Sample records for h2 regions

  1. H2 region detection

    International Nuclear Information System (INIS)

    Comte, G.


    The now classical technique of detection of HII regions is by means of photography and/or interferometry through narrow-band interference filters, with a large aperture ratio of the imaging optics. It enables the detailed study of the spiral structure and the repartition of ionized gas in our Galaxy as well as in the external galaxies [fr

  2. H2O sources in regions of star formation

    International Nuclear Information System (INIS)

    Lo, K.Y.; Burke, B.F.; Haschick, A.D.


    Regions and objects believed to be in early stages of stellar formation have been searched for H 2 O 22-GHz line emission with the Haystack 120-foot (37 m) telescope. The objects include radio condensations, infrared objects in H ii regions, and Herbig-Haro objects. Nine new H 2 O sources were detected in the vicinity of such objects, including the Sharpless H ii regions S152, S235, S255, S269, G45.1+0.1, G45.5+0.1, AFCRL infrared object No. 809--2992, and Herbig-Haro objects 1 and 9. The new H 2 O sources detected in H ii regions are associated, but not coincident, with the the radio condensations. Water vapor line emission was detected in approx.25 percent of the regions searched. The association of H 2 O sources with regions of star formation is taken to be real. The spatial relationship of H 2 O sources to infrared objects, radio condensations, class I OH sources, and molecular clouds are discussed. The suggestion is made that an H 2 O source may be excited by a highly obscured star of extreme youth

  3. Properties of Highly Rotationally Excited H2 in Photodissociation Regions (United States)

    Cummings, Sally Jane; Wan, Yier; Stancil, Phillip C.; Yang, Benhui H.; Zhang, Ziwei


    H2 is the dominant molecular species in the vast majority of interstellar environments and it plays a crucial role as a radiative coolant. In photodissociation regions, it is one of the primary emitters in the near to mid-infrared which are due to lines originating from highly excited rotational levels. However, collisional data for rotational levels j>10 are sparse, particularly for H2-H2 collisions. Utilizing new calculations for para-H2 and ortho-H2 collisional rate coefficients with H2 for j as high as 30, we investigate the effects of the new results in standard PDR models with the spectral simulation package Cloudy. We also perform Cloudy models of the Orion Bar and use Radex to explore rotational line ratio diagnostics. The resulting dataset of H2 collisional data should find wide application to other molecular environments. This work was support by Hubble Space Telescope grant HST-AR-13899.001-A and NASA grants NNX15AI61G and NNX16AF09G.

  4. H2O masers in star-forming regions

    International Nuclear Information System (INIS)

    Downes, D.


    Water vapour near star forming regions was first detected by Cheung et al. (1969) and shortly thereafter was recognised to be maser emission. In spite of this 15 year history of H 2 O observations, the problem of interpreting such strong H 2 O masers as W49 and Orion is still very acute. Not one of the models now available can explain in an unconstrained fashion why a very large maser flux can emanate from clouds of such small size. Whereas some models proposed to explain OH masers have retained their plausibility under the pressure of new observations, H 2 O models have not. The author outlines the background of the H 2 O problem, stating that the strongest of the masers discovered are still not satisfactorily explained today. (Auth.)

  5. Electron streaking in the autoionization region of H2

    International Nuclear Information System (INIS)

    Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando


    We use a UV-pump/IR-probe scheme, combining a single attosecond UV pulse and a 750 nm IR pulse, to explore laser-assisted photoionization of the hydrogen molecule in the autoionization region. The electron energy distributions exhibit unusual streaking patterns that are explored for different angles of the electron ejection with respect to the polarization vector and the molecular axis. Moreover, by controlling the time delay between the pulses, we observe that one can suppress the autoionization channel. (paper)

  6. Photoionization Models of the H_2 Emission of the Narrow Line Region of AGNs (United States)

    Aleman, I.; Gruenwald, R.


    The excitation mechanism of the narrow line region (NLR) of AGNs is still an open question. Excitation by UV radiation from O and B stars, x-rays from the central black hole, shock from supernovae or jets, or a combination of these mechanisms have been suggested. In the present work, we use photoionization models to study the excitation mechanisms of the H_2 infrared emission lines in the NLR. In the literature, analyzes of the H_2 emission have been done assuming that the molecules is present only in neutral regions (photodissociation regions, x-ray-dominated regions, or shocks; Veilleux et al. 1997, Krabbe et al. 2000, Rigopoulou et al. 2002, Rodriguez-Ardila et al. 2004, 2005, and Davies et al. 2005). However, they are not conclusive. In previous work (Aleman & Gruenwald 2004, 2011), we show that the H_2 emission from the ionized region of PNe can be significant for planetary nebulae (PNe) with hot central stars (T⋆ > 150000 K). Such stars produce copious amounts of high energy photons, which create an extended partially ionized region that favors the H_2 survival. The conditions in the NLR are similar to those in PNe with hot central stars, so we can expect that the H_2 emission might also be important. We obtain and analyze a grid of photoionization models for different NRL parameters. We study the resulting H_2 density and emission, as well as, the formation, destruction, excitation, and de-excitation mechanisms. The higher values observed for the H_2 1-0 S(1)/Brγ ratio cannot be reproduced by our models. The calculated ratios are between 10^-8 and 10^-1, while the observational ration can be as high as 10. The calculated ratio is strongly anti-correlated with the ionization parameter (U) and only models with U<10-3 result in ratios inside the observational range. We show that the NLR is an environment more hostile to the H_2 molecule than the ionized region of PNe. Another interesting result of our calculations is that the H_2 formation on grain surfaces

  7. Long-term Variability of H2CO Masers in Star-forming Regions (United States)

    Andreev, N.; Araya, E. D.; Hoffman, I. M.; Hofner, P.; Kurtz, S.; Linz, H.; Olmi, L.; Lorran-Costa, I.


    We present results of a multi-epoch monitoring program on variability of 6 cm formaldehyde (H2CO) masers in the massive star-forming region NGC 7538 IRS 1 from 2008 to 2015, conducted with the Green Bank Telescope, the Westerbork Radio Telescope , and the Very Large Array. We found that the similar variability behaviors of the two formaldehyde maser velocity components in NGC 7538 IRS 1 (which was pointed out by Araya and collaborators in 2007) have continued. The possibility that the variability is caused by changes in the maser amplification path in regions with similar morphology and kinematics is discussed. We also observed 12.2 GHz methanol and 22.2 GHz water masers toward NGC 7538 IRS 1. The brightest maser components of CH3OH and H2O species show a decrease in flux density as a function of time. The brightest H2CO maser component also shows a decrease in flux density and has a similar LSR velocity to the brightest H2O and 12.2 GHz CH3OH masers. The line parameters of radio recombination lines and the 20.17 and 20.97 GHz CH3OH transitions in NGC 7538 IRS 1 are also reported. In addition, we observed five other 6 cm formaldehyde maser regions. We found no evidence of significant variability of the 6 cm masers in these regions with respect to previous observations, the only possible exception being the maser in G29.96-0.02. All six sources were also observed in the {{{H}}}213{CO} isotopologue transition of the 6 cm H2CO line; {{{H}}}213{CO} absorption was detected in five of the sources. Estimated column density ratios [{{{H}}}212{CO}]/[{{{H}}}213{CO}] are reported.

  8. Genome-wide function of H2B ubiquitylation in promoter and genic regions. (United States)

    Batta, Kiran; Zhang, Zhenhai; Yen, Kuangyu; Goffman, David B; Pugh, B Franklin


    Nucleosomal organization in and around genes may contribute substantially to transcriptional regulation. The contribution of histone modifications to genome-wide nucleosomal organization has not been systematically evaluated. In the present study, we examine the role of H2BK123 ubiquitylation, a key regulator of several histone modifications, on nucleosomal organization at promoter, genic, and transcription termination regions in Saccharomyces cerevisiae. Using high-resolution MNase chromatin immunoprecipitation and sequencing (ChIP-seq), we map nucleosome positioning and occupancy in mutants of the H2BK123 ubiquitylation pathway. We found that H2B ubiquitylation-mediated nucleosome formation and/or stability inhibits the assembly of the transcription machinery at normally quiescent promoters, whereas ubiquitylation within highly active gene bodies promotes transcription elongation. This regulation does not proceed through ubiquitylation-regulated histone marks at H3K4, K36, and K79. Our findings suggest that mechanistically similar functions of H2B ubiquitylation (nucleosome assembly) elicit different functional outcomes on genes depending on its positional context in promoters (repressive) versus transcribed regions (activating).

  9. Abundances and Excitation of H2, H3+ & CO in Star-Forming Regions (United States)

    Kulesa, Craig A.

    Although most of the 123 reported interstellar molecules to date have been detected through millimeter-wave emission-line spectroscopy, this technique is inapplicable to non-polar molecules like H2 and H3+, which are central to our understanding of interstellar chemistry. Thus high resolution infrared absorption-line spectroscopy bears an important role in interstellar studies: chemically important non-polar molecules can be observed, and their abundances and excitation conditions can be referred to the same ``pencil beam'' absorbing column. In particular, through a weak quadrupole absorption line spectrum at near-infrared wavelengths, the abundance of cold H2 in dark molecular clouds and star forming regions can now be accurately measured and compared along the same ``pencil beam'' line of sight with the abundance of its most commonly cited surrogate, CO, and its rare isotopomers. Also detected via infrared line absorption is the pivotal molecular ion H3+, whose abundance provides the most direct measurement of the cosmic ray ionization rate in dark molecular clouds, a process that initiates the formation of many other observed molecules there. Our growing sample of H2 and CO detections now includes detailed multi-beam studies of the ρ Ophiuchi molecular cloud and NGC 2024 in Orion. We explore the excitation and degree of ortho- and para-H2 thermalization in dark clouds, variation of the CO abundance over a cloud, and the relation of H2 column density to infrared extinction mapping, far-infrared/submillimeter dust continuum emission, and large scale submillimeter CO, [C I] and HCO+ line emission -- all commonly invoked to indirectly trace H2 during the past 30+ years. For each of the distinct velocity components seen toward some embedded young stellar objects, we are also able to determine the temperature, density, and a CO/H2 abundance ratio, thus unraveling some of the internal structure of a star-forming cloud. H2 and H3+ continue to surprise and delight us

  10. Acetylene C2H 2 retrievals from MIPAS data and regions of enhanced upper tropospheric concentrations in August 2003

    Directory of Open Access Journals (Sweden)

    V. P. Kanawade


    Full Text Available Acetylene (C2H2 volume mixing ratios (VMRs have been successfully retrieved from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS Level 1B radiances during August 2003, providing the first global map of such data and ratios to CO in the literature. The data presented here contain most information between 300 hPa and 100 hPa with systematic errors less than 10% at the upper levels. Random errors per point are less than 15% at lower levels and are closer to 30% at 100 hPa. Global distributions of the C2H2 and C2H2/CO ratio confirm significant features associated with both the Asian monsoon anticyclone and biomass burning for this important hydrocarbon in a characteristic summer month (August 2003, showing tight correlations regionally, particularly at lower to medium values, but globally emphasising the differences between sources and lifetimes of CO and C2H2. The correlations are seen to be particularly disturbed in the regions of highest C2H2 concentrations, indicating variability in the surface emissions or fast processing. A strong isolation of C2H2 within the Asian monsoon anticyclone is observed, evidencing convective transport into the upper troposphere, horizontal advection within the anticyclone at 200 hPa, distinct gradients at the westward edge of the vortex and formation of a secondary dynamical feature from the eastward extension of the anticyclone outflow over the Asian Pacific. Ratios of C2H2/CO are consistent with the evidence from the cross-sections that the C2H2 is uplifted rapidly in convection. Observations are presented of enhanced C2H2 associated with the injection from biomass burning into the upper troposphere and the outflow from Africa at 200 hPa into both the Atlantic and Indian Oceans. In the biomass burning regions, C2H2 and CO are well correlated, but the uplift is less marked and peaks at lower altitudes compared to the strong effects observed in the Asian monsoon anticyclone. Ratios of C2H2/CO

  11. Solar Cycle Variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere Region (United States)

    Salinas, C. C. J.; Chang, L. C.; Liang, M. C.; Qian, L.; Yue, J.; Russell, J. M., III; Mlynczak, M. G.


    This work aims to present the solar cycle variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere region. These observations are then compared to SD-WACCM outputs of CO2 and H2O in order to understand their physical mechanisms. After which, we attempt to model their solar cycle variations using the default TIME-GCM and the TIME-GCM with MERRA reanalysis as lower-boundary conditions. Comparing the outputs of the default TIME-GCM and TIME-GCM with MERRA will give us insight into the importance of solar forcing and lower atmospheric forcing on the solar cycle variations of CO2 and H2O. The solar cycle influence in the parameters are calculated by doing a multiple linear regression with the F10.7 index. The solar cycle of SABER CO2 is reliable above 1e-2 mb and below 1e-3 mb. Preliminary results from the observations show that SABER CO2 has a stronger negative anomaly due to the solar cycle over the winter hemisphere. MLS H2O is reliable until 1e-2. Preliminary results from the observations show that MLS H2O also has a stronger negative anomaly due to the solar cycle over the winter hemisphere. Both SD-WACCM and the default TIME-GCM reproduce these stronger anomalies over the winter hemisphere. An analysis of the tendency equations in SD-WACCM and default TIME-GCM then reveal that for CO2, the stronger winter anomaly may be attributed to stronger downward transport over the winter hemisphere. For H2O, an analysis of the tendency equations in SD-WACCM reveal that the stronger winter anomaly may be attributed to both stronger downward transport and stronger photochemical loss. On the other hand, in the default TIME-GCM, the stronger winter anomaly in H2O may only be attributed to stronger downward transport. For both models, the stronger downward transport is attributed to enhanced stratospheric polar winter jet during solar maximum. Future work will determine whether setting the lower boundary conditions of TIME-GCM with MERRA will improve the match

  12. + H2

    Indian Academy of Sciences (India)

    (1D. ) + H2 (v = 0, j = 0) →. OH + H is undertaken using the quasiclassical trajectory (QCT) method for the collision energy is in the large length of 1.3 to 43 kcal/mol using Dobbyn and Knowles (DK) surface, and the obtained results are compared with those available from earlier available calculated results on the BR surface ...

  13. Insights into amyloid-like aggregation of H2 region of the C-terminal domain of nucleophosmin. (United States)

    Russo, Anna; Diaferia, Carlo; La Manna, Sara; Giannini, Cinzia; Sibillano, Teresa; Accardo, Antonella; Morelli, Giancarlo; Novellino, Ettore; Marasco, Daniela


    Nucleophosmin (NPM1) is a multifunctional protein involved in a variety of biological processes including the pathogenesis of several human malignancies and is the most frequently mutated gene in Acute Myeloid Leukemia (AML). To deepen the role of protein regions in its biological activities, lately we reported on the structural behavior of dissected C-terminal domain (CTD) helical fragments. Unexpectedly the H2 (residues 264-277) and H3 AML-mutated regions showed a remarkable tendency to form amyloid-like assemblies with fibrillar morphology and β-sheet structure that resulted as toxic when exposed to human neuroblastoma cells. More recently NPM1 was found to be highly expressed and toxic in neurons of mouse models of Huntington's disease (HD). Here we investigate the role of each residue in the β-strand aggregation process of H2 region of NPM1 by performing a systematic alanine scan of its sequence and structural and kinetic analyses of aggregation of derived peptides by means of Circular Dichorism (CD) and Thioflavin T (Th-T) assay. These solution state investigations pointed out the crucial role exerted by the basic amyloidogenic stretch of H2 (264-271) and to shed light on the initial and main interactions involved in fibril formation we performed studies on fibrils deriving from the related Ala peptides through the analysis of fibrils with birefringence of polarized optical microscopy and wide-angle X-ray scattering (WAXS). This analysis suggested that the presence of branched Ile 269 conferred preferential packing patterns that, instead, appeared geometrically hampered by the aromatic side-chain of Phe 268 . Present investigations could be useful to deepen the knowledge of AML molecular mechanisms and the role of cytoplasmatic aggregates of NPM1c+. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Using mineral equilibria to estimate H2O activities in peridotites from the Western Gneiss Region of Norway

    NARCIS (Netherlands)

    Kang, Patricia; Lamb, William M.; Drury, Martyn


    The Earth's mantle is an important reservoir of H2O, and even a small amount of H2O has a significant influence on the physical properties of mantle rocks. Estimating the amount of H2O in rocks from the Earth's mantle would, therefore, provide some insights into the physical properties of this

  15. A Comparative Study of H2 Excitation and Physical Conditions in Interstellar and Circumstellar Photo-dissociation Regions (United States)

    Kaplan, Kyle; Dinerstein, Harriet L.; Jaffe, Daniel Thomas


    “Photo-dissociation” or “Photon-dominated” Regions (PDRs) exist in the ISM at the interfaces between photo-ionized and molecular gas, where UV radiation sets the ionization state, chemistry, and excitation at the edge of the molecular zone. In these regions, excited rotational-vibrational (“rovibrational”) states of the ground electronic state of H2 are fluorescently populated when the absorption of far-UV photons conveys the molecules into excited electronic states from which they rapidly decay. Downward transitions from the excited rovibrational states produce a rich spectrum of near-infrared emission lines. Since these quadrupole lines are generally optically thin, their fluxes scale with the populations of the upper levels of the respective transitions, providing excellent probes of the excitation and physical conditions in the emitting regions. We present and compare high resolution (R~45,000) near-infrared (1.45-2.45 μm) spectra, obtained on the 2.7 m Harlan J. Smith Telescope at McDonald Observatory with the Immersion Grating INfrared Spectrometer (IGRINS) (Park et al. 2014, SPIE, 9147, 1), for a variety of Galactic PDRs including regions of high mass star formation, reflection nebulae, and planetary nebulae. Typically a large number of transitions, up to about 100 individual lines, are seen in each source. We fit grids of Cloudy models (Ferland et al. 2013, RMxAA, 49, 137) to the observed H2 emission to constrain physical parameters such as the temperature, density, and UV field of each PDR and explore the similarities and differences between the various environments where PDRs arise.This work used the Immersion Grating INfrared Spectrometer (IGRINS), developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation (NSF grant AST-1229522) to the University of Texas at Austin, and the Korean GMT Project of KASI. We

  16. H2 blockers (United States)

    Peptic ulcer disease - H2 blockers; PUD - H2 blockers; Gastroesophageal reflux - H2 blockers; GERD - H2 blockers ... H2 blockers are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  17. The HDO/H2O Ratio in Gas in the Inner Regions of a Low-mass Protostar

    DEFF Research Database (Denmark)

    Jørgensen, Jes Kristian; van Dishoeck, Ewine F.


    The HDO/H2O abundance ratio is thought to be a key diagnostic for the evolution of water during the star and planet formation process and thus for its origin on Earth. We here present millimeter-wavelength high angular resolution observations of the deeply embedded protostar NGC 1333-IRAS4B from...

  18. Measurements and modeling of absorption by CO2 + H2O mixtures in the spectral region beyond the CO2 ν3-band head (United States)

    Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.


    In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.

  19. Improved water vapour spectroscopy in the 4174–4300 cm−1 region and its impact on SCIAMACHY HDO/H2O measurements

    Directory of Open Access Journals (Sweden)

    R. A. Scheepmaker


    Full Text Available The relative abundance of the heavy water isotopologue HDO provides a deeper insight into the atmospheric hydrological cycle. The SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY allows for global retrievals of the ratio HDO/H2O in the 2.3 micron wavelength range. However, the spectroscopy of water lines in this region remains a large source of uncertainty for these retrievals. We therefore evaluate and improve the water spectroscopy in the range 4174–4300 cm−1 and test if this reduces systematic uncertainties in the SCIAMACHY retrievals of HDO/H2O. We use a laboratory spectrum of water vapour to fit line intensity, air broadening and wavelength shift parameters. The improved spectroscopy is tested on a series of ground-based high resolution FTS spectra as well as on SCIAMACHY retrievals of H2O and the ratio HDO/H2O. We find that the improved spectroscopy leads to lower residuals in the FTS spectra compared to HITRAN 2008 and Jenouvrier et al. (2007 spectroscopy, and the retrievals become more robust against changes in the retrieval window. For both the FTS and SCIAMACHY measurements, the retrieved total H2O columns decrease by 2–4% and we find a negative shift of the HDO/H2O ratio, which for SCIAMACHY is partly compensated by changes in the retrieval setup and calibration software. The updated SCIAMACHY HDO/H2O product shows somewhat steeper latitudinal and temporal gradients and a steeper Rayleigh distillation curve, strengthening previous conclusions that current isotope-enabled general circulation models underestimate the variability in the near-surface HDO/H2O ratio.

  20. Water in star-forming regions with Herschel (WISH) : IV. A survey of low-J H2O line profiles toward high-mass protostars

    NARCIS (Netherlands)

    van der Tak, F. F. S.; Chavarria, L.; Herpin, F.; Wyrowski, F.; Walmsley, C. M.; van Dishoeck, E. F.; Benz, A. O.; Bergin, E. A.; Caselli, P.; Hogerheijde, M. R.; Johnstone, D.; Kristensen, L. E.; Liseau, R.; Nisini, B.; Tafalla, M.

    Context. Water is a key constituent of star-forming matter, but the origin of its line emission and absorption during high-mass star formation is not well understood. Aims. We study the velocity profiles of low-excitation H2O lines toward 19 high-mass star-forming regions and search for trends with

  1. Reaction rate prediction in the supercritical region of H · + OH"- → e"-_a_q + H_2O using μSR

    International Nuclear Information System (INIS)

    Du, T.; Liu, G.; Beninger, J.; Ghandi, K.


    Knowledge of reaction rates in the supercritical region for reactions caused by the radiolysis of water is needed to prevent damage to future Supercritical Water-Cooled reactors. In particular, the H · + OH"- → e"-_a_q + H_2O reaction is examined experimentally within the supercritical region by usage of muon spin rotation spectroscopy. Using the obtained data and the 'cage effect' theory, the reaction was modelled and plateau-like behaviour near the critical point was accounted for. (author)

  2. Photochemistry of Fe:H2O Adducts in Argon Matrixes: A Combined Experimental and Theoretical Study in the Mid-IR and UV-Visible Regions. (United States)

    Deguin, Vincent; Mascetti, Joëlle; Simon, Aude; Ben Amor, Nadia; Aupetit, Christian; Latournerie, Sandra; Noble, Jennifer A


    The photochemistry of Fe:H 2 O adducts is of interest in fields as diverse as catalysis and astrochemistry. Industrially, iron can be used as a catalyst to convert H 2 O to H 2 , whereas in the interstellar medium it may be an important component of dust grains, influencing the chemistry on their icy surfaces. This study consisted of the deposition and spectral characterization of binary systems of atomic iron with H 2 O in cryogenic argon matrixes. In this way, we were able to obtain information about the interaction of the two species; we observed the formation of adducts of iron monomers and dimers with water molecules in the mid-IR and UV-visible spectral domains. Upon irradiation with a UV radiation source, the iron species were inserted into the water molecules to form HFeOH and HFe 2 OH, leading in some cases to the formation of FeO possibly accompanied by the production of H 2 . DFT and correlated multireference wave function calculations confirmed our attributions. This combination of IR and UV-visible spectroscopy with theoretical calculations allowed us to determine, for the first time, the spectral characteristics of iron adducts and their photoproducts in the UV-visible and in the OH stretching region of the mid-IR domain.

  3. Star formation in the inner galaxy: a far-infrared and radio study of two H2 regions

    International Nuclear Information System (INIS)

    Lester, D.F.; Dinerstein, H.L.; Werner, M.W.; Harvey, P.M.; Evans, N.J.II; Brown, R.L.


    Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy H II regions G30.8-0.0 (in the W43 complex) and G25.4-02., along with radio and molecular line measurements at selected positions. An effort is made to understand far infrared wavelingths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. For G25.4-0.2, the radio recombination line and CO line data permit resolution of the distance ambiguity for this source. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright H II regions. Using revised distances of 4.3 kpc for G26.4SE and 12 kpc for G25.4NW, that the latter, which is apparently the fainter of the two sources, is actually the more luminous. Though it is not seen on the Palomar Sky Survey, G25.4SE is easily visible in the 9532A line of S III and is mapped in this line. The ratio of total luminosity to ionizing luminosity is very similar to that of H II regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated

  4. Star formation in the inner galaxy: a far-infrared and radio study of two H2 regions

    International Nuclear Information System (INIS)

    Lester, D.F.; Dinerstein, H.L.; Werner, M.W.; Harvey, P.M.; Evans, N.J.; Brown, R.L.


    Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy HII regions G30.8-0.0 (in the W43 complex) and G25.4-0.2, along with radio and molecular line measurements at selected positions. The purpose of this study is an effort to understand star formation in the molecular ring at 5 kpc in galactic radius. Measurements at several far infrared wavelengths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. Using radio recombination line and CO line data for G25.4-0.2, the distance ambiguity for this source is resolved. The large distance previously ascribed to the entire complex is found to apply to only one of the two main components. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright HII regions. Using the revised distances of 4.3 kpc for G25.4SE and 12 kpc for G25.4NW, it is found that the latter, which is apparently the fainter of the two sources, is actually the more luminous. The ratio of total luminosity to ionizing luminosity is very similar to that of HII regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated

  5. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Law, Ian; Wiltschiøtz, Gordon


    to other forms of altered awareness, for example, relaxation meditation than to deeper sleep stages. We are of the opinion that stage-1 sleep represents the dreaming state of wakefulness, while rapid eye movement (REM) sleep reflects the dreaming state of the unaware, sleeping brain.......This is the first report on the distribution of regional cerebral blood flow (rCBF) changes during stage-1 sleep or somnolence. Two hypotheses were tested: (A) that rCBF differed between the awake relaxed state and stage-1 sleep, (B) that hypnagogic hallucinations frequently experienced at sleep...... onset would be accompanied by measurable changes in rCBF using positron emission tomography (PET). Eight subjects were PET-scanned with (15)O-labeled water injection in three conditions: awake, stage-1 sleep with reportable experiences and stage-1 sleep without reportable experiences...

  6. H2@Scale Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark


    'H2@Scale' is a concept based on the opportunity for hydrogen to act as an intermediate between energy sources and uses. Hydrogen has the potential to be used like the primary intermediate in use today, electricity, because it too is fungible. This presentation summarizes the H2@Scale analysis efforts performed during the first third of 2017. Results of technical potential uses and supply options are summarized and show that the technical potential demand for hydrogen is 60 million metric tons per year and that the U.S. has sufficient domestic resources to meet that demand. A high level infrastructure analysis is also presented that shows an 85% increase in energy on the grid if all hydrogen is produced from grid electricity. However, a preliminary spatial assessment shows that supply is sufficient in most counties across the U.S. The presentation also shows plans for analysis of the economic potential for the H2@Scale concept. Those plans involve developing supply and demand curves for potential hydrogen generation options and as compared to other options for use of that hydrogen.

  7. Dissociative recombination of molecular ions H2+

    International Nuclear Information System (INIS)

    Abarenov, A.V.; Marchenko, V.S.


    The total cross sections of dissociation and dissociative recombination of slow electrons and molecular ions H 2 + have been calculated in terms of the quasiclassical and dipole approximations. In the calculations allowance was made for the quantum nature of vibrational motion of heavy particles and presence of autoionization of divergence states of the H 2 (Σ u , nl) molecules. It is shown that the H 2 + ion dissociation cross sections are dominant in increase of the electron energy in the ε >or approx. 2-3 eV region for H 2 + (v) ion distribution over the vibrational levels characteristic for the beam experiments. 15 refs.; 5 figs

  8. Stratospheric H2O

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.


    Documentation of the extreme aridity (approx. 3% relative humidity) of the lower stratosphere and the rapid decrease of mixing ratio with height just above the polar tropopause (20-fold in the 1st km) was begun by Dobson et al., (1946) in 1943. They recognized that this extreme and persistent aridity must be dynamically maintained else it would have been wiped out by turbulent diffusion. This led Brewer (1949) to hypothesize a stratospheric circulation in which all air enters through the tropical tropopause where it is freeze dried to a mass mixing ratio of 2 to 3 ppM. This dry air then spreads poleward and descends through the polar tropopauses overpowering upward transport of water vapor by diffusion which would otherwise be permitted by the much warmer temperatures of the polar tropopauses. Questions can indeed be raised as to the absolute magnitudes of stratospheric mixing ratios, the effective temperature of the tropical tropopause cold trap, the reality of winter pole freeze-dry sinks and the representativeness of the available observations suggesting an H 2 O mixing ratio maximum just above the tropical tropopause and a constant mixing ratio from the tropopause to 30 to 35 km. However, no model that better fits all of the available data is available, than does the Brewer (1949) hypothesis coupled with a lower stratosphere winter pole, freeze-dry sink, at least over Antarctica

  9. Interaction between Cannabinoidergic System and H2 Receptors in CA1 Region upon Anxiety-like Behaviors in Hole-Board Test

    Directory of Open Access Journals (Sweden)

    M Nasehi


    Full Text Available

    Background and Objectives: Cannabinoids produce a wide array of effects on different species and interact with different neurotransmitter systems in the brain. In the present study, the effects of histaminergic and cannabinoidregic systems as well as their interactions on anxiety-related behaviors were examined on mice. Methods: In this study, at first mice were anesthetized with intra-peritoneal injection of ketamine hydrochloride and xylazine. They were then placed in a stereotaxic apparatus. Two stainless-steel cannuale were placed one mm above CA1 regions of the dorsal hippocampus. After that, seventeen groups of animals were tested with hole board apparatus for measuring anxiety behavior. For the statistical analysis, One-way analysis of variance (ANOVA and Dunnett's test were used. Results: Intra-CA1 injection of WIN55,212-2 (0.1, 0.5µg/mice did not modify anxiety-related behaviors in mice. But administration of AM251 (25 and 50ng/mice, histamine or ranitidine (5µg/mice induced anxiogenic-like response. Also, co-administration of WIN55, 212-2 with histaminergic agents, decreased the anxiogenic-like response of histamine, but not that of ranitidine. Co-administration of an ineffective dose of AM251 with histaminergic drugs did not alter the response induced by these drugs. In all the experiments, locomotor activity was not significantly changed. Conclusion: These results showed that there may be a partial interaction between the cannabinoidergic and the histaminergic systems of the dorsal hippocampus on anxiety-like behaviors.

  10. Van der Waals bond in dimers: H2Ne, H2Ar, H2Kr

    International Nuclear Information System (INIS)

    Waaijer, M.


    The H 2 -inert gas dimers H 2 X, and particularly H 2 Ne, H 2 Ar and H 2 Kr, form the subject of this thesis and are loosely bound van der Waals complexes, which is reflected in the low number of bound states and the small anisotropic interaction. The H 2 X dimers studied are formed in a supersonic nozzle expansion, in which the internal energy is converted into the macroscopic flow energy, establishing an internal temperature drop to 3 K, which favours dimer formation. Because of this cooling the H 2 X dimers relax to the lowest rotational states. The hyperfine transitions have been measured using magnetic beam resonance and yield information about the isotropic as well as the anisotropic intermolecular potential in the range between the classical turning points and in the adjacent part of the repulsive branch. The sensitivity of the method is very high and slight changes in the intermolecular potential cause significant effects. The analysis of the measured hyperfine transitions incorporates all interacting states of the molecule, bound as well as unbound (continuum) states. For H 2 Ne, which is the best studied H 2 -inert gas system from the experimental point of view, the author succeeded in establishing an intermolecular potential, that provides a solid ground for comparison with future ab initio calculations. (Auth.)

  11. H2@Scale Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Pivovar, Bryan


    Final report from the H2@Scale Workshop held November 16-17, 2016, at the National Renewable Energy Laboratory in Golden, Colorado. The U.S. Department of Energy's National Renewable Energy Laboratory hosted a technology workshop to identify the current barriers and research needs of the H2@Scale concept. H2@Scale is a concept regarding the potential for wide-scale impact of hydrogen produced from diverse domestic resources to enhance U.S. energy security and enable growth of innovative technologies and domestic industries. Feedback received from a diverse set of stakeholders at the workshop will guide the development of an H2@Scale roadmap for research, development, and early stage demonstration activities that can enable hydrogen as an energy carrier at a national scale.

  12. Zeolite encapsulation of H2

    International Nuclear Information System (INIS)

    Cooper, S.; Lakner, J.F.


    Experiments with H 2 have shown that it is possible to encapsulate gases in the structure of certain molecular sieves. This method may offer a better means of temporarily storing and disposing of tritium over some others presently in use. The method may also prove safer, and may enable isotope separation, and removal of 3 He. Initial experiments were performed with H 2 to screen potential candidates for use with tritium

  13. Biogeochemistry of dihydrogen (H2). (United States)

    Hoehler, Tori M


    Hydrogen has had an important and evolving role in Earth's geo- and biogeochemistry, from prebiotic to modern times. On the earliest Earth, abiotic sources of H2 were likely stronger than in the present. Volcanic out-gassing and hydrothermal circulation probably occurred at several times the modern rate, due to presumably higher heat flux. The H2 component of volcanic emissions was likely buffered close to the modern value by an approximately constant mantle oxidation state since 3.9 billion years ago, and may have been higher before that, if the early mantle was more reducing. The predominantly ultramafic character of the early, undifferentiated crust could have led to increased serpentinization and release of H2 by hydrothermal circulation, as in modern ultramafic-hosted vents. At the same time, the reactive atmospheric sink for H2 was likely weaker. Collectively, these factors suggest that steady state levels of H2 in the prebiotic atmosphere were 3-4 orders of magnitude higher than at present, and possibly higher still during transient periods following the delivery of Fe and Ni by large impact events. These elevated levels had direct or indirect impacts on the redox state of the atmosphere, the radiation budget, the production of aerosol hazes, and the genesis of biochemical precursor compounds. The early abiotic cycling of H2 helped to establish the environmental and chemical context for the origins of life on Earth. The potential for H2 to serve as a source of energy and reducing power, and to afford a means of energy storage by the establishment of proton gradients, could have afforded it a highly utilitarian role in the earliest metabolic chemistry. Some origin of life theories suggest the involvement of H2 in the first energy-generating metabolism, and the widespread and deeply-branching nature of H2-utilization in the modern tree of life suggests that it was at least a very early biochemical innovation. The abiotic production of H2 via several mechanisms

  14. Contribution of the pre-ionized H2 and the ionized H2+ subsystems to the HHG Spectra of H2 in intense laser fields (United States)

    Iravani, Hossein; Sabzyan, Hassan; Vafaee, Mohsen; Buzari, Behnaz


    Contributions of the pre-ionized H2 (PI-H2) and ionized {{{H}}}2+ subsystems of the two-electron H2 system to its high-order harmonic generation in eight-cycle sin2-like ultrafast intense laser pulses are calculated and analyzed based on the solution of the time-dependent Schrödinger equation for the one-dimensional two-electronic H2 system with fixed nuclei. The laser pulses have λ = 390 and 532 nm wavelengths and I = 1 × 1014, 5 × 1014, 1 × 1015 and 5 × 1015 W cm‑2 intensities. It is found that at the two lower intensities, the PI-H2 subsystem dominantly produces the HHG spectra. However, at the two higher intensities, both PI-H2 and ionized {{{H}}}2+ subsystems contribute comparably to the HHG spectra. In the {{{H}}}2+ subsystem, the symmetry of the populations of {{{H}}}2+(I) and {{{H}}}2+(II) regions (left and right regions of {{{H}}}2+ subsystem) is broken by increasing the laser intensity. Complex patterns and even harmonics also appear at these two higher intensities. For instance, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, the even harmonics are appeared near cutoff region. Interestingly, at 5 × 1015 W cm‑2 intensity and λ = 390 nm wavelength, the even harmonics replaced by the odd harmonics with red shift. At λ = 390 and 532 nm wavelengths and I = 1 × 1015 intensity, the two-electron cutoffs corresponding to nonsequential double-recombination with maximum return kinetic energy of 4.70Up are detected. The HHG spectra of the whole H2 system obtained with and without nuclear dynamics treated classically are approximately similar. However, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, if we take into account nuclear dynamics, the even harmonics which are appeared near cutoff region, replaced by the odd harmonics with blue shift.

  15. Ebrotidina: nuevo antagonista H2

    Directory of Open Access Journals (Sweden)

    Noel Padrón Pérez


    Full Text Available Se realizó una revisión bibliográfica sobre un nuevo antagonista H2, la ebrotidina, que exhibe ventajas con respecto a otros medicamentos antisecretores. Las propiedades gastroprotectoras y la actividad anti H. pylori del fármaco, en el tratamiento de la enfermedad péptica ulcerosa, se mencionan en el presente trabajo.A bibliographic review on the new H2 antagonist, ebrotidine, that presents advantages in comparison with other antisecretory drugs, is made. The gastroprotective properties and the anti H. pylori activity of the drug in the treatment of peptic ulcer are mentioned in this paper.

  16. Genomic constitution of an H-2:Tla variant leukemia. (United States)

    Shen, F W; Chaganti, R S; Doucette, L A; Litman, G W; Steinmetz, M; Hood, L; Boyse, E A


    A TL+ leukemia of a (B6 X A)F1 hybrid mouse (H-2b/H-2a) was previously subjected to immunoselection against H-2a by passage in (B6 X A.SW)F1 mice (H-2b/H-2s). A variant leukemia line was obtained that serologically lacked not only the H-2a phenotype but also the TL phenotype determined by the linked cis Tlaa allele of strain A. The H-2b phenotype and the TL phenotype of the Tlab allele of the B6 strain, which is expressed only by leukemia cells, were retained by the variant. Southern blotting with an H-2 cDNA probe that identifies restriction fragment polymorphisms distinguishing alleles of the H-2 and Tla regions of the B6 and A strains indicates that both the H-2a and Tlaa alleles are missing from the genome of this H-2a:Tlaa negative variant. Since the variant has two apparently unaltered chromosomes 17, where the H-2:Tla complex is situated, and since the intensity of bands in Southern blotting is suggestive of H-2b homozygosity, it is considered that loss of the H-2a:Tlaa haplotype by the variant was accompanied by duplication of the H-2b:Tlab haplotype. The implied change from heterozygosity to homozygosity that the variant has undergone with respect to H-2:Tla was not paralleled by a similar change at the three other loci tested, since the variant retained heterozygosity for Pep-3 (chromosome 1), Gpi-1 (chromosome 7), and Es-1 (chromosome 8).

  17. Self-Driven Photoelectrochemical Splitting of H2S for S and H2 Recovery and Simultaneous Electricity Generation. (United States)

    Luo, Tao; Bai, Jing; Li, Jinhua; Zeng, Qingyi; Ji, Youzhi; Qiao, Li; Li, Xiaoyan; Zhou, Baoxue


    A novel, facile self-driven photoelectrocatalytic (PEC) system was established for highly selective and efficient recovery of H 2 S and simultaneous electricity production. The key ideas were the self-bias function between a WO 3 photoanode and a Si/PVC photocathode due to their mismatched Fermi levels and the special cyclic redox reaction mechanism of I - /I 3 - . Under solar light, the system facilitated the separation of holes in the photoanode and electrons in the photocathode, which then generated electricity. Cyclic redox reactions were produced in the photoanode region as follows: I - was transformed into I 3 - by photoholes or hydroxyl radicals, H 2 S was oxidized to S by I 3 - , and I 3 - was then reduced to I - . Meanwhile, H + was efficiently converted to H 2 in the photocathode region. In the system, H 2 S was uniquely oxidized to sulfur but not to polysulfide (S x n- ) because of the mild oxidation capacity of I 3 - . High recovery rates for S and H 2 were obtained up to ∼1.04 mg h -1 cm -1 and ∼0.75 mL h -1 cm -1 , respectively, suggesting that H 2 S was completely converted into H 2 and S. In addition, the output power density of the system reached ∼0.11 mW cm -2 . The proposed PEC-H 2 S system provides a self-sustaining, energy-saving method for simultaneous H 2 S treatment and energy recovery.

  18. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region. (United States)

    Ndounla, J; Pulgarin, C


    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.

  19. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2 (United States)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.


    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  20. H2O2: A Dynamic Neuromodulator (United States)

    Rice, Margaret E.


    Increasing evidence implicates hydrogen peroxide (H2O2) as an intra- and intercellular signaling molecule that can influence processes from embryonic development to cell death. Most research has focused on relatively slow signaling, on the order of minutes to days, via second messenger cascades. However, H2O2 can also mediate subsecond signaling via ion channel activation. This rapid signaling has been examined most thoroughly in the nigrostriatal dopamine (DA) pathway, which plays a key role in facilitating movement mediated by the basal ganglia. In DA neurons of the substantia nigra, endogenously generated H2O2 activates ATP-sensitive K+ (KATP) channels that inhibit DA neuron firing. In the striatum, H2O2 generated downstream from glutamatergic AMPA receptor activation in medium spiny neurons acts as a diffusible messenger that inhibits axonal DA release, also via KATP channels. The source of dynamically generated H2O2 is mitochondrial respiration; thus, H2O2 provides a novel link between activity and metabolism via KATP channels. Additional targets of H2O2 include transient receptor potential (TRP) channels. In contrast to the inhibitory effect of H2O2 acting via KATP channels, TRP channel activation is excitatory. This review describes emerging roles of H2O2 as a signaling agent in the nigrostriatal pathway and other basal ganglia neurons. PMID:21666063

  1. Extended Structures of Planetary Nebulae Detected in H2 Emission (United States)

    Fang, Xuan; Zhang, Yong; Kwok, Sun; Hsia, Chih-Hao; Chau, Wayne; Ramos-Larios, Gerardo; Guerrero, Martín A.


    We present narrowband near-infrared images of a sample of 11 Galactic planetary nebulae (PNe) obtained in the H2 2.122 μm and Brγ 2.166 μm emission lines and the K c 2.218 μm continuum. These images were collected with the Wide-field Infrared Camera on the 3.6 m Canada–France–Hawaii Telescope (CFHT); their unprecedented depth and wide field of view allow us to find extended nebular structures in H2 emission in several PNe, some of these being the first detection. The nebular morphologies in H2 emission are studied in analogy with the optical images, and indication of stellar wind interactions is discussed. In particular, the complete structure of the highly asymmetric halo in NGC 6772 is witnessed in H2, which strongly suggests interaction with the interstellar medium. Our sample confirms the general correlation between H2 emission and the bipolarity of PNe. The knotty or filamentary fine structures of the H2 gas are resolved in the inner regions of several ring-like PNe, also confirming the previous argument that H2 emission mostly comes from knots or clumps embedded within fully ionized material at the equatorial regions. Moreover, the H2 image of the butterfly-shaped Sh 1-89, after removal of field stars, clearly reveals a tilted ring structure at the waist. These high-quality CFHT images justify follow-up detailed morphokinematic studies that are desired in order to deduce the true physical structures of a few PNe in the sample. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, and France, at the Canada–France–Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  2. H2-H2O-HI Hydrogen Separation in H2-H2O-HI Gaseous Mixture Using the Silica Membrane

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal


    It was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical lS process. Porous alumina tube having pore size of 0.1 μm was modified by chemical vapor deposition using tetraethoxysilane. The permeance single gas of He, H 2 , and N 2 was measured at 300-600 o C. Hydrogen permeance of the modified membrane at a permeation temperature of 600 o C was about 5.22 x 10 -08 mol/Pa m 2 s, and 3.2 x 10 -09 of using gas mixture of H 2 -H 2 O-HI, where as HI permeances was below 1 x 10 -10 mol/Pa m 2 s. The Hydrogen permeance relative was not changed after 25 hours exposure in a mixture of H 2 -H 2 O-HI gas at the temperature of 450 o C. (author)

  3. Dissociative charge exchange of H2+

    International Nuclear Information System (INIS)

    Bruijn, D. de.


    This thesis is devoted to molecular dissociation, in particular the dissociation of the hydrogen molecule H 2 arising from electron capture of its ion H 2 + in a collision. Thereby the important practical question how a chemical bond can be broken is implicitly addressed. This thesis opens (chapter I) with an overview of the available experimental approaches in molecular physics. Further the simple Demkov model for NRCE is described. In chapter II a novel experimental technique for measurements on dissociative processes is introduced which combines a high efficiency with a high energy resolution. A detailed description of the techniques applied in the detector, which has a high spatial and timing resolution with 30 μm and 350 psec FWHM respectively for the detection of one particle, is given in chapter III. A semi-classical theory for NRCE in the medium energy range between a diatomic molecular ion and an atom is developed in chapter IV. The experiments on dissociative charge exchange of H 2 + with Ar, Mg, Na and Cs targets at keV energies are described in Chapter V. The predissociation of the c 3 PIsub(u)-state of H 2 populated after charge exchange of H 2 with several targets at keV energies; is the subject of chapter VI. In chapter VII, orientational oscillations in the cross section for charge exchange of H 2 + with alkali targets are discussed. The last chapter deals with predissociation of highly excited states in H 2 . (Auth.)

  4. Different reaction of core histones H2A and H2B to the red laser radiation

    Directory of Open Access Journals (Sweden)

    Brill G.E.


    Full Text Available Aim: to investigate the influence of red laser irradiation on the processes of self-assembly of core histones H2A and H2B. Material and Methods. Solutions of human histone proteins were used in the work. Self-assembly was studied by the method of wedge dehydration. Image facies analysis consisted in their qualitative characterization and calculation of quantitative indicators with subsequent statistical processing. Results. It was established that linearly polarized laser light of the red region of the spectrum (A=660 nm, 1 J/cm2 significantly modifies the process of self-assembly of core histone H2B, while the structure of the facies of H2A histone changing to a lesser extent. Conclusion. Red laser radiation influences on the on the processes of self-assembly of core histones H2A and H2B. There is a differential sensitivity of different classes of histones to laser action. Histone proteins used in the experiments are present in the form of aqueous salt solutions. Red light realizes the effect seems to be due to the formation of singlet oxygen by direct laser excitation of molecular oxygen.

  5. Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus. (United States)

    Rivera-Casas, Ciro; González-Romero, Rodrigo; Vizoso-Vazquez, Ángel; Cheema, Manjinder S; Cerdán, M Esperanza; Méndez, Josefina; Ausió, Juan; Eirin-Lopez, Jose M


    Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.

  6. Histone H2AX in DNA repair

    International Nuclear Information System (INIS)

    Lewandowska, H.; Szumiel, I.


    The paper reviews the recent reports on the role of the phosphorylated histone H2AX (γ-H2AX). The modification of this histone is an important part of the cellular response to the induction of DNA double strand brakes (DSB) by ionising radiation and other DSB-generating factors. In irradiated cells the modification is carried out mainly by ATM (ataxia-telangiectasia mutated) kinase, the enzyme that starts the alarm signalling upon induction of DSB.γ-H2AX molecules are formed within 1-3 min after irradiation and form foci at the sites of DSB. This seems to be necessary for the recruitment of repair factors that are later present in foci of damaged nuclei. Modification of a constant percentage of H2AX molecules per DSB takes place, corresponding to chromatin domains of megabase of DNA. (author)

  7. Observations of interstellar H2O emission at 183 Gigahertz

    International Nuclear Information System (INIS)

    Waters, J.W.; Gustincic, J.J.; Kakar, R.K.; Kuiper, T.B.H.; Roscoe, H.K.; Swanson, P.N.; Rodriguez Kuiper, E.N.; Kerr, A.R.; Thaddeus, P.


    Line emission at 183 GHz by the 3 13 --2 20 rotational transition of water vapor has been detected from the Orion Nebula with the NASA Kuiper Airborne Observatory 91 cm telescope. The peak antenna temperature of the line is 15 K, its LSR velocity is 8 km s -1 , and its width is 15 km s -1 . The velocity profile has characteristics similar to those for CO:a narrow (approx.4 km s -1 ) ''spike'' centered at 9.5 km s -1 and a broad ''plateau'' with flaring wings centered at approx.8 km s -1 . Our 7'.5 antenna beam did not resolve the source. The 183 GHz H 2 O plateau emission appears enhanced above that expected for thermal excitation if it originates from the no greater than 1' region characteristic of plateau emission from all other observed molecules. The spike emission is consistent with an optically thick source of the approximated size of the well-known molecular ridge in Orion having the H 2 O in thermal equilibrium at Tapprox. =50 K. If this is the case, then the H 2 O column density giving rise to the spike is N/sub H/2/sub O/> or =3 x 10 17 cm -2 . An excitation calculation implies N/sub H/2/sub O/approx. =10 18 cm -2 for a source the size of the molecular ridge. These results imply that H 2 O is one of the more abundant species in the Orion Molecualr Cloud.H 2 O emission at 183 GHz was not detected in Sgr A, Sgr B2, W3, W43, W49, W51, DR 21, NGC 1333, NGC 7027, GL 2591, or the rho Oph cloud; it may have been detected in M17

  8. H2SO4-HNO3-H2O ternary system in the stratosphere (United States)

    Kiang, C. S.; Hamill, P.


    Estimation of the equilibrium vapor pressure over the ternary system H2SO4-HNO3-H2O to study the possibility of stratospheric aerosol formation involving HNO3. It is shown that the vapor pressures for the ternary system H2SO4-HNO3-H2O with weight composition around 70-80% H2SO4, 10-20% HNO3, 10-20% H2O at -50 C are below the order of 10 to the minus 8th mm Hg. It is concluded that there exists more than sufficient nitric acid and water vapor in the stratosphere to participate in ternary system aerosol formation at -50 C. Therefore, HNO3 should be present in stratospheric aerosols, provided that H2SO4 is also present.

  9. Autoionizing np Rydberg states of H2

    International Nuclear Information System (INIS)

    Xu, E.Y.; Helm, H.; Kachru, R.


    We report a study of the autoionizing np Rydberg states near the lowest ionization threshold of H 2 . Using resonant two-photon excitation, intermediate states in specific rotovibrational levels in the double well, E,F 1 Σ/sub g/ + states are prepared. Then, a second, tunable laser is used to photoionize via excitation of the np Rydberg states. Because of the stepwise laser excitation scheme employed in our experiment the photoionization occurs from states with vibrational wave functions very similar to those of the H 2 + core. As a consequence, the autoionizing states appear as nearly symmetric resonances, rather than the highly asymmetric Beutler-Fano profiles observed from the direct photoexcitation from the ground state of H 2 . Our experiments show that the J = 1 np states are broader than the J = 3 np states converging to the same limit, suggesting that the two states autoionize into the epsilon-cp and epsilon-cf continuum, respectively. We compare our observations with a theoretical analysis using a multichannel quantum defect theory. The J = 1 states reveal the profound effect caused by the perturbation of the autoionizing Rydberg series converging to the lowest vibrational and rotational state of H 2 + by low-n states converging to higher vibrational states of the H 2 -ion core

  10. H2@Scale Resource and Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark


    The 'H2@Scale' concept is based on the potential for wide-scale utilization of hydrogen as an energy intermediate where the hydrogen is produced from low cost energy resources and it is used in both the transportation and industrial sectors. H2@Scale has the potential to address grid resiliency, energy security, and cross-sectoral emissions reductions. This presentation summarizes the status of an ongoing analysis effort to quantify the benefits of H2@Scale. It includes initial results regarding market potential, resource potential, and impacts of when electrolytic hydrogen is produced with renewable electricity to meet the potential market demands. It also proposes additional analysis efforts to better quantify each of the factors.

  11. H-2 restriction: Independent recognition of H-2 and foreign antigen by a single receptor (United States)

    Siliciano, Robert F.; Zacharchuk, Charles M.; Shin, Hyun S.


    We describe two situations in which the recognition of hapten can compensate for the lack of recognition of appropriate H-2 gene products in hapten-specific, H-2 restricted, T lymphocyte-mediated cytolysis. First, we show that although recognition of appropriate H-2 gene products is essential for the lysis of target cells bearing a low hapten density, significant hapten-specific lysis of H-2 inappropriate target cells is observed at high levels of target cell derivatization. Secondly, we show that hapten-conjugated anti-H-2 antibody inhibits cytolysis poorly even though its binding to target cell H-2 antigens is equivalent to that of underivatized antibody. These results suggest that hapten and H-2 are recognized independently and are therefore inconsistent with the altered-self model. Although our data do not exclude the dual-recognition model, we prefer to interpret them within the framework of a single-receptor model in which hapten and H-2 are recognized independently by receptors of identical idiotype on the T cell. We postulate that the affinity of these receptors for the relevant H-2 gene product is low enough so that the T cell is not activated by encounters with normal-self cells expressing that H-2 gene product. However, when self cells express in addition a foreign antigen that can also be recognized by the same receptor, then the force of T cell-target cell interaction may be increased sufficiently to activate T cell effector function. PMID:6966404

  12. Formation of high-conductivity regions in SnO2-AOx (A - Ti4+, Zr4+, Sb3+, Sb5+) films exposed to ultraviolet radiation of H2

    International Nuclear Information System (INIS)

    Postovalova, G.G.; Roginskaya, Yu.E.; Zav'yalov, S.A.; Galyamov, B.Sh.; Klimasenko, N.L.


    Composition, structure and electron properties of SnO 2 films doped by Ti, Zr and Sb oxides were studied. The doped SnO 2 films were determined to contain nano-regions of SnO 2 base crystalline solid solutions and amorphous SnO 2 containing Sn 2+ or Sb 3+ ions and residing at the surface of crystallites or between them. These composition and structure peculiarities affect essentially both electron structure and electrical properties of films. Localized 5s-states of the conductivity range diffused boundary of amorphous SnO 2 partially filled with 5s-electrons of Sn 2+ or Sb 3+ ions serving as traps capture free electrons in the crystalline ranges and motivate high resistance of films [ru

  13. H2 molecules and the intercloud medium

    International Nuclear Information System (INIS)

    Hill, J.K.; Hollenbach, D.J.


    We discuss expected column of densities of H 2 in the intercloud medium and the possible use of molecules as indicators of intercloud physical conditions. We treat molecule formation by the H - process and on graphite grains and show that the Barlow-Silk hypothesis of a 1 eV semichemical hydrogen-graphite bond leads to a large enhancement of the intercloud molecule formation rate. Rotational excitation calculations are presented for both cloud and intercloud conditions which show, in agreement with Jura, that the presently observed optically thin H 2 absorption components are more likely to originate in cold clouds than in the intercloud medium

  14. Planetary Nebulae with H2 Emission


    Margarita Rosado; Lorena Arias


    Hacemos una revisión de la emisión en hidrogeno molecular (H2) de las nebulosas planetarias (NPs). Vemos como esta emisión se encuentra asociada a objetos de forma bipolar. Describimos los niveles de energía de la molécula de hidrogeno, los principales mecanismos para poblarlos (choques y fluorescencia) y las formas en que se puede discriminar que mecanismo opera. Proponemos que la cinemática del H2 también puede ser usada para discriminar el mecanismo de excitación de sus líneas de emisión. ...

  15. VUV photoionization cross sections of HO2, H2O2, and H2CO. (United States)

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio


    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  16. Remote control of the dissociative ionization of H2 based on electron-H2 + entanglement (United States)

    Wang, Jun-Ping; He, Feng


    The single ionization of H2 in strong laser fields creates the correlated electron-H2 + pair. Based on such a correlation, we conceive a strategy to control the energy spectra of the freed electron or dissociative fragments by simulating the time-dependent Schrödinger equation. Two attosecond pulses in a train produce the replica of electron-H2 + pairs, which are to be steered by a time-delayed phase-stabilized (mid)infrared laser pulse. By controlling the behavior of the freed electron, the dissociation of H2 + can be controlled even though there is no direct laser-H2 + coupling. On the other hand, the photoelectron energy spectra can be manipulated via laser-H2 + coupling. This study demonstrates the entanglement of molecular quantum wave packets, and affords a route to remotely control molecular dissociative ionization.

  17. Catalytical conversion from ortho-H2 to para-H2

    International Nuclear Information System (INIS)

    Corat, E.J.


    The classical theory of ortho to para-H 2 conversion is discussed, considering the catalytical action of an inhomogeneous magnetic field on a surface with magnetic particles. In particular, the use of charcoal as a catalyst at low temperatures (77 0 K) is considered and some results are presented. The development of a sensor for the determination of para-H 2 concentration in H 2 gas is studied. Experimental results with this sensor are also shown. (Author) [pt

  18. Study of the solubility, viscosity and density in Na+, Zn2+/Cl− − H2O, Na+ − Zn2+ − (H2PO2)− − H2O, Na+, Cl−/(H2PO2)− − H2O, and Zn2+, Cl−/(H2PO2)− − H2O ternary systems, and in Na+, Zn2+/Cl−, (H2PO2)−//H2O reciprocal quaternary system at 273.15 K

    International Nuclear Information System (INIS)

    Adiguzel, Vedat; Erge, Hasan; Alisoglu, Vahit; Necefoglu, Hacali


    Highlights: • The physicochemical properties of ternary and one quaternary have been studied. • Reciprocal quaternary systems’ solubility and phase equilibrium have been studied. • In all systems the solid phases have been found. • It was found that Zn(H 2 PO 2 ) 2 salt contains 70% of the general crystallization field. - Abstract: The solubility and the physicochemical properties (density, viscosity) in the Na-Zn- Cl-H 2 O), (Na + Zn + H 2 PO 2 + H 2 O), (Na + Cl + H 2 PO 2 + H 2 O), and (Zn + Cl + H 2 PO 2 + H 2 O) ternaries, and in Na + , Zn 2+ /Cl − , (H 2 PO 2 ) − //H 2 O reciprocal quaternary systems at T = 273.15 K were investigated by using the isothermal method. The diagrams of ternary salts systems, (NaCl + ZnCl 2 + H 2 O), (NaCl + NaH 2 PO 2 + H 2 O), (NaH 2 PO 2 + Zn(H 2 PO 2 ) 2 + H 2 O), (ZnCl 2 + Zn(H 2 PO 2 ) 2 + H 2 O), are plotted in figures 1–4. However, whole ions of reciprocal quaternary salt systems are plotted in figure 5. Additionally, the density and viscosity values of ternary systems vs. their corresponding composition values in weight per cent are plotted in figures 6–10. At the (i) (ZnCl 2 + Zn(H 2 PO 2 ) 2 + H 2 O), (ii) (NaCl + ZnCl 2 + H 2 O), (iii) (NaCl + NaH 2 PO 2 + H 2 O), (iv) (NaH 2 PO 2 + Zn(H 2 PO 2 ) 2 + H 2 O) ternary systems the solid phase compositions have been determined as: (i) Zn(H 2 PO 2 ) 2 ⋅ H 2 O, Zn(H 2 PO 2 ) 2 , ZnCl 2 ⋅ 2H 2 O, (ii) NaCl, 2NaCl ⋅ ZnCl 2 ⋅ 2H 2 O, and ZnCl 2 ⋅ 2H 2 O, (iii) NaCl and NaH 2 PO 2 ⋅ H 2 O, (iv) Zn(H 2 PO 2 ) 2 ⋅ H 2 O and NaH 2 PO 2 ⋅ H 2 O, respectively. On the other hand reciprocal quaternary system was observed as: ZnCl 2 ⋅ 2H 2 O, 2NaCl ⋅ ZnCl 2 ⋅ 2H 2 O, Zn(H 2 PO 2 ) 2 ⋅ H 2 O, NaH 2 PO 2 ⋅ H 2 O, NaCl. According to results, the least soluble salt was Zn(H 2 PO 2 ) 2 . The crystallization field of this salt, being the largest in comparison with those of other salts, occupied 70% of the general crystallization field

  19. Fluorescent excitation of interstellar H2

    NARCIS (Netherlands)

    Black, J.H.; Dishoeck, van E.F.


    The infrared emission spectrum of H2 excited by ultraviolet absorption, followed by fluorescence, was investigated using comprehensive models of interstellar clouds for computing the spectrum and to assess the effects on the intensity to various cloud properties, such as density, size, temperature,

  20. EPA H2O Software Tool (United States)

    EPA H2O allows user to: Understand the significance of EGS in Tampa Bay watershed; visually analyze spatial distribution of the EGS in Tampa Bay watershed; obtain map and summary statistics of EGS values in Tampa Bay watershed; analyze and compare potential impacts of development...

  1. The molecular hydrogen explorer H2EX

    NARCIS (Netherlands)

    Boulanger, F.; Maillard, J. P.; Appleton, P.; Falgarone, E.; Lagache, G.; Schulz, B.; Wakker, B. P.; Bressan, A.; Cernicharo, J.; Charmandaris, V.; Drissen, L.; Helou, G.; Henning, T.; Lim, T. L.; Valentjin, E. A.; Abergel, A.; Bourlot, J. Le; Bouzit, M.; Cabrit, S.; Combes, F.; Deharveng, J. M.; Desmet, P.; Dole, H.; Dumesnil, C.; Dutrey, A.; Fourmond, J. J.; Gavila, E.; Grangé, R.; Gry, C.; Guillard, P.; Guilloteau, S.; Habart, E.; Huet, B.; Joblin, C.; Langer, M.; Longval, Y.; Madden, S. C.; Martin, C.; Miville-Deschênes, M. A.; Pineau Des Forêts, G.; Pointecouteau, E.; Roussel, H.; Tresse, L.; Verstraete, L.; Viallefond, F.; Bertoldi, F.; Jorgensen, J.; Bouwman, J.; Carmona, A.; Krause, O.; Baruffolo, A.; Bonoli, C.; Bortoletto, F.; Danese, L.; Granato, G. L.; Pernechele, C.; Rampazzo, R.; Silva, L.; Zotti, G. De; Pardo, J.; Spaans, M.; van der Tak, F. F. S.; Wild, W.; Ferlet, M. J.; Ramsay Howat, S. K.; Smith, M. D.; Swinyard, B.; Wright, G. S.; Joncas, G.; Martin, P. G.; Davis, C. J.; Draine, B. T.; Goldsmith, P. F.; Mainzer, A. K.; Ogle, P.; Rinehart, S. A.; Stacey, G. J.; Tielens, A. G. G. M.

    The Molecular Hydrogen Explorer, H2 EX, was proposed in response to the ESA 2015 - 2025 Cosmic Vision Call as a medium class space mission with NASA and CSA participations. The mission, conceived to understand the formation of galaxies, stars and planets from molecular hydrogen, is designed to

  2. EPA H2O User Manual (United States)

    EPA H2O is a software tool designed to support research being conducted in the Tampa Bay watershed to provide information, data, and approaches and guidance that communities can use to examine alternatives when making strategic decisions to support a prosperous and environmentall...

  3. Isotopic equilibrium constants of the deuterium exchange between HDO and H2S, H2Se and H2Te

    International Nuclear Information System (INIS)

    Marx, D.


    We have determined experimentally the equilibrium constant K of each of the following isotope exchanges: SH 2 + OHD ↔ SHD + OH 2 ; SeH 2 + OHD ↔ SeHD + OH 2 ; TeH 2 + OHD ↔ TeHD + OH 2 . In gaseous phase, statistical thermodynamics leads to the expression: K (Z OHD x Z RH 2 )/(Z OH 2 x Z RHD ) x e W/T (R being the elements S, Se or Te). Z, the partition functions, have been calculated and, through our experimental results, the constant W has been determined. Having obtained W, the equilibrium constant K has been calculated for a series of temperatures. (author) [fr

  4. Study of ZrO2-H2SO4-(NH4)2SO4(NH4Cl)-H2O systems

    International Nuclear Information System (INIS)

    Motov, D.L.; Sozinova, Yu.P.; Rys'kina, M.P.


    Regions of formation, composition and solubility of ammonium sulfatozirconates (ASZ) in ZrO 2 -H 2 SO 4 -(NH 4 ) 2 SO 4 (NH 4 Cl)-H 2 O systems at 25 and 75 deg C are studied by the isothermal method. Five ASZ: (NH 4 ) 2 Zr(OH) 2 (SO 4 ) 2 , NH 4 ZrOH(SO 4 ) 2 xH 2 O, NH 4 ZrO 0.5 (OH) 2 SO 4 x1.5H 2 O, (NH 4 ) 2 Zr(SO 4 ) 3 x2H 2 O, (NH 4 ) 4 Zr(SO 4 ) 4 x4H 2 O are detected, their properties are investigated. Main sulfates are new compounds never described ealier

  5. Reassessing the variability in atmospheric H2 using the two-way nested TM5 model

    Energy Technology Data Exchange (ETDEWEB)

    Pieterse, G.; Batenburg, A.M; Roeckmann, T. [Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht (Netherlands); Krol, M.C. [Department of Meteorology and Air Quality at Wageningen University, Wageningen (Netherlands); Brenninkmeijer, C.A.M. [Max-Planck-Institut fuer Chemie, Air Chemistry Division, Mainz (Germany); Popa, M.E.; Vermeulen, A.T. [Department of Air Quality and Climate Research at the Energy Research Centre of the Netherlands ECN, Petten (Netherlands); O' Doherty, S.; Grant, A. [School of Chemistry, University of Bristol, Bristol (United Kingdom); Steele, L.P.; Krummel, P.B.; Langenfelds, R.L. [Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Victoria (Austria); Wang, H.J. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA (United States); Schmidt, M.; Yver, C. [Laboratoire des Sciences du Climat et de l' Environnement (LSCE), Gif-sur-Yvette (France); Jordan, A. [Max-Planck Institut fuer Biogeochemie, Jena (Germany); Engel, A. [Institut fuer Meteorologie und Geophysik, Goethe-Universitaet Frankfurt, Frankfurt (Germany); Fisher, R.E.; Lowry, D.; Nisbet, E.G. [Department of Earth Sciences, Royal Holloway, University of London, Egham (United Kingdom); Reimann, S.; Vollmer, M.K.; Steinbacher, M. [Empa, Swiss Federal Institute for Materials Science and Technology, Laboratory for Air Pollution/Environmental Technology, Duebendorf (Switzerland); Hammer, S. [Institut fuer Umweltphysik, Heidelberg Universitaet, Heidelberg (Germany); Forster, G.; Sturges, W.T. [School of Environmental Sciences, University of East Anglia, Norwich (United Kingdom)


    This work reassesses the global atmospheric budget of H2 with the TM5 model. The recent adjustment of the calibration scale for H2 translates into a change in the tropospheric burden. Furthermore, the ECMWF Reanalysis-Interim (ERA-Interim) data from the European Centre for Medium-Range Weather Forecasts (ECMWF) used in this study show slower vertical transport than the operational data used before. Consequently, more H2 is removed by deposition. The deposition parametrization is updated because significant deposition fluxes for snow, water, and vegetation surfaces were calculated in our previous study. Timescales of 1-2h are asserted for the transport of H2 through the canopies of densely vegetated regions. The global scale variability of H2 and {rho}({Delta}H2) is well represented by the updated model. H2 is slightly overestimated in the Southern Hemisphere because too little H2 is removed by dry deposition to rainforests and savannahs. The variability in H2 over Europe is further investigated using a high-resolution model subdomain. It is shown that discrepancies between the model and the observations are mainly caused by the finite model resolution. The tropospheric burden is estimated at 165{+-}8 Tg H2. The removal rates of H2 by deposition and photochemical oxidation are estimated at 53{+-}4 and 23{+-}2 Tg H2/yr, resulting in a tropospheric lifetime of 2.2{+-}0.2 year.

  6. Reactions of electronically excited molecular nitrogen with H2 and H2O molecules: theoretical study (United States)

    Pelevkin, Alexey V.; Sharipov, Alexander S.


    Comprehensive quantum chemical analysis with the usage of the second-order perturbation multireference XMCQDPT2 approach was carried out to study the processes in the   +  H2 and   +  H2O systems. The energetically favorable reaction pathways have been revealed based on the exploration of potential energy surfaces. It has been shown that the reactions   +  H2 and   +  H2O occur with small activation barriers and, primarily, lead to the formation of N2H  +  H and N2H  +  OH products, respectively. Further, the interaction of these species could give rise to the ground state and H2 (or H2O) products, however, the estimations, based on RRKM theory and dynamic reaction coordinate calculations, exhibited that the   +  H2 and   +  H2O reactions lead to the dissociative quenching predominately. Appropriate rate constants for revealed reaction channels have been estimated by using a canonical variational theory and capture approximation. Corresponding three-parameter Arrhenius expressions for the temperature range T  =  300  ‑  3000 K were reported.

  7. High purity H2/H2O/Ni/SZ electrodes at 500º C

    DEFF Research Database (Denmark)

    Høgh, Jens Valdemar Thorvald; Hansen, Karin Vels; Norrman, Kion


    of stabilized zirconia (SZ) with 10, 13 and 18 mol% yttria and one with 6 mol% scandia plus 4 mol% yttria were studied at open circuit voltage at 400-500 C in mixtures of H2/H2O over 46 days. The polarization resistances (Rp) for all samples increased significantly during the first 10-20 days at 500 C...

  8. Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement (United States)

    Kopp, E.


    A model for production and loss of oxonium ions in the high-latitude D-region is developed, based on the observed excess of 34(+) which has been interpreted as H2O2(+). The loss mechanism suggested in the study is the attachment of N2 and/or CO2 in three-body reactions. Furthermore, mesospheric water vapor and H2O2 densities are inferred from measurements of four high-latitude ion compositions, based on the oxonium model. Mixing ratios of hydrogen peroxide of up to two orders of magnitude higher than previous values were obtained. A number of reactions, reaction constants, and a block diagram of the oxonium ion chemistry in the D-region are given.

  9. Investigations on H2 combustion processes

    International Nuclear Information System (INIS)

    Breitung, W.; Hesselschwerdt, E.; Massier, H.; Moeschke, M.; Redlinger, R.; Wilkening, H.; Werle, H.; Wolff, J.


    During 1994 results were obtained for turbulent deflagrations, detonation ignition criteria, and detonations. In the field of turbulent deflagrations, two different 2-d codes have been developed, which are capable of describing the large spectrum of combustion regimes important for severe accident analysis. Two series of large scale experiments on turbulent H 2 -air combustion have been completed, one with premixed atmospheres, one with dynamic H 2 -injection into the test volume. They provided new clean data for code evaluation on reactor relevant scale (up to 480 m 3 volume). In the field of detonation ignition criteria different mechanisms were investigated which can trigger a transition from deflagration to detonation (DDT). Large scale experiments were performed on turbulent jet ignition of unconfined H 2 -air mixtures. As in earlier small scale tests, detonation ignition was only observed above 25% hydrogen in air. Such reactive mixtures will be rare in severe accidents. Pressure wave focussing was also investigated experimentally. The Mach numbers necessary to trigger a local detonation in different geometries and in different H 2 -air mixtures were measured on small scale. The conditions necessary for a shockless detonation ignition by induction time gradients were calculated. Only close to the reactor pressure vessel the corresponding temperatures and temperature gradients can possibly exist, not in the remainder of the containment. In the field of detonation modeling the code development was completed. Detonation experiments were performed in a 12 m tube equipped with complex obstacles. Some of the data were used to validate the codes. The remaining analysis will be performed in early 1995. The codes can describe well all important physical phenomena which influence detonation loads in complex 3-d geometries. The validated codes were used to calculate local detonation loads in a preliminary EPR containment. (orig./HP)

  10. Electron mass stopping power in H2 (United States)

    Fursa, Dmitry V.; Zammit, Mark C.; Threlfall, Robert L.; Savage, Jeremy S.; Bray, Igor


    Calculations of electron mass stopping power (SP) of electrons in H2 have been performed using the convergent close-coupling method for incident electron energies up to 2000 eV. Convergence of the calculated SP has been established by increasing the size of the close-coupling expansion from 9 to 491 states. Good agreement was found with the SP measurements of Munoz et al. [Chem. Phys. Lett. 433, 253 (2007), 10.1016/j.cplett.2006.10.114].

  11. Solid H2 in the interstellar medium (United States)

    Füglistaler, A.; Pfenniger, D.


    Context. Condensation of H2 in the interstellar medium (ISM) has long been seen as a possibility, either by deposition on dust grains or thanks to a phase transition combined with self-gravity. H2 condensation might explain the observed low efficiency of star formation and might help to hide baryons in spiral galaxies. Aims: Our aim is to quantify the solid fraction of H2 in the ISM due to a phase transition including self-gravity for different densities and temperatures in order to use the results in more complex simulations of the ISM as subgrid physics. Methods: We used molecular dynamics simulations of fluids at different temperatures and densities to study the formation of solids. Once the simulations reached a steady state, we calculated the solid mass fraction, energy increase, and timescales. By determining the power laws measured over several orders of magnitude, we extrapolated to lower densities the higher density fluids that can be simulated with current computers. Results: The solid fraction and energy increase of fluids in a phase transition are above 0.1 and do not follow a power law. Fluids out of a phase transition are still forming a small amount of solids due to chance encounters of molecules. The solid mass fraction and energy increase of these fluids are linearly dependent on density and can easily be extrapolated. The timescale is below one second, the condensation can be considered instantaneous. Conclusions: The presence of solid H2 grains has important dynamic implications on the ISM as they may be the building blocks for larger solid bodies when gravity is included. We provide the solid mass fraction, energy increase, and timescales for high density fluids and extrapolation laws for lower densities.

  12. Emission of Lyman α radiation in H2 + H*(2s) collisions at thermal energies

    International Nuclear Information System (INIS)

    Stern, B.


    A previously-published study of the thermal-energy collision between H 2 and metastable H*(2s), which could lead to the emission of Lyman α radiation, is reconsidered to take into account possible polarization effects. The total was function of the system is expanded in terms of the molecular states of the intermediate complex H 2 * , which constitute the minimal basis of the four adiabatic states dissociating into H 2 + H*(n=2) where they are normally degenerate in energy. The results of the calculation show the existence, between three of those states, of average values of the separation distance R (R ≅ 10 atomic units) of long range (ΔR ≅ 2 au) electronic interactions which depend on the geometric form of the H 2 * molecule. From the molecular data the hypothesis of no longer considering H 2 with H*(2s) as a rigid rotator is postulated and justified, after a purely quantum mechanical treatment of the radial equations. The mean ratio of the (oscillating) polarization angular differential cross sections tot he elastic ones is found important (> ∼ 1/10). The inelastic phenomena are anticipated to be more marked in the ortho than in the para hydrogen at a low collision energy (75 meV). (15 refs., 2 tabs., 9 figs.)

  13. Antibodies to H2a and H2b histones from the sera of HIV-infected patients catalyze site-specific degradation of these histones. (United States)

    Baranova, Svetlana V; Dmitrienok, Pavel S; Ivanisenko, Nikita V; Buneva, Valentina N; Nevinsky, Georgy A


    major cleavage site of H2a are located in the disordered N-terminal region interacting with DNA. According to the crystal structure of the nucleosome core particle, all identified cleavage sites are expected to affect H2a and H2b folding, nucleosome assembly, and binding of H2a and H2b with DNA. The existence of H2a and H2b hydrolyzing abzymes may be very important for the further understanding of unknown possibilities of immune systems and biological functions of antibodies.

  14. Methanogenic H2 syntrophy among thermophiles: a model of metabolism, adaptation and survival in the subsurface (United States)

    Topcuoglu, B. D.; Stewart, L. C.; Butterfield, D. A.; Huber, J. A.; Holden, J. F.


    Approximately 1 giga ton (Gt, 1015 g) of CH4 is formed globally per year from H2, CO2 and acetate through methanogenesis, largely by methanogens growing in syntrophic association with anaerobic microbes that hydrolyze and ferment biopolymers. However, our understanding of methanogenesis in hydrothermal regions of the subseafloor and potential syntrophic methanogenesis at thermophilic temperatures (i.e., >50°C) is nascent. In this study, the growth of natural assemblages of thermophilic methanogens from Axial Seamount was primarily limited by H2 availability. Heterotrophs supported thermophilic methanogenesis by H2 syntrophy in microcosm incubations of hydrothermal fluids at 55°C and 80°C supplemented with tryptone only. Based on 16S rRNA gene sequencing, only heterotrophic archaea that produce H2, H2-consuming methanogens, and sulfate reducing archaea were found in 80°C tryptone microcosms from Marker 113 vent. No bacteria were found. In 55°C tryptone microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. In order to model the impact of H2 syntrophy at hyperthemophilic temperatures, a co-culture was established consisting of the H2-producing hyperthermophilic heterotroph Thermococcus paralvinellae and a H2-consuming hyperthermophilic methanogen Methanocaldococcus bathoardescens. When grown alone in a chemostat, the growth rates and steady-state cell concentrations of T. paralvinellae decreased significantly when a high H2 (70 µM) background was present. H2 inhibition was ameliorated by the production of formate, but in silico modeling suggests less energetic yield for the cells. H2 syntrophy relieved H2 inhibition for both the heterotroph and the methanogenic partners. The results demonstrate that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important alternative energy source for thermophilic autotrophs in marine geothermal environments.

  15. Dissociative phototionization cross sections of H2, SO2 and H2O

    International Nuclear Information System (INIS)

    Chung, Y.


    The partial photoionization cross sections of H 2 , SO 2 , and H 2 O were calculated from the measured photoionization branching ratios and the known total photoionization cross sections. The branching ratios were measured with a time-of-flight mass spectrometer and synchrotron radiation. The branching ratios Of H 2 , SO 2 , and H 2 O were measured for 100 ∼ 410, 150 ∼ 380 and 120 ∼ 720 angstrom. The author also measured the photoionization yield Of SO 2 from 520 to 665 angstrom using a double ion chamber and a glow discharge light source. The principle of a time-of-flight mass spectrometer is explained. New calculations were made to see how the design of the mass spectrometer, applied voltage, and kinetic energy of the ions affect the overall performance of the mass spectrometer. Several useful techniques that we used at the synchrotron for wavelength calibration and higher order suppression are also discussed

  16. Raman overtone intensities measured for H2

    International Nuclear Information System (INIS)

    Shelton, D.P.


    The Raman spectra of the vibrational fundamental, first overtone and second overtone transitions of the H 2 molecule were recorded using visible and ultraviolet argon--ion laser excitation. The ratios of transition polarizability matrix elements, α 01,21 /α 01,11 and α 01,31 /α 01,11 , were determined from the measured intensities of the Q(1) Raman lines v,J=0,1→v',1 for v'=1,2,3. The experimentally determined value of the Raman first overtone matrix element is in good agreement with the value from the best ab initio calculation

  17. H2@Scale Resource and Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, Mark


    This presentation overviews progress to date on the H2@Scale resource and market analysis work. The work finds, for example, that hydrogen demand of 60 MMT/yr is possible when transportation and industry are considered; resources are available to meet that demand; using renewable resources would reduce emissions and fossil use by over 15%; further impacts are possible when considering synergistic benefits; additional analysis is underway to improve understanding of potential markets and synergistic impacts; and further analysis will be necessary to estimate impacts due to spatial characteristics, feedback effects in the economy, and inertia characteristics.

  18. Speciation in the aqueous H+/H2VO4-/H2O2/citrate system of biomedical interest. (United States)

    Gorzsás, András; Getty, Kendra; Andersson, Ingegärd; Pettersson, Lage


    The speciation in the quaternary aqueous H+/H2VO4-/H2O2/citrate (Cit3-) and H+/H2VO4-/Cit3-/L-(+)-lactate (Lac-) systems has been determined at 25 degrees C in the physiological medium of 0.150 M Na(Cl). A combination of 51V NMR integral intensities and chemical shift (Bruker AMX500) as well as potentiometric data (glass electrode) have been collected and evaluated with the computer program LAKE, which is able to treat multimethod data simultaneously. The pKa-values for citric acid have been determined as 2.94, 4.34 and 5.61. Altogether six vanadate-citrate species have been found in the ternary H+/H2VO4-/Cit3- system in the pH region 2-10, only two of which are mononuclear. Reduction of vanadium(V) becomes more pronounced at pH acidic solutions limited the final model to pH > 4. In the quaternary H+/H2VO4-/Cit3-/Lac- system, two mixed-ligand species have been determined, with the compositions V2CitLac2- and V2CitLac3- (pKa = 5.0). To our knowledge, this is the first time such complexes have been reported for vanadium(V). 51V NMR chemical shifts, compositions and formation constants are given, and equilibrium conditions are illustrated in distribution diagrams as well as the fit of the model to the experimental data. When suitable, structural proposals are given, based on 13C NMR measurements and available literature data of related compounds.

  19. Uranous nitrate production using PtO2 catalyst and H2/H2 gas mixtures

    International Nuclear Information System (INIS)

    Rao, K.S.; Shyamlal, R.; Narayanan, C.V.; Patil, A.R.; Ramanujam, A.; Kansra, V.P.; Balu, K.; Vaidya, V.N.


    The feasibility of producing near 100% uranous nitrate, the partitioning agent used in the spent fuel reprocessing by Purex process, by catalytically reducing uranyl nitrate with H 2 and H 2 gas mixtures was extensively studied. As near quantitative reduction of uranyl nitrate could be easily achieved in laboratory scale studies, pilot plant scale reduction of uranyl nitrate was also carried out and five litres of uranyl nitrate of 100 g/1 could be quantitatively reduced in one hour. (author)

  20. Impact of a future H2 transportation on atmospheric pollution in Europe

    NARCIS (Netherlands)

    Popa, M. E.; Segers, A. J.; Denier van der Gon, H. A C; Krol, M. C.; Visschedijk, A. J H; Schaap, M.; Röckmann, T.


    Hydrogen (H2) is being explored as a fuel for passenger vehicles; it can be used in fuel cells to power electric motors or burned in internal combustion engines. In order to evaluate the potential influence of a future H2-based road transportation on the regional air quality in Europe, we

  1. Hydrogen Dynamics in Cyanobacteria Dominated Microbial Mats Measured by Novel Combined H2/H2S and H2/O2 Microsensors

    Directory of Open Access Journals (Sweden)

    Karen Maegaard


    Full Text Available Hydrogen may accumulate to micromolar concentrations in cyanobacterial mat communities from various environments, but the governing factors for this accumulation are poorly described. We used newly developed sensors allowing for simultaneous measurement of H2S and H2 or O2 and H2 within the same point to elucidate the interactions between oxygen, sulfate reducing bacteria, and H2 producing microbes. After onset of darkness and subsequent change from oxic to anoxic conditions within the uppermost ∼1 mm of the mat, H2 accumulated to concentrations of up to 40 μmol L-1 in the formerly oxic layer, but with high variability among sites and sampling dates. The immediate onset of H2 production after darkening points to fermentation as the main H2 producing process in this mat. The measured profiles indicate that a gradual disappearance of the H2 peak was mainly due to the activity of sulfate reducing bacteria that invaded the formerly oxic surface layer from below, or persisted in an inactive state in the oxic mat during illumination. The absence of significant H2 consumption in the formerly oxic mat during the first ∼30 min after onset of anoxic conditions indicated absence of active sulfate reducers in this layer during the oxic period. Addition of the methanogenesis inhibitor BES led to increase in H2, indicating that methanogens contributed to the consumption of H2. Both H2 formation and consumption seemed unaffected by the presence/absence of H2S.

  2. Effect of H-2 complex on the growth of embryo-derived teratomas in mice

    International Nuclear Information System (INIS)

    Taya, C.; Moriwaki, K.


    Seven-day-old embryos of several H-2 congenic strains were transplanted under the kidney capsules of syngeneic adult recipients to determine the genetic factors(s) governing the in vivo growth of embryo-derived teratomas. A.TH(H-2t2) and A.TL(H-2t1) strains showed significantly greater tumor weights than A.BY(H-2b) and A.SW(H-2s) strains. The A(H-2a) strain was intermediate in tumor size. A comparison of the genic constitution of the H-2 complex in each congenic strain suggested that the H-2D locus and/or its distal regions affected the growth of embryo-derived teratomas. The teratoma induced in the B10.A(H-2a) strain was smaller than that in the A(H-2a) strain, indicating that the genetic background of the A strain is favorable for teratoma growth. Histological observations demonstrated that the existence of embryonal carcinoma cells was necessary for the growth of teratomas. A radiation-sensitive immunological factor in the recipient probably plays a role in stimulating teratoma growth

  3. Characterization of the UV-crosslinked heterodimer of histones H2B and H4

    International Nuclear Information System (INIS)

    Johnson, E.R.; Brown, D.M.; DeLange, R.J.


    At relatively high salt concentrations (1.2 M), histone 2B (H2B) and histone 4 (H4) can be covalently crosslinked by irradiation with ultraviolet light to yield a mixture of the three possible dimers: H2B-H2B, H4-H4, and H2B-H4. The formation of the H2B-H4 heterodimer was found to be favored at lower histone concentrations (> 90% H2B-H4 at 0.1 mg/ml total histone protein). CNBr cleavage of the H2B-H4 dimer produced three fragments which were separated by reverse phase HPLC. These fragments were identified by amino acid compositional analysis to be H4(85-102), H2B(62-125), and the crosslinked N-terminal regions H2B(1-59)-H4(1-84). Amino acid sequence analysis of the crosslinked fragment indicated that tyrosine-40 of H2B is likely involved in the covalent crosslinkage which joins the histone monomers to form the heterodimer

  4. Molecular beam scattering experiments with polar molecules. 1. Differential elastic scattering of H2+NH3 and H2+H2O

    International Nuclear Information System (INIS)

    Bickes, R.W. Jr.; Scoles, G.; Smith, K.M.


    Differential elastic scattering cross sections with well resolved quantum oscillations have been measuremed for the systems H 2 +NH 3 and H 2 +H 2 O. Assuming a spherically symmetric interaction the data show that a simple spherical potential (i.e. Lennard-Jones) does not properly describe the scattering

  5. The Orion Fingers: H2 Temperatures and Excitation in an Explosive Outflow (United States)

    Youngblood, Allison; France, Kevin; Ginsburg, Adam; Hoadley, Keri; Bally, John


    We measure H2 temperatures and column densities across the Orion Becklin-Neugebauer/Kleinmann-Low (BN/KL) explosive outflow from a set of 13 near-infrared (IR) H2 rovibrational emission lines observed with the TripleSpec spectrograph on Apache Point Observatory’s 3.5 m telescope. We find that most of the region is well characterized by a single temperature (∼2000–2500 K), which may be influenced by the limited range of upper-energy levels (6000–20,000 K) probed by our data set. The H2 column density maps indicate that warm H2 comprises 10‑5–10‑3 of the total H2 column density near the center of the outflow. Combining column density measurements for co-spatial H2 and CO at T = 2500 K, we measure a CO/H2 fractional abundance of 2 × 10‑3 and discuss possible reasons why this value is in excess of the canonical 10‑4 value, including dust attenuation, incorrect assumptions on co-spatiality of the H2 and CO emission, and chemical processing in an extreme environment. We model the radiative transfer of H2 in this region with ultraviolet (UV) pumping models to look for signatures of H2 fluorescence from H I Lyα pumping. Dissociative (J-type) shocks and nebular emission from the foreground Orion H II region are considered as possible Lyα sources. From our radiative transfer models, we predict that signatures of Lyα pumping should be detectable in near-IR line ratios given a sufficiently strong source, but such a source is not present in the BN/KL outflow. The data are consistent with shocks as the H2 heating source.

  6. A process for the thermochemical poduction of H2

    International Nuclear Information System (INIS)

    Norman, J.H.; Russell, J.L. Jr.; Porter, J.T. II; McCorkl, K.H.; Roemer, T.S.; Sharp, Robert.


    A process is described for the thermochemical production of H 2 from water. HI 3 and H 2 SO 4 are prepared by chemical reaction between I 2 , SO 2 and H 2 O. Then HI 3 is heated and decomposed into H 2 and I 2 . The heat is produced by a nuclear reactor [fr

  7. The synthesis of [2-3H2] taurine and [2-3H2] hypotaurine

    International Nuclear Information System (INIS)

    Fellman, J.H.


    The synthesis of [2- 3 H 2 ]-2-aminoethanesulfonate [2- 3 H]-taurine by the reduction of cyanomethanesulfonic acid with tritium gas is described. The conversion of [2- 3 H]-taurine and its 14 C and 35 S isotopic forms to 2-aminoethanesulfinate (hypotaurine) was accomplished by converting taurine to its corresponding sulfonyl chloride and reducing the latter with metallic zinc. (author)

  8. H2O2 space shuttle APU (United States)


    A cryogenic H2-O2 auxiliary power unit (APU) was developed and successfully demonstrated. It has potential application as a minimum weight alternate to the space shuttle baseline APU because of its (1) low specific propellant consumption and (2) heat sink capabilities that reduce the amount of expendable evaporants. A reference system was designed with the necessary heat exchangers, combustor, turbine-gearbox, valves, and electronic controls to provide 400 shp to two aircraft hydraulic pumps. Development testing was carried out first on the combustor and control valves. This was followed by development of the control subsystem including the controller, the hydrogen and oxygen control valves, the combustor, and a turbine simulator. The complete APU system was hot tested for 10 hr with ambient and cryogenic propellants. Demonstrated at 95 percent of design power was 2.25 lb/hp-hr. At 10 percent design power, specific propellant consumption was 4 lb/hp-hr with space simulated exhaust and 5.2 lb/hp-hr with ambient exhaust. A 10 percent specific propellant consumption improvement is possible with some seal modifications. It was demonstrated that APU power levels could be changed by several hundred horsepower in less than 100 msec without exceeding allowable turbine inlet temperatures or turbine speed.

  9. Methodological aspects of breath hydrogen (H2) analysis. Evaluation of a H2 monitor and interpretation of the breath H2 test

    DEFF Research Database (Denmark)

    Rumessen, J J; Kokholm, G; Gudmand-Høyer, E


    The reliability of end-expiratory hydrogen (H2) breath tests were assessed and the significance of some important pitfalls were studied, using a compact, rapid H2-monitor with electrochemical cells. The H2 response was shown to be linear and stable. The reproducibility of the breath collection...... were studied in 10 healthy adults during a 4-month period and they showed very marked inter- and intra-individual variability (16% above 40 p.p.m.). Initial peaks (early, short-lived H2 rises unrelated to carbohydrate malabsorption) were identified in 25% of the breath tests (in 4% above 20 p.......p.m). It is concluded that the technique used for interval sampling of end-expiratory breath samples for H2 concentration gives reliable results. The biological significance of H2 concentration increments can only be evaluated if the limitations of the technical procedures and the individual ability to produce H2...

  10. Intermolecular potential and rovibrational states of the H2O–D2 complex

    International Nuclear Information System (INIS)

    Avoird, Ad van der; Scribano, Yohann; Faure, Alexandre; Weida, Miles J.; Fair, Joanna R.; Nesbitt, David J.


    Graphical abstract: H 2 O–D 2 potential surface and pH 2 O–oD 2 ground state wave function, for planar geometries. Highlights: ► The interaction between H 2 O and H 2 is of great astrophysical interest. ► The rovibrational states of H 2 O–D 2 were computed on an ab initio potential surface. ► Results are compared with the rovibrational states of H 2 O–H 2 computed recently. ► We measured the high-resolution infrared spectrum of H 2 O–D 2 in the H 2 O bend region. ► Comparison with the calculations provides information on H 2 O–H 2 potential surface. - Abstract: A five-dimensional intermolecular potential for H 2 O–D 2 was obtained from the full nine-dimensional ab initio potential surface of Valiron et al. [P. Valiron, M. Wernli, A. Faure, L. Wiesenfeld, C. Rist, S. Kedžuch, J. Noga, J. Chem. Phys. 129 (2008) 134306] by averaging over the ground state vibrational wave functions of H 2 O and D 2 . On this five-dimensional potential with a well depth D e of 232.12 cm −1 we calculated the bound rovibrational levels of H 2 O–D 2 for total angular momentum J = 0–3. The method used to compute the rovibrational levels is similar to a scattering approach—it involves a basis of coupled free rotor wave functions for the hindered internal rotations and the overall rotation of the dimer—while it uses a discrete variable representation of the intermolecular distance coordinate R. The basis was adapted to the permutation symmetry associated with the para/ortho (p/o) nature of both H 2 O and D 2 , as well as to inversion symmetry. As expected, the H 2 O–D 2 dimer is more strongly bound than its H 2 O–H 2 isotopologue [cf. A. van der Avoird, D.J. Nesbitt, J. Chem. Phys. 134 (2011) 044314], with dissociation energies D 0 of 46.10, 50.59, 67.43, and 73.53 cm −1 for pH 2 O–oD 2 , oH 2 O–oD 2 , pH 2 O–pD 2 , and oH 2 O–pD 2 . A rotationally resolved infrared spectrum of H 2 O–D 2 was measured in the frequency region of the H 2 O bend

  11. Dual function of Swc5 in SWR remodeling ATPase activation and histone H2A eviction. (United States)

    Sun, Lu; Luk, Ed


    The chromatin remodeler SWR deposits histone H2A.Z at promoters and other regulatory sites via an ATP-driven histone exchange reaction that replaces nucleosomal H2A with H2A.Z. Simultaneous binding of SWR to both H2A nucleosome and free H2A.Z induces SWR ATPase activity and engages the histone exchange mechanism. Swc5 is a conserved subunit of the 14-polypeptide SWR complex that is required for the histone exchange reaction, but its molecular role is unknown. We found that Swc5, although not required for substrate binding, is required for SWR ATPase stimulation, suggesting that Swc5 is required to couple substrate recognition to ATPase activation. A biochemical complementation assay was developed to show that a unique, conserved domain at the C-terminus of Swc5, called Bucentaur (BCNT), is essential for the histone exchange activity of SWR, whereas an acidic region at the N-terminus is required for optimal SWR function. In vitro studies showed the acidic N-terminus of Swc5 preferentially binds to the H2A-H2B dimer and exhibits histone chaperone activity. We propose that an auxiliary function of Swc5 in SWR is to assist H2A ejection as H2A.Z is inserted into the nucleosome. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Histone H2A.Z is essential for estrogen receptor signaling (United States)

    Gévry, Nicolas; Hardy, Sara; Jacques, Pierre-Étienne; Laflamme, Liette; Svotelis, Amy; Robert, François; Gaudreau, Luc


    Incorporation of H2A.Z into the chromatin of inactive promoters has been shown to poise genes for their expression. Here we provide strong evidence that H2A.Z is incorporated into the promoter regions of estrogen receptor (ERα) target genes only upon gene induction, and that, in a cyclic pattern. Moreover, members of the human H2A.Z-depositing complex, p400, also follow the same gene recruitment kinetics as H2A.Z. Importantly, cellular depletion of H2A.Z or p400 leads to a severe defect in estrogen signaling, including loss of estrogen-specific cell proliferation. We find that incorporation of H2A.Z within TFF1 promoter chromatin allows nucleosomes to adopt preferential positions along the DNA translational axis. Finally, we provide evidence that H2A.Z is essential to allow estrogen-responsive enhancer function. Taken together, our results provide strong mechanistic insight into how H2A.Z regulates ERα-mediated gene expression and provide a novel link between H2A.Z–p400 and ERα-dependent gene regulation and enhancer function. PMID:19515975

  13. Pushing the limits: detecting H2 emission from faint bipolar planetary nebulae in the IPHAS sample (United States)

    Ramos-Larios, G.; Guerrero, M. A.; Sabin, L.; Santamaría, E.


    We have obtained deep narrowband images in the near-infrared H2 λ2.122 μm emission line for a sample of 15 faint Isaac Newton Telescope Photometric H α Survey (IPHAS) bipolar planetary nebulae (PNe) to search for molecular material. H2 emission is found in most of them (14 out of 15), mostly associated with rings at their equatorial regions and with their bipolar lobes. These detections add to the high occurrence of H2 emission among bipolar PNe reported in previous works, resulting from the large reservoir of molecular material in these sources and the suitable excitation conditions for H2 emission. The correlation between detailed bipolar morphology and H2 luminosity is also confirmed: bipolar PNe with broad equatorial rings (R-BPNe) have almost no continuum emission, are H2 brighter and have larger H2/Br γ line ratio than bipolar PNe with pinched equatorial waists (W-BPNe). The origin of this dichotomy is unclear. The larger size and age of R-BPNe are consistent with shock excitation of H2, whereas ultraviolet pumping is most likely the excitation mechanism in the smaller and younger W-BPNe, which would explain their lower H2 luminosity. Although both types of bipolar PNe seem to proceed from the same progenitor population, this does not imply that R-BPNe descend from W-BPNe. Otherwise, we note that some of the H2-weak bipolar PNe harbor post-common envelope binary systems and symbiotic stars. Finally, we suggest that the long-living H2 emission from R-BPNe arises from a discrete distribution of compact knots embedded within the ionized gas at the equatorial region.

  14. The contribution of the Precambrian continental lithosphere to global H2 production. (United States)

    Lollar, Barbara Sherwood; Onstott, T C; Lacrampe-Couloume, G; Ballentine, C J


    Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water-rock interactions in the Earth's subsurface and at deep ocean vents. Current estimates of global H2 production from the marine lithosphere by water-rock reactions (hydration) are in the range of 10(11) moles per year. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres and have suggested a link between dissolved H2 and the radiolytic dissociation of water. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 10(11) moles per year). Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36-2.27 × 10(11) moles per year is comparable to estimates from marine systems.

  15. Sequence of cDNAs for mammalian H2A. Z, an evolutionarily diverged but highly conserved basal histone H2A isoprotein species

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, C L; Bonner, W M


    The nucleotide sequences of cDNAs for the evolutionarily diverged but highly conserved basal H2A isoprotein, H2A.Z, have been determined for the rat, cow, and human. As a basal histone, H2A.Z is synthesized throughout the cell cycle at a constant rate, unlinked to DNA replication, and at a much lower rate in quiescent cells. Each of the cDNA isolates encodes the entire H2A.Z polypeptide. The human isolate is about 1.0 kilobases long. It contains a coding region of 387 nucleotides flanked by 106 nucleotides of 5'UTR and 376 nucleotides of 3'UTR, which contains a polyadenylation signal followed by a poly A tail. The bovine and rat cDNAs have 97 and 94% nucleotide positional identity to the human cDNA in the coding region and 98% in the proximal 376 nucleotides of the 3'UTR which includes the polyadenylation signal. A potential stem-forming sequence imbedded in a direct repeat is found centered at 261 nucleotides into the 3'UTR. Each of the cDNA clones could be transcribed and translated in vitro to yield H2A.Z protein. The mammalian H2A.Z cDNA coding sequences are approximately 80% similar to those in chicken and 75% to those in sea urchin.

  16. H2 Equilibrium Pressure with a Neg-Coated Vacuum Chamber as a Function of Temperature and H2 Concentration

    CERN Document Server

    Rossi, Adriana


    Non Evaporable Getter (NEG) coating is used in the Large Hadron Collider (LHC) room-temperature sections to ensure a low residual gas pressure for its properties of distributed pumping, low outgassing and desorption under particle bombardment; and to limit or cure electron cloud build-up due to its low secondary electron emission. In certain regions of the LHC, and in particular close to the beam collimators, the temperature of the vacuum chamber is expected to rise due to energy deposition from particle losses. Hydrogen molecules are pumped by the NEG via dissociation on the surface, sorption at the superficial sites and diffusion into the NEG bulk. In the case of hydrogen, the sorption is thermally reversible, causing the dissociation pressure to increase with NEG temperature and amount of H2 pumped. Measurements were carried out on a stainless steel chamber coated with TiZrV NEG as a function of the H2 concentration and the chamber temperature, to estimate the residual gas pressure in the collimator region...

  17. Schroedinger equation from 0 (h/2π) to o(h/2πinfinity)

    International Nuclear Information System (INIS)

    Voros, A.


    The Balian and Bloch idea, that the semiclassical treatment of the Schroedinger equation can be carried out exactly to all orders, o(h/2πinfinity), has been explicitly confirmed upon the time-independent equation with a polynomial potential V(q) in one degree of freedom. The global analytic structure of certain functions, which encode the full eigenvalue distribution, has indeed been computed in great detail with the complex WKB method, yielding a structure called a resurgence algebra. In the special case V(q) = q 2 sub(M), this leads to sum rules for the eigenvalues, which have been verified numerically. Inasmuch as the leading order 0(h/2π) of the WKB expansion amounts to the stationary phase evaluation of the Feynman path integral, it is a yet unsolved challenge to reproduce our results by an exact analysis of this path integral using a generalized saddle-point treatment

  18. Structure of LaH(PO3H)2.3H2O

    International Nuclear Information System (INIS)

    Loukili, M.; Durand, J.; Larbot, A.; Cot, L.; Rafiq, M.


    Lanthanum hydrogen bis(hydrogenphosphite) trihydrate, LaH(Po 3 H) 2 .3H 2 O, M r =353.8, monoclinic, P2 1 /c, a=9.687 (3), b=7.138 (2), c=13.518 A, β=104.48 (3) deg, V=905.0 (5) A 3 , Z=4, D m =2.56 (2), D x =2.598 Mg m -3 , λ(MoKα)=0.71073 A, μ(MoKα)=5.103 mm -1 , F(000)=672, T=300 K, R=0.032 for 1018 independent observed reflections. The structure contains two phosphite anions connected by a hydrogen bond. The La 3+ cation is eight coordinated by seven O atoms from phosphite anions and one O atom of a water molecule. (orig.)

  19. Behaviour of ceramic and metallic layers in a H2O-H2S

    International Nuclear Information System (INIS)

    Furtuna, I.; Mihailescu, M.; Deaconu, M.; Dinu, A.; Cotolan, V; Nedelcu, L.; Titescu, Gh.


    In the installations for heavy water production there exist zones where the action of aggressive working conditions combined with a severe variable hydrodynamical regime lead to the destruction of the pyrite protecting layer. An alternating solution for the protection of these zones is to cover them with ceramic or metallic layers. This work presents the results of the preliminary tests on G28-52 steel samples, covered with ceramic and metallic layers, in the working environment (H 2 O-H 2 S) of the heavy water production installations and in severe hydrodynamical conditions. On the basis of the results obtained in the experiments and from the examination of the microstructure of the layers prior and after testing, a phenomenological model was developed to explain the behaviour of the deposed layers. On the basis of this model the conditions that the layers must satisfy have been deduced to improve their behaviour in the working environment

  20. State resolved rotational excitation cross-sections and rates in H2 + H2 collisions

    International Nuclear Information System (INIS)

    Sultanov, Renat A.; Guster, Dennis


    Rotational transitions in molecular hydrogen collisions are computed. The two most recently developed potential energy surfaces for the H 2 -H 2 system are used from the following works: [A.I. Boothroyd, P.G. Martin, W.J. Keogh, M.J. Peterson, J. Chem. Phys., 116 (2002) 666; P. Diep, J.K. Johnson, J. Chem. Phys., 113 (2000) 3480; P. Diep, J.K. Johnson, J. Chem. Phys., 112 (2000) 4465]. Cross-sections for rotational transitions 00 → 20, 22, 40, 42, 44 and corresponding rate coefficients are calculated using a quantum-mechanical approach. Results are compared for a wide range of kinetic temperatures 300 K ≤ T≤ 3000 K

  1. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters (United States)


    VC-nH2O for Small and Water-Dominated Molecular Clusters October 31, 2017 Approved for public release; distribution is unlimited. L. Huang S.g...Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters L. Huang,1 S.G...nH2O molecular clusters using density function theory (DFT). DFT can provide interpretation of absorption spectra with respect to molecular

  2. Impact of a future H2 transportation on atmospheric pollution in Europe (United States)

    Popa, M. E.; Segers, A. J.; Denier van der Gon, H. A. C.; Krol, M. C.; Visschedijk, A. J. H.; Schaap, M.; Röckmann, T.


    Hydrogen (H2) is being explored as a fuel for passenger vehicles; it can be used in fuel cells to power electric motors or burned in internal combustion engines. In order to evaluate the potential influence of a future H2-based road transportation on the regional air quality in Europe, we implemented H2 in the atmospheric transport and chemistry model LOTOS-EUROS. We simulated the present and future (2020) air quality, using emission scenarios with different proportions of H2 vehicles and different H2 leakage rates. The reference future scenario does not include H2 vehicles, and assumes that all present and planned European regulations for emissions are fully implemented. We find that, in general, the air quality in 2020 is significantly improved compared to the current situation in all scenarios, with and without H2 cars. In the future scenario without H2 cars, the pollution is reduced due to the strict European regulations: annually averaged CO, NOx and PM2.5 over the model domain decrease by 15%, 30% and 20% respectively. The additional improvement brought by replacing 50% or 100% of traditionally-fueled vehicles by H2 vehicles is smaller in absolute terms. If 50% of vehicles are using H2, the CO, NOx and PM2.5 decrease by 1%, 10% and 1% respectively, compared to the future scenario without H2 cars. When all vehicles run on H2, then additional decreases in CO, NOx and PM2.5 are 5%, 40%, and 5% relative to the no-H2 cars future scenario. Our study shows that H2 vehicles may be an effective pathway to fulfill the strict future EU air quality regulations. O3 has a more complicated behavior - its annual average decreases in background areas, but increases in the high-NOx area in western Europe, with the decrease in NOx. A more detailed analysis shows that the population exposure to high O3 levels decreases nevertheless. In all future scenarios, traffic emissions account for only a small proportion of the total anthropogenic emissions, thus it becomes more important

  3. Hydrogen constituents of the mesosphere inferred from positive ions - H2O, CH4, H2CO, H2O2, and HCN (United States)

    Kopp, E.


    The concentrations in the mesosphere of H2O, CH4, H2CO, H2O2, and HCN were inferred from data on positive ion compositions, obtained from one mid-latitude and four high-latitude rocket flights. The inferred concentrations were found to agree only partially with the ground-based microwave measurements and/or model prediction by Garcia and Solomon (1985). The CH4 concentration was found to vary between 70 and 4 ppb in daytime and 900 and 100 ppbv at night, respectively. Unexpectedly high H2CO concentrations were obtained, with H2CO/H2O ratios between 0.0006 and 0.1, and a mean HCN volume mixing ratio of 6 x 10 to the -10th was inferred.

  4. Calculation of intermolecular potentials for H2H2 and H2−O2 dimers ab initio and prediction of second virial coefficients

    International Nuclear Information System (INIS)

    Pham Van, Tat; Deiters, Ulrich K.


    Highlights: • We construct the angular orientations of dimers H 2H 2 and H 2 −O 2 . • We calculate the ab initio intermolecular interaction energies for all built orientations. • Extrapolating the interaction energies to the complete basis set limit aug-cc-pV23Z. • We develop two 5-site ab initio intermolecular potentials of dimers H 2H 2 , H 2 −O 2 . • Calculating the virial coefficients of dimer H 2H 2 and H 2 −O 2 . - Abstract: The intermolecular interaction potentials of the dimers H 2H 2 and H 2 −O 2 were calculated from quantum mechanics, using coupled-cluster theory CCSD(T) and correlation-consistent basis sets aug-cc-pVmZ (m = 2, 3); the results were extrapolated to the basis set limit aug-cc-pV23Z. The interaction energies were corrected for the basis set superposition error with the counterpoise scheme. For comparison also Møller–Plesset perturbation theory (at levels 2–4) with the basis sets aug-cc-pVTZ were considered, but the results proved inferior. The quantum mechanical results were used to construct analytical pair potential functions. From these functions the second virial coefficients of hydrogen and the cross virial coefficients of the hydrogen–oxygen system were obtained by integration; in both cases corrections for quantum effects were included. The results agree well with experimental data, if available, or with empirical correlations

  5. Image-Based Measurement of H2O2 Reaction-Diffusion in Wounded Zebrafish Larvae. (United States)

    Jelcic, Mark; Enyedi, Balázs; Xavier, João B; Niethammer, Philipp


    Epithelial injury induces rapid recruitment of antimicrobial leukocytes to the wound site. In zebrafish larvae, activation of the epithelial NADPH oxidase Duox at the wound margin is required early during this response. Before injury, leukocytes are near the vascular region, that is, ∼100-300 μm away from the injury site. How Duox establishes long-range signaling to leukocytes is unclear. We conceived that extracellular hydrogen peroxide (H 2 O 2 ) generated by Duox diffuses through the tissue to directly regulate chemotactic signaling in these cells. But before it can oxidize cellular proteins, H 2 O 2 must get past the antioxidant barriers that protect the cellular proteome. To test whether, or on which length scales this occurs during physiological wound signaling, we developed a computational method based on reaction-diffusion principles that infers H 2 O 2 degradation rates from intravital H 2 O 2 -biosensor imaging data. Our results indicate that at high tissue H 2 O 2 levels the peroxiredoxin-thioredoxin antioxidant chain becomes overwhelmed, and H 2 O 2 degradation stalls or ceases. Although the wound H 2 O 2 gradient reaches deep into the tissue, it likely overcomes antioxidant barriers only within ∼30 μm of the wound margin. Thus, Duox-mediated long-range signaling may require other spatial relay mechanisms besides extracellular H 2 O 2 diffusion. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. H2 fuelling infrastructure in Southern California

    International Nuclear Information System (INIS)

    Miyasato, M.


    'Full text:' The South Coast Air Quality Management District (SCAQMD) is the local air agency covering the majority of southern California, and the entity legislatively responsible for bringing the region into compliance with the federal Clean Air standards by 2010. One of the tools used by the SCAQMD to accelerate achieving cleaner air is the funding of research, development, and demonstration projects for advanced, clean air technologies. One major focus has been on hydrogen and fuel cells for both stationary and mobile applications. The presentation will discuss the SCAQMD strategy and deployment efforts regarding the development and expansion of hydrogen fueling infrastructure in the South Coast Air Basin. (author)

  7. Laser photoelectron spectroscopy of MnH - 2, FeH - 2, CoH - 2, and NiH - 2: Determination of the electron affinities for the metal dihydrides (United States)

    Miller, Amy E. S.; Feigerle, C. S.; Lineberger, W. C.


    The laser photoelectron spectra of MnH-2, FeH-2, CoH-2, and NiH-2 and the analogous deuterides are reported. Lack of vibrational structure in the spectra suggests that all of the dihydrides and their negative ions have linear geometries, and that the transitions observed in the spectra are due to the loss of nonbonding d electrons. The electron affinities for the metal dihydrides are determined to be 0.444±0.016 eV for MnH2, 1.049±0.014 eV for FeH2, 1.450±0.014 eV for CoH2, and 1.934±0.008 eV for NiH2. Electronic excitation energies are provided for excited states of FeH2, CoH2, and NiH2. Electron affinities and electronic excitation energies for the dideuterides are also reported. A limit on the electron affinity of CrH2 of ≥2.5 eV is determined. The electron affinities of the dihydrides directly correlate with the electron affinities of the high-spin states of the monohydrides, and with the electron affinities of the metal atoms. These results are in agreement with a qualitative model developed for bonding in the monohydrides.

  8. Structural variations in the H-2 genes of AKR lymphomas.

    NARCIS (Netherlands)

    K. Hui; L. Minamide; N. Prandoni; H. Festenstein; F.G. Grosveld (Frank)


    textabstractK36.16 is an AKR H-2k thymoma which expresses an aberrant H-2Dd-like allospecificity, does not have a detectable amount of the H-2Kk syngeneic antigen and grows very easily in syngeneic mice. By DNA-mediated gene transfer experiments, we were able to obtain transformed clones which do

  9. Electron scattering from H2+: Resonances in the Π symmetries

    International Nuclear Information System (INIS)

    Collins, L.A.; Schneider, B.I.; Noble, C.J.


    We present the results of calculations for e - +H 2 + scattering in the region below the first excited state. We employ three distinct and independent methods, close-coupling linear algebraic, effective-optical-potential linear algebraic, and R matrix, to examine the collision at the highest level of sophistication and to provide a valuable check on the results of a single technique. For the 1 Π u and 3 Π u symmetries, we find strong interference effects between various autoionizing series, leading to significant variations of the resonance width with internuclear separation R. Such variations may have profound effects on such processes as photoionization, dissociation, and recombination. For the 1 Π g and 3 Π g symmetries, we observe monotonic behavior of the width with R and find no evidence of strong interference effects or rapid changes

  10. EERE-SBIR technology transfer opportunity. H2 Safety Sensors for H2

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Mariann R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technologies Office (FCTO) works in partnership with industry (including small businesses), academia, and DOE's national laboratories to establish fuel cell and hydrogen energy technologies as economically competitive contributors to U.S. transportation needs. The work that is envisioned between the SBIR/STTR grantee and Los Alamos National Laboratory would involve Technical Transfer of Los Alamos Intellectual Property (IP) on Thin-film Mixed Potential Sensor (U.S. Patent 7,264,700) and associated know-how for H2 sensor manufacturing and packaging.

  11. "Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li+-benzene (United States)

    D'Arcy, Jordan H.; Kolmann, Stephen J.; Jordan, Meredith J. T.


    systematic over the regions of configuration space explored by our simulations. Notwithstanding this, modified Shepard interpolation of the weak H2-H2 interaction is problematic and we obtain more accurate results, at considerably lower computational cost, using a cubic spline interpolation. Indeed, the ZPE of the fragment-with-spline PES is identical, within error, to the ZPE of the full PES. This fragmentation scheme therefore provides an accurate and inexpensive method to study higher hydrogen loading in this and similar systems.

  12. "Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li(+)-benzene. (United States)

    D'Arcy, Jordan H; Kolmann, Stephen J; Jordan, Meredith J T


    the 1.5 kJ mol(-1) error is systematic over the regions of configuration space explored by our simulations. Notwithstanding this, modified Shepard interpolation of the weak H2-H2 interaction is problematic and we obtain more accurate results, at considerably lower computational cost, using a cubic spline interpolation. Indeed, the ZPE of the fragment-with-spline PES is identical, within error, to the ZPE of the full PES. This fragmentation scheme therefore provides an accurate and inexpensive method to study higher hydrogen loading in this and similar systems.

  13. H2O know-how

    International Nuclear Information System (INIS)

    Aggarwal, P.; Boussaha, A.


    The IAEA's Water Resources Programme aims to develop isotope techniques for water resources management and assist scientists to use these techniques correctly. A substantial part of the programme focuses on groundwater. Estimates of the world's groundwater resources are generally weak and reliable information on the proportion of renewable or non-renewable groundwater is sketchy. The IAEA, together with the United Nations Education and Cultural Organization (UNESCO) and International Association of Hydrologists (IAH) is working to improve the understanding of the global distribution and amounts of non-renewable or fossil groundwater. The investigations rely on the use of the labeling properties of isotope data collected from groundwater aquifers worldwide. Most of the isotope data for global mapping of aquifers were collected over the last four decades as part of the IAEA's technical cooperation projects. These projects built substantial national and regional scientific capacity and infrastructure while helping to solve practical issues in surface water or groundwater management. At present, there are over 80 operational technical cooperation projects dealing with isotope hydrology in Africa, Asia, and Latin American regions, for an adjusted budget of about US$7 million. Over the past years, the IAEA has been working very closely with its Member States to bring isotope hydrology into the mainstream of national and international water resource related programmes resulting in a wider use of isotope techniques for water resources management. In central Morocco, isotope results were used to improve a groundwater management model for the Tadla Plain, an important region for agriculture. In Yemen, isotope investigation of groundwater in the Sana'a Basin clearly identified the nature and source of recharge to the shallow groundwater systems. The work advanced understanding of the efficacy of artificial recharge measures, potentially leading to the use of a deeper, fossil

  14. The extinction to the H2 line emission in the DR 21 outflow source

    International Nuclear Information System (INIS)

    Nadeau, D.; Riopel, M.; Geballe, T.R.


    The v = 1-0 S(1) and Q(3) lines of H2 have been measured in four regions of the DR 21 H2 line-emission source, in order to determine whether the observed morphology of the emission represents the distribution of the excited H2 or is modified by nonuniform extinction across the source. The measured lines originate from the same upper level, and their ratio is a direct measure of the reddening. The line ratios show that the extinction is quite uniform across the source and that there is no correlation between the intensity and the extinction. This result implies that the gap between the two lobes of emission is not due to increased extinction but rather is a region where there is little excited H2 gas. 13 refs

  15. Method for heavy-water production by H2S--H2O chemical exchange process

    International Nuclear Information System (INIS)

    Strathdee, G.G.


    The invention discloses a heavy water production stage in a bithermal H 2 S gas H 2 O liquid exchange plant wherein the cold tower is operated under temperature and pressure conditions such that H 2 S in the liquid phase is formed and is maintained in the separation units (sieve trays or plates) of the cold tower. It has been found that the presence of liquid H 2 S acts as an efficient anti-foaming agent

  16. Dynamic investigation of the diffusion absorption refrigeration system NH3-H2O-H2

    Directory of Open Access Journals (Sweden)

    Mohamed Izzedine Serge Adjibade


    Full Text Available This paper reports on a numerical and experimental study of a diffusion absorption refrigerator. The performance of the system is examined by computer simulation using MATLAB software and Engineering Equations Solver. A dynamic model is developed for each component of the system and solved numerically in order to predict the transient state of the diffusion absorption refrigeration. The experiment set included 0.04 m3 commercial absorption diffusion refrigerator working with the ammonia-water-hydrogen (NH3-H2O-H2 solution. The transient numerical results were validated with the experimental data. The investigations are focused on the dynamic profile of the temperature of each component. The results obtained agree with the experiment; the relative error between numerical and experimental models doesn’t exceed 15% for all temperatures of each component. The increase of the average ambient temperature from 23.04 °C to 32.56 °C causes an increase of the condensation temperature from 29.46 °C to 37.51 °C, and the best evaporation temperature obtained was 3 °C, with an ambient temperature of 23.04 °C. The results show that a minimum starting temperature of 152 °C and 63.8 W electric power are required to initiate the decrease of evaporation temperature.

  17. Coordination polymers of scandium sulfate. Crystal structures of (H2Bipy)[Sc(H2O)(SO4)2]2·2H2O and (H2Bipy)[HSO4]2

    International Nuclear Information System (INIS)

    Petrosyants, S.P.; Ilyukhin, A.B.


    Compounds with general formula Cat x [Sc(H 2 O) z (SO 4 ) y ]·nH 2 O (Cat=NH 4 , H 2 Bipy (Bipy - 4,4'-bipyridine), HEdp (Edp - ethylene dipyridine)) identified on element analysis data and IR spectra are synthesized. X-ray diffraction analysis of (H 2 Bipy)[Sc(H 2 O)(SO 4 ) 2 ] 2 ·2H 2 O shows that in structure of the compound chains of ScO 6 octahedron and SO 4 tetrahedrons are joined in bands by tridentate coordination of sulfate ions. Bands form skeleton in endless emptiness of which there are H 2 Bipy 2+ cations [ru

  18. H2S and polysulfide metabolism: Conventional and unconventional pathways. (United States)

    Olson, Kenneth R


    It is now well established that hydrogen sulfide (H 2 S) is an effector of a wide variety of physiological processes. It is also clear that many of the effects of H 2 S are mediated through reactions with cysteine sulfur on regulatory proteins and most of these are not mediated directly by H 2 S but require prior oxidation of H 2 S and the formation of per- and polysulfides (H 2 S n , n = 2-8). Attendant with understanding the regulatory functions of H 2 S and H 2 S n is an appreciation of the mechanisms that control, i.e., both increase and decrease, their production and catabolism. Although a number of standard "conventional" pathways have been described and well characterized, novel "unconventional" pathways are continuously being identified. This review summarizes our current knowledge of both the conventional and unconventional. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Glass transition behaviour of the quaternary ammonium type ionic liquid, {[DEME][I] + H2O} mixtures

    International Nuclear Information System (INIS)

    Imai, Yusuke; Abe, Hiroshi; Matsumoto, Hitoshi; Shimada, Osamu; Hanasaki, Tomonori; Yoshimura, Yukihiro


    By a simple DTA system, the glass transition temperatures of the quaternary ammonium type ionic liquid, {N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium iodide, [DEME][I] + H 2 O} mixtures after quick pre-cooling were measured as a function of water concentration (x mol% H 2 O). Results were compared with the previous results of {[DEME][BF 4 ] + H 2 O} mixtures in which double glass transitions were observed in the water concentration region of (16.5 to 30.0) mol% H 2 O. Remarkably, we observed the double glass transition phenomenon in {[DEME][I] + H 2 O} mixtures too, but the two-T g s regions lie towards the water-rich side of (77.5 to 85.0) mol% H 2 O. These clearly reflect the difference in the anionic effect between BF 4 - and I - on the water structure. The end of the glass-formation region of {[DEME][I] + H 2 O} mixtures is around x = 95.0 mol% H 2 O, and this is comparable to that of {[DEME][BF 4 ] + H 2 O} mixtures (x = 96.0 mol% H 2 O).

  20. XPS study on the surface reaction of uranium metal in H2 and H2-CO atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou


    The surface reactions of uranium metal in H 2 and H 2 -CO atmospheres and the effects of temperature and CO on the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between commercial H 2 and uranium metal at 25 degree C leads mainly to the further oxidation of surface layer of metal due to traces of water vapour. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing the exposure of H 2 . Investigation indicates CO inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmospheres. (13 refs., 10 figs.)

  1. Increased H2CO production in the outer disk around HD 163296 (United States)

    Carney, M. T.; Hogerheijde, M. R.; Loomis, R. A.; Salinas, V. N.; Öberg, K. I.; Qi, C.; Wilner, D. J.


    Context. The gas and dust in circumstellar disks provide the raw materials to form planets. The study of organic molecules and their building blocks in such disks offers insight into the origin of the prebiotic environment of terrestrial planets. Aims: We aim to determine the distribution of formaldehyde, H2CO, in the disk around HD 163296 to assess the contribution of gas- and solid-phase formation routes of this simple organic. Methods: Three formaldehyde lines were observed (H2CO 303-202, H2CO 322-221, and H2CO 321-220) in the protoplanetary disk around the Herbig Ae star HD 163296 with ALMA at 0.5″ (60 AU) spatial resolution. Different parameterizations of the H2CO abundance were compared to the observed visibilities, using either a characteristic temperature, a characteristic radius or a radial power law index to describe the H2CO chemistry. Similar models were applied to ALMA Science Verification data of C18O. In each scenario, χ2 minimization on the visibilities was used to determine the best-fit model in each scenario. Results: H2CO 303-202 was readily detected via imaging, while the weaker H2CO 322-221 and H2CO 321-220 lines required matched filter analysis to detect. H2CO is present throughout most of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of the H2CO emission is likely caused by an optically thick dust continuum. The H2CO radial intensity profile shows a peak at 100 AU and a secondary bump at 300 AU, suggesting increased production in the outer disk. In all modeling scenarios, fits to the H2CO data show an increased abundance in the outer disk. The overall best-fit H2CO model shows a factor of two enhancement beyond a radius of 270 ± 20 AU, with an inner abundance (relative to H2) of 2 - 5 × 10-12. The H2CO emitting region has a lower limit on the kinetic temperature of T> 20 K. The C18O modeling suggests an order of magnitude depletion of C18O in the outer disk and an abundance of 4 - 12 × 10-8 in the inner disk

  2. Detectability of H2-Ar and H2-Ne Dimers in Jovian Atmospheres

    Directory of Open Access Journals (Sweden)

    Young-Key Minn


    Full Text Available The detection of jovian hydrogen-hydrogen dimers through the clear telluric 2-micron window(Kim et al. 1995, Trafton et al. 1997 suggests possibility to detect noble gases in the form of dimer with hydrogen in jovian atmospheres. Since noble gases do not have spectral structures in the infrared, it has been difficult to derive their abundances in the atmospheres of jovian planets. If there is a significant component of noble gases other than helium in the jovian atmospheres. it might be detected through its dimer spectrum with hydrogen molecule. The relatively sharp spectral structures of hydrogen-argon and hydrogen-neon dimers compared with those of hydrogen-hydrogen dimers are useful for the detection, if an adequate signal-to-noise (S/N is obtained. If we use a large telescope, such as the Keck telescope, with a long exposure time (>24 hours, then H2-Ar spectral structure may be detected.

  3. Absorption spectra of H2-H2 pairs in the fundamental band

    International Nuclear Information System (INIS)

    Meyer, W.; Borysow, A.; Frommhold, L.


    For the computation of the induced-dipole moment, the collisional complex consisting of two H 2 molecules is treated like one molecule in the self-consistent-field and size-consistent, coupled electron pair approximations that separates correctly at distant range. The basis set accounts for 95% of the correlation energies. The radial transition matrix elements of the induced-dipole components are obtained for the two cases v 1 =v 2 =0 and v 1 =0,v 2 =1, where the v i are the vibrational quantum numbers of the interacting H 2 molecules (i=1 or 2). The dependence of these elements on the most important rotational states (j 1 , j 1 ',j 2 ,j 2 '=0,...,3) involved is obtained and seen to be significant in the fundamental band. The results are recast in a simple, but accurate analytical form that is used in a quantum formalism for computations of the spectral moments (sum rules) and line shapes of the collision-induced absorption spectra of molecular hydrogen pairs in the infrared 2.4-μm band. The calculations are based on a proven isotropic potential model that we have extended to account for effects of vibrational excitations. Numerical consistency of the line-shape calculations with the sum rules is observed at the 1% level. The comparison of the computational results with the available measurements at temperatures from 20 to 300 K shows agreement within the estimated uncertainties of the best measurements (∼10%). This fact suggests that theory is capable of predicting these spectra reliably at temperatures for which no measurements exist, with an accuracy that compares favorably with that of good laboratory measurements

  4. Probing the pre-reactive a Cl (2P) + H2(D2) Van der Waals well through the photodetachment spectroscopy of Cl- H2(D2). CP-31

    International Nuclear Information System (INIS)

    Ghosal, Subhas; Mahapatra, Susanta


    The photodetachment spectrum of ClH 2 - and ClD 2 , probing the van der Waals well region of the reactive Cl( 2 P) + H 2 (D 2 ) potential energy surface, is theoretically calculated and compared with the experiment. A time-dependent wave packet approach is employed using the Capecchi-Werner coupled multi-sheeted ab initio potential energy surfaces of neutral ClH 2 for this purpose

  5. Synthesis and crystal structure of hydrogen phosphites RbH2PO3, CsH2PO3, and TlH2PO3

    International Nuclear Information System (INIS)

    Kosterina, E.V.; Troyanov, S.I.; Kemnits, Eh.; Aslanov, L.A.


    The crystal acid phosphites RbH 2 PO 3 , CsH 2 PO 3 and TlH 2 PO 3 were separated during reaction of Rb, Cs and Tl carbonates with phosphorous acid solution. The crystal structure of the compounds was analyzed by X-ray diffraction method at 150 K. CsH 2 PO 3 has a monoclinic system, a = 7.930(2), b = 8.929(2), c = 13.163(3) A, β = 104.84(3) Deg, V = 900.9(4) A 3 , Z 8, sp. gr. P2 1 /c, R 1 = 0.239. In the structure hydrogen bonds integrate the PHO 3 tetrahedrons in the unlimited zigzag chains [HPHO 3 ] n n- laying at the layers, which are alternate to the layers of metal cations. The layers of anion chains have a wavy form [ru

  6. The H2A-H2B dimeric kinetic intermediate is stabilized by widespread hydrophobic burial with few fully native interactions. (United States)

    Guyett, Paul J; Gloss, Lisa M


    The H2A-H2B histone heterodimer folds via monomeric and dimeric kinetic intermediates. Within ∼5 ms, the H2A and H2B polypeptides associate in a nearly diffusion limited reaction to form a dimeric ensemble, denoted I₂ and I₂*, the latter being a subpopulation characterized by a higher content of nonnative structure (NNS). The I₂ ensemble folds to the native heterodimer, N₂, through an observable, first-order kinetic phase. To determine the regions of structure in the I₂ ensemble, we characterized 26 Ala mutants of buried hydrophobic residues, spanning the three helices of the canonical histone folds of H2A and H2B and the H2B C-terminal helix. All but one targeted residue contributed significantly to the stability of I₂, the transition state and N₂; however, only residues in the hydrophobic core of the dimer interface perturbed the I₂* population. Destabilization of I₂* correlated with slower folding rates, implying that NNS is not a kinetic trap but rather accelerates folding. The pattern of Φ values indicated that residues forming intramolecular interactions in the peripheral helices contributed similar stability to I₂ and N₂, but residues involved in intermolecular interactions in the hydrophobic core are only partially folded in I₂. These findings suggest a dimerize-then-rearrange model. Residues throughout the histone fold contribute to the stability of I₂, but after the rapid dimerization reaction, the hydrophobic core of the dimer interface has few fully native interactions. In the transition state leading to N₂, more native-like interactions are developed and nonnative interactions are rearranged. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Untersuchungen am System NMMO/H2O/Cellulose


    Cibik, T.


    Die vorliegende Arbeit befasst sich mit der Untersuchung des Zweistoffsystems N-Methylmorpholin-N-oxid (NMMO)/H2O und des Dreistoffsystems NMMO/H2O/Cellulose sowie mit der Herstellung und Charakterisierung von faserverstärkten Cellulosefolien. Das binäre System wird mittels Dynamischer Differenzkalorimetrie und Röntgenweitwinkel-Diffraktometrie untersucht und dadurch das Schmelzverhalten und die Phasenzusammensetzung dieses Systems im festen Zustand als Funktion des NMMO/H2O-Verhältnisses bes...

  8. Detonability of H2-air-diluent mixtures

    International Nuclear Information System (INIS)

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.; Berman, M.


    This report describes the Heated Detonation Tube (HDT). Detonation cell width and velocity results are presented for H 2 -air mixtures, undiluted and diluted with CO 2 and H 2 O for a range of H 2 concentration, initial temperature and pressure. The results show that the addition of either CO 2 or H 2 O significantly increases the detonation cell width and hence reduces the detonability of the mixture. The results also show that the detonation cell width is reduced (detonability is increased) for increased initial temperature and/or pressure

  9. Relative importance of H2 and H2S as energy sources for primary production in geothermal springs. (United States)

    D'Imperio, Seth; Lehr, Corinne R; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R


    Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H(2) and H(2)S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H(2)S and H(2) concentration gradients were observed in the outflow channel, and vertical H(2)S and O(2) gradients were evident within the microbial mat. H(2)S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H(2). Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O(2) requirements varied, as did energy source utilization: some isolates could grow only with H(2)S, some only with H(2), while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H(2)S and H(2) and that represented the dominant phylotype (70% of the PCR clones) showed that H(2)S and H(2) were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H(2)S was better than that with H(2). The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H(2)S can dominate over H(2

  10. (Solid + liquid) phase equilibria of (Ca(H2PO2)2 + CaCl2 + H2O) and (Ca(H2PO2)2 + NaH2PO2 + H2O) ternary systems at T = 323.15 K

    International Nuclear Information System (INIS)

    Cao, Hong-yu; Zhou, Huan; Bai, Xiao-qin; Ma, Ruo-xin; Tan, Li-na; Wang, Jun-min


    Graphical abstract: Solubility diagram of the (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) system at T = (323.15 and 298.15) K. - Highlights: • Phase diagrams of Ca 2+ -H 2 PO 2 − -Cl − -H 2 O, Ca 2+ -Na + -H 2 PO 2 − -H 2 O at 323.15 K were obtained. • Incompatible double salt of NaCa(H 2 PO 2 ) 3 in Ca 2+ -Na + -H 2 PO 2 − -H 2 O system was determined. • Density diagram of the corresponding liquid were simultaneously measured. - Abstract: Calcium hypophosphite has been widely used as an anti-corrosive agent, flame retardant, fertilizer, assistant for Ni electroless plating, and animal nutritional supplement. High purity calcium hypophosphite can be synthesized via the replacement reaction of sodium hypophosphite and calcium chloride. In this work, the (solid + liquid) phase equilibria of (Ca(H 2 PO 2 ) 2 + CaCl 2 + H 2 O) and (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) ternary systems at T = 323.15 K were studied experimentally via the classical isothermal solubility equilibrium method, and the phase diagrams for these two systems were obtained. It was found that two solid salts of CaCl 2 ·2H 2 O and Ca(H 2 PO 2 ) 2 exist in the (Ca(H 2 PO 2 ) 2 + CaCl 2 + H 2 O) system, and three salts of Ca(H 2 PO 2 ) 2 , NaH 2 PO 2 ·H 2 O and one incompatible double salt, NaCa(H 2 PO 2 ) 3 occur in the (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) system.

  11. CFD Recombiner Modelling and Validation on the H2-Par and Kali-H2 Experiments

    International Nuclear Information System (INIS)

    Mimouni, S.; Mechitoua, N.; Ouraou, M.


    A large amount of Hydrogen gas is expected to be released within the dry containment of a pressurized water reactor (PWR), shortly after the hypothetical beginning of a severe accident leading to the melting of the core. According to local gas concentrations, the gaseous mixture of hydrogen, air and steam can reach the flammability limit, threatening the containment integrity. In order to prevent mechanical loads resulting from a possible conflagration of the gas mixture, French and German reactor containments are equipped with passive autocatalytic recombiners (PARs) which preventively oxidize hydrogen for concentrations lower than that of the flammability limit. The objective of the paper is to present numerical assessments of the recombiner models implemented in CFD solvers NEPTUNE C FD and Code S aturne. Under the EDF/EPRI agreement, CEA has been committed to perform 42 tests of PARs. The experimental program named KALI-H 2 , consists checking the performance and behaviour of PAR. Unrealistic values for the gas temperature are calculated if the conjugate heat transfer and the wall steam condensation are not taken into account. The combined effects of these models give a good agreement between computational results and experimental data

  12. Accelerating Palladium Nanowire H2 Sensors Using Engineered Nanofiltration. (United States)

    Koo, Won-Tae; Qiao, Shaopeng; Ogata, Alana F; Jha, Gaurav; Jang, Ji-Soo; Chen, Vivian T; Kim, Il-Doo; Penner, Reginald M


    The oxygen, O 2 , in air interferes with the detection of H 2 by palladium (Pd)-based H 2 sensors, including Pd nanowires (NWs), depressing the sensitivity and retarding the response/recovery speed in air-relative to N 2 or Ar. Here, we describe the preparation of H 2 sensors in which a nanofiltration layer consisting of a Zn metal-organic framework (MOF) is assembled onto Pd NWs. Polyhedron particles of Zn-based zeolite imidazole framework (ZIF-8) were synthesized on lithographically patterned Pd NWs, leading to the creation of ZIF-8/Pd NW bilayered H 2 sensors. The ZIF-8 filter has many micropores (0.34 nm for gas diffusion) which allows for the predominant penetration of hydrogen molecules with a kinetic diameter of 0.289 nm, whereas relatively larger gas molecules including oxygen (0.345 nm) and nitrogen (0.364 nm) in air are effectively screened, resulting in superior hydrogen sensing properties. Very importantly, the Pd NWs filtered by ZIF-8 membrane (Pd NWs@ZIF-8) reduced the H 2 response amplitude slightly (ΔR/R 0 = 3.5% to 1% of H 2 versus 5.9% for Pd NWs) and showed 20-fold faster recovery (7 s to 1% of H 2 ) and response (10 s to 1% of H 2 ) speed compared to that of pristine Pd NWs (164 s for response and 229 s for recovery to 1% of H 2 ). These outstanding results, which are mainly attributed to the molecular sieving and acceleration effect of ZIF-8 covered on Pd NWs, rank highest in H 2 sensing speed among room-temperature Pd-based H 2 sensors.

  13. A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.


    Kinetic model for the radiolysis of pure water describing the formation of H 2 , H 2 O 2 and O 2 and the radiation chemical transformations of aqueous solutions containing these compounds over a broad range of concentrations, pH, absorbed doses and dose rates is proposed and substantiated. The model includes a set of chemical reactions with optimized rate constants and the radiation chemical yields of radiolysis products. The model applicability to the description of the whole set of data on the radiation chemical transformations of water and aqueous solutions of H 2 , H 2 O 2 and O 2 is demonstrated

  14. Immunopositivity for histone macroH2A1 isoforms marks steatosis-associated hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Francesca Rappa

    Full Text Available Hepatocellular carcinoma (HCC is one of the most common cancers worldwide. Prevention and risk reduction are important and the identification of specific biomarkers for early diagnosis of HCC represents an active field of research. Increasing evidence indicates that fat accumulation in the liver, defined as hepatosteatosis, is an independent and strong risk factor for developing an HCC. MacroH2A1, a histone protein generally associated with the repressed regions of chromosomes, is involved in hepatic lipid metabolism and is present in two alternative spliced isoforms, macroH2A1.1 and macroH2A1.2. These isoforms have been shown to predict lung and colon cancer recurrence but to our knowledge, their role in fatty-liver associated HCC has not been investigated previously.We examined macroH2A1.1 and macroH2A1.2 protein expression levels in the liver of two murine models of fat-associated HCC, the high fat diet/diethylnistrosamine (DEN and the phosphatase and tensin homolog (PTEN liver specific knock-out (KO mouse, and in human liver samples of subjects with steatosis or HCC, using immunoblotting and immunohistochemistry.Protein levels for both macroH2A1 isoforms were massively upregulated in HCC, whereas macroH2A1.2 was specifically upregulated in steatosis. In addition, examination of human liver samples showed a significant difference (p<0.01 in number of positive nuclei in HCC (100% of tumor cells positive for either macroH2A1.1 or macroH2A1.2, when compared to steatosis (<2% of hepatocytes positive for either isoform. The steatotic areas flanking the tumors were highly immunopositive for macroH2A1.1 and macroH2A1.2.These data obtained in mice and humans suggest that both macroH2A1 isoforms may play a role in HCC pathogenesis and moreover may be considered as novel diagnostic markers for human HCC.


    International Nuclear Information System (INIS)

    Agundez, M.; Roueff, E.; Goicoechea, J. R.; Cernicharo, J.; Faure, A.


    The internal energy available in vibrationally excited H 2 molecules can be used to overcome or diminish the activation barrier of various chemical reactions of interest for molecular astrophysics. In this paper, we investigate in detail the impact on the chemical composition of interstellar clouds of the reactions of vibrationally excited H 2 with C + , He + , O, OH, and CN, based on the available chemical kinetics data. It is found that the reaction of H 2 (v>0) and C + has a profound impact on the abundances of some molecules, especially CH + , which is a direct product and is readily formed in astronomical regions with fractional abundances of vibrationally excited H 2 , relative to the ground state H 2 , in excess of ∼10 -6 , independently of whether the gas is hot or not. The effects of these reactions on the chemical composition of the diffuse clouds ζOph and HD 34078, the dense photon-dominated region (PDR) Orion Bar, the planetary nebula NGC 7027, and the circumstellar disk around the B9 star HD 176386 are investigated through PDR models. We find that formation of CH + is especially favored in dense and highly FUV illuminated regions such as the Orion Bar and the planetary nebula NGC 7027, where column densities in excess of 10 13 cm -2 are predicted. In diffuse clouds, however, this mechanism is found to be not efficient enough to form CH + with a column density close to the values derived from astronomical observations.

  16. Endogenous mitigation of H2S inside of the landfills. (United States)

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang


    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.

  17. H2O Formation in C-rich AGB Winds

    NARCIS (Netherlands)

    Lombaert, R.; Decin, L.; Royer, P.; de Koter, A.; Cox, N.L.J.; De Ridder, J.; Khouri, T.; Agúndez, M.; Blommaert, J.A.D.L.; Gernicharo, J.; González-Alfonso, E.; Groenewegen, M.A.T.; Kerschbaum, F.; Neufeld, D.; Vandenbussche, B.; Waelkens, C.


    The Herschel detection of warm H2O vapor emission from C-rich winds of AGB stars challenges the current understanding of circumstellar chemistry. Two mechanisms have been invoked to explain warm H2O formation. In the first, penetration of UV interstellar radiation through a clumpy circumstellar


    African Journals Online (AJOL)

    assembly of a hexa-palladium bowl-shaped cluster, ... mimic the properties of conventional porous solids. A number of ... mg (2 mmol) of [H2pymo]Cl were ground ... Figure 2: The anion environment in the structure of [H2pymo]2[ZnCl4]. Figure ...

  19. Robust H2 performance for sampled-data systems

    DEFF Research Database (Denmark)

    Rank, Mike Lind


    Robust H2 performance conditions under structured uncertainty, analogous to well known methods for H∞ performance, have recently emerged in both discrete and continuous-time. This paper considers the extension into uncertain sampled-data systems, taking into account inter-sample behavior. Convex...... conditions for robust H2 performance are derived for different uncertainty sets...

  20. 45 CFR 1626.11 - H-2 agricultural workers. (United States)


    ...) Other employment rights as provided in the worker's specific contract under which the nonimmigrant... 45 Public Welfare 4 2010-10-01 2010-10-01 false H-2 agricultural workers. 1626.11 Section 1626.11... ON LEGAL ASSISTANCE TO ALIENS § 1626.11 H-2 agricultural workers. (a) Nonimmigrant agricultural...

  1. Charge transfer in H2+-H(1s) collisions

    International Nuclear Information System (INIS)

    Errea, L.F.; Macias, A.; Mendez, L.; Rabadan, I.; Riera, A.


    We present an ab initio study of H 2 + +H(1s) collisions at H 2 + impact energies between 0.4 and 50keV. Cross sections are obtained within the sudden approximation for rotation and vibration of the diatomic molecule. We have found that anisotropy effects are crucial to correctly describe this system in this energy range

  2. The Role of Endogenous H(2)S in Cardiovascular Physiology

    DEFF Research Database (Denmark)

    Skovgaard, Nini; Gouliaev, Anja; Aalling, Mathilde


    Recent research has shown that the endogenous gas hydrogen sulphide (H(2)S) is a signalling molecule of considerable biological potential and has been suggested to be involved in a vast number of physiological processes. In the vascular system, H(2)S is synthesized from cysteine by cystathionine-...

  3. Descent Without Modification? The Thermal Chemistry of H2O2 on Europa and Other Icy Worlds (United States)

    Loeffler, Mark Josiah; Hudson, Reggie Lester


    The strong oxidant H2O2 is known to exist in solid form on Europa and is suspected to exist on several other Solar System worlds at temperatures below 200 K. However, little is known of the thermal chemistry that H2O2 might induce under these conditions. Here, we report new laboratory results on the reactivity of solid H2O2 with eight different compounds in H2O-rich ices. Using infrared spectroscopy, we monitored compositional changes in ice mixtures during warming. The compounds CH4 (methane), C3H4 (propyne), CH3OH (methanol), and CH3CN (acetonitrile) were unaltered by the presence of H2O2 in ices, showing that exposure to either solid H2O2 or frozen H2O+H2O2 at cryogenic temperatures will not oxidize these organics, much less convert them to CO2. This contrasts strongly with the much greater reactivity of organics with H2O2 at higher temperatures, and particularly in the liquid and gas phases. Of the four inorganic compounds studied, CO, H2S, NH3, and SO2, only the last two reacted in ices containing H2O2, NH3 making NHþ 4 and SO2 making SO2 4 by H+ and e - transfer, respectively. An important astrobiological conclusion is that formation of surface H2O2 on Europa and that molecule's downward movement with H2O-ice do not necessarily mean that all organics encountered in icy subsurface regions will be destroyed by H2O2 oxidation.

  4. Highly stable hydrogenated gallium-doped zinc oxide thin films grown by DC magnetron sputtering using H2/Ar gas

    International Nuclear Information System (INIS)

    Takeda, Satoshi; Fukawa, Makoto


    The effects of water partial pressure (P H 2 O ) on electrical and optical properties of Ga-doped ZnO films grown by DC magnetron sputtering were investigated. With increasing P H 2 O , the resistivity (ρ) of the films grown in pure Ar gas (Ar-films) significantly increased due to the decrease in both free carrier density and Hall mobility. The transmittance in the wavelength region of 300-400 nm for the films also increased with increasing P H 2 O . However, no significant P H 2 O dependence of the electrical and optical properties was observed for the films grown in H 2 /Ar gas mixture (H 2 /Ar-films). Secondary ion mass spectrometry (SIMS) and X-ray diffraction (XRD) analysis revealed that hydrogen concentration in the Ar-films increased with increasing P H 2 O and grain size of the films decreases with increasing the hydrogen concentration. These results indicate that the origin of the incorporated hydrogen is attributed to the residual water vapor in the coating chamber, and that the variation of ρ and transmittance along with P H 2 O of the films resulted from the change in the grain size. On the contrary, the hydrogen concentration in H 2 /Ar-films was almost constant irrespective of P H 2 O and the degree of change in the grain size of the films versus P H 2 O was much smaller than that of Ar-films. These facts indicate that the hydrogen primarily comes from H 2 gas and the adsorption species due to H 2 gas preferentially adsorb to the growing film surface over residual water vapor. Consequently, the effects of P H 2 O on the crystal growth are reduced

  5. H2, CO, and dust absorption through cold molecular clouds (United States)

    Lacy, John H.; Sneden, Chris; Kim, Hwihyun; Jaffe, Daniel Thomas


    We have made observations with IGRINS on the Harlan J. Smith telescope at McDonald Observatory of near-infrared absorption by H2, CO, and dust toward stars behind molecular clouds, primarily the TMC. Prior to these observations, the abundance of H2 in molecular clouds, relative to the commonly used tracer CO, had only been measured toward a few embedded stars, which may be surrounded by atypical gas. The new observations provide a representative sample of these molecules in cold molecular gas. We find N(H2)/Av ~ 0.9e+21, N(CO)/Av ~ 1.6e+17, and H2/CO ~ 6000. The measured H2/CO ratio is consistent with that measured toward embedded stars in various molecular clouds, but half that derived from mm-wave observations of CO emission and star counts or other determinations of Av.

  6. Chemical absorption of H2S for biogas purification

    Directory of Open Access Journals (Sweden)

    Horikawa M.S.


    Full Text Available This work presents an experimental study of purification of a biogas by removal of its hydrogen sulphide (H2S content. The H2S was removed by means of chemical absorption in an iron-chelated solution catalyzed by Fe/EDTA, which converts H2S into elemental sulphur (S. Preparation of the catalyst solution and the results of biogas component absorption in the catalyst solution (0.2 mol/L are presented. These results are compared with those for physical absorption into pure water under similar conditions. Experimental results demonstrate that, under the same experimental conditions, a higher percentage of H2S can be removed in the catalytic solution than in water. In a continuous counter current using adequate flow-rate phases contact at room temperature and low gas pressure, the results demonstrate that is possible to totally remove the H2S from the biogas with the prepared catalytic solution.

  7. GaAs micromachining in the 1 H2SO4:1 H2O2:8 H2O system. From anisotropy to simulation (United States)

    Tellier, C. R.


    The bulk micromachining on (010), (110) and (111)A GaAs substrates in the 1 H2SO4:1 H2O2:8 H2O system is investigated. Focus is placed on anisotropy of 3D etching shapes with a special emphasis on convex and concave undercuts which are of prime importance in the wet micromachining of mechanical structures. Etched structures exhibit curved contours and more and less rounded sidewalls showing that the anisotropy is of type 2. This anisotropy can be conveniently described by a kinematic and tensorial model. Hence, a database composed of dissolution constants is further determined from experiments. A self-elaborated simulator which works with the proposed database is used to derive theoretical 3D shapes. Simulated shapes agree well with observed shapes of microstructures. The successful simulations open up two important applications for MEMS: CAD of mask patterns and meshing of simulated shapes for FEM simulation tools.

  8. Oxyhydroxide of metallic nanowires in a molecular H2O and H2O2 environment and their effects on mechanical properties. (United States)

    Aral, Gurcan; Islam, Md Mahbubul; Wang, Yun-Jiang; Ogata, Shigenobu; Duin, Adri C T van


    To avoid unexpected environmental mechanical failure, there is a strong need to fully understand the details of the oxidation process and intrinsic mechanical properties of reactive metallic iron (Fe) nanowires (NWs) under various aqueous reactive environmental conditions. Herein, we employed ReaxFF reactive molecular dynamics (MD) simulations to elucidate the oxidation of Fe NWs exposed to molecular water (H2O) and hydrogen peroxide (H2O2) environment, and the influence of the oxide shell layer on the tensile mechanical deformation properties of Fe NWs. Our structural analysis shows that oxidation of Fe NWs occurs with the formation of different iron oxide and hydroxide phases in the aqueous molecular H2O and H2O2 oxidizing environments. We observe that the resulting microstructure due to pre-oxide shell layer formation reduces the mechanical stress via increasing the initial defect sites in the vicinity of the oxide region to facilitate the onset of plastic deformation during tensile loading. Specifically, the oxide layer of Fe NWs formed in the H2O2 environment has a relatively significant effect on the deterioration of the mechanical properties of Fe NWs. The weakening of the yield stress and Young modulus of H2O2 oxidized Fe NWs indicates the important role of local oxide microstructures on mechanical deformation properties of individual Fe NWs. Notably, deformation twinning is found as the primary mechanical plastic deformation mechanism of all Fe NWs, but it is initially observed at low strain and stress level for the oxidized Fe NWs.

  9. Fitting law for the density shift of Q(J) transitinos of H2 in H2-X (X: H2, He, N2) mixtures

    International Nuclear Information System (INIS)

    Michaut, X.; Berger, J.-P.; Sinclair, P.M.; Berger, H.


    A variety of fitting laws have been developed for the purpose of modelling broadening effects in collisional processes, but only a few have been proposed for modelling collision-induced lineshifts in molecules. We analysed accurate stimulated Raman data obtained in several H 2 -X mixtures (X: H 2 , He and N 2 ). For the first time, we show that an empirical law provides a very good representation of collisional lineshift coefficients in the range 300-1200 K and for J quantum number up to 9. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  10. Synthesis and physicochemical investigation of vanadium tripolyphosphate, H2VP3O10·3H2O (3)

    International Nuclear Information System (INIS)

    Lyutsko, V.A.; Romanij, T.V.


    The new compound - vanadium dihydrotripolyphosphate, H 2 VP 3 O 10 x3H 2 O of the modification III has been prepared by interaction of the metalic vanadium and orthophosphoric acid at 483 K. It has been investigated by chemical analysis, thin layer chromatography, X-ray phase analysis, infrared spectroscopy and thermal analysis

  11. A novel H2S/H2O2 fuel cell operating at the room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sanli, Ayse Elif [Gazi University (Turkey)], email:; Aytac, Aylin [Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar (Turkey)], email:


    This study concerns the oxidation mechanism of hydrogen sulfide and a fuel cell; acidic peroxide is used as the oxidant and basic hydrogen sulfide is the fuel. A solid state H2S/H2O2 stable fuel cell was produced at room temperature. A cell potential of 0.85 V was reached; this is quite remarkable in comparison to the H2S/O2 fuel cell potential of 0.85 V obtained at 850-1000 degree celsius. The hydrogen sulfide goes through an oxidation reaction in the alkaline fuel cell (H2S/H2O2 fuel cell) which opens up the possibility of using the cheaper nickel as a catalyst. As a result, the fuel cell becomes a potentially low cost technology. A further benefit from using H2S as the alkaline liquid H2S/H2O2 fuel cell, is that sulfide ions are oxidized at the anode, releasing electrons. Sulfur produced reacts with the other sulfide ions and forms disulfide and polysulfide ions in basic electrolytes (such as Black Sea water).

  12. Vibrational inelasticity in H2 collisions with He and Li+

    International Nuclear Information System (INIS)

    Raczkowski, A.W.


    The partially averaged version of classical S-matrix theory was applied to three-dimensional collisions of H 2 with He and Li + . For H 2 -Li + , cross-sections for the de-excitation of H 2 from (n 1 ,j 1 ) = (1,0) to the ground vibrational manifold were computed at a total energy of 1.2 eV and compared to previously done coupled channel calculations of Schaefer and Lester. The agreement is very good. For H 2 -He, the Kutzelnigg-Tsapline interaction potential was extended to small atom-diatom separations, the ab initio points were then fit to an analytic form, and cross sections for the de-excitation of H 2 from the states (n 1 ,j 1 ), n 1 = 1, j 1 = 0,2,4 to the ground vibrational manifold were computed at total energies of .9, 1.1, 1.3 and 1.5 eV. For comparison, coupled channel calculations were also performed on the system at the same energies. The agreement was poorer than in the H 2 -Li + case, for identifiable reasons. The cross sections were used to compute rate constants and relaxation times for the H 2 -He system. Comparison of these results with the results of experiment and of other calculations shows good agreement, certainly within the expected errors. (7 figs., 30 refs., 3 tables)

  13. H-2-incompatible bone marrow chimeras produce donor-H-2-restricted Ly-2 suppressor T-cell factor(s)

    International Nuclear Information System (INIS)

    Noguchi, M.; Onoe, K.; Ogasawara, M.; Iwabuchi, K.; Geng, L.; Ogasawara, K.; Good, R.A.; Morikawa, K.


    To study adaptive-differentiation phenomena of T lymphocytes, suppressor T-cell factors (TsF) produced by Ly-2+ splenic T cells from fully allogeneic mouse bone marrow chimeras were analyzed. AKR mice irradiated and reconstituted with B10 marrow cells (B10----AKR chimeras) produced an Ly-2+ TsF after hyperimmunization with sheep erythrocytes. The TsF suppressed primary antibody responses (to sheep erythrocytes) generated with spleen cells of mice of H-2b haplotype but not those of H-2k haplotype. Thus, this suppressor factor was donor-H-2-restricted. The immunoglobulin heavy chain variable region gene (Igh-V)-restricting element was not involved in this form of suppression. Similar results were obtained when TsF from B6----BALB/c and BALB/c----B6 chimeras were analyzed. The TsF from B10----AKR chimeras suppressed responses of B10.A(3R) and B10.A(5R) mice but not those of B10.A(4R). This finding showed that identity between the factor-producing cells and target spleen cells is required on the left-hand side of the E beta locus of the H-2 region and that the putative I-Jb locus is not involved in this form of suppression. The present results support the postulate that post-thymic differentiation in the presence of continued or repeated stimulation with antigen and donor-derived antigen-presenting cells generates donor-H-2-restricted T-cell clones that may predominate within the repertoire of the specific antigen being presented

  14. Extension of a He-H2 potential energy surface

    International Nuclear Information System (INIS)

    Raczkowski, A.W.; Lester, W.A. Jr.


    The CI surface of Tsapline and Kutzelnigg is extended to smaller H 2 -He separations. Defining R as the H 2 -He distance, r as the H 2 separation, and γ as the angle between them, the ab initio values are fit to a Legendre series in cosγ retaining the first three (even) terms with the coefficients given as analytic functions of R and r to facilitate semiclassical scattering computations. The fit is quantitative for 1.0 approximately r/2+1. (Auth.)

  15. Inelastic neutron scattering of H2 adsorbed in HKUST-1

    International Nuclear Information System (INIS)

    Liu, Y.; Brown, C.M.; Neumann, D.A.; Peterson, V.K.; Kepert, C.J.


    A series of inelastic neutron scattering (INS) investigations of hydrogen adsorbed in activated HKUST-1 (Cu 3 (1,3,5-benzenetricarboxylate) 2 ) result in INS spectra with rich features, even at very low loading ( 2 :Cu). The distinct inelastic features in the spectra show that there are three binding sites that are progressively populated when the H 2 loading is less than 2.0 H 2 :Cu, which is consistent with the result obtained from previous neutron powder diffraction experiments. The temperature dependence of the INS spectra reveals the relative binding enthalpies for H 2 at each site

  16. Photoionization of H2O at high resolution

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Chupka, W.A.


    The relative photoionization cross sections for the formation of H 2 O + , OH + , and H + from H 2 O were measured at high wavelength resolution using a 3-meter photoionization mass spectrometer equipped with a quadrupole mass flter and a 1-meter photoionization mass spectrometer equipped with a 12-inch radius, 60 0 sector magnetic mass spectrometer. Discrete structure in the parent ion photoionization efficiency curve is interpreted in terms of Rydberg series converging to excited states of the H 2 O + ion. 9 references

  17. Classification of H2O2 as a Neuromodulator that Regulates Striatal Dopamine Release on a Subsecond Time Scale (United States)


    Here we review evidence that the reactive oxygen species, hydrogen peroxide (H2O2), meets the criteria for classification as a neuromodulator through its effects on striatal dopamine (DA) release. This evidence was obtained using fast-scan cyclic voltammetry to detect evoked DA release in striatal slices, along with whole-cell and fluorescence imaging to monitor cellular activity and H2O2 generation in striatal medium spiny neurons (MSNs). The data show that (1) exogenous H2O2 suppresses DA release in dorsal striatum and nucleus accumbens shell and the same effect is seen with elevation of endogenous H2O2 levels; (2) H2O2 is generated downstream from glutamatergic AMPA receptor activation in MSNs, but not DA axons; (3) generation of modulatory H2O2 is activity dependent; (4) H2O2 generated in MSNs diffuses to DA axons to cause transient DA release suppression by activating ATP-sensitive K+ (KATP) channels on DA axons; and (5) the amplitude of H2O2-dependent inhibition of DA release is attenuated by enzymatic degradation of H2O2, but the subsecond time course is determined by H2O2 diffusion rate and/or KATP-channel kinetics. In the dorsal striatum, neuromodulatory H2O2 is an intermediate in the regulation of DA release by the classical neurotransmitters glutamate and GABA, as well as other neuromodulators, including cannabinoids. However, modulatory actions of H2O2 occur in other regions and cell types, as well, consistent with the widespread expression of KATP and other H2O2-sensitive channels throughout the CNS. PMID:23259034

  18. Investigating Superhydrogenated Polycyclic Aromatic Hydrocarbons as catalysts for Interstellar H2 formation

    DEFF Research Database (Denmark)

    Simonsen, Frederik Doktor Skødt

    , are observed. Because of relatively high H2 destruction rates in these regions, the presently accepted formation routes on dust grains cannot exclusively account for the observed abundances [1]. Therefore, new formation routes are needed and lately attention has been drawn towards molecules called polycyclic...

  19. Dense Molecular Gas and H2O Maser Emission in Galaxies F ...

    Indian Academy of Sciences (India)

    2School of Physics and Telecommunication Engineering, South China Normal University,. Guangzhou 510006, China. ∗ e-mail: Abstract. Extragalactic H2O masers have been found in dense gas cir- cumstance in off-nuclear star formation regions or within parsecs of. Active Galactic Nuclei (AGNs).


    International Nuclear Information System (INIS)

    Fujimori, R.; Kawaguchi, K.; Amano, T.


    Five pure rotational transitions of H 2 F + generated by a discharge in an HF/H 2 /Ar mixture were observed in the range 473-774 GHz with a backward-wave oscillator based submillimeter-wave spectrometer. A simultaneous analysis of the rotational lines with 120 combination differences for the ground state derived from the infrared spectra was carried out to determine the precise molecular constants for the ground state. The rotational transition frequencies that lie below 2 THz were calculated, together with their estimated uncertainties, to facilitate future astronomical identifications. The chemistry for H 2 F + formation in interstellar space is discussed in comparison with a case for recently detected H 2 Cl + .

  1. H2S: a universal defense against antibiotics in bacteria. (United States)

    Shatalin, Konstantin; Shatalina, Elena; Mironov, Alexander; Nudler, Evgeny


    Many prokaryotic species generate hydrogen sulfide (H(2)S) in their natural environments. However, the biochemistry and physiological role of this gas in nonsulfur bacteria remain largely unknown. Here we demonstrate that inactivation of putative cystathionine β-synthase, cystathionine γ-lyase, or 3-mercaptopyruvate sulfurtransferase in Bacillus anthracis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli suppresses H(2)S production, rendering these pathogens highly sensitive to a multitude of antibiotics. Exogenous H(2)S suppresses this effect. Moreover, in bacteria that normally produce H(2)S and nitric oxide, these two gases act synergistically to sustain growth. The mechanism of gas-mediated antibiotic resistance relies on mitigation of oxidative stress imposed by antibiotics.

  2. Are CO Observations of Interstellar Clouds Tracing the H2? (United States)

    Federrath, Christoph; Glover, S. C. O.; Klessen, R. S.; Mac Low, M.


    Interstellar clouds are commonly observed through the emission of rotational transitions from carbon monoxide (CO). However, the abundance ratio of CO to molecular hydrogen (H2), which is the most abundant molecule in molecular clouds is only about 10-4. This raises the important question of whether the observed CO emission is actually tracing the bulk of the gas in these clouds, and whether it can be used to derive quantities like the total mass of the cloud, the gas density distribution function, the fractal dimension, and the velocity dispersion--size relation. To evaluate the usability and accuracy of CO as a tracer for H2 gas, we generate synthetic observations of hydrodynamical models that include a detailed chemical network to follow the formation and photo-dissociation of H2 and CO. These three-dimensional models of turbulent interstellar cloud formation self-consistently follow the coupled thermal, dynamical and chemical evolution of 32 species, with a particular focus on H2 and CO (Glover et al. 2009). We find that CO primarily traces the dense gas in the clouds, however, with a significant scatter due to turbulent mixing and self-shielding of H2 and CO. The H2 probability distribution function (PDF) is well-described by a log-normal distribution. In contrast, the CO column density PDF has a strongly non-Gaussian low-density wing, not at all consistent with a log-normal distribution. Centroid velocity statistics show that CO is more intermittent than H2, leading to an overestimate of the velocity scaling exponent in the velocity dispersion--size relation. With our systematic comparison of H2 and CO data from the numerical models, we hope to provide a statistical formula to correct for the bias of CO observations. CF acknowledges financial support from a Kade Fellowship of the American Museum of Natural History.

  3. Hydrogen degradation of the 26H2MF alloy steel in H2SO4 and hydrocarbon environments

    International Nuclear Information System (INIS)

    Zielinski, A.; Swieczko-Zurek, B.; Michaliak, P.


    The Polish 26H2M alloy steel has been subjected to different heat treatment resulting in different microstructure and fracture appearance. The slow strain rate tests have been made on smooth round specimens in diluted sulphuric acid, boiler fuel and used mineral machine oil. The 26H2MF steel has become relatively immune in neutral boiler fuel and mineral oil and been heavily suffered from hydrogen degradation in acidic environment. The results demonstrate that the 26H2MF steel is highly susceptible to hydrogen degradation but in absence of stress raisers the increased hydrogen absorption in hydrocarbons can cause only small loss of its plasticity. (author) >>>

  4. Ab initio study of MgH2 formation

    International Nuclear Information System (INIS)

    Novakovic, Nikola; Matovic, Ljiljana; Novakovic, Jasmina Grbovic; Manasijevic, Miodrag; Ivanovic, Nenad


    Even if there is considerable literature dealing with structure and properties of MgH 2 compound there are still some uncertain details about nature of bonding governing its formation and decomposition. In order to better understand the processes essential for absorption and desorption of MgH 2 , ab initio DFT based calculations of rutile MgH 2 compound, elemental hcp-Mg, and three different hypothetical hcp-Mg-derived hydrides are performed. Our findings show that all structures are unstable, and that MgH (Wurtzite) is a closest possible candidate for intermediate phase between the hcp-Mg and MgH 2 at 1:1 stoichiometry. An alternative hydration pathway is suggested, including promotion of hcp-Mg to bcc-Mg and consecutive transformation to rutile MgH 2 by means of hydrogen incorporation into Mg matrix. Rutile MgH 2 calculations with various hydrogen vacancies concentration are performed. Calculation shows that at high hydrogen concentration close to 1:2, stable substoichiometric hydride is possible. Calculation also shows that high vacancy (low hydrogen) concentration favors bcc-Mg 2 H over rutile Mg 2 H structure.

  5. H2S mediated thermal and photochemical methane activation (United States)

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric


    Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813

  6. H2S-mediated thermal and photochemical methane activation. (United States)

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric V


    Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub-quality or "sour" gas. We propose a unique method of activation to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3 , and an energy carrier such as H2. For this purpose, we investigated the H2S-mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4 + H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground-state CH3SH + H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Garlic and H2O2 in overcoming dormancy on the vine “Cabernet Sauvignon”


    Saavedra del Aguila Juan; Pereira Dachi Ângela; Nogueira Fernandes Elizeu; Lais Hamm Bruna; Corrêa de Almeida Fabiane; Moreira Silveira Jansen


    The objective of this experiment was to evaluate the effect of garlic extract, H2O2 and hydrogen cyanamide on dormancy break, budding and maturation of “Cabernet Sauvignon” in the Campaign Region – Brazil. In late winter 2014 and after drought pruning were performed spraying in the bud: T1 – distilled water (control); T2 – 3.0% of hydrogen cyanamide; T3 – 18.0% H2O2; and T4 – 3.0% garlic extract. It was evaluated in the field: the number of sprouted buds per plant, number of bunches per plant...

  8. Multivalent binding of PWWP2A to H2A.Z regulates mitosis and neural crest differentiation. (United States)

    Pünzeler, Sebastian; Link, Stephanie; Wagner, Gabriele; Keilhauer, Eva C; Kronbeck, Nina; Spitzer, Ramona Mm; Leidescher, Susanne; Markaki, Yolanda; Mentele, Edith; Regnard, Catherine; Schneider, Katrin; Takahashi, Daisuke; Kusakabe, Masayuki; Vardabasso, Chiara; Zink, Lisa M; Straub, Tobias; Bernstein, Emily; Harata, Masahiko; Leonhardt, Heinrich; Mann, Matthias; Rupp, Ralph Aw; Hake, Sandra B


    Replacement of canonical histones with specialized histone variants promotes altering of chromatin structure and function. The essential histone variant H2A.Z affects various DNA-based processes via poorly understood mechanisms. Here, we determine the comprehensive interactome of H2A.Z and identify PWWP2A as a novel H2A.Z-nucleosome binder. PWWP2A is a functionally uncharacterized, vertebrate-specific protein that binds very tightly to chromatin through a concerted multivalent binding mode. Two internal protein regions mediate H2A.Z-specificity and nucleosome interaction, whereas the PWWP domain exhibits direct DNA binding. Genome-wide mapping reveals that PWWP2A binds selectively to H2A.Z-containing nucleosomes with strong preference for promoters of highly transcribed genes. In human cells, its depletion affects gene expression and impairs proliferation via a mitotic delay. While PWWP2A does not influence H2A.Z occupancy, the C-terminal tail of H2A.Z is one important mediator to recruit PWWP2A to chromatin. Knockdown of PWWP2A in Xenopus results in severe cranial facial defects, arising from neural crest cell differentiation and migration problems. Thus, PWWP2A is a novel H2A.Z-specific multivalent chromatin binder providing a surprising link between H2A.Z, chromosome segregation, and organ development. © 2017 The Authors.

  9. A Critical Review of Models of the H-2/H2O/Ni/SZ Electrode Kinetics

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Høgh, Jens Valdemar Thorvald; Hansen, Karin Vels


    Various models of the H-2/H2O/Ni/SZ (SZ = stabilized zirconia) electrode kinetics have been presented in the literature in order to explain the reported experimental data. However, there has been a strong tendency of using a limited set of data to "verify" a given model, disregarding other data...... sets, which do not fit the model. We have inspected some models in the literature, and problems (e.g. no quantitative model has explained the large variation in reported values of apparent activation energy of the electrode kinetics) as well as strengths of the models are discussed. We point out...... important for any realistic and useful mathematical model of the H-2/H2O/Ni/SZ electrode....

  10. Kinetics of oxidation of H2 and reduction of H2O in Ni-YSZ based solid oxide cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg


    Reduction of H2O and oxidation of H2 was studied in a Ni-YSZ electrode supported Solid Oxide Cells produced at DTU Energy conversion (former Risø DTU). Polarisation (i-V) and electrochemical impedance spectroscopic characterisation show that the kinetics for reduction of H 2O is slower compared...... to oxidation of H2. The kinetic differences cannot be explained by the reaction mechanisms which are similar in the two cases but are rather an effect of the thermodynamics. The preliminary analysis performed in this study show that the slow kinetic for reduction is partly related to the endothermic nature...... of the reaction, cooling the active electrode, thereby leading to slower kinetics at low current densities. Likewise, the increased kinetic for oxidation was found to be related to the exothermic nature of the reaction, heating the active electrode, and thereby leading to faster kinetics. At higher current...

  11. Different reaction of the core histones H2A and H2B to red laser irradiation (United States)

    Brill, G. E.; Egorova, A. V.; Bugaeva, I. O.; Postnov, D. E.; Ushakova, O. V.


    Analysis of the influence of red laser irradiation on the processes of self-assembly of the core histones H2A and H2B was performed using a wedge dehydration method. Image-analysis of facies included their qualitative characteristics and calculation of quantitative parameters with subsequent statistical processing. It was established that linearly polarized red laser light (λ - 660 nm, 1 J/cm2) significantly modified the process of self-assembly of core histone H2B, whereas the structure of the facies of H2A histone changed to a lesser extent. Histones were used in the form of aqueous salt solutions. The effect of red light seems to result from the formation of singlet oxygen by direct laser excitation of molecular oxygen.

  12. Crystal structure of strontium osmate (8) Sr[OsO5(H2O)]x3H2O

    International Nuclear Information System (INIS)

    Nevskij, N.N; Ivanov-Ehmin, B.N.; Nevskaya, N.A.; Belov, N.V.; AN SSSR, Moscow. Inst. Kristallografii)


    Crystal structure of the Sr[OsO 5 (H 2 O)]x3H 2 O complex is studied. Rhombic P-cell has the parameters: a=6.426(1), b=7.888(1), c=14.377(5) A, Vsub(c)=729 A 3 . The R-factor equals 0.034. The coordinates of the basis atoms and isotropic temperature corrections, as well as basic interatomic distances, are determined

  13. Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities (United States)

    Brazelton, William J.; Nelson, Bridget; Schrenk, Matthew O.


    Ultramafic rocks in the Earth’s mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). In order to assess the potential for microbial H2 utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H2-oxidizers. Both sites also yielded metagenomic evidence for microbial H2 production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood–Ljungdahl pathway. In general, our results point to H2-oxidizing Betaproteobacteria thriving in shallow, oxic–anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H2-powered primary production in serpentinite-hosted subsurface habitats. PMID:22232619

  14. Metagenomic evidence for h(2) oxidation and h(2) production by serpentinite-hosted subsurface microbial communities. (United States)

    Brazelton, William J; Nelson, Bridget; Schrenk, Matthew O


    Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H(2)). In order to assess the potential for microbial H(2) utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H(2)-oxidizers. Both sites also yielded metagenomic evidence for microbial H(2) production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood-Ljungdahl pathway. In general, our results point to H(2)-oxidizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H(2)-powered primary production in serpentinite-hosted subsurface habitats.

  15. Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities

    Directory of Open Access Journals (Sweden)

    William J Brazelton


    Full Text Available Ultramafic rocks in the Earth’s mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2. In order to assess the potential for microbial H2 utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field and two continental serpentinite- hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland. Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H2-oxidizers. Both sites also yielded metagenomic evidence for microbial H2 production catalyzed by [FeFe]-hydrogenases in anaerobic Gram- positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood-Ljungdahl pathway. In general, our results point to H2-oxidizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H2- powered primary production in serpentinite-hosted subsurface habitats.

  16. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    lloyd eLoza-Muller


    Full Text Available Fibrillarin is a well conserved methyltransferase involved in several if not all of the more than 100 methylations sites in rRNA which are essential for proper ribosome function. It is mainly localized in the nucleoli and Cajal bodies inside the cell nucleus where it exerts most of its functions. In plants, fibrillarin binds directly the guide RNA together with Nop56, Nop58 and 15.5ka proteins to form a snoRNP complex that selects the sites to be methylated in pre-processing of ribosomal RNA. Recently, the yeast counterpart NOP1 was found to methylate histone H2A in the nucleolar regions. Here we show that plant fibrillarin can also methylate histone H2A. In Brassica floral meristem cells the methylated histone H2A is mainly localized in the nucleolus but unlike yeast or human cells it also localize in the periphery of the nucleus. In specialized transport cells the pattern is altered and it exhibits a more diffuse staining in the nucleus for methylated histone H2A as well as for fibrillarin. Here we also show that plant fibrillarin is capable of interacting with H2A and carry out its methylation in the rDNA promoter.

  17. Investigation of the Na2(H2PO2)2 - Ba(H2PO2)2 - H2O Water-Salt Ternary System at Room Temperature


    Erge, Hasan; Turan, Hakan; Kul, Ali Riza


    Objective: In this study, the solubility, density, conductivity and phase equilibria of the Na2(H2PO2)2-Ba(H2PO2)2-H2O ternary system located in the structure of the Na+, Ba2+, (H2PO2)-//H2O quaternary reciprocal water-salt system were investigated using physicochemical analysis methods. Material and Methods: Riedel-de Haen and Merck salts were used to investigate the solubility and phase equilibria of the Na2(H2PO2)2 -Ba(H2PO2)2-H2O ternary water–salt system at room temperature Res...

  18. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)2]·4H2O (United States)

    Narsimhulu, M.; Hussain, K. A.


    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)2]·4H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  19. Industrial production of MgH2 and its application

    International Nuclear Information System (INIS)

    Uesugi, H.; Sugiyama, T.; Nii, H.; Ito, T.; Nakatsugawa, I.


    Research highlights: → Tablet and powder Mg were hydrogenated in a 50 kg batch furnace based on thermal equilibrium method. → Compression of Mg tablet improved the hydrogenation yield. → Hydrolysis of MgH 2 using citric acid generated hydrogen under 373 K. → A MgH 2 -hydrogen reactor utilizing hydraulic head pressure was developed. → - Abstract: A process for the industrial production of magnesium hydride (MgH 2 ) based on a thermal equilibrium method and its application to portable hydrogen sources is proposed. Mg powders and tablets compressed with mechanically ground Mg ribbons were successfully hydrogenated in a 50-kg-batch furnace. The resultant MgH 2 showed a hydrogen yield of around 96% with good reproducibility. The compression ratio of Mg tablets was found to be an important factor in the hydrogenation yield. A hydrolysis technique using citric acid as an additive was employed to generate hydrogen under 373 K. Increasing the concentration of citric acid and the temperature accelerated the hydrolysis reactivity. A hydrogen reactor utilizing hydraulic head pressure was developed. It generated hydrogen continuously for 1 h at a flow rate of 100 ml min -1 with hydrolysis of 5 g of tablet-form MgH 2 . The conversion yield was around 70%, regardless of the flow rate.

  20. Electrochemical, H2O2-Boosted Catalytic Oxidation System (United States)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.


    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  1. Kinetics of struvite to newberyite transformation in the precipitation system MgCl2-NH4H2PO4NaOH-H2O. (United States)

    Babić-Ivancić, Vesna; Kontrec, Jasminka; Brecević, Ljerka; Kralj, Damir


    The influence of the initial reactant concentrations on the composition of the solid phases formed in the precipitation system MgCl(2)-NH(4)H(2)PO(4)-NaOH-H(2)O was investigated. The precipitation diagram constructed shows the approximate concentration regions within which struvite, newberyite, and their mixtures exist at 25 degrees C and an aging time of 60 min. It was found that immediately after mixing the reactant solutions, struvite (MgNH(4)PO(4).6H(2)O) precipitated in nearly the whole concentration area, while newberyite (MgHPO(4).3H(2)O) appeared mostly within the region of the excess of magnesium concentration. It was also found that after aging time of 60 min the precipitation domain of struvite alone is much broader than that of newberyite or the domain of their coexistence, and shows that struvite is more abundant in the systems in which the initial concentration of ammonium phosphate is higher than that of magnesium. The kinetics of struvite to newberyite transformation (conversion) was systematically studied under the conditions of different initial reactant concentrations and different initial pH in the systems in which a mixture of both phases precipitated spontaneously. The struvite to newberyite conversion period was found to be strongly related to the ratio of initial supersaturations, S(N)/S(S), rather than to the any particular physical quantity that can describe and predict the behavior of the precipitation system. Experimental data suggest a solution-mediated process as a most possible transformation mechanism. Along with a continuous monitoring of the changes in the liquid phase, the content of struvite in the solid phase was estimated by means of a Fourier transform infrared (FT-IR) method, developed for this particular precipitation system.

  2. Interactions of Nickel(II) with histones: interactions of Nickel(II) with CH3CO-Thr-Glu-Ser-His-His-Lys-NH2, a peptide modeling the potential metal binding site in the "C-Tail" region of histone H2A. (United States)

    Bal, W; Lukszo, J; Bialkowski, K; Kasprzak, K S


    A combined pH-metric and spectroscopic (UV/vis, CD, NMR) study of the Ni(II) binding to CH3CO-Thr-Glu-Ser-His-His-Lys-NH2 (AcTESHHKam), a blocked hexapeptide modeling a part of the C-terminal sequence of the major variant of histone H2A (residues 120-125), revealed the formation of a pseudo-octahedral NiHL complex in weakly acidic and neutral solutions. Ni(II) is bound to the peptide through imidazole nitrogens on both of its histidine residues and the carboxylate of the side chain of glutamic acid. At higher pH, a series of square-planar complexes are formed. This process is accompanied by hydrolytic degradation of the peptide. At pH 7.4, the peptide hydrolyzes in a Ni(II)-assisted fashion, yielding the square-planar Ni(II) complex of SHHKam as the sole product detected by CD, MALDI-TOF MS, and HPLC. Quantitative analysis of complex stabilities indicates that the -TESHHK- motif is a very likely binding site for carcinogenic Ni(II) ions in the cell nucleus. The Ni(II)-assisted hydrolysis of the C-terminal chain of histone H2A may provide a novel mechanism of genotoxicity combining the damage to the nucleosome with the generation of further toxic Ni(II) species.

  3. Atmospheric photochemical loss of H and H2 from formaldehyde

    DEFF Research Database (Denmark)

    Simonsen, Jens Bæk; Rusteika, Nerijus; Johnson, Matthew Stanley


    We have performed ab initio calculations to examine the potential energy along the normal modes of ground-state HCHO and along the reaction coordinates for loss of H2 and atomic hydrogen, respectively. This exploration showed that there are no specific features that will lead to reaction on the e......We have performed ab initio calculations to examine the potential energy along the normal modes of ground-state HCHO and along the reaction coordinates for loss of H2 and atomic hydrogen, respectively. This exploration showed that there are no specific features that will lead to reaction...... on the excited-state surfaces for excitations that are relevant to the troposphere and stratosphere. The calculations did however lead to the localization of a conical intersection point through which a specific loss of H2 could take place. However, the conical intersection lies at 5.4 eV relative to the ground...

  4. Data-Driven Controller Design The H2 Approach

    CERN Document Server

    Sanfelice Bazanella, Alexandre; Eckhard, Diego


    Data-driven methodologies have recently emerged as an important paradigm alternative to model-based controller design and several such methodologies are formulated as an H2 performance optimization. This book presents a comprehensive theoretical treatment of the H2 approach to data-driven control design. The fundamental properties implied by the H2 problem formulation are analyzed in detail, so that common features to all solutions are identified. Direct methods (VRFT) and iterative methods (IFT, DFT, CbT) are put under a common theoretical framework. The choice of the reference model, the experimental conditions, the optimization method to be used, and several other designer’s choices are crucial to the quality of the final outcome, and firm guidelines for all these choices are derived from the theoretical analysis presented. The practical application of the concepts in the book is illustrated with a large number of practical designs performed for different classes of processes: thermal, fluid processing a...

  5. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy (United States)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.


    show that the addition effect would account for only less than 4 DU which is equivalent to 1% of the current unperturbed ozone layer over the polar regions (? 400 DU). Hence the risk of a substantial damage to the stratospheric ozone layer due to H2-emissions of a hydrogen economy is low compared to the positive climate implications that would evolve from the avoidance of greenhouse gas emissions.

  6. Improved parametric fits for the HeH2 ab initio energy surface

    International Nuclear Information System (INIS)

    Muchnick, P.


    A brief history of the development of ab initio calculations for the HeH 2 quasi-molecule energy surface, and the parametric fits to these ab initio calculations, is presented. The concept of 'physical reasonableness' of the parametric fit is discussed. Several new improved parametric fits for the energy surface, meeting these requirements, are then proposed. One fit extends the Russek-Garcia parametric fit for the deep repulsion region to include r-dependent parameters, resulting in a more physically reasonable fit with smaller average error. This improved surface fit is applied to quasi-elastic collisions of He on H 2 in the impulse approximation. Previous classical calculations of the scaled inelastic vibrorotational excitation energy distributions are improved with this more accurate parametric fit of the energy surface and with the incorporation of quantum effects in vibrational excitation. It is shown that Sigmund's approach in developing his scaling law is incomplete in the contribution of the three-body interactions to vibrational excitation of the H 2 molecule is concerned. The Sigmund theory is extended to take into account for r-dependency of three-body interactions. A parametric fit for the entire energy surface from essentially 0 ≤R≤∞ and 1.2≤r≤1.6 a.u., where R is the intermolecular spacing and r is the hydrogen bonding length, is also presented. This fit is physically reasonable in all asymptotic limits. This first, full surface parametric fit is based primarily upon a composite of ab initio studies by Russek and Garcia and Meyer, Hariharan and Kutzelnigg. Parametric fits for the H 2 (1sσ g ) 2 , H 2 + (1sσ g ), H 2 + (2pσ u ) and (LiH 2 ) + energy surfaces are also presented. The new parametric fits for H 2 , H 2 + (1sσ g ) are shown to be improvements over the well-known Morse potentials for these surfaces

  7. Q{sub {gamma}-H2AX}, an analysis method for partial-body radiation exposure using {gamma}-H2AX in non-human primate lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Redon, Christophe E., E-mail: [NIH, NCI, CCR, Laboratory of Molecular Pharmacology, Bethesda, MD 20892 (United States); Nakamura, Asako J.; Gouliaeva, Ksenia [NIH, NCI, CCR, Laboratory of Molecular Pharmacology, Bethesda, MD 20892 (United States); Rahman, Arifur; Blakely, William F. [Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD 20889-5603 (United States); Bonner, William M. [NIH, NCI, CCR, Laboratory of Molecular Pharmacology, Bethesda, MD 20892 (United States)


    We previously used the {gamma}-H2AX assay as a biodosimeter for total-body irradiation (TBI) exposure ({gamma}-rays) in a rhesus macaque (Macaca mulatta) model. Utilizing peripheral blood lymphocytes and plucked hairs, we obtained statistically significant {gamma}-H2AX responses days after total-body exposure to 1-8.5 Gy ({sup 60}Co {gamma}-rays at 55 cGy min{sup -1}). Here, we introduce a partial-body exposure analysis method, Q{sub {gamma}-H2AX}, which is based on the number of {gamma}-H2AX foci per damaged cells as evident by having one or more {gamma}-H2AX foci per cell. Results from the rhesus monkey - TBI study were used to establish Q{sub {gamma}-H2AX} dose-response calibration curves to assess acute partial-body exposures. {gamma}-H2AX foci were detected in plucked hairs for several days after in vivo irradiation demonstrating this assay's utility for dose assessment in various body regions. The quantitation of {gamma}-H2AX may provide a robust biodosimeter for analyzing partial-body exposures to ionizing radiation in humans.

  8. Clinical Applications of CO2 and H2 Breath Test

    Directory of Open Access Journals (Sweden)

    ZHAO Si-qian;CHEN Bao-jun;LUO Zhi-fu


    Full Text Available Breath test is non-invasive, high sensitivity and high specificity. In this article, CO2 breath test, H2 breath test and their clinical applications were elaborated. The main applications of CO2 breath test include helicobacter pylori test, liver function detection, gastric emptying test, insulin resistance test, pancreatic exocrine secretion test, etc. H2 breath test can be applied in the diagnosis of lactose malabsorption and detecting small intestinal bacterial overgrowth. With further research, the breath test is expected to be applied in more diseases diagnosis.

  9. Ultrafast Librational Relaxation of H2O in Liquid Water

    DEFF Research Database (Denmark)

    Petersen, Jakob; Møller, Klaus Braagaard; Rey, Rossend


    The ultrafast librational (hindered rotational) relaxation of a rotationally excited H2O molecule in pure liquid water is investigated by means of classical nonequilibrium molecular dynamics simulations and a power and work analysis. This analysis allows the mechanism of the energy transfer from...... the excited H2O to its water neighbors, which occurs on a sub-100 fs time scale, to be followed in molecular detail, i.e., to determine which water molecules receive the energy and in which degrees of freedom. It is found that the dominant energy flow is to the four hydrogen-bonded water partners in the first...

  10. H∞ /H2 model reduction through dilated linear matrix inequalities

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob


    This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field{N}$. Arb......This paper presents sufficient dilated linear matrix inequalities (LMI) conditions to the $H_{infty}$ and $H_{2}$ model reduction problem. A special structure of the auxiliary (slack) variables allows the original model of order $n$ to be reduced to an order $r=n/s$ where $n,r,s in field...

  11. Backward Stochastic H2/H∞ Control: Infinite Horizon Case

    Directory of Open Access Journals (Sweden)

    Zhen Wu


    Full Text Available The mixed H2/H∞ control problem is studied for systems governed by infinite horizon backward stochastic differential equations (BSDEs with exogenous disturbance signal. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The equivalent feedback solution is also discussed. Contrary to deterministic or stochastic forward case, the feedback solution is no longer feedback of the current state; rather, it is feedback of the entire history of the state.

  12. H2 emission from Herbig-Haro objects

    International Nuclear Information System (INIS)

    Elias, J.H.


    Molecular hydrogen emission lines have been detected in six Herbig-Haro objects. The line intensities suggest tha the H 2 emission arises in a moderate-density, shock-heated gas, consistent with evidence for a similar origin of the visible emission-line spectra in Herbig-Haro objects. Indirect arguments indicate that the typical H 2 line widths are less than 70 km s -1 and that typical helicentric radial velocities are no more than 30 km s -1 in magnitude

  13. [3H]-2-Deoxyglucose autoradiography in a molluscan nervous system

    International Nuclear Information System (INIS)

    Reingold, S.C.; Sejnowski, T.J.; Gelperin, A.


    The authors have used [ 3 H]2-deoxyglucose autoradiography to correlate the labeling of individual neurons with electrical activity within the central nervous system of a terrestrial mollusc, Limax maximus. In an electrically quiescent control preparation where a single neuron is impaled with a glass microelectrode but not stimulated, several somata are uniformly labeled at 3-5 times background. In preparations where a single cell is impaled and stimulated, one or more somata are heavily labeled with [ 3 H]2-deoxyglucose at 10-50 times tissue background. This technique may be useful for surveying metabolically active neurons during spontaneous and driven electrical activity. (Auth.)


    International Nuclear Information System (INIS)

    Pike, R. E.; Geballe, T. R.; Burton, M. G.; Chrysostomou, A.


    We have obtained K -band spectra at R ∼ 5000 and an angular resolution of 0.″3 of a section of the Herbig–Haro 7 (HH7) bow shock, using the Near-Infrared Integral Field Spectrograph at Gemini North. Present in the portion of the data cube corresponding to the brightest part of the bow shock are emission lines of H 2 with upper state energies ranging from ∼6000 K to the dissociation energy of H 2 , ∼50,000 K. Because of low signal-to-noise ratios, the highest excitation lines cannot be easily seen elsewhere in the observed region. However, excitation temperatures, measured throughout much of the observed region using lines from levels as high as 25,000 K, are a strong function of upper level energy, indicating that the very highest levels are populated throughout. The level populations in the brightest region are well fit by a two-temperature model, with 98.5% of the emitting gas at T = 1800 K and 1.5% at T = 5200 K. The bulk of the H 2 line emission in HH7, from the 1800 K gas, has previously been well-modeled by a continuous shock, but the 5200 K cozmponent is inconsistent with standalone standard continuous shock models. We discuss various possible origins for the hot component and suggest that this component is H 2 newly reformed on dust grains and then ejected from them, presumably following dissociation of some of the H 2 by the shock.

  15. The solubility of gold in H 2 O-H 2 S vapour at elevated temperature and pressure (United States)

    Zezin, Denis Yu.; Migdisov, Artashes A.; Williams-Jones, Anthony E.


    This experimental study sheds light on the complexation of gold in reduced sulphur-bearing vapour, specifically, in H 2O-H 2S gas mixtures. The solubility of gold was determined in experiments at temperatures of 300, 350 and 365 °C and reached 2.2, 6.6 and 6.3 μg/kg, respectively. The density of the vapour varied from 0.02 to 0.22 g/cm 3, the mole fraction of H 2S varied from 0.03 to 0.96, and the pressure in the cell reached 263 bar. Statistically significant correlations of the amount of gold dissolved in the fluid with the fugacity of H 2O and H 2S permit the experimental data to be fitted to a solvation/hydration model. According to this model, the solubility of gold in H 2O-H 2S gas mixtures is controlled by the formation of sulphide or bisulphide species solvated by H 2S or H 2O molecules. Formation of gold sulphide species is favoured statistically over gold bisulphide species and thus the gold is interpreted to dissolve according to reactions of the form: Au(s)+(n+1)HS(g)=AuS·(HS)n(g)+H(g) Au(s)+HS(g)+mHO(g)=AuS·(HO)m(g)+H(g) Equilibrium constants for Reaction (A1) and the corresponding solvation numbers ( K A1 and n) were evaluated from the study of Zezin et al. (2007). The equilibrium constants as well as the hydration numbers for Reaction (A2) ( K A2 and m) were adjusted simultaneously by a custom-designed optimization algorithm and were tested statistically. The resulting values of log K A2 and m are -15.3 and 2.3 at 300 and 350 °C and -15.1 and 2.2 at 365 °C, respectively. Using the calculated stoichiometry and stability of Reactions (A1) and (A2), it is now possible to quantitatively evaluate the contribution of reduced sulphur species to the transport of gold in aqueous vapour at temperatures up to 365 °C. This information will find application in modelling gold ore-forming processes in vapour-bearing magmatic hydrothermal systems, notably those of epithermal environments.

  16. A study of the accelerated zircaloy-4 oxidation reaction with H2O/H2 mixture gas

    International Nuclear Information System (INIS)

    Kim, Y. S.; Cho, I. J.


    A study of the Zircaloy-4 reaction with H 2 O/H 2 mixture gas is carried out by using TGA (Thermo Gravimetric Apparatus) to estimate the hydrogen embrittlement which can possibly cause catastrophic nuclear fuel rod failure. Reaction rates are measured as a function of H 2 /H 2 O. In the experiments reaction temperature is set at 500 .deg. C and total pressure of the mixture gas is maintained at 1 atm. Experimental results reveal that hydriding and oxidation reaction are competing. In early stage, hydriding kinetics is faster than oxidation, however, oxidant in H 2 O forms oxide on the surface as steam environment is maintained, thus, this growing oxide begins to protect the zirconium base metal against hydrogen permeation. In this second stage, the total kinetic rate follows enhanced oxidation kinetics. In the final stage, it is observed that the oxide is broken down and massive hydriding takes place through the mechanical defects in the oxide, whose kinetics is similar to pure hydriding kinetics. These results are confirmed by SEM and EDX analysis along with hydrogen concentration measurements

  17. The Nucleosome Acidic Patch Regulates the H2B K123 Monoubiquitylation Cascade and Transcription Elongation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Christine E Cucinotta


    Full Text Available Eukaryotes regulate gene expression and other nuclear processes through the posttranslational modification of histones. In S. cerevisiae, the mono-ubiquitylation of histone H2B on lysine 123 (H2B K123ub affects nucleosome stability, broadly influences gene expression and other DNA-templated processes, and is a prerequisite for additional conserved histone modifications that are associated with active transcription, namely the methylation of lysine residues in H3. While the enzymes that promote these chromatin marks are known, regions of the nucleosome required for the recruitment of these enzymes are undefined. To identify histone residues required for H2B K123ub, we exploited a functional interaction between the ubiquitin-protein ligase, Rkr1/Ltn1, and H2B K123ub in S. cerevisiae. Specifically, we performed a synthetic lethal screen with cells lacking RKR1 and a comprehensive library of H2A and H2B residue substitutions, and identified H2A residues that are required for H2B K123ub. Many of these residues map to the nucleosome acidic patch. The substitutions in the acidic patch confer varying histone modification defects downstream of H2B K123ub, indicating that this region contributes differentially to multiple histone modifications. Interestingly, substitutions in the acidic patch result in decreased recruitment of H2B K123ub machinery to active genes and defects in transcription elongation and termination. Together, our findings reveal a role for the nucleosome acidic patch in recruitment of histone modification machinery and maintenance of transcriptional integrity.

  18. Adsorption of CO, CO2, H2, and H2O on titania surfaces with different oxidation states

    International Nuclear Information System (INIS)

    Raupp, G.B.; Dumesic, J.A.


    The adsorptive properties of titania surfaces with different oxidation states were proved by temperature-programmed desorption (TPD) of CO, H 2 , CO 2 , and H 2 O. Auger electron spectroscopy and X-ray photoelectron spectroscopy revealed that vacuum annealing an oxidized titanium foil at temperatures from 300 to 800 K was an effective means of systematically varying the average surface oxidation state from Ti 4+ to Ti 2+ . Carbon monoxide weakly adsorbed (desorption energy of 44-49 kJ x mol -1 ) in a carbonyl fashion on coordinatively unsaturated cation sites. Titania surfaces were inert with respect to H 2 adsorption and dissociation. Carbon dioxide adsorbed in a linear molecular fashion. Water adsorbed both molecularly and dissociatively. Results are discussed in terms of the role of titania oxidation state in CO hydrogenation over titania-supported metal catalysts. 74 references, 7 figures

  19. Solar kerosene from H2O and CO2 (United States)

    Furler, P.; Marxer, D.; Scheffe, J.; Reinalda, D.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A.


    The entire production chain for renewable kerosene obtained directly from sunlight, H2O, and CO2 is experimentally demonstrated. The key component of the production process is a high-temperature solar reactor containing a reticulated porous ceramic (RPC) structure made of ceria, which enables the splitting of H2O and CO2 via a 2-step thermochemical redox cycle. In the 1st reduction step, ceria is endo-thermally reduced using concentrated solar radiation as the energy source of process heat. In the 2nd oxidation step, nonstoichiometric ceria reacts with H2O and CO2 to form H2 and CO - syngas - which is finally converted into kerosene by the Fischer-Tropsch process. The RPC featured dual-scale porosity for enhanced heat and mass transfer: mm-size pores for volumetric radiation absorption during the reduction step and μm-size pores within its struts for fast kinetics during the oxidation step. We report on the engineering design of the solar reactor and the experimental demonstration of over 290 consecutive redox cycles for producing high-quality syngas suitable for the processing of liquid hydrocarbon fuels.

  20. submitter Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4–H2O) and ternary (H2SO4–H2O–NH3) system

    CERN Document Server

    Kürten, A; Rondo, L; Bianchi, F; Duplissy, J; Jokinen, T; Junninen, H; Sarnela, N; Schobesberger, S; Simon, M; Sipilä, M; Almeida, J; Amorim, A; Dommen, J; Donahue, N M; Dunne, E M; Flagan, R C; Franchin, A; Kirkby, J; Kupc, A; Makhmutov, V; Petäjä, T; Praplan, A P; Riccobono, F; Steiner, G; Tomé, A; Tsagkogeorgas, G; Wagner, P E; Wimmer, D; Baltensperger, U; Kulmala, M; Worsnop, D R; Curtius, J


    Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary $(H_2SO_4–H_2O)$ system and the ternary system involving ammonia $(H_2SO_4–H_2O–NH_3)$ may be important in the free troposphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an understanding of the thermodynamics of dimer formation over a wide range of atmospheric conditions is essential to describe NPF. We have used the CLOUD chamber to conduct nucleation experiments for these systems at temperatures from 208 to 248 K. Neutral monomer and dimer concentrations of sulfuric acid were measured using a chemical ionization mass spectrometer (CIMS). From these measurements, dimer evaporation rates in the binary system were derived for temperatures of 208 and 223 K. We compare these results to literature data from a previous study that was conducted at higher temperatures but is in good agreement with the present study. For the ternary sys...

  1. Room temperature CO and H2 sensing with carbon nanoparticles

    International Nuclear Information System (INIS)

    Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo


    We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H 2 at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H 2 at room temperature even without Pd or Pt catalysts commonly used for splitting H 2 molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H 2 molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.

  2. Reaction of ferric leghemoglobin with H2O2

    DEFF Research Database (Denmark)

    Moreau, S; Davies, M J; Puppo, A


    Ferric leghemoglobin in the presence of H2O2 is known to give rise to protein radicals, at least one of which is centred on a tyrosine residue. These radicals are quenched by at least two processes. The first one involves an intramolecular heme-protein cross-link probably involving the tyrosine r...

  3. Analytical potential energy function for the Br + H2 system

    International Nuclear Information System (INIS)

    Kurosaki, Yuzuru


    Analytical functions with a many-body expansion for the ground and first-excited-state potential energy surfaces for the Br+H 2 system are newly presented in this work. These functions describe the abstraction and exchange reactions qualitatively well, although it has been found that the function for the ground-state potential surface is still quantitatively unsatisfactory. (author)

  4. Surface tension of H2O and D2O

    International Nuclear Information System (INIS)

    Vargaftik, N.B.; Voljak, L.D.; Volkov, B.N.


    There is a great number of works on surface tension of clean water (H 2 O) at temperatures up to 100 deg C and very few above the boiling point. Works on surface tension of heavy water (D 2 O) are insufficient. A review of works on surface tension of both kinds of water is given

  5. Review of H2 and O2 detection in LWRS

    International Nuclear Information System (INIS)

    Neidel, E.C.; Castle, J.G. Jr.


    Hydrogen detection systems are being installed in existing LWR's and are being planned for new ones. This review summarizes the present status of instrument availability and of application in nuclear power plants. The H 2 sensors in most of the detection systems purchased to date by the nuclear utilities are being located outside of containment. The air sampled for each H 2 sensor is circulated outside to the analyzer and back through two pipes which penetrate the containment wall. The travel time for the air to reach the sensor increases the response time for H 2 detection by approximately one-half minute. A few of the utilities will operate their H 2 sensors inside LWR containment. Since these systems lack radiation-hardened electronics, they require multiple wire penetrations which considerably increase installation costs and reduce the attractiveness of these systems. One electric power utility has requested quotations from hydrogen detector manufacturers for hydrogen detection equipment with better performance and faster system response than that presently available commercially. The requested detector response time of 15 seconds or less would permit the decision delay prior to initiating hydrogen control measures to be on the order of one minute

  6. Inelastic scattering in metal-H-2-metal junctions

    DEFF Research Database (Denmark)

    Kristensen, I. S.; Paulsson, Magnus; Thygesen, Kristian Sommer


    We present first-principles calculations of the dI/dV characteristics of an H-2 molecule sandwiched between Au and Pt electrodes in the presence of electron-phonon interactions. The conductance is found to decrease by a few percentages at threshold voltages corresponding to the excitation energy ...

  7. Dynamics of H2 on Ti/Al(100) surfaces

    NARCIS (Netherlands)

    Chen, Jian-Cheng


    What is the catalytic role played by titanium in the hydrogen storage material NaAlH4? This thesis aims at unraveling the dynamics of an elementary reaction: H2 dissociation on Ti/Al(100) surfaces. Although this reaction is not the rate limiting step in the hydrogen storage of NaAlH4, it is an

  8. Economic analysis of novel synergistic biofuel (H2Bioil) processes

    International Nuclear Information System (INIS)

    Singh, Navneet R.; Mallapragada, Dharik S.; Agrawal, Rakesh; Tyner, Wallace E.


    Fast-pyrolysis based processes can be built on small-scale and have higher process carbon and energy efficiency as compared to other options. H 2 Bioil is a novel process based on biomass fast-hydropyrolysis and subsequent hydrodeoxygenation (HDO) and can potentially provide high yields of high energy density liquid fuel at relatively low hydrogen consumption. This paper contains a comprehensive financial analysis of the H 2 Bioil process with hydrogen derived from different sources. Three different carbon tax scenarios are analyzed: no carbon tax, $55/metric ton carbon tax and $110/metric ton carbon tax. The break-even crude oil price for a delivered biomass cost of $94/metric ton when hydrogen is derived from coal, natural gas or nuclear energy ranges from $103 to $116/bbl for no carbon tax and even lower ($99-$111/bbl) for the carbon tax scenarios. This break-even crude oil price compares favorably with the literature estimated prices of fuels from alternate biochemical and thermochemical routes. The impact of the chosen carbon tax is found to be limited relative to the impact of the H 2 source on the H 2 Bioil break-even price. The economic robustness of the processes for hydrogen derived from coal, natural gas, or nuclear energy is seen by an estimated break-even crude oil price of $114-$126/bbl when biomass cost is increased to $121/metric ton. (orig.)

  9. H2A Production Model, Version 2 User Guide

    Energy Technology Data Exchange (ETDEWEB)

    Steward, D.; Ramsden, T.; Zuboy, J.


    The H2A Production Model analyzes the technical and economic aspects of central and forecourt hydrogen production technologies. Using a standard discounted cash flow rate of return methodology, it determines the minimum hydrogen selling price, including a specified after-tax internal rate of return from the production technology. Users have the option of accepting default technology input values--such as capital costs, operating costs, and capacity factor--from established H2A production technology cases or entering custom values. Users can also modify the model's financial inputs. This new version of the H2A Production Model features enhanced usability and functionality. Input fields are consolidated and simplified. New capabilities include performing sensitivity analyses and scaling analyses to various plant sizes. This User Guide helps users already familiar with the basic tenets of H2A hydrogen production cost analysis get started using the new version of the model. It introduces the basic elements of the model then describes the function and use of each of its worksheets.

  10. Glitters of warm H2 in cold diffuse molecular gas

    NARCIS (Netherlands)

    Falgarone, Edith; Beichman, Chaz; Boulanger, Francois; Combes, Francoise; Gry, Cecile; Helou, Georges; Laureijs, Rene; Pineau Des Forets, Guillaume; Valentijn, Edwin; Verstraete, Laurent


    Cold molecular hydrogen, a possibly dominant gas fraction in galaxies, does not radiate due to the symmetry and small moment of inertia of the molecule. The only tracers of cold H2, the rotational lines of CO and dust thermal emission operate only in metal-rich environments. By detecting the lowest

  11. H2S-Mediated Thermal and Photochemical Methane Activation

    NARCIS (Netherlands)

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric V.


    Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with

  12. Centrifugal turbocompressor with contactless sealing for H-2 S

    International Nuclear Information System (INIS)

    Peculea, M.; Balint, I.; Hirean, I.; Dumitrescu, C.; Pitigoi, Gh.; Balanuca, C.


    This paper reports the development of a centrifugal turbocompressor with contactless sealing for H 2 S specially designed for the ROMAG Drobeta heavy water plant. The bench-scale experiments are described and the resulted main characteristics are given. For this equipment an asymmetric automatic anti-pumping protection system has been developed and patented

  13. H2O2 Synthesis Induced by Irradiation of H2O with Energetic H(+) and Ar(+) Ions at Various Temperatures (United States)

    Baragiola, R. A.; Loeffler, M. J.; Raut, U.; Vidal, R. A.; Carlson, R. W.


    The detection of H2O2 on Jupiter's icy satellite Europa by the Galileo NIMS instrument presented a strong evidence for the importance of radiation effects on icy surfaces. A few experiments have investigated whether solar flux of protons incident on Europa ice could cause a significant if any H2O2 production. These published results differ as to whether H2O2 can be formed by ions impacting water at temperatures near 80 K, which are appropriate to Europa. This discrepancy may be a result of the use of different incident ion energies, different vacuum conditions, or different ways of processing the data. The latter possibility comes about from the difficulty of identifying the 3.5 m peroxide OH band on the long wavelength wing of the much stronger water 3.1 m band. The problem is aggravated by using straight line baselines to represent the water OH band with a curvature, in the region of the peroxide band, that increases with temperature. To overcome this problem, we use polynomial baselines that provide good fits to the water band and its derivative.

  14. Overtone vibrational spectroscopy in H2-H2O complexes: a combined high level theoretical ab initio, dynamical and experimental study. (United States)

    Ziemkiewicz, Michael P; Pluetzer, Christian; Nesbitt, David J; Scribano, Yohann; Faure, Alexandre; van der Avoird, Ad


    First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.

  15. Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc


    This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.

  16. Computational study on the mechanisms and energetics of trimethylindium reactions with H2O and H2S. (United States)

    Raghunath, P; Lin, M C


    The reactions of trimethylindium (TMIn) with H2O and H2S are relevant to the chemical vapor deposition of indium oxide and indium sulfide thin films. The mechanisms and energetics of these reactions in the gas phase have been investigated by density functional theory and ab initio calculations using the CCSD(T)/[6-31G(d,p)+Lanl2dz]//B3LYP/[6-31G(d,p)+Lanl2dz] and CCSD(T)/[6-31G(d,p)+Lanl2dz] //MP2/[6-31G(d,p)+Lanl2dz] methods. The results of both methods are in good agreement for the optimized geometries and relative energies. When TMIn reacts with H2O and H2S, initial molecular complexes [(CH3)3In:OH2 (R1)] and [(CH3)3In:SH2 (R2)] are formed with 12.6 and 3.9 kcal/mol binding energies. Elimination of a CH4 molecule from each complex occurs with a similar energy barrier at TS1 (19.9 kcal/mol) and at TS3 (22.1 kcal/mol), respectively, giving stable intermediates (CH3)2InOH and (CH3)2InSH. The elimination of the second CH4 molecule from these intermediate products, however, has to overcome very high and much different barriers of 66.1 and 53.2 kcal/mol, respectively. In the case of DMIn with H2O and H2S reactions, formation of both InO and InS is exothermic by 3.1 and 30.8 kcal/mol respectively. On the basis of the predicted heats of formation of R1 and R2 at 0 K and -20.1 and 43.6 kcal/mol, the heats of formation of (CH3)2InOH, (CH3)2InSH, CH3InO, CH3InS, InO, and InS are estimated to be -20.6, 31.8, and 29.0 and 48.4, 35.5, and 58.5 kcal/mol, respectively. The values for InO and InS are in good agreement with available experimental data. A similar study on the reactions of (CH3)2In with H2O and H2S has been carried out; in these reactions CH3InOH and CH3InSH were found to be the key intermediate products.

  17. Improved radiosensitive microcapsules using H2O2

    International Nuclear Information System (INIS)

    Harada, Satoshi; Ehara, Shigeru; Ishii, Keizo


    The radiation-induced releasing of the liquid-core of the microcapsules was improved using H 2 O 2 , which produced O 2 generation of H 2 O 2 after irradiation. Further, we tested whether these microcapsules enhanced the antitumor effects and decreased the adverse effects in vivo in C3He/J mice. The capsules were produced by spraying a mixture of 3.0% hyaluronic acid, 2.0% alginate, 3.0% H 2 O 2 , and 0.3 mmol of carboplatin on a mixture of 0.3 mol FeCl 2 and 0.15 mol CaCl 2 . The microcapsules were subcutaneously injected into MM46 tumors that had been inoculated in the left hind legs of C3He/J mice. The radiotherapy comprised tumor irradiation with 10 Gy or 20 Gy 60 Co. The antitumor effect of the microcapsules was tested by measuring tumor size and monitoring tumor growth. Three types of adverse effects were considered: fuzzy hair, loss of body weight, and death. The size of the capsule size was 23±2.4 μmφ and that of the liquid core, 20.2±2.2 μmφ. The injected microcapsules localized drugs around the tumor. The production of O 2 by radiation increased the release of carboplatin from the microcapsules. The antitumor effects of radiation, carboplatin, and released oxygen were synergistic. Localization of the carboplatin decreased its adverse effects. However, the H 2 O 2 caused ulceration of the skin in the treated area. The use of our microcapsules enhanced the antitumor effects and decreased the adverse effects of carboplatin. However, the skin-ulceration caused by H 2 O 2 must be considered before these microcapsules can be used clinically. (author)

  18. Tricyclic sesquiterpene copaene prevents H2O2-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hasan Turkez


    Full Text Available Aim: Copaene (COP, a tricyclic sesquiterpene, is present in several essential oils of medicinal and aromatic plants and has antioxidant and anticarcinogenic features. But, very little information is known about the effects of COP on oxidative stress induced neurotoxicity. Method: We used hydrogen peroxide (H2O2 exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of COP in H2O2-induced toxicity in rat cerebral cortex cell cultures for the first time. For this purpose, methyl thiazolyl tetrazolium (MTT and lactate dehydrogenase (LDH release assays were carried out to evaluate cytotoxicity. Total antioxidant capacity (TAC and total oxidative stress (TOS parameters were used to evaluate oxidative changes. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG levels, the single cell gel electrophoresis (SCGE or comet assay was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Result: The results of this study showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage increased in the H2O2 alone treated cultures. But pre-treatment of COP suppressed the cytotoxicity, genotoxicity and oxidative stress which were increased by H2O2. Conclusion: It is proposed that COP as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative diseases. [J Intercult Ethnopharmacol 2014; 3(1.000: 21-28

  19. H2 emission from non-stationary magnetized bow shocks (United States)

    Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T.


    When a fast moving star or a protostellar jet hits an interstellar cloud, the surrounding gas gets heated and illuminated: a bow shock is born that delineates the wake of the impact. In such a process, the new molecules that are formed and excited in the gas phase become accessible to observations. In this paper, we revisit models of H2 emission in these bow shocks. We approximate the bow shock by a statistical distribution of planar shocks computed with a magnetized shock model. We improve on previous works by considering arbitrary bow shapes, a finite irradiation field and by including the age effect of non-stationary C-type shocks on the excitation diagram and line profiles of H2. We also examine the dependence of the line profiles on the shock velocity and on the viewing angle: we suggest that spectrally resolved observations may greatly help to probe the dynamics inside the bow shock. For reasonable bow shapes, our analysis shows that low-velocity shocks largely contribute to H2 excitation diagram. This can result in an observational bias towards low velocities when planar shocks are used to interpret H2 emission from an unresolved bow. We also report a large magnetization bias when the velocity of the planar model is set independently. Our 3D models reproduce excitation diagrams in BHR 71 and Orion bow shocks better than previous 1D models. Our 3D model is also able to reproduce the shape and width of the broad H2 1-0S(1) line profile in an Orion bow shock (Brand et al. 1989).

  20. Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen


    Operation under fuel starvation has been proved to be harmful to the fuel cell by causing severe and irreversible degradation. To characterize the behaviors of the high temperature PEM fuel cell under fuel starvation conditions, the cell voltage and local current density is measured simultaneously...... under different H2 stoichiometries below 1.0 and at different current loads. The experimental results show that the cell voltage decreases promptly when the H2 stoichiometry decreases to below 1.0. Negative cell voltage can be observed which indicates cell reversal. The local current density starts...... to diverge when the cell voltage decreases. In the H2 upstream regions the current densities show an increasing trend, while those in the H2 downstream regions show a decreasing trend. Consequently, the current density distribution becomes very uneven. The current density is the highest in the upstream...

  1. Isothermal equilibrium pressures of Y-Th alloy-H2 system

    International Nuclear Information System (INIS)

    Tanase, M.; Fisher, P.W.


    Isothermal equilibrium pressures of the Y 4 Th (3:2 by weight) alloy-H 2 system were measured as a function of atomic composition [H]/[Y + Th] in the temperature range 580-1160 K. The isotherms have two plateaux in the pressure range 10 -2 -10 3 Pa. The first plateau region is attributed to the formation of YH 2 , and the equilibrium pressure P in pascals was found to be log P = 12.36 - 11300/T where T is in kelvins. The second plateau is attributed to the formation of ThH 2 , and the equilibrium pressure was found to be log P = 10.66 - 6891/T. In low atomic composition region the system obeys Sieverts' law. (Auth.)


    International Nuclear Information System (INIS)

    Cluver, M. E.; Ogle, P.; Guillard, P.; Appleton, P. N.; Jarrett, T. H.; Rasmussen, J.; Lisenfeld, U.; Verdes-Montenegro, L.; Antonucci, R.; Bitsakis, T.; Charmandaris, V.; Boulanger, F.; Egami, E.; Xu, C. K.; Yun, M. S.


    We present results from a Spitzer mid-infrared spectroscopy study of a sample of 74 galaxies located in 23 Hickson Compact Groups (HCGs), chosen to be at a dynamically active stage of H I depletion. We find evidence for enhanced warm H 2 emission (i.e., above that associated with UV excitation in star-forming regions) in 14 galaxies (∼20%), with 8 galaxies having extreme values of L(H 2 S(0)-S(3))/L(7.7 μm polycyclic aromatic hydrocarbon), in excess of 0.07. Such emission has been seen previously in the compact group HCG 92 (Stephan's Quintet), and was shown to be associated with the dissipation of mechanical energy associated with a large-scale shock caused when one group member collided, at high velocity, with tidal debris in the intragroup medium. Similarly, shock excitation or turbulent heating is likely responsible for the enhanced H 2 emission in the compact group galaxies, since other sources of heating (UV or X-ray excitation from star formation or active galactic nuclei) are insufficient to account for the observed emission. The group galaxies fall predominantly in a region of mid-infrared color-color space identified by previous studies as being connected to rapid transformations in HCG galaxy evolution. Furthermore, the majority of H 2 -enhanced galaxies lie in the optical ''green valley'' between the blue cloud and red sequence, and are primarily early-type disk systems. We suggest that H 2 -enhanced systems may represent a specific phase in the evolution of galaxies in dense environments and provide new insight into mechanisms which transform galaxies onto the optical red sequence.

  3. Crystalline and amorphous H2O on Charon (United States)

    Dalle Ore, Cristina M.; Cruikshank, Dale P.; Grundy, Will M.; Ennico, Kimberly; Olkin, Catherine B.; Stern, S. Alan; Young, Leslie A.; Weaver, Harold A.


    Charon, the largest satellite of Pluto, is a gray-colored icy world covered mostly in H2O ice, with spectral evidence for NH3, as previously reported (Cook et al. 2007, Astrophys. J. 663, 1406-1419 Merlin, et al. 2010, Icarus, 210, 930; Cook, et al. 2014, AAS/Division for Planetary Sciences Meeting Abstracts, 46, #401.04). Images from the New Horizons spacecraft reveal a surface with terrains of widely different ages and a moderate degree of localized coloration. The presence of H2O ice in its crystalline form (Brown & Calvin 2000 Science 287, 107-109; Buie & Grundy 2000 Icarus 148, 324-339; Merlin et al, 2010) along with NH3 is consistent with a fresh surface.The phase of H2O ice is a key tracer of variations in temperature and physical conditions on the surface of outer Solar System objects. At Charon’s surface temperature H2O is expected to be amorphous, but ground-based observations (e.g., Merlin et al. 2010) show a clearly crystalline signature. From laboratory experiments it is known that amorphous H2O ice becomes crystalline at temperatures of ~130 K. Other mechanisms that can change the phase of the ice from amorphous to crystalline include micro-meteoritic bombardment (Porter et al. 2010, Icarus, 208, 492) or resurfacing processes such as cryovolcanism.New Horizons observed Charon with the LEISA imaging spectrometer, part of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Science Reviews, 140, 129). Making use of high spatial resolution (better than 10 km/px) and spectral resolving power of 240 in the wavelength range 1.25-2.5 µm, and 560 in the range 2.1-2.25 µm, we report on an analysis of the phase of H2O ice on parts of Charon’s surface with a view to investigate the recent history and evolution of this small but intriguing object.This work was supported by NASA’s New Horizons project.

  4. BRCA1 Is a Histone-H2A-Specific Ubiquitin Ligase

    Directory of Open Access Journals (Sweden)

    Reinhard Kalb


    Full Text Available The RING domain proteins BRCA1 and BARD1 comprise a heterodimeric ubiquitin (E3 ligase that is required for the accumulation of ubiquitin conjugates at sites of DNA damage and for silencing at DNA satellite repeat regions. Despite its links to chromatin, the substrate and underlying function of the BRCA1/BARD1 ubiquitin ligase remain unclear. Here, we show that BRCA1/BARD1 specifically ubiquitylates histone H2A in its C-terminal tail on lysines 127 and 129 in vitro and in vivo. The specificity for K127-129 is acquired only when H2A is within a nucleosomal context. Moreover, site-specific targeting of the BRCA1/BARD1 RING domains to chromatin is sufficient for H2Aub foci formation in vivo. Our data establish BRCA1/BARD1 as a histone-H2A-specific E3 ligase, helping to explain its localization and activities on chromatin in cells.

  5. Double and single ionization of He and H2 by slow protons and antiprotons

    International Nuclear Information System (INIS)

    Kimura, Mineo


    Double and single ionization of He and H 2 by proton (p) and antiproton (bar p)impact in the energy region below 50 keV was studied theoretically by using the semiclassical molecular picture. As the energy decreased, the ratio of the double- to the single-ionization cross section increased for impact and decreased for p impact for both He and H 2 . These trends are consistent with recent measurements for He. Ionization mechanisms differ distinctly for p impact and bar p impact. For p impact, the dominant mechanism for double ionization at the lower energies is sequential ladder climbing by the two electrons through various excited channels and finally into the continuum. For bar p impact, in contrast, the approaching negative charge distorts both the He and H 2 electron clouds toward the other side of the nucleus and decreases the electron binding energies. These effects enhance electron-electron interactions, increasing double ionization. For the H 2 , an effect of molecular orientation is an additional complication in determining the dynamics

  6. Ce2O3-SO3-H2O system at 150 and 200 deg C

    International Nuclear Information System (INIS)

    Belokoskov, V.I.; Trofimov, G.V.; Govorukhina, O.A.


    The solubility, solid phase composition and crystal characteristics in the Ce 2 O 3 -SO 3 -H 2 O system have been studied in a broad range of sulfuric acid concentrations (25 to 80% SO 3 ) at temperatures from 150 to 200 deg C. It has been established that in the system the equilibrium had been reached after 15 to 20 days. At 150 deg C, Ce 2 (SO 4 ) 3 x2H 2 O, Ce 2 (SO 4 ) 3 xH 2 O sulfates and Ce 2 (SO 4 ) 3 x3H 2 SO 4 acid salt crystallize in the system. At 200 deg C, the same sulfates crystallize in the system, except that the bisaturation points of the system are shifted, with respect to 150 deg C, into the region of higher SO 3 concentration and correspond to solutions with a SO 3 concentration of 57.8 and 65%. The solubility of cerium(3) at 150 deg C is about 0.5% Ce 2 O 3 . An increase in temperature up to 200 deg C leads to a slightly higher solubility of cerium sulfates

  7. Dissociation of nucleosomal particles by chemical modification. Equivalence of the two binding sites for H2A.H2B dimers

    International Nuclear Information System (INIS)

    Jordano, J.; Nieto, M.A.; Palacian, E.


    Treatment of nucleosomal particles with dimethylmaleic anhydride, a reagent for protein amino groups, is accompanied by a biphasic release of histones H2A plus H2B; one H2A.H2B dimer is more easily released than the other. This behavior allows the preparation of nucleosomal particles containing only one H2A.H2B dimer, which were complemented with 125 I-labeled H2A.H2B. These reconstituted particles, which contain one labeled and one unlabeled H2A.H2B dimer, were treated with the amount of reagent needed to release one of the two H2A.H2B dimers. Radioactivity was equally distributed between residual particles and released proteins, which is consistent with equivalent binding sites in the nucleosomal particle for H2A.H2B dimers, rather than with intrinsically different sites. The asymmetric release of H2A.H2B dimers would be caused by a change in the binding site of one dimer following the release of the other. This behavior might be related to the structural dynamics of nucleosomes

  8. Co3(PO42·4H2O

    Directory of Open Access Journals (Sweden)

    Yang Kim


    Full Text Available Single crystals of Co3(PO42·4H2O, tricobalt(II bis[orthophosphate(V] tetrahydrate, were obtained under hydrothermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO42·4H2O (mineral name hopeite and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetrahedral coordination, while the second, located on a mirror plane, has a distorted octahedral coordination environment. The tetrahedrally coordinated Co2+ is bonded to four O atoms of four PO43− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water molecules (two of which are located on mirror planes, forming a framework structure. In addition, hydrogen bonds of the type O—H...O are present throughout the crystal structure.

  9. Radiative association of CH3(+) and H2

    International Nuclear Information System (INIS)

    Bates, D.R.


    The temperature variation of the rate coefficient for k(1) for CH3(+) + H2 yields CH5(+) + hv is computed treating the para and ortho forms of H2 separately, taking account of nuclear spin and using an accurate theory of the kinetics of association. The results are made absolute with the aid of the measurement at 13 K by Barlow et al. (1984). By combining this measurement with the CH5(+) vibrational frequencies obtained by Pople (1984) from a quantal study, it is deduced that the probability of the stabilizing radiative transition is 5400/s. The rate coefficients k(1) (T, para) and k(1) (T, ortho) are given at 13 K, 30 K, and 80 K. 23 references

  10. H2 as a Possible Carrier of the DIBs? (United States)

    Ubachs, W.


    In the 1990s the hydrogen molecule, by far the most abundant molecular species in the interstellar medium, has been proposed as a possible carrier of the diffuse interstellar bands. While some remarkable coincidences were found in the rich spectrum of inter-Rydberg transitions of this molecule with DIB-features, both in frequency position as in linewidth, some open issues remained on a required non-linear optical pumping scheme that should explain the population of certain intermediate levels and act as a selection mechanism. Recently a similar scheme has been proposed relating the occurrence of the UV-bump (the ubiquitous 2170 Å extinction feature) to the spectrum of H2, therewith reviving the H2 hypothesis.

  11. Quasimolecular autoionization in the collisions He+ - He, H2

    International Nuclear Information System (INIS)

    Ogurtsov, G.N.; Krupyshev, A.G.; Gordeev, Yu.S.


    Data on the autoionization transition level width dependence Γ(R) for He + - He, He + - H 2 pairs are obtained. Data on the probability of autoionization transition in a three-atom quasimolecule are obtained for the first time. It is shown that Γ(R) values for He + - He 2 quasimolecule exceed notably the similar values for isoelectron He + - He quasimolecule and may reach ∼ 1 eV. 6 refs., 2 figs

  12. H 2 guaranteed cost control of discrete linear systems

    Directory of Open Access Journals (Sweden)

    Colmenares W.


    Full Text Available This paper presents necessary and sufficient conditions for the existence of a quadratically stabilizing output feedback controller which also assures H 2 guaranteed cost performance on a discrete linear uncertain system where the uncertainty is of the norm bounded type. The conditions are presented as a collection of linear matrix inequalities.The solution, however requires a search over a scalar parameter space.

  13. Pb-H2O Thermogravimetric Plants. The Rankine Cycle

    International Nuclear Information System (INIS)

    Arosio, S.; Carlevaro, R.


    An economic evaluation concerning Pb-H 2 O thermogravimetric systems with an electric power in the range 200-1.000 kW has been done. Moreover, plant and running costs for a thermogravimetric and a Rankine cycle, 1 MW power, have been compared. Basically due to the lead charge, the plant cost of the former is higher: nevertheless such amount can be recuperated in less than three years, being higher the running cost of the latter [it

  14. Membranes for H2 generation from nuclear powered thermochemical cycles

    International Nuclear Information System (INIS)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra; Iyer, Ratnasabapathy G.; Axness, Marlene


    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H 2 SO 4 into O 2 , SO 2 , and H 2 O at temperatures around 850 C. In-situ removal of O 2 from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A x Sr 1-x Co 1-y B y O 3-δ (A=La, Y; B=Cr-Ni), in particular the family La x Sr 1-x Co 1-y Mn y O 3-δ (LSCM), and doped La 2 Ni 1-x M x O 4 (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H 2 SO 4 decomposition reactor study (at Sandia), in which our membranes were tested in the actual H 2 SO 4 decomposition step

  15. Non-adiabatic generator-coordinate calculation of H2+

    International Nuclear Information System (INIS)

    Tostes, J.G.R.; Para Univ., Belem; Toledo Piza, A.F.R. de


    A non-adiabatic calculation of the few lowest J=O states in the H 2+ molecule done within the framework of the Generator Coordinate Method is reported. Substantial accuracy is achivied with the diagonalization of matrices of very modest dimensions. The resulting wavefunctions are strongly dominated by just a few basis states. The computational scheme is set up so as to take the best advantage of good analytical approximations to existing adiabatic molecular wavefunctions. (Author) [pt

  16. Periodic H-2 Synthesis for Spacecraft Attitude Control with Magnetometers

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Stoustrup, Jakob


    between the Earth´s magnetic field and an artificial magnetic field generated by the coils produces a control torque. The magnetic attitude control is intrinsically periodic due to cyclic variation of the geomagnetic field in orbit. The control performance is specified by the generalized H2 operator norm....... A linear matrix inequality-based algorithm is proposed for attitude control synthesis. Simulation results are provided, showing the prospect of the concept for onboard implementation....

  17. Fast metastable hydrogen atoms from H2 molecules: twin atoms

    Directory of Open Access Journals (Sweden)

    Trimèche A.


    Full Text Available It is a difficult task to obtain “twin atoms”, i.e. pairs of massive particles such that one can perform experiments in the same fashion that is routinely done with “twin photons”. One possible route to obtain such pairs is by dissociating homonuclear diatomic molecules. We address this possibility by investigating the production of metastable H(2s atoms coming from the dissociation of cold H2 molecules produced in a Campargue nozzle beam crossing an electron beam from a high intensity pulsed electron gun. Dissociation by electron impact was chosen to avoid limitations of target molecular excited states due to selection rules. Detectors placed several centimeters away from the collision center, and aligned with respect to possible common molecular dissociation channel, analyze the neutral fragments as a function of their time-of-flight (TOF through Lyman-α detection. Evidence for the first time observed coincidence of pairs of H(2s atoms obtained this way is presented.

  18. Graphene oxide and H2 production from bioelectrochemical graphite oxidation. (United States)

    Lu, Lu; Zeng, Cuiping; Wang, Luda; Yin, Xiaobo; Jin, Song; Lu, Anhuai; Jason Ren, Zhiyong


    Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.

  19. Intermolecular Interactions in Ternary Glycerol–Sample–H2O

    DEFF Research Database (Denmark)

    Westh, Peter; Rasmussen, Erik Lumby; Koga, Yoshikata


    We studied the intermolecular interactions in ternary glycerol (Gly)–sample (S)–H2O systems at 25 °C. By measuring the excess partial molar enthalpy of Gly, HGlyEHEGly, we evaluated the Gly–Gly enthalpic interaction, HGly-GlyEHEGly--Gly, in the presence of various samples (S). For S, tert...... little effect on HGly-GlyEHEGly--Gly. This contrasts with our earlier studies on 1P–S–H2O in that Na+, F− and Cl− are found as hydration centers from the induced changes on HIP-IPEHEIP--IP in the presence of S, while Br−, I−, and SCN− are found to act as hydrophiles. In comparison with the Hofmeister...... ranking of these ions, the kosmotropes are hydration centers and the more kosmotropic the higher the hydration number, consistent with the original Hofmeister’s concept of “H2O withdrawing power.” Br−, I− and SCN−, on the other hand, acted as hydrophiles and the more chaotropic they are the more...

  20. A Chebyshev method for state-to-state reactive scattering using reactant-product decoupling: OH + H2H2O + H. (United States)

    Cvitaš, Marko T; Althorpe, Stuart C


    We extend a recently developed wave packet method for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)] to include the Chebyshev propagator. The method uses the further partitioned approach to reactant-product decoupling, which uses artificial decoupling potentials to partition the coordinate space of the reaction into separate reactant, product, and transition-state regions. Separate coordinates and basis sets can then be used that are best adapted to each region. We derive improved Chebyshev partitioning formulas which include Mandelshtam-and-Taylor-type decoupling potentials, and which are essential for the non-unitary discrete variable representations that must be used in 4-atom reactive scattering calculations. Numerical tests on the fully dimensional OH + H2H2O + H reaction for J = 0 show that the new version of the method is as efficient as the previously developed split-operator version. The advantages of the Chebyshev propagator (most notably the ease of parallelization for J > 0) can now be fully exploited in state-to-state reactive scattering calculations on 4-atom reactions.

  1. Hydrogen peroxide (H2O2) irreversibly inactivates creatine kinase from Pelodiscus sinensis by targeting the active site cysteine. (United States)

    Wang, Wei; Lee, Jinhyuk; Hao, Hao; Park, Yong-Doo; Qian, Guo-Ying


    Creatine kinase (EC, CK) plays an important role in cellular energy metabolism and homeostasis by catalysing the transfer of phosphate between ATP and creatine phosphate. In this study, we investigated the effects of H 2 O 2 on PSCKM (muscle type creatine kinase from Pelodiscus sinensis) by the integrating method between enzyme kinetics and docking simulations. We found that H 2 O 2 strongly inactivated PSCKM (IC 50 =0.25mM) in a first-order kinetic process, and targeted the active site cysteine directly. A conformational study showed that H 2 O 2 did not induce the tertiary structural changes in PSCKM with no extensive exposure of hydrophobic surfaces. Sequential docking simulations between PSCKM and H 2 O 2 indicated that H 2 O 2 interacts with the ADP binding region of the active site, consistent with experimental results that demonstrated H 2 O 2 -induced inactivation. Our study demonstrates the effect of H 2 O 2 on PSCKM enzymatic function and unfolding, and provides important insight into the changes undergone by this central metabolic enzyme in ectothermic animals in response to the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ortho-H2 and the age of prestellar cores (United States)

    Pagani, L.; Lesaffre, P.; Jorfi, M.; Honvault, P.; González-Lezana, T.; Faure, A.


    Prestellar cores form from the contraction of cold gas and dust material in dark clouds before they collapse to form protostars. Several concurrent theories exist to describe this contraction but they are currently difficult to distinguish. One major difference is the timescale involved in forming the prestellar cores: some theories advocate nearly free-fall speed via, e.g., rapid turbulence decay, while others can accommodate much longer periods to let the gas accumulate via, e.g., ambipolar diffusion. To tell the difference between these theories, measuring the age of prestellar cores could greatly help. However, no reliable clock currently exists. We present a simple chemical clock based on the regulation of the deuteration by the abundance of ortho-H2 that slowly decays away from the ortho-para statistical ratio of 3 down to or less than 0.001. We use a chemical network fully coupled to a hydrodynamical model that follows the contraction of a cloud, starting from uniform density, and reaches a density profile typical of a prestellar core. We compute the N2D+/N2H+ ratio along the density profile. The disappearance of ortho-H2 is tied to the duration of the contraction and the N2D+/N2H+ ratio increases in the wake of the ortho-H2 abundance decrease. By adjusting the time of contraction, we obtain different deuteration profiles that we can compare to the observations. Our model can test fast contractions (from 104 to 106 cm-3 in ~0.5 My) and slow contractions (from 104 to 106 cm-3 in ~5 My). We have tested the sensitivity of the models to various initial conditions. The slow-contraction deuteration profile is approximately insensitive to these variations, while the fast-contraction deuteration profile shows significant variations. We found that, in all cases, the deuteration profile remains clearly distinguishable whether it comes from the fast collapse or the slow collapse. We also study the para-D2H+/ortho-H2D+ ratio and find that its variation is not monotonic

  3. Effects of H2O and H2O2 on thermal desorption of tritium from stainless steel

    International Nuclear Information System (INIS)

    Quinlan, M. J.; Shmayda, W. T.; Lim, S.; Salnikov, S.; Chambers, Z.; Pollock, E.; Schroeder, W. U.


    Tritiated stainless steel was subjected to thermal desorption at various temperatures, different temperature profiles, and in the presence of different helium carrier gas additives. In all cases the identities of the desorbing tritiated species were characterized as either water-soluble or insoluble. The samples were found to contain 1.1 mCi±0.4 mCi. Approximately ninety-five percent of this activity was released in molecular water-soluble form. Additives of H 2 O or H 2 O 2 to dry helium carrier gas increase the desorption rate and lower the maximum temperature to which the sample must be heated, in order to remove the bulk of the tritium. The measurements validate a method of decontamination of tritiated steel and suggest a technique that can be used to further explore the mechanisms of desorption from tritiated metals. (authors)

  4. Rotational excitation of H2O by para-H2 from an adiabatically reduced dimensional potential. (United States)

    Scribano, Yohann; Faure, Alexandre; Lauvergnat, David


    Cross sections and rate coefficients for low lying rotational transitions in H(2)O colliding with para-hydrogen pH(2) are computed using an adiabatic approximation which reduces the dimensional dynamics from a 5D to a 3D problem. Calculations have been performed at the close-coupling level using the recent potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)]. A good agreement is found between the reduced adiabatic calculations and the 5D exact calculations, with an impressive time saving and memory gain. This adiabatic reduction of dimensionality seems very promising for scattering studies involving the excitation of a heavy target molecule by a light molecular projectile. © 2012 American Institute of Physics

  5. DNA DSB measurements and modelling approaches based on gamma-H2AX foci time evolution (United States)

    Esposito, Giuseppe; Campa, Alessandro; Antonelli, Francesca; Mariotti, Luca; Belli, Mauro; Giardullo, Paola; Simone, Giustina; Antonella Tabocchini, Maria; Ottolenghi, Andrea

    DNA double strand breaks (DSBs) induced by ionising radiation are considered the main dam-age related to the deleterious consequences in the cells. Unrepaired or mis-repaired DSBs can cause mutations or loss of chromosome regions which can eventually lead to cell death or neo-plastic transformation. Quantification of the number and complexity of DSBs induced by low doses of radiation remains a complex problem. About ten years ago Rogakou et al. proposed an immunofluorescent technique able to detect even a single DSB per cell. This approach is based on the serine 139 phosphorylation of many molecules (up to 2000) of histone H2AX (γg-H2AX) following the induction of a DSB in the DNA. DSB can be visualized as foci by immunofluores-cence by using phospho-specific antibodies, so that enumeration of foci can be used to measure DSB induction and processing. It is still not completely clear how γ-H2AX dephosphorylation takes place; however it has been related with DSB repair, in particular with the efficiency of DSB repair. In this work we analyse the H2AX phosphorylation-dephosphorylation kinetics after irradiation of primary human fibroblasts (AG1522 cell line) with radiation of differing quality, that is γ-rays and α-particles (125 keV/µm), with the aim of comparing the time evolution of γ-H2AX foci. Our results show that, after a dose of 0.5 Gy, both γ-rays and α-particles induce the maximum number of γ-H2AX foci within 30 minutes from irradiation, that this number depends on the radiation type and is consistent with the number of track traversal in α-irradiated nuclei, that the dephosphorylation kinetics are very different, being the α-induced foci rate of disappearence slower than that of γ-induced foci. In this work a modellistic approach to estimate the number of DSB induced by γ-rays detectable by using the γ-H2AX assay is presented. The competing processes of appearance and disappearance of visible foci will be modeled taking into account the


    International Nuclear Information System (INIS)

    Lo, N.; Bronfman, L.; Cunningham, M. R.; Jones, P. A.; Lowe, V.; Cortes, P. C.; Simon, R.; Fissel, L.; Novak, G.


    We present the first results of neutral carbon ([C I] 3 P 1 - 3 P 0 at 492 GHz) and carbon monoxide ( 13 CO, J = 1-0) mapping in the Vela Molecular Ridge cloud C (VMR-C) and the G333 giant molecular cloud complexes with the NANTEN2 and Mopra telescopes. For the four regions mapped in this work, we find that [C I] has very similar spectral emission profiles to 13 CO, with comparable line widths. We find that [C I] has an opacity of 0.1-1.3 across the mapped region while the [C I]/ 13 CO peak brightness temperature ratio is between 0.2 and 0.8. The [C I] column density is an order of magnitude lower than that of 13 CO. The H 2 column density derived from [C I] is comparable to values obtained from 12 CO. Our maps show that C I is preferentially detected in gas with low temperatures (below 20 K), which possibly explains the comparable H 2 column density calculated from both tracers (both C I and 12 CO underestimate column density), as a significant amount of the C I in the warmer gas is likely in the higher energy state transition ([C I] 3 P 2 - 3 P 1 at 810 GHz), and thus it is likely that observations of both the above [C I] transitions are needed in order to recover the total H 2 column density

  7. Behavior of ro-vibrationally excited H2 molecules and H atoms in a plasma expansion

    International Nuclear Information System (INIS)

    Vankan, P.; Schram, D.C.; Engeln, R.


    The behavior in a supersonic plasma expansion of H atom and H2 molecules, both ground-state and ro-vibrationally excited, is studied using various laser spectroscopic techniques. The ground-state H2 molecules expand like a normal gas. The behavior of H atoms and H 2 rv molecules, on the other hand, is considerably influenced, and to some extend even determined, by their reactivity. The H atoms diffuse out of the expansion due to surface association at the walls of the vacuum vessel. Moreover, by reducing the surface area of the nozzle by a factor of two, the amount of H atoms leaving the source is increased by one order of magnitude, due to a decreased surface association of H atoms in the nozzle. The evolution of the ro-vibrational distributions along the expansion axis shows the relaxation of the molecular hydrogen from the high temperature in the up-stream region to the low ambient temperature in the down-stream region. Whereas the vibrational distribution resembles a Boltzmann distribution, the rotational distribution is a non-equilibrium one, in which the high rotational levels (J > 7) are much more populated than what is expected from the low rotational levels (J <5). We observed overpopulations of up to seven orders of magnitude. The production of the high rotational levels is very probably connected to the surface association in the nozzle

  8. Circumstellar H2O maser emission associated with four late-type stars

    International Nuclear Information System (INIS)

    Johnston, K.J.; Spencer, J.H.; Bowers, P.F.


    The positions and structure of H2O maser associated with four long-period stars were measured using the VLA, and the results are discussed. The four stars observed were: RX Boo; R Aq1; RR Aq1; and NML Cyg. The spatial resolution of the VLA measurements was 0.07 arcsec. The H2O maser emission features appear as unresolved knots distributed over an area of no more than 0.4 arcsec. The velocity and spatial characteristics of the maser regions in R Aq1 and RR Aq1 were found to change considerably over time. The estimated sizes of the H2O maser emission were 8 x 10 to the 14th for RX Boo, R Aq1, and RR Aq1. The supergiant star NML Cyg had the largest maser region (10 to the 16th) which is comparable to that of VY CMa. The positional accuracy for individual maser features ranged between 0.03 and 0.09 arcsec. However, the precise location of the maser emission relative to the stellar photocenter did not fit the velocity and spatial distributions of the emission and therefore may be inappropriate as a standard for comparisons of stellar reference frames. 20 references

  9. Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles

    International Nuclear Information System (INIS)

    Han, Sang Soo; Kang, Jeung Ku; Lee, Hyuck Mo; Duin, Adri C.T. van; Goddard, William A. III


    We have used molecular dynamics simulations to investigate interaction of H 2 molecules on the exterior surfaces of carbon nanotubes (CNTs): single and bundle types. At 80 K and 10 MPa, it is found that charge transfer occurs from a low curvature region to a high curvature region of the deformed CNT bundle, which develops charge polarization only on the deformed structure. The long-range electrostatic interactions of polarized charges on the deformed CNT bundle with hydrogen molecules are observed to induce a high local-ordering of H 2 gas that results in hydrogen liquefaction. Our predicted heat of hydrogen liquefaction on the CNT bundle is 97.6 kcal kg -1 . On the other hand, hydrogen liquefaction is not observed in the CNT of a single type. This is because charge polarization is not developed on the single CNT as it is symmetrically deformed under the same pressure. Consequently, the hydrogen storage capacity on the CNT bundle is much higher due to liquefaction than that on the single CNT. Additionally, our results indicate that it would also be possible to liquefy H 2 gas on a more strongly polarized CNT bundle at temperatures higher than 80 K


    International Nuclear Information System (INIS)

    Chen, Huei-Ru; Rao, Ramprasad; Liu, Sheng-Yuan; Wilner, David J.


    We present the first interferometric polarization map of the W3(OH) massive star-forming region observed with the Submillimeter Array (SMA) at 878 μm with an angular resolution of 1.''5 (about 3 × 10 3 AU). Polarization is detected in the W3(H 2 O) hot core, an extended emission structure in the northwest of W3(H 2 O), and part of the W3(OH) ultracompact H II region. The W3(H 2 O) hot core is known to be associated with a synchrotron jet along the east-west direction. In this core, the inferred magnetic field orientation is well aligned with the synchrotron jet and close to the plane of sky. Using the Chandrasekhar-Fermi method with the observed dispersion in polarization angle, we estimate a plane-of-sky magnetic field strength of 17.0 mG. Combined with water maser Zeeman measurements, the total magnetic field strength is estimated to be 17.1 mG, comparable to the field strength estimated from the synchrotron model. The magnetic field energy dominates over turbulence in this core. In addition, the depolarization effect is discerned in both SMA and James Clerk Maxwell Telescope measurements. Despite the great difference in angular resolutions and map extents, the polarization percentage shows a similar power-law dependence with the beam averaged column density. We suggest that the column density may be an important factor to consider when interpreting the depolarization effect.

  11. Retention and variability of hydrogen (H2) samples stored in plastic syringes

    DEFF Research Database (Denmark)

    Rumessen, J J; Gudmand-Høyer, E


    The utility of two brands of 20 ml plastic syringes for storage of hydrogen (H2) samples as obtained in H2 breath tests were studied. Plastipak syringes were found to be significantly better with regard to the stability of the H2 concentration and the variability between the H2 samples. Storage...... of the H2 samples in Plastipak syringes at 5 degrees C significantly improved the H2 retention, whereas refrigeration of H2 samples stored in Once syringes did not reduce H2 loss. Storage of H2 samples in refrigerated plastic syringes is efficient and reliable for several days if syringes with minimal...... sample variation are used....

  12. Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions. (United States)

    González, Miguel; Saracibar, Amaia; Garcia, Ernesto


    The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.

  13. Relationship between C2H2 reduction, H2 evolution and 15N2 fixation in root nodules of pea (Pisum sativum)

    DEFF Research Database (Denmark)

    Skøt, Leif


    for N2 reduction, is often stated as the relative efficiency (1-H2/C2H2). This factor varied significantly (P 2 and N2, expressed as the H2/N2 ratio, was independent of plant age, however. This discrepancy and the observation......The quantitative relationship between C2H2 reduction, H2 evolution and 15N2 fixation was investigated in excised root nodules from pea plants (Pisum sativum L. cv. Bodil) grown under controlled conditions. The C2H2/N2 conversion factor varied from 3.31 to 5.12 between the 32nd and the 67th day...... after planting. After correction for H2 evolution in air, the factor (C2H2-H2)/N2 decreased to values near the theoretical value 3, or in one case to a value significantly (P 2 production but used...

  14. Unusual H2O maser source near Herbig-Haro object number 11

    International Nuclear Information System (INIS)

    Lo, K.Y.; Morris, M.; Moran, J.M.; Haschick, A.D.


    Water emission spectra of an unusual source near Herbig-Haro (HH) 11 have been monitored over a 14-month period. Variations in the intensity and the radial velocity of the emission are noticeable on time scales as short as one day. At any given time, only one or two velocity components are present in the spectrum. The variations are such that each component appears and disappears at a fixed radial velocity, and new components appear at seemingly random velocities within a 40 km s -1 range. It is suggested that the exciting source is losing mass via a stellar wind, and that the H 2 O emission arises in the transition region between the cavity created by the stellar wind and the surrounding molecular medium. The proposed model can be tested by VLBI observations; an accurate position for the H 2 O maser source is required to determine the physical relationship between the maser source and the infrared or HH objects

  15. Ultrafast phosphate hydration dynamics in bulk H2O

    International Nuclear Information System (INIS)

    Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P.; Elsaesser, Thomas


    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H 2 PO 4 − ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric (ν S (PO 2 − )) and asymmetric (ν AS (PO 2 − )) PO 2 − stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH) 2 ) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν S (PO 2 − ) and ν AS (PO 2 − ) transition frequencies with larger frequency excursions for ν AS (PO 2 − ). The calculated frequency-time correlation function is in good agreement with the experiment. The ν(PO 2 − ) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H 2 PO 4 − /H 2 O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water

  16. Ultrafast phosphate hydration dynamics in bulk H2O (United States)

    Costard, Rene; Tyborski, Tobias; Fingerhut, Benjamin P.; Elsaesser, Thomas


    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H2PO4- ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric ( ν S ( PO2 - ) ) and asymmetric ( ν A S ( PO2 - ) ) PO 2- stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH)2) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν S ( PO2 - ) and ν A S ( PO2 - ) transition frequencies with larger frequency excursions for ν A S ( PO2 - ) . The calculated frequency-time correlation function is in good agreement with the experiment. The ν ( PO2 - ) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H2PO4-/H2O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.

  17. A new vibrational level of the H2+ molecular ion

    International Nuclear Information System (INIS)

    Carbonell, J.; Lazauskas, R.; Delande, D.; Hilico, L.; Kilic, S.; Hilico, L.; Kilic, S.


    A new vibrational level of the molecular ion H 2 + with binding energy of 1.09 x 10 -9 a.u. ∼ 30 neV below the first dissociation limit is predicted, using highly accurate numerical non-relativistic quantum calculations, which go beyond the Born-Oppenheimer approximation. It is the first-excited vibrational level v=1 of the 2pσ u electronic state, antisymmetric with respect to the exchange of the two protons, with orbital angular momentum L=0. It manifests itself as a huge p - H scattering length of a = 750 ± 5 Bohr radii. (authors)

  18. H2O maser flare in Orion A

    International Nuclear Information System (INIS)

    Matveenko, L.I.; Moran, J.M.; Genzel, R.


    The flare of H 2 O maser emission in Orion A was observed with the Crimea--Effelsberg and Haystack--Green Bank interferometers in November 1979. Its position is α = 5/sup h/32/sup m/46/sup s/.6 +- 0/sup s/.06, delta = -5 0 24'.28''.7 +- 1'' (1950.0); its radial velocity, 8 km/sec. The asymmetric line profile has a 28-kHz halfwidth. The flare source comprises a 0''.0005 core (T/sub b/ = 5 x 10 16 0 K) embedded in a 0''.005 halo (T/sub b/ = 3 x 10 14 0 K)

  19. An application to H2+ of Laplace type integral transform

    International Nuclear Information System (INIS)

    Primorac, M.; Kovacevic, K.


    Laplace type integral transformation (LIT) has been applied to wavefunctions. The effect of the inverse transform is also discussed. LIT wavefunctions are tested in the calculation of the ground-state energy of H 2 + , where the untransformed functions were 1s, 12s, 123s and 1234s-STO. The results presented here show that LIT wavefunctions are applicable in molecular computations. The analytical formulae for two-centre one-electron integrals over LIT wavefunctions are derived by use of a Barnett-Coulson-like expansion of rsub(b)sup(N)(rsub(b)+p)sup(-ν). (orig.)

  20. Hydrogen Learning for Local Leaders – H2L3

    Energy Technology Data Exchange (ETDEWEB)

    Serfass, Patrick [Technology Transition Corporation, Washington, DC (United States)


    The Hydrogen Learning for Local Leaders program, H2L3, elevates the knowledge about hydrogen by local government officials across the United States. The program reaches local leaders directly through “Hydrogen 101” workshops and webinar sessions; the creation and dissemination of a unique report on the hydrogen and fuel cell market in the US, covering 57 different sectors; and support of the Hydrogen Student Design Contest, a competition for interdisciplinary teams of university students to design hydrogen and fuel cell systems based on technology that’s currently commercially available.

  1. Testing of irradiated and annealed 15H2MFA materials

    International Nuclear Information System (INIS)

    Gillemot, F.; Uri, G.


    A set of surveillance samples made from 15H2MFA material has been studied in the laboratory of AEKI. Miniature notched tensile specimens were cut from some remnants of irradiated and broke surveillance charpy remnants. The Absorbed Specific Fracture Energy (ASFE) was measured on the specimens. A cutting machine and testing technique were elaborated for the measurements. The second part of the Charpy remnants was annealed at 460 deg. C and 490 deg. C for 6-8 hours. The specimens were tested similarity and the results were compared. (author). 5 refs, 9 figs

  2. Gene-specific characterization of human histone H2B by electron capture dissociation. (United States)

    Siuti, Nertila; Roth, Michael J; Mizzen, Craig A; Kelleher, Neil L; Pesavento, James J


    The basis set of protein forms expressed by human cells from the H2B gene family was determined by Top Down Mass Spectrometry. Using Electron Capture Dissociation for MS/MS of H2B isoforms, direct evidence for the expression of unmodified H2B.Q, H2B.A, H2B.K/T, H2B.J, H2B.E, H2B.B, H2B.F, and monoacetylated H2B.A was obtained from asynchronous HeLa cells. H2B.A was the most abundant form, with the overall expression profile not changing significantly in cells arrested in mitosis by colchicine or during mid-S, mid-G2, G2/M, and mid-G1 phases of the cell cycle. Modest hyperacetylation of H2B family members was observed after sodium butyrate treatment.

  3. Structure of solid H2-D2 mixtures

    International Nuclear Information System (INIS)

    Krupskij, I.N.; Kovalenko, S.I.; Krajnyukova, N.V.


    The structure of vapor deposited H 2 -D 2 solid mixtures is investigated. The electron-diffraction examination has been carried out in the temperature range from 2.3K up to the sample sublimation temperature, taking place in case of H 2 at T approximately 5K and D 2 -at T approximately 7K. On the basis of the difractogramm obtained it is shown that in solid films of pure components a FCC structure with parameters asub(Hsub(2))=5.310+-0.01A and asub(Osub(2))=5.100+-0.005A is realized, the structure being metastable in the temperature range. The existence of non-limitted solubility in solid two-component condensates is stated. The decay absence at T approximately 5K, when molecula mobility is enough for the transition of metastable FCC structure into HCP, is in good agreement with the results of experimental and theoretical estimations, according to which the decay critical temperature should not exceed 4K. The existance of the continuous series of solutions at lower temperatures is explained by a small coefficient value of a volumetric and surface diffusion of molecula as well

  4. Structure and stability of solid Xe(H2)n

    International Nuclear Information System (INIS)

    Somayazulu, Maddury; Hemley, Russell J.; Dera, Przemyslaw; Smith, Jesse


    Mixtures of xenon and molecular hydrogen form a series of hexagonal, van der Waals compounds at high pressures and at 300 K. Synchrotron, x-ray, single crystal diffraction studies reveal that below 7.5 GPa, Xe(H 2 ) 8 crystallizes in a P3 - m1 structure that displays pressure-induced occupancy changes of two pairs of xenon atoms located on the 2c and 2d sites (while the third pair on yet another 2c site remains fully occupied). The occupancy becomes 1 at the P3 - m1 to R3 transition and all the xenon atoms occupy the 3d sites in the high-pressure structure. These pressure-induced changes in occupancy coincide with volume changes that maintain the average Xe:H 2 stoichiometry fixed at 1:8. The synchrotron x-ray diffraction and Raman measurements show that this unique hydrogen-bearing compound that can be synthesized at 4.2 GPa and 300 K, quenched at low temperatures to atmospheric pressure, and retained up to 90 K on subsequent warming

  5. The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. (United States)

    Shan, Changjuan; Zhang, Shengli; Ou, Xingqi


    This paper investigated the roles of hydrogen sulfide (H 2 S) and hydrogen peroxide (H 2 O 2 ) and the possible relationship between them in regulating the AsA-GSH cycle in wheat leaves under drought stress (DS). Results showed that DS markedly increased the production of H 2 S and H 2 O 2 , the transcript levels and activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR); malondialdehyde (MDA) content; and electrolyte leakage (EL). Meanwhile, DS markedly reduced plant height and biomass. Above increases induced by drought stress except MDA content and EL were all suppressed by pretreatments with H 2 S synthesis inhibitor aminooxyaceticacid (AOA) and H 2 O 2 synthesis inhibitor diphenylene iodonium (DPI). Besides, pretreatments with AOA and DPI further significantly increased MDA content and EL and significantly reduced plant height and biomass under DS. DPI reduced the production of H 2 O 2 and H 2 S induced by DS. AOA also reduced the production of H 2 S and H 2 O 2 induced by DS. Pretreatments with NaHS + AOA and H 2 O 2 + DPI reversed above effects of AOA and DPI. Our results suggested that H 2 S and H 2 O 2 all participated in the up-regulation of AsA-GSH cycle in wheat leaves by DS and possibly affected each other.

  6. Laboratory studies of H2SO4/H2O binary homogeneous nucleation from the SO2+OH reaction: evaluation of the experimental setup and preliminary results

    Directory of Open Access Journals (Sweden)

    M. Kulmala


    Full Text Available Binary homogeneous nucleation (BHN of sulphuric acid and water (H2SO4/H2O is one of the most important atmospheric nucleation processes, but laboratory observations of this nucleation process are very limited and there are also large discrepancies between different laboratory studies. The difficulties associated with these experiments include wall loss of H2SO4 and uncertainties in estimation of H2SO4 concentration ([H2SO4] involved in nucleation. We have developed a new laboratory nucleation setup to study H2SO4/H2O BHN kinetics and provide relatively constrained [H2SO4] needed for nucleation. H2SO4 is produced from the SO2+OH→HSO3 reaction and OH radicals are produced from water vapor UV absorption. The residual [H2SO4] were measured at the end of the nucleation reactor with a chemical ionization mass spectrometer (CIMS. Wall loss factors (WLFs of H2SO4 were estimated by assuming that wall loss is diffusion limited and these calculated WLFs were in good agreement with simultaneous measurements of the initial and residual [H2SO4] with two CIMSs. The nucleation zone was estimated from numerical simulations based on the measured aerosol sizes (particle diameter, Dp and [H2SO4]. The measured BHN rates (J ranged from 0.01–220 cm−3 s−1 at the initial and residual [H2SO4] from 108−1010 cm−3, a temperature of 288 K and relative humidity (RH from 11–23%; J increased with increasing [H2SO4] and RH. J also showed a power dependence on [H2SO4] with the exponential power of 3–8. These power dependences are consistent with other laboratory studies under similar [H2SO4] and RH, but different from atmospheric field observations which showed that particle number concentrations are often linearly dependent on [H2SO4]. These results, together with a higher [H2SO4] threshold (108–109 cm−3 needed to produce the unit J measured from the laboratory studies compared to the atmospheric conditions (106–107 cm−3, imply that H2SO4/H2O BHN alone is

  7. CodY Regulates Thiol Peroxidase Expression as Part of the Pneumococcal Defense Mechanism against H2O2 Stress. (United States)

    Hajaj, Barak; Yesilkaya, Hasan; Shafeeq, Sulman; Zhi, Xiangyun; Benisty, Rachel; Tchalah, Shiran; Kuipers, Oscar P; Porat, Nurith


    Streptococcus pneumoniae is a facultative anaerobic pathogen. Although it maintains fermentative metabolism, during aerobic growth pneumococci produce high levels of H 2 O 2 , which can have adverse effects on cell viability and DNA, and influence pneumococcal interaction with its host. The pneumococcus is unusual in its dealing with toxic reactive oxygen species (ROS) in that it neither has catalase nor the global regulators of peroxide stress resistance. Previously, we identified pneumococcal thiol peroxidase (TpxD) as the key enzyme for enzymatic removal of H 2 O 2 , and showed that TpxD synthesis is up-regulated upon exposure to H 2 O 2 . This study aimed to reveal the mechanism controlling TpxD expression under H 2 O 2 stress. We hypothesize that H 2 O 2 activates a transcription factor which in turn up-regulates tpxD expression. Microarray analysis revealed a pneumococcal global transcriptional response to H 2 O 2 . Mutation of tpxD abolished H 2 O 2 -mediated response to high H 2 O 2 levels, signifying the need for an active TpxD under oxidative stress conditions. Bioinformatic tools, applied to search for a transcription factor modulating tpxD expression, pointed toward CodY as a potential candidate. Indeed, a putative 15-bp consensus CodY binding site was found in the proximal region of tpxD- coding sequence. Binding of CodY to this site was confirmed by EMSA, and genetic engineering techniques demonstrated that this site is essential for TpxD up-regulation under H 2 O 2 stress. Furthermore, tpxD expression was reduced in a Δ codY mutant. These data indicate that CodY is an activator of tpxD expression, triggering its up-regulation under H 2 O 2 stress. In addition we show that H 2 O 2 specifically oxidizes the 2 CodY cysteines. This oxidation may trigger a conformational change in CodY, resulting in enhanced binding to DNA. A schematic model illustrating the contribution of TpxD and CodY to pneumococcal global transcriptional response to H 2 O 2 is

  8. Line shape parameters for the H2O-H2 collision system for application to exoplanet and planetary atmospheres (United States)

    Renaud, Candice L.; Cleghorn, Kara; Hartmann, Léna; Vispoel, Bastien; Gamache, Robert R.


    Water can be detected throughout the universe: in comets, asteroids, dwarf planets, the inner and outer planets in our solar system, cool stars, brown dwarfs, and on many exoplanets. Here the focus is on locations rich in hydrogen gas. To properly study these environments, there is a need for the line shape parameters for H2O transitions in collision with hydrogen. This work presents calculations of the half-width and line shift, made using the Modified Complex Robert-Bonamy (MCRB) formalism, at a number of temperatures. It is shown that this collision system is strongly off-resonance. For such conditions, the atom-atom part of the intermolecular potential dominates the interaction of the radiating and perturbing molecules. The atom-atom parameters were adjusted by fitting the H2O-H2 measurements of Brown and Plymate (1996). Several techniques were used to extract lines for which there is more confidence in the quality of the data. The final potential yields results that agree with the measurements with ∼0.3% difference and a 5.9% standard deviation. Using this potential, MCRB calculations were made for all transitions in the pure rotation, ν2, ν1, and ν3 bands. The structure of the line shape parameters and the temperature dependence of the half-width, as a function of the rotational and vibrational quantum numbers, are discussed. It is shown that the power law model of the T-dependence of the half-width is inadequate over large temperature ranges.

  9. A nine-dimensional ab initio global potential energy surface for the H2O+ + H2 → H3O+ + H reaction (United States)

    Li, Anyang; Guo, Hua


    An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm-1. The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H4O+ well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H2O+ rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H2O+ reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction.

  10. A nine-dimensional ab initio global potential energy surface for the H2O+ + H2 → H3O+ + H reaction

    International Nuclear Information System (INIS)

    Li, Anyang; Guo, Hua


    An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm −1 . The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H 4 O + well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H 2 O + rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H 2 O + reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction

  11. Cell-mediated immunity in herpes simplex virus-infected mice: H-2 mapping of the delayed-type hypersensitivity response and the antiviral T cell response. (United States)

    Nash, A A; Phelan, J; Wildy, P


    An adoptive transfer system was used to investigate the H-2 restriction of delayed-type hypersensitivity (DTH) to herpes simplex virus. A successful DTH transfer was achieved when donor and recipient were compatible at the I-A region, with K and D region compatibility unnecessary. However, the rapid clearance of infectious virus from the inoculation site was found only when the donor and recipients were compatible at H-2K (and presumably D) and I-A regions.

  12. Supersaturation of dissolved H(2) and CO (2) during fermentative hydrogen production with N(2) sparging. (United States)

    Kraemer, Jeremy T; Bagley, David M


    Dissolved H(2) and CO(2) were measured by an improved manual headspace-gas chromatographic method during fermentative H(2) production with N(2) sparging. Sparging increased the yield from 1.3 to 1.8 mol H(2)/mol glucose converted, although H(2) and CO(2) were still supersaturated regardless of sparging. The common assumption that sparging increases the H(2) yield because of lower dissolved H(2) concentrations may be incorrect, because H(2) was not lowered into the range necessary to affect the relevant enzymes. More likely, N(2) sparging decreased the rate of H(2) consumption via lower substrate concentrations.

  13. Phase formation in the systems ZrO2-H2SO4-Na2SO4 (NaCl)-H2O

    International Nuclear Information System (INIS)

    Sozinova, Yu.P.; Motov, D.L.; Rys'kina, M.P.


    Formation of solid phases in the systems ZrO 2 - H 2 SO 4 - Na 2 SO 4 (NaCl) - H 2 O at 25 and 75 deg C is studied. Three basic Na 2 Zr(OH) 2 (SO 4 ) 2 x (0.2 - 0.4)H 2 O, NaZrOH(SO 4 ) 2 x H 2 O, NaZrO 0.5 (OH) 2 SO 4 x 2H 2 O and three normal sodium sulfatozirconates Na 2 Zr(SO 4 ) 3 x 3H 2 O, Na 4 Zr(SO 4 ) 4 x 3H 2 O, Na 6 Zr(SO 4 ) 5 x 4H 2 O have been isolated, their solubility and crystal optical properties are determined

  14. Highly porous ionic rht metal-organic framework for H2 and CO2 storage and separation: A molecular simulation study

    KAUST Repository

    Babarao, Ravichandar; Eddaoudi, Mohamed; JIANG, Jianwen


    adsorption occurs near the NO 3 - ions that act as preferential sites. With increasing pressure, H2 molecules occupy the tetrahedral and cuboctahedral cages and the intersection regions. The predicted isotherm of H2 at 77 K agrees well with the experimental

  15. The effects of CO addition on the autoignition of H-2, CH4 and CH4/H-2 fuels at high pressure in an RCM

    NARCIS (Netherlands)

    Gersen, Sander; Darmeveil, Harry; Levinsky, Howard


    Autoignition delay times of stoichiometric and fuel-lean (phi = 0.5) H-2, H-2/CO, CH4, CH4/CO, CH4/H-2 and CH4/CO/H-2 mixtures have been measured in an Rapid Compression Machine at pressures ranging from 20 to 80 bar and in the temperature range 900-1100K. The effects of CO addition on the ignition

  16. Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation (United States)

    Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro


    Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.

  17. Characterisation of the coke formed during metal dusting of iron in CO-H2-H2O gas mixtures

    International Nuclear Information System (INIS)

    Zhang, J.; Schneider, A.; Inden, G.


    Carbon deposits formed on the surface of iron samples during carburisation at 700 deg. C in a gas mixture of 75%CO-24.81%H 2 -0.19%H 2 O were characterised by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Moessbauer spectroscopy and transmission electron microscopy (TEM). Cross-section observation of the iron sample by light optical microscopy revealed the formation of cementite after only 10 min reaction, together with a thin layer of graphite. After 4 h reaction, a thick coke layer was formed on top of the cementite surface. SEM surface observation indicated the formation of filamentous carbon in the coke layer. Further analysis of the coke by XRD and Moessbauer showed the presence of mainly Fe 3 C and small amount of Fe 2 C but no metallic iron in the carbon deposit. TEM analysis of the coke detected very convoluted filaments with iron-containing particles at the tip or along their length. These particles were identified to be cementite by selected area diffraction. Carbon deposits produced at the same temperature but with other gas compositions were also analysed by using XRD. It was found that with a low content of CO, e.g. 5%, both α-Fe and Fe 3 C were detected in the coke. Increasing CO content to more than 30%, iron carbide was the only iron-containing phase

  18. Temperature dependence of third order ion molecule reactions. The reaction H+3 + 2H2 = H+5 + H2

    International Nuclear Information System (INIS)

    Hiraoka, K.; Kebarle, P.


    The rate constants k 1 for Reaction (1): H + 3 +2H 2 = H + 5 +H 2 were measured in the temperature range 100--300 degreeK. The temperature dependence of k 1 has the form k 1 proportionalT - /subn/, where n=2.3. Pierce and Porter have reported a much stronger negative temperature dependence with n=4.6. The difference arises from a determination of k 1 at 300 degreeK obtained by Arifov and used by Porter. The present k 1 (300 degreeK) =9times10 -30 (cm 6 molecules -2 center-dotsec -1 ). This is more than an order of magnitude larger than the Arifov value. The temperature dependence of third body dependent association reactions like (1) is examined on the basis of the energy transfer theory and the recently proposed trimolecular complex transition state theory by Meot-Ner, Solomon, Field, and Gershinowitz. The temperature dependence of the rate constant for the reverse reaction (-1) is obtained from k 1 and the previously determined temperature dependence of the equilibria (1). k/sub -//sub 1/ gives a good straight line Arrhenius plot leading to k/sub -//sub 1/ =8.7times10 -6 exp(-8.4/RT) cm 3 molecules -1 center-dotsec -1 . The activation energy is in kcal/mole. The preexponential factor is much larger than the rate constant for Langevin collisions. This is typical for pyrolysis of ions involving second order activation

  19. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra (United States)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.


    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  20. Staining Against Phospho-H2AX (gamma-H2AX) as a Marker for DNA Damage and Genomic Instability in Cancer Tissues and Cells

    NARCIS (Netherlands)

    Nagelkerke, A.P.; Span, P.N.


    Phospho-H2AX or gamma-H2AX- is a marker of DNA double-stranded breaks and can therefore be used to monitor DNA repair after, for example, irradiation. In addition, positive staining for phospho-H2AX may indicate genomic instability and telomere dysfunction in tumour cells and tissues. Here, we

  1. Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process? (United States)

    Liu, Jibao; Jia, Ruilai; Wang, Yawei; Wei, Yuansong; Zhang, Junya; Wang, Rui; Cai, Xing


    This study investigated the effects of residual H 2 O 2 on hydrolysis-acidification and methanogenesis stages of anaerobic digestion after microwave-H 2 O 2 (MW-H 2 O 2 ) pretreatment of waste activated sludge (WAS). Results showed that high sludge solubilization at 35-45 % was achieved after pretreatment, while large amounts of residual H 2 O 2 remained and refractory compounds were thus generated with high dosage of H 2 O 2 (0.6 g H 2 O 2 /g total solids (TS), 1.0 g H 2 O 2 /g TS) pretreatment. The residual H 2 O 2 not only inhibited hydrolysis-acidification stage mildly, such as hydrolase activity, but also had acute toxic effect on methanogens, resulting in long lag phase, low methane yield rate, and no increase of cumulative methane production during the 30-day BMP tests. When the low dosage of H 2 O 2 at 0.2 g H 2 O 2 /g TS was used in MW-H 2 O 2 pretreatment, sludge anaerobic digestion was significantly enhanced. The cumulative methane production increased by 29.02 %, but still with a lag phase of 1.0 day. With removing the residual H 2 O 2 by catalase, the initial lag phase of hydrolysis-acidification stage decreased from 1.0 to 0.5 day.

  2. Evaluation of plasma H2S levels and H2S synthesis in streptozotocin induced Type-2 diabetes-an experimental study based on Swietenia macrophylla seeds

    Directory of Open Access Journals (Sweden)

    Moumita Dutta


    Conclusions: Although considering a small sample size, it can conclude that the fasting blood glucose levels are inversely related to plasma H2S levels as well as H2S synthesis activity in plasma and the extract of S. macrophylla is associated with increased plasma H2S levels with effective lowering of blood glucose in streptozotocin induced diabetic rats.

  3. Fuel cell bus operation, system investigation H2 bus

    International Nuclear Information System (INIS)



    The WP covers two tasks: - Prepartion of Technical Catalogue: In cooperation with ICIL, AR have compiled a technical catalogue, providing the impartial descriptions, both of existing technology and regulations, and the likely future developments of these, as to remedy the first problem faced by a potential hydrogen bus fleet operator viz the absence of an impartial description of the available vehicle and fuels systems together with the absence of a description of regulatory and safety factors which need consideration. - Fuel Cell Bus Operation - System Investigation H 2 Bus: The application of fuel cell electric generation systems to hybrid electrical buses or electrical busses without any storage system on board is considered. The task will cover safety and environmental aspects, a cost estimate and a market evaluation. (orig.)

  4. Utilization of membranes for H2O recycle system (United States)

    Ohya, H.; Oguchi, M.


    Conceptual studies of closed ecological life support systems (CELSS) carried out at NAL in Japan for a water recycle system using membranes are reviewed. The system will treat water from shower room, urine, impure condensation from gas recycle system, and so on. The H2O recycle system is composed of prefilter, ultrafiltration membrane, reverse osmosis membrane, and distillator. Some results are shown for a bullet train of toilet-flushing water recycle equipment with an ultraviltration membrane module. The constant value of the permeation rate with a 4.7 square meters of module is about 70 1/h after 500th of operation. Thermovaporization with porous polytetrafluorocarbon membrane is also proposed to replce the distillator.

  5. Fabry-Perot observations of Comet Halley H2O(+)

    International Nuclear Information System (INIS)

    Scherb, F.; Roesler, F.L.D.; Harlander, J.; Magee-sauer, K.


    Fabry-Perot scanning spectrometer observations of Comet Halley's H 2 O(+) emissions have yielded 6158.64 and 6158.85 A spin doublet data at distances in the range of 0 to 2 million km from the comet heat in the antisunward direction. Cometary plasma outflow velocities were ascertained on the basis of the emissions' Doppler shifts, yielding results that were mostly but not exclusively consistent with the plasma's constant antisunward acceleration; the acceleration varied from night to night of observations over a 30-300 cm/sec range. The unusual plasma kinematics of December 14-15, 1985, and January 10, 1986, may be associated with the tail-disconnection activity observed by others. 30 refs

  6. Polarizability tensor invariants of H2, HD, and D2 (United States)

    Raj, Ankit; Hamaguchi, Hiro-o.; Witek, Henryk A.


    We report an exhaustive compilation of wavelength-dependent matrix elements over the mean polarizability (α ¯ ) and polarizability anisotropy (γ) operators for the rovibrational states of the H2, HD, and D2 molecules together with an accompanying computer program for their evaluation. The matrix elements can be readily evaluated using the provided codes for rovibrational states with J = 0-15 and v = 0-4 and for any laser wavelengths in the interval 182.25-1320.6 nm corresponding to popular, commercially available lasers. The presented results substantially extend the scope of the data available in the literature, both in respect of the rovibrational transitions analyzed and the range of covered laser frequencies. The presented detailed tabulation of accurate polarizability tensor invariants is essential for successful realization of our main long-term goal: developing a universal standard for determining absolute Raman cross sections and absolute Raman intensities in experimental Rayleigh and Raman scattering studies of molecules.

  7. D2-H2 equilibration over γ-irradiated zeolites

    International Nuclear Information System (INIS)

    Novakova, J.; Wichterlova, B.


    D 2 -H 2 equilibration was studied at 77 and 298 K over HY, AlHY, HZSM-5 and Alsub(x)Osub(y)HZSM-5 zeolites which had been γ-irradiated at 77 and/or 298 K. The exchange rate was found to be higher at the lower temperature regardless of the temperature of irradiation. Moreover, at 77 K the exchange rates were similar and more stable over the individual zeolites than at 298 K, thus indicating a common reaction path at 77 K. The exchange rate at 298 K depended on the zeolite type: it was more stable and higher over HZSM-5 than over HY, and extra-lattice Al increased both these properties on HY as well as on HZSM-5. The reaction mechanism is discussed in connection with the nature of defects generated by γ-irradiation. (author)

  8. A gas-phase reactor powered by solar energy and ethanol for H2 production

    International Nuclear Information System (INIS)

    Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Perathoner, Siglinda; Centi, Gabriele


    In the view of H 2 as the future energy vector, we presented here the development of a homemade photo-reactor working in gas phase and easily interfacing with fuel cell devices, for H 2 production by ethanol dehydrogenation. The process generates acetaldehyde as the main co-product, which is more economically advantageous with respect to the low valuable CO 2 produced in the alternative pathway of ethanol photoreforming. The materials adopted as photocatalysts are based on TiO 2 substrates but properly modified with noble (Au) and not-noble (Cu) metals to enhance light harvesting in the visible region. The samples were characterized by BET surface area analysis, Transmission Electron Microscopy (TEM) and UV–visible Diffusive Reflectance Spectroscopy, and finally tested in our homemade photo-reactor by simulated solar irradiation. We discussed about the benefits of operating in gas phase with respect to a conventional slurry photo-reactor (minimization of scattering phenomena, no metal leaching, easy product recovery, etc.). Results showed that high H 2 productivity can be obtained in gas phase conditions, also irradiating titania photocatalysts doped with not-noble metals. - Highlights: • A gas-phase photoreactor for H 2 production by ethanol dehydrogenation was developed. • The photocatalytic behaviours of Au and Cu metal-doped TiO 2 thin layers are compared. • Benefits of operating in gas phase with respect to a slurry reactor are presented. • Gas phase conditions and use of not-noble metals are the best economic solution

  9. NBS1 localizes to gamma-H2AX foci through interaction with the FHA/BRCT domain

    International Nuclear Information System (INIS)

    Kobayashi, J.; Chen, D.J.; Sakamoto, S.; Matsuura, S.; Tanimoto, K.; Komatsu, K.


    Full text: DNA double-strand breaks (DSBs) represent the most potentially serious damage to a genome, and hence, many repair proteins are recruited to nuclear damage sites by as yet poorly characterized sensor mechanisms. Histone H2AX, one of histone H2A family, is phosphorylated within a few minutes in response to ionizing radiation (IR) and the phosphorylated H2AX (gamma-H2AX) forms foci at the region of DSBs. Moreover, Histone H2AX is essential for the IR-induced focus formation of DNA repair proteins such as BRCA1, NBS1 and 53BP1. Hence, we investigated that the function of histone H2AX for the recruitment of NBS1/hMRE11/ hRAD50 complex to DSBs sites. We clarify that NBS1 physically interacts with histone H2AX independent of DNA. We also show that the NBS1-binding can occur in the absence of interaction with hMRE11 or BRCA1. Furthermore, this NBS1 physical interaction was reduced when anti-gamma-H2AX antibody was introduced into normal cells. We also demonstrate that the FHA/BRCT domain of NBS1 is essential for this physical interaction by the immunoprecipitation studies and a pull-down assay with recombinant FHA/BRCT domain. These findings suggest that the FHA/BRCT domain have a crucial role for both binding to histone and for re-localization of hMRE11/hRAD50 nuclease complex to the vicinity of DNA damage

  10. H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast

    Directory of Open Access Journals (Sweden)

    Shieh Grace S


    Full Text Available Abstract Background The packaging of DNA into chromatin regulates transcription from initiation through 3' end processing. One aspect of transcription in which chromatin plays a poorly understood role is the co-transcriptional splicing of pre-mRNA. Results Here we provide evidence that H2B monoubiquitylation (H2BK123ub1 marks introns in Saccharomyces cerevisiae. A genome-wide map of H2BK123ub1 in this organism reveals that this modification is enriched in coding regions and that its levels peak at the transcribed regions of two characteristic subgroups of genes. First, long genes are more likely to have higher levels of H2BK123ub1, correlating with the postulated role of this modification in preventing cryptic transcription initiation in ORFs. Second, genes that are highly transcribed also have high levels of H2BK123ub1, including the ribosomal protein genes, which comprise the majority of intron-containing genes in yeast. H2BK123ub1 is also a feature of introns in the yeast genome, and the disruption of this modification alters the intragenic distribution of H3 trimethylation on lysine 36 (H3K36me3, which functionally correlates with alternative RNA splicing in humans. In addition, the deletion of genes encoding the U2 snRNP subunits, Lea1 or Msl1, in combination with an htb-K123R mutation, leads to synthetic lethality. Conclusion These data suggest that H2BK123ub1 facilitates cross talk between chromatin and pre-mRNA splicing by modulating the distribution of intronic and exonic histone modifications.

  11. H2B ubiquitylation is part of chromatin architecture that marks exon-intron structure in budding yeast

    LENUS (Irish Health Repository)

    Shieh, Grace S.


    Abstract Background The packaging of DNA into chromatin regulates transcription from initiation through 3\\' end processing. One aspect of transcription in which chromatin plays a poorly understood role is the co-transcriptional splicing of pre-mRNA. Results Here we provide evidence that H2B monoubiquitylation (H2BK123ub1) marks introns in Saccharomyces cerevisiae. A genome-wide map of H2BK123ub1 in this organism reveals that this modification is enriched in coding regions and that its levels peak at the transcribed regions of two characteristic subgroups of genes. First, long genes are more likely to have higher levels of H2BK123ub1, correlating with the postulated role of this modification in preventing cryptic transcription initiation in ORFs. Second, genes that are highly transcribed also have high levels of H2BK123ub1, including the ribosomal protein genes, which comprise the majority of intron-containing genes in yeast. H2BK123ub1 is also a feature of introns in the yeast genome, and the disruption of this modification alters the intragenic distribution of H3 trimethylation on lysine 36 (H3K36me3), which functionally correlates with alternative RNA splicing in humans. In addition, the deletion of genes encoding the U2 snRNP subunits, Lea1 or Msl1, in combination with an htb-K123R mutation, leads to synthetic lethality. Conclusion These data suggest that H2BK123ub1 facilitates cross talk between chromatin and pre-mRNA splicing by modulating the distribution of intronic and exonic histone modifications.

  12. Quasiparticle interfacial level alignment of highly hybridized frontier levels: H2O on TiO2(110). (United States)

    Migani, Annapaola; Mowbray, Duncan J; Zhao, Jin; Petek, Hrvoje


    Knowledge of the frontier levels' alignment prior to photoirradiation is necessary to achieve a complete quantitative description of H2O photocatalysis on TiO2(110). Although H2O on rutile TiO2(110) has been thoroughly studied both experimentally and theoretically, a quantitative value for the energy of the highest H2O occupied levels is still lacking. For experiment, this is due to the H2O levels being obscured by hybridization with TiO2(110) levels in the difference spectra obtained via ultraviolet photoemission spectroscopy (UPS). For theory, this is due to inherent difficulties in properly describing many-body effects at the H2O-TiO2(110) interface. Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) G0W0, we disentangle the adsorbate and surface contributions to the complex UPS spectra of H2O on TiO2(110). We perform this separation as a function of H2O coverage and dissociation on stoichiometric and reduced surfaces. Due to hybridization with the TiO2(110) surface, the H2O 3a1 and 1b1 levels are broadened into several peaks between 5 and 1 eV below the TiO2(110) valence band maximum (VBM). These peaks have both intermolecular and interfacial bonding and antibonding character. We find the highest occupied levels of H2O adsorbed intact and dissociated on stoichiometric TiO2(110) are 1.1 and 0.9 eV below the VBM. We also find a similar energy of 1.1 eV for the highest occupied levels of H2O when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than those estimated from UPS difference spectra, which are inconclusive in this energy region. Finally, we apply self-consistent QPGW (scQPGW1) to obtain the ionization potential of the H2O-TiO2(110) interface.

  13. A fast H2O total column density product from GOME – Validation with in-situ aircraft measurements

    Directory of Open Access Journals (Sweden)

    T. Wagner


    Full Text Available Atmospheric water vapour is the most important greenhouse gas which is responsible for about 2/3 of the natural greenhouse effect, therefore changes in atmospheric water vapour in a changing climate (the water vapour feedback is subject to intense debate. H2O is also involved in many important reaction cycles of atmospheric chemistry, e.g. in the production of the OH radical. Thus, long time series of global H2O data are highly required. Since 1995 the Global Ozone Monitoring Experiment (GOME continuously observes atmospheric trace gases. In particular it has been demonstrated that GOME as a nadir looking UV/vis-instrument is sensitive to many tropospheric trace gases. Here we present a new, fast H2O algorithm for the retrieval of vertical column densities from GOME measurements. In contrast to existing H2O retrieval algorithms it does not depend on additional information like e.g. the climatic zone, aerosol content or ground albedo. It includes an internal cloud-, aerosol-, and albedo correction which is based on simultaneous observations of the oxygen dimer O4. From sensitivity studies using atmospheric radiative modelling we conclude that our H2O retrieval overestimates the true atmospheric H2O vertical column density (VCD by about 4% for clear sky observations in the tropics and sub-tropics, while it can lead to an underestimation of up to -18% in polar regions. For measurements over (partly cloud covered ground pixels, however, the true atmospheric H2O VCD might be in general systematically underestimated. We compared the GOME H2O VCDs to ECMWF model data over one whole GOME orbit (extending from the Arctic to the Antarctic including also totally cloud covered measurements. The correlation of the GOME observations and the model data yield the following results: a slope of 0.96 (r2 = 0.86 and an average bias of 5%. Even for measurements with large cloud fractions between 50% and 100% an average underestimation of only -18% was found. This

  14. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast ☆


    Martins, Dorival; English, Ann M.


    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to...

  15. Crystal-field-driven redox reactions: How common minerals split H2O and CO2 into reduced H2 and C plus oxygen (United States)

    Freund, F.; Batllo, F.; Leroy, R. C.; Lersky, S.; Masuda, M. M.; Chang, S.


    It is difficult to prove the presence of molecular H2 and reduced C in minerals containing dissolved H2 and CO2. A technique was developed which unambiguously shows that minerals grown in viciously reducing environments contain peroxy in their crystal structures. The peroxy represent interstitial oxygen atoms left behind when the solute H2O and/or CO2 split off H2 and C as a result of internal redox reactions, driven by the crystal field. The observation of peroxy affirms the presence of H2 and reduced C. It shows that the solid state is indeed an unusual reaction medium.

  16. Molecular enhancement of Balmer emissions following foil-induced dissociation of fast H2+ and H3+ ions

    International Nuclear Information System (INIS)

    Kobayashi, H.; Oda, N.


    Relative emission yields of Balmer lines as functions of the dwell time (t/sub D/ = 0.97--54.1 fs) in thin carbon foils (2--68 μg/cm 2 ) have been measured with (0.2--0.8)-MeV/amu H + , H 2 + , and H 3 + incident on thin carbon foils. Large molecular effects for emission yields of Balmer lines have been observed for H 2 + and H 3 + , where the molecular effect for H 3 + is larger than that for H 2 + . The molecular effects for H 2 + and H 3 + depend on the principal quantum number (n = 3--6), but this n dependence disappears at the largest t/sub D/ ( = 54.1 fs). The molecular effects rapidly decrease with increasing t/sub D/ in the small-t/sub D/ ( or approx. =2 fs) region. The magnitudes of the molecular effects at the largest t/sub D/ ( = 54.1 fs) are in good agreement with those by Andresen et al. [Phys. Scr. 19, 335 (1979)]. Relative populations of n-state hydrogens in the large-t/sub D/ (> or approx. =2 fs) region have been derived from the relative yields of Balmer lines as functions of n and t/sub D/. The molecular enhancement for relative populations of n-state hydrogens for H 2 + depends on n and t/sub D/, and decreases with increasing t/sub D/ and increases with increasing n

  17. Temporal dynamics of cortical and subcortical responses to apomorphine in Parkinson disease: an H2(15)O PET study

    NARCIS (Netherlands)

    Hosey, Lara A.; Thompson, Jennifer L. W.; Metman, Leonard Verhagen; van den Munckhof, Pepyn; Braun, Allen R.


    H2(15)O positron emission tomography (PET) was used to study the temporal course of central nervous system (CNS) responses to apomorphine in patients with idiopathic Parkinson disease (PD). Agonist-induced changes in regional cerebral blood flow (rCBF) were evaluated within

  18. The Eddington Ratio of H2O Maser Host AGN Q. Guo1, J. S. Zhang2 ...

    Indian Academy of Sciences (India)

    tion rate and on the efficiency for converting gravitational energy into radiation. The. Eddington ratio, i.e., ratio of the bolometric luminosity and Eddington luminosity, is very important to constrain predictions of theoretical models. Observations demon- strate that most of the H2O maser spots are located in the nuclear region ...

  19. Uranous nitrate production for purex process applications using PtO2 catalyst and H2/H2-gas mixtures

    International Nuclear Information System (INIS)

    Sreenivasa Rao, K.; Shyamali, R.; Narayan, C.V.; Patil, A.R.; Jambunathan, U.; Ramanujam, A.; Kansara, V.P.


    In the Purex process of spent fuel reprocessing. the twin objectives- decontamination and partitioning are achieved by extracting uranium (VI) and plutonium (IV) together in the solvent 30% TBP-dodecane and then selectively reducing Pu (IV) to Pu (III) in which valency it is least extractable in the solvent. Uranous nitrate stabilized with hydrazine nitrate is the widely employed partitioning agent. The conventional method of producing U(IV) is by the electrolytic reduction of uranyl nitrate with hydrazine nitrate as uranous ion stabilizer. Tre percentage conversion of U(VI) to U(IV) obtained in this method is 50 -60 %. The use of this solution as partitioning agent leads not only to the dilution of the plutonium product but also to increase in uranium processing load by each externally fed uranous nitrate batch. Also the oxide coating of the anode, TSIA (Titanium Substrate Insoluble Anode) wears out after a certain period of operation. This necessitates recoating which is quite cumbersome considering the amount of the decontamination involved. An alternative to the conventional electrolytic method of reduction of uranyl nitrate to uranous nitrate was explored at FRD laboratory .The studies have revealed that near 100% uranous nitrate can be produced by reducing uranyl nitrate with H 2 gas or H 2 (8%)- Ar/N 2 gas mixture in presence of PtO 2 catalyst. This report describes the laboratory scale studies carried out to optimize the various parameters. Based on these studies reduction of uranyl nitrate on a pilot plant scale was carried out. The design and operation of the reductor column and also the various studies carried out in the pilot plant studies are discussed. Near 100% conversion of uranyl nitrate to uranous nitrate and also the redundancy of supply of electrical energy make this process a viable alternative to the existing electrolytic method. (author)

  20. Validation of MIPAS-ENVISAT H2O operational data collected between July 2002 and March 2004

    Directory of Open Access Journals (Sweden)

    G. Wetzel


    Full Text Available Water vapour (H2O is one of the operationally retrieved key species of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS instrument aboard the Environmental Satellite (ENVISAT which was launched into its sun-synchronous orbit on 1 March 2002 and operated until April 2012. Within the MIPAS validation activities, independent observations from balloons, aircraft, satellites, and ground-based stations have been compared to European Space Agency (ESA version 4.61 operational H2O data comprising the time period from July 2002 until March 2004 where MIPAS measured with full spectral resolution. No significant bias in the MIPAS H2O data is seen in the lower stratosphere (above the hygropause between about 15 and 30 km. Differences of H2O quantities observed by MIPAS and the validation instruments are mostly well within the combined total errors in this altitude region. In the upper stratosphere (above about 30 km, a tendency towards a small positive bias (up to about 10% is present in the MIPAS data when compared to its balloon-borne counterpart MIPAS-B, to the satellite instruments HALOE (Halogen Occultation Experiment and ACE-FTS (Atmospheric Chemistry Experiment, Fourier Transform Spectrometer, and to the millimeter-wave airborne sensor AMSOS (Airborne Microwave Stratospheric Observing System. In the mesosphere the situation is unclear due to the occurrence of different biases when comparing HALOE and ACE-FTS data. Pronounced deviations between MIPAS and the correlative instruments occur in the lowermost stratosphere and upper troposphere, a region where retrievals of H2O are most challenging. Altogether it can be concluded that MIPAS H2O profiles yield valuable information on the vertical distribution of H2O in the stratosphere with an overall accuracy of about 10 to 30% and a precision of typically 5 to 15% – well within the predicted error budget, showing that these global and continuous data are very valuable for scientific

  1. 26 CFR 1.642(h)-2 - Excess deductions on termination of an estate or trust. (United States)


    ... trust. 1.642(h)-2 Section 1.642(h)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Estates, Trusts, and Beneficiaries § 1.642(h)-2...)) in excess of gross income, the excess is allowed under section 642(h)(2) as a deduction to the...

  2. The histone variant macroH2A is an epigenetic regulator of key developmental genes

    DEFF Research Database (Denmark)

    Buschbeck, Marcus; Uribesalgo, Iris; Wibowo, Indra


    The histone variants macroH2A1 and macroH2A2 are associated with X chromosome inactivation in female mammals. However, the physiological function of macroH2A proteins on autosomes is poorly understood. Microarray-based analysis in human male pluripotent cells uncovered occupancy of both macroH2A ...

  3. Anti-H-Y responses of H-2b mutant mice. (United States)

    Simpson, E; Gordon, R D; Chandler, P R; Bailey, D


    Two strains of H-2b mutant mice, H-2ba and H-2bf, in which the mutational event took place at H-2K, make anti-H-Y cytotoxic T cell responses which are H-2-restricted, Db-associated and indistinguishable in target cell specificity from those of H-2b mice. Thus, alteration of the H-2K molecule affects neither the Ir gene controlling the response, nor the associative antigen. On the other hand, one H-2Db mutant strain, H-2bo, although it makes a good anti-H-Y cytotoxic response, shows target cell specificity restricted to its own Dbo antigen(s), and neither H-2b, H-2ba or H-2bf anti-H-Y cytotoxic cells kill H-2bo male target cells. Thus, the alteration of the H-2Db molecule does not affect the Ir gene of H-2b mice, but it does alter the H-2Db-associative antigen.

  4. H2-rich fluids from serpentinization: geochemical and biotic implications. (United States)

    Sleep, N H; Meibom, A; Fridriksson, Th; Coleman, R G; Bird, D K


    Metamorphic hydration and oxidation of ultramafic rocks produces serpentinites, composed of serpentine group minerals and varying amounts of brucite, magnetite, and/or FeNi alloys. These minerals buffer metamorphic fluids to extremely reducing conditions that are capable of producing hydrogen gas. Awaruite, FeNi3, forms early in this process when the serpentinite minerals are Fe-rich. Olivine with the current mantle Fe/Mg ratio was oxidized during serpentinization after the Moon-forming impact. This process formed some of the ferric iron in the Earth's mantle. For the rest of Earth's history, serpentinites covered only a small fraction of the Earth's surface but were an important prebiotic and biotic environment. Extant methanogens react H2 with CO2 to form methane. This is a likely habitable environment on large silicate planets. The catalytic properties of FeNi3 allow complex organic compounds to form within serpentinite and, when mixed with atmospherically produced complex organic matter and waters that circulated through basalts, constitutes an attractive prebiotic substrate. Conversely, inorganic catalysis of methane by FeNi3 competes with nascent and extant life. Copyright 2004 The National Academy of Sciencs of the USA

  5. Interpretation of the H2O maser outbursts in Orion

    International Nuclear Information System (INIS)

    Strel'nitskij, V.S.


    It is shown, that the H 2 O maser that flared up in Orion (+8 km/s) was partly unsaturated. The anti-correlation between the line width and intensity, the asymmetry of the profile and the changes of the visibility function within it are explained by blending of two componenets, one of which has experienced a flare. From the observed polarization properties the upper limit to the electron density (nsub(e) 5 cm -3 ), the strength of the magnetic field (B approximately 10 -2 G) and its direction (position angle phi approximately -15 deg) within the source are deduced. According to the proposed physical model the source is a gas condensation, pressed, heated and accelerated by the strong stellar wind from a young star (possibly IRc4). The maser is pumped by the CCr-process at sup(n)H approximately 10 11 -10 12 cm -3 . If the condensation is a remnant of a circumstellar gas-dust disk, the magnetic field within the disk must be essentially azimuthal [ru

  6. Solid-state photoelectrochemical H2 generation with gaseous reactants

    International Nuclear Information System (INIS)

    Iwu, Kingsley O.; Galeckas, Augustinas; Kuznetsov, Andrej Yu.; Norby, Truls


    Photocurrent and H 2 production were demonstrated in an all solid-state photoelectrochemical cell employing gaseous methanol and water vapour at the photoanode. Open circuit photovoltage of around −0.4 V and short circuit photocurrent of up to 250 μA/cm 2 were obtained. At positive bias, photocurrent generation was limited by the irradiance, i.e., the amount of photogenerated charge carriers at the anode. Time constants and impedance spectra showed an electrochemical capacitance of the cell of about 15 μF/cm 2 in the dark, which increased with increasing irradiance. With only water vapour at the anode, the short circuit photocurrent was about 6% of the value with gaseous methanol and water vapour. The photoanode and electrocatalyst on carbon paper support were affixed to the proton conducting membrane using Nafion ® as adhesive, an approach that yielded photocurrents up to 15 times better than that of a cell assembled by hot-pressing, in spite of the overall cell resistance of the latter being up to five times less than that of the former. This is attributed, at least partially, to reactants being more readily available at the photoanode of the better performing cell

  7. Investigation of H2S separation from H2S/CH4 mixtures using functionalized and non-functionalized vertically aligned carbon nanotube membranes (United States)

    Gilani, Neda; Towfighi, Jafar; Rashidi, Alimorad; Mohammadi, Toraj; Omidkhah, Mohammad Reza; Sadeghian, Ahmad


    Separation of H2S from binary mixtures of H2S/CH4 using vertically aligned carbon nanotube membranes fabricated in anodic aluminum oxide (AAO) template was studied experimentally. Carbon nanotubes (CNTs) were grown in five AAO templates with different pore diameters using chemical vapor deposition, and CNT/AAO membranes with tubular carbon nanotube structure and open caps were selected for separation of H2S. For this, two tubular CNT/AAO membranes were fabricated with the CNT inner diameters of 23 and 8 nm. It was found that permeability and selectivity of the membrane with inner diameter of 23 nm for CNT were independent of upstream feed pressure and H2S feed concentration unlike that of CNT having an inner diameter of 8 nm. Selectivity of these membranes for separation of H2S was obtained in the ranges of 1.36-1.58 and 2.11-2.86, for CNTs with internal diameters of 23 and 8 nm, respectively. In order to enhance the separation of H2S from H2S/CH4 mixtures, dodecylamine was used to functionalize the CNT/AAO membrane with higher selectivity. The results showed that for amido-functionalized membrane, both upstream feed pressure and H2S partial pressure in the feed significantly increased H2S permeability, and selectivity for H2S being in the range of 3.0-5.57 respectively.

  8. Promotion of H2 production by microwave-assisted treatment of water hyacinth with dilute H2SO4 through combined dark fermentation and photofermentation

    International Nuclear Information System (INIS)

    Cheng, Jun; Xia, Ao; Su, Huibo; Song, Wenlu; Zhou, Junhu; Cen, Kefa


    Highlights: • Water hyacinth is microwaved with dilute H 2 SO 4 to improve enzymatic hydrolysis. • Hydrolyzed hyacinth is fermented by hydrogenogens to improve dark H 2 yield. • Nearly 100% glucose and most arabinose in hydrolysate are used in dark fermentation. • H 2 yield from hyacinth via combined fermentation is 75.2% of theoretical H 2 yield. - Abstract: Water hyacinth was treated with microwave-assisted dilute H 2 SO 4 to improve saccharification before enzymatic hydrolysis and H 2 production during dark fermentation. A maximum reducing sugar (RS) yield of 64.4 g/100 g total volatile solid (TVS) (96.1% of the theoretical RS yield) was achieved when water hyacinth was treated through microwave heating with 1% dilute H 2 SO 4 for 15 min at 140 °C and then enzymatically hydrolyzed for 72 h. During enzymatic hydrolysis, glucose was efficiently produced from the hydrolysis of cellulose that resulted from the disruption of the lignocellulosic structure of water hyacinth after microwave-assisted H 2 SO 4 treatment. When the hydrolyzed water hyacinth was inoculated with H 2 -producing bacteria to produce H 2 during dark fermentation, a maximum H 2 yield of 112.3 ml/g TVS was obtained. The major sugar compositions in the residual solution from dark fermentation were xylose and cellobiose (total RS utilization efficiency: 88.5%). Through a combination of dark fermentation and photofermentation, the maximum H 2 yield from water hyacinth was significantly increased from 112.3 ml/g TVS to 751.5 ml/g TVS, which is 75.2% of the theoretical H 2 yield

  9. Loss of retrovirus production in JB/RH melanoma cells transfected with H-2Kb and TAP-1 genes. (United States)

    Li, M; Xu, F; Muller, J; Huang, X; Hearing, V J; Gorelik, E


    JB/RH1 melanoma cells, as well as other melanomas of C57BL/6 mice (B16 and JB/MS), express a common melanoma-associated antigen (MAA) encoded by an ecotropic melanoma-associated retrovirus (MelARV). JB/RH1 cells do not express the H-2Kb molecules due to down-regulation of the H-2Kb and TAP-1 genes. When JB/RH1 cells were transfected with the H-2Kb and cotransfected with the TAP-1 gene, it resulted in the appearance of H-2Kb molecules and an increase in their immunogenicity, albeit they lost expression of retrovirus-encoded MAA recognized by MM2-9B6 mAb. Loss of MAA was found to result from a complete and stable elimination of ecotropic MelARV production in the H-2Kb/TAP-1-transfected JB/RH1 cells. Northern blot analysis showed no differences in ecotropic retroviral messages in MelARV-producing and -nonproducing melanoma cells, suggesting that loss of MelARV production was not due to down-regulation of MelARV transcription. Southern blot analysis revealed several rearrangements in the proviral DNA of H-2Kb-positive JB/RH1 melanoma cells. Sequence analysis of the ecotropic proviral DNA from these cells showed numerous nucleotide substitutions, some of which resulted in the appearance of a novel intraviral PstI restriction site and the loss of a HindIII restriction site in the pol region. PCR amplification of the proviral DNAs indicates that an ecotropic provirus found in the H-2Kb-positive cells is novel and does not preexist in the parental H-2Kb-negative melanoma cells. Conversely, the ecotropic provirus of the parental JB/RH1 cells was not amplifable from the H-2Kb-positive cells. Our data indicate that stable loss of retroviral production in the H-2Kb/TAP-1-transfected melanoma cells is probably due to the induction of recombination between a productive ecotropic MelARV and a defective nonecotropic provirus leading to the generation of a defective ecotropic provirus and the loss of MelARV production and expression of the retrovirus-encoded MAA. Copyright 1999

  10. Quenching H2 autoionization interferences with ultrashort xuv laser pulses

    International Nuclear Information System (INIS)

    González-Castrillo, Alberto; Palacios, Alicia; Martín, Fernando; Bachau, Henri


    In contrast with atomic photoionization or molecular direct photoionization, in the autoionization region, electron and proton kinetic-energy differential probabilities resulting from a short pulse cannot be reconstructed by the incoherent superposition of those resulting from long pulses.

  11. Quantum mechanics of electronic-rotational energy transfer in F(2P) + H2 collisions

    International Nuclear Information System (INIS)

    Wyatt, R.E.; Walker, R.B.


    A theoretical study is made of electronic-rotational energy transfer in F( 2 P) + H 2 three-dimensional collisions, with electronic matrix elements from DIM theory. The quantum close-coupled equations are integrated via the R-matrix propagation method. Inelastic quenching probabilities are emphasized, with and without simulated open reaction channels. Interweaving patterns in the transition probability for even and odd nuclear parity vs. J (total angular momentum quantum number) are analyzed in terms of avoided crossing structure in the electrotational energy correlation diagrams. Localized regions where electronic quenching is dominant are identified in the correlation diagrams, and are confirmed in separate calculations which neglect interchannel mixing in local regions of the atom-molecule separation. Open reaction channels are found to have little influence on the quenching probabilities in these low energy calculations

  12. Characterization of the CH4/H2/Ar high density plasma etching process for ZnSe (United States)

    Eddy, C. R.; Leonhardt, D.; Shamamian, V. A.; Butler, J. E.


    High density plasma etching of zinc selenide using CH4/H2/Ar plasma chemistries is investigated. Mass spectrometry, using through-the-platen sampling, is used to identify and monitor etch products evolving from the surface during etching. The identifiable primary etch products are Zn, Se, ZnH2, SeH2, Zn(CH3)2, and Se(CH3)2. Their concentrations are monitored as ion and neutral fluxes (both in intensity and composition), ion energy, and substrate temperature are varied. General insights about the surface chemistry mechanisms of the etch process are given from these observations. Regions of process parameter space best suited for moderate rate, anisotropic, and low damage etching of ZnSe are proposed.

  13. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    International Nuclear Information System (INIS)

    Nefedov, R A; Ferapontov, Yu A; Kozlova, N P


    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H 2 O 2 - H 2 O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li 2 O 2 ·H 2 O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li 2 O 2 ·H 2 O content on hydrogen peroxide decay contained in liquid phase of LiOH - H 2 O 2 - H 2 O trinary system under conditions of experiments conducted has been shown. (paper)

  14. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis (United States)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.


    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H2O2 - H2O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li2O2·H2O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li2O2·H2O content on hydrogen peroxide decay contained in liquid phase of LiOH - H2O2 - H2O trinary system under conditions of experiments conducted has been shown.

  15. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology. (United States)

    Belle, Jad I; Nijnik, Anastasia


    Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Origin of CH+ in diffuse molecular clouds. Warm H2 and ion-neutral drift (United States)

    Valdivia, Valeska; Godard, Benjamin; Hennebelle, Patrick; Gerin, Maryvonne; Lesaffre, Pierre; Le Bourlot, Jacques


    Context. Molecular clouds are known to be magnetised and to display a turbulent and complex structure where warm and cold phases are interwoven. The turbulent motions within molecular clouds transport molecules, and the presence of magnetic fields induces a relative velocity between neutrals and ions known as the ion-neutral drift (vd). These effects all together can influence the chemical evolution of the clouds. Aims: This paper assesses the roles of two physical phenomena which have previously been invoked to boost the production of CH+ under realistic physical conditions: the presence of warm H2 and the increased formation rate due to the ion-neutral drift. Methods: We performed ideal magnetohydrodynamical (MHD) simulations that include the heating and cooling of the multiphase interstellar medium (ISM), and where we treat dynamically the formation of the H2 molecule. In a post-processing step we compute the abundances of species at chemical equilibrium using a solver that we developed. The solver uses the physical conditions of the gas as input parameters, and can also prescribe the H2 fraction if needed. We validate our approach by showing that the H2 molecule generally has a much longer chemical evolution timescale compared to the other species. Results: We show that CH+ is efficiently formed at the edge of clumps, in regions where the H2 fraction is low (0.3-30%) but nevertheless higher than its equilibrium value, and where the gas temperature is high (≳ 300 K). We show that warm and out of equilibrium H2 increases the integrated column densities of CH+ by one order of magnitude up to values still 3-10 times lower than those observed in the diffuse ISM. We balance the Lorentz force with the ion-neutral drag to estimate the ion-drift velocities from our ideal MHD simulations. We find that the ion-neutral drift velocity distribution peaks around 0.04 km s-1, and that high drift velocities are too rare to have a significant statistical impact on the


    International Nuclear Information System (INIS)

    Pellegrini, E. W.; Baldwin, J. A.; Ferland, G. J.; Shaw, G.; Heathcote, S.


    Previous work has shown the Orion Bar to be an interface between ionized and molecular gas, viewed roughly edge-on, which is excited by the light from the Trapezium cluster. Much of the emission from any star-forming region will originate from such interfaces, so the Bar serves as a foundation test of any emission model. Here we combine X-ray, optical, infrared (IR), and radio data sets to derive emission spectra along the transition from H + to H 0 to H 2 regions. We then reproduce the spectra of these layers with a simulation that simultaneously accounts for the detailed microphysics of the gas, the grains, and molecules, especially H 2 and CO. The magnetic field, observed to be the dominant pressure in another region of the Orion Nebula, is treated as a free parameter, along with the density of cosmic rays. Our model successfully accounts for the optical, IR, and radio observations across the Bar by including a significant magnetic pressure and also heating by an excess density of cosmic rays, which we suggest is due to cosmic rays being trapped in the compressed magnetic field. In the Orion Bar, as we had previously found in M17, momentum carried by radiation and winds from the newly formed stars pushes back and compresses the surrounding gas. There is a rough balance between outward momentum in starlight and the total pressure in atomic and molecular gas surrounding the H + region. If the gas starts out with a weak magnetic field, the starlight from a newly formed cluster will push back the gas and compress the gas, magnetic field, and cosmic rays until magnetic pressure becomes an important factor.

  18. Study of Room Temperature H2S Gas Sensing Behavior of CuO-modified BSST Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    H. M. Baviskar


    Full Text Available Thick films of (Ba0.1Sr0.9(Sn0.5Ti0.5O3 referred as BSST, were prepared by screen-printing technique. The preparation, characterization and gas sensing properties of pure and CuO-BSST mixed oxide semiconductors have been investigated. The mixed oxides were obtained by dipping the pure BSST thick films into 0.01 M aqueous solution of CuCl2, for different intervals of time. Pure BSST was observed to be less sensitive to H2S gas. However, mixed oxides of CuO and BSST were observed to be highly sensitive to H2S gas. Upon exposure to H2S gas, the barrier height of CuO-BSST intergranular regions decreases markedly due to the chemical transformation of CuO into well conducting CuS leading to a drastic decrease in resistance. The crucial gas response was found to H2S gas at room temperature and no cross sensitivity was observed to other hazardous and polluting gases. The effects of microstructure and doping concentration on the gas response, selectivity, response and recovery of the sensor in the presence of H2S gas were studied and discussed.

  19. Removal of Organic Dyes from Industrial Wastewaters Using UV/H2O2, UV/H2O2/Fe (II, UV/H2O2/Fe (III Processes

    Directory of Open Access Journals (Sweden)

    Nezamaddin Daneshvar


    Full Text Available UV/H2O2, UV/H2O2/Fe (II and UV/H2O2/Fe (III processes are very effective in removing pollutants from wastewater and can be used for treatment of dyestuff units wastewaters. In this study, Rhodamine B was used as a typical organic dye. Rhodamine B has found wide applications in wax, leather, and paper industries. The results from this study showed that this dye was degradable in the presence of hydrogen peroxide under UV-C irradiation (30W mercury light and Photo-Fenton process. The dye was resistant to UV irradiation. In the absence of UV irradiation, the decolorization efficiency was very negligible in the presence of hydrogen. The effects of different system variables such as initial dye concentration, duration of UV irradiation, and initial hydrogen peroxide concentration were investigated in the UV/H2O2 process. Investigation of the kinetics of the UV/H2O2 process showed that the semi-log plot of the dye concentration versus time was linear, suggesting a first order reaction. It was found that Rhodamine B decolorization efficiencies in the UV/H2O2/Fe (II and UV/H2O2/Fe (III processes were higher than that in the UV/H2O2 process. Furthermore, a solution containing 20 ppm of Rhodamine B was decolorized in the presence 18 mM of H2O2 under UV irradiation for 15 minutes. It was also found that addition of 0.1 mM Fe(II or Fe(III to the solution containing  20  ppm of the dye and 5 mM H2O2 under UV light  illumination decreased removal time to 10 min.

  20. A New Overpotential — Capacitance Mechanism for H2 Electrode

    Directory of Open Access Journals (Sweden)

    Glenn Wei


    Full Text Available The H2 electrode is commonly assumed to be a half-cell, 2 H+ 2e == H2, andexplained by the Nernst equation. We cannot assume that the H+ is easily reduced to H2 inan H2 saturated solution, and H2 becoming oxidized to H+ in a strongly acid solution againstthe equilibrium principle. How can the H2 gas is involved from a basic solution where thereis practically no H+ ions? Another equilibrium has been postulated, H2 (soln = 2H(adsorbed on metal = 2 H 2e. This paper reports the results of studying the H2 electrodeusing various techniques, such as adsorption, bubbling with H2, and N2, charging,discharging, and recharging, replacing the salt bridge with a conducting wire, etc. Aninteresting overpotential was observed that bubbling H2 into the solution caused a suddenchange of potential to more negative without changing the solution pH. The H2 may bereplaced by N2 to give a similar calibration curve without the overpotential. The resultscontradict the redox mechanism. When the Pt is separated by H2 coating, it cannot act as acatalyst in the solution. Our results seem to explain the H2 electrode mechanism as thecombination of its overpotential and capacitance potential. Bubbling of H2 or N2 onlyremoves interfering gases such as O2 and CO2. Since neither H2 nor N2 is involved in thepotential development, it is improper to call the H2 or N2 electrode. A term of pH / OH Ptelectrode, like the pH / OH glass electrode, is suggested.

  1. Conductivity And Thermal Stability of Solid Acid Composites CsH2PO4 /NaH2PO4/ SiO2

    International Nuclear Information System (INIS)

    Norsyahida Mohammad; Abu Bakar Mohamad; Abu Bakar Mohamad; Abdul Amir Hassan Kadhum


    Solid acid composites CsH 2 PO 4 / NaH 2 PO 4 / SiO 2 with different mole ratios of CsH 2 PO 4 and NaH 2 PO 4 to SiO 2 were synthesized and characterized. Preliminary infrared measurements of CsH 2 PO 4 and its composites indicated that hydrogen bonds breaking and formation were detected between 1710 to 2710 cm -1 , while the rotation of phosphate tetrahedral anions occurred between 900 and 1200 cm -1 . The superprotonic transition of CsH 2 PO 4 / NaH 2 PO 4 / SiO 2 composite was identified at superprotonic temperatures between 230 and 260 degree Celcius, under atmospheric pressure. This study reveals higher conductivity values for composites with higher CsH 2 PO 4 (CDP) content. Solid acid composite CDP 613 appeared as the composite with the highest conductivity that is 7.2x10 -3 S cm -1 at 230 degree Celcius. Thermal stability of the solid acid composites such as temperature of dehydration, melting and decomposition were investigated. The addition of NaH 2 PO 4 lowers the dehydration temperature of the solid acid composites. (author)

  2. Using H2O2 as oxidant in leaching of uranium ores. The new research on the reaction of H2O2 with Fe2+

    International Nuclear Information System (INIS)

    Gao Xizhen


    The new research on the reaction of H 2 O 2 with Fe 2+ has been studied. Through determining the electric potential, pH and O 2 release during the mutual titration between H 2 O 2 solution and FeSO 4 solution, deduced the chemical equations of H 2 O 2 (without free hydroxyl) oxidizing FeSO 4 and Fe 2 (SO 4 ) 3 oxidizing H 2 O 2 . The research results show that acid is a catalytic agent for decomposing H 2 O 2 to be O 2 and H 2 O besides iron ions. The maximum oxidizing potential is up to about 640 mV. While using H 2 O 2 as an oxidant in uranium heap leaching and in-situ leaching, controlling electric potential can be regarded as a method for adjusting the feeding speed of H 2 O 2 to keep the electric potential below 500 mV, thus the H 2 O 2 decomposition can be reduced. (13 refs., 3 tabs., 1 fig.)

  3. Nucleosome acidic patch promotes RNF168- and RING1B/BMI1-dependent H2AX and H2A ubiquitination and DNA damage signaling.

    Directory of Open Access Journals (Sweden)

    Justin W Leung


    Full Text Available Histone ubiquitinations are critical for the activation of the DNA damage response (DDR. In particular, RNF168 and RING1B/BMI1 function in the DDR by ubiquitinating H2A/H2AX on Lys-13/15 and Lys-118/119, respectively. However, it remains to be defined how the ubiquitin pathway engages chromatin to provide regulation of ubiquitin targeting of specific histone residues. Here we identify the nucleosome acid patch as a critical chromatin mediator of H2A/H2AX ubiquitination (ub. The acidic patch is required for RNF168- and RING1B/BMI1-dependent H2A/H2AXub in vivo. The acidic patch functions within the nucleosome as nucleosomes containing a mutated acidic patch exhibit defective H2A/H2AXub by RNF168 and RING1B/BMI1 in vitro. Furthermore, direct perturbation of the nucleosome acidic patch in vivo by the expression of an engineered acidic patch interacting viral peptide, LANA, results in defective H2AXub and RNF168-dependent DNA damage responses including 53BP1 and BRCA1 recruitment to DNA damage. The acidic patch therefore is a critical nucleosome feature that may serve as a scaffold to integrate multiple ubiquitin signals on chromatin to compose selective ubiquitinations on histones for DNA damage signaling.

  4. The H2CO abundance in the inner warm regions of low mass protostellar envelopes

    NARCIS (Netherlands)

    Maret, S; Ceccarelli, C; Caux, E; Tielens, A. G. G. M.; Jorgensen, JK; van Dishoeck, E; Bacmann, A; Castets, A; Lefloch, B; Loinard, L; Parise, B; Schoier, FL

    We present a survey of the formaldehyde emission in a sample of eight Class 0 protostars obtained with the IRAM and JCMT millimeter telescopes. The range of energies of the observed transitions allows us to probe the physical and chemical conditions across the protostellar envelopes. The data have

  5. C3H2 observations as a diagnostic probe for molecular clouds (United States)

    Avery, L. W.


    Recently the three-membered ring molecule, cyclopropenylidene, C3H2, has been identified in the laboratory and detected in molecular clouds by Thaddeus, Vrtilek and Gottlieb (1985). This molecule is wide-spread throughout the Galaxy and has been detected in 25 separate sources including cold dust clouds, circumstellar envelopes, HII regions, and the spiral arms observed against the Cas supernova remnant. In order to evaluate the potential of C3H2 as a diagnostic probe for molecular clouds, and to attempt to identify the most useful transitions, statistical equilibrium calculations were carried out for the lowest 24 levels of the ortho species and the lowest 10 levels of the para species. Many of the sources observed by Matthews and Irvine (1985) show evidence of being optically thick in the 1(10)-1(01) line. Consequently, the effects of radiative trapping should be incorporated into the equilibrium calculations. This was done using the Large Velocity Gradient approximation for a spherical cloud of uniform density. Some results of the calculations for T(K)=10K are given. Figures are presented which show contours of the logarithm of the ratio of peak line brightness temperatures for ortho-para pairs of lines at similar frequencies. It appears that the widespread nature of C3H2, the relatively large strength of its spectral lines, and their sensitivity to density and molecular abundance combine to make this a useful molecule for probing physical conditions in molecular clouds. The 1(10)-1(01) and 2(20)-2(11) K-band lines may be especially useful in this regard because of the ease with which they are observed and their unusual density-dependent emission/absorption properties.

  6. A neural network potential energy surface for the NaH2 system and dynamics studies on the H(2S) + NaH(X1Σ+) → Na(2S) + H2(X1Σg+) reaction. (United States)

    Wang, Shufen; Yuan, Jiuchuang; Li, Huixing; Chen, Maodu


    In order to study the dynamics of the reaction H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), a new potential energy surface (PES) for the ground state of the NaH 2 system is constructed based on 35 730 ab initio energy points. Using basis sets of quadruple zeta quality, multireference configuration interaction calculations with Davidson correction were carried out to obtain the ab initio energy points. The neural network method is used to fit the PES, and the root mean square error is very small (0.00639 eV). The bond lengths, dissociation energies, zero-point energies and spectroscopic constants of H 2 (X 1 Σ g + ) and NaH(X 1 Σ + ) obtained on the new NaH 2 PES are in good agreement with the experiment data. On the new PES, the reactant coordinate-based time-dependent wave packet method is applied to study the reaction dynamics of H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), and the reaction probabilities, integral cross-sections (ICSs) and differential cross-sections (DCSs) are obtained. There is no threshold in the reaction due to the absence of an energy barrier on the minimum energy path. When the collision energy increases, the ICSs decrease from a high value at low collision energy. The DCS results show that the angular distribution of the product molecules tends to the forward direction. Compared with the LiH 2 system, the NaH 2 system has a larger mass and the PES has a larger well at the H-NaH configuration, which leads to a higher ICS value in the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction. Because the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction releases more energy, the product molecules can be excited to a higher vibrational state.

  7. Cloning and characterization of the major histone H2A genes completes the cloning and sequencing of known histone genes of Tetrahymena thermophila. (United States)

    Liu, X; Gorovsky, M A


    A truncated cDNA clone encoding Tetrahymena thermophila histone H2A2 was isolated using synthetic degenerate oligonucleotide probes derived from H2A protein sequences of Tetrahymena pyriformis. The cDNA clone was used as a homologous probe to isolate a truncated genomic clone encoding H2A1. The remaining regions of the genes for H2A1 (HTA1) and H2A2 (HTA2) were then isolated using inverse PCR on circularized genomic DNA fragments. These partial clones were assembled into intact HTA1 and HTA2 clones. Nucleotide sequences of the two genes were highly homologous within the coding region but not in the noncoding regions. Comparison of the deduced amino acid sequences with protein sequences of T. pyriformis H2As showed only two and three differences respectively, in a total of 137 amino acids for H2A1, and 132 amino acids for H2A2, indicating the two genes arose before the divergence of these two species. The HTA2 gene contains a TAA triplet within the coding region, encoding a glutamine residue. In contrast with the T. thermophila HHO and HTA3 genes, no introns were identified within the two genes. The 5'- and 3'-ends of the histone H2A mRNAs; were determined by RNase protection and by PCR mapping using RACE and RLM-RACE methods. Both genes encode polyadenylated mRNAs and are highly expressed in vegetatively growing cells but only weakly expressed in starved cultures. With the inclusion of these two genes, T. thermophila is the first organism whose entire complement of known core and linker histones, including replication-dependent and basal variants, has been cloned and sequenced. PMID:8760889

  8. A role for H2S in the microcirculation of newborns: the major metabolite of H2S (thiosulphate is increased in preterm infants.

    Directory of Open Access Journals (Sweden)

    Rebecca M Dyson

    Full Text Available Excessive vasodilatation during the perinatal period is associated with cardiorespiratory instability in preterm neonates. Little evidence of the mechanisms controlling microvascular tone during circulatory transition exists. We hypothesised that hydrogen sulphide (H2S, an important regulator of microvascular reactivity and central cardiac function in adults and animal models, may contribute to the vasodilatation observed in preterm newborns. Term and preterm neonates (24-43 weeks gestational age were studied. Peripheral microvascular blood flow was assessed by laser Doppler. Thiosulphate, a urinary metabolite of H2S, was determined by high performance liquid chromatography as a measure of 24 hr total body H2S turnover for the first 3 days of postnatal life. H2S turnover was greatest in very preterm infants and decreased with increasing gestational age (p = 0.0001. H2S turnover was stable across the first 72 hrs of life in older neonates. In very preterm neonates, H2S turnover increased significantly from day 1 to 3 (p =0.0001; and males had higher H2S turnover than females (p = 0.04. A significant relationship between microvascular blood flow and H2S turnover was observed on day 2 of postnatal life (p = 0.0004. H2S may play a role in maintaining microvascular tone in the perinatal period. Neonates at the greatest risk of microvascular dysfunction characterised by inappropriate peripheral vasodilatation--very preterm male neonates--are also the neonates with highest levels of total body H2S turnover suggesting that overproduction of this gasotransmitter may contribute to microvascular dysfunction in preterms. Potentially, H2S is a target to selectively control microvascular tone in the circulation of newborns.

  9. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling. (United States)

    Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F


    The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.

  10. NK cell receptor/H2-Dk-dependent host resistance to viral infection is quantitatively modulated by H2q inhibitory signals. (United States)

    Fodil-Cornu, Nassima; Loredo-Osti, J Concepción; Vidal, Silvia M


    The cytomegalovirus resistance locus Cmv3 has been linked to an epistatic interaction between two loci: a Natural Killer (NK) cell receptor gene and the major histocompatibility complex class I (MHC-I) locus. To demonstrate the interaction between Cmv3 and H2(k), we generated double congenic mice between MA/My and BALB.K mice and an F(2) cross between FVB/N (H-2(q)) and BALB.K (H2(k)) mice, two strains susceptible to mouse cytomegalovirus (MCMV). Only mice expressing H2(k) in conjunction with Cmv3(MA/My) or Cmv3(FVB) were resistant to MCMV infection. Subsequently, an F(3) cross was carried out between transgenic FVB/H2-D(k) and MHC-I deficient mice in which only the progeny expressing Cmv3(FVB) and a single H2-D(k) class-I molecule completely controlled MCMV viral loads. This phenotype was shown to be NK cell-dependent and associated with subsequent NK cell proliferation. Finally, we demonstrated that a number of H2(q) alleles influence the expression level of H2(q) molecules, but not intrinsic functional properties of NK cells; viral loads, however, were quantitatively proportional to the number of H2(q) alleles. Our results support a model in which H-2(q) molecules convey Ly49-dependent inhibitory signals that interfere with the action of H2-D(k) on NK cell activation against MCMV infection. Thus, the integration of activating and inhibitory signals emanating from various MHC-I/NK cell receptor interactions regulates NK cell-mediated control of viral load.

  11. NK Cell Receptor/H2-Dk–Dependent Host Resistance to Viral Infection Is Quantitatively Modulated by H2 q Inhibitory Signals (United States)

    Fodil-Cornu, Nassima; Loredo-Osti, J. Concepción; Vidal, Silvia M.


    The cytomegalovirus resistance locus Cmv3 has been linked to an epistatic interaction between two loci: a Natural Killer (NK) cell receptor gene and the major histocompatibility complex class I (MHC-I) locus. To demonstrate the interaction between Cmv3 and H2k, we generated double congenic mice between MA/My and BALB.K mice and an F2 cross between FVB/N (H-2q) and BALB.K (H2k) mice, two strains susceptible to mouse cytomegalovirus (MCMV). Only mice expressing H2k in conjunction with Cmv3MA/My or Cmv3FVB were resistant to MCMV infection. Subsequently, an F3 cross was carried out between transgenic FVB/H2-Dk and MHC-I deficient mice in which only the progeny expressing Cmv3FVB and a single H2-Dk class-I molecule completely controlled MCMV viral loads. This phenotype was shown to be NK cell–dependent and associated with subsequent NK cell proliferation. Finally, we demonstrated that a number of H2q alleles influence the expression level of H2q molecules, but not intrinsic functional properties of NK cells; viral loads, however, were quantitatively proportional to the number of H2q alleles. Our results support a model in which H-2q molecules convey Ly49-dependent inhibitory signals that interfere with the action of H2-Dk on NK cell activation against MCMV infection. Thus, the integration of activating and inhibitory signals emanating from various MHC-I/NK cell receptor interactions regulates NK cell–mediated control of viral load. PMID:21533075

  12. Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer

    Directory of Open Access Journals (Sweden)

    David Corujo


    Full Text Available Histone variants are chromatin components that replace replication-coupled histones in a fraction of nucleosomes and confer particular characteristics to chromatin. H2A variants represent the most numerous and diverse group among histone protein families. In the nucleosomal structure, H2A-H2B dimers can be removed and exchanged more easily than the stable H3-H4 core. The unstructured N-terminal histone tails of all histones, but also the C-terminal tails of H2A histones protrude out of the compact structure of the nucleosome core. These accessible tails are the preferential target sites for a large number of post-translational modifications (PTMs. While some PTMs are shared between replication-coupled H2A and H2A variants, many modifications are limited to a specific histone variant. The present review focuses on the H2A variants H2A.Z, H2A.X, and macroH2A, and summarizes their functions in chromatin and how these are linked to cancer development and progression. H2A.Z primarily acts as an oncogene and macroH2A and H2A.X as tumour suppressors. We further focus on the regulation by PTMs, which helps to understand a degree of context dependency.

  13. The effect of host relaxation and dynamics on guest molecule dynamics in H2/tetrahydrofuranhydrate. (United States)

    Peterson, Vanessa K; Shoko, Elvis; Kearley, Gordon J


    We use ab initio molecular dynamics simulations to obtain classically the effects of H2O cage motions on the potential-energy surface (PES) of encapsulated H2 in the H2/tetrahydrofuran-hydrate system. The significant differences between the PES for the H2 in rigid and flexible cages that we find will influence calculation of the quantum dynamics of the H2. Part of these differences arises from the relaxation of the H2O cage around the classical H2, with a second part arising from the coupling of both translational and rotational motions of H2 with the H20 cage. We find that isotopic substitution of 2H for 1H of the H2O cage affects the coupling, which has implications for experiments that require the use of 2H2O, including inelastic neutron scattering that uses 2H2O cages in order to focus on the H2 guest dynamics. Overall, this work emphasizes the importance of taking into account cage dynamics in any approach used to understand the dynamics of H2 guests in porous framework materials.

  14. Effect of H2 addition on combustion characteristics of dimethyl ether jet diffusion flame

    International Nuclear Information System (INIS)

    Kang, Yinhu; Lu, Xiaofeng; Wang, Quanhai; Gan, Lu; Ji, Xuanyu; Wang, Hu; Guo, Qiang; Song, Decai; Ji, Pengyu


    Highlights: • DME- and H 2 -dominated combustion regimes were quantitatively characterized. • The flame structure changed significantly when H 2 addition was above 60 vol.%. • An empirical correlation for normalized flame entrainment rate was developed. • The optimal H 2 addition to DME was 60 vol.% in the practical engineering. - Abstract: In this paper, experiments and numerical calculations were conducted to investigate the effect of H 2 addition on dimethyl ether (DME) jet diffusion flame behaviors, in terms of thermal and chemical structures, reaction zone size, flame entrainment, and NOx and CO emission indices. A wide range of H 2 additions from pure DME to pure H 2 were involved herein, while maintaining the volumetric flow rate of fuel mixture constant. The results indicate that when H 2 mole fraction in the fuel mixture exceeded 60%, the blended fuel was converted to H 2 -dominated. Besides, the flames behaved rather distinctly at the DME- and H 2 -dominated regimes. With the increment in H 2 addition, flame temperature, H 2 , H, O, and OH concentrations increased gradually, but concentrations of the intermediate hydrocarbons (such as CO, CH 2 O, CH 2 , and CH 3 ) decreased on the contrary. Additionally, after the flame became H 2 -dominated, the species concentrations varied increasingly quickly with H 2 addition. The reaction zone length and width decreased nearly linearly with H 2 addition at the DME- and H 2 -dominated regimes. But the decreasing speed of reaction zone length became faster after the flame was converted to H 2 -dominated. At the DME-dominated regime, the dependence of flame entrainment coefficient (C e ) on H 2 addition was rather small. While at the H 2 -dominated regime, C e increased increasingly quickly with H 2 addition. Moreover, with the increment in H 2 addition, NOx emission index increased and CO emission index decreased gradually. In addition, at the DME-dominated regime, NOx emission index increased fairly slowly

  15. Garlic and H2O2 in overcoming dormancy on the vine “Cabernet Sauvignon”

    Directory of Open Access Journals (Sweden)

    Saavedra del Aguila Juan


    Full Text Available The objective of this experiment was to evaluate the effect of garlic extract, H2O2 and hydrogen cyanamide on dormancy break, budding and maturation of “Cabernet Sauvignon” in the Campaign Region – Brazil. In late winter 2014 and after drought pruning were performed spraying in the bud: T1 – distilled water (control; T2 – 3.0% of hydrogen cyanamide; T3 – 18.0% H2O2; and T4 – 3.0% garlic extract. It was evaluated in the field: the number of sprouted buds per plant, number of bunches per plant and weight of bunches per plant; and laboratory: on ripening, performed weekly from the color change of 360 berries per treatment for analyzes solids soluble – SS (Brix pH and titratable acidity – TA (% tartaric acid. It was observed that the vines of treatment T4 (3.0% garlic extract, showed higher percentage of buds sprouting (63 shoots plant−1. Already at the number of clusters and weight per plant, there were no statistical differences between all treatments. The results obtained in the laboratory to SS, pH and TA did not differ statistically for the four tested treatments.

  16. Study of NaBH4 reaction with RhCl3·4H2O and H2PtCl6·6H2O in dimethylformamide

    International Nuclear Information System (INIS)

    Khain, V.S.; Val'kova, V.P.


    Data on study of NaBH 4 reactions with RhCl 3 x4H 2 O and H 2 PtCl 6 x6H 2 O in dimethylformamide, which is a good solvent of both complex hydride and compounds of platinum metals are presented. Rhodium (3) and platinum (4) reduction by sodium tetrahydridoborate in dimethylformamide proceeds quantitatively up to element state. Depositions of powder-like rhodium and platinum or their sols stable up to 8 months are formed depending on the ratio of concentrations of the reacting substances. Stoichiometry of redox-reactions is established based on spectrophotometric, gasovolumetric measurements,

  17. Numerically Exact Calculation of Rovibrational Levels of Cl^-H_2O (United States)

    Wang, Xiao-Gang; Carrington, Tucker


    Large amplitude vibrations of Van der Waals clusters are important because they reveal large regions of a potential energy surface (PES). To calculate spectra of Van der Waals clusters it is common to use an adiabatic approximation. When coupling between intra- and inter-molecular coordinates is important non-adiabatic coupling cannot be neglected and it is therefore critical to develop and test theoretical methods that couple both types of coordinates. We have developed new product basis and contracted basis Lanczos methods for Van der Waals complexes and tested them by computing rovibrational energy levels of Cl^-H_2O. The new product basis is made of functions of the inter-monomer distance, Wigner functions that depend on Euler angles specifying the orientation of H_2O with respect to a frame attached to the inter-monomer Jacobi vector, basis functions for H_2O vibration, and Wigner functions that depend on Euler angles specifying the orientation of the inter-monomer Jacobi vector with respect to a space-fixed frame. An advantage of this product basis is that it can be used to make an efficient contracted basis by replacing the vibrational basis functions for the monomer with monomer vibrational wavefunctions. Due to weak coupling between intra- and inter-molecular coordinates, only a few tens of monomer vibrational wavefunctions are necessary. The validity of the two new methods is established by comparing energy levels with benchmark rovibrational levels obtained with polyspherical coordinates and spherical harmonic type basis functions. For all bases, product structure is exploited to calculate eigenvalues with the Lanczos algorithm. For Cl^-H_2O, we are able, for the first time, to compute accurate splittings due to tunnelling between the two equivalent C_s minima. We use the PES of Rheinecker and Bowman (RB). Our results are in good agreement with experiment for the five fundamental bands observed. J. Rheinecker and J. M. Bowman, J. Chem. Phys. 124 131102

  18. HIFI Spectroscopy of H2O Submillimeter Lines in Nuclei of Actively Star-forming Galaxies (United States)

    Liu, L.; Weiß, A.; Perez-Beaupuits, J. P.; Güsten, R.; Liu, D.; Gao, Y.; Menten, K. M.; van der Werf, P.; Israel, F. P.; Harris, A.; Martin-Pintado, J.; Requena-Torres, M. A.; Stutzki, J.


    We present a systematic survey of multiple velocity-resolved H2O spectra using Herschel/Heterodyne Instrument for the Far Infrared (HIFI) toward nine nearby actively star-forming galaxies. The ground-state and low-excitation lines (E up ≤ 130 K) show profiles with emission and absorption blended together, while absorption-free medium-excitation lines (130 K ≤ E up ≤ 350 K) typically display line shapes similar to CO. We analyze the HIFI observation together with archival SPIRE/PACS H2O data using a state-of-the-art 3D radiative transfer code that includes the interaction between continuum and line emission. The water excitation models are combined with information on the dust and CO spectral line energy distribution to determine the physical structure of the interstellar medium (ISM). We identify two ISM components that are common to all galaxies: a warm ({T}{dust}˜ 40{--}70 K), dense (n({{H}})˜ {10}5{--}{10}6 {{cm}}-3) phase that dominates the emission of medium-excitation H2O lines. This gas phase also dominates the far-IR emission and the CO intensities for {J}{up}> 8. In addition, a cold ({T}{dust}˜ 20{--}30 K), dense (n({{H}})˜ {10}4{--}{10}5 {{cm}}-3), more extended phase is present. It outputs the emission in the low-excitation H2O lines and typically also produces the prominent line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk 231) an even hotter and more compact (R s ≤ 100 pc) region is present, which is possibly linked to AGN activity. We find that collisions dominate the water excitation in the cold gas and for lines with {E}{up}≤slant 300 K and {E}{up}≤slant 800 K in the warm and hot component, respectively. Higher-energy levels are mainly excited by IR pumping.

  19. H2-rich and Hydrocarbon Gas Recovered in a Deep Precambrian Well in Northeastern Kansas

    International Nuclear Information System (INIS)

    Newell, K. David; Doveton, John H.; Merriam, Daniel F.; Lollar, Barbara Sherwood; Waggoner, William M.; Magnuson, L. Michael


    In late 2005 and early 2006, the WTW Operating, LLC (W.T.W. Oil Co., Inc.) no. 1 Wilson well (T.D. = 5772 ft; 1759.3 m) was drilled for 1826 ft (556.6 m) into Precambrian basement underlying the Forest City Basin in northeastern Kansas. Approximately 4500 of the 380,000 wells drilled in Kansas penetrate Precambrian basement. Except for two previous wells drilled into the arkoses and basalts of the 1.1-Ga Midcontinent Rift and another well drilled in 1929 in basement on the Nemaha Uplift east of the Midcontinent Rift, this well represents the deepest penetration into basement rocks in the state to date. Granite is the typical lithology observed in wells that penetrate the Precambrian in the northern Midcontinent. Although no cores were taken to definitively identify lithologies, well cuttings and petrophysical logs indicate that this well encountered basement metamorphic rocks consisting of schist, gneiss, and amphibolitic gneiss, all cut by aplite dikes.The well was cased and perforated in the Precambrian, and then acidized. After several days of swabbing operations, the well produced shows of low-Btu gas, dominated by the non-flammable component gases of nitrogen (20%), carbon dioxide (43%), and helium (1%). Combustible components include methane (26%), hydrogen (10%), and higher molecular-weight hydrocarbons (1%). Although Coveney and others [Am. Assoc. Petroleum Geologists Bull., v. 71, no, 1, p. 39-48, 1987] identified H 2 -rich gas in two wells located close to the Midcontinent Rift in eastern Kansas, this study indicates that high levels of H 2 may be a more widespread phenomenon than previously thought. Unlike previous results, the gases in this study have a significant component of hydrocarbon gas, as well as H 2 , N 2 , and CO 2 . Although redox reactions between iron-bearing minerals and groundwater are a possible source of H 2 in the Precambrian basement rocks, the hydrocarbon gas does not exhibit the characteristics typically associated with proposed

  20. Resonances in photoionization. Cross section for vibrationally excited H2

    International Nuclear Information System (INIS)

    Mezei, J.Zs.; Jungen, Ch.


    Complete text of publication follows. Diatomic molecular Hydrogen is the most abundant molecule in interstellar molecular clouds. The modeling of these environments relies on accurate cross sections for the various relevant processes. Among them, the photoionization plays a major role in the kinetics and in the energy exchanges involving H 2 . The recent discovery of vibrationally excited molecular hydrogen in extragalactic environments revealed the need for accurate evaluation of the corresponding photoionization cross sections. In the present work we report theoretical photoionization cross sections for excitation from excited vibrational levels of the ground state, dealing with the Q(N = 1) (ΔN = 0, where N is the total angular momentum of the molecule) transitions which account for roughly one third of the total photoabsorption cross section. We will focus on the v' = 1 excited level of the ground electronic state. Our calculations are based on Multichannel Quantum Defect Theory (MQDT), which allows us to take into account of the full manifold of Rydberg states and their interactions with the electronic continuum. We have carried out two types of MQDT calculations. First, we omitted all open channels and calculated energy levels, wave functions and spontaneous emission Einstein coefficients, making use of the theoretical method presented in [2]. In a second set of calculations we included the open ionization channels in the computations getting the continuum phase shifts, channel mixing coefficients and channel dipole moments and finally the photoabsorption/ photoionization cross section. The cross section is dominated by the presence of resonance structures corresponding to excitation of various vibrational levels of bound electronic states which lie above the ionization threshold. In order to assess the importance of the resonances we have calculated for each vibrational interval (the energy interval between two consecutive ionization thresholds) the

  1. Ultra Low Air and H2 Permeability Cryogenic Bladder Materials for Inflatable Habitats, Phase I (United States)

    National Aeronautics and Space Administration — NanoSonic has recently developed a hydrogen (H2) dispenser hose to realize H2 as a safe, reliable, and cost competitive replacement for gasoline. NanoSonic's...

  2. Nanoparticle formation in H2O/N-2 and H2O/Ar mixtures under irradiation by 20 MeV protons and positive corona discharge

    DEFF Research Database (Denmark)

    Imanaka, M.; Tomita, S.; Kanda, S.


    To investigate the contribution of ions to gas nucleation, we have performed experiments on the formation of water droplets in H2O/N-2 and H2O/Ar gas mixtures by irradiation with a 20 MeV proton beam and by positive corona discharge. The size of the formed nanoparticles was measured using...

  3. Soil carbon content and relative abundance of high affinity H2-oxidizing bacteria predict atmospheric H2 soil uptake activity better than soil microbial community composition

    NARCIS (Netherlands)

    Khdhiri, Mondher; Hesse, Laura; Popa, Maria Elena; Quiza, Liliana; Lalonde, Isabelle; Meredith, Laura K.; Röckmann, Thomas; Constant, Philippe


    Soil-atmosphere exchange of H2 is controlled by gas diffusion and the microbial production and oxidation activities in soil. Among these parameters, the H2 oxidation activity catalyzed by soil microorganisms harboring high affinity hydrogenase is the most difficult variable to parameterize because

  4. Decolorization and Mineralization of Reactive Dyes, by the H2O2/UV Process With Electrochemically Produced H2O2

    NARCIS (Netherlands)

    Jeric, T.; Bisselink, R.J.M.; Tongeren, W. van; Marechal. A.M. Le


    Decolorization of Reactive Red 238, Reactive Orange 16, Reactive Black 5 and Reactive Blue 4 was studied in the UV/H2O2 process with H2O2 being produced electrochemically. The experimental results show that decolorization increased considerably when switching on the electrochemical production of

  5. Structural Insights into the Association of Hif1 with Histones H2A-H2B Dimer and H3-H4 Tetramer. (United States)

    Zhang, Mengying; Liu, Hejun; Gao, Yongxiang; Zhu, Zhongliang; Chen, Zijun; Zheng, Peiyi; Xue, Lu; Li, Jixi; Teng, Maikun; Niu, Liwen


    Histone chaperones are critical for guiding specific post-transcriptional modifications of histones, safeguarding the histone deposition (or disassociation) of nucleosome (dis)assembly, and regulating chromatin structures to change gene activities. HAT1-interacting factor 1 (Hif1) has been reported to be an H3-H4 chaperone and to be involved in telomeric silencing and nucleosome (dis)assembly. However, the structural basis for the interaction of Hif1 with histones remains unknown. Here, we report the complex structure of Hif1 binding to H2A-H2B for uncovering the chaperone specificities of Hif1 on binding to both the H2A-H2B dimer and the H3-H4 tetramer. Our findings reveal that Hif1 interacts with the H2A-H2B dimer and the H3-H4 tetramer via distinct mechanisms, suggesting that Hif1 is a pivotal scaffold on alternate binding of H2A-H2B and H3-H4. These specificities are conserved features of the Sim3-Hif1-NASP interrupted tetratricopeptide repeat proteins, which provide clues for investigating their potential roles in nucleosome (dis)assembly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Highly porous ionic rht metal-organic framework for H2 and CO2 storage and separation: A molecular simulation study

    KAUST Repository

    Babarao, Ravichandar


    The storage and separation of H2 and CO2 are investigated in a highly porous ionic rht metal-organic framework (rht-MOF) using molecular simulation. The rht-MOF possesses a cationic framework and charge-balancing extraframework NO3 - ions. Three types of unique open cages exist in the framework: rhombicuboctahedral, tetrahedral, and cuboctahedral cages. The NO3 - ions exhibit small mobility and are located at the windows connecting the tetrahedral and cuboctahedral cages. At low pressures, H2 adsorption occurs near the NO 3 - ions that act as preferential sites. With increasing pressure, H2 molecules occupy the tetrahedral and cuboctahedral cages and the intersection regions. The predicted isotherm of H2 at 77 K agrees well with the experimental data. The H2 capacity is estimated to be 2.4 wt % at 1 bar and 6.2 wt % at 50 bar, among the highest in reported MOFs. In a four-component mixture (15:75:5:5 CO2/H 2/CO/CH4) representing a typical effluent gas of H 2 production, the selectivity of CO2/H2 in rht-MOF decreases slightly with increasing pressure, then increases because of cooperative interactions, and finally decreases as a consequence of entropy effect. By comparing three ionic MOFs (rht-MOF, soc-MOF, and rho-ZMOF), we find that the selectivity increases with increasing charge density or decreasing free volume. In the presence of a trace amount of H2O, the interactions between CO2 and NO3 - ions are significantly shielded by H2O; consequently, the selectivity of CO 2/H2 decreases substantially. © 2010 American Chemical Society.

  7. N terminus of Swr1 binds to histone H2AZ and provides a platform for subunit assembly in the chromatin remodeling complex. (United States)

    Wu, Wei-Hua; Wu, Chwen-Huey; Ladurner, Andreas; Mizuguchi, Gaku; Wei, Debbie; Xiao, Hua; Luk, Ed; Ranjan, Anand; Wu, Carl


    Variant histone H2AZ-containing nucleosomes are involved in the regulation of gene expression. In Saccharomyces cerevisiae, chromatin deposition of histone H2AZ is mediated by the fourteen-subunit SWR1 complex, which catalyzes ATP-dependent exchange of nucleosomal histone H2A for H2AZ. Previous work defined the role of seven SWR1 subunits (Swr1 ATPase, Swc2, Swc3, Arp6, Swc5, Yaf9, and Swc6) in maintaining complex integrity and H2AZ histone replacement activity. Here we examined the function of three additional SWR1 subunits, bromodomain containing Bdf1, actin-related protein Arp4 and Swc7, by analyzing affinity-purified mutant SWR1 complexes. We observed that depletion of Arp4 (arp4-td) substantially impaired the association of Bdf1, Yaf9, and Swc4. In contrast, loss of either Bdf1 or Swc7 had minimal effects on overall complex integrity. Furthermore, the basic H2AZ histone replacement activity of SWR1 in vitro required Arp4, but not Bdf1 or Swc7. Thus, three out of fourteen SWR1 subunits, Bdf1, Swc7, and previously noted Swc3, appear to have roles auxiliary to the basic histone replacement activity. The N-terminal region of the Swr1 ATPase subunit is necessary and sufficient to direct association of Bdf1 and Swc7, as well as Arp4, Act1, Yaf9 and Swc4. This same region contains an additional H2AZ-H2B specific binding site, distinct from the previously identified Swc2 subunit. These findings suggest that one SWR1 enzyme might be capable of binding two H2AZ-H2B dimers, and provide further insight on the hierarchy and interdependency of molecular interactions within the SWR1 complex.

  8. The Cs2SO4-Ce2(SO4)3-H2SO4-H2O system at 150 and 200 deg C

    International Nuclear Information System (INIS)

    Bondar', S.A.; Belokoskov, V.I.; Trofimov, G.V.


    Solubility in the system Cs 2 SO 4 -Ce 2 (SO 4 ) 3 -H 2 SO 4 -H 2 O using the isothermal method at 150 and 200 deg C at molar ratios Cs 2 SO 4 :Ce 2 (SO 4 ) 3 =1:5 and conditions of sulfate crystallization Cs 2 SO 4 xCe 2 (SO 4 ) 3 , Ce 2 (SO 4 ) 3 x0.5H 2 SO 4 xnH 2 O (n=2-3) and Ce 2 (SO 4 ) 3 x3H 2 SO 4 are determined. Double sulfate Cs 2 SO 4 xCe 2 (SO 4 ) 3 is studied using the methods of crystallooptical, thermal, X-ray phase analyses and IR spectroscopy

  9. Anomalous absorption in H2CN and CH2CN molecules

    Indian Academy of Sciences (India)

    Abstract. Structures of H2CN and CH2CN molecules are similar to that of H2CO mole- cule. The H2CO has shown anomalous absorption for its transition 111 − 110 at 4.8 GHz in a number of cool molecular clouds. Though the molecules H2CN and CH2CN have been identified in TMC-1 and Sgr B2 through some ...

  10. Exergetic and energetic comparison of LiCl-H_2O and LiBr-H_2O working pairs in a solar absorption cooling system

    International Nuclear Information System (INIS)

    Bellos, Evangelos; Tzivanidis, Christos; Antonopoulos, Kimon A.


    Highlights: • Two working pairs (LiCl-H_2O and LiBr-H_2O) are examined in a solar absorption chiller. • The examined single effect absorption chiller is driven by flat plate collectors. • The system is analyzed energetically and energetically for 3 ambient temperatures. • LiCl-H_2O performs better than LiBr-H_2O in all the examined cases. • The optimum operating temperature is lower for the case of pair LiCl-H_2O. - Abstract: The objective of this study is to investigate the use of an alternative working pair in a solar absorption cooling system. LiCl-H_2O is the new examined pair and it is compared energetically and exegetically with the conventional pair LiBr-H_2O, which is the most usual in air-conditioning applications. The simplest solar cooling system is analyzed in order to focus in the comparison between these working fluids. Specifically, flat plate collectors, coupled with a storage tank, feed the single effect absorption chiller which produces 250 kW cooling at 10 °C. The two pairs are examined parametrically for various heat source temperature levels and for three ambient temperature levels (25 °C, 30 °C and 35 °C). The minimization of the collecting area, which means maximum exergetic efficiency, is the optimization goal in every case. The final results show that LiCl-H_2O pair performs better in all cases by giving greater exergetic efficiency. More specifically, about 8% lower collecting area is required to cover the demanded cooling load with this working pair. Another interesting result is that the optimum heat source temperature for the LiCl-H_2O is roughly lower than the respective for the LiBr-H_2O. The system is analyzed in steady state with the commercial software Engineering Equator Solver (EES).

  11. File list: His.PSC.10.H2APERIODZac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.10.H2APERIODZac.AllCell mm9 Histone H2A.Zac Pluripotent stem cell SRX111870... ...

  12. File list: His.PSC.05.H2APERIODZac.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.H2APERIODZac.AllCell mm9 Histone H2A.Zac Pluripotent stem cell SRX111870... ...

  13. Sampled-data and discrete-time H2 optimal control

    NARCIS (Netherlands)

    Trentelman, Harry L.; Stoorvogel, Anton A.


    This paper deals with the sampled-data H2 optimal control problem. Given a linear time-invariant continuous-time system, the problem of minimizing the H2 performance over all sampled-data controllers with a fixed sampling period can be reduced to a pure discrete-time H2 optimal control problem. This

  14. Overview of the Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Bush, Brian; Penev, Michael


    This presentation provides an introduction to the Hydrogen Financial Analysis Scenario Tool (H2FAST) and includes an overview of each of the three versions of H2FAST: the Web tool, the Excel spreadsheet version, and the beta version of the H2FAST Business Case Scenario tool.

  15. Process for the production of heavy water by H2-methylamine isotopic exchange

    International Nuclear Information System (INIS)

    Briec, M.; Ravoire, J.; Rostaing, M.


    An isotopic exchange process for separating D 2 from H 2 is presented. The H 2 -monomethylamine system is studied on the laboratory scale (kinetics, H 2 solubility, thermal stability and solubility of the catalyst) and on the pilot plant scale (operating conditions and economics) [fr

  16. 17 CFR 240.17h-2T - Risk assessment reporting requirements for brokers and dealers. (United States)


    ... requirements for brokers and dealers. 240.17h-2T Section 240.17h-2T Commodity and Securities Exchanges... Organizations § 240.17h-2T Risk assessment reporting requirements for brokers and dealers. (a) Reporting requirements of risk assessment information required to be maintained by section 240.17h-1T. (1) Every broker...

  17. The system Ba(H2PO4)2-Sr(H2PO4)2-H3PO4(30%)-H2O at 25, 40 and 60 deg C

    International Nuclear Information System (INIS)

    Taranenko, N.P.; Serebrennikova, G.M.; Stepin, B.D.; Oboznenko, Yu.V.


    The system Ba(H 2 PO 4 ) 2 -Sr(H 2 PO 4 ) 2 -H 3 PO 4 (30%)-H 2 O (25 deg C) belongs to eutonic type systems. Solubility isotherms of salt components at 40 and 60 deg C are calculated. Polytherms (25-60 deg C) of solubility of monosubstituted barium and strontium phosphates in 30-60% H 3 PO 4 are obtained. The value of cocrystallization coefficient of Sr 2 + and Ba(H 2 PO 4 ) 2 Dsub(Sr)=0.042+-0.005 remains stable in the temperature range of 25-60 deg C and concentrations 30-60% phosphoric acid at initial content [Sr 2 + ]=1x10 - 2 mass%

  18. 75 FR 2879 - Identification of Foreign Countries Whose Nationals Are Eligible To Participate in the H-2A and H... (United States)


    ... Countries Whose Nationals Are Eligible To Participate in the H-2A and H-2B Visa Programs AGENCY: Office of..., U.S. Citizenship and Immigration Services (USCIS) may only approve petitions for H-2A and H-2B... the H-2A and H-2B programs for the coming year. DATES: Effective Date: This notice is effective...

  19. 78 FR 4154 - Identification of Foreign Countries Whose Nationals Are Eligible To Participate in the H-2A and H... (United States)


    ... Whose Nationals Are Eligible To Participate in the H-2A and H-2B Nonimmigrant Worker Programs AGENCY...) regulations, U.S. Citizenship and Immigration Services (USCIS) may approve petitions for H-2A and H-2B... participate in the H-2A and H-2B programs for the coming year. The list published today includes one new...

  20. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    Directory of Open Access Journals (Sweden)

    Erik Hennings


    Full Text Available The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetrahedral coordination with Cl− and in an octahedral environment defined by five water molecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O5] (pentaaqua-μ-chlorido-trichloridodizinc. The trihydrate {hexaaquazinc tetrachloridozinc, [Zn(H2O6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetrahedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl4] tetrahedra and [Zn(H2O6] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H2O6][ZnCl4]·3H2O}, consists of isolated octahedral [Zn(H2O6] and tetrahedral [ZnCl4] units, as well as additional lattice water molecules. O—H...O hydrogen bonds between the water molecules as donor and ZnCl4 tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures.

  1. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2H2O and C2H4—H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.


    an intermolecular CH⋯O hydrogen-bonded configuration of C2v symmetry with the H2O subunit acting as the hydrogen bond acceptor. The observation and assignment of two large-amplitude donor OH librational modes of the C2H4—H2O complex at 255.0 and 187.5 cm−1, respectively, confirms an intermolecular OH⋯π hydrogen...

  2. Event display of a H -> 2e2mu candidate event

    CERN Multimedia

    ATLAS, Collaboration


    Event display of a H -> 2e2mu candidate event with m(4l) = 122.6 (123.9) GeV without (with) Z mass constraint. The masses of the lepton pairs are 87.9 GeV and 19.6 GeV. The event was recorded by ATLAS on 18-Jun-2012, 11:07:47 CEST in run number 205113 as event number 12611816. Muon tracks are colored red, electron tracks and clusters in the LAr calorimeter are colored green. The larger inset shows a zoom into the tracking detector. The smaller inset shows a zoom into the vertex region, indicating that the 4 leptons originate from the same primary vertex.

  3. Event display of a H -> 2e2mu candidate event

    CERN Multimedia

    ATLAS, Collaboration


    Event display of a H -> 2e2mu candidate event with m(4l) = 122.6 (123.9) GeV without (with) Z mass constraint. The masses of the lepton pairs are 87.9 GeV and 19.6 GeV. The event was recorded by ATLAS on 18-Jun-2012, 11:07:47 CEST in run number 205113 as event number 12611816. Muon tracks are colored red, electron tracks and clusters in the LAr calorimeter are colored green. The Lego plot inset indicates the amount of transverse energy Et measured in the calorimeters. The second inset shows a zoom into the vertex region, indicating that the 4 leptons originate from the same primary vertex.

  4. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O. (United States)

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha


    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.

  5. Experimental study on thermophysical and kinetic properties of the LaNi5-H2 system

    International Nuclear Information System (INIS)

    Yoshida, A.; Naka, A.; Ohkita, T.


    This paper reports on thermophysical and kinetic properties of the LaNi 5 -H 2 system that were investigated for the practical utilization of hydriding alloys. Measurements of the thermophysical properties were carried out by a transient hot-wire method along the P-C isotherms. The effective thermal conductivities of the system increase not only with an increase of hydrogen gas pressure but also in the plateau region with an increase of composition of metal hydride. The specific heats of the metal hydride increase with an increase in composition. The kinetic properties were measured under both isobaric and isothermal conditions. The derived intrinsic chemical reaction rates indicate a difference in the reaction mechanism between the absorption and the desorption processes

  6. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Dey, Sunita


    Generation of H 2 and CO by splitting H 2 O and CO 2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H 2 O or CO 2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H 2 O or CO 2 . While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln 1−x A x Mn 1−y M y O 3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H 2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y 0.5 Sr 0.5 MnO 3 which releases 483 µmol/g of O 2 at 1673 K and produces 757 µmol/g of CO from CO 2 at 1173 K. The production of H 2 from H 2 O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H 2 based on the Mn 3 O 4 /NaMnO 2 cycle briefly. - Graphical abstract: Ln 0.5 A 0.5 Mn 1−x M x O 3 (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO 2 and H 2 O for the generation of CO and H 2 . - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO 2 and H 2 O. • In Ln 1−x A x MnO 3 perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H 2 O splitting is also achieved by the use of the Mn 3 O 4 -sodium carbonate system. • Thermochemical splitting of CO 2 and H

  7. Reorientations in [Mg(H2O)6](CLO4)2 studied by the proton magnetic resonance and the quasielastic neutron scattering methods

    International Nuclear Information System (INIS)

    Svare, I.; Fimland, B.O.; Janik, J.A.; Janik, J.M.; Mikuli, E.; Migdal-Mikuli, A.


    Proton magnetic relaxation measurements carried out for [Mg(H 2 O)XL6](CLO 4 ) 2 revealed two processes responsible for T 1 vs temperature dependence: one connected with H 2 O 180deg flips about the symmetry axes and second connected with a tumbling of the complex cation. Quasielastic neutron scattering measurements gave another evidence of H 2 O 180deg flips. The reorientational corelation times, which in the 273 K - 325 K region are of the order of picoseconds, as derived from NMR coincide perfectly well with those derived from QNS. (author)

  8. Search for Local Variations of Atmospheric H2O and CO on Mars with PFS/Mars Express (United States)

    Lellouch, E.; Encrenaz, T.; Fouchet, T.; Billebaud, F.; Formisano, V.; Atreya, S.; Ignatiev, N.; Moroz, V.; Maturilli, A.; Grassi, D.; Pfs Team

    Spectra recorded by the PFS instrument onboard Mars Express include clear spectral signatures due to CO at 4.7 and 2.3 micron, and H2O at 1.38, 2.6 and 30-50 micron. These features can be used to determine the horizontal distribution of these species on global and local scales and to monitor it with time. Here we investigate the local variations of H2O and CO, focussing on the regions of high-altitude volcanoes. Preliminary results suggest a significant decrease of the CO mixing ratio in these regions, as was found from ISM/Phobos observations (Rosenqvist et al. Icarus 98, 254, 1992).

  9. Mechanisms for the Production of Fast HI from Dissociation of H2 on Saturn (United States)

    Liu, Xianming; Johnson, Paul; Malone, Charles; Young, Jason; Kanik, Isik; Shemansky, Donald


    Images of the Saturn system obtained by the Cassini UVIS at a pixel resolution of 0.1 × 0.1 Saturn radii (Rs) reveal atomic hydrogen in ballistic and escaping trajectories sourced at the top of the thermosphere, primarily in the southern sunlit hemisphere. The main feature in the image is a distinctive H Lyman-α plume structure with FWHM of 0.56 Rs at the exobase sub-solar limb at ~ -13.5° latitude constituting the core of the distributed outward flow of atomic hydrogen from the sunlit hemisphere, with a counterpart on the anti-solar side peaking near the equator above the exobase limb. The structure of the image indicates that part of the out-flowing population is sub-orbital and re-enters the thermosphere in ~ 5 hour time scale. A larger and more broadly distributed component fills the magnetosphere to beyond 45 Rs in the orbital plane and 20 Rs latitudinally above and below the plane in an asymmetric distribution in local time. Molecular hydrogen emission in extreme and far ultraviolet regions collected with the H Lyman-α into the image mosaic reveals a distinctive resonance property correlated with the atomic hydrogen plume and shows a strong deviation of H2 X 1Σg+ from local thermodynamic equilibrium in the main source region. The inferred approximate globally averaged energy deposition at the top of the thermosphere from the production of the hot atomic hydrogen accounts for the measured atmospheric temperature. Possible processes for the fast atomic hydrogen formation from dissociation of H2 include the excitation of singlet-ungerade states and doubly excited states by photons and electrons, and the excitation of the singlet-gerade and triplet states by electrons, and chemical reactions involving the formation and dissociative recombination of H3+. Based on the available laboratory measurements and quantum mechanics calculations, the assessment of various mechanisms for H2 - H production, especially those producing H atoms with sufficient energy to

  10. Raising H2 and Fuel Cell Awareness in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Patrick R. [Ohio Fuel Cell Coalition, Elyria, OH (United States)


    The Ohio Fuel Cell Coalition was tasked with raising the awareness and understanding of Fuel Cells and the Hydrogen economy. This was done by increasing the understanding of hydrogen and fuel cell technologies among state and local governments using a target of more than 10% compared to 2004 baseline. We were also to target key populations by 20 percent compared to 2004 baseline. There are many barriers to an educated fuel cell population, including: a)Lack of Readily Available, Objective and Technical Accurate Information b)Mixed Messages c)Disconnect Between Hydrogen Information and Dissemination Networks d)Lack of Educated Trainers and Training Opportunities e)Regional Differences f)Difficulty of Measuring Success The approach we used for all the Community Leaders Forums were presentations by the Ohio Fuel Cell Coalition in conjunction with regional leaders. The presentations were followed by question and answers periods followed up by informal discussions on Fuel Cells and the Hydrogen Economy. This project held a total of 53 events with the following breakdown: From Aug 2009 through June 2010, the Ohio Fuel Cell Coalition held 19 community leaders forums and educated over 845 individuals, both from the State of Ohio and across the country: From July 2010 to June 2011 the OFCC held 23 community forum events and educated 915 individuals; From August 2011 to June 2012 there were 11 community forums educating 670 individuals. This report details each of those events, their date, location, purpose, and pertinent details to this report. In summary, as you see the Community Leader Forums have been very successful over the period of the grant with over 2,000 people being drawn to the forums. As always, we followed up the forums with a survey and the survey results were very positive in that the participants had a significant increase in knowledge and awareness of Fuel Cells and the Hydrogen Economy.

  11. D/H fractionation in the H2-H2O system at supercritical water conditions: Compositional and hydrogen bonding effects (United States)

    Foustoukos, Dionysis I.; Mysen, Bjorn O.


    A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the

  12. H2O2 levels in rainwater collected in south Florida and the Bahama Islands (United States)

    Zika, R.; Saltzman, E.; Chameides, W. L.; Davis, D. D.


    Measurements of H2O2 in rainwater collected in Miami, Florida, and the Bahama Islands area indicate the presence of H2O2 concentration levels ranging from 100,000 to 700,000 M. No systematic trends in H2O2 concentration were observed during an individual storm, in marked contrast to the behavior of other anions for example, NO3(-), SO4(-2), and Cl(-). The data suggest that a substantial fraction of the H2O2 found in precipitation is generated by aqueous-phase reactions within the cloudwater rather than via rainout and washout of gaseous H2O2.

  13. New lanthanide hydrogen phosphites LnH (P03H)2 2H20

    International Nuclear Information System (INIS)

    Durand, J.; Tijani, N.; Cot, L.; Loukili, M.; Rafiq, M.


    LnH ((P0 3 H) 2 2H 2 0 is prepared from lanthanide oxide and phosphorous acid with Ln = La, Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er or Tm. By thermal gravimetric analysis LnH (P0 3 H) 2 and LnH 2 P 2 0 5 (P0 3 H) 2 are obtained. The three salts are orthorhombic. Parameters and space groups are given for the three salts of each lanthanide. 4 tabs., 13 refs

  14. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design (United States)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.


    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  15. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Nazari Shahram


    Full Text Available Background & Aims of the Study: Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim of this study was to evaluate the performance of H2O2 and H2O2/Fe0 Iron in removal of dye Acid Red 18 from aqueous solutions. Materials & Methods: This study was conducted at the laboratory scale. In this study, the removal efficiency of Acid Red 18 from a synthetic solution by H2O2 and H2O2/Fe0 was investigated. As well as Effect of solution pH, dye concentration, Concentration of Nanoscale Zero-Valent Iron, H2O2 and contact time in decolorization efficiency was investigated. Results: Results show that in pH=3, Contact time of 80 minutes, dye concentration of 50 mg/l and Concentration of Nanoscale Zero-Valent Iron of 2 g/l and H2O2 concentration equal to 200 mmol/l, the removal efficiency was about 98%. Conclusions: According to the results of experiments, H2O2/Fe0 has high efficiency in removal of Acid Red 18 from aqueous solution.

  16. Profiling of cytosolic and mitochondrial H2O2 production using the H2O2-sensitive protein HyPer in LPS-induced microglia cells. (United States)

    Park, Junghyung; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Sang-Rae; Lee, Dong-Seok


    Dysregulation of the production of pro-inflammatory mediators in microglia exacerbates the pathologic process of neurodegenerative disease. ROS actively affect microglia activation by regulating transcription factors that control the expression of pro-inflammatory genes. However, accurate information regarding the function of ROS in different subcellular organelles has not yet been established. Here, we analyzed the pattern of cytosolic and mitochondrial H 2 O 2 formation in LPS-activated BV-2 microglia using the H 2 O 2- sensitive protein HyPer targeted to specific subcellular compartments. Our results show that from an early time, cytosolic H 2 O 2 started increasing constantly, whereas mitochondrial H 2 O 2 rapidly increased later. In addition, we found that MAPK affected cytosolic H 2 O 2 , but not mitochondrial H 2 O 2 . Consequently, our study provides the basic information about subcellular H 2 O 2 generation in activated microglia, and a useful tool for investigating molecular targets that can modulate neuroinflammatory responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Polysulfides and products of H2S/S-nitrosoglutathione in comparison to H2S, glutathione and antioxidant Trolox are potent scavengers of superoxide anion radical and produce hydroxyl radical by decomposition of H2O2. (United States)

    Misak, Anton; Grman, Marian; Bacova, Zuzana; Rezuchova, Ingeborg; Hudecova, Sona; Ondriasova, Elena; Krizanova, Olga; Brezova, Vlasta; Chovanec, Miroslav; Ondrias, Karol


    Exogenous and endogenously produced sulfide derivatives, such as H 2 S/HS - /S 2- , polysulfides and products of the H 2 S/S-nitrosoglutathione interaction (S/GSNO), affect numerous biological processes in which superoxide anion (O 2 - ) and hydroxyl (OH) radicals play an important role. Their cytoprotective-antioxidant and contrasting pro-oxidant-toxic effects have been reported. Therefore, the aim of our work was to contribute to resolving this apparent inconsistency by studying sulfide derivatives/free radical interactions and their consequent biological effects compared to the antioxidants glutathione (GSH) and Trolox. Using the electron paramagnetic resonance (EPR) spin trapping technique and O 2 - , we found that a polysulfide (Na 2 S 4 ) and S/GSNO were potent scavengers of O 2 - and cPTIO radicals compared to H 2 S (Na 2 S), GSH and Trolox, and S/GSNO scavenged the DEPMPO-OH radical. As detected by the EPR spectra of DEPMPO-OH, the formation of OH in physiological solution by S/GSNO was suggested. All the studied sulfide derivatives, but not Trolox or GSH, had a bell-shaped potency to decompose H 2 O 2 and produced OH in the following order: S/GSNO > Na 2 S 4  ≥ Na 2 S > GSH = Trolox = 0, but they scavenged OH at higher concentrations. In studies of the biological consequences of these sulfide derivatives/H 2 O 2 properties, we found the following: (i) S/GSNO alone and all sulfide derivatives in the presence of H 2 O 2 cleaved plasmid DNA; (ii) S/GSNO interfered with viral replication and consequently decreased the infectivity of viruses; (iii) the sulfide derivatives induced apoptosis in A2780 cells but inhibited apoptosis induced by H 2 O 2 ; and (iv) Na 2 S 4 modulated intracellular calcium in A87MG cells, which depended on the order of Na 2 S 4 /H 2 O 2 application. We suggest that the apparent inconsistency of the cytoprotective-antioxidant and contrasting pro-oxidant-toxic biological effects of sulfide derivatives results from their time

  18. Experimental determination of the H2O + 15 wt% NaCl and H2O + 25 wt% NaCl liquidi to 1.4 GPa (United States)

    Valenti, P.; Schmidt, C.


    The binary H2O+NaCl is one of the most important model systems for chloridic fluids in many geologic environments such as the Earth’s crust, upper mantle, and subducting slabs, and is also applicable to extraterrestrial icy planetary bodies (e.g., Manning 2004, Zolensky et al., 1999). The knowledge on phase equilibria and PVTx properties of this system is still fragmentary at high pressures, e.g., very little has been reported on liquidi at compositions Daniel 2008). In this study, we investigated the liquidus of 15 and 25 wt% NaCl solutions at pressures up to 1.4 GPa. The experiments were performed using a hydrothermal diamond-anvil cell (Bassett et al. 1993) modified for Raman spectroscopy and accurate temperature measurements. A quartz chip, halite, and water were loaded into the sample chamber, which also contained a small trapped air bubble (10 vol%) when it was sealed. The actual salinity was then determined from measurement of the vapor-saturated liquidus temperature. The sample chamber was then compressed until the bubble disappeared. After freezing, phase transitions occurring with increasing temperature were observed optically, and the pressure was determined from the frequency shift of the 464 cm-1 Raman line of quartz (Schmidt and Ziemann 2000). The sample chamber was then compressed further, and the experiment was repeated at various bulk densities until a pressure of ~1.4 GPa was attained. At some conditions, Raman spectra were acquired for identification of the phase assemblage. The solution always crystallized to a single phase upon cooling above ~0.15 GPa at 25 wt% NaCl and above ~1 GPa at 15 wt% NaCl. Raman spectra in the OH stretching region indicate that this phase contains or is a NaCl hydrate other than hydrohalite, probably in solid solution with ice. Melting of this phase produced liquid and hydrohalite and/or ice VI. Ice VI was the last solid that dissolved upon heating, between 1100 MPa, 3 °C and 1370 MPa, 17 °C for 15 wt% NaCl and at

  19. VizieR Online Data Catalog: H2CO and CO in 4 molecular clouds (Tang+, 2013) (United States)

    Tang, X. D.; Esimbek, J.; Zhou, J. J.; Wu, G.; Ji, W. G.; Okoh, D.


    From September 2010 to August 2011, we observed the H2CO lin H110α line, and the 6cm continuum with the Nanshan 25m radio telescope of Xinjiang Astronomical Observatory. >From 15 to 26 May 2011, the 12CO and 13CO observations of the four regions were carried out with the 13.7m millimeter wave telescope of Purple Mountain Observatory in Delingha. (4 data files).

  20. Poisoning of Ni-Based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants (United States)

    Sun, Shichen; Awadallah, Osama; Cheng, Zhe


    It is well known that conventional solid oxide fuel cells (SOFCs) based on oxide ion conducting electrolyte (e.g., yttria-stabilized zirconia, YSZ) and nickel (Ni) - ceramic cermet anodes are susceptible to poisoning by trace amount of hydrogen sulfide (H2S) while not significantly impacted by the presence of carbon dioxide (CO2) and moisture (H2O) in the fuel stream unless under extreme operating conditions. In comparison, the impacts of H2S, CO2, and H2O on proton-conducting SOFCs remain largely unexplored. This study aims at revealing the poisoning behaviors caused by H2S, CO2, and H2O for proton-conducting SOFCs. Anode-supported proton-conducting SOFCs with BaZe0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte and Ni-BZCYYb anode and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode as well as Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cells were subjected to low ppm-level H2S or low percentage-level CO2 or H2O in the hydrogen fuel, and the responses in cell electrochemical behaviors were recorded. The results suggest that, contrary to conventional SOFCs that show sulfur poisoning and CO2 and H2O tolerance, such proton-conducting SOFCs with Ni-BZCYYb cermet anode seem to be poisoned by all three types of "contaminants". Beyond that, the implications of the experimental observations on understanding the fundamental mechanism of anode hydrogen electrochemical oxidation reaction in proton conducting SOFCs are also discussed.

  1. Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription

    International Nuclear Information System (INIS)

    Davie, J.R.; Murphy, L.C.


    The relationship between transcription and ubiquitination of the histones was investigated. Previous studies have shown that ubiquitinated (u) histone H2B and, to a lesser extend, mono- and polyubiquitinated histone H2A are enriched in transcriptionally active gene-enriched chromatin fractions. Here, the authors show that treatment of T-47D-5 human breast cancer cells with actinomycin D or 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole, inhibitors of heterogeneous nuclear RNA synthesis, selectively reduced the level of uH2B, but not uH2A, uH2A.Z, or polyubiquitinated H2A, in chromatin. Treatment of the cells with low levels of actinomycin D slightly reduced the level of uH2B, suggesting that inhibition of ribosomal RNA synthesis does not have a profound effect on the level of uH2B in chromatin. These results demonstrate that maintenance of the levels of uH2B in chromatin is dependent upon ongoing transcription, particularly the synthesis of hnRNA. Thus, histone H2B would be ubiquitinated when the nucleosome was opened during transcription. Ubiquitination of histone H2B may impede nucleosome refolding, facilitating subsequent rounds of transcription

  2. Multiphoton ionization of H2+ in xuv laser pulses

    International Nuclear Information System (INIS)

    Guan Xiaoxu; Secor, Ethan B.; Bartschat, Klaus; Schneider, Barry I.


    We consider the ionization of the hydrogen molecular ion after one-, two-, and three-photon absorption over a large range of photon energies between 9 and 40 eV in the fixed-nuclei approximation. The temporal development of the system is obtained in a fully ab initio time-dependent grid-based approach in prolate spheroidal coordinates. The alignment dependence of the one-photon ionization amplitude is highlighted in the framework of time-dependent perturbation theory. For one-photon ionization as a function of the nuclear separation, the calculations reveal a significant minimum in the ionization probability. The suppressed ionization is attributed to a Cooper-type minimum, which is similar, but not identical, to the cancellation effect observed in photoionization cross sections of some noble-gas atoms. The effect of the nonspherical two-center Coulomb potential is analyzed. For two- and three-photon ionization, the angle-integrated cross sections clearly map out intermediate-state resonances, and the predictions of the current computations agree very well with those from time-independent calculations. The dominant emission modes for two-photon ionization are found to be very similar in both resonance and off-resonance regions.

  3. Exploring the unbinding of Leishmania (L.) amazonensis CPB derived-epitopes from H2 MHC class I proteins. (United States)

    Brandt, Artur M L; Batista, Paulo Ricardo; Souza-Silva, Franklin; Alves, Carlos Roberto; Caffarena, Ernesto Raul


    New strategies to control Leishmania disease demand an extensive knowledge about several aspects of infection including the understanding of its molecular events. In murine models, cysteine proteinase B from Leishmania amazonensis promotes regulation of immune response, and fragments from its C-terminus extension (cyspep) can play a decisive role in the host-parasite interaction. The interaction between cyspep-derived peptides and major histocompatibility complex (MHC) proteins is a crucial factor in Leishmania infections. Seven cyspep-derived peptides, previously identified as capable of interacting with H-2 (murine) MHC class I proteins, were studied in this work. We established a protocol to simulate the unbinding of these peptides from the cleft of H-2 receptors. From the simulations, we estimated the corresponding free energy of dissociation (ΔGd ) and described the molecular events that occur during the exit of peptides from the cleft. To test the reliability of this method, we first applied it to a calibration set of four crystallographic MHC/peptide complexes. Next, we explored the unbinding of the seven complexes mentioned above. Results were consistent with ΔGd values obtained from surface plasmon resonance (SPR) experiments. We also identified some of the primary interactions between peptides and H-2 receptors, and we detected three regions of influence for the interaction. This pattern was systematically observed for the peptides and helped determine a minimum distance for the real interaction between peptides and H-2 proteins occurring at ∼ 25 Å. © 2016 Wiley Periodicals, Inc.

  4. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4 (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio


    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  5. Molecular dynamics simulations of H2 adsorption in tetramethyl ammonium lithium phthalocyanine crystalline structures. (United States)

    Lamonte, Kevin; Gómez Gualdrón, Diego A; Cabrales-Navarro, Fredy A; Scanlon, Lawrence G; Sandi, Giselle; Feld, William; Balbuena, Perla B


    Tetramethyl ammonium lithium phthalocyanine is explored as a potential material for storage of molecular hydrogen. Density functional theory calculations are used to investigate the molecular structure and the dimer conformation. Additional scans performed to determine the interactions of a H2 molecule located at various distances from the molecular sites are used to generate a simple force field including dipole-induced-dipole interactions. This force field is employed in molecular dynamics simulations to calculate adsorption isotherms at various pressures. The regions of strongest adsorption are quantified as functions of temperature, pressure, and separation between molecules in the adsorbent phase, and compared to the regions of strongest binding energy as given by the proposed force field. It is found that the total adsorption could not be predicted only from the spatial distribution of the strongest binding energies; the available volume is the other contributing factor even if the volume includes regions of much lower binding energy. The results suggest that the complex anion is primarily involved in the adsorption process with molecular hydrogen, whereas the cation serves to provide access for hydrogen adsorption in both sides of the anion molecular plane, and spacing between the planes.

  6. H2A/K pseudogene mutation may promote cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jisheng; Jing, Ruirui; Lv, Xin; Wang, Xiaoyue; Li, Junqiang; Li, Lin; Li, Cuiling; Wang, Daoguang; Bi, Baibing; Chen, Xinjun [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Yang, Jing-Hua, E-mail: [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA (United States)


    Highlights: • The mutant H2A/K pseudogene is active. • The mutant H2A/K pseudogene can promote cell proliferation. - Abstract: Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.

  7. Factors affecting temporal H2S emission at construction and demolition (C&D) debris landfills. (United States)

    Xu, Qiyong; Townsend, Timothy


    Odor problems associated with H2S emissions often result in odor complaints from nearby residents of C&D debris landfills, especially in the early morning. As part of a field study conducted on H2S removal ability using different cover materials, daily and seasonal H2S emissions through a soil cover layer were monitored at a C&D debris landfill to investigate factors affecting H2S emissions. H2S emission rates were not a constant, but varied seasonally, with an average emission rate of 4.67×10(-6)mgm(-2)s(-1). During a the 10-month field study, as the H2S concentration increased from 140ppm to about 3500ppm underneath the cover soil in the testing cell, H2S emissions ranged from zero to a maximum emission rate of 1.24×10(-5)mgm(-2)s(-1). Continuous emission monitoring indicated that H2S emissions even changed over time throughout the day, generally increasing from morning to afternoon, and were affected by soil moisture and temperature. Laboratory experiments were also conducted to investigate the effects of H2S concentration and cover soil moisture content on H2S emissions. The results showed that increased soil moisture reduced H2S emissions by retarding H2S migration through cover soil and dissolving H2S into soil water. The field study also indicated that due to atmospheric dispersion, high H2S emissions may not cause odor problems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction (United States)

    DelloStritto, Daniel J.; Connell, Patrick J.; Dick, Gregory M.; Fancher, Ibra S.; Klarich, Brittany; Fahmy, Joseph N.; Kang, Patrick T.; Chen, Yeong-Renn; Damron, Derek S.; Thodeti, Charles K.


    We demonstrated previously that TRPV1-dependent coupling of coronary blood flow (CBF) to metabolism is disrupted in diabetes. A critical amount of H2O2 contributes to CBF regulation; however, excessive H2O2 impairs responses. We sought to determine the extent to which differential regulation of TRPV1 by H2O2 modulates CBF and vascular reactivity in diabetes. We used contrast echocardiography to study TRPV1 knockout (V1KO), db/db diabetic, and wild type C57BKS/J (WT) mice. H2O2 dose-dependently increased CBF in WT mice, a response blocked by the TRPV1 antagonist SB366791. H2O2-induced vasodilation was significantly inhibited in db/db and V1KO mice. H2O2 caused robust SB366791-sensitive dilation in WT coronary microvessels; however, this response was attenuated in vessels from db/db and V1KO mice, suggesting H2O2-induced vasodilation occurs, in part, via TRPV1. Acute H2O2 exposure potentiated capsaicin-induced CBF responses and capsaicin-mediated vasodilation in WT mice, whereas prolonged luminal H2O2 exposure blunted capsaicin-induced vasodilation. Electrophysiology studies re-confirms acute H2O2 exposure activated TRPV1 in HEK293A and bovine aortic endothelial cells while establishing that H2O2 potentiate capsaicin-activated TRPV1 currents, whereas prolonged H2O2 exposure attenuated TRPV1 currents. Verification of H2O2-mediated activation of intrinsic TRPV1 specific currents were found in isolated mouse coronary endothelial cells from WT mice and decreased in endothelial cells from V1KO mice. These data suggest prolonged H2O2 exposure impairs TRPV1-dependent coronary vascular signaling. This may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes. PMID:26907473

  9. Gibbs free energy of reactions involving SiC, Si3N4, H2, and H2O as a function of temperature and pressure (United States)

    Isham, M. A.


    Silicon carbide and silicon nitride are considered for application as structural materials and coating in advanced propulsion systems including nuclear thermal. Three-dimensional Gibbs free energy were constructed for reactions involving these materials in H2 and H2/H2O. Free energy plots are functions of temperature and pressure. Calculations used the definition of Gibbs free energy where the spontaneity of reactions is calculated as a function of temperature and pressure. Silicon carbide decomposes to Si and CH4 in pure H2 and forms a SiO2 scale in a wet atmosphere. Silicon nitride remains stable under all conditions. There was no apparent difference in reaction thermodynamics between ideal and Van der Waals treatment of gaseous species.

  10. Experimental study of cluster formation in binary mixture of H2O and H2SO4 vapors in the presence of an ionizing radiation source (United States)

    Singh, J. J.; Smith, A. C.; Yue, G. K.


    Molecular clusters formed in pure nitrogen containing H2O and H2SO4 vapors and exposed to a 3 mCi Ni63 beta source were studied in the mass range 50 to 780 amu using a quadrupole mass spectrometer. Measurements were made under several combinations of relative humidity and relative acidity ranging from 0.7 to 7.5 percent and 0.00047 to 0.06333 percent, respectively. The number of H2SO4 molecules in the clusters observed ranged from 1 to 7 whereas the number of H2O molecules ranged from 1 to 16. The experimental cluster spectra differ considerably from those calculated using the classical nucleation theory. First order calculations using modified surface tension values and including the effects of multipole moments of the nucleating molecules indicate that these effects may be enough to explain the difference between the measured and the calculated spectra.

  11. On the basic substances used in the separation process by isotope exchange H2S - H2O, at two temperatures, in view of producing heavy water

    International Nuclear Information System (INIS)

    Popescu, V.


    In view of producing heavy water, the influence of the deuterium proportion in the basic substances, on the efficiency of the isotope exchange process H 2 S - H 2 O for two temperatures was studied. Heavy water is extracted from ordinary water and concentrated from 0.014 per cent to 5-15 per cent D 2 O by isotope bithermal exchange with the hydrogen sulphite. Theoretical and experimental research was carried out in laboratories and then applied on a pilot plant by designing and testing a drying equipment for hydrogen sulphite. The maximum H 2 S concentration rose to 99.84 per cent. The purity of the hydrogen sulphite resulting from the pilot plant, as well as the optimization of the installation for producing H 2 S depending on the deuterium distribution, make sure that the two methods for the preparation of sodium sulphite and hydrogen sulphite can be applied in industry. (author)

  12. Neutron scattering studies of the H2a-H2b and (H3-H4)/sub 2/ histone complexes

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R.D.


    Neutron scattering experiments have shown that both the (H3-H4)/sub 2/ and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)/sub 2/ tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk, can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. 48 references, 12 figures, 1 table.

  13. Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker


    that anionic O2−(H2O)n and O3−(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding. Although...... clustering up to 12 H2O, we find that the O2 and O3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O2− and O3− speicies are thus accessible for further reactions. Finally, the thermodynamics of a few relevant cluster reactions are considered....

  14. Ab initio studies of O-2(-) (H2O)(n) and O-3(-) (H2O)(n) anionic molecular clusters, n

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurten, T.; Enghoff, Martin Andreas Bødker


    that anionic O-2(-)(H2O)n and O-3(-)(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding....... Although clustering up to 12 H2O, we find that the O-2 and O-3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O-2(-) and O-3(-) speicies are thus accessible for further reactions. We consider the distributions of cluster sizes as function of altitude before...

  15. An open-framework three-dimensional indium oxalate: [In(OH)(C2O4)(H2O)]3.H2O

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Lin Jianhua


    By hydrothermal reaction of In 2 O 3 with H 2 C 2 O 4 .2H 2 O in the presence of H 3 BO 3 at 155 deg. C, an open-framework three-dimensional indium oxalate of formula [In(OH)(C 2 O 4 )(H 2 O)] 3 .H 2 O (1) has been obtained. The compound crystallizes in the trigonal system, space group R3c with a=18.668(3)A, c=7.953(2)A, V=2400.3(7)A 3 , Z=6, R 1 =0.0352 at 298K. The small pores in 1 are filled with water molecules. It loses its filled water at about 180 deg. C without the change of structure, then the bounded water at 260 deg. C, and completely decompounds at 324 deg. C. The residue is confirmed to be In 2 O 3

  16. Neutron scattering studies of the H2a-H2b and (H3-H4)2 histone complexes

    International Nuclear Information System (INIS)

    Carlson, R.D.


    Neutron scattering experiments have shown that both the (H3-H4) 2 and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4) 2 tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk, can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. 48 references, 12 figures, 1 table

  17. Two new three-dimensional zinc phosphites templated by piperazine: [H2pip][Zn3(HPO3)4(H2O)2] and K[H2pip]0.5[Zn3(HPO3)4 (United States)

    Zhang, Xiao; Wang, Guo-Ming; Wang, Zong-Hua; Wang, Ying-Xia; Lin, Jian-Hua


    Two three-dimensional open-framework zinc phosphites with the same organically templated, [H2pip][Zn3(HPO3)4(H2O)2] (1) and K[H2pip]0.5[Zn3(HPO3)4] (2) (pip = piperazine), have been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. Compound 1 consists of ZnO4 tetrahedra, [HPO3] pseudopyramids and [ZnO4(H2O)2] octahedra, which are linked through their vertexes to generate three-dimensional architecture with intersecting 8-membered channels along the [1 0 0], [0 0 1] and [1 0 1] directions. Compound 2 is constructed from strictly alternating ZnO4 tetrahedra and [HPO3] pseudopyramids, and exhibits (3,4)-connected inorganic framework with 8-, and 12-membered channels, in which the K+ and diprotonated H2pip2+ extra-framework cations reside, respectively. The coexistence of inorganic K+ and organic piperazine mixed templates in the structure is unique and, to the best of our knowledge, firstly observed in metal-phosphite materials. In addition, the participation of left-handed and right-handed helical chains in construction of the puckered 4.82 sheet structure in 2 is also noteworthy.

  18. Crystal structure of strontium aqua(ethylenediaminetetraacetato)cobaltate(II) tetrahydrate Sr[CoEdta(H2O)] · 4H2O

    International Nuclear Information System (INIS)

    Zasurskaya, L.A.; Polynova, T.N.; Polyakova, I.N.; Sergienko, V.S.; Poznyak, A.L.


    The complex Sr[Co II Edta] · 5H 2 O (I) (where Edta 4- is the ethylenediaminetetraacetate ion) has been synthesized. The crystal structure of this compound is determined by X-ray diffraction. Crystals are monoclinic, a = 7.906(2) A, b = 12.768(2) A, c = 18.254(3) A, β = 95.30(3) deg., V 1834.8 A 3 , space group P2 1 /n, Z = 4, and R = 0.036. The structure is built up of the binuclear complex fragments {Sr(H 2 O) 3 [CoEdta(H 2 O)]}, which consist of the anionic [CoEdta(H 2 O)] 2- and cationic [Sr(H 2 O) 3 ] 2+ units linked by the Sr-O bonds into a three-dimensional framework. The coordination polyhedra of the Co and Sr atoms are mono- and bicapped trigonal prisms. The coordination sphere of the Co atom (the coordination number is equal to 6 + 1) involves six donor atoms (2N and 4O) of the Edta 4- ligand and the O w atom of water molecule. One of the Co-O distances (2.718 A) is considerably longer than the other Co-O lig distances (2.092-2.190 A) and the Co-O w (1) distance (2.079 A). The Sr coordination polyhedron (the coordination number is eight) contains three water molecules, three carbonyl O atoms of the three different anionic complexes, and two O atoms of one acetate group of the fourth anionic complex. The Sr-O distances fall in the range 2.535-2.674 A. The structural formula of the compound is {Sr(H 2 O) 3 [CoEdta(H 2 O)]} 3∞ · H 2 O

  19. Characterization of a real time H2O2 monitor for use in studies on H2O2 production by antibodies and cells. (United States)

    Sharma, Harish A; Balcavage, Walter X; Waite, Lee R; Johnson, Mary T; Nindl, Gabi


    It was recently shown that antibodies catalyze a reaction between water and ultraviolet light (UV) creating singlet oxygen and ultimately H2O2. Although the in vivo relevance of these antibody reactions is unclear, it is interesting that among a wide variety of non-antibody proteins tested, the T cell receptor is the only protein with similar capabilities. In clinical settings UV is believed to exert therapeutic effects by eliminating inflammatory epidermal T cells and we hypothesized that UV-triggered H2O2 production is involved in this process. To test the hypothesis we developed tools to study production of H2O2 by T cell receptors with the long-term goal of understanding, and improving, UV phototherapy. Here, we report the development of an inexpensive, real time H2O2 monitoring system having broad applicability. The detector is a Clark oxygen electrode (Pt, Ag/AgCl) modified to detect UV-driven H2O2 production. Modifications include painting the electrode black to minimize UV effects on the Ag/AgCl electrode and the use of hydrophilic, large pore Gelnots electrode membranes. Electrode current was converted to voltage and then amplified and recorded using a digital multimeter coupled to a PC. A reaction vessel with a quartz window was developed to maintain constant temperature while permitting UV irradiation of the samples. The sensitivity and specificity of the system and its use in cell-free and cell-based assays will be presented. In a cellfree system, production of H2O2 by CD3 antibodies was confirmed using our real time H2O2 monitoring method. Additionally we report the finding that splenocytes and Jurkat T cells also produce H2O2 when exposed to UV light.

  20. Catalytic reduction of NOx with H2/CO/CH4 over PdMOR catalysts

    International Nuclear Information System (INIS)

    Pieterse, Johannis A.Z.; Booneveld, Saskia


    Conversion of NO x with reducing agents H 2 , CO and CH 4 , with and without O 2 , H 2 O, and CO 2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NO x to N 2 conversion with H 2 and CO (>90% conversion and N 2 selectivity) range under lean conditions. The formation of N 2 O is absent in the presence of both H 2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H 2 and CO at 450-500 K. The positive effect of cerium is significant in the case of H 2 and CH 4 reducing agent but is less obvious with H 2 /CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH 4 , 500 ppm NO, 5% O 2 , 10% H 2 O (0-1% H 2 ), N 2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NO x reduction with H 2 , CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K. (author)

  1. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    International Nuclear Information System (INIS)

    Song, Taek Ho


    In connection with the safe storage of high level nuclear waste, effect of H 2 O 2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H 2 O 2 . The experimental results show that H 2 O 2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H 2 O 2 concentration increased, indicating that pitting resistance was decreased by the existence of H 2 O 2 in the electrolyte. These effects of H 2 O 2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H 2 O 2 with those of O 2 , cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H 2 O 2 on the corrosion behavior were very similar to those of O 2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. Further, H 2 O 2 played much greater role in controlling cathodic reaction rate in neutral water environment. In acid and alkaline media, potential shifts by H 2 O 2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively

  2. Thermal Reactions of H2O2 on Icy Satellites and Small Bodies: Descent with Modification? (United States)

    Hudson, Reggie L.; Loeffler, Mark J.


    Magnetospheric radiation drives surface and near-surface chemistry on Europa, but below a few meters Europa's chemistry is hidden from direct observation . As an example, surface radiation chemistry converts H2O and SO2 into H2O2 and (SO4)(sup 2-), respectively, and these species will be transported downward for possible thermally-driven reactions. However, while the infrared spectra and radiation chemistry of H2O2-containing ices are well documented, this molecule's thermally-induced solid-phase chemistry has seldom been studied. Here we report new results on thermal reactions in H2O + H2O2 + SO2 ices at 50 - 130 K. As an example of our results, we find that warming H2O + H2O2 + SO2 ices promotes SO2 oxidation to (SO4)(sup 2-). These results have implications for the survival of H2O2 as it descends, with modification, towards a subsurface ocean on Europa. We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto.

  3. Emission of hydrogen sulfide (H2S) at a waterfall in a sewer: study of main factors affecting H2S emission and modeling approaches. (United States)

    Jung, Daniel; Hatrait, Laetitia; Gouello, Julien; Ponthieux, Arnaud; Parez, Vincent; Renner, Christophe


    Hydrogen sulfide (H 2 S) represents one of the main odorant gases emitted from sewer networks. A mathematical model can be a fast and low-cost tool for estimating its emission. This study investigates two approaches to modeling H 2 S gas transfer at a waterfall in a discharge manhole. The first approach is based on an adaptation of oxygen models for H 2 S emission at a waterfall and the second consists of a new model. An experimental set-up and a statistical data analysis allowed the main factors affecting H 2 S emission to be studied. A new model of the emission kinetics was developed using linear regression and taking into account H 2 S liquid concentration, waterfall height and fluid velocity at the outlet pipe of a rising main. Its prediction interval was estimated by the residual standard deviation (15.6%) up to a rate of 2.3 g H 2 S·h -1 . Finally, data coming from four sampling campaigns on sewer networks were used to perform simulations and compare predictions of all developed models.

  4. Syntheses and Thermal Behaviors of Rb(FOX-7)·H2O and Cs(FOX-7)·H2O

    International Nuclear Information System (INIS)

    Luo, Jinan; Xu, Kangzhen; Wang, Min; Ren, Xiaolei; Chen, Yongshun; Song, Jirong; Zhao, Fengqi


    Two new energetic organic alkali metal salts, 1,1-diamino-2,2-dinitroethylene rubidium salt [Rb(FOX-7)·H 2 O] and 1,1- diamino-2,2-dinitroethylene cesium salt [Cs(FOX-7)·H 2 O], were synthesized by reacting of 1,1-diamino-2,2-dinitroethylene (FOX-7) and rubidium chloride or cesium chloride in alkali methanol aqueous solution, respectively. The thermal behaviors of Rb(FOX-7)·H 2 O and Cs(FOX-7)·H 2 O were studied with DSC and TG methods. The critical temperatures of thermal explosion of the two compounds are 216.22 and 223.73 .deg. C, respectively. Specific heat capacities of the two compounds were determined with a micro-DSC method, and the molar heat capacities are 217.46 and 199.47 J mol -1 K -1 at 298.15 K, respectively. The adiabatic times-to-explosion were also calculated to be a certain value of 5.81 - 6.36 s for Rb(FOX-7)·H 2 O, and 9.92 - 10.54 s for Cs(FOX-7)·H 2 O. After FOX-7 becoming alkali metal salts, thermal decomposition temperatures of the compounds heighten with the rise of element period, but thermal decomposition processes become intense

  5. Impact of High Glucose and Proteasome Inhibitor MG132 on Histone H2A and H2B Ubiquitination in Rat Glomerular Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Chenlin Gao


    Full Text Available Background. Hyperglycemia plays a pivotal role in the development of diabetic nephropathy (DN and may be related to epigenetic metabolic memory. One of the most crucial epigenetic mechanisms is histone modification, which is associated with the expression of a fibrosis factor in vascular injury. Aim .In this study, we investigated the ubiquitination of histones H2A and H2B to explore the epigenetic mechanisms of DN. Materials and Methods. The GMCs were cultured as follows: normal group, high glucose group, mannitol group, and intervention group. After 12 hr, 24 hr, and 48 hr, histones ubiquitination, transforming growth factor-β (TGF-β, and fibronectin (FN were measured using WB, RT-PCR, and IF. Result. High glucose can induce the upregulation of FN. H2A ubiquitination in GMCs increased in high glucose group (P<0.01, whereas it decreased significantly in intervention group (P<0.05. In contrast, H2B ubiquitination decreased with an increasing concentration of glucose, but it was recovered in the intervention group (P<0.05. Expression of TGF-β changed in response to abnormal histone ubiquitination. Conclusions. The high glucose may induce H2A ubiquitination and reduce H2B ubiquitination in GMCs. The changes of histone ubiquitination may be due in part to DN by activating TGF-β signaling pathway.

  6. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis. (United States)

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y


    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  7. Measurements of the Activity of dissolved H2O in an Andesite Melt (United States)

    Moore, G. M.; Touran, J. P.; Pu, X.; Kelley, K. A.; Cottrell, E.; Ghiorso, M. S.


    The large effect of dissolved H2O on the physical and chemical nature of silicate melts, and its role in driving volcanism, is well known and underscores the importance of this volatile component. A complete understanding of the chemical behavior of dissolved H2O in silicate melts requires the quantification of its thermodynamic activity as a function of pressure, temperature, and melt composition, particularly at low H2O contents (i.e. at under-saturated conditions). Knowledge of the activity of H2O in silicate melts at H2O-undersaturated conditions will improve our understanding of hydrous phase equilibria, as well as our models of physical melt properties. Measurement of the activity of any silicate melt component, much less that of a volatile component such as H2O, is a difficult experimental task however. By using a modified double capsule design (Matjuschkin et al, 2015) to control oxygen fugacity in piston cylinder experiments, along with high precision X-ray absorption techniques (XANES) to measure iron oxidation state in silicate glasses (Cottrell et al, 2009), we are able to constrain the H2O activity in silicate melts at under-saturated conditions. Preliminary results on an andesite melt with low H2O content (3 wt%) have been shown (Moore et al, 2016) to match predicted H2O activity values calculated using the H2O equation of state of Duan and Zhang (1996) and the H2O solubility model of Ghiorso and Gualda (2015). More recent results on the same andesite melt containing approximately 5 wt% H2O however show a large negative deviation from the predicted values. Reversal experiments involving an oxidized starting material are ongoing, as well as further characterization of the samples to detect the presence of possible contaminants that would induce reduction of the melt beyond that related to the H2O activity (e.g. graphite contamination).

  8. The Role of Peroxiredoxins in the Transduction of H2O2 Signals. (United States)

    Rhee, Sue Goo; Woo, Hyun Ae; Kang, Dongmin


    Hydrogen peroxide (H 2 O 2 ) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H 2 O 2 -eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H 2 O 2 . Peroxiredoxins possess a high-affinity binding site for H 2 O 2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H 2 O 2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H 2 O 2 effectors are therefore at a competitive disadvantage for reaction with H 2 O 2 . Recent Advances: Here we review intracellular sources of H 2 O 2 as well as H 2 O 2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H 2 O 2 -mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H 2 O 2 effector proteins localized in specific subcellular compartments participates in H 2 O 2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H 2 O 2 signaling. Antioxid. Redox Signal. 28, 537-557.

  9. Histone H2AX is a critical factor for cellular protection against DNA alkylating agents. (United States)

    Meador, J A; Zhao, M; Su, Y; Narayan, G; Geard, C R; Balajee, A S


    Histone H2A variant H2AX is a dose-dependent suppressor of oncogenic chromosome translocations. H2AX participates in DNA double-strand break repair, but its role in other DNA repair pathways is not known. In this study, role of H2AX in cellular response to alkylation DNA damage was investigated. Cellular sensitivity to two monofunctional alkylating agents (methyl methane sulfonate and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)) was dependent on H2AX dosage, and H2AX null cells were more sensitive than heterozygous cells. In contrast to wild-type cells, H2AX-deficient cells displayed extensive apoptotic death due to a lack of cell-cycle arrest at G(2)/M phase. Lack of G(2)/M checkpoint in H2AX null cells correlated well with increased mitotic irregularities involving anaphase bridges and gross chromosomal instability. Observation of elevated poly(ADP) ribose polymerase 1 (PARP-1) cleavage suggests that MNNG-induced apoptosis occurs by PARP-1-dependent manner in H2AX-deficient cells. Consistent with this, increased activities of PARP and poly(ADP) ribose (PAR) polymer synthesis were detected in both H2AX heterozygous and null cells. Further, we demonstrate that the increased PAR synthesis and apoptotic death induced by MNNG in H2AX-deficient cells are due to impaired activation of mitogen-activated protein kinase pathway. Collectively, our novel study demonstrates that H2AX, similar to PARP-1, confers cellular protection against alkylation-induced DNA damage. Therefore, targeting either PARP-1 or histone H2AX may provide an effective way of maximizing the chemotherapeutic value of alkylating agents for cancer treatment.

  10. Crystal structures of hydrates of simple inorganic salts. III. Water-rich aluminium halide hydrates: AlCl3 · 15H2O, AlBr3 · 15H2O, AlI3 · 15H2O, AlI3 · 17H2O and AlBr3 · 9H2O. (United States)

    Schmidt, Horst; Hennings, Erik; Voigt, Wolfgang


    Water-rich aluminium halide hydrate structures are not known in the literature. The highest known water content per Al atom is nine for the perchlorate and fluoride. The nonahydrate of aluminium bromide, stable pentadecahydrates of aluminium chloride, bromide and iodide, and a metastable heptadecahydrate of the iodide have now been crystallized from low-temperature solutions. The structures of these hydrates were determined and are discussed in terms of the development of cation hydration spheres. The pentadecahydrate of the chloride and bromide are isostructural. In AlI(3) · 15H2O, half of the Al(3+) cations are surrounded by two complete hydration spheres, with six H2O in the primary and 12 in the secondary. For the heptadecahydrate of aluminium iodide, this hydration was found for every Al(3+).

  11. A new global analytical potential energy surface of NaH2+ system and dynamical calculation for H(2S) + NaH+(X2Σ+) → Na+(1S) + H2(X1Σg+) reaction (United States)

    Yuan, Meiling; Li, Wentao; Yuan, Jiuchuang


    A new global potential energy surface (PES) of the NaH2+ system is constructed by fitting 27,621 ab initio energy points with the neural network method. The root mean square error of the new PES is only 4.1609 × 10-4 eV. Based on the new PES, dynamical calculations have been performed using the time-dependent quantum wave packet method. These results are then compared with the H(2S) + LiH+(X2Σ+) → Li+(1S) + H2(X1Σg+) reaction. The direct abstract mechanism is found to play an important role in the reaction because only forward scattering signals on the differential cross section results for all calculated collision energies.

  12. Ethanol oxidation reactions catalyzed by water molecules: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2) (United States)

    Takahashi, H.; Hisaoka, S.; Nitta, T.


    Ab initio density functional theory calculations have been performed to investigate the catalytic role of water molecules in the oxidation reaction of ethanol: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2) . The results show that the potential energy barrier for the reaction is 88.0 kcal/mol in case of n=0, while it is reduced by ˜34 kcal/mol when two water molecules are involved ( n=2) in the reaction. As a result, the rate constant increases to 3.31×10 -4 s-1, which shows a significant catalytic role of water molecules in the ethanol oxidation reactions.

  13. Investigating H 2 Sorption in a Fluorinated Metal–Organic Framework with Small Pores Through Molecular Simulation and Inelastic Neutron Scattering

    KAUST Repository

    Forrest, Katherine A.


    © 2015 American Chemical Society. Simulations of H2 sorption were performed in a metal-organic framework (MOF) consisting of Zn2+ ions coordinated to 1,2,4-triazole and tetrafluoroterephthalate ligands (denoted [Zn(trz)(tftph)] in this work). The simulated H2 sorption isotherms reported in this work are consistent with the experimental data for the state points considered. The experimental H2 isosteric heat of adsorption (Qst) values for this MOF are approximately 8.0 kJ mol-1 for the considered loading range, which is in the proximity of those determined from simulation. The experimental inelastic neutron scattering (INS) spectra for H2 in [Zn(trz)(tftph)] reveal at least two peaks that occur at low energies, which corresponds to high barriers to rotation for the respective sites. The most favorable sorption site in the MOF was identified from the simulations as sorption in the vicinity of a metal-coordinated H2O molecule, an exposed fluorine atom, and a carboxylate oxygen atom in a confined region in the framework. Secondary sorption was observed between the fluorine atoms of adjacent tetrafluoroterephthalate ligands. The H2 molecule at the primary sorption site in [Zn(trz)(tftph)] exhibits a rotational barrier that exceeds that for most neutral MOFs with open-metal sites according to an empirical phenomenological model, and this was further validated by calculating the rotational potential energy surface for H2 at this site. (Figure Presented).

  14. TEM analysis of the microstructure in TiF3-catalyzed and pure MgH2 during the hydrogen storage cycling

    International Nuclear Information System (INIS)

    Danaie, Mohsen; Mitlin, David


    We utilized transmission electron microscopy (TEM) analysis, with a cryogenically cooled sample stage, to detail the microstructure of partially transformed pure and titanium fluoride-catalyzed magnesium hydride powder during hydrogenation cycling. The TiF 3 -catalyzed MgH 2 powder demonstrated excellent hydrogen storage kinetics at various temperatures, whereas the uncatalyzed MgH 2 showed significant degradation in both kinetics and capacity. TEM analysis on the partially hydrogen absorbed and partially desorbed pure Mg(MgH 2 ) revealed a large fraction of particles that were either not transformed at all or were completely transformed. On the other hand, in the MgH 2 +TiF 3 system it was much easier to identify regions with both the hydride and the metal phase coexisting in the same particle. This enabled us to establish the metal hydride orientation relationship (OR) during hydrogen absorption. The OR was determined to be (1 1 0)MgH 2 || (−1 1 0 −1)Mg and [−1 1 1]MgH 2 || [0 1 −1 1]Mg. During absorption the number density of the hydride nuclei does not show a dramatic increase due the presence of TiF 3 . Conversely, during desorption the TiF 3 catalyst substantially increases the number of the newly formed Mg crystallites, which display a strong texture correlation with respect to the parent MgH 2 phase. Titanium fluoride also promotes extensive twinning in the hydride phase.

  15. Calorimetric investigation into interaction in Zr0.8Ti0.2CrFe-H2 system

    International Nuclear Information System (INIS)

    Sirotina, R.A.; Verbetskij, V.N.


    For studying Zr 0.8 Ti 0.2 CrFe-H 2 system is applied the calorimetric method with usage of the Tian-Calve type calorimeter. It is shown that up to 488 K in the system there are three characteristic regions: α (hydrogen solution in an intermetallic compounds (IMC)), β (hydrogen solution in a hydride) and α + β (region of coexistence of two phases). Temperature 448 K is near to critical one, when exceeding of which exists only hydrogen solution in a metal matrix. Pressure dependence of hydrogen content in IMC is described satisfactorily by a linear equation

  16. Association of H2A{sup b} with resistance to collagen-induced arthritis in H2-recombinant mouse strains: An allele associated with reduction of several apparently unrelated responses

    Energy Technology Data Exchange (ETDEWEB)

    Mitchison, N.A.; Brunner, M.C. [Deutsches Rheuma-Forschungszentrum, Berlin (Germany)


    HLA class II alleles can protect against immunological diseases. Seeking an animal model for a naturally occurring protective allele, we screened a panel of H2-congenic and recombinant mouse strains for ability to protect against collagen-induced arthritis. The strains were crossed with the susceptible strain DBA/1, and the F{sub 1} hybrids immunized with cattle and chicken type II collagen. Hybrids having the H2A{sup b} allele displayed a reduced incidence and duration of the disease. They also had a reduced level of pre-disease inflammation, but not of anti-collagen antibodies. The allele is already known to be associated with reduction of other apparently unrelated immune responses, suggesting that some form of functional differentiation may operate that is not exclusively related to epitope-binding. It is suggested that this may reflect allelic variation in the class II major histocompatibility complex promoter region. 42 refs., 7 figs., 1 tab.

  17. Electrochemical studies of the effect of H2 on UO2 dissolution

    International Nuclear Information System (INIS)

    King, F.; Shoesmith, D.W.


    This report summarises evidence for the effect of H 2 on the oxidation and dissolution of UO 2 derived from electrochemical studies. In the presence of γ-radiation or with SIMFUEL electrodes containing ε-particles, the corrosion potential (E CORR ) of UO 2 is observed to be suppressed in the presence of H 2 by up to several hundred milli volts. This effect has been observed at room temperature with 5 MPa H 2 (in the case of γ-irradiated solutions) and at 60 deg C with a H 2 partial pressure of only 0.002-0.014 MPa H 2 with the SIMFUEL electrode. The suppression of E CORR in the presence of H 2 indicates that the degree of surface oxidation and the rate of dissolution of UO 2 is lower in the presence of H 2 .The precise mechanism of the effect of H 2 is unclear at this time. The mechanism appears to involve a surface heterogeneous process, rather than a homogeneous solution process. Under some circumstances the value of E CORR approaches the equilibrium potential for the H 2 /H + couple, suggesting galvanic coupling between sites on which this electrochemical process is catalysed and the rest of the UO 2 surface. It is also possible that H* radical species, either produced radiolytically from H 2 O or by dissociation of H 2 on ε-particles or surface-active UO 2+x sites, reduce oxidised U(V)/U(VI) surface states to U(IV). The effect of H 2 on reducing the degree of surface oxidation is only partially reversible, since surfaces reduced in H 2 atmospheres (re-)oxidise more slowly and to a lesser degree than surfaces not previously exposed to H 2 . Homogeneous reactions between dissolved H 2 and either oxidants or dissolved U(VI) cannot explain the observed effects.Regardless of the precise mechanism, the suppression of the degree of surface oxidation results in lower UO 2 dissolution rates in the presence of H 2 . Application of an electro-chemical dissolution model to the observed E CORR values suggests that the fractional dissolution rate of used fuel in the

  18. High resolution spectroscopy of the Martian atmosphere - Study of seasonal variations of CO, O3, H2O, and T on the north polar cap and a search for SO2, H2O2, and H2CO (United States)

    Krasnopolsky, V. A.; Chakrabarti, S.; Larson, H.; Sandel, B. R.


    An overview is presented of an observational campaign which will measure (1) the seasonal variations of the CO mixing ratio on the Martian polar cap due to accumulation and depletion of CO during the condensation and evaporation of CO2, as well as (2) the early spring ozone and water vapor of the Martian north polar cap, and (3) the presence of H2CO, H2O2, and SO2. The lines of these compounds will be measured by a combined 4-m telescope and Fourier-transform spectrometer 27097.

  19. Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4


    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio


    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O...

  20. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Aili Li

    Full Text Available Hydrogen peroxide (H(2O(2 plays important roles in plant biotic and abiotic stress responses. However, the effect of H(2O(2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H(2O(2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H(2O(2 treatment for 6 hour in one powdery mildew (PM resistant (PmA and two susceptible (Cha and Han lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H(2O(2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, 'transport' activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H(2O(2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H(2O(2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt. Eight of these genes were found to be co-regulated by H(2O(2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H(2O(2 stress and uncovers potential links between H(2O(2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat.

  1. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    Energy Technology Data Exchange (ETDEWEB)

    Nishibuchi, Ikuno [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima (Japan); Suzuki, Hidekazu; Kinomura, Aiko; Sun, Jiying; Liu, Ning-Ang [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Horikoshi, Yasunori [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Research Center for Mathematics of Chromatin Live Dynamics, Hiroshima University, Hiroshima (Japan); Shima, Hiroki [Department of Biochemistry, Graduate School of Medical Sciences, Tohoku University, Sendai (Japan); Kusakabe, Masayuki; Harata, Masahiko [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai (Japan); Fukagawa, Tatsuo [Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima (Japan); Ikura, Tsuyoshi [Laboratory of Chromatin Regulatory Network, Department of Mutagenesis, Radiation Biology Center, Kyoto University, Kyoto (Japan); Ishida, Takafumi [Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Tashiro, Satoshi, E-mail: [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Research Center for Mathematics of Chromatin Live Dynamics, Hiroshima University, Hiroshima (Japan)


    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA

  2. Calculated isotropic Raman spectra from interacting H2-rare-gas pairs

    International Nuclear Information System (INIS)

    Gustafsson, M; Głaz, W; Bancewicz, T; Godet, J-L; Maroulis, G; Haskapoulos, A


    We report on a theoretical study of the H 2 -He and H 2 -Ar pair trace-polarizability and the corresponding isotropic Raman spectra. The conventional quantum mechanical approach for calculations of interaction-induced spectra, which is based on an isotropic interaction potential, is employed. This is compared with a close-coupling approach, which allows for inclusion of the full, anisotropic potential. It is established that the anisotropy of the potential plays a minor role for these spectra. The computed isotropic collision-induced Raman intensity, which is due to dissimilar pairs in H 2 -He and H 2 -Ar gas mixtures, is comparable to the intensities due to similar pairs (H 2 -H 2 , He-He, and Ar-Ar), which have been studied previously

  3. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    International Nuclear Information System (INIS)

    Nishibuchi, Ikuno; Suzuki, Hidekazu; Kinomura, Aiko; Sun, Jiying; Liu, Ning-Ang; Horikoshi, Yasunori; Shima, Hiroki; Kusakabe, Masayuki; Harata, Masahiko; Fukagawa, Tatsuo; Ikura, Tsuyoshi; Ishida, Takafumi; Nagata, Yasushi; Tashiro, Satoshi


    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA


    International Nuclear Information System (INIS)

    Gay, C. D.; Porter, R. L.; Stancil, P. C.; Abel, N. P.; Ferland, G. J.; Shaw, G.; Van Hoof, P. A. M.; Williams, R. J. R.


    Using ab initio potential curves and dipole transition moments, cross-section calculations were performed for the direct continuum photodissociation of H 2 through the B 1 Σ + u 1 Σ + g (Lyman) and C 1 Π u 1 Σ + g (Werner) transitions. Partial cross-sections were obtained for wavelengths from 100 Å to the dissociation threshold between the upper electronic state and each of the 301 bound rovibrational levels v''J'' within the ground electronic state. The resulting cross-sections are incorporated into three representative classes of interstellar gas models: diffuse clouds, photon-dominated regions, and X-ray-dominated regions (XDRs). The models, which used the CLOUDY plasma/molecular spectra simulation code, demonstrate that direct photodissociation is comparable to fluorescent dissociation (or spontaneous radiative dissociation, the Solomon process) as an H 2 destruction mechanism in intense far-ultraviolet or X-ray-irradiated gas. In particular, changes in H 2 rotational column densities are found to be as large as 20% in the XDR model with the inclusion of direct photodissociation. The photodestruction rate from some high-lying rovibrational levels can be enhanced by pumping from H Lyβ due to a wavelength coincidence with cross-section resonances resulting from quasi-bound levels of the upper electronic states. Given the relatively large size of the photodissociation data set, a strategy is described to create truncated, but reliable, cross-section data consistent with the wavelength resolving power of typical observations.

  5. Cortical activation in profoundly deaf patients during cochlear implant stimulation demonstrated by H2(15)O PET

    International Nuclear Information System (INIS)

    Herzog, H.; Lamprecht, A.; Kuehn, A.R.; Roden, W.; Vosteen, K.H.; Feinendegen, L.E.


    Cochlear implants (CIs) are used to provide sensations of sound to profoundly deaf patients. The performance of the CI is assessed mainly by the subjective reports of patients. The aim of this study was to look for objective cortical responses to the stimulation of the CI. Two postlingually and two prelingually deaf patients were investigated by positron emission tomography (PET) using 15 O-labeled water (H 2 15 O) to determine the regional cerebral blood flow (rCBF). Instead of quantifying rCBF in absolute terms, it was estimated by referring the regional tissue concentration of H 2 15 O to the mean whole brain concentration. CI stimulation encoded from white noise and sequential words led to an increased rCBF in the primary and secondary (Wernicke) auditory cortex. Relative elevations of up to 33% were observed bilaterally, although they were higher contralateral to the CI. These results were obtained not only in the postlingually deaf patients but also in two patients who had never been able to hear. Thus, it could be demonstrated that PET measurements of cerebral H 2 15 O distribution yield objective responses of the central auditory system during electrical stimulation by CIs in profoundly deaf patients

  6. Transfer of π- from hydrogen to deuterium in H2O + D2O mixtures

    International Nuclear Information System (INIS)

    Stanislaus, S.; Measday, D.F.; Vetterli, D.; Weber, P.; Aniol, K.A.; Harston, M.R.; Armstrong, D.S.


    The transfer of stopping π - mesons from hydrogen to deuterium has been investigated in mixtures of H 2 O+D 2 O as a function of D 2 O concentration. The concentration dependence of the transfer probability is similar to that observed for the gas mixtures of H 2 and D 2 but slightly more transfer is found for H 2 O+D 2 O. (Author) 17 refs., 2 tabs., 4 figs

  7. Non-LTE H2+ as the source of missing opacity in the solar atmosphere (United States)

    Swamy, K. S. K.; Stecher, T. P.


    The population of the various vibrational levels of the H2+ molecule has been calculated from the consideration of formation and destruction mechanisms. The resulting population is used in calculating the total absorption due to H2+ and is compared with the other known sources of opacity at several optical depths of the solar atmosphere. It is shown that the absorption due to H2+ can probably account for the missing ultraviolet opacity in the solar atmosphere.

  8. Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis (United States)

    Xu, Yifan; Itzek, Andreas


    Hydrogen peroxide (H2O2) is produced by several members of the genus Streptococcus mainly through the pyruvate oxidase SpxB under aerobic growth conditions. The acute toxic nature of H2O2 raises the interesting question of how streptococci cope with intrinsically produced H2O2, which subsequently accumulates in the microenvironment and threatens the closely surrounding population. Here, we investigate the H2O2 susceptibility of oral Streptococcus gordonii and Streptococcus sanguinis and elucidate potential mechanisms of how they protect themselves from the deleterious effect of H2O2. Both organisms are considered primary colonizers and occupy the same intraoral niche making them potential targets for H2O2 produced by other species. We demonstrate that S. gordonii produces relatively more H2O2 and has a greater ability for resistance to H2O2 stress. Functional studies show that, unlike in Streptococcus pneumoniae, H2O2 resistance is not dependent on a functional SpxB and confirms the important role of the ferritin-like DNA-binding protein Dps. However, the observed increased H2O2 resistance of S. gordonii over S. sanguinis is likely to be caused by an oxidative stress protection machinery present even under anaerobic conditions, while S. sanguinis requires a longer period of time for adaptation. The ability to produce more H2O2 and be more resistant to H2O2 might aid S. gordonii in the competitive oral biofilm environment, since it is lower in abundance yet manages to survive quite efficiently in the oral biofilm. PMID:25280752

  9. Absolute linestrengths in the H2O2 nu6 band (United States)

    May, Randy D.


    Absolute linestrengths at 295 K have been measured for selected lines in the nu6 band of H2O2 using a tunable diode-laser spectrometer. H2O2 concentrations in a flowing gas mixture were determined by ultraviolet (uv) absorption at 254 nm using a collinear infrared (ir) and uv optical arrangement. The measured linestrengths are approx. 60 percent larger than previously reported values when absorption by hot bands in H2O2 is taken into account.

  10. Dissociative ionization of H2 and D2 by electron impact near threshold

    NARCIS (Netherlands)

    Boesten, L.G.J.; Heideman, H.G.M.

    We have studied the dissciative ionization of H2 and D2 by electron impact. It is found that in the vicinity of the 2Σ+g dissociation threshold of H+2 (18.08 eV) a significant fraction of the produced protons originates from the process e + H2 → H− + H+ + e (threshold at 17.34 eV). Similar results

  11. 40 CFR 1065.370 - CLD CO2 and H2O quench verification. (United States)


    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false CLD CO2 and H2O quench verification....370 CLD CO2 and H2O quench verification. (a) Scope and frequency. If you use a CLD analyzer to measure NOX, verify the amount of H2O and CO2 quench after installing the CLD analyzer and after major...

  12. Some physico-chemical characteristics of a modified histone H2b on acute radiation affection

    International Nuclear Information System (INIS)

    Khrapunov, S.N.; Mel'nik, G.G.; Blyum, Ya.B.; Tsudzevich, B.A.; Kucherenko, N.E.


    A study was made of optical characteristics of histone H2b isolated from liver nuclei 12 h following irradiation in a dose of 0.21 C/kg. It was demonstrated that under similar conditions, the control and exposed histones H2b have different steric organization which correlates with radiation-induced modifications of lateral radicals in H2b histone molecules

  13. Stress management skills in the subsurface: H2 stress on thermophilic heterotrophs and methanogens (United States)

    Topcuoglu, B. D.; Holden, J. F.


    Marine hyperthermophilic heterotrophs and methanogens belonging to the Thermococcales and Methanococcales are often found in subsurface environments such as coal and shale beds, marine sediments, and oil reservoirs where they encounter H2 stress conditions. It is important to study the H2 stress survival strategies of these organisms and their cooperation with one another for survival to better understand their biogeochemical impact in hot subsurface environments. In this study, we have shown that H2 inhibition changed the growth kinetics and the transcriptome of Thermococcus paralvinellae. We observed a significant decrease in batch phase growth rates and cell concentrations with high H2 background. Produced metabolite production measurements, RNA-seq analyses of differentially expressed genes and in silico experiments we performed with the T. paralvinellae metabolic model showed that T. paralvinellae produces formate by a formate hydrogenlyase to survive H2 inhibition. We have also shown that H2 limitation caused a significant decrease in batch phase growth rates and methane production rates of the methanogen, Methanocaldococcus jannaschii. H2 stress of both organisms can be ameliorated by syntrophic growth. H2 syntrophy was demonstrated in microcosm incubations for a natural assemblage of Thermococcus and hyperthermophilic methanogens present in hydrothermal fluid samples. This project aims to describe how a hyperthermophilic heterotroph and a hyperthermophilic methanogen eliminate H2 stress and explore cooperation among thermophiles in the hot subsurface.

  14. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    International Nuclear Information System (INIS)

    Song, Taek Hoh; Kim, In Sub; Noh, Sung Kee


    In connection with the safe storage of high level nuclear waste, effect of H 2 O 2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H 2 O 2 . The experimental results show that H 2 O 2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H 2 O 2 concentration increased, indicating that pitting resistance was decreased by the existence of H 2 O 2 in the electrolyte. These effects of H 2 O 2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H 2 O 2 with those of O 2 , cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H 2 O 2 on the corrosion behavior were very similar to those of O 2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. In acid and alkaline media, the corrosion potential shifts by H 2 O 2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively. 13 figs., 1 tabs., 17 refs. (Author)

  15. Human milk H2O2 content: does it benefit preterm infants? (United States)

    Cieslak, Monika; Ferreira, Cristina H F; Shifrin, Yulia; Pan, Jingyi; Belik, Jaques


    BackgroundHuman milk has a high content of the antimicrobial compound hydrogen peroxide (H 2 O 2 ). As opposed to healthy full-term infants, preterm neonates are fed previously expressed and stored maternal milk. These practices may favor H 2 O 2 decomposition, thus limiting its potential benefit to preterm infants. The goal of this study was to evaluate the factors responsible for H 2 O 2 generation and degradation in breastmilk.MethodsHuman donors' and rats' milk, along with rat mammary tissue were evaluated. The role of oxytocin and xanthine oxidase on H 2 O 2 generation, its pH-dependent stability, as well as its degradation via lactoperoxidase and catalase was measured in milk.ResultsBreast tissue xanthine oxidase is responsible for the H 2 O 2 generation and its milk content is dependent on oxytocin stimulation. Stability of the human milk H 2 O 2 content is pH-dependent and greatest in the acidic range. Complete H 2 O 2 degradation occurs when human milk is maintained, longer than 10 min, at room temperature and this process is suppressed by lactoperoxidase and catalase inhibition.ConclusionFresh breastmilk H 2 O 2 content is labile and quickly degrades at room temperature. Further investigation on breastmilk handling techniques to preserve its H 2 O 2 content, when gavage-fed to preterm infants is warranted.

  16. Simulation of the inhibition of water α-radiolysis via H2 addition

    International Nuclear Information System (INIS)

    Lertnaisat, Phantira; Katsumura, Yosuke; Mukai, Satoru; Umehara, Ryuji; Shimizu, Yuichi; Suzuki, Masashi


    The continuous formation of H 2 , O 2 , and H 2 O 2 observed in water during α-radiolysis may be suppressed by the addition of H 2 above the threshold hydrogen concentration (THC). Using the FACSIMILE simulation code, water radiolysis was reproduced in order to determine the THC and clarify the mechanism at room temperature. Using the reaction set and rate constants reported by Ershov and Gordeev together with the primary yields for water decomposition products generated using 12 MeV α-particles, the THC was found to be 165 μM. Further simulation results clearly showed that the value of THC is strongly dependent on the reaction set and rate constants. In addition, a possible mechanism involving a chain reaction governed by the two reactions OH + H 2 → H + H 2 O and H + H 2 O 2 → OH + H 2 O was proposed. Furthermore, the same inhibition effect was found when a high-temperature simulation (300degC) was performed, but the concentration range and THC were much smaller than the values obtained at room temperature. The importance of the reverse reaction OH + H 2 → H + H 2 O was also investigated. (author)

  17. Modeling and stabilities of Mg/MgH2 interfaces: A first-principles investigation

    Directory of Open Access Journals (Sweden)

    Jia-Jun Tang


    Full Text Available We have theoretically investigated the modeling and the structural stabilities of various Mg/MgH2 interfaces, i.e. Mg(101¯0/MgH2(210, Mg(0001/MgH2(101 and Mg(101¯0/MgH2(101, and provided illuminating insights into Mg/MgH2 interface. Specifically, the main factors, which impact the interfacial energies, are fully considered, including surface energies of two phases, mutual lattice constants of interface model, and relative position of two phases. The surface energies of Mg and MgH2, on the one hand, are found to be greatly impacting the interfacial energies, reflected by the lowest interfacial energy of Mg(0001/MgH2(101 which is comprised of two lowest energy surfaces. On the other hand, it is demonstrated that the mutual lattice constants and the relative position of two phases lead to variations of interfacial energies, thus influencing the interface stabilities dramatically. Moreover, the Mg-H bonding at interface is found to be the determinant of Mg/MgH2 interface stability. Lastly, interfacial and strain effects on defect formations are also studied, both of which are highly facilitating the defect formations. Our results provide a detailed insight into Mg/MgH2 interface structures and the corresponding stabilities.

  18. Tetrahedral silsesquioxane-C2H2Ti complex for hydrogen storage (United States)

    Konda, Ravinder; Tavhare, Priyanka; Ingale, Nilesh; Chaudhari, Ajay


    The interaction of molecular hydrogen with tetrahedral silsesquioxane (T4)-C2H2Ti complex has been studied using Density Functional Theory with M06-2X functional and MP2 method with 6-311++G** basis set. T4-C2H2Ti complex can absorb maximum five hydrogen molecules with the gravimetric hydrogen storage capacity of 3.4 wt %. Adsorption energy calculations show that H2 adsorption on T4-C2H2Ti complex is favorable at room temperature by both the methods. We have studied the effect of temperature and pressure on Gibbs free energy corrected adsorption energies. Molecular dynamics simulations for H2 adsorbed T4-C2H2Ti complex have also been performed at 300K and show that loosely bonded H2 molecule flies away within 1fs. Various interaction energies within the complex are studied. Stability of a complex is predicted by means of a gap between Highest Occupied Molecular Orbital (HUMO) and Lowest Unoccupied Molecular Orbital (LUMO). The H2 desorption temperature for T4-C2H2Ti complex is calculated with Van't Hoff equation and it is found to be 229K.

  19. Measuring the density and viscosity of H2S-loaded aqueous methyldiethanolamine solution

    International Nuclear Information System (INIS)

    Shokouhi, Mohammad; Ahmadi, Reza


    Highlights: • Measurement solubility of H 2 S in 46.78 mass% MDEA aqueous solutions. • Measurement density of H 2 S loaded of MDEA aqueous solution. • Measurement viscosity of H 2 S loaded of MDEA aqueous solution. • Correlation of the density and viscosity of H 2 S loaded of MDEA aqueous solution using modified setchenow equation. - Abstract: The density and viscosity of H 2 S-loaded aqueous 46.78 mass% methyldiethanolamine solution were experimentally measured accompanied with the solubility of H 2 S at temperatures (313.15, 328.15 and 343.15) K, pressures from vapor pressure of fresh solution up to 1.0 MPa and loadings up to 1.00 mol of H 2 S per 1 mol of amine. All experimental trials have been carried out using the new setup developed in our laboratory. It was observed that both density and viscosity of mixtures decrease by increasing temperature and density increase by increasing acid gas solubility (loading) by about 4.7%, whereas viscosity has a complicated behavior with H 2 S solubility. Viscosity decreases by increasing acid gas solubility (loading) at 313.15 K by about 20.6% and at 328.15 K by about 15.0%, but it is comparable at 343.15 K in terms of H 2 S solubility. Finally, the experimental density and viscosity data correlated using Modified Setchenow equation.

  20. Microkinetics of H2S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere

    Institute of Scientific and Technical Information of China (English)

    Huiling Fan; Chunhu Li; Hanxian Guo; Kechang Xie


    The microkinetics of H2S removal by ZnO desulfurization in H2O-CO2-N2, H2O-CO-N2 andH2O-O2-N2 gas mixtures was studied by thermogravimetric analysis. Experiments were carried out with100 120 mesh ZnO powder at temperatures from 473 K to 563 K. The results show that the kineticbehaviors of desulfurization could all be described by an improved shrinking-core model. The activationenergies of the reaction and the diffusion in different gas atmospheres were estimated.

  1. Detailed H2 and CO Electrochemistry for a MEA Model Fueled by Syngas

    KAUST Repository

    Lee, W. Y.


    © The Electrochemical Society. SOFCs can directly oxidize CO in addition to H2, which allows them to be coupled to a gasifier. Many membrane-electrode-assembly (MEA) models neglect CO electrochemistry due to sluggish kinetics and the water-gas-shift reaction, but CO oxidation may be important for high CO-content syngas. The 1D-MEA model presented here incorporates detailed mechanisms for both H2 and CO oxidation, individually fitted to experimental data. These mechanisms are then combined into a single model, which provides a good fit to experimental data for H2/CO mixtures. Furthermore, the model fits H2/CO data best when a single chargetransfer step in the H2 mechanism is assumed to be rate-limiting for all current densities. This differs from the result for H2/H2O mixtures, where H2 adsorption becomes rate-limiting at high current densities. These results indicate that CO oxidation cannot be neglected in MEA models running on CO-rich syngas, and that CO oxidation can alter the H2 oxidation mechanism.

  2. Mesospheric H2O Concentrations Retrieved from SABER/TIMED Measurements (United States)

    Feofilov, A. G.; Marshall, B. T.; Garcia-Comas, M.; Kutepov, A. A.; Lopez-Puertas, M.; Manuilova, R. O.; Yankovsky, V.A.; Goldberg, R. A.; Gordley, L. L.; Petelin, S.; hide


    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed.

  3. Histone H2A subfractions and their phosphorylation in cultured Peromyscus cells

    International Nuclear Information System (INIS)

    Halleck, M.S.; Gurley, L.R.


    Patterns of histone phosphorylation and histone H2A subfractionation have been compared in cultured cell lines from two species of deer mice, Peromyscus eremicus and Peromyscus boylii, which differ considerably in their content of heterochromatin but which contain essentially the same euchromatin content. DNA measurements by flow microfluorometry indicated that P. eremicus cells contained 34.2% more DNA than P. boylii cells, and C-band chromosome analysis indicated that the extra DNA in P. eremicus was present as constitutive heterochromatin. Subfraction of histone H2A by acid-urea polyacrylamide preparative gel electrophoresis in the presence of non-ionic detergent showed that each cell line contained two H2A subfractions. Incorporation of 32 PO 4 into these histones indicated that the steady state phosphorylation of the two H2A subfractions was not the same, the more hydrophobic H2A being greater than two times more phosphorylated than the less hydrophobic H2A in both cell lines. A comparison of the two cell lines indicated that the cell line with 34.2% greater constitutive heterochromatin contained a similar excess (29%) in its ratio of the more highly phosphorylated, more hydrophobic H2A subfraction to the less hydrophobic H2A subfraction. It is suggested that this enrichment of the more highly phosphorylated, more hydrophobic H2A subfraction may be related to the amount of constitutive heterochromatin present in the genome

  4. UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser (United States)

    Shirley, John A.


    Raman spectra of H2 and H2O in flames excited by a narrowband KrF excimer laser are reported. Observations are made over a porous-plug, flat-flame burner reacting H2 in air, fuel-rich with nitrogen dilution to control the temperature, and with an H2 diffusion flame. Measurements made from UV Raman spectra show good agreement with measurements made by other means, both for gas temperature and relative major species concentrations. Laser-induced fluorescence interferences arising from OH and O2 are observed in emission near the Raman spectra. These interferences do not preclude Raman measurements, however.

  5. ZnO-carbon nanofibers for stable, high response, and selective H2S sensors. (United States)

    Zhang, Jitao; Zhu, Zijian; Chen, Changmiao; Chen, Zhi; Cai, Mengqiu; Qu, Baihua; Wang, Taihong; Zhang, Ming


    Hydrogen sulfide (H 2 S), as a typical atmospheric pollutant, is neurotoxic and flammable even at a very low concentration. In this study, we design stable H 2 S sensors based on ZnO-carbon nanofibers. Nanofibers with 30.34 wt% carbon are prepared by a facial electrospinning route followed by an annealing treatment. The resulting H 2 S sensors show excellent selectivity and response compared to the pure ZnO nanofiber H 2 S sensors, particularly the response in the range of 102-50 ppm of H 2 S. Besides, they exhibited a nearly constant response of approximately 40-20 ppm of H 2 S over 60 days. The superior performance of these H 2 S sensors can be attributed to the protection of carbon, which ensures the high stability of ZnO, and oxygen vacancies that improve the response and selectivity of H 2 S. The good performance of ZnO-carbon H 2 S sensors suggests that composites with oxygen vacancies prepared by a facial electrospinning route may provide a new research strategy in the field of gas sensors, photocatalysts, and semiconductor devices.

  6. New rate coefficients of CS in collision with para- and ortho-H2 and astrophysical implications (United States)

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Guilloteau, Stéphane; Dutrey, Anne


    Astronomers use the CS molecule as a gas mass tracer in dense regions of the interstellar medium, either to measure the gas density through multi-line observations or the level of turbulence. This necessarily requires the knowledge of the rates coefficients with the most common colliders in the interstellar medium, He and H2. In the present work, the close coupling collisional rates are computed for the first thirty rotational states of CS in collision with para- and ortho-H2 using a recent rigid rotor potential energy surface. Some radiative transfer calculations, using typical astrophysical conditions, are also performed to test this new set of data and to compare with the existing ones.

  7. Crystal structures of NiSO4·9H2O and NiSO4·8H2O: magnetic properties, stability with respect to morenosite (NiSO4·7H2O), the solid-solution series (Mg x Ni1-x )SO4·9H2O (United States)

    Fortes, A. D.; Knight, K. S.; Gibbs, A. S.; Wood, I. G.


    exists between Mg and Ni enneahydrate end-members where we observe preferential partitioning of Ni2+ into the octahedral sites on the 2c Wyckoff positions rather than the 2a sites. The solution is slightly non-ideal, as indicated by the small positive excess volume of mixing. Measurements of the DC magnetisation of quenched NiSO4 solutions reveal anomalies in the molar susceptibility on warming through the region from 221 to 225 K, probably due to devitrification of the (assumed) glassy specimen into a mixture of NiSO4·9H2O + ice Ih. Further temperature-dependent measurements on repeated warming and cooling provide no evidence of magnetic ordering and indicate a weak ferromagnetic coupling between neighbouring Ni2+ ions, likely via super-exchange through the H-bond between neighbouring Ni(H2O)6 octahedra.

  8. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution. (United States)

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei


    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  9. Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye. (United States)

    Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra


    Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process.

  10. Broadening of spectral lines of CO2, N2O , H2CO, HCN, and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2) (United States)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan


    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.2017.06.0383. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  11. Internal defect propagation studies in carbon steel in H2S-H2O system (Pre print No. MI-1C)

    International Nuclear Information System (INIS)

    Dalvi, M.S.; Kini, R.A.; Tangri, V.K.; Sadhukhan, H.K.


    Carbon steel is the material of construction for major equipment of heavy water plant using H 2 S-H 2 O exchange process for production of heavy water. The main corrosion product in this system is iron sulphide and hydrogen which is liberated in nascent form. It is known that such hydrogen liberated in-situ in the equipment has tendency to penetrate in the metal, giving rise to phenomena of embrittlement. Similarly, if parent metal has internal defect then this nascent hydrogen gets trapped in them and gets converted to diatomic form and consequent rise in pressure. This leads to the spread of the defect and can lead to severe loss in the strength of metal. This phenomena was studied on the walls of an autoclave used in a corrosion test assembly for simulated investigation of material of construction for H 2 S-H O exchange process. These studies indicate that internal defect propagation and generation definitely takes place in the system. However, no failures were encountered. These studies have been very qualitative in nature but showed the importance of this aspect of corrosion in H 2 S-H 2 O system and is a subject matter for further studies. It also implies that intial testing of plates for internal defects is very important. (author). 3 figs

  12. Towards a Quantum Dynamical Study of the H_2O+H_2O Inelastic Collision: Representation of the Potential and Preliminary Results (United States)

    Ndengue, Steve Alexandre; Dawes, Richard


    Water, an essential ingredient of life, is prevalent in space and various media. H_2O in the gas phase is the major polyatomic species in the interstellar medium (ISM) and a primary target of current studies of collisional dynamics. In recent years a number of theoretical and experimental studies have been devoted to H_2O-X (with X=He, H_2, D_2, Ar, ?) elastic and inelastic collisions in an effort to understand rotational distributions of H_2O in molecular clouds. Although those studies treated several abundant species, no quantum mechanical calculation has been reported to date for a nonlinear polyatomic collider. We present in this talk the preliminary steps toward this goal, using the H_2O molecule itself as our collider, the very accurate MB-Pol surface to describe the intermolecular interaction and the MultiConfiguration Time Dependent (MCTDH) algorithm to study the dynamics. One main challenge in this effort is the need to express the Potential Energy Surface (PES) in a sum-of-products form optimal for MCTDH calculations. We will describe how this was done and present preliminary results of state-to-state probabilities.

  13. Separating NaCl and AlCl3·6H2O Crystals from Acidic Solution Assisted by the Non-Equilibrium Phase Diagram of AlCl3-NaCl-H2O(-HCl Salt-Water System at 353.15 K

    Directory of Open Access Journals (Sweden)

    Huaigang Cheng


    Full Text Available Extracting AlCl3·6H2O from acid leaching solution through crystallization is one of the key processes to extracting aluminum from fly ash, coal gangue and other industrial solid wastes. However, the obtained products usually have low purity and a key problem is the lack of accurate data for phase equilibrium. This paper presented the non-equilibrium phase diagrams of AlCl3-NaCl-H2O (HCl salt-water systems under continuous heating and evaporation conditions, which were the main components of the acid leaching solution obtained through a sodium-assisted activation hydrochloric acid leaching process. The ternary system was of a simple eutonic type under different acidities. There were three crystalline regions; the crystalline regions of AlCl3·6H2O, NaCl and the mixture AlCl3·6H2O/NaCl, respectively. The phase diagram was used to optimize the crystallization process of AlCl3·6H2O and NaCl. A process was designed to evaporate and remove NaCl at the first stage of the evaporation process, and then continue to evaporate and crystallize AlCl3·6H2O after solid-liquid separation. The purities of the final salt products were 99.12% for NaCl and up to 97.35% for AlCl3·6H2O, respectively.


    Ostrowski, Tim D.; Hasser, Eileen M.; Heesch, Cheryl M.; Kline, David D.


    Hydrogen peroxide (H2O2) is a stable reactive oxygen species and potent neuromodulator of cellular and synaptic activity. Centrally, endogenous H2O2 is elevated during bouts of hypoxia-reoxygenation, a variety of disease states, and aging. The nucleus tractus solitarii (nTS) is the central termination site of visceral afferents for homeostatic reflexes and contributes to reflex alterations during these conditions. We determined the extent to which H2O2 modulates synaptic and membrane properties in nTS neurons in rat brainstem slices. Stimulation of the tractus solitarii (which contains the sensory afferent fibers) evoked synaptic currents that were not altered by 10 – 500 μM H2O2. However, 500 μM H2O2 modulated several intrinsic membrane properties of nTS neurons, including a decrease in input resistance, hyperpolarization of resting membrane potential (RMP) and action potential (AP) threshold (THR), and an initial reduction in AP discharge to depolarizing current. H2O2 increased conductance of barium-sensitive potassium currents, and block of these currents ablated H2O2-induced changes in RMP, input resistance and AP discharge. Following washout of H2O2 AP discharge was enhanced due to depolarization of RMP and a partially maintained hyperpolarization of THR. Hyperexcitability persisted with repeated H2O2 exposure. H2O2 effects on RMP and THR were ablated by intracellular administration of the antioxidant catalase, which was immunohistochemically identified in neurons throughout the nTS. Thus, H2O2 initially reduces excitability of nTS neurons that is followed by sustained hyperexcitability, which may play a profound role in cardiorespiratory reflexes. PMID:24397952

  15. Dexmedetomidine attenuates H2O2-induced cell death in human osteoblasts. (United States)

    Yoon, Ji-Young; Park, Jeong-Hoon; Kim, Eun-Jung; Park, Bong-Soo; Yoon, Ji-Uk; Shin, Sang-Wook; Kim, Do-Wan


    Reactive oxygen species play critical roles in homeostasis and cell signaling. Dexmedetomidine, a specific agonist of the α 2 -adrenoceptor, has been commonly used for sedation, and it has been reported to have a protective effect against oxidative stress. In this study, we investigated whether dexmedetomidine has a protective effect against H 2 O 2 -induced oxidative stress and the mechanism of H 2 O 2 -induced cell death in normal human fetal osteoblast (hFOB) cells. Cells were divided into three groups: control group-cells were incubated in normoxia without dexmedetomidine, hydrogen peroxide (H 2 O 2 ) group-cells were exposed to H 2 O 2 (200 µM) for 2 h, and Dex/H 2 O 2 group-cells were pretreated with dexmedetomidine (5 µM) for 2 h then exposed to H 2 O 2 (200 µM) for 2 h. Cell viability and apoptosis were evaluated. Osteoblast maturation was determined by assaying bone nodular mineralization. Expression levels of bone-related proteins were determined by western blot. Cell viability was significantly decreased in the H 2 O 2 group compared with the control group, and this effect was improved by dexmedetomidine. The Hoechst 33342 and Annexin-V FITC/PI staining revealed that dexmedetomidine effectively decreased H 2 O 2 -induced hFOB cell apoptosis. Dexmedetomidine enhanced the mineralization of hFOB cells when compared to the H 2 O 2 group. In western blot analysis, bone-related protein was increased in the Dex/H 2 O 2 group. We demonstrated the potential therapeutic value of dexmedetomidine in H 2 O 2 -induced oxidative stress by inhibiting apoptosis and enhancing osteoblast activity. Additionally, the current investigation could be evidence to support the antioxidant potential of dexmedetomidine in vitro.

  16. Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells. (United States)

    Bozem, Monika; Knapp, Phillip; Mirčeski, Valentin; Slowik, Ewa J; Bogeski, Ivan; Kappl, Reinhard; Heinemann, Christian; Hoth, Markus


    H 2 O 2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local H 2 O 2 concentrations ([H 2 O 2 ]) originating from single cells is required. Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H 2 O 2 ] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H 2 O 2 ] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H 2 O 2 ] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H 2 O 2 to an unstimulated MC, the local [H 2 O 2 ] decreased on average by 4.2 nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H 2 O 2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex ® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H 2 O 2 separately. Local extracellular [H 2 O 2 ] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 00, 000-000.

  17. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures. (United States)

    Zhao, Hai-Qian; Wang, Zhong-Hua; Gao, Xing-Cun; Liu, Cheng-Hao; Qi, Han-Bing


    H2O2 was adopted to oxidize NO in simulated flue gas at 100-500°C. The effects of the H2O2 evaporation conditions, gas temperature, initial NO concentration, H2O2 concentration, and H2O2:NO molar ratio on the oxidation efficiency of NO were investigated. The reason for the narrow NO oxidation temperature range near 500°C was determined. The NO oxidation products were analyzed. The removal of NOx using NaOH solution at a moderate oxidation ratio was studied. It was proven that rapid evaporation of the H2O2 solution was critical to increase the NO oxidation efficiency and broaden the oxidation temperature range. the NO oxidation efficiency was above 50% at 300-500°C by contacting the outlet of the syringe needle and the stainless-steel gas pipe together to spread H2O2 solution into a thin film on the surface of the stainless-steel gas pipe, which greatly accelerated the evaporation of H2O2. The NO oxidation efficiency and the NO oxidation rate increased with increasing initial NO concentration. This method was more effective for the oxidation of NO at high concentrations. H2O2 solution with a concentration higher than 15% was more efficient in oxidizing NO. High temperatures decreased the influence of the H2O2 concentration on the NO oxidation efficiency. The oxidation efficiency of NO increased with an increase in the H2O2:NO molar ratio, but the ratio of H2O2 to oxidized NO decreased. Over 80% of the NO oxidation product was NO2, which indicated that the oxidation ratio of NO did not need to be very high. An 86.7% NO removal efficiency was obtained at an oxidation ratio of only 53.8% when combined with alkali absorption.

  18. Proof of shock-excited H2 in low-ionization structure of PNe

    International Nuclear Information System (INIS)

    Akras, Stavros; Gonçalves, Denise R.; Ramos-Larios, Gerardo


    We report the detection of near-IR H 2 line emission from the low-ionization structures (LISs) in planetary nebulae. The deepest, high-angular resolution H 2 1-0 S(1) at 2.122 μm, and H 2 2-1 S(1) at 2.248 μm images of K 4-47 and NGC 7662, obtained using NIRI@Gemini-North, are presented here. K 4-47 reveals a remarkable high-collimated bipolar structure, with the H 2 emission emanating from the walls of the outflows and a pair of knots at the tips of these outflows. The H 2 1-0 S(1)/2-1 S(1) line ratio is ∼⃒7-8 which indicates shock interaction due to both the lateral expansion of the gas and the high-velocity knots. The strongest line, H 2 v=1-0 S(1), is also detected in several LISs located at the periphery of the outer shell of the elliptical PN NGC 7662, whereas only four knots are detected in the H 2 v = 2-1 S(1) line. These knots have H 2 v = 1-0 S(1)/v = 2-1 S(1) values between 3 and 5. These data confirm the presence of molecular gas in both highly (K 4-47) and slowly moving LISs (NGC 7662). The H 2 emission in K 4-47 is powered by shocks, whereas in NGC 7662 is due to photo-ionization by the central star. Moreover, a likely correlation is found between the H 2 v = 1-0 S(1)/H 2 v = 2-1 S(1) and [N II]/Hα line ratios. (paper)

  19. 77 FR 2558 - Identification of Foreign Countries Whose Nationals Are Eligible To Participate in the H-2A and H... (United States)


    ...-immigrant worker programs: Argentina Australia Barbados Belize Brazil Bulgaria Canada Chile Costa Rica... change of status from another non-immigrant status to H-2 status, or a change of status from H-2A to H-2B...

  20. Theoretical studies of H2--H2 collisions. IV. Ab initio calculations of anisotropic transport phenomena in para-hydrogen gas

    International Nuclear Information System (INIS)

    Koehler, W.E.; Schaefer, J.


    The temperature dependence of the effective Waldmann--Snider cross sections determining the Senftleben--Beenakker effects of viscosity and heat conductivity has been studied for pH 2 gas between 10 and 200 K. From ab initio nonspherical potentials of H 2 --H 2 , scattering matrices have been determined in close-coupling calculations. From these, the elements of the scattering amplitude matrix have been obtained and used as input quantities for the evaluation of the various Waldmann--Snider collision integrals. The results of these first ab initio numerical calculations of anisotropic transport coefficients show excellent agreement of calculated and measured effective cross sections, especially for the most recent improved version of the interaction potential. In addition, it has been shown that the polarization production cross sections are quite sensitive to the potential anisotropy

  1. Infrared spectroscopic investigation of M(H2PO4)2x2H2O (M=Mg, Mn, Cd) dehydration products

    International Nuclear Information System (INIS)

    Pechkovskij, V.V.; Dzyuba, E.D.; Mel'nikova, R.Ya.; Salonets, G.I.; Kovalishina, V.I.; Malashonok, I.E.


    Using the method of IR spectroscopy the composition of products separated at different stages of M(H 2 PO 4 ) 2 x2H 2 O dehydration, where M=Mg, Mn, Cd, has been investigated. It is shown that cation influence is expressed in strengthening of bond of proton-containing groups in the structure of initial compounds from magnesium to cadmium. A supposition is made that the difference in bond character of the groups more evidently expressed for partially dehydrated products of the composition M(H 2 PO 4 ) 2 , conditions a possibility of dehydration in two directions- with the formation of intermediate phase MH 2 P 2 O 7 or with separation of three phosphoric acid

  2. Quasielastic neutron scattering and infra-red band contour study of H2O reorientations in [Ni(H2O)6] (ClO4)2

    International Nuclear Information System (INIS)

    Janik, J.A.; Janik, J.M.; Otnes, K.; Stanek, T.


    IR band contour measurements carried out for [Ni(H 2 O) 6 ] (ClO 4 ) 2 revealed an existence of fast H 2 O 180 deg flips around Ni-O axes at room temperatures. These flips were subjected to a more accurate study by the quasielastic neutron scattering method. Correlation times of the order of picosecond were obtained for room temperatures and the barrier to rotation of ca. 7 kcal/mole. The results are compared to those previously obtained for [Mg(H 2 O) 6 ] (ClO 4 ) 2 and also to those for [Ni(NH 3 ) 6 ] (ClO 4 ) 2 and [Mg(NH 3 ) 6 ] (ClO 4 ) 2 . (author)

  3. CARS spectroscopy of the NaH2 collision complex: The nature of the Na(3 2P)H2 exciplex - ab initio calculations and experimental results

    International Nuclear Information System (INIS)

    Vivie-Riedle, R. de; Hering, P.; Kompa, K.L.


    CARS has been used to analyze the rovibronic state distribution of H 2 after collision with Na(3 2 P). New lines, which do not correspond to H 2 lines are observed in the CARS spectrum. The experiments point to the formation of a complex of Na(3 2 P)H 2 in A 2 B 2 symmetry. Ab initio calculations of the A 2 B 2 potential were performed. On this surface the vibrational spectra of the exciplex is evaluated. The observed lines can be attributed to vibrational transitions in the complex, in which combinational modes are involved. The connection of experimental and theoretical results indicates that a collisionally stabilized exciplex molecule is formed during the quenching process. (orig.)

  4. Generation of deposits and self ignited fires in H2S-H2O services (Paper No. 4.6)

    International Nuclear Information System (INIS)

    Agarwal, A.K.; Hiremath, S.C.


    The Heavy Water Plant (Kota) uses a large inventory of H 2 S gas at a nominal pressure and temperature. The plant has used mild steels/carbon steels as the material of construction of vessels, piping, flanges and fasteners. The entire construction is with flanged joints with raised face and spiral wound gaskets. Any leakages from any of the pipe line, flanged joints, heat exchanger covers, valve bonnets, valve glands etc causes H 2 S and H 2 O to leak out which generate deposits around the leakage paths after reaction with mild steel/carbon steels. The deposits grow into hard material, cause corrosion and thinning of stud bolts and gasket outer rings, weaken the confidence in the joint, and also cause ignited fires as they provide a source of ignition under certain conditions. (author). 2 refs

  5. Water Ice Radiolytic O2, H2, and H2O2 Yields for Any Projectile Species, Energy, or Temperature: A Model for Icy Astrophysical Bodies (United States)

    Teolis, B. D.; Plainaki, C.; Cassidy, T. A.; Raut, U.


    O2, H2, and H2O2 radiolysis from water ice is pervasive on icy astrophysical bodies, but the lack of a self-consistent, quantitative model of the yields of these water products versus irradiation projectile species and energy has been an obstacle to estimating the radiolytic oxidant sources to the surfaces and exospheres of these objects. A major challenge is the wide variation of O2 radiolysis yields between laboratory experiments, ranging over 4 orders of magnitude from 5 × 10-7 to 5 × 10-3 molecules/eV for different particles and energies. We revisit decades of laboratory data to solve this long-standing puzzle, finding an inverse projectile range dependence in the O2 yields, due to preferential O2 formation from an 30 Å thick oxygenated surface layer. Highly penetrating projectile ions and electrons with ranges ≳30 Å are therefore less efficient at producing O2 than slow/heavy ions and low-energy electrons (≲ 400 eV) which deposit most energy near the surface. Unlike O2, the H2O2 yields from penetrating projectiles fall within a comparatively narrow range of (0.1-6) × 10-3 molecules/eV and do not depend on range, suggesting that H2O2 forms deep in the ice uniformly along the projectile track, e.g., by reactions of OH radicals. We develop an analytical model for O2, H2, and H2O2 yields from pure water ice for electrons and singly charged ions of any mass and energy and apply the model to estimate possible O2 source rates on several icy satellites. The yields are upper limits for icy bodies on which surface impurities may be present.

  6. Tunable Robust pacs-MOFs: a Platform for Systematic Enhancement of the C2H2 Uptake and C2H2/C2H4 Separation Performance. (United States)

    Chen, Di-Ming; Sun, Chun-Xiao; Zhang, Nan-Nan; Si, Huan-Huan; Liu, Chun-Sen; Du, Miao


    As a modulatable class of porous crystalline materials, metal-organic frameworks (MOFs) have gained intensive research attention in the domain of gas storage and separation. In this study, we report on the synthesis and gas adsorption properties of two robust MOFs with the general formula [Co 3 (μ 3 -OH)(cpt) 3 Co 3 (μ 3 -OH)(L) 3 (H 2 O) 9 ](NO 3 ) 4 (guests) n [L = 3-amino-1,2,4-triazole (1) and 3,5-diamino-1,2,4-triazole (2); Hcpt = 4-(4-carboxyphenyl)-1,2,4-triazole], which show the same pacs topology. Both MOFs are isostructural to each other and show MIL-88-type frameworks whose pore spaces are partitioned by different functionlized trinuclear 1,2,4-triazolate-based clusters. The similar framework components with different amounts of functional groups make them an ideal platform to permit a systematic gas sorption/separation study to evaluate the effects of distinctive parameters on the C 2 H 2 uptake and separation performance. Because of the presence of additional amido groups, the MOF 2 equipped with a datz-based cluster (Hdatz = 3,5-diamino-1,2,4-triazole) shows a much improved C 2 H 2 uptake capacity and separation performance over that of the MOF 1 equipped with atz-based clusters (Hatz = 3-amino-1,2,4-triazole), although the surface area of the MOF 1 is almost twice than that of the MOF 2. Moreover, the high density of open metal sites, abundant free amido groups, and charged framework give the MOF 2 an excellent C 2 H 2 separation performance, with ideal adsorbed solution theory selectivity values reaching up to 11.5 and 13 for C 2 H 2 /C 2 H 4 (1:99) and C 2 H 2 /CO 2 (50:50) at 298 K and 1 bar, showing potential for use in natural gas purification.

  7. Highly precise (liquid + liquid) equilibrium and heat capacity measurements near the critical point for [Bmim][BF4] + 1H, 1H, 2H, 2H perfluoroctanol

    International Nuclear Information System (INIS)

    Pérez-Sánchez, G.; Troncoso, J.; Losada-Pérez, P.; Méndez-Castro, P.; Romaní, L.


    Highlights: • Highly precise liquid–liquid curves for [Bmim][BF 4 ] + perfluoroctanol are reported. • Critical behavior of heat capacity for the same system was also characterized. • In contrast to previous results, no coulombic/solvophobic crossover for coexistence curve diameter was found. • The system criticality shows characteristics both solvophobic and coulombic. -- Abstract: Liquid + liquid equilibrium of the system [Bmim][BF 4 ] + 1H, 1H, 2H, 2H perfluoroctanol using a highly precise methodology based on refractive index measurements was experimentally determined. In addition, isobaric heat capacity near the critical point was obtained. The performance of the new refractive index set-up was successfully checked against the coexistence curve of the system dimethyl carbonate + decane, since highly accurate data are available in the literature. The choice of [Bmim][BF 4 ] + 1H, 1H, 2H, 2H perfluoroctanol was motivated by a previous experimental work, whose results suggest that this system could present characteristics of both solvophobic and coulombic behavior, which are the two categories to which an ionic system can belong. Although this was previously observed for other ionic systems, this mixture presented a very striking feature: the diameter of the coexistence curve seemed to change its criticality in the studied temperature range, from solvophobic far away to coulombic close to the critical point. The results of this work reveal that, in fact, [Bmim][BF 4 ] + 1H, 1H, 2H, 2H perfluoroctanol presents characteristics of both solvophobic and coulombic criticality, but no evidence of the observed crossover over the experimental temperature range has been found

  8. Neutron scattering studies of the H2a-H2b and (H3-H4)2 histone complexes

    International Nuclear Information System (INIS)

    Carlson, R.D.


    Neutron scattering experiments have shown that both the (H3-H4)2 and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)2 tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk of the type proposed by Klug et al. (23), can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. The low resolution data are in good agreement with those calculated for a cylindrical model 64 X 27 A, but other elongated models fit those data almost as well, including one that approximates free N-terminal arms at each end. Free arms are not necessary, but they must extend from the ends if they exist. A contrast matching experiment done with 50% deuterated H2b and undeuterated H2a in the reconstituted dimer showed that these two histones must each be rather elongated within the complex and are not just confined to one end. The amount of scattering contrast between the undeuterated and 50% deuterated histones was sufficient to suggest further experiments using complexes reconstituted from mixtures of undeuterated and partially deuterated histones which will help elucidate their arrangement within the histone complexes and within the octamer core of the nucleosome core particle

  9. [H 2 -Cryptand 222] 2+ (Br 3 – ) 2 as a Tribromide-Type Catalyst for ...

    African Journals Online (AJOL)

    A stable organic tribromide, [H2-cryptand 222]2+(Br3–)2 was utilized as an active catalyst for the trimethylsilylation/tetrahydropyranylation of alcohols. The method is general for the preparation of OH-protected aliphatic (acyclic and cyclic), aromatic, primary, secondary and tertiary alcohols. Keywords: [H2-cryptand ...

  10. DFT study of adsorption and dissociation behavior of H2S on Fe-doped graphene

    International Nuclear Information System (INIS)

    Zhang, Hong-ping; Luo, Xue-gang; Song, Hong-tao; Lin, Xiao-yan; Lu, Xiong; Tang, Youhong


    Highlights: • Fe-doped and Pt-doped graphene can significantly improve the interactions between H 2 S and graphene. • The location of S had an important role in the interactions between H 2 S and Fe-doped graphene. • The influence of Fe-S distance can be very weak in a certain range and H 2 S can be dissociated into S and H 2 . - Abstracts: Understanding the interaction mechanisms of hydrogen sulfide (H 2 S) with graphene is important in developing graphene-based sensors for gas detection and removal. In this study, the effects of doped Fe atom on interaction of H 2 S with graphene were investigated by density functional theory calculations. Analyses of adsorption energy, electron density difference, and density of states indicated that the doped Fe atom can significantly improve the interaction of H 2 S gas molecules with graphene, as well as Pt-doped graphene. The location of the sulfur atom is important in the interactions between H 2 S and Fe-doped graphene. The influence of the Fe-S distance can be very weak within a certain distance, as simulated in this study

  11. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells. (United States)

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool


    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells (United States)

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2...

  13. Search Directions for Direct H2O2 Synthesis Catalysts Starting from Au-12 Nanoclusters

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Falsig, Hanne


    that the rate of H2O2 and H2O formation can be determined from a single descriptor, namely, the binding energy of oxygen (E-O). Our model predicts the search direction starting from an Au-12 nanocluster for an optimal catalyst in terms of activity and selectivity for direct H2O2 synthesis. Taking also stability......We present density functional theory calculations on the direct synthesis of H2O2 from H-2 and O-2 over an Au-12 corner model of a gold nanoparticle. We first show a simple route for the direct formation of H2O2 over a gold nanocatalyst, by studying the energetics of 20 possible elementary...... reactions involved in the oxidation of H-2 by O-2. The unwanted side reaction to H2O is also considered. Next we evaluate the degree of catalyst control and address the factors controlling the activity and the selectivity. By combining well-known energy scaling relations with microkinetic modeling, we show...

  14. Adsorption of H2O and CO2 on supported amine sorbents

    NARCIS (Netherlands)

    Veneman, Rens; Frigka, Natalia; Zhao, Wenying; Li, Zhenshan; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik


    In this work the adsorption of H2O and CO2 on Lewatit VP OC 1065 was studied in view of the potential application of this sorbent in post combustion CO2 capture. Both CO2 and H2O were found to adsorb on the amine active sites present on the pore surface of the sorbent material. However, where the

  15. Gas phase hydrogen peroxide production in atmospheric pressure glow discharges operating in He - H2O

    NARCIS (Netherlands)

    Vasko, C.A.; Veldhuizen, van E.M.; Bruggeman, P.J.


    The gas phase production of hydrogen peroxide (H2O2) in a RF atmospheric pressure glow discharge with helium and water vapour has been investigated as a function of the gas flow. It is shown that the production of H2O2 is through the recombination of two OH radicals in a three body collision and the

  16. 75 FR 6883 - Temporary Agricultural Employment of H-2A Aliens in the United States (United States)


    ... Division 29 CFR Part 501 Temporary Agricultural Employment of H-2A Aliens in the United States; Final Rule... Division 29 CFR Part 501 RIN 1205-AB55 Temporary Agricultural Employment of H-2A Aliens in the United... of the alien in such labor or services will not adversely affect the wages and working conditions of...

  17. Removal of H2S and volatile organic sulfur compounds by silicone membrane extraction

    NARCIS (Netherlands)

    Manconi, I.; Lens, P.N.L.


    BACKGROUND: This study explores an alternative process for the abatement and/or desulfurization of H2S and volatile organic sulfur compounds (VOSC) containing waste streams, which employs a silicone-based membrane to simultaneously remove H2S and VOSC. An extractive membrane reactor allows the

  18. Near-Infrared [Fe II] and H2 Study of the Galactic Supernova Remnants (United States)

    Lee, Yong-Hyun; Koo, Bon-Chul; Lee, Jae-Joon; Jaffe, Daniel T.; Burton, Michael G.; Ryder, Stuart D.


    We have searched for near-infrared (NIR) [Fe II] (1.644 μm) and H2 1-0 S(1) (2.122 μm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE / UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2). Both surveys cover about 180 square degrees of the first Galactic quadrant (7° reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. We carried out high resolution (R~40,000) NIR H- and K-band spectroscopy of the five SNRs showing the [Fe II]-H2 reversal (G11.2-0.3, KES 73, W44, 3C 396, W49B) using IGRINS (Immersion GRating INfrared Spectrograph). Various ro-vibrational H2 lines have been detected, which are used to derive the kinematic distances to the SNRs and to investigate the origin of the H2 emission. The detected H2 lines show broad line width (> 10 km s-1) and line flux ratios of thermal excitation. We discuss the origin of the extended H2 emission features beyond the the [Fe II] emission boundary.

  19. Stimulation of cell proliferation by histamine H2 receptors in dimethylhdrazine-induced adenocarcinomata. (United States)

    Tutton, P J; Barkla, D H


    Cell proliferation in dimethylhydrazine-induced colonic carcinomata was stimulated by histamine and by the histamine H2 receptor agonist dimaprit and inhibited by the histamine H2 receptor antagonists Metiamide and Cimetidine but not by the histamine H1 receptor antagonist Mepyramine. In contrast histamine had no effect on colonic crypt cell proliferation in normal or dimethylhydrazine-treated rats.

  20. 26 CFR 1.430(h)(2)-1 - Interest rates used to determine present value. (United States)


    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Interest rates used to determine present value... to the interest rates to be applied for a plan year under section 430(h)(2). Section 430(h)(2) and... defined in section 414(f)). Paragraph (b) of this section describes how the segment interest rates are...

  1. Activity and Selectivity for O-2 Reduction to H2O2 on Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Verdaguer Casadevall, Arnau; Karamad, Mohammadreza


    Industrially viable electrochemical production of H2O2 requires active, selective and stable electrocatalyst materials to catalyse the oxygen reduction reaction to H2O2. On the basis of density functional theory calculations, we explain why single site catalysts such as Pd/Au show improved...

  2. System and method to control h2o2 level in advanced oxidation processes

    DEFF Research Database (Denmark)


    The present invention relates to a bio-electrochemical system (BES) and a method of in-situ production and removal of H2O2 using such a bio-electrochemical system (BES). Further, the invention relates to a method for in-situ control of H2O2 content in an aqueous system of advanced oxidation...

  3. Production mechanism of negative pionlike particles in H2 gas discharge plasma

    International Nuclear Information System (INIS)

    Uramoto, Joshin.


    Negative pionlike and muonlike particles are produced by an electron bunch and a positive ion bunch which are generated controllably from an electron beam and a gas. Physical characteristics of the negative pionlike particles are the same with those of negative pionlike particles extracted from the H 2 gas discharge. Thus, the production mechanism in the H 2 gas discharge is deduced. (author)

  4. $H_2$ optimal controllers with observer based architecture for continuous-time systems : separation principle

    NARCIS (Netherlands)

    Saberi, A.; Sannuti, P.; Stoorvogel, A.A.


    For a general H2 optimal control problem, at first all Hz optimal measurement feedback controllers are characterized and parameterized, and then attention is focused on controllers with observer based architecture. Both full order as well as reduced order observer based H2 optimal controllers are

  5. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification

    DEFF Research Database (Denmark)

    Tessarz, Peter; Santos-Rosa, Helena; Robson, Sam C


    as the methyltransferase in yeast and demonstrate that fibrillarin is the orthologue enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using an H2AQ105me-specific antibody, shows that this modification is exclusively enriched over the 35S ribosomal DNA...

  6. Calculations of H+ + Cs→H(2s or 2p) + Cs+ reaction cross sections

    International Nuclear Information System (INIS)

    Valance, A.; Spiess, G.


    The H(2s) and H(2p) atom production cross-sections are calculated and compared with experimental results in the incident proton energy range 250-2400eV. The calculation method used involves a perturbation of the stationary molecular states, these adiabatic potentials being obtained from a pseudo-potential describing the core of cesium [fr

  7. Adsorption of CO2 and H2O on supported amine sorbents

    NARCIS (Netherlands)

    Veneman, Rens; Zhao, W.; Li, Z.; Cai, N.; Brilman, Derk Willem Frederik


    In this work we have evaluated the H2O and CO2 adsorption characteristics of Lewatit VP OC 1065 in view of the potential application of solid sorbents in post combustion CO2 capture. Here we present single component adsorption isotherms for H2O and CO2 as well as co-adsorption experiments. It was

  8. Stability of globular proteins in H2O and D2O

    NARCIS (Netherlands)

    Efimova, Y. M.; Haemers, S.; Wierczinski, B.; Norde, W.; van Well, A. A.


    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  9. Stability of globular proteins in H2O and in D2O

    NARCIS (Netherlands)

    Efimova, Y.M.; Haemers, S.; Wierczinsky, B.; Norde, W.; Well, van A.A.


    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been