blood using [15O]H2O PET for the computation of correct CBF.

    Science.gov (United States)

    Kudomi, Nobuyuki; Maeda, Yukito; Sasakawa, Yasuhiro; Monden, Toshihide; Yamamoto, Yuka; Kawai, Nobuyuki; Iida, Hidehiro; Nishiyama, Yoshihiro

    2013-05-23

    Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. Positron emission tomography (PET) with H215O (or C15O2) can quantify CBF and apply kinetic analyses, including autoradiography (ARG) and the basis function methods (BFM). These approaches, however, are sensitive to input function errors such as the appearance time of cerebral blood (ATB), known as the delay time. We estimated brain ATB in an image-based fashion to correct CBF by accounting for differences in computed CBF values using three different analyses: ARG and BFM with and without fixing the partition coefficient. Subject groups included those with no significant disorders, those with elevated cerebral blood volume, and those with reduced CBF. All subjects underwent PET examination, and CBF was estimated using the three analyses. The ATB was then computed from the differences of the obtained CBF values, and ATB-corrected CBF values were computed. ATB was also estimated for regions of interest (ROIs) of multiple cortical regions. The feasibility of the present method was tested in a simulation study. There were no significant differences in the obtained ATB between the image- and ROI-based methods. Significantly later appearance was found in the cerebellum compared to other brain regions for all groups. In cortical regions where CBF was reduced due to occlusive lesions, the ATB was 0.2 ± 1.2 s, which was significantly delayed relative to the contralateral regions. A simulation study showed that the ATB-corrected CBF was less sensitive to errors in input function, and noise on the tissue curve did not enhance the degree of noise on ATB-corrected CBF image. This study demonstrates the potential utility of visualizing the ATB in the brain, enabling the determination of CBF with less sensitivity to error in input function.

  11. 2-¹⁸fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) for postchemotherapy seminoma residual lesions

    DEFF Research Database (Denmark)

    Bachner, M; Loriot, Y; Gross-Goupil, M

    2012-01-01

    2-¹⁸fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) has been recommended in international guidelines in the evaluation of postchemotherapy seminoma residuals. Our trial was designed to validate these recommendations in a larger group of patients.......2-¹⁸fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) has been recommended in international guidelines in the evaluation of postchemotherapy seminoma residuals. Our trial was designed to validate these recommendations in a larger group of patients....

  12. Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography

    International Nuclear Information System (INIS)

    Wolkin, A.; Jaeger, J.; Brodie, J.D.; Wolf, A.P.; Fowler, J.; Rotrosen, J.; Gomez-Mont, F.; Cancro, R.

    1985-01-01

    Local cerebral metabolic rates were determined by positron emission tomography and the deoxyglucose method in a group of 10 chronic schizophrenic subjects before and after somatic treatment and in eight normal subjects. Before treatment, schizophrenic subjects had markedly lower absolute metabolic activity than did normal controls in both frontal and temporal regions and a trend toward relative hyperactivity in the basal ganglia area. After treatment, their metabolic rates approached those seen in normal subjects in nearly all regions except frontal. Persistence of diminished frontal metabolism was manifested as significant relative hypofrontality. These findings suggest specific loci of aberrant cerebral functioning in chronic schizophrenia and the utility of positron emission tomography in characterizing these abnormalities

  13. Positron annihilation study of formation of Mg vacancy in MgO

    International Nuclear Information System (INIS)

    Mizuno, M.; Araki, H.; Shirai, Y.; Inoue, Y.; Sugita, K.; Mizoguchi, T.; Tanaka, I.; Adachi, H.

    2004-01-01

    We have investigated the formation of Mg vacancy induced by ultra-dilute trivalent impurities in MgO by a combination of positron annihilation measurement and theoretical calculations of positron lifetimes. The undoped MgO yields the shortest positron lifetime of 130 ps that is shorter than that of 166 ps previously reported using a single crystal sample. The positron lifetime of the doped samples increases with the increase of the Al or Ga dopant concentration and is saturated at around 170 ps. This result indicates that the previously reported value of 166 ps is ascribed to not the bulk but the vacancy state induced by impurities. The experimental bulk lifetime of 130 ps, which is obtained by employing trapping model, is well reproduced by the theoretical calculation using the semiconductor model. The calculated defect lifetime is about 20 ps longer than the experimental value. This may be due to the lattice relaxation around Mg vacancy associated with the trapping of positrons. (orig.)

  14. Positron annihilation study of formation of Mg vacancy in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, M.; Araki, H.; Shirai, Y. [Science and Technology Center for Atoms, Molecules and Ions Control, Osaka Univ., Osaka (Japan); Inoue, Y.; Sugita, K. [Dept. of Materials Science and Engineering, Osaka Univ., Osaka (Japan); Mizoguchi, T.; Tanaka, I.; Adachi, H. [Dept. of Materials Science and Engineering, Kyoto Univ., Kyoto (Japan)

    2004-07-01

    We have investigated the formation of Mg vacancy induced by ultra-dilute trivalent impurities in MgO by a combination of positron annihilation measurement and theoretical calculations of positron lifetimes. The undoped MgO yields the shortest positron lifetime of 130 ps that is shorter than that of 166 ps previously reported using a single crystal sample. The positron lifetime of the doped samples increases with the increase of the Al or Ga dopant concentration and is saturated at around 170 ps. This result indicates that the previously reported value of 166 ps is ascribed to not the bulk but the vacancy state induced by impurities. The experimental bulk lifetime of 130 ps, which is obtained by employing trapping model, is well reproduced by the theoretical calculation using the semiconductor model. The calculated defect lifetime is about 20 ps longer than the experimental value. This may be due to the lattice relaxation around Mg vacancy associated with the trapping of positrons. (orig.)

  15. Evaluation of [O-methyl-11C]RS-15385-197 as a positron emission tomography radioligand for central α2-adrenoceptors

    International Nuclear Information System (INIS)

    Hume, S.P.; Hirani, E.; Opacka-Juffry, J.; Osman, S.; Myers, R.; Gunn, R.N.; McCarron, J.A.; Pike, V.W.; Clark, R.D.; Melichar, J.; Nutt, D.J.

    2000-01-01

    Carbon-11 labelled RS-15385-197 and its ethylsulphonyl analogue, RS-79948-197, were evaluated in rats as potential radioligands to image central α 2 -adrenoceptors in vivo. The biodistributions of both compounds were comparable with that obtained in an earlier study using tritiated RS-79948-197 and were consistent with the known localisation of α 2 -adrenoceptors. The maximal signals (total to non-specific binding) were, however, reduced, in the order [ 11 C]RS-79948-197 11 C]RS-15385-197 3 H]RS-79948-197, primarily due to the difference in radiolabel position (O-methyl for carbon-11 compared with S-ethyl for tritium). This resulted in the in-growth of radiolabelled metabolites in plasma, which, in turn, contributed to the non-specific component of brain radioactivity. Nonetheless, the signal ratio of ∝5 for a receptor-dense tissue compared with the receptor-sparse cerebellum, at 90-120 min after radioligand injection, encouraged the development of [O-methyl- 11 C]RS-15385-197 for human positron emission tomography (PET). Unfortunately, in two human PET scans (each of 90 min), brain extraction of the radioligand was minimal, with volumes of distribution more than an order of magnitude lower than that measured in rats. Following intravenous injection, radioactivity was retained in plasma and metabolism of the radiolabelled compound was very low. Retrospective measurements of in vitro plasma protein binding and in vivo brain uptake index (BUI) in rats demonstrated a higher protein binding of the radioligand in human compared with rat plasma and a lower BUI in the presence of human plasma. It is feasible that a higher affinity of RS-15385-197 for human plasma protein compared with receptor limited the transport of the radioligand. Although one of the PET scans showed a slight heterogeneity in biodistribution of radioactivity which was consistent with the known localisation of α 2 -adrenoceptors in human brain, it was concluded that [O-methyl- 11 C]RS-15385

  16. Positron emission tomography in the follow-up of cutaneous malignant melanoma patients

    DEFF Research Database (Denmark)

    Danielsen, Maria; Højgaard, Liselotte; Kjær, Andreas

    2014-01-01

    node involvement and distant metastases, accentuating the importance of close surveillance to identify disease progression at an early stage, and thereby detect recurrences amenable to treatment. Positron emission tomography (PET) has already been proven useful in the staging of CMM, but the utility...

  17. Application of positron emission tomography in industrial research

    International Nuclear Information System (INIS)

    Jonkers, G.; van den Bergen, E.A.; Vonkeman, K.A.

    1990-01-01

    Positron Emission computed Tomography (PET) is a relatively new imaging technique, exploiting the 511 keV annihilation radiation characteristic of positron emitters. Although exclusively used till now in the field of nuclear medicine, the application of PET for the non-invasive, in-situ visualisation of processes of industrial interest is challenging, because PET can in principle be used to obtain quantitative, 2D/3D images of the flow and distribution of fluids inside process units, whose steel walls may be up to several centimeters thick. With the aid of a NeuroECAT positron tomographer the PET technique has been utilised to image important (model) processes in the petrochemical industry, using physical labelling of the phase to be imaged. First, the displacement of a brine/surfactant phase, labelled with 66 Ga-EDTA, in a piece of reservoir rock was imaged. Secondly, the dehydration of water-in-oil emulsions was monitored dynamically by labelling the water phase with 68 Ga-EDTA. The second study in particular demonstrates that in the presence of noisy data the image reconstruction method utilised strongly influences the results obtained. With the advent of PET in nuclear medicine the availability of short-lived positron emitting nuclides like 11 C (t1/2 = 20 min), 13 N (t1/2 = 10 min) and 15 0 (t1/2 = 2 min) has increased considerably, allowing the investigation of industrially important reactions by chemical labelling. Utilising the NeuroECAT in a special mode, the catalytic oxidation of carbon monoxide could be imaged in a model tubular reactor by using 11 C-labelled CO, providing information about the kinetics of the individual reaction steps and interactions and about the degree of occupation of catalytically active sites. (author)

  18. Contribution of positron emission tomography in neurology

    International Nuclear Information System (INIS)

    Salmon, E.; Franck, G.

    1992-01-01

    Positron Emission Tomography (PET) is a scanner technique using tracers labelled with shortlived radioisotopes which allows to study and quantify human metabolic processes or drug pharmacology in vivo. The technique is first applied in physiological studies. Sleep, normal brain metabolism or cerebral activations have been studied. The pharmacological approach concerns both drug distribution in the human brain and blood flow or metabolic variations under treatment. Main neurological applications in pathology are cerebrovascular disorders, diseases leading to dementia, epilepsy, movement disorders, and brain tumors. In each field of application, PET gives unique and frequently early informations. It nicely combines both dynamic informations and measurement precision. (author)

  19. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H2O Dissociation

    Science.gov (United States)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé

    2017-08-01

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we have assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope-Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100-1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST-COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490-1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L(Bump) ≈ 7 × 1029 erg s-1. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ o = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H2 excited by electron -impact. We show that this Bump makes up between 5%-50% of the total FUV continuum emission in the 1490-1690 Å band and emits roughly 10%-80% of the total fluorescent H2 luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Lyα photons. We argue that the most likely mechanism is Lyα-driven dissociation of H2O in the inner disk, r

  20. Use of positron emission tomography in colorectal cancer

    International Nuclear Information System (INIS)

    Gonzalez E, Patricio; Jofre E, Josefina; Massardo V, Teresa; Humeres, Pamela; Canessa G, Jose; Sierralta C, Paulina

    2002-01-01

    The value of PET (Positron Emission Tomography) in colorectal cancer is presented. PET is a novel technique that uses F-18-FDG (fluorodeoxiglucose) to assess glucose metabolism by whole body imaging. It has been demonstrated that malignant cells have both increase of glucose uptake and utilization. In colorectal cancer, PET is indicated for staging, assess recurrence, liver metastasis and treatment follow-up. PET is more sensitive and specific than CT (Computed Tomography) and is cost effective. In 30% of cases PET may change patient management, avoiding unnecessary procedures (au)

  1. Design of a volume-imaging positron emission tomograph

    International Nuclear Information System (INIS)

    Harrop, R.; Rogers, J.G.; Coombes, G.H.; Wilkinson, N.A.; Pate, B.D.; Morrison, K.S.; Stazyk, M.; Dykstra, C.J.; Barney, J.S.; Atkins, M.S.; Doherty, P.W.; Saylor, D.P.

    1988-11-01

    Progress is reported in several areas of design of a positron volume imaging tomograph. As a means of increasing the volume imaged and the detector packing fraction, a lens system of detector light coupling is considered. A prototype layered scintillator detector demonstrates improved spatial resolution due to a unique Compton rejection capability. The conceptual design of a new mechanism for measuring scattered radiation during emission scans has been tested by Monte Carlo simulation. The problem of how to use effectively the resulting sampled scattered radiation projections is presented and discussed

  2. Intrinsic spatial resolution limitations due to differences between positron emission position and annihilation detection localization

    International Nuclear Information System (INIS)

    Perez, Pedro; Malano, Francisco; Valente, Mauro

    2012-01-01

    Since its successful implementation for clinical diagnostic, positron emission tomography (PET) represents the most promising medical imaging technique. The recent major growth of PET imaging is mainly due to its ability to trace the biologic pathways of different compounds in the patient's body, assuming the patient can be labeled with some PET isotope. Regardless of the type of isotope, the PET imaging method is based on the detection of two 511-keV gamma photons being emitted in opposite directions, with almost 180 deg between them, as a consequence of electron-positron annihilation. Therefore, this imaging method is intrinsically limited by random uncertainties in spatial resolutions, related with differences between the actual position of positron emission and the location of the detected annihilation. This study presents an approach with the Monte Carlo method to analyze the influence of this effect on different isotopes of potential implementation in PET. (author)

  3. Positron lifetimes and distributions in the infinite-layer compound SrCuO2 and related materials

    International Nuclear Information System (INIS)

    Ishibashi, Shoji; Terada, Norio; Hirabayashi, Masayuki; Ihara, Hideo

    1994-01-01

    We have calculated distributions and lifetimes of positrons in the infinite-layer compound SrCuO 2 and those trapped at possible point defects therein. In the delocalized state, positrons show their density maxima at interstitial sites in the Sr planes and have a significant overlap also with Cu and O atoms. The corresponding positron lifetime is 149 ps. It has been revealed that the Sr vacancy strongly localizes positrons with the binding energy of 2.8 eV and the lifetime of 238 ps, while the O vacancy does not trap positrons. Calculations are also performed on related materials Sr 2 Cu 4 O 6 and Sr 4 Cu 6 O 10 , which are characterized by one-dimensional networks of edge-sharing CuO 4 squares. Positrons are predominantly distributed between these networks in these materials and their corresponding lifetimes are 170-171 ps. (orig.)

  4. A case of skeletal tuberculosis and psoas abscess: disease activity evaluated using (18) F-fluorodeoxyglucose positron emission tomography-computed tomography.

    Science.gov (United States)

    Kimizuka, Yoshifumi; Ishii, Makoto; Murakami, Koji; Ishioka, Kota; Yagi, Kazuma; Ishii, Ken; Watanabe, Kota; Soejima, Kenzo; Betsuyaku, Tomoko; Hasegawa, Naoki

    2013-11-14

    Psoas abscess complicating tuberculous spondylitis is a rare morbidity in extrapulmonary tuberculosis. There are no established guidelines for evaluating the clinical response of psoas abscess. Although several studies have shown that positron emission tomography-computed tomography with 18 F-fluorodeoxyglucose can play a potential role in diagnosing multifocal tuberculosis and monitoring the clinical response of pulmonary tuberculosis, to our knowledge, this is the first report demonstrating that positron emission tomography-computed tomography is useful for evaluating local inflammation and disease activity of a tuberculous psoas abscess. We report a case of multifocal bone and lymph node tuberculosis with concomitant lumbar psoas abscess in a 77-year-old man, along with a literature review. An initial positron emission tomography-computed tomography scan showed intense 18 F-fluorodeoxyglucose accumulation in the sternum, ribs, vertebrae, and lymph nodes. The patient was successfully treated with antitubercular agents and computed tomography-guided drainage therapy. A follow-up positron emission tomography-computed tomography after abscess drainage and 9 months of antitubercular drug treatment revealed that the majority of lesions improved; however, protracted inflammation surrounding the psoas abscess was still observed. These results indicate that disease activity of psoas abscess can remain, even after successful drainage and antitubercular medication regime of appropriate duration. We have successfully followed up the extent of skeletal tuberculosis complicated with psoas abscess by positron emission tomography-computed tomography. In this patient, positron emission tomography-computed tomography is useful for evaluating the disease activity of tuberculous psoas abscess and for assessing the appropriate duration of antitubercular drug therapy in psoas abscess.

  5. External tandem target system for efficient production of short-lived positron emitting radionuclides

    International Nuclear Information System (INIS)

    Koh, K.; Dwyer, J.; Finn, R.; Sheh, Y.; Sinnreich, J.; Wooten, T.

    1983-01-01

    Recent developments in radiopharmaceutical chemistry allow the incorporation of short-lived, positron-emitting radionuclides into a variety of compounds which when used with a positron emission tomograph provide a means of monitoring physiological disorders by a standard technique. To effectively meet the increased ''in-house'' clinical demands while maintaining a production schedule, a tandem target was designed and has been installed for the simultaneous ''on-line'' preparation of oxygen-15 labelled compounds such as CO 2 15 , H 2 O 15 ; and nitrogen-13 labelled compounds such as 13 NH 3 , 13 N 2 O, and 13 N 2 . The processing time required for the synthesis of the nitrogen-13 products as compared to the essentially instantaneous formation of oxygen-15 labelled compounds has provided the necessary time delay for clinical utilization. The characterisitcs of this external tandem target system as well as the automation for the dual processing are presented

  6. Electron irradiation-induced defects in ZnO studied by positron annihilation

    International Nuclear Information System (INIS)

    Chen, Z.Q.; Maekawa, M.; Kawasuso, A.; Sakai, S.; Naramoto, H.

    2006-01-01

    ZnO crystals were subjected to 3 MeV electron irradiation up to a high dose of 5.5x10 18 cm -2 . The production and recovery of vacancy defects were studied by positron annihilation spectroscopy. The increase of positron lifetime and Doppler broadening S parameter after irradiation indicates introduction of V Zn related defects. Most of these vacancies are annealed at temperatures below 200 o C. However, after annealing at around 400 o C, secondary defects are produced. All the vacancy defects are annealed out at around 700 o C

  7. The value of positron emission tomography/computed tomography for evaluating metastatic disease in patients with pancreatic cancer.

    Science.gov (United States)

    Kim, Mi-Jin; Lee, Kwang Hyuck; Lee, Kyu Taek; Lee, Jong Kyun; Ku, Bon-Ho; Oh, Cho-Rong; Heo, Jin Seok; Choi, Seong-Ho; Choi, Dong Wook

    2012-08-01

    Routine application of positron emission tomography/computed tomography (PET/CT) for pancreatic cancer staging remains a controversial approach. The purpose of this study was to reassess the clinical impact of PET/CT for the detection of distant metastasis of pancreatic cancer. From January 2006 to June 2009, 125 patients with histologically proven pancreatic cancer that had undergone PET/CT at our hospital were retrospectively reviewed. To evaluate the clinical efficacy of PET/CT on the management plan, the post-PET/CT management plans were compared with the pre-PET/CT management plans. After the conventional staging workup, we determined that 76 patients (60.8%) had resectable lesions, whereas 48 patients had unresectable lesions. One patient underwent explorative laparotomy due to equivocal resectability. Positron emission tomography/computed tomography diagnosed distant metastasis in only 2 (2.6%) of the 76 patients with resectable lesions, and these patients did not undergo unnecessary surgical treatment. Complete resection was not performed in 8 of the 74 operative patients because they had distant metastasis detected during the operative procedure. Positron emission tomography/computed tomography diagnosed distant metastasis in 32 of the 44 patients with metastatic lesions that were histologically shown to have sensitivity of 72.7%. Positron emission tomography/computed tomography has a limited role in the evaluation of metastatic disease from pancreatic cancer.

  8. Application of positron emission tomography in the lung

    International Nuclear Information System (INIS)

    Valind, S.O.; Wollmer, P.E.; Rhodes, C.G.

    1985-01-01

    The early application of positron emission tomography in the lung was mainly concerned with the investigation of the regional volume of the vascular and extravascular compartments, using measurements of fractional blood volume and lung density. However, in addition to its passive role in the exchange of oxygen and carbon dioxide, the lung exerts a number of active, metabolic functions such as the inactivation of circulating vasoactive compounds and the synthesis and release of biologically active substances. Furthermore, many of the pulmonary disorders originate at a cellular or metabolic level, or have metabolic consequences. Many of the substrates of biochemical reactions and the biologically active compounds, or their analogs, can be labeled with positron-emitting radioisotopes without disturbing their biological or biochemical characteristics. In combination with the development of the appropriate physiological and biochemical models, the quantitative measurements possible with PET provide a unique opportunity of regionally studying the metabolic processes of the lung of man in vivo. Hence, a range of different expressions of metabolism and of lung function can be evaluated and their interdependence can be studied regionally

  9. Lhermitte-Duclos disease presenting with positron emission tomography-magnetic resonance fusion imaging: a case report

    Directory of Open Access Journals (Sweden)

    Calabria Ferdinando

    2012-03-01

    Full Text Available Abstract Introduction Lhermitte-Duclos disease or dysplastic gangliocytoma of the cerebellum is an extremely rare tumor. It is a slowly enlarging mass within the cerebellar cortex. The majority of cases are diagnosed in the third or fourth decade of life. Case presentation We report the case of a 37-year-old Caucasian woman who underwent positron emission tomography-computed tomography with fluorine-18-fluorodeoxyglucose for evaluation of a solitary lung node. No pathological uptake was detected in the solitary lung node but the positron emission tomography-computed tomography of her brain showed intense tracer uptake, suggestive of a malignant neoplasm, in a mass in her left cerebellar lobe. Our patient had experienced two years of occipital headache and movement disorder. Subsequently, magnetic resonance imaging was performed with contrast agent administration, showing a large subtentorial mass in her left cerebellar hemisphere, with compression and dislocation of the fourth ventricle. Metabolic data provided by positron emission tomography and morphological magnetic resonance imaging views were fused in post-processing, allowing a diagnosis of dysplastic gangliocytoma with increased glucose metabolism. Total resection of the tumor was performed and histological examination confirmed the diagnosis of Lhermitte-Duclos disease. Conclusions Our case indicates that increased uptake of fluorine-18-fluorodeoxyglucose may be misinterpreted as a neoplastic process in the evaluation of patients with Lhermitte-Duclos disease, but supports the usefulness of integrated positron emission tomography-magnetic resonance imaging in the exact pathophysiologic explanation of this disease and in making the correct diagnosis. However, an accurate physical examination and exact knowledge of clinical data is of the utmost importance.

  10. Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography in Disseminated Cryptococcosis.

    Science.gov (United States)

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography-computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm.

  11. Recommendations for measurement of tumour vascularity with positron emission tomography in early phase clinical trials

    International Nuclear Information System (INIS)

    Aboagye, Eric O.; Kenny, Laura M.; Myers, Melvyn; Gilbert, Fiona J.; Fleming, Ian N.; Beer, Ambros J.; Cunningham, Vincent J.; Marsden, Paul K.; Visvikis, Dimitris; Gee, Antony D.; Groves, Ashley M.; Cook, Gary J.; Kinahan, Paul E.; Clarke, Larry

    2012-01-01

    The evaluation of drug pharmacodynamics and early tumour response are integral to current clinical trials of novel cancer therapeutics to explain or predict long term clinical benefit or to confirm dose selection. Tumour vascularity assessment by positron emission tomography could be viewed as a generic pharmacodynamic endpoint or tool for monitoring response to treatment. This review discusses methods for semi-quantitative and quantitative assessment of tumour vascularity. The radioligands and radiotracers range from direct physiological functional tracers like [ 15 O]-water to macromolecular probes targeting integrin receptors expressed on neovasculature. Finally we make recommendations on ways to incorporate such measurements of tumour vascularity into early clinical trials of novel therapeutics. (orig.)

  12. 12 CFR 215.11 - Civil penalties.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Civil penalties. 215.11 Section 215.11 Banks... OFFICERS, DIRECTORS, AND PRINCIPAL SHAREHOLDERS OF MEMBER BANKS (REGULATION O) § 215.11 Civil penalties... subject to civil penalties as specified in section 29 of the Federal Reserve Act (12 U.S.C. 504). [Reg. O...

  13. Positron emission tomography in drug development

    International Nuclear Information System (INIS)

    Rubin, R. H.; Fischman, A. J.

    1997-01-01

    There are four kinds of measurements that can be carried out with positron emission tomography (PET) that can contribute significantly to the process of drug development: pharmacodynamic measurement of tissue metabolism influenced by a given drug; precise measurements of tissue blood flow; tissue pharmacokinetics of a given drug following administration of a particular dose; and the temporal course of ligand-receptor interaction. One or more of these measurements can greatly improve the decision making involved in determining the appropriate dose of a drug, the clinical situations in which a drug might be useful, and the linkage of pharmacokinetics with pharmacodynamics, which is at the heart of effective drug development. The greater the potential of a particular compound as a therapeutic agent, the greater the potential for PET to contribute to the drug development process

  14. Positron emission tomography in oncology

    International Nuclear Information System (INIS)

    Lecomte, R.; Bentourkia, M.; Benard, F.

    2002-01-01

    Positron Emission Tomography is a sophisticated molecular imaging technique, using a special scanner, that displays the functional status of tissues in the body at the cellular level (their metabolism). It is a diagnostic scan that provides the physician with information not available with traditional anatomic studies such as CT or MRI. PET can detect changes in cell function (disease) long before they are evident as physical (anatomic) changes seen on CT or MRI. In this way PET can add important information about many diseases allowing the physician to make a diagnosis often much earlier than with anatomic imaging techniques such as CT or MRI alone. In addition, in cases where an abnormality is noted on CT or MRI, PET can help differentiate benign changes from changes due to disease. PET scanning also typically images the entire body, unlike CT/MRI which is usually broken up into specific limited body section scans. All cells use glucose as an energy source but cancer cells use much more since they are growing much faster and out of control. This is the basis of imaging with F-18 FDG glucose, the radiotracer agent use in a PET oncology study. The abnormal, accelerated glucose used by cancer cells is detected by the PET scanner that processes the emissions from the F-18 FDG glucose by abnormally high levels of metabolism (tumor)

  15. Evaluation of regional cerebral blood flow and volume of rapidly exchangeable water in man by positron emission tomography

    International Nuclear Information System (INIS)

    Depresseux, J.C.; Cheslet, J.P.; Hodiaumont, J.

    1982-01-01

    The present investigation uses bolus inhalation of C 15 O 2 and sequential positron emission tomography of the brain in view to simultaneously evaluate regional cerebral blood flow and regional cerebral volume of rapidly exchangeable water in normal human subjects. Arguments allow to infer that the cerebral distribution volume of radiowater does vary with time during the initial period of invasion of tissue by the indicator. Implications of this variation on the validity of classical data procedures is discussed and an alternative original method is proposed [fr

  16. Cobalt-55 positron emission tomography in traumatic brain injury : A pilot study

    NARCIS (Netherlands)

    Jansen, HML; vanderNaalt, J; vanZomeren, AH; Paans, AMJ; VeenmavanderDuin, L; Hew, JM; Pruim, J; Minderhoud, JM; Korf, J

    Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Go-PET) as a calcium tracer enables

  17. Tomography by positrons emission: integral unit to the service of Mexico

    International Nuclear Information System (INIS)

    Lopez D, F.A.

    2005-01-01

    The applications of the Positron emission tomography (PET) together with the one radiopharmaceutical 2 - [ 18 F]-fluoro-2-deoxy-D-glucose in the area of the medical imaging is expanding quickly and it possesses a bigger impact at the moment in favor of those patient to who suffers an oncological, cardiac or neurological illness in Mexico. (Author)

  18. Positron emission tomography in human hemispheric infarction: a study with 150 continuous inhalation technique

    International Nuclear Information System (INIS)

    Castaigne, Paul; Baron, J.C.; Bousser, M.G.; Comar, D.; Kellershohn, C.; CEA, 91 - Orsay

    1979-01-01

    Non-invasive tomographic imaging of cerebral blood flow and oxygen metabolism has now become possible with the 15 O continuous inhalation technique coupled with positron emission tomography (PET). We have for the first time applied this procedure in a large scale study of human hemispheric infarction. From this study, it may be concluded that: various hitherto undescribed patterns of disturbances in the perfusion/metabolism couple that occur in cerebral infarction have been documented by PET imaging of CBF and EO 2 . The EO 2 appears as an important physiological parameter in the study of recent cerebral infarction, and specific patterns of the CBF/EO 2 relationship are now emerging that may have important pathophysiologic, prognostic and therapeutic implications. Despite some limitations, the non invasive 15 O inhalation technique has a number of major specific advantages that make it particularly suited for the study of ischemic brain disorders

  19. Study of the degradation and recovery of the optical properties of H+-implanted ZnO pigments

    International Nuclear Information System (INIS)

    Li, Chundong; Lv, Jinpeng; Yao, Shulong; Hu, Jiangang; Liang, Zhiqiang

    2013-01-01

    We studied the influences of proton implantation and oxygen post-annealing on the optical properties of ZnO pigments using a combination of Raman scattering, positron annihilation and photoluminescence techniques. Raman scattering results indicated that oxygen vacancies and interstitial zinc defects were produced after proton implantation. Positron annihilation spectroscopy and photoluminescence measurements demonstrated that the zinc vacancies do not contribute to the optical absorption, but give rise to the visible band emission. Interestingly, the proton implantation induced optical degradation can be annealed out at 800 °C in an O 2 atmosphere. We conclude that the defect centers responsible for the optical absorption are primarily composed of V O + , ionized Zn i and ionized O i

  20. Positron emission tomography - a new technique for observing fluid behaviour in engineering systems

    International Nuclear Information System (INIS)

    Stewart, P.A.E.; Rogers, J.D.; Skelton, R.T.

    1988-01-01

    Positron emission tomography promises to become a powerful new technique for flow tracing and measurement within metal structures in general and operating engines in particular. The principles involved are outlined, and a mobile positron camera system being developed jointly by Rolls-Royce, Castrol, the University of Birmingham and the Rutherford-Appleton Laboratory of the SERC is described. Finally, illustrative examples of the camera's capability are presented drawn from its use to study lubricating fluid flow in the bearings of a Viper gas turbine engine on test up to 100% full power. (author)

  1. Electron irradiation-induced defects in ZnO studied by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Q. [Advanced Science Research Center, Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)]. E-mail: zhiquanchen@hotmail.com; Maekawa, M. [Advanced Science Research Center, Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kawasuso, A. [Advanced Science Research Center, Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Sakai, S. [Advanced Science Research Center, Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Naramoto, H. [Advanced Science Research Center, Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2006-04-01

    ZnO crystals were subjected to 3 MeV electron irradiation up to a high dose of 5.5x10{sup 18} cm{sup -2}. The production and recovery of vacancy defects were studied by positron annihilation spectroscopy. The increase of positron lifetime and Doppler broadening S parameter after irradiation indicates introduction of V {sub Zn} related defects. Most of these vacancies are annealed at temperatures below 200 {sup o}C. However, after annealing at around 400 {sup o}C, secondary defects are produced. All the vacancy defects are annealed out at around 700 {sup o}C.

  2. Fluorodeoxyglucose Positron Emission Tomography–Computed Tomography in Disseminated Cryptococcosis

    Science.gov (United States)

    Tripathy, Sarthak; Parida, Girish Kumar; Roy, Shambo Guha; Singhal, Abhinav; Mallick, Saumya Ranjan; Tripathi, Madhavi; Shamim, Shamim Ahmed

    2017-01-01

    Disseminated cryptococcosis without pulmonary involvement is a very rare phenomenon. Patterns of organ involvement in cryptococcosis resemble various other infective conditions as well as malignant conditions on fluorodeoxyglucose positron emission tomography–computed tomography. We present a case of a 43-year-old male patient who had disseminated cryptococcosis. The rarity of the case being noninvolvement of lungs and meninges and resembling more like lymphoma due to the diffuse involvement of the lymph nodes on both sides of the diaphragm. PMID:29142368

  3. Imaging prostate cancer: an update on positron emission tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter

    2010-01-01

    , and molecular imaging information. Developments in imaging technologies, specifically magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT), have improved the detection rate of prostate cancer. MRI has improved lesion detection and local staging. Furthermore, MRI...

  4. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    Science.gov (United States)

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  5. Defects in electron irradiated vitreous SiO[sub 2] probed by positron annihiliation

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Tanigawa, Shoichiro (Tsukuba Univ., Ibaraki (Japan). Inst. of Materials Science); Kawano, Takao (Tsukuba Univ., Ibaraki (Japan). Radioisotope Centre); Itoh, Hisayoshi (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment)

    1994-10-10

    Defects in 3 MeV electron irradiated vitreous SiO[sub 2] (v-SiO[sub 2]) were probed by the positron annihilation technique. For unirradiated v-SiO[sub 2] specimens, almost all positrons were found to annihilate from positronium (Ps) states. This high formation probability of Ps was attributed to the trapping of positrons by open-space defects. The formation probability of Ps was decreased by the electron irradiation. The observed inhibition of the Ps formation was attributed to the trapping of positrons by point defects introduced and/or activated by the irradiation. From measurements of the lifetime distribution of Ps, it was found that, by the electron irradiation, the mean size of open-space defects was decreased and the size distribution of such defects was broadened. (Author).

  6. single photon emission tomography and positron emission tomography - Part 1 (October 2012), Part 2 (October 2010)

    International Nuclear Information System (INIS)

    Buvat, Irene

    2010-10-01

    The objective of this lecture is to present the single photon emission computed tomography (SPECT) and the positron emission tomography (PET) imaging techniques. Part 1 Content: 1 - Introduction: anatomic, functional and molecular imaging; 2 - Radiotracers: chemical and physical constraints, gamma photon emitters, positon emitters, radioisotopes production, emitters type and imaging techniques; 3 - Gamma cameras; 4 - Quantification in emission tomography: attenuation, scattering, un-stationary spatial resolution; 5 - Synthesis and conclusion. Part 2 content: 1 - Positon emitters; 2 - Positons detection: Coincidence detection (electronic collimation, PET detectors with gamma cameras, dedicated PET detectors, spectrometry); PET detectors type; time-of-flight PET; 2D PET; 3D PET; 3 - Quantification in emission tomography: detected events, attenuation, scattering, fortuitous coincidences, standardisation; 4 - Common SPECT and PET problems: partial volume effect, movement, tomographic reconstruction, calibration, dead time; 5 - Synthesis and conclusion

  7. Characterization of hepatic tumors using [11C]metomidate through positron emission tomography

    DEFF Research Database (Denmark)

    Roivainen, Anne; Naum, Alexandru; Nuutinen, Heikki

    2013-01-01

    ABSTRACT: BACKGROUND: Using positron emission tomography (PET), we compared two tracers, [11C]metomidate ([11C]MTO) and [11C]acetate ([11C]ACE), for the characterization of hepatic tumors. METHODS: Thirty-three patients underwent PET with [11C]MTO and [11C]ACE and magnetic resonance imaging (MRI...

  8. Positron annihilation spectroscopic studies of solvothermally synthesized ZnO nanobipyramids and nanoparticles

    Science.gov (United States)

    Ghoshal, Tandra; Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra; Nambissan, P. M. G.

    2008-02-01

    Zinc oxide (ZnO) samples in the form of hexagonal-based bipyramids and particles of nanometer dimensions were synthesized through solvothermal route and characterized by x-ray diffraction and transmission electron microscopy. Positron annihilation experiments were performed to study the structural defects such as vacancies and surfaces in these nanosystems. From coincidence Doppler broadening measurements, the positron trapping sites were identified as Zn vacancies or Zn-O-Zn trivacancy clusters. The positron lifetimes, their relative intensities, and the Doppler broadened lineshape parameter S all showed characteristic changes across the nanobipyramid size corresponding to the thermal diffusion length of positrons. In large nanobipyramids, vacancies within the crystallites also trapped positrons and the effects of agglomeration of such vacancies due to increased temperatures of synthesis were reflected in the variation of the annihilation parameters with their base diameters. The sizes of the nanoparticles used were all in the limit of thermal diffusion length of positrons and the annihilation characteristics were in accordance with the decreasing contribution from surfaces with increasing particle size.

  9. The role of positron emission tomography in mediastinal staging of patients with non-small cell lung cancer.

    Science.gov (United States)

    d'Amico, Andrea; Turska-d'Amico, Maria; Jarzab, Barbara; Zielinski, Marcin

    2015-01-01

    To examine the diagnostic accuracy of positron emission tomography/computed tomography in evaluating the mediastinum of patients with non-small cell lung cancer compared to histopathology results. The prospective study was conducted at the Department of Thoracic Surgery of the Pulmonary Hospital in Zakopane, Poland, from September 2008 to August 2012 and comprised patients with radiologically-suspected lung cancer. All patients underwent histological verification by either mediastinoscopy alone or thoracotomy with mediastinal lymphanedectomy. Computed tomography and positron emission tomography/computed tomography data sets were compared with the results of the histopathology examinations. There were 80 patients in the study. In the diagnosis of mediastinal lymph nodes, computed tomography was able to detect 9(11.25%) true-positive, 17(21.25%) false-positive, 40(50%) true-negative and 14(17.5%) false-negative cases. The sensitivity, specificity and accuracy of the method were found to be 39%, 70% and 61% respectively, while the positive and negative predictive values were 35% and 74%. Positron emission tomography/computed tomography yielded 15(18.75%) true-positive, 12(15%) false-positive, 46(57.5%) true-negative and 7(8.75%) false-negative cases. Sensitivity was 68% while specificity was 79%. The accuracy was 96%, and the positive and negative predictive values were 55% and 87% respectively. Positron emission tomography/computed tomography had higher diagnostic accuracy than computed tomography in assessing mediastinal lymph nodes of patients with non-small cell lung cancer. However, a positive test requires histopathology confirmation.

  10. Frequency domain kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics

    Science.gov (United States)

    Fl'unt, Orest; Klym, Halyna; Ingram, Adam

    2018-03-01

    In this work, the kinetic of positron-electron annihilation in the MgO-Al2O3 spinel-type ceramics sintered at different temperatures (1100, 1200 and 1400 °C) has been calculated and analyzed in a frequency domain. The spectra of real (in-phase) and imaginary (quadrature) components of positron-electron annihilation kinetic have been obtained numerically from usual temporal characteristics using integral Fourier transform. The numerical calculations were carried out using cubic spline interpolation of the pulse characteristics of MgO-Al2O3 ceramics in time domain with following analytical calculations of integrals. The obtained spectra as real so imaginary part of MgO-Al2O3 ceramics in frequency domain almost good obey a Debye law denying correlation between elementary positron annihilation processes. Complex diagrams of frequency domain responses of as-prepared samples have a shape of semicircles with close characteristic frequencies. Some deviation on low-frequency side of the semicircles is observed confirming an availability of longer time kinetic processes. Sintering temperature dependencies of the relaxation times and characteristic frequencies of positron-electron annihilation processes have been obtained. It is shown that position of large maxima on the frequency dependencies of imaginary part corresponds to fast average relaxation lifetime representing the most intensive interaction process of positrons with small cavity traps in solids.

  11. Blood flow and blood volume in the femoral heads of healthy adults according to age. Measurement with positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Kubo, Toshikazu; Kimori, Kokuto; Nakamura, Fuminori; Inoue, Shigehiro; Fujioka, Mikihiro; Ueshima, Keiichiro; Hirasawa, Yasusuke; Ushijima, Yo; Nishimura, Tsunehiko

    2001-01-01

    To deepen understanding of hemodynamics in the femoral head, i.e., the essential factor in clarifying pathogenesis of hip disorders, this study examined blood flow and blood volume in the femoral heads of healthy adults, and their changes with age, by using positron emission tomography (PET). In 16 healthy adult males (age: 20-78 years old, mean age: 42 years), blood flow was measured by means of the H 2 15 O dynamic study method, and blood volume was measured by means of the 15 O-labeled carbon monoxide bolus inhalation method. Blood flow was 1.68-6.47 ml/min/100 g (mean ±SD: 3.52±1.2), and blood volume was 1.67-6.03 ml/100 g (mean ±SD: 3.00±1.27). Blood flow significantly decreased (p<0.01) with age, and blood volume significantly increased (P<0.05). PET was useful in the measurement of blood flow and blood volume in the femoral heads. With age, physiological hemodynamic changes also increased in femoral heads. (author)

  12. Positron annihilation study of the CoFe2O4 ferrofluid

    International Nuclear Information System (INIS)

    Zhao Baogang; Ma Zhongping; Liu Cunye; Li Jian; Lin Yueqiang

    2000-01-01

    The CoFe 2 O 4 ferro fluid was studied by positron annihilation technique. The experimental results showed that there were three kinds of life-time state τ 1 = 151.0 ps, τ 2 = 457.9 ps and τ 3 = 2325.6 ps in the positron annihilation spectrum. It indicated that there were a large number of vacancy and vacancy cluster in the surface layer of the CoFe 2 O 4 nanoparticles

  13. SiO 2/SiC interface proved by positron annihilation

    Science.gov (United States)

    Maekawa, M.; Kawasuso, A.; Yoshikawa, M.; Itoh, H.

    2003-06-01

    We have studied positron annihilation in a Silicon carbide (SiC)-metal/oxide/semiconductor (MOS) structure using a monoenergetic positron beam. The Doppler broadening of annihilation quanta were measured as functions of the incident positron energy and the gate bias. Applying negative gate bias, significant increases in S-parameters were observed. This indicates the migration of implanted positrons towards SiO 2/SiC interface and annihilation at open-volume type defects. The behavior of S-parameters depending on the bias voltage was well correlated with the capacitance-voltage ( C- V) characteristics. We observed higher S-parameters and the interfacial trap density in MOS structures fabricated using the dry oxidation method as compared to those by pyrogenic oxidation method.

  14. SiO2/SiC interface proved by positron annihilation

    International Nuclear Information System (INIS)

    Maekawa, M.; Kawasuso, A.; Yoshikawa, M.; Itoh, H.

    2003-01-01

    We have studied positron annihilation in a Silicon carbide (SiC)-metal/oxide/semiconductor (MOS) structure using a monoenergetic positron beam. The Doppler broadening of annihilation quanta were measured as functions of the incident positron energy and the gate bias. Applying negative gate bias, significant increases in S-parameters were observed. This indicates the migration of implanted positrons towards SiO 2 /SiC interface and annihilation at open-volume type defects. The behavior of S-parameters depending on the bias voltage was well correlated with the capacitance-voltage (C-V) characteristics. We observed higher S-parameters and the interfacial trap density in MOS structures fabricated using the dry oxidation method as compared to those by pyrogenic oxidation method

  15. The norepinephrine transporter in attention-deficit/hyperactivity disorder investigated with positron emission tomography.

    Science.gov (United States)

    Vanicek, Thomas; Spies, Marie; Rami-Mark, Christina; Savli, Markus; Höflich, Anna; Kranz, Georg S; Hahn, Andreas; Kutzelnigg, Alexandra; Traub-Weidinger, Tatjana; Mitterhauser, Markus; Wadsak, Wolfgang; Hacker, Marcus; Volkow, Nora D; Kasper, Siegfried; Lanzenberger, Rupert

    2014-12-01

    Attention-deficit/hyperactivity disorder (ADHD) research has long focused on the dopaminergic system's contribution to pathogenesis, although the results have been inconclusive. However, a case has been made for the involvement of the noradrenergic system, which modulates cognitive processes, such as arousal, working memory, and response inhibition, all of which are typically affected in ADHD. Furthermore, the norepinephrine transporter (NET) is an important target for frequently prescribed medication in ADHD. Therefore, the NET is suggested to play a critical role in ADHD. To explore the differences in NET nondisplaceable binding potential (NET BPND) using positron emission tomography and the highly selective radioligand (S,S)-[18F]FMeNER-D2 [(S,S)-2-(α-(2-[18F]fluoro[2H2]methoxyphenoxy)benzyl)morpholine] between adults with ADHD and healthy volunteers serving as controls. Twenty-two medication-free patients with ADHD (mean [SD] age, 30.7 [10.4] years; 15 [68%] men) without psychiatric comorbidities and 22 age- and sex-matched healthy controls (30.9 [10.6] years; 15 [68%] men) underwent positron emission tomography once. A linear mixed model was used to compare NET BPND between groups. The NET BPND in selected regions of interest relevant for ADHD, including the hippocampus, putamen, pallidum, thalamus, midbrain with pons (comprising a region of interest that includes the locus coeruleus), and cerebellum. In addition, the NET BPND was evaluated in thalamic subnuclei (13 atlas-based regions of interest). We found no significant differences in NET availability or regional distribution between patients with ADHD and healthy controls in all investigated brain regions (F1,41sex nor smoking status influenced NET availability. We determined a significant negative correlation between age and NET availability in the thalamus (R2=0.29; P<.01 corrected) and midbrain with pons, including the locus coeruleus (R2=0.18; P<.01 corrected), which corroborates prior findings of a

  16. Process dependence of H passivation and doping in H-implanted ZnO

    International Nuclear Information System (INIS)

    Zhang, Z; Brillson, L J; Look, D C; Schifano, R; Johansen, K M; Svensson, B G

    2013-01-01

    We used depth-resolved cathodoluminescence spectroscopy (DRCLS), photoluminescence (PL) spectroscopy and temperature-dependent Hall-effect (TDHE) measurements to describe the strong dependence of H passivation and doping in H-implanted ZnO on thermal treatment. Increasing H implantation dose increases passivation of Zn and oxygen vacancy-related defects, while reducing deep level emissions. Over annealing temperatures of 100-400 °C at different times, 1 h annealing at 200 °C yielded the lowest DRCLS deep level emissions, highest TDHE carrier mobility, and highest near band-edge PL emission. These results describe the systematics of dopant implantation and thermal activation on H incorporation in ZnO and their effects on its electrical properties.

  17. High energy positron imaging

    International Nuclear Information System (INIS)

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  18. Scintillators for positron emission tomography

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ''ultimate'' scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length (≤ 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times ≤ 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so ≤5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ''fully-3D'' cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm

  19. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H{sub 2}O Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    France, Kevin [Laboratory for Atmospheric and Space Physics, University of Colorado, 600 UCB, Boulder, CO 80309 (United States); Roueff, Evelyne; Abgrall, Hervé, E-mail: kevin.france@colorado.edu [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-92190, Meudon (France)

    2017-08-01

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we have assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope -Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100–1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST -COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490–1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L (Bump) ≈ 7 × 10{sup 29} erg s{sup −1}. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ {sub o} = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H{sub 2} excited by electron -impact. We show that this Bump makes up between 5%–50% of the total FUV continuum emission in the 1490–1690 Å band and emits roughly 10%–80% of the total fluorescent H{sub 2} luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Ly α photons. We argue that the most likely mechanism

  20. Instrumentation optimization for positron emission mammography

    International Nuclear Information System (INIS)

    Moses, William W.; Qi, Jinyi

    2003-01-01

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography or PEM cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detector modules to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, the ability to measure DOI is more important than the ability to encircle the breast

  1. Study of SiO2-Si and metal-oxide-semiconductor structures using positrons

    Science.gov (United States)

    Leung, T. C.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.

    1993-01-01

    Studies of SiO2-Si and metal-oxide-semiconductor (MOS) structures using positrons are summarized and a concise picture of the present understanding of positrons in these systems is provided. Positron annihilation line-shape S data are presented as a function of the positron incident energy, gate voltage, and annealing, and are described with a diffusion-annihilation equation for positrons. The data are compared with electrical measurements. Distinct annihilation characteristics were observed at the SiO2-Si interface and have been studied as a function of bias voltage and annealing conditions. The shift of the centroid (peak) of γ-ray energy distributions in the depletion region of the MOS structures was studied as a function of positron energy and gate voltage, and the shifts are explained by the corresponding variations in the strength of the electric field and thickness of the depletion layer. The potential role of the positron annihilation technique as a noncontact, nondestructive, and depth-sensitive characterization tool for the technologically important, deeply buried interface is shown.

  2. Study of SiO2-Si and metal-oxide-semiconductor structures using positrons

    International Nuclear Information System (INIS)

    Leung, T.C.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K.G.

    1993-01-01

    Studies of SiO 2 -Si and metal-oxide-semiconductor (MOS) structures using positrons are summarized and a concise picture of the present understanding of positrons in these systems is provided. Positron annihilation line-shape S data are presented as a function of the positron incident energy, gate voltage, and annealing, and are described with a diffusion-annihilation equation for positrons. The data are compared with electrical measurements. Distinct annihilation characteristics were observed at the SiO 2 -Si interface and have been studied as a function of bias voltage and annealing conditions. The shift of the centroid (peak) of γ-ray energy distributions in the depletion region of the MOS structures was studied as a function of positron energy and gate voltage, and the shifts are explained by the corresponding variations in the strength of the electric field and thickness of the depletion layer. The potential role of the positron annihilation technique as a noncontact, nondestructive, and depth-sensitive characterization tool for the technologically important, deeply buried interface is shown

  3. MRI and {sup 18}F-fluorodeoxyglucose positron emission tomography in hemimegalencephaly

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K.T.; Liebig, T.; Hosten, N. [Departments of Radiology and Nuclear Medicine, Virchow-Klinikum, Charite, Berlin (Germany); Amthauer, H.; Farahati, J.; Felix, R. [Departments of Radiology and Nuclear Medicine, Virchow-Klinikum, Charite, Berlin (Germany); PET-Centre Berlin, Virchow-Klinikum, Charite, Humboldt-University, Berlin (Germany); Etou, A.; Lehmann, T.N. [Department of Neurosurgery, Virchow-Klinikum, Charite, Humboldt-University, Berlin (Germany)

    2000-10-01

    We report hemimegalencephaly in a 44-year-old woman with mental retardation, epilepsy and a mild hemiparesis. In addition to typical findings on MRI, 2-deoxy-2[{sup 18}F]fluorodeoxyglucose positron-emission tomography (PET) demonstrated glucose hypometabolism of the affected hemisphere. The results of PET have been coregistered with morphological information from the MRI studies by image fusion. (orig.)

  4. Positron-emitting resin microspheres as surrogates of 90Y SIR-Spheres: a radiolabeling and stability study

    International Nuclear Information System (INIS)

    Avila-Rodriguez, Miguel A.; Selwyn, Reed G.; Hampel, Joseph A.; Thomadsen, Bruce R.; DeJesus, Onofre T.; Converse, Alexander K.; Nickles, Robert J.

    2007-01-01

    Commercially available resin microspheres and SIR-Spheres were labeled with metallic positron emitters and evaluated as positron emission tomography (PET) imaging surrogates of 90 Y SIR-Spheres. Radiolabeling was performed using a batch method, and in vitro stability over 24 h was evaluated in saline at physiological pH at 37 o C. The activity per microsphere distribution, as evaluated by autoradiography, showed the activity per microsphere to be proportional to the square radius of the spheres, suggesting surface binding. The in vivo stability of radiolabeling was evaluated in rats by micro-PET imaging after the intravenous injection of labeled microspheres. The different resin microspheres and radionuclides evaluated in this study all showed good radiolabeling efficiency and in vitro stability. However, only resins labeled with 86 Y and 89 Zr proved to have the in vivo stability required for clinical applications

  5. A feature point identification method for positron emission particle tracking with multiple tracers

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Cody, E-mail: cwiggin2@vols.utk.edu [University of Tennessee-Knoxville, Department of Physics and Astronomy, 1408 Circle Drive, Knoxville, TN 37996 (United States); Santos, Roque [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States); Escuela Politécnica Nacional, Departamento de Ciencias Nucleares (Ecuador); Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States)

    2017-01-21

    A novel detection algorithm for Positron Emission Particle Tracking (PEPT) with multiple tracers based on optical feature point identification (FPI) methods is presented. This new method, the FPI method, is compared to a previous multiple PEPT method via analyses of experimental and simulated data. The FPI method outperforms the older method in cases of large particle numbers and fine time resolution. Simulated data show the FPI method to be capable of identifying 100 particles at 0.5 mm average spatial error. Detection error is seen to vary with the inverse square root of the number of lines of response (LORs) used for detection and increases as particle separation decreases. - Highlights: • A new approach to positron emission particle tracking is presented. • Using optical feature point identification analogs, multiple particle tracking is achieved. • Method is compared to previous multiple particle method. • Accuracy and applicability of method is explored.

  6. Photon emission by electrons and positrons traversing thin single crystal

    International Nuclear Information System (INIS)

    Ol'chak, A.S.

    1984-01-01

    Radiation emission by planar channeled particles (electrons, positrons) in a thin single crystal of thickness L is considered. It is shown that for L approximately πb/THETAsub(L) (b is the lattice constant, THETA sub(L) the Lindhard angle) besides the main spontaneous channeling maxima there exist auxiliary interference maxima, the positions of all the maxima depending on L. The dependence of the radiation spectral intensity on crystal thickness is discussed

  7. Positron-emission tomography imaging of long-term shape recognition challenges

    OpenAIRE

    Rosier, A.; Cornette, L.; Dupont, P.; Bormans, G.; Michiels, J.; Mortelmans, L.; Orban, G. A.

    1997-01-01

    Long-term visual memory performance was impaired by two types of challenges: a diazepam challenge on acquisition and a sensory challenge on recognition. Using positron-emission tomography regional cerebral blood flow imaging, we studied the effect of these challenges on regional brain activation during the delayed recognition of abstract visual shapes as compared with a baseline fixation task. Both challenges induced a significant decrease in differential activation in the left fusiform gyrus...

  8. Quantification of the activity of tritium produced during the routine synthesis of (18)F fluorodeoxyglucose for positron emission tomography.

    Science.gov (United States)

    Marshall, C; Talboys, M A; Bukhari, S; Evans, W D

    2014-06-01

    Gamma emitting radioactive by-products generated during the cyclotron irradiation of (18)O labelled water by protons to produce (18)FDG (fluorodeoxyglucose) for positron emission tomography are well characterised. However, the production of tritium ((3)H) through the (18)O(p,t)(16)O nuclear reaction has not been investigated in detail. The aim of this study was to measure tritium activity produced during a large number of (18)FDG production runs in order to obtain a better perspective on its impact on radioactive waste management, particularly as regards storage and disposal. Tritium was assayed by liquid scintillation counting in recovered (18)O water from 24 separate production runs. The mean (SD) values of activity and activity concentration were 170 (20) kBq and 81 (8) kBq ml(-1) respectively. Both quantities were positively correlated with the activity of (18)F. Tritium was detected in much lower concentration in water used to rinse the target vessel. The activity of tritium is such that it is exempt from regulatory control and may be combined with bulk non-active waste for disposal as Very Low Level Waste. However, variations in the irradiation conditions or the procedures for the collection of recovered water might result in its classification as Low Level Waste, necessitating a more complex disposal regime.

  9. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sellaiyan, S.; Uedono, A. [University of Tsukuba, Division of Applied Physics, Tsukuba, Ibaraki (Japan); Sivaji, K.; Janet Priscilla, S. [University of Madras, Department of Nuclear Physics, Chennai (India); Sivasankari, J. [Anna University, Department of Physics, Chennai (India); Selvalakshmi, T. [National Institute of Technology, Nanomaterials Laboratory, Department of Physics, Tiruchirappalli (India)

    2016-10-15

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F{sub 2} {sup 2+} and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F{sub 2} {sup 2+} to F{sup +} and this F{sup +} is converted into F centers at 416 nm. (orig.)

  10. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    Science.gov (United States)

    Sellaiyan, S.; Uedono, A.; Sivaji, K.; Janet Priscilla, S.; Sivasankari, J.; Selvalakshmi, T.

    2016-10-01

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 °C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 °C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 °C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F2 2+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F2 2+ to F+ and this F+ is converted into F centers at 416 nm.

  11. Vacancy defects and defect clusters in alkali metal ion-doped MgO nanocrystallites studied by positron annihilation and photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Sellaiyan, S.; Uedono, A.; Sivaji, K.; Janet Priscilla, S.; Sivasankari, J.; Selvalakshmi, T.

    2016-01-01

    Pure and alkali metal ion (Li, Na, and K)-doped MgO nanocrystallites synthesized by solution combustion technique have been studied by positron lifetime and Doppler broadening spectroscopy methods. Positron lifetime analysis exhibits four characteristic lifetime components for all the samples. Doping reduces the Mg vacancy after annealing to 800 C. It was observed that Li ion migrates to the vacancy site to recover Mg vacancy-type defects, reducing cluster vacancies and micropores. For Na- and K-doped MgO, the aforementioned defects are reduced and immobile at 800 C. Coincidence Doppler broadening studies show the positron trapping sites as vacancy clusters. The decrease in the S parameter is due to the particle growth and reduction in the defect concentration at 800 C. Photoluminescence study shows an emission peak at 445 nm and 498 nm, associated with F_2 "2"+ and recombination of higher-order vacancy complexes. Further, annealing process is likely to dissociate F_2 "2"+ to F"+ and this F"+ is converted into F centers at 416 nm. (orig.)

  12. Time-of-flight positron emission tomography (T.O.F. P.E.T.)

    International Nuclear Information System (INIS)

    Allemand, R.

    1984-10-01

    A new important step has been made in the performances of the time-of-flight positron imaging for the two last years. It has been proved that a high spatial resolution can be obtained with the T.O.F. technique. It has also been shown that the overall sensitivity (taking into account the sensitivity gain and BaF2 detection characteristics) is quite close to the one of conventional methods. On the other hand, the basic advantages related to the high counting rate capability, the random coincidences rejection etc... of course remain. It is probably safe to assume that significant improvements can be expected if new technological efforts are invested. Unfortunately, P.E.T. is a complex and expensive tool which has been only used up to now in the research groups (about 50 centers in the world). The justification of new technical developments will be quite clear when this modality will be considered in the assessment of diseases and in clinical diagnostic applications

  13. Positron emission tomography of malignant tumours at head and neck. Evaluation of the diagnostic value of positron emission tomography by comparison with computed tomography; Positronenemissionstomographie bei malignen Tumoren im Kopf- und Halsbereich. Beurteilung der diagnostischen Wertigkeit der Positronenemissionstomographie im Vergleich zur Computertomographie

    Energy Technology Data Exchange (ETDEWEB)

    Kettler, Nele

    2011-12-02

    Imaging methods for early, accurate diagnosis and aftercare of malignant growths is currently one of the most important research topics. The objective of this thesis is to evaluate the diagnostic value of FDG-positron emission tomography by comparison with computed tomography for patients with squamous cell carcinoma, malignant melanoma or sarcoma at head and neck. Measurement criteria are sensitivity and specificity. A retrospective evaluation of 100 examinations on 85 patients of University clinic Aachen was performed. The examination reports were supported by reports from histology, positron emission tomography and computed tomography. In each case, the histological results were assumed to provide a reliable benchmark. Sensitivity and specificity for the primary tumour site, metastatic lymphatic nodes and defined anatomic structures were compared across all patients. Comparisons were also performed on sub groups separated by gender, cancer type and the time and frequency at which tumours arose. The statistic analysis was done with MedCalc. Results: The results for sensitivity and specificity of the primary tumour site were 86.42% and 42.86%, and 64.71% and 66.07%, for positron emission tomography and computed tomography respectively. The results for the lymphatic nodes were 51.52% and 92.86% and 64.71% and 66.07%. When the constituent anatomic structures were evaluated separately, the specificity was significantly higher. The separation by gender showed no difference. Because the classification by tumor type resulted in samples that were of varying size, a comparison was difficult. For the diagnosis of primary tumours, the examination with positron emission tomography was superior, whereas computed tomography proved more effective for the diagnosis of recurrent tumours. For the diagnosis of the main tumour site, both methods were shown to be equally suitable. For the assessment of lymphatic nodes, positron emission tomography was superior to computed tomography

  14. Recommendations for measurement of tumour vascularity with positron emission tomography in early phase clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Aboagye, Eric O.; Kenny, Laura M.; Myers, Melvyn [Imperial College London, Department of Surgery and Cancer, Faculty of Medicine, London (United Kingdom); Gilbert, Fiona J. [University of Cambridge, Radiology Department, Cambridge (United Kingdom); Fleming, Ian N. [University of Aberdeen, NCRI PET Research Network, Aberdeen Bioimaging Centre, Aberdeen (United Kingdom); Beer, Ambros J. [Technische Universitaet Munchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany); Cunningham, Vincent J. [University of Aberdeen, Institute of Medical Sciences, Aberdeen (United Kingdom); Marsden, Paul K. [St. Thomas' Hospital, Division of Imaging Sciences, PET Imaging Centre, London (United Kingdom); Visvikis, Dimitris [INSERM National Institute of Health and Clinical Sciences LaTIM, CHU Morvan, Brest (France); Gee, Antony D. [St. Thomas' Hospital, Division of Imaging Sciences, The Rayne Institute, London (United Kingdom); Groves, Ashley M. [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Cook, Gary J. [St. Thomas' Hospital, KCL Division of Imaging, Sciences and Biomedical Engineering, PET Imaging Centre, London (United Kingdom); Kinahan, Paul E. [University of Washington, 222 Old Fisheries Center (FIS), Box 357987, Seattle, WA (United States); Clarke, Larry [Cancer Imaging Program, Imaging Technology Development Branch, Rockville, MD (United States)

    2012-07-15

    The evaluation of drug pharmacodynamics and early tumour response are integral to current clinical trials of novel cancer therapeutics to explain or predict long term clinical benefit or to confirm dose selection. Tumour vascularity assessment by positron emission tomography could be viewed as a generic pharmacodynamic endpoint or tool for monitoring response to treatment. This review discusses methods for semi-quantitative and quantitative assessment of tumour vascularity. The radioligands and radiotracers range from direct physiological functional tracers like [{sup 15}O]-water to macromolecular probes targeting integrin receptors expressed on neovasculature. Finally we make recommendations on ways to incorporate such measurements of tumour vascularity into early clinical trials of novel therapeutics. (orig.)

  15. Native defects in ZnO films studied by slow positron beam

    International Nuclear Information System (INIS)

    Peng Chengxiao; Weng Huimin; Ye Bangjiao; Zhou Xianyi; Han Rongdian; Yang Xiaojie

    2005-01-01

    Native defects in ZnO films grown by radio frequency (RF) reactive magnetron sputtering under variable oxygen fraction conditions have been investigated by using monoenergetic positrons beam technique. The results show that the same type defects dominate in these ZnO samples grown at oxygen fraction less than 70% in the process chamber; and zinc vacancies are preponderant in the ZnO films fabricated in richer oxygen environment. The concentration of zinc vacancies increases with oxygen partial fraction rising. While oxygen fraction reaches 85%, zinc vacancies that could trap positrons decrease, which suggests that impurities could shield zinc vacancies. A combination between hydrogen atoms and the dangling bonds in the lattice could weaken the trap of positrons under the 50% oxygen fraction condition. The concentration of zinc vacancies varies in different oxygen fraction films, which is in agreement with the conclusion of photoluminescence spectroscopy. (authors)

  16. Probing the CuO planes with positrons in high Tc cuprates: theoretical predictions

    International Nuclear Information System (INIS)

    Barbiellini, B.; Jarlborg, T.; Massidda, S.; Peter, M.

    1995-01-01

    Positron annihilation spectroscopy is a useful tool to investigate the Fermi surface in high T c superconductors. To study the physics of the copper-oxygen subsystem that forms the Cu-O layers, it is important to provide theoretical predictions, on materials where there is a large overlap between the positron and the interesting Cu-O planes. We have performed first-principle electronic structure calculations obtained using the linear muffin-tin orbital and the full-potential linearized augmented plane wave methods. The positron charge distributions and their sensitivity to different potentials are calculated. Secondly, we have computed the annihilation rates and the electron-positron momentum density in order to give predictions of the Fermi surface signals. (orig.)

  17. Temperature dependence of positron annihilation parameters in Tl-Ba-Ca-Cu-O superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.; Ching, W.Y.; Jean, Y.C.; Hor, P.H.; Meng, R.L.; Huang, Z.J.; Chu, C.W.

    1990-01-01

    The results of positron lifetime and Doppler broadened line-shape parameter measurements as a function of temperature, across T c , in the Tl-Ba-Ca-Cu-O superconductors are presented. The bulk lifetime in the normal state is found to decrease with the increase in the number of CuO 2 layers. Different temperature dependencies of the annihilation parameters are observed in the various Tl systems containing different numbers of CuO 2 layers. In the Tl 2 Ba 2 Ca 2 Cu 3 O 10 system, an increase in lifetime is observed below T c , whereas in Tl 2 Ba 2 CaCu 2 O 8 , a decrease in lifetime is seen below T c . In the Tl 2 Ba 2 CuO 6 system, the lifetime is observed to be temperature independent. The different temperature variations of positron annihilation parameters are discussed in the light of the positron density distribution, obtained with use of the results of the self-consistent orthogonalized linear combination of atomic orbitals band-structure calculations. It is argued that the different temperature dependencies of the annihilation parameters is related to the positron density distribution within the unit cell and arise due to local charge transfer in the vicinity of the CuO 2 layer in the superconducting state

  18. Design and evaluation of a SiPM-based large-area detector module for positron emission imaging

    Science.gov (United States)

    Alva-Sánchez, H.; Murrieta-Rodríguez, T.; Calva-Coraza, E.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.

    2018-03-01

    The design and evaluation of a large-area detector module for positron emission imaging applications, is presented. The module features a SensL ArrayC-60035-64P-PCB solid state detector (8×8 array of tileable silicon photomultipliers by SensL, 7.2 mm pitch) covering a total area of 57.4×57.4 mm2. The detector module was formed using a pixelated array of 40×40 lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystal elements with 1.43 mm pitch. A 7 mm thick coupling light guide was used to allow light sharing between adjacent SiPM. A 16-channel symmetric charge division (SCD) readout board was designed to multiplex the number of signals from 64 to 16 (8 columns and 8 rows) and a center-of-gravity algorithm to identify the position. Data acquisition and digitization was accomplished using a custom-made system based on FPGAs boards. Crystal maps were obtained using 18F-positron sources and Voronoi diagrams were used to correct for geometric distortions and to generate a non-uniformity correction matrix. All measurements were taken at a controlled room temperature of 22oC. The crystal maps showed minor distortion, 90% of the 1600 total crystal elements could be identified, a mean peak-to-valley ratio of 4.3 was obtained and a 10.8% mean energy resolution for 511 keV annihilation photons was determined. The performance of the detector using our own readout board was compared to that using two different commercially readout boards using the same detector module arrangement. We show that these large-area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, excellent energy resolution and detector uniformity and thus, can be used for positron emission imaging applications.

  19. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors

    DEFF Research Database (Denmark)

    Binderup, Tina; Knigge, Ulrich; Loft, Annika

    2010-01-01

    PURPOSE: (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) is currently not used on a routine basis for imaging of neuroendocrine (NE) tumors. The aim of this study was to investigate the prognostic value of FDG-PET in patients with NE tumors. EXPERIMENTAL DESIGN: Ninety...

  20. Positron annihilation in thermally quenched YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Hong Zhang; Xiao-Gang Wang; Yao-Xian Fu

    1988-01-01

    Trapping effects related directly with the oxygen vacancy in YBa 2 Cu 3 O 7-x are studied by the aid of positron lifetime and positron annihilation Doppler energy spectra of a thermally quenched sample. Results indicate that the trapping center is linearly related with the oxygen vacancy. Vacancies are ordered in the orthorhombic phase and disordered in the tetragonal phase on the Cu-O plane

  1. Preparation of radiopharmaceuticals labelled with bromine positron emitting isotopes for the study of dopaminergic receptors of the central nervous system using positron emission tomography

    International Nuclear Information System (INIS)

    Loc'h, C.

    1988-04-01

    The in vivo study of dopaminergic receptors of the central nervous system using positron emission tomography requires the preparation of radiopharmaceuticals labelled with β + emitting isotopes. The chemical and pharmacological properties of these ligands are evaluated. Cyclotron produced 75 and 76 bromine β + emitting isotopes are incorporated into dopaminergic ligands by electrophilic substitution using peracetic acid in a no-carrier added form. Purity, lipophilicity and specific activity are analyzed. Pharmacological criteria (specificity, saturability, displacement, localization) required for ligand-receptor binding studies are evaluated in vitro on striatal membranes and in vivo in the rat. Positron emission tomographic studies show that the study of dopaminergic D2 receptors is possible using 75 and 76 bromine labelled bromospiperone and bromolisuride. These ligands are used in physiological and pharmacological studies of the central nervous system [fr

  2. Temperature dependence of positron lifetime in the two-mixed-phase Bi-Sr-Ca-Cu-O superconductor

    International Nuclear Information System (INIS)

    Zhang, D.M.; Tang, C.Q.; Gen, T.; Li, G.Y.

    1993-01-01

    As compared with the YBaCuO(123) system, the studies of positron annihilation performed for other cuprate superconductors, specifically for the BiSrCaCuO and TlBaCa.CuO systems, are very few. Thus further study of positron annihilation in BiSrCaCuO and TlBaCaCuO systems is necessary. In this note, we report the results of the temperature dependence of positron lifetime parameters in the two-mixed-phase system BiSrCaCuO and discuss the results. (orig.)

  3. Positron astronomy with SPI/INTEGRAL

    International Nuclear Information System (INIS)

    Weidenspointner, G.; Diehl, R.; Strong, A.; Weidenspointner, G.; Skinner, G.K.; Skinner, G.K.; Jean, P.; Knoedlseder, J.; Von Ballmoos, P.; Cordier, B.; Schanne, S.; Winkler, C.

    2008-01-01

    We provide an overview of positron astronomy results that have been obtained using the INTEGRAL spectrometer SPI, and discuss their implications for the still mysterious origin of positrons in our Galaxy. It has long been known that the 511 keV positron annihilation emission is strongest from the central region of our Galaxy. Recently, it has been discovered with the SPI spectrometer that the weaker 511 keV line emission from the inner Galactic disk appears to be asymmetric, with the emission to the west of the Galactic center being about twice as strong than that to the east. This distribution of positron annihilation resembles that of low mass X-ray binaries as observed with the INTEGRAL imager IBIS at hard X-ray energies, suggesting that these systems could provide a significant portion of the positrons in our Galaxy. In addition, the spectrometer SPI has permitted unprecedented spectroscopy of annihilation radiation from the bulge and disk regions of the Galaxy, which commences to yield important insights into the conditions of the medium in which the positrons annihilate. (authors)

  4. Comparing staging by positron emission tomography with contrast-enhanced computed tomography and by pathology in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Qualliotine, J R; Mydlarz, W K; Chan, J Y K; Zhou, X; Wang, H; Agrawal, N

    2015-12-01

    This study aimed to evaluate the ability of positron emission tomography with contrast-enhanced computed tomography to correctly stage head and neck squamous cell carcinomas, in comparison with pathological staging. Positron emission tomography computed tomography was used to determine the tumour-node-metastasis classification and overall cancer stage in 85 head and neck squamous cell carcinoma patients who underwent pre-operative imaging using this modality and primary surgery between July 2010 and January 2013. Staging by positron emission tomography computed tomography was retrospectively compared with staging using pathological specimens. Agreement between imaging stage and pathological stage was examined by univariate and multivariate analysis both overall and for each primary tumour site. This imaging modality was 87.5 per cent sensitive and 44.8 per cent specific in identifying regional cervical metastases, and had false positive and false negative rates of 18.8 per cent and 8.2 per cent, respectively. The positive predictive and negative predictive values were 75.4 per cent and 65.0 per cent, respectively. Univariate and multivariate analyses revealed a significant agreement between positron emission tomography computed tomography and pathological node classification in older patients and for the oral cavity primary tumour site. There was significant agreement between both methods in the overall classification only for tumours classified as T3 or greater. Positron emission tomography computed tomography should be used with caution for the pre-operative staging of head and neck cancers because of its high false positive and false negative rates.

  5. Time-of-Flight Positron Emission Tomography with Radiofrequency Phototube

    International Nuclear Information System (INIS)

    Margaryan, A.; Kakoyan, V.; Knyazyan, S.

    2011-01-01

    In this paper γ-detector, based on the radiofrequency (RF) phototube and recently developed fast and ultrafast scintillators, is considered for Time-of-Flight positron emission tomography applications. Timing characteristics of such a device has been investigated by means of a dedicated Monte Carlo code based on the single photon counting concept. Biexponential timing model for scintillators have been used. The calculations have shown that such a timing model is in a good agreement with recently measured data. The timing resolution of -detectors can be significantly improved by using the RF phototube. (authors)

  6. Low-resource synchronous coincidence processor for positron emission tomography

    International Nuclear Information System (INIS)

    Sportelli, Giancarlo; Belcari, Nicola; Guerra, Pedro; Santos, Andres

    2011-01-01

    We developed a new FPGA-based method for coincidence detection in positron emission tomography. The method requires low device resources and no specific peripherals in order to resolve coincident digital pulses within a time window of a few nanoseconds. This method has been validated with a low-end Xilinx Spartan-3E and provided coincidence resolutions lower than 6 ns. This resolution depends directly on the signal propagation properties of the target device and the maximum available clock frequency, therefore it is expected to improve considerably on higher-end FPGAs.

  7. Functional imaging of the brain with positron emission tomography

    International Nuclear Information System (INIS)

    Alavi, A.; Reivich, M.; Jones, S.C.; Greenberg, J.H.; Wolf, A.P.

    1982-01-01

    An extensive review, with 191 references, of the development and diagnostic use of positron emission tomography (PET) of the brain is presented. An historical overview of functional studies of the brain reviews the use of nitrons oxide, 85 Kr and 133 Xe, [ 14 C]2-deoxyglucose, and [ 18 F]FDG. The [ 18 F]FDG technique allows the investigation of the effects of physiologic stimulation on the brain. Several studies using this technique are reported. The effects of stroke, seizure disorders, aging and dementia, and schizophrenia on cerebral metabolism as demosntrated by PET are explored

  8. A multicrystal two dimensional BGO detector system for positron emission tomography

    International Nuclear Information System (INIS)

    Casey, M.E.; Nutt, R.

    1986-01-01

    This paper presents a discussion of a new multicrystal detector system as it is implemented in Positron Emission Tomography. The system consists of a 32 x 8 matrix of BGO crystals, a tuned light pipe, and four photomultipliers. The electronics that decodes the position consists of fast preamps, gated integrators, and level comparators. This detector represents a major development toward reducing the cost of PET

  9. Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer: A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Grueneisen, Johannes; Nagarajah, James; Buchbender, Christian; Hoffmann, Oliver; Schaarschmidt, Benedikt Michael; Poeppel, Thorsten; Forsting, Michael; Quick, Harald H; Umutlu, Lale; Kinner, Sonja

    2015-08-01

    This study aimed to assess the diagnostic performance of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) of the breast for lesion detection and local tumor staging of patients with primary breast cancer in comparison to PET/computed tomography (CT) and MRI. The study was approved by the local institutional review board. Forty-nine patients with biopsy-proven invasive breast cancer were prospectively enrolled in our study. All patients underwent a PET/CT, and subsequently, a contrast-enhanced PET/MRI of the breast after written informed consent was obtained before each examination. Two radiologists independently evaluated the corresponding data sets (PET/CT, PET/MRI, and MRI) and were instructed to identify primary tumors lesions as well as multifocal/multicentric and bilateral disease. Furthermore, the occurrence of lymph node metastases was assessed, and the T-stage for each patient was determined. Histopathological verification of the local tumor extent and the axillary lymph node status was available for 30 of 49 and 48 of 49 patients, respectively. For the remaining patients, a consensus characterization was performed for the determination of the T-stage and nodal status, taking into account the results of clinical staging, PET/CT, and PET/MRI examinations. Statistical analysis was performed to test for differences in diagnostic performance between the different imaging procedures. P values less than 0.05 were considered to be statistically significant. Positron emission tomography/MRI and MRI correctly identified 47 (96%) of the 49 patients with primary breast cancer, whereas PET/CT enabled detection of 46 (94%) of 49 breast cancer patients and missed a synchronous carcinoma in the contralateral breast in 1 patient. In a lesion-by-lesion analysis, no significant differences could be obtained between the 3 imaging procedures for the identification of primary breast cancer lesions (P > 0.05). Positron emission tomography/MRI and

  10. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  11. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    International Nuclear Information System (INIS)

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-01-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions

  12. Performance evaluation of BGO block detectors used in positron emission tomography and a coincidence system

    International Nuclear Information System (INIS)

    Kim, J. H.; Choi, Y.; Lim, K. C.; Lee, M. Y.; Woo, S. K.; Lee, K. H.; Kim, S. E.; Choi, Y. S.; Kim, B. T.

    1999-01-01

    We investigated the basic performances of the BGO block detectors, which is used in the GE Advance positron emission tomography. The block detector is composed of 36 small BGO crystals coupled to two 2-channel photomultiplier tubes. In this study, we measured the crystal map and the intrinsic energy resolution of the detector. The coincidence signals between the detectors were also obtained using F-18. The intrinsic energy resolution of the block detector was 69% FWHM at 140 keV and 33% FWHM at 511 keV. High quality crystal map and the coincidence signals between the detectors were successfully obtained. The timing resolution of the detectors are being measured. The results of this study demonstrate the feasibility of developing high performance positron emission tomography

  13. Studies of positron induced luminescence from polymers

    International Nuclear Information System (INIS)

    Xu, J.; Hulett, L.D. Jr.; Lewis, T.A.; Tolk, N.H.

    1994-01-01

    Light emission from polymers (anthracene dissolved in polystryrene) induced by low-energy positrons and electrons has been studied. Results indicate a clear difference between optical emissions under positron and electron bombardment. The positron-induced luminescence spectrum is believed to be generated by both collisional and annihilation processes

  14. A study on 2% PdO/Al2O3 by means of free positron annihilation technique in the solid surface layer

    International Nuclear Information System (INIS)

    Shi Zikang; Huang Cunping

    1992-01-01

    The relationship between heat treatment and space structure of the PdO layer in 2% PdO/Al 2 O 3 was studied by the positrons from 2 2N a radiative source, and grain size was calculated by the positron annihilation parameters, demonstrating that the free positron annihilation technique for the solid surface layer can be applied can be applied to catalyst research

  15. Contribution of positron emission tomography in pleural disease.

    Science.gov (United States)

    Duysinx, B; Corhay, J-L; Larock, M-P; Withofs, N; Bury, T; Hustinx, R; Louis, R

    2010-10-01

    Positron emission tomography (PET) now plays a clear role in oncology, especially in chest tumours. We discuss the value of metabolic imaging in characterising pleural pathology in the light of our own experience and review the literature. PET is particularly useful in characterising malignant pleural pathologies and is a factor of prognosis in mesothelioma. Metabolic imaging also provides clinical information for staging lung cancer, in researching the primary tumour in metastatic pleurisy and in monitoring chronic or recurrent pleural pathologies. PET should therefore be considered as a useful tool in the diagnosis of liquid or solid pleural pathologies. Copyright © 2010 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  16. Kinetic modeling in pre-clinical positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.

    2014-07-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  17. Combined use of positron emission tomography and volume doubling time in lung cancer screening with low-dose CT scanning

    DEFF Research Database (Denmark)

    Ashraf, H; Dirksen, A; Jakobsen, Annika Loft

    2011-01-01

    In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules.......In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules....

  18. Development of {sup 68}Ga-labeled mannosylated human serum albumin (MSA) as a lymph node imaging agent for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Yeon [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Jeong, Jae Min, E-mail: jmjng@snu.ac.k [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Yoo, Byong Chul [Research Institute, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Kim, Kyunggon; Kim, Youngsoo [Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Yang, Bo Yeun; Lee, Yun-Sang; Lee, Dong Soo [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Chung, June-Key [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University College of Medicine, Seoul (Korea, Republic of); Department of Radiation Applied Life Sciences, Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Myung Chul [Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2011-04-15

    Introduction: Although many sentinel lymph node (SLN) imaging agents labeled with {sup 99m}Tc have been developed, no positron-emitting agent has been specifically designed for SLN imaging. Furthermore, the development of the beta probe and the requirement for better image resolution have increased the need for a positron-emitting SLN imaging agent. Here, we describe the development of a novel positron-emitting SLN imaging agent labeled with {sup 68}Ga. Methods: A mannosylated human serum albumin (MSA) was synthesized by conjugating {alpha}-D-mannopyranosylphenyl isothiocyanate to human serum albumin in sodium carbonate buffer (pH 9.5), and then 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid was conjugated to synthesize NOTA-MSA. Numbers of mannose and NOTA units conjugated in NOTA-MSA were determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. NOTA-MSA was labeled with {sup 68}Ga at room temperature. The stability of {sup 68}Ga-NOTA-MSA was checked in labeling medium at room temperature and in human serum at 37{sup o}C. Biodistribution in normal ICR mice was investigated after tail vein injection, and micro-positron emission tomography (PET) images were obtained after injecting {sup 68}Ga-NOTA-MSA into a tail vein or a footpad. Results: The numbers of conjugated {alpha}-D-mannopyranosylphenyl isothiocyanate and 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid units in NOTA-MSA were 10.6 and 6.6, respectively. The labeling efficiency of {sup 68}Ga-NOTA-MSA was greater than 99% at room temperature, and its stability was greater than 99% at 4 h. Biodistribution and micro-PET studies of {sup 68}Ga-NOTA-MSA showed high liver and spleen uptakes after intravenous injection. {sup 68}Ga-NOTA-MSA injected into a footpad rapidly migrated to the lymph node. Conclusions: {sup 68}Ga-NOTA-MSA was successfully developed as a novel SLN imaging agent for PET. NOTA-MSA is easily labeled at high

  19. Positron emission tomography of the heart

    International Nuclear Information System (INIS)

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease

  20. Positron emission tomography of the heart

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  1. A positron emission tomography study of wind-up pain in chronic postherniotomy pain

    DEFF Research Database (Denmark)

    Kupers, Ron; Lonsdale, Markus Georg; Aasvang, Eske Kvanner

    2011-01-01

    -induced wind-up pain in neuropathic pain patients. We therefore used positron emission tomography (PET) to investigate the cerebral response pattern of mechanical wind-up pain in a homogenous group of 10 neuropathic pain patients with long-standing postherniotomy pain in the groin area. Patients were scanned...

  2. Combined computed tomography and fluorodeoxyglucose positron emission tomography in the diagnosis of prosthetic valve endocarditis: a case series.

    Science.gov (United States)

    Bartoletti, Michele; Tumietto, Fabio; Fasulo, Giovanni; Giannella, Maddalena; Cristini, Francesco; Bonfiglioli, Rachele; Raumer, Luigi; Nanni, Cristina; Sanfilippo, Silvia; Di Eusanio, Marco; Scotton, Pier Giorgio; Graziosi, Maddalena; Rapezzi, Claudio; Fanti, Stefano; Viale, Pierluigi

    2014-01-13

    The diagnosis of prosthetic valve endocarditis is challenging. The gold standard for prosthetic valve endocarditis diagnosis is trans-esophageal echocardiography. However, trans-esophageal echocardiography may result in negative findings or yield images difficult to differentiate from thrombus in patients with prosthetic valve endocarditis. Combined computed tomography and fluorodeoxyglucose positron emission tomography is a potentially promising diagnostic tool for several infectious conditions and it has also been employed in patients with prosthetic valve endocarditis but data are still scant. We reviewed the charts of 6 patients with prosthetic aortic valves evaluated for suspicion of prosthetic valve endocarditis, at two different hospital, over a 3-year period. We found 3 patients with early-onset PVE cases and blood cultures yielding Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus lugdunensis, respectively; and 3 late-onset cases in the remaining 3 patients with isolation in the blood of Streptococcus bovis, Candida albicans and P. aeruginosa, respectively. Initial trans-esophageal echocardiography was negative in all the patients, while fluorodeoxyglucose positron emission tomography showed images suspicious for prosthetic valve endocarditis. In 4 out of 6 patients valve replacement was done with histology confirming the prosthetic valve endocarditis diagnosis. After an adequate course of antibiotic therapy fluorodeoxyglucose positron emission tomography showed resolution of prosthetic valve endocarditis in all the patients. Our experience confirms the potential role of fluoroseoxyglucose positron emission tomography in the diagnosis and follow-up of prosthetic valve endocarditis.

  3. Comparison of the neural substrates mediating the semantic processing of Korean and English words using positron emission tomography

    International Nuclear Information System (INIS)

    Kim, Jea Jin; Kim, Myung Sun; Cho, Sang Soo; Kwon, Jun Soo; Lee, Jae Sung; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul

    2001-01-01

    This study was performed to search the relatively specific brain regions related to the semantic processing of Korean and English words on the one hand and the regions common to both on the other. Regional cerebral blood flow associated with different semantic tasks was examined using ( 15 O)H 2 O positron emission tomography in 13 healthy volunteers. The tasks consisted of semantic tasks for Korean words, semantic tasks for English words and control tasks using simple pictures. The regions specific and common to each language were identified by the relevant subtraction analysis using statistical parametric mapping. Common to the semantic processing of both words, the activation site was observed in the fusiform gyrus, particularly the left side. In addition, activation of the left inferior temporal gyrus was found only in the semantic processing of English words. The regions specific to Korean words were observed in multiple areas, including the right primary auditory cortex; whereas the regions specific to English words were limited to the right posterior visual area. Internal phonological process is engaged in performing the visual semantic task for Korean words of the high proficiency, whereas visual scanning plays an important role in performing the task for English words of the low proficiency

  4. Derisking the Cu-Mediated 18F-Fluorination of Heterocyclic Positron Emission Tomography Radioligands.

    Science.gov (United States)

    Taylor, Nicholas J; Emer, Enrico; Preshlock, Sean; Schedler, Michael; Tredwell, Matthew; Verhoog, Stefan; Mercier, Joel; Genicot, Christophe; Gouverneur, Véronique

    2017-06-21

    Molecules labeled with fluorine-18 ( 18 F) are used in positron emission tomography to visualize, characterize and measure biological processes in the body. Despite recent advances in the incorporation of 18 F onto arenes, the development of general and efficient approaches to label radioligands necessary for drug discovery programs remains a significant task. This full account describes a derisking approach toward the radiosynthesis of heterocyclic positron emission tomography (PET) radioligands using the copper-mediated 18 F-fluorination of aryl boron reagents with 18 F-fluoride as a model reaction. This approach is based on a study examining how the presence of heterocycles commonly used in drug development affects the efficiency of 18 F-fluorination for a representative aryl boron reagent, and on the labeling of more than 50 (hetero)aryl boronic esters. This set of data allows for the application of this derisking strategy to the successful radiosynthesis of seven structurally complex pharmaceutically relevant heterocycle-containing molecules.

  5. Small animal positron emission tomography imaging and in vivo studies of atherosclerosis

    DEFF Research Database (Denmark)

    Hag, Anne Mette Fisker; Ripa, Rasmus Sejersten; Pedersen, Sune Folke

    2013-01-01

    Atherosclerosis is a growing health challenge globally, and despite our knowledge of the disease has increased over the last couple of decades, many unanswered questions remain. As molecular imaging can be used to visualize, characterize and measure biological processes at the molecular and cellu...... knowledge obtained from in vivo positron emission tomography studies of atherosclerosis performed in small animals....

  6. Li-doped MgO as catalysts for oxidative coupling of methane: A positron annihilation study

    Science.gov (United States)

    Dai, G. H.; Yan, Q. J.; Wang, Y.; Liu, Q. S.

    1991-08-01

    Magnesium oxides intentionally doped with lithium (with a maximum Li content of 40 tool%) for use as catalysts for oxidative coupling of methane were characterized by means of positron annihilation. The positron lifetime spectra, which could be reasonably well interpreted within the framework of the well-known trapping model, depend on the amount of Li doping of the MgO suggesting that positrons are trapped at dispersed small Li 2CO 3 precipitates. Very similar dependencies on lithium doping of the C 2 selectivity and the positron trapping rate ϰ imply an intimate relationship between the concentration of [Li] 0-centers (also referred to as [Li +O -] centers) and the selective activity of Li/MgO during catalytic reactions.

  7. Experiments and FLUKA simulations of $^{12}C$ and $^{16}O$ beams for therapy monitoring by means of in-beam Positron Emission Tomography

    CERN Document Server

    Sommerer,; Ferrari, A

    2007-01-01

    Since 1997 at the experimental C-12 ion therapy facility at Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, Germany, more than 350 patients have been treated. The therapy is monitored with a dedicated positron emission tomograph, fully integrated into the treatment site. The measured beta+-activity arises from inelastic nuclear interactions between the beam particles an the nuclei of the patients tissue. Because the monitoring is done during the irradiation the method is called in-beam PET. The underlying principle of this monitoring is a comparison between the measured activity and a simulated one. The simulations are presently done by the PETSIM code which is dedicated to C-12 beams. In future ion therapy centers like the Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg, Germany, besides C-12 also proton, $^3$He and O-16 beams will be used for treatment and the therapy will be monitored by means of in-beam PET. Because PETSIM is not extendable to other ions in an easy way, a code capable ...

  8. Activity-based costing evaluation of a [F-18]-fludeoxyglucose positron emission tomography study

    NARCIS (Netherlands)

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Vander Borght, Thierry

    2009-01-01

    Objective: The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes.

  9. Fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography in evaluation of residual intramuscular myxoma

    International Nuclear Information System (INIS)

    Zade, Anand; Ahire, Archana; Shetty, Shishir; Rai, Sujith; Bokka, Rajashekharrao; Velumani, Arokiaswamy; Kabnurkar, Rasika

    2015-01-01

    Intramuscular myxoma (IM) is a rare benign neoplasm. In a patient diagnosed with IM of left thigh, we report the utility of a postoperative fluorine-18 fluorodeoxyglucose positron emission tomography-computed tomography scan in assessing the efficacy of surgical excision

  10. Positron emission tomography in the newborn: extensive impairment of regional cerebral blood flow with intraventricular hemorrhage and hemorrhagic intracerebral involvement

    International Nuclear Information System (INIS)

    Volpe, J.J.; Herscovitch, P.; Perlman, J.M.; Raichle, M.E.

    1983-01-01

    Positron emission tomography (PET) now provides the capability of measuring regional cerebral blood flow with high resolution and little risk. In this study, we utilized PET in six premature infants (920 to 1,200 g) with major intraventricular hemorrhage and hemorrhagic intracerebral involvement to measure regional cerebral blood flow during the acute period (5 to 17 days of age). Cerebral blood flow was determined after intravenous injection of H 2 O, labeled with the positron-emitting isotope, 15 O. Findings were similar and dramatic in all six infants. In the area of hemorrhagic intracerebral involvement, little or no cerebral blood flow was detected. However, in addition, surprisingly, a marked two- to fourfold reduction in cerebral blood flow was observed throughout the affected hemisphere, well posterior and lateral to the intracerebral hematoma, including cerebral white matter and, to a lesser extent, frontal, temporal, and parietal cortex. In the one infant studied a second time, ie, at 3 months of age, the extent and severity of the decreased cerebral blood flows in the affected hemisphere were similar to those observed on the study during the neonatal period. At the three autopsies, the affected left hemisphere showed extensive infarction, corroborating the PET scans. These observations, the first demonstration of the use of PET in the determination of regional cerebral blood flow in the newborn, show marked impairments in regional cerebral blood flow in the hemisphere containing an apparently restricted intracerebral hematoma, indicating that the hemorrhagic intracerebral involvement is only a component of a much larger lesion, ischemic in basic nature, ie, an infarction. This large ischemic lesion explains the poor neurologic outcome in infants with intraventricular hemorrhage and hemorrhagic intracerebral involvement

  11. Slow positron beam study of hydrogen ion implanted ZnO thin films

    International Nuclear Information System (INIS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-01-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×10 15 and 1×10 16 ions cm −2 . Zn vacancy and OH bonding (V Zn +OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process. - Highlights: • Hydrogen introduced by ion implantation can form hydrogen-related defect complex. • V Zn +OH defect complex is identified by positron annihilation and IR spectroscopy. • Irradiation defects suppress the luminescence process

  12. Origin and annihilation physics of positrons in the Galaxy

    International Nuclear Information System (INIS)

    Alexis, Anthony

    2014-01-01

    A gamma radiation at 511 keV is observed since the early 1970's toward the Galactic bulge region. This emission is the signature of a large number of electron-positron annihilations, the positron being the electron's antiparticle. Unfortunately, the origin of the positrons responsible for this emission is still a mystery. Many positron-source candidates have been suggested but none of them can account for the galactic annihilation emission. The spatial distribution of this emission is indeed very atypical. Since 2002, the SPI spectrometer onboard the INTEGRAL space laboratory revealed an emission strongly concentrated toward the galactic bulge and a weaker emission from the galactic disk. This morphology is unusual because it does not correspond to any of the known galactic astrophysical-object or interstellar-matter distributions. The assumption that positrons annihilate close to their sources (i.e. the spatial distribution of the annihilation emission reflects the spatial distribution of the sources) has consequently been called into question. Recent studies suggest that positrons could propagate far away from their sources before annihilating. This physical aspect could be the key point to solve the riddle of the galactic positron origin. This thesis is devoted to the modelling of the propagation and annihilation of positrons in the Galaxy, in order to compare simulated spatial models of the annihilation emission with recent measurements provided by SPI/INTEGRAL. This method allows to put constraints on the origin of galactic positrons. We therefore developed a propagation Monte-Carlo code of positrons within the Galaxy in which we implemented all the theoretical and observational knowledge about positron physics (sources, transport modes, energy losses, annihilation modes) and the interstellar medium of our Galaxy (interstellar gas distributions, galactic magnetic fields, structures of the gaseous phases). Due to uncertainties in several physical parameters

  13. The study of the hemodynamics in femoral heads by positron emission tomography

    International Nuclear Information System (INIS)

    Iwanami, Hisako

    1998-01-01

    Evaluation of the hemodynamics in bone tissue is important for clarifying the pathogenesis and pathology of necrotic disease. However, there is no established method of non-invasive quantitative measurement of the blood flow in bone tissue. In addition, the blood volume representing the vascular bed volume is difficult to measure and remains unclear. To evaluate the applicability of positron emission tomography (PET) to the measurement of the blood flow and blood volume in bone tissue, we measured the blood flow and blood volume in the femoral head and evaluated age-associated hemodynamic changes in healthy adult males. The subjects were 16 healthy adult males (31 hip joints) and 1 male (2 hip joints) with trauma who underwent unilateral prosthetic replacement of the femoral head. Their age ranged from 20 to 78 years (mean, 42 years). The blood flow was measured by the dynamic study method using H 2 15 O while the blood volume was measured by the steady state method using C 15 O. The blood flow was 1.68-6.47 ml/min./100 g (mean±SD, 3.49±1.28), and the blood volume was 1.67-6.03 ml/100 ml (mean±SD, 2.99±1.25). With age the blood flow significantly decreased (p<0.01), and the blood volume significantly increased (p<0.05). Our results showed that the blood flow and blood volume in bone tissue can be measured in vivo by PET. Both the blood flow and blood volume in the femoral head considerably differed among individuals. The age-related changes in the femoral head may result from decreased trabecular bone with age and its replacement by blood. Though additional cases should be evaluated, PET is adequately applicable to experimental and clinical studies in orthopedic surgery. (author)

  14. Study of the degradation and recovery of the optical properties of H{sup +}-implanted ZnO pigments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chundong [Key Laboratory on Materials Behavior and Evaluation Technology in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lv, Jinpeng, E-mail: hitlv@yahoo.com.cn [Key Laboratory on Materials Behavior and Evaluation Technology in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yao, Shulong; Hu, Jiangang; Liang, Zhiqiang [Key Laboratory on Materials Behavior and Evaluation Technology in Space Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-15

    We studied the influences of proton implantation and oxygen post-annealing on the optical properties of ZnO pigments using a combination of Raman scattering, positron annihilation and photoluminescence techniques. Raman scattering results indicated that oxygen vacancies and interstitial zinc defects were produced after proton implantation. Positron annihilation spectroscopy and photoluminescence measurements demonstrated that the zinc vacancies do not contribute to the optical absorption, but give rise to the visible band emission. Interestingly, the proton implantation induced optical degradation can be annealed out at 800 °C in an O{sub 2} atmosphere. We conclude that the defect centers responsible for the optical absorption are primarily composed of V{sub O}{sup +}, ionized Zn{sub i} and ionized O{sub i}.

  15. Dynamic positron emission tomography in man using small bismuth germanate crystals

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.; Cahoon, J.L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives

  16. Transcutaneous measurement of the arterial input function in positron emission tomography

    International Nuclear Information System (INIS)

    Litton, J.E.; Eriksson, L.

    1990-01-01

    Positron emission tomography (PET) provides a powerful tool in medical research. Biochemical function can be both precisely localized and quantitatively measured. To achieve reliable quantitation it is necessary to know the time course of activity concentration in the arterial blood during the measurement. In this study the arterial blood curve from the brachial artery is compared to the activity measured in the internal carotid artery with a new transcutaneous detector

  17. Measurement of blood-brain barrier permeability with positron emission tomography in patients with multiple sclerosis

    International Nuclear Information System (INIS)

    Fieschi, C.; Pozzilli, C.; Bernardi, S.; Bozzao, L.; Lenzi, G.L.; Picozzi, P.; Iannotti, F.; Conforti, P.

    1988-01-01

    The purpose of the investigation was to elucidate the role of positron emission tomography using 68 Ga-EDTA in the study of blood-brain barrier abnormalities associated with multiple sclerosis. 14 refs.; 1 figure

  18. Three dimensional positron-CT: 3D-PET

    International Nuclear Information System (INIS)

    Ishii, K.

    2000-01-01

    Positron-CT, namely the positron emission tomograph (PET) provides us the metabolism images obtained by the administration of the drug labeled by the positron emission nuclide in the human body. For example, the carbohydrate metabolism image is obtained by the administration of glucose labelled by 18 F-radioisotopes, and it can be applied to early detection of the cancer and research of high-order function of the brain. As well as X-ray CT, the examine receives the exposure in the positron CT. 3D-PET is based on the solid measurement of γ-rays, therefore, the detection sensitivity of 3D-PET becomes very high and it is possible to drastically reduce the dose of the positron emission nuclide. Because the exposure is reduced to the utmost, the positron CT diagnosis would be possible for the child and the exposure of positron CT doctor in charge can be also reduced. This ideal functional diagnostic imaging equipment, namely, 3D-PET is introduced here. (author)

  19. Monitoring variables affecting positron emission tomography measurements of cerebral blood flow in anaesthetized pigs

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Zois, Nora Elisabeth; Simonsen, Mette

    Background: Positron emission tomography (PET) imaging of anaesthetised pig brains is a useful tool in neuroscience. Stable cerebral blood flow (CBF) is essential for PET, since variations can affect the kinetics of several radiotracers. However, the impact of physiological factors regulating CBF...

  20. Early positron emission tomography response-adapted treatment in stage I and II hodgkin lymphoma

    DEFF Research Database (Denmark)

    André, Marc P.E.; Girinsky, Théodore; Federico, Massimo

    2017-01-01

    Purpose Patients who receive combined modality treatment for stage I and II Hodgkin lymphoma (HL) have an excellent outcome. Early response evaluation with positron emission tomography (PET) scan may improve selection of patients who need reduced or more intensive treatments. Methods We performed...

  1. Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling

    NARCIS (Netherlands)

    Bowen, S.R.; Kogel, A.J. van der; Nordsmark, M.; Bentzen, S.M.; Jeraj, R.

    2011-01-01

    PURPOSE: Unique uptake and retention mechanisms of positron emission tomography (PET) hypoxia tracers make in vivo comparison between them challenging. Differences in imaged uptake of two common hypoxia radiotracers, [(61)Cu]Cu-ATSM and [(18)F]FMISO, were characterized via computational modeling to

  2. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2017-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024

  3. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  4. Cardiological applications of positron emission tomography

    International Nuclear Information System (INIS)

    Schelbert, H.; Czernin, J.

    1994-01-01

    Positron emission tomography (PET) expands the diagnostic possibilities of nuclear medicine techniques for the diagnosis of coronary artery disease and, especially, for the identification of myocardial viability. The presence of coronary artery disease can be detected by evaluation of myocardial blood flow at rest and during pharmacologically induced hyperemia with a sensitivity of 84 to 98% and a specificity of 78 to 100% according to recent studies. Comparative investigations in the same patients have demonstrated a significant gain in the diagnostic accuracy of PET as compared with single photon emission computed tomography (SPECT). PET has influenced even more profoundly the identification of myocardial viability. Measured against the functional outcome of regional contractile function after successful revascularization, an increase of glucose utilization relative to regional myocardial blood flow is 77 to 85% accurate in identifying reversibly injured myocardium. Conversely, PET is 78 to 92% accurate in identifying myocardium as irreversibly injured when pre-operative glucose uptake was reduced or absent. Recent studies have indicated that it is possible to predict to some extent post-revascularization improvement in left ventricular function as well as in congestive heart failure related symptoms in patients with ischemic cardiomyopathy. Furthermore, PET can identify patients with an increased risk of mortality and morbidity as a result of ischemic heart disease and, thus, stratify patients to the most appropriate and cost-effective therapeutic approach. (authors)

  5. Emissão/abscisão de estruturas reprodutivas do algodoeiro herbáceo, cv. CNPA 7H: efeito do estresse hídrico Emission/abscission of reproductive structures of herbaceous cotton, cv. CNPA 7H: effect of the water stress

    Directory of Open Access Journals (Sweden)

    Francineuma P. de Arruda

    2002-04-01

    Full Text Available O presente estudo foi conduzido no período de julho a dezembro de 1998, em galpão coberto, no DSER/CCA/UFPB, município de Areia, PB, com o objetivo de se avaliar o efeito dos níveis de água disponível no solo (AD (20, 40, 60 e 80% sobre a emissão/abscisão de estruturas reprodutivas do algodoeiro herbáceo, cv. CNPA 7H; utilizou-se delineamento experimental inteiramente casualizado, com quatro tratamentos e três repetições, em três épocas de amostragem. O crescimento vegetativo e o reprodutivo, aumentaram com os níveis de AD no solo, sendo a menor média de altura de plantas (34,5 cm, área foliar (633,05 cm², acumulação de fitomassa da parte aérea (9,04 g, botões florais (4,67, flores (3,50, maçãs (2,33 e capulhos (1,33 por planta, observada no tratamento com o nível de 20% da AD e a maior, 74,33 cm, 2.634,81cm², 24,86 g, 9,67, 7,0, 6,0 e 4,3 por planta, respectivamente, no tratamento com o nível de 60% da AD. Apesar do estresse hídrico ter afetado (pThe present study was conducted from July to December 1998, in a covered area at DSER/CCA/UFPB, Areia/PB with the objective of evaluating the effect of four levels of available water (AW - 20, 40, 60 and 80% in soil on the emission/abscission of reproductive structures of herbaceous cotton plant, cv. CNPA 7H. A completely randomized experimental design was used, with four treatments replicated three times and sampled at three different dates. Vegetative and reproductive growth increased with AW levels in soil. Minimum mean values for plant height (34.5 cm, leaf area (633.05 cm², biomass accumulation of aerial parts (9.04 g, number of flower buds (4.67, flowers (3.50, fruits (2.33 and bolls (1.33 per plant, were observed for the 20% AW treatment. In contrast, the highest mean values observed for the 60% AW treatment, respectively, were 74.33 cm, 2,634.8 cm², 24.86 g, 9.67, 7.0, 6.0 and 4.3. Water stress showed significant effect (p<0,05 on emission and abscission of

  6. A statistical analysis of count normalization methods used in positron-emission tomography

    International Nuclear Information System (INIS)

    Holmes, T.J.; Ficke, D.C.; Snyder, D.L.

    1984-01-01

    As part of the Positron-Emission Tomography (PET) reconstruction process, annihilation counts are normalized for photon absorption, detector efficiency and detector-pair duty-cycle. Several normalization methods of time-of-flight and conventional systems are analyzed mathematically for count bias and variance. The results of the study have some implications on hardware and software complexity and on image noise and distortion

  7. Positron annihilation in a metal-oxide semiconductor studied by using a pulsed monoenergetic positron beam

    Science.gov (United States)

    Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Ohji, Y.

    1993-12-01

    The positron annihilation in a metal-oxide semiconductor was studied by using a pulsed monoenergetic positron beam. Lifetime spectra of positrons were measured as a function of incident positron energy for a polycrystalline Si(100 nm)/SiO2(400 nm)/Si specimen. Applying a gate voltage between the polycrystalline Si film and the Si substrate, positrons implanted into the specimen were accumulated at the SiO2/Si interface. From the measurements, it was found that the annihilation probability of ortho-positronium (ortho-Ps) drastically decreased at the SiO2/Si interface. The observed inhibition of the Ps formation was attributed to an interaction between positrons and defects at the SiO2/Si interface.

  8. The Norepinephrine Transporter in Attention-Deficit/Hyperactivity Disorder Investigated With Positron Emission Tomography

    Science.gov (United States)

    Rami-Mark, Christina; Savli, Markus; Höflich, Anna; Kranz, Georg S.; Hahn, Andreas; Kutzelnigg, Alexandra; Traub-Weidinger, Tatjana; Mitterhauser, Markus; Wadsak, Wolfgang; Hacker, Marcus; Volkow, Nora D.; Kasper, Siegfried; Lanzenberger, Rupert

    2015-01-01

    IMPORTANCE Attention-deficit/hyperactivity disorder (ADHD) research has long focused on the dopaminergic system’s contribution to pathogenesis, although the results have been inconclusive. However, a case has been made for the involvement of the noradrenergic system, which modulates cognitive processes, such as arousal, working memory, and response inhibition, all of which are typically affected in ADHD. Furthermore, the norepinephrine transporter (NET) is an important target for frequently prescribed medication in ADHD. Therefore, the NET is suggested to play a critical role in ADHD. OBJECTIVE To explore the differences in NET nondisplaceable binding potential (NET BPND) using positron emission tomography and the highly selective radioligand (S,S)-[18F]FMeNER-D2 [(S,S)-2-(α-(2-[18F]fluoro[2H2]methoxyphenoxy)benzyl)morpholine] between adults with ADHD and healthy volunteers serving as controls. DESIGN, SETTING, AND PARTICIPANTS Twenty-two medication-free patients with ADHD (mean [SD] age, 30.7 [10.4] years; 15 [68%] men) without psychiatric comorbidities and 22 age- and sex-matched healthy controls (30.9 [10.6] years; 15 [68%] men) underwent positron emission tomography once. A linear mixed model was used to compare NET BPND between groups. MAIN OUTCOMES AND MEASURES The NET BPND in selected regions of interest relevant for ADHD, including the hippocampus, putamen, pallidum, thalamus, midbrain with pons (comprising a region of interest that includes the locus coeruleus), and cerebellum. In addition, the NET BPND was evaluated in thalamic subnuclei (13 atlas-based regions of interest). RESULTS We found no significant differences in NET availability or regional distribution between patients with ADHD and healthy controls in all investigated brain regions (F1,41 < 0.01; P = .96). Furthermore, we identified no significant association between ADHD symptom severity and regional NET availability. Neither sex nor smoking status influenced NET availability. We determined

  9. Positron annihilation lifetime study of positive temperature coefficient BaTiO3 samples

    International Nuclear Information System (INIS)

    Ling Chen; Mingkang Teng; Guanghou Wang; Xiaoyun Li; Tianchang Lu

    1989-01-01

    In order to investigate the doped vacancies in BaTiO 3 samples as well as their influence on the positive temperature coefficient (PTC) the positron annihilation lifetime spectroscopy was applied. Two groups of BaTiO 3 samples with BaO excess were prepared by doping different concentrations of La 2 O 3 and Nb 2 O 5 , respectively in the range from 0.1 to 3 at%. A third group of samples of two Sb-doped PTC BaTiO 3 semiconductors with excess BaO or TiO 2 were studied by the aid of positron technique before and after being reduced. It is shown that the positron lifetime parameters are sensitive to changes in the vacancy concentration in BaTiO 3 ceramics near the 0.1 mol% region. But they are almost unchanged during reduction processing; the resistivity of samples changed by one to two orders of magnitude through the reduction. It can be concluded that the PTC effect is due to oxygen on the grain boundary rather than vacancies, and that the Heywang-Jonker model is more reasonable

  10. Visible light emission from silicon implanted and annealed SiO2layers

    International Nuclear Information System (INIS)

    Ghislotti, G.; Nielsen, B.; Asoka-Kumar, P.; Lynn, K.G.; Di Mauro, L.F.; Bottani, C.E.; Corni, F.; Tonini, R.; Ottaviani, G.P.

    1997-01-01

    Silicon implanted and annealed SiO 2 layers are studied using photoluminescence (PL) and positron annihilation spectroscopy (PAS). Two PL emission bands are observed. A band centered at 560 nm is present in as-implanted samples and it is still observed after 1,000 C annealing. The emission time is fast. A second band centered at 780 nm is detected after 1,000 C annealing. The intensity of the 780 nm band further increased when hydrogen annealing was performed. The emission time is long (1 micros to 0.2 ms). PAS results show that defects produced by implantation anneal at 600 C. Based on the annealing behavior and on the emission times, the origin of the two bands is discussed

  11. Positron annihilation lifetime measurement of electron-irradiated ZnO crystals

    International Nuclear Information System (INIS)

    Tomiyama, N.; Takenaka, M.; Kuramoto, E.

    1992-01-01

    In order to clarify the basic properties of radiation-induced defects in ZnO crystals positron annihilation lifetime measurements were performed for the ZnO crystals irradiated by 28 MeV electrons at 77 K. The electron-irradiation induced the color change of the specimens from the original yellowish-white to the orange and long lifetime component of about 200 psec. The isochronal annealing experiments showed that the decrease of the positron annihilation lifetime appeared in the temperature range between 423 and 473 K and between 723 and 923 K. The radiation-induced color change disappeared in the first temperature range. It can be considered that the first stage corresponds to migration and recovery of radiation-induced oxygen vacancies. It is difficult to identify the second stage, but it might be the recovery stage of small ZnO interstitial clusters formed through clustering of Zn and O interstitials

  12. Monitoring of herpes simplex virus thymidine kinase enzyme activity using positron emission tomography

    NARCIS (Netherlands)

    Hospers, GAP; Calogero, Anna; van Waarde, A; Doze, P; Vaalburg, W; Mulder, NH; de Vries, EFJ

    2000-01-01

    9-[(1-[F-18]Fluoro-3-hydroxy-2-propoxy)methyl]guanine ([F-18]FHPG) wasevaluated as a tracer for noninvasive positron emission tomography (PET) imaging of herpes simplex virus type 1 thymidine kinase (HSV-tk) gene expression. C6 rat glioma cells with and without the HSV-tk gene were incubated with

  13. Pattern evoked cortical potential topography and positron emission computed tomography in cases with homonymous quadrantanopsia

    International Nuclear Information System (INIS)

    Kakisu, Yonetsugu; Adachi-Usami, Emiko; Kuroda, Noriko; Kawamura, Mitsuru; Yamazaki, Toshiro.

    1985-01-01

    Pattern evoked cortical potentials (PVECPs) and positron emission computed tomography (PET) were studied in two cases with lower homonymous quadrantanopsia caused by occlusion or hemorrhages of the artery of the optic radiation. Using 15 O 2 and C 15 O 2 as a tracer, PET was performed at rest under opened eye stimulation on 6 cm and 8 cm transverse section above the orbito-meatal line. On OM-6 level where the visual cortex of right and left hemisphere received the upper visual field information, symmetrical images of 15 O 2 and C 15 O 2 uptake were found. However, they were lateralized at the non-affected hemisphere in the images of OM-8 level, which corresponded to the anatomical lesion. The PVECP topogram recorded to the stimulation of the right and left lower quadrant visual field was studied by a 16 channel recording system. The positive maxima at the peak latency of P100 were found only at the non-affected hemisphere. It was, thus, proved that PVECP topogram and PET findings could demonstrate the functional abnormalities of the visual cortex in accordance with visual field defect measured by subjective perimetry. (author)

  14. Probing defects in ZnO nanostructures by Photoluminescence and Positron Annihilation Spectroscopy

    Science.gov (United States)

    Ghosh, Manoranjan; Raychaudhuri, A. K.; Chaudhuri, S. K.; Das, Dipankar

    2008-03-01

    We have investigated defect related emission in the blue green region (2.2 eV -- 2.5 eV) of ZnO nanostructures having spherical (5 nm-15 nm) as well as those with hexagonal platelet and rod like morphologies (20nm-100 nm), synthesized by solvo-thermal route. This emission show anomalous size dependence. Emission energy near 2.2 eV, shifts to higher energy (2.5 eV) for increase in size beyond 20nm when shape of the nanostructures changes. This change in photoluminescence has a close correlation with the size (and shape) induced change in the positron trapping rate which is directly proportional to the defect concentration. The trapping rates show non-monotonous dependence on size. It increases initially as the size increases (5nm-15nm) and then decreases as the size increases beyond 20nm. While increase of the trapping rate on size reduction is expected due to accumulation of more defects at the surface, the initial dependence of the trapping rate on the size (below 20nm) is anomalous. The data are explained by the presence of defects like Zn vacancy and confinement due to size reduction.

  15. Positron annihilation spectroscopy of vacancy aggregates in neutron-irradiated MgO crystals

    International Nuclear Information System (INIS)

    Pareja, R.; De La Cruz, R.M.; Gonzalez, R.; Chen, Y.; Department of Energy, Washington, DC

    1992-01-01

    Positron annihilation measurements in neutron-irradiated MgO crystals show that the positron lifetime is shorter than in as-grown crystals, suggesting that most of the defects produced by neutron irradiations are positively charged. The concentration of the neutral anion vacancy (possibly also the neutral anion divacancy) is estimated to be no more than ∼ 10 16 cm -3 for samples irradiated to a dose of 10 17 to 10 19 n cm -2 . Annealing experiments on the neutron-irradiated crystals show a significant increase in the positron lifetime after anneals at 900 K. The increase is attributed to positron trapping by anion-vacancy aggregates. A lifetime of (284±15)ps is tentatively assigned to positrons trapped in these aggregates. (Author)

  16. Dopants incorporation in ZnO mechanical milled powders sensed by positrons

    International Nuclear Information System (INIS)

    Damonte, L. C.; Donderis, V.; Hernandez Fenollosa, M. A.

    2007-01-01

    M-doped ZnO (M: Cd, Mg) powders obtained by mechanical milling were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and positron lifetime annihilation spectroscopy (PALS). The mixing of the oxides is followed by means of XRD and SEM. As milling proceeds, a clear reduction of grain size and homogenization are observed. The evolution of annihilation parameters with milling time and cation content were analyzed and related with the kind of mechanical induced defect involved. Ternary oxides Zn 1-x M x O were efficiency obtained for certain compositions. The results showed that positrons constitute a well suited probe to characterize the cation substitution in the ZnO oxide lattice.

  17. Dopants incorporation in ZnO mechanical milled powders sensed by positrons

    Energy Technology Data Exchange (ETDEWEB)

    Damonte, L. C., E-mail: damonte@fisica.unlp.edu.ar; Donderis, V.; Hernandez Fenollosa, M. A. [Universidad Politecnica de Valencia, Departamento de Fisica Aplicada (Spain)

    2007-09-15

    M-doped ZnO (M: Cd, Mg) powders obtained by mechanical milling were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and positron lifetime annihilation spectroscopy (PALS). The mixing of the oxides is followed by means of XRD and SEM. As milling proceeds, a clear reduction of grain size and homogenization are observed. The evolution of annihilation parameters with milling time and cation content were analyzed and related with the kind of mechanical induced defect involved. Ternary oxides Zn{sub 1-x}M{sub x}O were efficiency obtained for certain compositions. The results showed that positrons constitute a well suited probe to characterize the cation substitution in the ZnO oxide lattice.

  18. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease

    Energy Technology Data Exchange (ETDEWEB)

    Bisdas, Sotirios [JWG University Hospital, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Nemitz, Ole; Becker, Hartmut; Donnerstag, Frank [Hannover Medical School, Department of Neuroradiology, Hannover (Germany); Berding, Georg [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Weissenborn, Karin; Ahl, Bjoern [Hannover Medical School, Department of Neurology, Hannover (Germany)

    2006-10-15

    Twelve patients with ICA stenosis underwent dynamic perfusion computed tomography (CT) and positron emission tomography (PET) studies at rest and after acetazolamide challenge. Cerebral blood flow (CBF) maps on perfusion CT resulted from a deconvolution of parenchymal time-concentration curves by an arterial input function (AIF) in the anterior cerebral artery as well as in both anterior choroidal arteries. CBF was measured by [{sup 15}O]H{sub 2}O PET using multilinear least-squares minimization procedure based on the one-compartment model. In corresponding transaxial PET scans, CBF values were extracted using standardized ROIs. The baseline perfusion CT-CBF values were lower in perfusion CT than in PET (P>0.05). CBF values obtained by perfusion CT were significantly correlated with those measured by PET before (P<0.05) and after (P<0.01) acetazolamide challenge. Nevertheless, the cerebrovascular reserve capacity was overestimated (P=0.05) using perfusion CT measurements. The AIF selection relative to the side of carotid stenosis did not significantly affect calculated perfusion CT-CBF values. In conclusion, the perfusion CT-CBF measurements correlate significantly with the PET-CBF measurements in chronic carotid stenotic disease and contribute useful information to the evaluation of the altered cerebral hemodynamics. (orig.)

  19. Correlative assessment of cerebral blood flow obtained with perfusion CT and positron emission tomography in symptomatic stenotic carotid disease

    International Nuclear Information System (INIS)

    Bisdas, Sotirios; Nemitz, Ole; Becker, Hartmut; Donnerstag, Frank; Berding, Georg; Weissenborn, Karin; Ahl, Bjoern

    2006-01-01

    Twelve patients with ICA stenosis underwent dynamic perfusion computed tomography (CT) and positron emission tomography (PET) studies at rest and after acetazolamide challenge. Cerebral blood flow (CBF) maps on perfusion CT resulted from a deconvolution of parenchymal time-concentration curves by an arterial input function (AIF) in the anterior cerebral artery as well as in both anterior choroidal arteries. CBF was measured by [ 15 O]H 2 O PET using multilinear least-squares minimization procedure based on the one-compartment model. In corresponding transaxial PET scans, CBF values were extracted using standardized ROIs. The baseline perfusion CT-CBF values were lower in perfusion CT than in PET (P>0.05). CBF values obtained by perfusion CT were significantly correlated with those measured by PET before (P<0.05) and after (P<0.01) acetazolamide challenge. Nevertheless, the cerebrovascular reserve capacity was overestimated (P=0.05) using perfusion CT measurements. The AIF selection relative to the side of carotid stenosis did not significantly affect calculated perfusion CT-CBF values. In conclusion, the perfusion CT-CBF measurements correlate significantly with the PET-CBF measurements in chronic carotid stenotic disease and contribute useful information to the evaluation of the altered cerebral hemodynamics. (orig.)

  20. Positron astrophysics and areas of relation to low-energy positron physics

    Science.gov (United States)

    Guessoum, Nidhal

    2014-05-01

    I briefly review our general knowledge of positron astrophysics, focusing mostly on the theoretical and modelling aspects. The experimental/observational aspects of the topic have recently been reviewed elsewhere [E. Churazov et al., Mon. Nat. R. Astron. Soc. 411, 1727 (2011); N. Prantazos et al., Rev. Mod. Phys. 83, 1001 (2011)]. In particular, I highlight the interactions and cross sections of the reactions that the positrons undergo in various cosmic media. Indeed, these must be of high interest to both the positron astrophysics community and the low-energy positron physics community in trying to find common areas of potential collaboration for the future or areas of research that will help the astrophysics community make further progress on the problem. The processes undergone by positrons from the moments of their birth to their annihilation (in the interstellar medium or other locations) are thus examined. The physics of the positron interactions with gases and solids (dust grains) and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation take place, are briefly reviewed. An explanation is given about how all the relevant physical information is taken into account in order to calculate annihilation rates and spectra of the 511 keV emission in the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. In particular, an attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of low-energy positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place

  1. Slow positron beam study of hydrogen ion implanted ZnO thin films

    Science.gov (United States)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  2. Preclinical evaluation of a positron emitting progestin ([18F]fluoro-16 alpha-methyl-19-norprogesterone) for imaging progesterone receptor positive tumours with positron emission tomography

    NARCIS (Netherlands)

    Verhagen, Aalt; Luurtsema, Gert; PESSER, JW; DEGROOT, TJ; OOSTERHUIS, JW; Vaalburg, Willem; Wouda, S.

    Three 21-fluoro-progestins were investigated as potential imaging agents for the in vivo assessment of human progesterone receptor positive neoplasms with positron emission tomography. In competitive binding assays these compounds demonstrated high specificity, competing only for progesterone

  3. A study of verbal and spatial information processing using event-related potentials and positron emission tomography

    International Nuclear Information System (INIS)

    Ninomiya, Hideaki; Ichimiya, Atsushi; Chen, Chung-Ho; Onitsuka, Toshiaki; Kuwabara, Yasuo; Otsuka, Makoto; Ichiya, Yuichi

    1997-01-01

    The activated cerebral regions and the timing of information processing in the hemispheres was investigated using event-related potentials (ERP) and regional cerebral blood flow (rCBF) as the neurophysiological indicators. Seven men and one woman (age 19-27 years) were asked to categorize two-syllable Japanese nouns (verbal condition) and to judge the difference between pairs of rectangles (spatial condition), both tests presented on a monochrome display. In the electroencephalogram (EEG) session, EEG were recorded from 16 electrode sites, with linked earlobe electrodes as reference. In the positron emission tomography (PET) session, rCBF were measured by the 15 O-labeled H 2 O bolus injection method. Regions of interest were the frontal, temporal, parietal, occipital and central lobes, and the entire cerebral hemispheres. When the subtracted voltages of the ERP in homologous scalp sites were compared for the verbal and spatial conditions, the significant differences were at F7·F8 and T5·T6 (the 10-20 system). The latencies of the differences at T5·T6 were around 200, 250 and 320 ms. A significant difference in rCBF between the verbal and spatial conditions was found only in the temporal region. It was concluded that early processing of information, that is, registration and simple recognition, may be performed mainly in the left temporal lobe for verbal information and in the right for spatial information. (author)

  4. Hydrated aluminophosphate (AlPO/sub 4/. 1. 5H/sub 2/O) with PO/sub 4/, AlO/sub 4/ and AlO/sub 4/(H/sub 2/O)/sub 2/ groups and encapsulated water

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, J.J.; Smith, J.V.

    1986-09-15

    Aluminium phosphate hydrate, AlPO/sub 4/ /sub ./ 1.5H/sub 2/O, M/sub r/=148.98, orthorhombic, Pbca, a=19.3525(13), b=9.7272(7), c=9.7621(8) A, V=1837.7(1) A/sup 3/, Z=16, D/sub x/=2.15 g cm/sup -3/, lambda(CuK..cap alpha..)=1.5418 A, ..mu..=68.2 cm/sup -1/, F(000)=1200, Tproportional to 295 K, R=0.033 for 1530 diffractions. A 4-connected framework contains PO/sub 4/ tetrahedra interposed between AlO/sub 4/ tetrahedra and AlO/sub 4/(H/sub 2/O)/sub 2/ octahedra at the nodes of cross-linked alternate 6/sup 3/ and 4.8/sup 2/ nets. A two-dimensional channel system, limited by 8-rings, lies between adjacent 6/sup 3/ nets. One H/sub 2/O of each octahedron lies in a 6-ring, and the other forms a continuous chain with a third H/sub 2/O which is held in place only by hydrogen bonds.

  5. Ab initio study of the positronation of the CaO and SrO molecules including calculation of annihilation rates.

    Science.gov (United States)

    Buenker, Robert J; Liebermann, Heinz-Peter

    2012-07-15

    Ab initio multireference single- and double-excitation configuration interaction calculations have been performed to compute potential curves for ground and excited states of the CaO and SrO molecules and their positronic complexes, e(+)CaO, and e(+)SrO. The adiabatic dissociation limit for the (2)Σ(+) lowest states of the latter systems consists of the positive metal ion ground state (M(+)) and the OPs complex (e(+)O(-)), although the lowest energy limit is thought to be e(+)M + O. Good agreement is found between the calculated and experimental spectroscopic constants for the neutral diatomics wherever available. The positron affinity of the closed-shell X (1)Σ(+) ground states of both systems is found to lie in the 0.16-0.19 eV range, less than half the corresponding values for the lighter members of the alkaline earth monoxide series, BeO and MgO. Annihilation rates (ARs) have been calculated for all four positronated systems for the first time. The variation with bond distance is generally similar to what has been found earlier for the alkali monoxide series of positronic complexes, falling off gradually from the OPs AR value at their respective dissociation limits. The e(+)SrO system shows some exceptional behavior, however, with its AR value reaching a minimum at a relatively large bond distance and then rising to more than twice the OPs value close to its equilibrium distance. Copyright © 2012 Wiley Periodicals, Inc.

  6. Diffuse nesidioblastosis diagnosed on a Ga-68 DOTATATE positron emission tomography/computerized tomography

    International Nuclear Information System (INIS)

    Arun, Sasikumar; Mittal, Bhagwant Rai; Shukla, Jaya; Bhattacharya, Anish; Kumar, Praveen

    2013-01-01

    The authors describe a 50 days old pre-term infant with persistent hyperinsulinemic hypoglycemia of infancy in whom 68 Ga DOTATATE positron emission tomography/computerized tomography scan showed diffusely increased tracer uptake in the entire pancreas with no abnormal tracer uptake anywhere else in the body, suggestive of a diffuse variant of nesidioblastosis. (author)

  7. Fluorodeoxyglucose-based positron emission tomography imaging to monitor drug responses in hematological tumors

    NARCIS (Netherlands)

    Newbold, Andrea; Martin, Ben P.; Cullinane, Carleen; Bots, Michael

    2014-01-01

    Positron emission tomography (PET) can be used to monitor the uptake of the labeled glucose analog fluorodeoxyglucose (¹⁸F-FDG), a process that is generally believed to reflect viable tumor cell mass. The use of ¹⁸F-FDG PET can be helpful in documenting over time the reduction in tumor mass volume

  8. Positron emission tomographic imaging of tumors using monoclonal antibodies. Progress report, April 15, 1992--October 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Zalutsky, M.R.

    1992-08-01

    This research project is developing methods for utilizing positron emission tomography (PET) to increase the clinical potential of radiolabeled monoclonal antibodies (MAbs). This report describes the development of methods for labeling MAbs and their fragments with positron-emitting halogen nuclides, fluorine-18 and iodine-124. These nulides were selected because of the widespread availability of F-18 and because of our extensive experience in the development of new protein radiohalogenation methods.

  9. 18 F-sodium fluoride positron emission tomography of the equine distal limb: Exploratory study in three horses.

    Science.gov (United States)

    Spriet, M; Espinosa, P; Kyme, A Z; Phillips, K L; Katzman, S A; Galuppo, L D; Stepanov, P; Beylin, D

    2018-01-01

    Positron emission tomography (PET) is a cross-sectional, functional imaging modality that has recently become available to the horse. The use of 18 F-sodium fluoride ( 18 F-NaF), a PET bone tracer, has not previously been reported in this species. To assess the feasibility of 18 F-NaF PET in the equine distal limb and explore possible applications in the horse in comparison with other imaging modalities. Exploratory descriptive study involving three research horses. Horses were placed under general anaesthesia prior to intravenous (i.v.) administration of 1.5 MBq/kg of 18 F-NaF. Positron emission tomography imaging of both front feet and fetlocks was performed using a portable scanner. Computed tomography (CT) of the distal limb was performed under a separate anaesthetic episode. Bone scintigraphy and magnetic resonance imaging (MRI) were subsequently performed under standing sedation. Images obtained from PET and other imaging modalities were independently assessed and the results correlated. Positron emission tomography images were obtained without complication. The radiation exposure rate was similar to equine bone scintigraphy. Positron emission tomography detected focal 18 F-NaF uptake in areas where other imaging modalities did not identify any abnormalities. This included sites of ligamentous attachment, subchondral compact bone plate and the flexor cortex of the navicular bone. 18 F-NaF uptake was identified in some, but not all, osseous fragments and areas of osseous formation, suggesting a distinction between active and inactive lesions. A small number of horses were included and histopathology was not available. 18 F-NaF PET imaging of the equine distal limb provides useful additional information when compared with CT, MRI and scintigraphy and has the potential for both research and clinical applications in the horse. The Summary is available in Chinese - see Supporting information. © 2017 EVJ Ltd.

  10. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer

    DEFF Research Database (Denmark)

    Sandvik, Rikke Mulvad; Jensen, Pernille Tine; Hendel, Helle W

    2011-01-01

    Many studies have found that positron emission tomography-computed tomography (PET-CT) has a high sensitivity and specificity in the identification of metastasis in cervical cancer. Herlev Hospital, Denmark, has been performing PET-CTs in stage I-IV cervical cancer since 1 May 2006. The present...

  11. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  12. Applications of positron emission tomography to psychiatry

    International Nuclear Information System (INIS)

    Volkow, N.D.; Brodie, J.D.; Gomez-mont, F.

    1985-01-01

    The brain's inaccessibility has hampered investigation of the metabolic changes underlying the behavioral and psychological symptoms of psychiatric patients. Using positron emission transaxial tomography (PET) to study the functioning human brain opens the possibility of directly investigating the patterns of activity associated with mental illness. A major focus of present-day research in psychiatry has been to identify etiological agents that fit a medical model of psychiatric illness. Experiments seeking pathophysiological indices that would permit objective classification of psychiatric illnesses have failed to reveal consistent abnormalities. The lack of consistency is explained in part by research designs that deal with the brain as if it were a homogeneous organ. PET offers a unique technique for monitoring the regional biochemical activity that is associated with the different ''brain states'' and ''brain traits'' of normal subjects and psychiatric patients

  13. Positron Emission Tomography (PET) and breast cancer in clinical practice

    International Nuclear Information System (INIS)

    Lavayssiere, Robert; Cabee, Anne-Elizabeth; Filmont, Jean-Emmanuel

    2009-01-01

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005

  14. Positron Emission Tomography (PET) and breast cancer in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Lavayssiere, Robert [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France)], E-mail: cab.lav@wanadoo.fr; Cabee, Anne-Elizabeth [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); Centre RMX, 80, avenue Felix Faure, 75105 Paris (France); Filmont, Jean-Emmanuel [Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); American Hospital of Paris, Nuclear Medicine, 63, boulevard Victor Hugo - BP 109, 92202 Neuilly sur Seine Cedex (France)

    2009-01-15

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005].

  15. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography

    International Nuclear Information System (INIS)

    Fox, P.T.; Raichle, M.E.

    1984-01-01

    The purpose of this investigation was to determine the relationship between the repetition rate of a simple sensory stimulus and regional cerebral blood flow (rCBF) in the human brain. Positron emission tomography (PET), using intravenously administered H 2 ( 15 )O as the diffusible blood-flow tracer, was employed for all CBF measurements. The use of H 2 ( 15 )O with PET allowed eight CBF measurements to be made in rapid sequence under multiple stimulation conditions without removing the subject from the tomograph. Nine normal volunteers each underwent a series of eight H2( 15 )O PET measurements of CBF. Initial and final scans were made during visual deprivation. The six intervening scans were made during visual activation with patterned-flash stimuli given in random order at 1.0-, 3.9-, 7.8-, 15.5-, 33.1-, and 61-Hz repetition rates. The region of greatest rCBF increase was determined. Within this region the rCBF was determined for every test condition and then expressed as the percentage change from the value of the initial unstimulated scan (rCBF% delta). In every subject, striate cortex rCBF% delta varied systematically with stimulus rate. Between 0 and 7.8 Hz, rCBF% delta was a linear function of stimulus repetition rate. The rCBF response peaked at 7.8 Hz and then declined. The rCBF% delta during visual stimulation was significantly greater than that during visual deprivation for every stimulus rate except 1.0 Hz. The anatomical localization of the region of peak rCBF response was determined for every subject to be the mesial occipital lobes along the calcarine fissure, primary visual cortex. Stimulus rate is a significant determinant of rCBF response in the visual cortex. Investigators of brain responses to selective activation procedures should be aware of the potential effects of stimulus rate on rCBF and other measurements of cerebral metabolism

  16. Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009 (India); Chakrabarti, Mahuya [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Ray, S K [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur (India); Bhowmick, D; Sanyal, D, E-mail: dirtha@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2011-04-20

    The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 {+-} 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of {approx} 154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.

  17. Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO

    Science.gov (United States)

    Sarkar, A.; Chakrabarti, Mahuya; Ray, S. K.; Bhowmick, D.; Sanyal, D.

    2011-04-01

    The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 ± 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of ~ 154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.

  18. Positron annihilation lifetime and photoluminescence studies on single crystalline ZnO

    International Nuclear Information System (INIS)

    Sarkar, A; Chakrabarti, Mahuya; Ray, S K; Bhowmick, D; Sanyal, D

    2011-01-01

    The room temperature positron annihilation lifetime for single crystalline ZnO has been measured as 164 ± 1 ps. The single component lifetime value is very close to but higher than the theoretically predicted value of ∼ 154 ps. Photoluminescence study (at 10 K) indicates the presence of hydrogen and other defects, mainly acceptor related, in the crystal. Defects related to a lower open volume than zinc vacancies, presumably a complex with two hydrogen atoms, are the major trapping sites in the sample. The bulk positron lifetime in ZnO is expected to be a little less than 164 ps.

  19. Study of the degradation and recovery of the optical properties of H+-implanted ZnO pigments

    Science.gov (United States)

    Li, Chundong; Lv, Jinpeng; Yao, Shulong; Hu, Jiangang; Liang, Zhiqiang

    2013-01-01

    We studied the influences of proton implantation and oxygen post-annealing on the optical properties of ZnO pigments using a combination of Raman scattering, positron annihilation and photoluminescence techniques. Raman scattering results indicated that oxygen vacancies and interstitial zinc defects were produced after proton implantation. Positron annihilation spectroscopy and photoluminescence measurements demonstrated that the zinc vacancies do not contribute to the optical absorption, but give rise to the visible band emission. Interestingly, the proton implantation induced optical degradation can be annealed out at 800 °C in an O2 atmosphere. We conclude that the defect centers responsible for the optical absorption are primarily composed of VO+, ionized Zni and ionized Oi.

  20. Positron emission tomography and migraine. Tomographie par emission de positons et migraine

    Energy Technology Data Exchange (ETDEWEB)

    Chabriat, H. (CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot)

    1992-04-01

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT{sub 2} serotonin receptors can be studied in migraine patients with PET.

  1. Tomography by positrons emission: integral unit to the service of Mexico; Tomografia por emision de positrones: unidad integral al servicio de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez D, F A [Unidad PET-Ciclotron, Facultad de Medicina, UNAM (Mexico)

    2005-07-01

    The applications of the Positron emission tomography (PET) together with the one radiopharmaceutical 2 - [{sup 18} F]-fluoro-2-deoxy-D-glucose in the area of the medical imaging is expanding quickly and it possesses a bigger impact at the moment in favor of those patient to who suffers an oncological, cardiac or neurological illness in Mexico. (Author)

  2. Positron annihilation studies in the Nd-Ce-Cu-O superconductor

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.; Jean, Y.C.; Hor, P.H.; Meng, R.L.; Huang, Z.J.; Chu, C.W.

    1990-01-01

    In the superconducting Nd 1.85 Ce 0.15 CuO 3.98 , the positron lifetime is observed to decrease from 211 to 205 ps in the temperature range of 150--50 K, whereas in the nonsuperconducting Nd 1.85 Ce 0.15 CuO 4 , having a lifetime value of 231 ps, no significant temperature dependence of lifetime is observed. The difference in the lifetimes of the superconducting and nonsuperconducting samples and their temperature dependencies are understood in terms of positron interaction with the vacancies in the system. Doppler-broadened line shapes of energy spectra are found to show similar results as lifetime measurements. Theoretical calculations are used to show that the oxygen vacancies are weaker traps compared with the vacancies at the Cu and Nd sites. The observed decrease in lifetime in the superconducting sample is interpreted in terms of an increase in the fraction of positrons trapped at the oxygen vacancies as the temperature is lowered. Plausible reasons for the temperature independence of lifetime across T c in the superconducting sample are discussed

  3. Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Larsson, Henrik B W; Hansen, Adam E

    2012-01-01

    PURPOSE: To investigate the within and between subject variability of quantitative cerebral blood flow (CBF) measurements in normal subjects using various MRI techniques and positron emission tomography (PET). MATERIALS AND METHODS: Repeated CBF measurements were performed in 17 healthy, young...

  4. Positron emission CT and X-ray CT findings in chronic obstructive pulmonary diseases

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yoshikazu; Murata, Kiyoshi; Ito, Harumi; Senda, Michio; Yonekura, Yoshiharu; Konishi, Junji; Nishimura, Koichi; Izumi, Takahide; Oshima, Shunsaku

    1987-08-01

    Positron emission CT and X-ray CT were performed in fifteen patients with emphysema confirmed SAB and twelve patients with clinical DPB. In patients with emphysema, 20 of 36 areas showed a central pattern and their perfusion scintigrams showed stripe-signs. On the other hand, the patients with DPB showed outer layer progression of the disease.

  5. Statistical properties of compartmental model parameters extracted from dynamic positron emission tomography experiments

    International Nuclear Information System (INIS)

    Mazoyer, B.M.; Huesman, R.H.; Budinger, T.F.; Knittel, B.L.

    1986-01-01

    Over the past years a major focus of research in physiologic studies employing tracers has been the computer implementation of mathematical methods of kinetic modeling for extracting the desired physiological parameters from tomographically derived data. A study is reported of factors that affect the statistical properties of compartmental model parameters extracted from dynamic positron emission tomography (PET) experiments

  6. Positron implantation studies of YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Anwand, W.; Brauer, G.; Coleman, P.G.; Knights, A.P.; Teske, K.; Schuster, G.; Rudolph, K.

    1995-01-01

    Slow positron implantation spectroscopy has been applied to the study of a set of samples of superconducting YBa 2 Cu 3 O 7-x . The depth-sensitive positron response to oxygen content and preparation history is presented. An outline is given of the experimental method - solid electrolyte coulometry in carrier-gas mode - used to measure oxygen exchange for the same set of samples. (orig.)

  7. Evaluation of brain tumours by positron emission tomography

    International Nuclear Information System (INIS)

    Schober, O.; Meyer, G.J.

    1992-01-01

    The clinical application of positron emission tomography (PET) for the evaluation of brain tumours has proved clinically valuable. Amino acid and FDG-glucose PET provide information on the degree of malignancy and the prognosis during the initial evaluation. After therapy, the residual tumour can be visualized and recurrence can be differentiated from necrosis. Amino acids have advantages over FDG for these clinical applications. Blood flow, oxygen extraction and metabolism and blood-brain barrier permeability are of minor relevance in clinical situations. Comparison of PET with MRI and MRS will provide new data. The quantitative information of the unique information yielded by PET will lead to a more important clinical role, as will the extrapolation of this experience to the SPECT technique. (orig.) [de

  8. Positron lifetime studies on the BiSrCaCuO(F) superconductors

    International Nuclear Information System (INIS)

    Shi Zhiqiang; Chao Xixu; Wu Lingyun

    1995-01-01

    We have measured the positron lifetime and the transition temperature T c as a function of doped F content for Bi 2 Sr 2 CaCu 2 O y-x F x superconductors. The observed results are interpreted in terms of the change of the electron density in the Bi - O layers, which is the region probed by the positron, and the hole concentration in the Cu - O planes, which is correlated with the T c of the sample. From this point of view, it is suggested that the F atom mainly substitutes the oxygen atom in the Bi - O layers, and it causes the electrons transfer from the Bi - O layers to the Sr - O planes; when x = 0.4, the F atom mainly substitues the oxygen atom in the Sr - O planes, it causes the electrons transfer from the Sr - O planes to the Bi - O layers and the Cu - O planes. (orig.)

  9. Constant infusion of 15O-labeled water and inhalation of 11C-labeled carbon monoxide for the regional determination of pulmonary water by positron emission tomography

    International Nuclear Information System (INIS)

    Meyer, G.J.; Schober, O.; Hundeshagen, H.

    1983-01-01

    A method was developed for the continuous infusion of 15 O-labeled water which allows the tomographic reconstruction of the total lung water (TLW). Subsequent inhalation of 11 C-labeled carbon-monoxide permits the reconstruction of the blood volume (BV). After normalization of intravascular activities the difference of TLW minus BV yields a quantitative value of regional extravascular lung water (rELW). 15 O-O 2 is converted on-line to 15 O-H 2 O and trapped in a 2 ml buffer reservoir which is fed by a pump with 0.9% NaCl. A precision pump is used to withdraw the labeled H 2 O and infuse it at a rate of 6 ml/min. The radioactivity level of the indusate (ca. 3.7 MBq/sec) is controlled and can be kept constant with a deviation of less than 5% over 40 min. The sterility and apyrogenicity of the system effluent is assured by frequent bacteriological, rabbit and limulus tests. A constant radioactivity level in the lung area is reached after 8-10 min. The infusion is continued for the tomographic reconstruction (Positron Camera System 4200, Cyclotron Corp.) which takes 15 min. A fast change of cyclotron parameters (MC-36, Scanditronix) and automated chemistry procedures allow a single breath administration of 11 C-CO (ca. 40 MBq) 15 min after the end of the 15 O-H 2 O infusion. Blood pool equilibrium is reached after 3-4 min, and the blood volume is reconstructed within 15 min also. Intravascular activites as determined from reconstructed slices in the region of the aortic arch correlate linearly with blood sample activities up to 100 kBq/ml. (orig.) [de

  10. Identification of Zn-vacancy-hydrogen complexes in ZnO single crystals: A challenge to positron annihilation spectroscopy

    Science.gov (United States)

    Brauer, G.; Anwand, W.; Grambole, D.; Grenzer, J.; Skorupa, W.; Čížek, J.; Kuriplach, J.; Procházka, I.; Ling, C. C.; So, C. K.; Schulz, D.; Klimm, D.

    2009-03-01

    A systematic study of various, nominally undoped ZnO single crystals, either hydrothermally grown (HTG) or melt grown (MG), has been performed. The crystal quality has been assessed by x-ray diffraction, and a comprehensive estimation of the detailed impurity and hydrogen contents by inductively coupled plasma mass spectrometry and nuclear reaction analysis, respectively, has been made also. High precision positron lifetime experiments show that a single positron lifetime is observed in all crystals investigated, which clusters at 180-182 ps and 165-167 ps for HTG and MG crystals, respectively. Furthermore, hydrogen is detected in all crystals in a bound state with a high concentration (at least 0.3at.% ), whereas the concentrations of other impurities are very small. From ab initio calculations it is suggested that the existence of Zn-vacancy-hydrogen complexes is the most natural explanation for the given experimental facts at present. Furthermore, the distribution of H at a metal/ZnO interface of a MG crystal, and the H content of a HTG crystal upon annealing and time afterward has been monitored, as this is most probably related to the properties of electrical contacts made at ZnO and the instability in p -type conductivity observed at ZnO nanorods in literature. All experimental findings and presented theoretical considerations support the conclusion that various types of Zn-vacancy-hydrogen complexes exist in ZnO and need to be taken into account in future studies, especially for HTG materials.

  11. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    Science.gov (United States)

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. © 2016 American Heart Association, Inc.

  12. Positron annihilation studies of the AlOx/SiO2/Si interface in solar cell structures

    International Nuclear Information System (INIS)

    Edwardson, C. J.; Coleman, P. G.; Li, T.-T. A.; Cuevas, A.; Ruffell, S.

    2012-01-01

    Film and film/substrate interface characteristics of 30 and 60 nm-thick AlO x films grown on Si substrates by thermal atomic layer deposition (ALD), and 30 nm-thick AlO x films by sputtering, have been probed using variable-energy positron annihilation spectroscopy (VEPAS) and Doppler-broadened spectra ratio curves. All samples were found to have an interface which traps positrons, with annealing increasing this trapping response, regardless of growth method. Thermal ALD creates an AlO x /SiO x /Si interface with positron trapping and annihilation occurring in the Si side of the SiO x /Si boundary. An induced positive charge in the Si next to the interface reduces diffusion into the oxides and increases annihilation in the Si. In this region there is a divacancy-type response (20 ± 2%) before annealing which is increased to 47 ± 2% after annealing. Sputtering seems to not produce samples with this same electrostatic shielding; instead, positron trapping occurs directly in the SiO x interface in the as-deposited sample, and the positron response to it increases after annealing as an SiO 2 layer is formed. Annealing the film has the effect of lowering the film oxygen response in all film types. Compared to other structural characterization techniques, VEPAS shows larger sensitivity to differences in film preparation method and between as-deposited and annealed samples.

  13. 18 F-fluorodeoxyglucose positron emission tomography-computed tomography for preoperative lymph node staging in patients undergoing radical cystectomy for bladder cancer: a prospective study.

    Science.gov (United States)

    Hitier-Berthault, Maryam; Ansquer, Catherine; Branchereau, Julien; Renaudin, Karine; Bodere, Françoise; Bouchot, Olivier; Rigaud, Jérôme

    2013-08-01

    The objective of our study was to analyze the diagnostic performance of (18) F-fluorodeoxyglucose positron emission tomography-computed tomography for lymph node staging in patients with bladder cancer before radical cystectomy and to compare it with that of computed tomography. A total of 52 patients operated on between 2005 and 2010 were prospectively included in this prospective, mono-institutional, open, non-randomized pilot study. Patients who had received neoadjuvant chemotherapy or radiotherapy were excluded. (18) F-fluorodeoxyglucose positron emission tomography-computed tomography in addition to computed tomography was carried out for lymph node staging of bladder cancer before radical cystectomy. Lymph node dissection during radical cystectomy was carried out. Findings from (18) F-fluorodeoxyglucose positron emission tomography-computed tomography and computed tomography were compared with the results of definitive histological examination of the lymph node dissection. The diagnostic performance of the two imaging modalities was assessed and compared. The mean number of lymph nodes removed during lymph node dissection was 16.5 ± 10.9. Lymph node metastasis was confirmed on histological examination in 22 cases (42.3%). This had been suspected in five cases (9.6%) on computed tomography and in 12 cases (23.1%) on (18) F-fluorodeoxyglucose positron emission tomography-computed tomography. Sensitivity, specificity, positive predictive value, negative predictive value, relative risk and accuracy were 9.1%, 90%, 40%, 57.4%, 0.91 and 55.7%, respectively, for computed tomography, and 36.4%, 86.7%, 66.7%, 65%, 2.72, 65.4%, respectively, for (18) F-fluorodeoxyglucose positron emission tomography-computed tomography. (18) F-fluorodeoxyglucose positron emission tomography-computed tomography is more reliable than computed tomography for preoperative lymph node staging in patients with invasive bladder carcinoma undergoing radical cystectomy. © 2012 The Japanese

  14. Sensitivity estimation in time-of-flight list-mode positron emission tomography.

    Science.gov (United States)

    Herraiz, J L; Sitek, A

    2015-11-01

    An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  15. Sensitivity estimation in time-of-flight list-mode positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J. L. [Madrid-MIT M+Visión Consortium, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, CEI Moncloa, Madrid 28040 (Spain); Sitek, A., E-mail: sarkadiu@gmail.com [Center for Advanced Medical Imaging Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2015-11-15

    Purpose: An accurate quantification of the images in positron emission tomography (PET) requires knowing the actual sensitivity at each voxel, which represents the probability that a positron emitted in that voxel is finally detected as a coincidence of two gamma rays in a pair of detectors in the PET scanner. This sensitivity depends on the characteristics of the acquisition, as it is affected by the attenuation of the annihilation gamma rays in the body, and possible variations of the sensitivity of the scanner detectors. In this work, the authors propose a new approach to handle time-of-flight (TOF) list-mode PET data, which allows performing either or both, a self-attenuation correction, and self-normalization correction based on emission data only. Methods: The authors derive the theory using a fully Bayesian statistical model of complete data. The authors perform an initial evaluation of algorithms derived from that theory and proposed in this work using numerical 2D list-mode simulations with different TOF resolutions and total number of detected coincidences. Effects of randoms and scatter are not simulated. Results: The authors found that proposed algorithms successfully correct for unknown attenuation and scanner normalization for simulated 2D list-mode TOF-PET data. Conclusions: A new method is presented that can be used for corrections for attenuation and normalization (sensitivity) using TOF list-mode data.

  16. Positron mobility in thermally grown SiO2 measured by Doppler broadening technique

    International Nuclear Information System (INIS)

    Kong, Y.; Leung, T.C.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K.G.

    1991-01-01

    The positron mobility in thermally grown SiO 2 is deduced from Doppler broadening lineshape data on a metal-oxide-semiconductor sample for positrons implanted into the oxide layer. The fitted mobility is ∼13(10)x10 -3 cm 2 /s V. This value is between that of the electron and hole mobilities in the same system and is two orders of magnitude smaller than the previous estimate from positron measurements

  17. 77 FR 8262 - Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Science.gov (United States)

    2012-02-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-D-0081] Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug...

  18. Light activates H{sub 2.}{sup 15}0 flow in rice: Detailed monitoring using a positron-emitting tracer imaging system (PETIS)

    Energy Technology Data Exchange (ETDEWEB)

    Kiyomiya, S.; Nakanishi, H.; Mori, S. [The Univ. of Tokyo, Dept. of Applied Biological Chemistry, Tokyo (Japan); Uchida, H.; Nishiyama, S.; Tsukada, H.; Tsuji, A. [Central Res. Lab. Hamamatsu Photonics KK, Shizuoka (Japan); Ishioka, N.S.; Watanabe, S.; Osa, A.; Mizuniwa, C.; Ito, T.; Matsuhashi, S.; Hashimoto, S.; Sekine, T. [Japan Atomic Energy Res. Inst., Takasaki Radation Chemistry Res. Establishment, Gunma (Japan)

    2001-07-01

    Water (H{sub 2}{sup 15}O) translocation from the roots to the top of rice plants (Oryza saliva L. cv. Nipponbare) was visualized over time by a positron-emitting tracer imaging system (PETIS). H{sub 2}{sup 15}O flow was activated 8 min after plants were exposed to bright light (1500 {mu}mol m{sup -2} s{sup -1}). When the light was subsequently removed, the flow gradually slowed and completely stopped after 12 min. In plants exposed to low light (500 {mu}mol m{sup -2} s{sup -1}), H{sub 2}{sup 15}O flow was activated more slowly, and a higher translocation rate of H{sub 2}{sup 15}O was observed in the same low light at the end of the next dark period. NaCl (80 mM) and methylmercury (1 mM) directly suppressed absorption of H{sub 2}{sup 15}O by the roots, while methionine sulfoximine (1 mM), abscisic acid (10 {mu}M) and carbonyl cyanide m-chlorophenylhydrazone (10 mM) were transported to the leaves and enhanced stomatal closure, reducing H{sub 2}{sup 15}O translocation. (au)

  19. Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals

    Science.gov (United States)

    Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.

  20. Modelling the ArH+ emission from the Crab nebula

    Science.gov (United States)

    Priestley, F. D.; Barlow, M. J.; Viti, S.

    2017-12-01

    We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic-ray ionization rate over the standard interstellar value, ζ0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab nebula. The observed line surface brightness ratios of the OH+ and ArH+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic-ray ionization rate and a reduced ArH+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+/OH+ line strengths and the observed H2 vibration-rotation emission can be reproduced by model filaments with nH = 2 × 104 cm-3, ζ = 107ζ0 and visual extinctions within the range found for dusty globules in the Crab nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH = 1900 cm-3 underpredict the H2 surface brightness, but agree with the ArH+ and OH+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+ rotational emission above detection thresholds, but consideration of the formation time-scale suggests that the abundance of this molecule in the Crab nebula should be lower than the equilibrium values obtained in our analysis.

  1. SIMULTANEOUS OBSERVATIONS OF SiO AND H2O MASERS TOWARD SYMBIOTIC STARS

    International Nuclear Information System (INIS)

    Cho, Se-Hyung; Kim, Jaeheon

    2010-01-01

    We present the results of simultaneous observations of SiO v = 1, 2, J = 1-0, 29 SiO v = 0, J = 1-0, and H 2 O 6 16 -5 23 maser lines performed with the KVN Yonsei 21 m radio telescope from 2009 November to 2010 January. We searched for these masers in 47 symbiotic stars and detected maser emission from 21 stars, giving the first time detection from 19 stars. Both SiO and H 2 O masers were detected from seven stars of which six were D-type symbiotic stars and one was an S-type star, WRAY 15-1470. In the SiO maser emission, the 28 SiO v = 1 maser was detected from 10 stars, while the v = 2 maser was detected from 15 stars. In particular, the 28 SiO v = 2 maser emission without the v = 1 maser detection was detected from nine stars with a detection rate of 60%, which is much higher than that of isolated Miras/red giants. The 29 SiO v = 0 maser emission was also detected from two stars, H 2-38 and BF Cyg, together with the 28 SiO v = 2 maser. We conclude that these different observational results between isolated Miras/red giants and symbiotic stars may be related with the presence of hot companions in a symbiotic binary system.

  2. A new method of detection for a positron emission tomograph using a time of flight method

    International Nuclear Information System (INIS)

    Gresset, Christian.

    1981-05-01

    In the first chapter, it is shown the advantages of positron radioemitters (β + ) of low period, and the essential characteristics of positron tomographs realized at the present time. The second chapter presents the interest of an original technique of image reconstruction: the time of flight technique. The third chapter describes the characterization methods which were set for verifying the feasibility of cesium fluoride in tomography. Chapter four presents the results obtained by these methods. It appears that the cesium fluoride constitute presently the best positron emission associated to time of flight technique. The hypotheses made on eventual performances of such machines are validated by experiments with phantom. The results obtained with a detector (bismuth germanate) conserves all its interest in skull tomography [fr

  3. Redistribution of whole-body energy metabolism by exercise. A positron emission tomography study

    International Nuclear Information System (INIS)

    Masud, M.M.; Miyake, Masayasu; Watanuki, Shoichi; Itoh, Masatoshi; Tashiro, Manabu; Fujimoto, Toshihiko

    2009-01-01

    Our aim was to evaluate changes in glucose metabolism of skeletal muscles and viscera induced by different workloads using 18 F-2-fluoro-2-deoxyglucose ([ 18 F]FDG) and three-dimensional positron emission tomography (3-D PET). Five male volunteers performed ergometer bicycle exercise for 40 min at 40% and 70% of the maximal O 2 consumption (VO 2max ). [ 18 ]FDG was injected 10 min later following the exercise task. Whole-body 3-D PET was performed. Five other male volunteers were studied as a control to compare with the exercise group. The PET image data were analyzed using manually defined regions of interest to quantify the regional metabolic rate of glucose (rMRGlc). Group comparisons were made using analysis of variance, and significant differences (P 18 F]FDG-PET can be used as an index of organ energy metabolism for moderate exercise workloads (70% VO 2max ). The results of this investigation may contribute to sports medicine and rehabilitation science. (author)

  4. Positron emission tomography and basal ganglia functions

    International Nuclear Information System (INIS)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi

    1990-01-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs

  5. Positron emission tomography and basal ganglia functions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1990-05-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs.

  6. Positron confinement in embedded lithium nanoclusters

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  7. Positron Annihilation Lifetime Study of Pure and Doped Polyvinyl Chloride with Al2O3

    International Nuclear Information System (INIS)

    Abdel-Hady, E.E.; Hamdy, F. M. M.; Alaa, H.B.

    2005-01-01

    Positron annihilation lifetime of pure and doped polyvinyl chloride (PVC) with Al 2 O 3 reflect the effect of concentration as well as temperature on free volume. Therefore, variations of the ortho-positronium (o-Ps) lifetime and its intensity have been correlated with changes in the dielectric properties of the pure and doped PVC. The o-Ps lifetime and its intensity show a linear dependence with a discontinuity at 20 % concentration of Al 2 O 3 . The size and the fractional of the o-Ps hole volume were estimated from the positron annihilation parameters. Therefore, the temperature dependence of the electrical conductivity and the positron annihilation parameters on pure and doped PVC with 20 % Al 2 O 3 were studied in the range from 20 to 140 degree C. The shift of the glass transition temperature to lower temperature for the 20 % Al 2 O 3 doped PVC might explain the increase in the electrical conductivity with the concentration of the additive

  8. Emission tomography with positrons principle, physical performances of a ring detector and quantitative possibilities

    International Nuclear Information System (INIS)

    Soussaline, F.; Plummer, D.; Todd Pokropek, A.E.; Loc'h, C.; Comar, D.

    1979-01-01

    Satisfactory qualitative and quantitative data in positron emission tomography requires the use of a well adapted tomographic system. A number of parameters have been identified which can be considered as the critical characteristics for evaluation and intercomparison of such systems. Using these the choice of a single slice ring positron camera could be justified by its physical performance, which is presented and discussed. Series of physical and mathematical simulations allow an appropriate knowledge of such a system, which has been in use for more than a year in a clinical environment. These studies aid to the interpretation of very interesting physiopathologic studies. In principle, a positron tomographic system permits measurement of absolute quantitative concentration values, which are essential for precise metabolic studies. The main sources of error comprising the calibration of the system, the tail effects and the precision for attenuation correction are analysed. When taking in account these errors, a precision of the order of 10% should be obtainable [fr

  9. Time course of regional myocardial glucose metabolism after transient ischemia assessed by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hoshizaki, Hiroshi (Gunma Univ., Maebashi (Japan). School of Medicine)

    1992-11-01

    The purpose of this study was to examine the significance of glucose metabolism in ischemic canine myocardium after reperfusion. Transient ischemia was induced by 90 or 180 minutes occlusion of the left anterior descending coronary artery. Twelve hours and 4 weeks after reperfusion, myocardial blood flow (MBF) and glucose metabolism were assessed (with H[sub 2][sup 15]O and [sup 18]F-FDG, respectively) by positron emission tomography (PET) under the fasting state, and the metabolic findings were compared with the histologic examination. Glucose metabolism in ischemic regions was inversely related to the amount of tissue necrosis 12 hours and 4 weeks after reperfusion (r=-0.89 and r=-0.82, respectively). The perfusion-metabolism mismatch pattern was seen in the area with less than 10 percent necrosis 12 hours after reperfusion, but this pattern disappeared after 4 weeks. The area with 10 to 50 percent necrosis showed the mismatch pattern until 4 weeks after reperfusion, and in the area with more than 50 percent necrosis, perfusion-metabolism concordantly decreased. Thus, metabolic index assessed early after reperfusion by PET identified myocardial viability, and the perfusion-metabolism mismatch pattern sustained in relation to the degree of ischemic injury. Since some regions estimated to be irreversible by PET were viable by the histologic examination, PET study might underestimate the myocardial viability. (author).

  10. Positron lifetime in vanadium oxide bronzes

    International Nuclear Information System (INIS)

    Dryzek, J.; Dryzek, E.

    2003-01-01

    The positron lifetime (PL) and Doppler broadening (DB) of annihilation line measurements have been performed in vanadium oxide bronzes M x V 2 O 5 . The dependence of these annihilation characteristics on the kind and concentration of the metal M donor has been observed. In the PL spectrum only one lifetime component has been detected in all studied bronzes. The results indicate the positron localization in the structural tunnels present in the crystalline lattice of the vanadium oxide bronzes. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Experimental and computational studies of positron-stimulated ion desorption from TiO2(1 1 0) surface

    Science.gov (United States)

    Yamashita, T.; Hagiwara, S.; Tachibana, T.; Watanabe, K.; Nagashima, Y.

    2017-11-01

    Experimental and computational studies of the positron-stimulated O+ ion desorption process from a TiO2(1 1 0) surface are reported. The measured data indicate that the O+ ion yields depend on the positron incident energy in the energy range between 0.5 keV and 15 keV. This dependence is closely related to the fraction of positrons which diffuse back to the surface after thermalization in the bulk. Based on the experimental and computational results, we conclude that the ion desorption via positron-stimulation occurs dominantly by the annihilation of surface-trapped positrons with core electrons of the topmost surface atoms.

  12. Cerebral blood flow and metabolism in a patient with motor aphasia by positron emission tomography using 15O2 and C15O2

    International Nuclear Information System (INIS)

    Kitamura, Shin; Terashi, Akiro; Kato, Toshiaki; Soeda, Toshiyuki; Iio, Masaaki.

    1986-01-01

    Cerebral blood flow and metabolism, in a patient with motor aphasia due to cerebral infarction of the left basal ganglionic region, were studied by positron emission tomography (PET) using 15 O 2 and C 15 O 2 . A 62-year-old woman, right handed, was admitted with a complaint of right hemiparesis. Motor aphasia developed on the following day of hospitalization. CT scan showed low density area in the left caduate nucleus, putamen, internal capsule, and centrum semiovale, but the cortex was intact on the images of CT scan. PET studies were performed 22 days and 92 days after onset of stroke. The first PET study revealed marked reduction of CBF (cerebral blood flow) in the left cortex and subcortex, but CMRO 2 (cerebral oxygen consumption) was relatively preserved and OEF (oxygen extraction fraction) increased. The second PET study showed recovery of CBF in the left cortex and increase of OEF vanished. CMRO 2 decreased in the left posterior frontal region and subcortex. Motor aphasia still continued at the time of the second PET study. Therefore, the left posterior frontal cortex lesion as well as the left subcortex lesion might be related to the occurrence of motor aphasia in this case. The thresholds of CBF and CMRO 2 for developing clinical symptoms are higher than those for developing low density on the images of CT scan. These results suggest the importance of the study of cerebral blood flow and metabolism in the study of the responsible lesion for aphasia. (author)

  13. The production of collimated beams of o-Ps atoms using charge exchange in positron-gas collisions

    International Nuclear Information System (INIS)

    Laricchia, G.; Charlton, M.; Davies, S.A.; Beling, C.D.; Griffith, T.C.

    1987-01-01

    Using positron-gas collisions in a short scattering cell it is demonstrated that, at certain impact energies, approximately 4% of the scattered positrons can be detected as o-Ps atoms collimated in a 6 0 cone about the incident positron direction. (author)

  14. Evolution of native point defects in ZnO bulk probed by positron annihilation spectroscopy

    Science.gov (United States)

    Peng, Cheng-Xiao; Wang, Ke-Fan; Zhang, Yang; Guo, Feng-Li; Weng, Hui-Min; Ye, Bang-Jiao

    2009-05-01

    This paper studies the evolution of native point defects with temperature in ZnO single crystals by positron lifetime and coincidence Doppler broadening (CDB) spectroscopy, combined with the calculated results of positron lifetime and electron momentum distribution. The calculated and experimental results of the positron lifetime in ZnO bulk ensure the presence of zinc monovacancy, and zinc monovacancy concentration begins to decrease above 600 °C annealing treatment. CDB is an effective method to distinguish the elemental species, here we combine this technique with calculated electron momentum distribution to determine the oxygen vacancies, which do not trap positrons due to their positive charge. The CDB spectra show that oxygen vacancies do not appear until 600 °C annealing treatment, and increase with the increase of annealing temperature. This study supports the idea that green luminescence has a close relation with oxygen vacancies.

  15. Evolution of native point defects in ZnO bulk probed by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Cheng-Xiao, Peng; Ke-Fan, Wang; Yang, Zhang; Feng-Li, Guo; Hui-Min, Weng; Bang-Jiao, Ye

    2009-01-01

    This paper studies the evolution of native point defects with temperature in ZnO single crystals by positron lifetime and coincidence Doppler broadening (CDB) spectroscopy, combined with the calculated results of positron lifetime and electron momentum distribution. The calculated and experimental results of the positron lifetime in ZnO bulk ensure the presence of zinc monovacancy, and zinc monovacancy concentration begins to decrease above 600 °C annealing treatment. CDB is an effective method to distinguish the elemental species, here we combine this technique with calculated electron momentum distribution to determine the oxygen vacancies, which do not trap positrons due to their positive charge. The CDB spectra show that oxygen vacancies do not appear until 600 °C annealing treatment, and increase with the increase of annealing temperature. This study supports the idea that green luminescence has a close relation with oxygen vacancies

  16. Evaluation of blood--brain barrier permeability changes in rhesus monkeys and man using 82Rb and positron emission tomography

    International Nuclear Information System (INIS)

    Yen, C.K.; Budinger, T.F.

    1981-01-01

    Dynamic positron tomography of the brain with 82 Rb, obtained from a portable generator [ 82 Sr (25 days) -- 82 Rb (76 sec)], provides a means of studying blood-brain barrier (BBB) permeability in physiological and clinical investigations. The BBB in rhesus monkeys was opened unilaterally by intracarotid infusion of 3 M urea. This osmotic barrier opening allowed entry into the brain of intravenously administered rubidium chloride. The BBB opening was demonstrated noninvasively using 82 Rb and positron emission tomography and corroborated by the accumulation of 86 Rb in tissue samples. Positron emission tomography studies can be repeated every 5 min and indicate that dynamic tomography or static imaging can be used to study BBB permeability changes induced by a wide variety of noxious stimuli. Brain tumors in human subjects are readily detected because of the usual BBB permeability disruption in and around the tumors

  17. Fluorinated tracers for imaging cancer with positron emission tomography

    International Nuclear Information System (INIS)

    Couturier, Olivier; Chatal, Jean-Francois; Luxen, Andre; Vuillez, Jean-Philippe; Rigo, Pierre; Hustinx, Roland

    2004-01-01

    2-[ 18 F]fluoro-2-deoxy-d-glucose (FDG) is currently the only fluorinated tracer used in routine clinical positron emission tomography (PET). Fluorine-18 is considered the ideal radioisotope for PET imaging owing to the low positron energy (0.64 MeV), which not only limits the dose rate to the patient but also results in a relatively short range of emission in tissue, thereby providing high-resolution images. Further, the 110-min physical half-life allows for high-yield radiosynthesis, transport from the production site to the imaging site and imaging protocols that may span hours, which permits dynamic studies and assessment of potentially fairly slow metabolic processes. The synthesis of fluorinated tracers as an alternative to FDG was initially tested using nucleophilic fluorination of the molecule, as performed when radiolabelling with iodine-124 or bromide-76. However, in addition to being long, with multiple steps, this procedure is not recommended for bioactive molecules containing reactive groups such as amine or thiol groups. Radiochemical yields are also often low. More recently, radiosynthesis from prosthetic group precursors, which allows easier radiolabelling of biomolecules, has led to the development of numerous fluorinated tracers. Given the wide availability of 18 F, such tracers may well develop into important routine tracers. This article is a review of the literature concerning fluorinated radiotracers recently developed and under investigation for possible PET imaging in cancer patients. Two groups can be distinguished. The first includes ''generalist'' tracers, i.e. tracers amenable to use in a wide variety of tumours and indications, very similar in this respect to FDG. These are tracers for non-specific cell metabolism, such as protein synthesis, amino acid transport, nucleic acid synthesis or membrane component synthesis. The second group consists of ''specific'' tracers for receptor expression (i.e. oestrogens or somatostatin), cell

  18. Cerebello-cerebral functional relationship in spinocerebellar degeneration using positron emission tomography

    International Nuclear Information System (INIS)

    Koshi, Yasuhiko; Kitamura, Shin; Sakayori, Osamu; Komaba, Yuichi; Terashi, Akiro

    1995-01-01

    In order to investigate the laterality of cerebellar ataxia and its influence for the cerebral cortex in spinocerebellar degeneration (SCD), regional cerebral blood flow (rCBF) was measured using positron emission tomography (PET) in 10 patients with sporadic olivopontocerebellar atrophy (sOPCA), 7 patients with hereditary SCD (hSCD), and 10 age matched control subjects. The laterality of cerebellar ataxia was evaluated by the total score of the difference between left and right limbs of three limb-coordination tests. The lateralities of rCBF were calculated by asymmetry indices (AIs) of each region of interest in the cerebellum, thalamus, caudate, putamen, cerebral cortices. The laterality of cerebellar ataxia was significantly correlated with AI in the cerebellum in patients with sOPCA. Furthermore, significant negative correlations were observed between AI in the cerebellum and each AI in the thalamus, frontal cortex in patients with sOPCA. However, no correlations were observed between AI in the cerebellum and the other AIs in controls and patients with h SCD. Duration of illness in patients with sOPCA with laterality is shorter than that in patients without laterality. These results suggest that the existence of crossed cerebello-cerebral diaschisis (CCCD) resulting from transneuronal deactivation through cerebello-thalamo-cerebral pathway in patients with the early stage of sOPCA with laterality. (author)

  19. Cerebello-cerebral functional relationship in spinocerebellar degeneration using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Koshi, Yasuhiko; Kitamura, Shin; Sakayori, Osamu; Komaba, Yuichi; Terashi, Akiro [Nippon Medical School, Tokyo (Japan)

    1995-07-01

    In order to investigate the laterality of cerebellar ataxia and its influence for the cerebral cortex in spinocerebellar degeneration (SCD), regional cerebral blood flow (rCBF) was measured using positron emission tomography (PET) in 10 patients with sporadic olivopontocerebellar atrophy (sOPCA), 7 patients with hereditary SCD (hSCD), and 10 age matched control subjects. The laterality of cerebellar ataxia was evaluated by the total score of the difference between left and right limbs of three limb-coordination tests. The lateralities of rCBF were calculated by asymmetry indices (AIs) of each region of interest in the cerebellum, thalamus, caudate, putamen, cerebral cortices. The laterality of cerebellar ataxia was significantly correlated with AI in the cerebellum in patients with sOPCA. Furthermore, significant negative correlations were observed between AI in the cerebellum and each AI in the thalamus, frontal cortex in patients with sOPCA. However, no correlations were observed between AI in the cerebellum and the other AIs in controls and patients with h SCD. Duration of illness in patients with sOPCA with laterality is shorter than that in patients without laterality. These results suggest that the existence of crossed cerebello-cerebral diaschisis (CCCD) resulting from transneuronal deactivation through cerebello-thalamo-cerebral pathway in patients with the early stage of sOPCA with laterality. (author).

  20. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation

    DEFF Research Database (Denmark)

    Law, I; Iida, H; Holm, S

    2000-01-01

    One of the most limiting factors for the accurate quantification of physiologic parameters with positron emission tomography (PET) is the partial volume effect (PVE). To assess the magnitude of this contribution to the measurement of regional cerebral blood flow (rCBF), the authors have formulated...... or 3D). Furthermore, the authors wanted to measure the activation response in the occipital gray matter compartment, and in doing so test the stability of the PTF, during perturbations of rCBF induced by visual stimulation. Eight dynamic PET scans were acquired per subject (n = 8), each for a duration...... of 6 minutes after IV bolus injection of H2(15)O. Four of these scans were performed using 2D and four using 3D acquisition. Visual stimulation was presented in four scans, and four scans were during rest. Model C was found optimal based on Akaike's Information Criteria (AIC) and had the smallest...