WorldWideScience

Sample records for h2 n2 o2

  1. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    Science.gov (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  2. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    Science.gov (United States)

    2017-10-31

    VC-nH2O for Small and Water-Dominated Molecular Clusters October 31, 2017 Approved for public release; distribution is unlimited. L. Huang S.g...Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters L. Huang,1 S.G...nH2O molecular clusters using density function theory (DFT). DFT can provide interpretation of absorption spectra with respect to molecular

  3. Ab initio studies of O-2(-) (H2O)(n) and O-3(-) (H2O)(n) anionic molecular clusters, n

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurten, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O-2(-)(H2O)n and O-3(-)(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding....... Although clustering up to 12 H2O, we find that the O-2 and O-3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O-2(-) and O-3(-) speicies are thus accessible for further reactions. We consider the distributions of cluster sizes as function of altitude before...

  4. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    Science.gov (United States)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  5. Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker

    2011-01-01

    that anionic O2−(H2O)n and O3−(H2O)n clusters are thermally stabilized at typical atmospheric conditions for at least n = 5. The first 4 water molecules are strongly bound to the anion due to delocalization of the excess charge while stabilization of more than 4 H2O is due to normal hydrogen bonding. Although...... clustering up to 12 H2O, we find that the O2 and O3 anions retain at least ca. 80 % of the charge and are located at the surface of the cluster. The O2− and O3− speicies are thus accessible for further reactions. Finally, the thermodynamics of a few relevant cluster reactions are considered....

  6. Synthesis and crystal structures of new complexes of Np(V) glycolate with 2,2'-bipyridine, [NpO2(C10H8N2)(OOC2H2OH)].1.5H2O and [NpO2(C10H8N2)(OOC2H2OH)].2.5H2O

    International Nuclear Information System (INIS)

    Charushnikova, I.A.; Krot, N.N.; Starikova, Z.A.

    2009-01-01

    Single crystals were prepared, and the structures of two complexes of Np(V) glycolate with 2,2'-bipyridine of the compositions [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)].1.5H 2 O (I) and [NpO 2 (C 10 H 8 N 2 )(OOC 2 H 2 OH)]2.5H 2 O (II) were studied. The structures of the compounds are based on neptunyl-glycolate chains in which the glycolate anion manifests its complexation ability in different manner. In structure I, the bidentate-bridging anion links the adjacent NpO 2 - cations through the oxygen atoms of the carboxylate group. The neptunyl-glycolate chains of I exhibits the mutual coordination of the NpO 2 - cations acting toward each other simultaneously as ligands and coordinating centers. In compound II, the glycolate anion is bidentately coordinated to one neptunium atom to form a planar five-membered metallocycle [NpOCCO]. The O atom external with respect to the metallocycle is in the coordination environment of the adjacent neptunyl. The nitrogen-containing molecular ligand Bipy is included into the coordination environment of Np. The coordination polyhedron of the Np atoms in both structures is a pentagonal bipyramid in which the average Np-N bond length is 2.666 Aa (I) and 2.596 Aa (II). (orig.)

  7. Total scattering cross-sections for the systems nH2 + nH2, pH2 + pH2, nD2 + nD2, oD2 + oD2 and HD + HD for relative energies below ten milli-electron volts

    International Nuclear Information System (INIS)

    Johnson, D.L.

    1979-01-01

    Relative total scattering cross sections for nH 2 + nH 2 , pH 2 + pH 2 , nD 2 + nD 2 , oD 2 + oD 2 , and HD + HD were measured with inclined nozzle beams derived from nozzle sources and intersecting at 21 0 . Both nozzles could be varied in temperature from 4.2K to 300K to provide the velocity range for the cross sections. The use of a parahydrogen converter allowed the measurement of the pH 2 + pH 2 and oD 2 + oD 2 cross sections. Cross sections for the H 2 + H 2 were measured over a relative velocity range of 200 m/s to 1450 m/s. The nH 2 + nH 2 results show an undulation in the velocity range between 350 m/s and 400 m/s that corresponds to a l = 3 orbiting resonance. Analysis of the pH 2 + pH 2 cross section indicates a l = 4 orbiting resonance near 586 m/s. This resonance has a peak energy of 1.79 meV and a measured energy width of 1.05 meV, both which agree well with theoretical predictions. The D 2 + D 2 cross sections have been measured in the velocity range between 190 m/s and 1000 m/s. No orbiting resonances have been observed, but in the oD 2 + oD 2 cross section a deep minimum between the l = 4 and the l = 5 resonances at low velocities is clearly suggested. Initial measurements of the HD + HD cross section suggests the presence of the l = 4 orbiting resonance near a relative velocity of 300 m/s. The experimental results for each system were normalized to the total cross sections, which were convoluted to account for experimental velocity and angular dispersions. Three different potentials were considered, but a chi-square fit of the data indicates that the Schaefer and Meyer potential, which has been theoretically obtained from first principles, provides the best overall description of the hydrogen systems in the low collisional energy range

  8. Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4

    OpenAIRE

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-01-01

    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O...

  9. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals: [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)] and [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n).

    Science.gov (United States)

    Freire, Eleonora; Vega, Daniel R; Baggio, Ricardo

    2010-06-01

    Diaquabis[dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato-kappa(2)O,O']magnesium(II), [Mg(C(5)H(9)N(2)O(7)P(2))(2)(H(2)O)(2)], consists of isolated dimeric units built up around an inversion centre and tightly interconnected by hydrogen bonding. The Mg(II) cation resides at the symmetry centre, surrounded in a rather regular octahedral geometry by two chelating zwitterionic zoledronate(1-) [or dihydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonate] anions and two water molecules, in a pattern already found in a few reported isologues where the anion is bound to transition metals (Co, Zn and Ni). catena-Poly[[aquacalcium(II)]-mu(3)-[hydrogen 1-hydroxy-2-(imidazol-3-ium-1-yl)ethylidene-1,1-diphosphonato]-kappa(5)O:O,O':O',O''], [Ca(C(5)H(8)N(2)O(7)P(2))(H(2)O)](n), consists instead of a Ca(II) cation in a general position, a zwitterionic zoledronate(2-) anion and a coordinated water molecule. The geometry around the Ca(II) atom, provided by six bisphosphonate O atoms and one water ligand, is that of a pentagonal bipyramid with the Ca(II) atom displaced by 0.19 A out of the equatorial plane. These Ca(II) coordination polyhedra are ;threaded' by the 2(1) axis so that successive polyhedra share edges of their pentagonal basal planes. This results in a strongly coupled rhomboidal Ca(2)-O(2) chain which runs along [010]. These chains are in turn linked by an apical O atom from a -PO(3) group in a neighbouring chain. This O-atom, shared between chains, generates strong covalently bonded planar arrays parallel to (100). Finally, these sheets are linked by hydrogen bonds into a three-dimensional structure. Owing to the extreme affinity of zoledronic acid for bone tissue, in general, and with calcium as one of the major constituents of bone, it is expected that this structure will be useful in modelling some of the biologically interesting processes in which the drug takes part.

  10. The topotactic dehydration of monoclinic {[Co(pht)(bpy)(H2O)22H2O}n into orthorhombic [Co(pht)(bpy)(H2O)2]n (pht is phthalate and bpy is 4,4'-bipyridine).

    Science.gov (United States)

    Harvey, Miguel Angel; Suarez, Sebastián; Cukiernik, Fabio D; Baggio, Ricardo

    2014-10-01

    Controlled heating of single crystals of the previously reported [Köferstein & Robl (2007). Z. Anorg. Allg. Chem. 633, 1127-1130] dihydrate {[Co(pht)(bpy)(H2O)22H2O}n, (II) [where pht is phthalate (C8H4O4) and bpy is 4,4'-bipyridine (C10H8N2)], produced a topotactic transformation into an unreported diaqua anhydrate, namely poly[diaqua(μ2-benzene-1,2-dicarboxylato-κ(2)O(1):O(2))(μ2-4,4'-bipyridine-κ(2)N:N')cobalt(II)], [Co(C8H4O4)(C10H8N2)(H2O)2]n, (IIa). The structural change consists of the loss of the two solvent water molecules linking the original two-dimensional covalent substructures which are the `main frame' of the monoclinic P2/n hydrate (strictly preserved during the transformation), with further reaccommodation of the latter. The anhydrate organizes itself in the orthorhombic system (space group Pmn2(1)) in a disordered fashion, where the space-group-symmetry restrictions are achieved only in a statistical sense, with mirror-related two-dimensional planar substructures, mirrored in a plane perpendicular to [100]. Thus, the asymmetric unit in the refined model is composed of two superimposed mirror-related `ghosts' of half-occupancy each. Similarities and differences with the parent dihydrate and some other related structures in the literature are discussed.

  11. Systems Li2B4O7 (Na2B4O7, K2B4O7)-N2H3H4OH-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Sadetdinov, Sh.V.; Akimov, V.M.; Mitrasov, Yu.N.; Petrova, O.V.; Klopov, Yu.N.

    1994-01-01

    Phase equilibriums in the Li 2 B 4 O 7 (Na 2 B 4 O 7 , K 2 B 4 O 7 )-N 2 H 3 H 4 OH-H 2 O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM 2 B 4 O 7 ·nN 2 H 3 C 2 H 4 OH·XH 2 O, where M=Li, Na with hydrazine ethanol. K 2 B 4 O 7 ·4H 2 O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods

  12. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce, Nd

    International Nuclear Information System (INIS)

    De Almeida, Lucie; Grandjean, Stephane; Abraham, Francis; Rivenet, Murielle; Patisson, Fabrice

    2014-01-01

    New hydrazinium lanthanide oxalates N_2H_5[Ln_2(C_2O_4)_4(N_2H_5)].4H_2O, Ln = Ce (Ce-H_yO_x) and Nd (Nd- H_yO_x), were synthesized by hydrothermal reaction at 150 C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2_1/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Angstroms, β = 116.638(4) degrees, V = 2021.4(7) Angstroems"3, Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO_9 and NdO_8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm"-"1 confirms the coordination of N_2H_5"+ to the metal. These polyhedra are connected through μ"2 and μ"3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-H_yO_x) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO_2 and Ce_0_._5Nd_0_._5O_1_._7_5 are formed at low temperature from Ce-H_yO_x and CeNd-H_yO_x, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxy-mono-cyanamides Ln_2O_2CN_2 are formed. (authors)

  13. Theoretical study of the interaction of N2 with water molecules. (H2O)/sub n/:N2, n = 1--8

    International Nuclear Information System (INIS)

    Curtiss, L.A.; Eisgruber, C.L.

    1984-01-01

    Ab initio molecular orbital calculations including correlation energy have been carried out on the interaction of a single H 2 O molecule with N 2 . The potential energy surface for H 2 O:N 2 is found to have a minimum corresponding to a HOH xxx N 2 structure with a weak ( -1 ) hydrogen bond. A second, less stable, configuration corresponding to a H 2 O xxx N 2 structure with N 2 bonded side on to the oxygen of H 2 O was found to be either a minimum or a saddle point in the potential energy surface depending on the level of calculation. The minimal STO-3G basis set was used to investigate the interaction of up to eight H 2 O molecules with N 2 . Two types of clusters, one containing only HOH xxx N 2 interactions and the other containing both HOH xxxN 2 and H 2 O xxx N 2 interactions, were investigated for [N 2 :(H 2 O)/sub n/, n = 2--8

  14. 2D NiFe/CeO2 Basic-Site-Enhanced Catalyst via in-Situ Topotactic Reduction for Selectively Catalyzing the H2 Generation from N2HH2O.

    Science.gov (United States)

    Wu, Dandan; Wen, Ming; Gu, Chen; Wu, Qingsheng

    2017-05-17

    An economical catalyst with excellent selectivity and high activity is eagerly desirable for H 2 generation from the decomposition of N 2 H 4 ·H 2 O. Here, a bifunctional two-dimensional NiFe/CeO 2 nanocatalyst with NiFe nanoparticles (∼5 nm) uniformly anchored on CeO 2 nanosheets supports has been successfully synthesized through a dynamic controlling coprecipitation process followed by in-situ topotactic reduction. Even without NaOH as catalyst promoter, as-designed Ni 0.6 Fe 0.4 /CeO 2 nanocatalyst can show high activity for selectively catalyzing H 2 generation (reaction rate (mol N2H4 mol -1 NiFe h -1 ): 5.73 h -1 ). As ceria is easily reducible from CeO 2 to CeO 2-x , the surface of CeO 2 could supply an extremely large amount of Ce 3+ , and the high-density electrons of Ce 3+ can work as Lewis base to facilitate the absorption of N 2 H 4 , which can weaken the N-H bond and promote NiFe active centers to break the N-H bond preferentially, resulting in the high catalytic selectivity (over 99%) and activity for the H 2 generation from N 2 H 4 ·H 2 O.

  15. Nanosecond pulsed discharges in N2 and N2/H2O mixtures

    NARCIS (Netherlands)

    Joosten, R.M.; Verreycken, T.; Veldhuizen, van E.M.; Bruggeman, P.J.

    2011-01-01

    Nanosecond pulsed discharges in N2 and N2/H2O at atmospheric pressure between two pin-shaped electrodes are studied. The evolution of the discharge is investigated with time-resolved imaging and optical emission spectroscopy. The discharge consists of three phases, the ignition (mainly molecular

  16. Theoretical study of [Li(H2O)n]+ and [K(H2O)n]+ (n = 1-4) complexes

    International Nuclear Information System (INIS)

    Wojcik, M.J.; Mains, G.J.; Devlin, J.P.

    1995-01-01

    The geometries, successive binding energies, vibrational frequencies, and infrared intensities are calculated for the [Li(H 2 O) n ] + and [K(H 2 O) n ] + (n = 1-4) complexes. The basis sets used are 6-31G * and LANL1DZ (Los Alamos ECP+DZ) at the SCF and MP2 levels. There is an agreement for calculated structures and frequencies between the MP2/6-31G * and MP2/LANL1DZ basis sets, which indicates that the latter can be used for calculations of water complexes with heavier ions. Our results are in a reasonable agreement with available experimental data and facilitate experimental study of these complexes. 19 refs., 4 figs., 6 tabs

  17. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    Science.gov (United States)

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  18. [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, a Layered Coordination Polymer Containing DyO6N3 Tri-Capped Trigonal Prisms (H3ptc = Pyridine 2,4,6-Tricarboxylic Acid, C8H5NO6; Bipy = 2,2'-Bipyridine, C10H8N2

    Directory of Open Access Journals (Sweden)

    Shoaib Anwar

    2012-08-01

    Full Text Available The synthesis, structure and properties of the bimetallic layered coordination polymer, [KDy(C8H3NO63(C8H5NO6]n·2n(C10H9N2·5n(H2O = [KDy(Hptc3(H3ptc]n·2n(Hbipy·5n(H2O, are described. The Dy3+ ion is coordinated by three O,N,O-tridentate doubly-deprotonated pyridine tri-carboxylate (Hptc ligands to generate a fairly regular DyO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The potassium ion is coordinated by an O,N,O-tridentate H3ptc molecule as well as monodentate and bidentate Hptc ligands to result in an irregular KNO9 coordination geometry. The ligands bridge the metal-atom nodes into a bimetallic, layered, coordination polymer, which extends as corrugated layers in the (010 plane, with the mono-protonated bipyridine cations and water molecules occupying the inter-layer regions: Unlike related structures, there are no dysprosium–water bonds. Many O–HLO and N–HLO hydrogen bonds consolidate the structure. Characterization and bioactivity data are described. Crystal data: C52H42DyKN8O29, Mr = 1444.54, triclinic,  (No. 2, Z = 2, a = 9.188(2 Å, b = 15.7332(17 Å, c = 19.1664(19 Å, α = 92.797(6°, β = 92.319(7°, γ = 91.273(9°, V = 2764.3(7 Å3, R(F = 0.029, wR(F2 = 0.084.

  19. Coordination polymers of scandium sulfate. Crystal structures of (H2Bipy)[Sc(H2O)(SO4)2]2·2H2O and (H2Bipy)[HSO4]2

    International Nuclear Information System (INIS)

    Petrosyants, S.P.; Ilyukhin, A.B.

    2005-01-01

    Compounds with general formula Cat x [Sc(H 2 O) z (SO 4 ) y ]·nH 2 O (Cat=NH 4 , H 2 Bipy (Bipy - 4,4'-bipyridine), HEdp (Edp - ethylene dipyridine)) identified on element analysis data and IR spectra are synthesized. X-ray diffraction analysis of (H 2 Bipy)[Sc(H 2 O)(SO 4 ) 2 ] 2 ·2H 2 O shows that in structure of the compound chains of ScO 6 octahedron and SO 4 tetrahedrons are joined in bands by tridentate coordination of sulfate ions. Bands form skeleton in endless emptiness of which there are H 2 Bipy 2+ cations [ru

  20. Ethanol oxidation reactions catalyzed by water molecules: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2)

    Science.gov (United States)

    Takahashi, H.; Hisaoka, S.; Nitta, T.

    2002-09-01

    Ab initio density functional theory calculations have been performed to investigate the catalytic role of water molecules in the oxidation reaction of ethanol: CH3CH2OH+n H2O→ CH3CHO+ H2+n H2O (n=0,1,2) . The results show that the potential energy barrier for the reaction is 88.0 kcal/mol in case of n=0, while it is reduced by ˜34 kcal/mol when two water molecules are involved ( n=2) in the reaction. As a result, the rate constant increases to 3.31×10 -4 s-1, which shows a significant catalytic role of water molecules in the ethanol oxidation reactions.

  1. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    Directory of Open Access Journals (Sweden)

    Jingbin Yang

    2017-06-01

    Full Text Available C-A-S-H (CaO-Al2O3-SiO2-H2O and N-A-S-H (Na2O-Al2O3-SiO2-H2O have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali

  2. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    Science.gov (United States)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  3. Thermal stability of polyoxometalate compound of Keggin K8[2-SiW11O39]∙nH2O supported with SiO2

    Directory of Open Access Journals (Sweden)

    Yunita Sari M A

    2017-06-01

    Full Text Available Synthesis through sol-gel method and characterization of polyoxometalate compound of K8[b2-SiW11O39]∙nH2O supported with SiO2 have been done. The functional groups of polyoxometalate compound  was characterized by FT-IR spectrophotometer for the fungtional groups and the degree’s of crystalinity  using XRD. The acidity of K8[b2-SiW11O39]∙nH2O/SiO2 was determined qualitative analysis using ammonia and pyridine adsorption and the quantitative analysis using potentiometric titration method. The results of FT-IR spectrum of K8[b2-SiW11O39]∙nH2O appeared at  wavenumber 987.55 cm-1 (W=O, 864.11 cm-1 (W-Oe-W, 756.1 cm-1 (W-Oc-W, 3425.58 cm-1 (O-H, respectively and spectrum of  K8[b2-SiW11O39]SiO2 appeared at wavenumber  956.69 cm-1 (W=O, 864.11 cm-1 (W-Oe-W, 3448.72 cm-1 (O-H, respectively. The diffraction of XRD pattern of K8[b2-SiW11O39]∙nH2O and K8[b2-SiW11O39]∙nH2O/SiO2 compounds show high crystalinity. The acidic properties showed K8[b2-SiW11O39]∙nH2O/SiO2 more acidic compared to K8[b2-The SiW11O39]∙nH2O. The qualitative analysis showed pyridine compound adsorbed more of polyoxometalate compound of K8[b2-SiW11O39]∙nH2O/SiO2. Analysis of stability showed that the K8[b2-SiW11O39]∙nH2O/SiO2 at temperature 500°C has structural changes compare to 200-400oC which was indicated from vibration at wavenumber 800-1000 cm-1. Keywords : K8[b2-SiW11O39]∙nH2O, polyoxometalate, SiO2.

  4. Diaqua-2κ2O-bis(μ-1-oxido-2-naphthoato-1:2κ3O1,O2:O2′;2:3κ3O2:O1,O2′-bis(1-oxido-2-naphthoato-1κ1O2,O2;3κ2O1,O2-hexapyridine-1κ2N,2κ2N,3κ2N-trimanganese(II/III pyridine disolvate dihydrate

    Directory of Open Access Journals (Sweden)

    Daqi Wang

    2008-12-01

    Full Text Available The title complex, [Mn3(C11H6O34(C5H5N6(H2O22H22C5H5N, is a trinuclear mixed oxidation state complex of overline1 symmetry. The three Mn atoms are six-coordinated in the shape of distorted octahedra, each coordinated with an O4N2 set of donor atoms, where the ligands exhibit mono- and bidentate modes. However, the coordination of the MnII ion located on the inversion centre involves water molecules at two coordination sites, whereas that of the two symmetry-related MnIII ions involves an O4N2 set of donor atoms orginating from the organic ligands. Intramolecular C—H...π interactions between neighbouring pyridine ligands stabilize this arrangement. A two-dimensional network parallel to (001 is formed by intermolecular O—H...O hydrogen bonds.

  5. A Cadmium Anionic 1-D Coordination Polymer {[Cd(H2O6][Cd2(atr22-btc2(H2O4] 2H2O}n within a 3-D Supramolecular Charge-Assisted Hydrogen-Bonded and π-Stacking Network

    Directory of Open Access Journals (Sweden)

    Anas Tahli

    2016-03-01

    Full Text Available The hydrothermal reaction of 4,4′-bis(1,2,4-triazol-4-yl (btr and benzene-1,3,5-tricarboxylic acid (H3btc with Cd(OAc2·2H2O at 125 °C in situ forms 4-amino-1,2,4-triazole (atr from btr, which crystallizes to a mixed-ligand, poly-anionic chain of [Cd2(atr22-btc2(H2O4]2–. Together with a hexaaquacadmium(II cation and water molecules the anionic coordination-polymeric forms a 3-D supramolecular network of hexaaquacadmium(II-catena-[bis(4-amino-1,2,4-triazoletetraaquabis(benzene-1,3,5-tricarboxylatodicadmate(II] dihydrate, 1-D-{[Cd(H2O6][Cd2(atr22-btc2(H2O4] 2H2O}n which is based on hydrogen bonds (in part charge-assisted and π–π interactions.

  6. Systems Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O at 25 deg C. Sistemy Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O pri 25 grad S

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, V G; Sadetdinov, Sh V; Akimov, V M; Mitrasov, Yu N; Petrova, O V; Klopov, Yu N [Chuvashskij Gosudarstvennyj Pedagogicheskij Inst., Cheboksary (Russian Federation) Universitet Druzhby Narodov, Moscow (Russian Federation)

    1994-02-01

    Phase equilibriums in the Li[sub 2]B[sub 4]O[sub 7] (Na[sub 2]B[sub 4]O[sub 7], K[sub 2]B[sub 4]O[sub 7])-N[sub 2]H[sub 3]H[sub 4]OH-H[sub 2]O systems were investigated by methods of isothermal solubility, refractometry and PH-metry at 25 deg C for the first time. Lithium and sodium tetraborates was established to form phases of changed composition mM[sub 2]B[sub 4]O[sub 7][center dot]nN[sub 2]H[sub 3]C[sub 2]H[sub 4]OH[center dot]XH[sub 2]O, where M=Li, Na with hydrazine ethanol. K[sub 2]B[sub 4]O[sub 7][center dot]4H[sub 2]O precipitates in solid phase in the case of potassium salt. Formation of isomorphous mixtures was supported by X-ray diffraction and IR spectroscopy methods.

  7. Bis[2-(2-aminoethyl-1H-benzimidazole-κ2N2,N3](nitrato-κ2O,O′cobalt(II chloride trihydrate

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2012-06-01

    Full Text Available In the title compound, [Co(NO3(C9H11N32]Cl·3H2O, the CoII atom is coordinated by four N atoms from two chelating 2-(2-aminoethyl-1H-benzimidazole ligands and two O atoms from one nitrate anion in a distorted octahedral coordination environment. In the crystal, N—H...Cl, N—H...O, O—H...Cl and O—H...O hydrogen bonds link the complex cations, chloride anions and solvent water molecules into a three-dimensional network. π–π interactions between the imidazole and benzene rings and between the benzene rings are observed [centroid–centroid distances = 3.903 (3, 3.720 (3, 3.774 (3 and 3.926 (3 Å].

  8. H2-H2O-HI Hydrogen Separation in H2-H2O-HI Gaseous Mixture Using the Silica Membrane

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2002-01-01

    It was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical lS process. Porous alumina tube having pore size of 0.1 μm was modified by chemical vapor deposition using tetraethoxysilane. The permeance single gas of He, H 2 , and N 2 was measured at 300-600 o C. Hydrogen permeance of the modified membrane at a permeation temperature of 600 o C was about 5.22 x 10 -08 mol/Pa m 2 s, and 3.2 x 10 -09 of using gas mixture of H 2 -H 2 O-HI, where as HI permeances was below 1 x 10 -10 mol/Pa m 2 s. The Hydrogen permeance relative was not changed after 25 hours exposure in a mixture of H 2 -H 2 O-HI gas at the temperature of 450 o C. (author)

  9. Hierarchical Honeycomb Br-, N-Codoped TiO2 with Enhanced Visible-Light Photocatalytic H2 Production.

    Science.gov (United States)

    Zhang, Chao; Zhou, Yuming; Bao, Jiehua; Sheng, Xiaoli; Fang, Jiasheng; Zhao, Shuo; Zhang, Yiwei; Chen, Wenxia

    2018-06-06

    The halogen elements modification strategy of TiO 2 encounters a bottleneck in visible-light H 2 production. Herein, we have for the first time reported a hierarchical honeycomb Br-, N-codoped anatase TiO 2 catalyst (HM-Br,N/TiO 2 ) with enhanced visible-light photocatalytic H 2 production. During the synthesizing process, large amounts of meso-macroporous channels and TiO 2 nanosheets were fabricated in massive TiO 2 automatically, constructing the hierarchical honeycomb structure with large specific surface area (464 m 2 g -1 ). cetyl trimethylammonium bromide and melamine played a key role in constructing the meso-macroporous channels. Additionally, HM-Br,N/TiO 2 showed a high visible-light H 2 production rate of 2247 μmol h -1 g -1 , which is far more higher than single Br- or N-doped TiO 2 (0 or 63 μmol h -1 g -1 , respectively), thereby demonstrating the excellent synergistic effects of Br and N elements in H 2 evolution. In HM-Br,N/TiO 2 catalytic system, the codoped Br-N atoms could reduce the band gap of TiO 2 to 2.88 eV and the holes on acceptor levels (N acceptor) can passivate the electrons on donor levels (Br donor), thereby preventing charge carriers recombination significantly. Furthermore, the proposed HM-Br,N/TiO 2 fabrication strategy had a wide range of choices for N source (e.g., melamine, urea, and dicyandiamide) and it can be applied to other TiO 2 materials (e.g., P25) as well, thereby implying its great potential application in visible-light H 2 production. Finally, on the basis of experimental results, a possible photocatalytic H 2 production mechanism for HM-Br,N/TiO 2 was proposed.

  10. Structure and thermal property of N,N-diethyl-N-methyl-N-2-methoxyethyl ammonium tetrafluoroborate-H2O mixtures

    International Nuclear Information System (INIS)

    Imai, Yusuke; Abe, Hiroshi; Goto, Takefumi; Yoshimura, Yukihiro; Michishita, Yosuke; Matsumoto, Hitoshi

    2008-01-01

    By in situ observations using simultaneous X-ray diffraction and differential scanning calorimetry method, complicated phase transitions were observed in N,N-diethyl-N-methyl-N-2-methoxyethyl ammonium tetrafluoroborate, [DEME][BF 4 ] and H 2 O mixtures. In pure [DEME][BF 4 ], two different crystal structures were determined below crystallization temperature, T c . Two kinds of crystals correspond to two stages of melting upon heating. T c decreases with increasing in the H 2 O content of [DEME][BF 4 ]-H 2 O mixture. Around 6.7 mol% H 2 O, an amorphous solid, however, was formed without crystallization on cooling. Glass transition temperature, T g , of the amorphous phase depends on cooling rate of the mixture. On heating, the amorphous solid transformed to a crystal accompanied by an exothermal peak. This unusual cold crystallization is induced by H 2 O molecules. Two different dynamic components were observed in a Raman spectrum of the amorphous phase, where the lower Raman band is crystal-like and the higher one is liquid-like. At higher H 2 O concentration, coexistence of the amorphous solid and crystal was realized below T c , and the cold crystallization also occurred. In spite of a variety of phase transitions, the crystal structure of [DEME][BF 4 ]-H 2 O mixtures is the same one as pure [DEME][BF 4

  11. [Pr2(pdc3(Hpdc(H2O4]n·n(H3hp·8n(H2O, a One-Dimensional Coordination Polymer Containing PrO6N3 Tri-Capped Trigonal Prisms and PrO8N Mono-Capped Square Anti-Prisms (H2pdc = Pyridine 2,6-Dicarboxylic Acid, C7H5NO4; 3hp = 3-Hydroxy Pyridine, C5H5NO

    Directory of Open Access Journals (Sweden)

    Shahzad Sharif

    2012-08-01

    Full Text Available The synthesis, structure and some properties of the one-dimensional coordination polymer, [Pr2(pdc3(Hpdc]n·n(H3hp·8n(H2O, (H2pdc = pyridine 2,6-dicarboxylic acid, C7H5NO4; 3hp = 3-hydroxypyridine, C5H5NO are described. One of the Pr3+ ions is coordinated by two O,N,O-tridentate pdc2− ligands and one tridentate Hpdc− anion to generate a fairly regular PrO6N3 tri-capped trigonal prism, with the N atoms acting as the caps. The second Pr3+ ion is coordinated by one tridentate pdc2− dianion, four water molecules and two monodentate bridging pdc2− ligands to result in a PrO8N coordination polyhedron that approximates to a mono-capped square-anti-prism. The ligands bridge the metal-atom nodes into a chain, which extends in the [100] direction. The H3hp+ cation and uncoordinated water molecules occupy the inter-chain regions and an N–HLO and numerous O–HLO hydrogen bonds consolidate the structure. The H3hp+ species appears to intercalate between pendant pdc rings to consolidate the polymeric structure. Crystal data: 1 (C33H43N5O29Pr2, Mr = 1255.54, triclinic,  (No. 2, Z = 2, a = 13.2567(1 Å, b = 13.6304(2 Å, c = 13.6409(2 Å, α = 89.695(1°, β = 63.049(1°, γ = 86.105(1°, V = 2191.16(5 Å3, R(F = 0.033, wR(F2 = 0.084.

  12. Vibrational spectra of Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·nH2O (n = 4, 6) with a crystal structure determination of the Tutton salt Cs2Cu(SeO4)2·6H2O

    Science.gov (United States)

    Wildner, M.; Marinova, D.; Stoilova, D.

    2016-02-01

    The solubility in the three-component systems Cs2SO4-CuSO4-H2O and Cs2SeO4-CuSeO4-H2O have been studied at 25 °C. The experimental results show that double salts, Cs2Cu(SO4)2·6H2O and Cs2Cu(SeO4)2·4H2O, crystallize from the ternary solutions within large concentration ranges. Crystals of Cs2Cu(SeO4)2·6H2O were synthesized at somewhat lower temperatures (7-8 °C). The thermal dehydration of the title compounds was studied by TG, DTA and DSC methods and the respective dehydration schemes are proposed. The calculated enthalpies of dehydration (ΔHdeh) have values of: 434.2 kJ mol-1 (Cs2Cu(SeO4)2·6H2O), 280.9 kJ mol-1 (Cs2Cu(SeO4)2·4H2O), and 420.2 kJ mol-1 (the phase transition of Cs2Cu(SO4)2·6H2O into Cs2Cu(SO4)2·H2O). The crystal structure of Cs2Cu(SeO4)2ṡ6H2O was determined from single crystal X-ray diffraction data. It belongs to the group of Tutton salts, crystallizing isotypic to the respective sulfate in a monoclinic structure which is characterized by isolated Cu(H2O)6 octahedra and SeO4 tetrahedra, interlinked by hydrogen bonds and [9]-coordinated Cs+ cations. Infrared spectra of the cesium copper compounds are presented and discussed with respect to both the normal modes of the tetrahedral ions and the water molecules. The analysis of the infrared spectra of the double compounds reveals that the distortion of the selenate tetrahedra in Cs2Cu(SeO4)2·4H2O is stronger than those in Cs2Cu(SeO4)2·6H2O in agreement with the structural data. Matrix-infrared spectroscopy was applied to confirm this claim - Δν3 for SO4 2 - ions matrix-isolated in Cs2Cu(SeO4)2·6H2O has a value of 35 cm-1 and that of the same ions included in Cs2Cu(SeO4)2·4H2O - 84 cm-1. This spectroscopic finding is due to the formation of strong covalent bands Cu-OSO3 on one hand, and on the other to the stronger deformation of the host SeO4 2 - tetrahedra in Cs2Cu(SeO4)2·4H2O as compared to those in Cs2Cu(SeO4)2·6H2O. The strength of the hydrogen bonds as deduced from the

  13. Highly stable [mambf6-n(o/h2o)n(ligand)2(solvent)x]n metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed; Adil, Karim; Belmabkhout, Youssef; Shekhah, Osama; Bhatt, Prashant M.; Cadiau, Amandine

    2016-01-01

    Provided herein are metal organic frameworks having high selectivity and stability in the present of gases and vapors including H2S, H2O, and CO2. Metal organic frameworks can comprise metal nodes and N-donor organic ligands. Further provided

  14. Ni/La2O3 catalyst containing low content platinum-rhodium for the dehydrogenation of N2HH2O at room temperature

    Science.gov (United States)

    O, Song-Il; Yan, Jun-Min; Wang, Hong-Li; Wang, Zhi-Li; Jiang, Qing

    2014-09-01

    Ni/La2O3 nanocatalyst with Pt and Rh content as low as 5 mol%, respectively, is successfully synthesized by a facile co-reduction method in the presence of hexadecyl trimethyl ammonium chloride aqueous solution under ambient atmosphere. Interestingly, the resulted Ni/La2O3 catalyst with low cost exhibits excellent catalytic activity to dehydrogenation of hydrous hydrazine (N2HH2O), producing hydrogen with 100% selectivity at room temperature (298 K), which represents a promising step toward the practical application for N2HH2O system on fuel cells.

  15. Highly stable [mambf6-n(o/h2o)n(ligand)2(solvent)x]n metal organic frameworks

    KAUST Repository

    Eddaoudi, Mohamed

    2016-10-13

    Provided herein are metal organic frameworks having high selectivity and stability in the present of gases and vapors including H2S, H2O, and CO2. Metal organic frameworks can comprise metal nodes and N-donor organic ligands. Further provided are methods of making metal organic frameworks.

  16. Study of the solubility, viscosity and density in Na+, Zn2+/Cl− − H2O, Na+ − Zn2+ − (H2PO2)− − H2O, Na+, Cl−/(H2PO2)− − H2O, and Zn2+, Cl−/(H2PO2)− − H2O ternary systems, and in Na+, Zn2+/Cl−, (H2PO2)−//H2O reciprocal quaternary system at 273.15 K

    International Nuclear Information System (INIS)

    Adiguzel, Vedat; Erge, Hasan; Alisoglu, Vahit; Necefoglu, Hacali

    2014-01-01

    Highlights: • The physicochemical properties of ternary and one quaternary have been studied. • Reciprocal quaternary systems’ solubility and phase equilibrium have been studied. • In all systems the solid phases have been found. • It was found that Zn(H 2 PO 2 ) 2 salt contains 70% of the general crystallization field. - Abstract: The solubility and the physicochemical properties (density, viscosity) in the Na-Zn- Cl-H 2 O), (Na + Zn + H 2 PO 2 + H 2 O), (Na + Cl + H 2 PO 2 + H 2 O), and (Zn + Cl + H 2 PO 2 + H 2 O) ternaries, and in Na + , Zn 2+ /Cl − , (H 2 PO 2 ) − //H 2 O reciprocal quaternary systems at T = 273.15 K were investigated by using the isothermal method. The diagrams of ternary salts systems, (NaCl + ZnCl 2 + H 2 O), (NaCl + NaH 2 PO 2 + H 2 O), (NaH 2 PO 2 + Zn(H 2 PO 2 ) 2 + H 2 O), (ZnCl 2 + Zn(H 2 PO 2 ) 2 + H 2 O), are plotted in figures 1–4. However, whole ions of reciprocal quaternary salt systems are plotted in figure 5. Additionally, the density and viscosity values of ternary systems vs. their corresponding composition values in weight per cent are plotted in figures 6–10. At the (i) (ZnCl 2 + Zn(H 2 PO 2 ) 2 + H 2 O), (ii) (NaCl + ZnCl 2 + H 2 O), (iii) (NaCl + NaH 2 PO 2 + H 2 O), (iv) (NaH 2 PO 2 + Zn(H 2 PO 2 ) 2 + H 2 O) ternary systems the solid phase compositions have been determined as: (i) Zn(H 2 PO 2 ) 2H 2 O, Zn(H 2 PO 2 ) 2 , ZnCl 22H 2 O, (ii) NaCl, 2NaCl ⋅ ZnCl 22H 2 O, and ZnCl 22H 2 O, (iii) NaCl and NaH 2 PO 2H 2 O, (iv) Zn(H 2 PO 2 ) 2H 2 O and NaH 2 PO 2H 2 O, respectively. On the other hand reciprocal quaternary system was observed as: ZnCl 22H 2 O, 2NaCl ⋅ ZnCl 22H 2 O, Zn(H 2 PO 2 ) 2H 2 O, NaH 2 PO 2H 2 O, NaCl. According to results, the least soluble salt was Zn(H 2 PO 2 ) 2 . The crystallization field of this salt, being the largest in comparison with those of other salts, occupied 70% of the general crystallization field

  17. Hydrothermal synthesis and crystal structure of the Ni2(C4H4N2)(V4O12)(H2O)2 and Ni3(C4H4N2)3(V8O23) inorganic-organic hybrid compounds. Thermal, spectroscopic and magnetic studies of the hydrated phase

    International Nuclear Information System (INIS)

    Larrea, Edurne S.; Mesa, Jose L.; Pizarro, Jose L.; Arriortua, Maria I.; Rojo, Teofilo

    2007-01-01

    Ni 2 (C 4 H 4 N 2 )(V 4 O 12 )(H 2 O) 2 , 1, and Ni 3 (C 4 H 4 N 2 ) 3 (V 8 O 23 ), 2, have been synthesized using mild hydrothermal conditions at 170 deg. C under autogenous pressure. Both phases crystallize in the P-1 triclinic space group, with the unit-cell parameters, a=7.437(7), b=7.571(3), c=7.564(4) A, α=65.64(4), β=76.09(4), γ=86.25(3) o for 1 and a=8.566(2), b=9.117(2), c=12.619(3) A, α=71.05(2), β=83.48(4), γ=61.32(3) o for 2, being Z=2 for both compounds. The crystal structure of the three-dimensional 1 is constructed from layers linked between them through the pyrazine molecules. The sheets are formed by edge-shared [Ni 2 O 6 (H 2 O) 2 N 2 ] nickel(II) dimers octahedra and rings composed by four [V 4 O 12 ] vanadium(V) tetrahedra linked through vertices. The crystal structure of 2 is formed from vertex shared [VO 4 ] tetrahedra that give rise to twelve member rings. [NiO 4 (C 4 H 4 N 2 ) 2 ] ∞ chains, resulting from [NiO 4 N 2 ] octahedra and pyrazine molecules, give rise to a 3D skeleton when connecting to [VO 4 ] tetrahedra. Diffuse reflectance measurements of 1 indicate a slightly distorted octahedral geometry with values of Dq=880, B=980 and C=2700 cm -1 . Magnetic measurements of 1, carried out in the 5.0-300 K range, indicate the existence of antiferromagnetic couplings with a Neel temperature near to 38 K. - Graphical abstract: Crystal structure of a sheet of Ni 2 (C 4 H 4 N 2 )(V 4 O 12 )(H 2 O) 2

  18. Emission noise spectrum in a premixed H2-O2-N2 flame

    NARCIS (Netherlands)

    Alkemade, C.T.J.; Hooymayers, H.P.; Lijnse, P.L.; Vierbergen, T.J.M.J.

    Experimental noise spectra in the frequency range of 15–105 Hz are reported for the thermal emission of the first resonance doublet of Na and K in a premixed H2-O2-N2 flame, and for the flame background emission. Under certain conditions, low-frequency peaks arise in the noise spectrum below 100 Hz,

  19. Growth of GaN layers using Ga2O vapor obtained from Ga and H2O vapor

    International Nuclear Information System (INIS)

    Sumi, Tomoaki; Taniyama, Yuuki; Takatsu, Hiroaki; Juta, Masami; Kitamoto, Akira; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke; Isemura, Masashi

    2015-01-01

    In this study, we performed growth of GaN layers using Ga 2 O vapor synthesized from Ga and H 2 O vapor. In this process, we employed H 2 O vapor instead of HCl gas in hydride vapor phase epitaxy (HVPE) to synthesize Ga source gas. In the synthesis reaction of Ga 2 O, a Ga 2 O 3 whisker formed and covered Ga, which impeded the synthesis reaction of Ga 2 O. The formation of the Ga 2 O 3 whisker was suppressed in H 2 ambient at high temperatures. Then, we adopted this process to supply a group III precursor and obtained an epitaxial layer. X-ray diffraction (XRD) measurement revealed that the epitaxial layer was single-crystalline GaN. Growth rate increased linearly with Ga 2 O partial pressure and reached 104 µm/h. (author)

  20. Modeling Plasma-based CO2 and CH4 Conversion in Mixtures with N2, O2 and H2O: the Bigger Plasma Chemistry Picture

    KAUST Repository

    Wang, Weizong

    2018-01-18

    Due to the unique properties of plasma technology, its use in gas conversion applications is gaining significant interest around the globe. Plasma-based CO2 and CH4 conversion have become major research areas. Many investigations have already been performed regarding the single component gases, i.e. CO2 splitting and CH4 reforming, as well as for two component mixtures, i.e. dry reforming of methane (CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2 hydrogenation (CO2/H2), and even first steps towards the influence of N2 impurities have been taken, i.e. CO2/N2 and CH4/N2. In this feature article we briefly discuss the advances made in literature for these different steps from a plasma chemistry modeling point of view. Subsequently, we present a comprehensive plasma chemistry set, combining the knowledge gathered in this field so far, and supported with extensive experimental data. This set can be used for chemical kinetics plasma modeling for all possible combinations of CO2, CH4, N2, O2 and H2O, to investigate the bigger picture of the underlying plasmachemical pathways for these mixtures in a dielectric barrier discharge plasma. This is extremely valuable for the optimization of existing plasma-based CO2 conversion and CH4 reforming processes, as well as for investigating the influence of N2, O2 and H2O on these processes, and even to support plasma-based multi-reforming processes.

  1. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O-H2O and δ2H-H2O values by cavity ring-down spectroscopy

    Science.gov (United States)

    Johnson, Jennifer E.; Rella, Chris W.

    2017-08-01

    Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  2. (Solid + liquid) phase equilibria of (Ca(H2PO2)2 + CaCl2 + H2O) and (Ca(H2PO2)2 + NaH2PO2 + H2O) ternary systems at T = 323.15 K

    International Nuclear Information System (INIS)

    Cao, Hong-yu; Zhou, Huan; Bai, Xiao-qin; Ma, Ruo-xin; Tan, Li-na; Wang, Jun-min

    2016-01-01

    Graphical abstract: Solubility diagram of the (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) system at T = (323.15 and 298.15) K. - Highlights: • Phase diagrams of Ca 2+ -H 2 PO 2 − -Cl − -H 2 O, Ca 2+ -Na + -H 2 PO 2 − -H 2 O at 323.15 K were obtained. • Incompatible double salt of NaCa(H 2 PO 2 ) 3 in Ca 2+ -Na + -H 2 PO 2 − -H 2 O system was determined. • Density diagram of the corresponding liquid were simultaneously measured. - Abstract: Calcium hypophosphite has been widely used as an anti-corrosive agent, flame retardant, fertilizer, assistant for Ni electroless plating, and animal nutritional supplement. High purity calcium hypophosphite can be synthesized via the replacement reaction of sodium hypophosphite and calcium chloride. In this work, the (solid + liquid) phase equilibria of (Ca(H 2 PO 2 ) 2 + CaCl 2 + H 2 O) and (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) ternary systems at T = 323.15 K were studied experimentally via the classical isothermal solubility equilibrium method, and the phase diagrams for these two systems were obtained. It was found that two solid salts of CaCl 2 ·2H 2 O and Ca(H 2 PO 2 ) 2 exist in the (Ca(H 2 PO 2 ) 2 + CaCl 2 + H 2 O) system, and three salts of Ca(H 2 PO 2 ) 2 , NaH 2 PO 2 ·H 2 O and one incompatible double salt, NaCa(H 2 PO 2 ) 3 occur in the (Ca(H 2 PO 2 ) 2 + NaH 2 PO 2 + H 2 O) system.

  3. Structure of H2/O2/N2 flames at atmospheric pressure studied by molecular beam mass spectrometry and modeling

    NARCIS (Netherlands)

    Knyazkov, D.A.; Korobeinichev, O.P.; Shmakov, A.G.; Rybitskaya, I.V.; Bolshova, T.A.; Chernov, D.A.; Konnov, A.A.

    2009-01-01

    Structure of laminar premixed flat H2/O2/N2 flames with different equivalence ratios at atmospheric pressure isinvestigated experimentally and by numerical modeling. Concentration profiles of stable species (H2, O2, H2O) as well as of H atoms and OH radicals in the flames were measured using

  4. [2-(Dimethylaminoethanol-κ2N,O][2-(dimethylaminoethanolato-κ2N,O]iodidocopper(II

    Directory of Open Access Journals (Sweden)

    Elena A. Buvaylo

    2012-04-01

    Full Text Available The title compound, [Cu(C4H10NOI(C4H11NO], was obtained unintentionally as the product of an attempted synthesis of a Cu/Zn mixed-metal complex using zerovalent copper, zinc(II oxide and ammonium iodide in pure 2-(dimethylaminoethanol, in air. The molecular complex has no crystallographically imposed symmetry. The coordination geometry around the metal atom is distorted square-pyramidal. The equatorial coordination around copper involves donor atoms of the bidentate chelating 2-(dimethylaminoethanol ligand and the 2-(dimethylaminoethanolate group, which are mutually trans to each other, with four approximately equal short Cu—O/N bond distances. The axial Cu—I bond is substantially elongated. Intermolecular hydrogen-bonding interactions involving the –OH group of the neutral 2-(dimethylaminoethanol ligand to the O atom of the monodeprotonated 2-(dimethylaminoethanolate group of the molecule related by the n-glide plane, as indicated by the O...O distance of 2.482 (12 Å, form chains of molecules propagating along [101].

  5. Implications of the (H2O)n + CO ↔ trans-HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions for primordial atmospheres of Venus and Earth

    Science.gov (United States)

    Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.

    2018-04-01

    The forward and backward (H2O)n + CO ↔ HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions were studied in order to furnish trustworthy thermochemical and kinetic data. Stationary point structures involved in these chemical processes were achieved at the B2PLYP/cc-pVTZ level so that the corresponding vibrational frequencies, zero-point energies, and thermal corrections were scaled to consider anharmonicity effects. A complete basis set extrapolation was also employed with the CCSD(T) method in order to improve electronic energy descriptions and providing therefore more accurate results for enthalpies, Gibbs energies, and rate constants. Forward and backward rate constants were encountered at the high-pressure limit between 200 and 4000 K. In turn, modified Arrhenius' equations were fitted from these rate constants (between 700 and 4000 K). Next, considering physical and chemical conditions that have supposedly prevailed on primitive atmospheres of Venus and Earth, our main results indicate that 85-88 per cent of all water forms on these atmospheres were monomers, whereas (H2O)2 and (H2O)3 complexes would represent 12-15 and ˜0 per cent, respectively. Besides, we estimate that Earth's and Venus' primitive atmospheres could have been composed by ˜0.001-0.003 per cent of HCOOH when their temperatures were around 1000-2000 K. Finally, the water loss process on Venus may have occurred by a mechanism that includes the formic acid as intermediate species.

  6. Crystal structure of tetraaqua[2-(pyridin-2-yl-1H-imidazole-κ2N2,N3]iron(II sulfate

    Directory of Open Access Journals (Sweden)

    Zouaoui Setifi

    2015-04-01

    Full Text Available In the title compound, [Fe(C8H7N3(H2O4]SO4, the central FeII ion is octahedrally coordinated by two N atoms from the bidentate 2-(pyridin-2-yl-1H-imidazole ligand and by four O atoms of the aqua ligands. The largest deviation from the ideal octahedral geometry is reflected by the small N—Fe—N bite angle of 76.0 (1°. The Fe—N coordination bonds have markedly different lengths [2.1361 (17 and 2.243 (2 Å], with the shorter one to the pyrimidine N atom. The four Fe—O coordination bond lengths vary from 2.1191 (18 to 2.1340 (17 Å. In the crystal, the cations and anions are arranged by means of medium-strength O—H...O hydrogen bonds into layers parallel to the ab plane. Neighbouring layers further interconnect by N—H...O hydrogen bonds involving the imidazole fragment as donor group to one sulfate O atom as an acceptor. The resulting three-dimensional network is consolidated by C—H...O, C—H...π and π–π interactions.

  7. [H3N(CH2)4NH3]2[Al4(C2O4)(H2PO4)2(PO4)4].4[H2O]: A new layered aluminum phosphate-oxalate

    International Nuclear Information System (INIS)

    Peng Li; Li Jiyang; Yu Jihong; Li Guanghua; Fang Qianrong; Xu Ruren

    2005-01-01

    A new layered inorganic-organic hybrid aluminum phosphate-oxalate [H 3 N(CH 2 ) 4 NH 3 ] 2 [Al 4 (C 2 O 4 )(H 2 PO 4 ) 2 (PO 4 ) 4 ].4[H 2 O](AlPO-CJ25) has been synthesized hydrothermally, by using 1,4-diaminobutane (DAB) as structure-directing agent. The structure has been solved by single-crystal X-ray diffraction analysis and further characterized by IR, 31 P MAS NMR, TG-DTA as well as compositional analyses. Crystal data: the triclinic space group P-1, a=8.0484(7) A, b=8.8608(8) A, c=13.2224(11) A, α=80.830(6) deg. , β=74.965(5) deg. , γ=78.782(6) deg. , Z=2, R 1[ I >2 σ ( I )] =0.0511 and wR 2(alldata) =0.1423. The alternation of AlO 4 tetrahedra and PO 4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO 6 octahedra to form the layered structure with 4,6-net sheet. Interestingly, oxalate ions are bis-bidentately bonded by participating in the coordination of AlO 6 , and bridging the adjacent AlO 6 octahedra. The layers are held with each other through strong H-bondings between the terminal oxygens. The organic ammonium cations and water molecules are located in the large cavities between the interlayer regions. -- Graphical abstract: The alternation of AlO 4 tetrahedra and PO 4 tetrahedra gives rise to the four-membered corner-sharing chains, which are interconnected through AlO 6 octahedra to form the layered structure with 4,6-net sheet. Oxalate ions are bis-bidentately boned by participating in the coordination of AlO 6 , and bridging the adjacent AlO 6 octahedra

  8. N-(2-Methylphenyl-1,2-benzoselenazol-3(2H-one

    Directory of Open Access Journals (Sweden)

    Xu Zhu

    2013-10-01

    Full Text Available In the title Ebselen [systematic name: (2-phenyl-1,2-benzoisoselenazol-3-(2H-one] analogue, C14H11NOSe, the benzisoselenazolyl moiety (r.m.s. deviation = 0.0209 Å is nearly perpendicular to the N-arenyl ring, making a dihedral angle of 78.15 (11°. In the crystal, molecules are linked by C—H...O and Se...O interactions into chains along the c-axis direction. The Se...O distance [2.733 (3 Å] is longer than that in Ebselen (2.571 (3 Å].

  9. Sonolytic Oxidation of Tc(IVO2nH2O Nanoparticles to Tc(VIIO4 in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    M. Zakir

    2010-04-01

    Full Text Available Sonolysis of a hydrosol of TcO2nH2O was investigated in the Ar- or He- atmosphere. Colloidal TcO2nH2O nanoparticles were irradiated with a 200 kHz and 1.25 W/cm2 ultrasound. It was found that the TcO2nH2O colloids dispersed in an aqueous solution (under Ar or He atmosphere was completely dissolved by ultrasonic irradiation (200 kHz, 200 W. The original brownish black color of the suspension slowly disappeared leaving behind a colorless solution. This change suggests that oxidation of Tc(IV to Tc(VII takes place. The oxidation was almost complete during 30 minutes sonication time under argon atmosphere for initial concentration of 6.0E-5 M. Addition of t-butyl alcohol, an effective radical scavenger which readily reacts with OH radicals, supressed the dissolution of TcO2nH2O colloids. This reaction indicates that TcO2nH2O molecules are oxidized by OH radicals produced in cavitation bubbles.

  10. Electron spin resonance study of a-Cr2O3 and Cr2OnH2O quasi-spherical nanoparticles

    CSIR Research Space (South Africa)

    Khamlich, S

    2011-12-01

    Full Text Available The quasi-spherical nanoparticles of hydrated Cr2O3 · nH2O, and crystalline -Cr2O3, have been synthesized by reduction of the first row (3d) transition metal complex of K2Cr2O7. The temperaturedependence of electron spin resonance (ESR) spectrum...

  11. Synthesis and characterization of polymer eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O as well as the interaction of [Y III(pdta)(H 2O)] 22- with BSA

    Science.gov (United States)

    Liu, Bin; Wang, Jun; Wang, Xin; Liu, Bing-Mi; He, Ling-Ling; Xu, Shu-Kun

    2010-12-01

    The eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O (en = ethylenediamine and H 4pdta = 1,3-propylenediamine- N, N, N', N'-tetraacetic acid) was synthesized, meanwhile its molecular and crystal structures were determined by single-crystal X-ray diffraction technology. The interaction between [Y III(pdta)(H 2O)] 22- and bovine serum albumin (BSA) was investigated by UV-vis and fluorescence spectra. The results indicate that [Y III(pdta)(H 2O)] 22- quenched effectively the intrinsic fluorescence of BSA via a static quenching process with the binding constant ( Ka) of the order of 10 4. Meanwhile, the binding and damaging sites to BSA molecules were also estimated by synchronous fluorescence. Results indicate that the hydrophobic environments around Trp and Tyr residues were all slightly changed. The thermodynamic parameters (Δ G = -25.20 kJ mol -1, Δ H = -26.57 kJ mol -1 and Δ S = -4.58 J mol -1 K -1) showed that the reaction was spontaneous and exothermic. What is more, both Δ H and Δ S were negative values indicated that hydrogen bond and Van der Waals forces were the predominant intermolecular forces between [Y III(pdta)(H 2O)] 22- and BSA.

  12. Preparation and infrared spectra of the Schiff base solid complexes [UO2(sal-O-phdn)(H2O)] and [UO2(sal-O-phdn) (Et3N)] (sal-O-phdn=n, n'-o-phenylenebissalicylideniminato)

    International Nuclear Information System (INIS)

    Sadeek, S.A.; Teleb, S.M.; Al-Kority, A.M.

    1993-01-01

    In the present communication, we report the preparation of the related two new complexes, [UO 2 (sal-o-phdn)(H 2 O)] and LUO 2 (sal-o-phdn)(Et 3 N)], where sal-o-phdn=N, N'-o-phenylenebis (salicylideneiminato); here U VI is seven-coordinate. The infrared spectra of these two complexes are recorded and assigned. (author). 10 refs., 1 tab

  13. One-dimensional ferromagnetic array compound [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate)

    Science.gov (United States)

    Honda, Zentaro; Nomoto, Naoyuki; Fujihara, Takashi; Hagiwara, Masayuki; Kida, Takanori; Sawada, Yuya; Fukuda, Takeshi; Kamata, Norihiko

    2018-06-01

    We report on the syntheses, crystal structure, and magnetic properties of the transition metal coordination polymer [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate) in which CoO6 octahedra are linked through their edges, forming one-dimensional (1D) Co(II) arrays running along the crystal a-axis. These arrays are further perpendicularly bridged by SBA ligand to construct a three-dimensional framework. Its magnetic properties have been investigated, and ferromagnetic interactions within the arrays have been found. From heat capacity measurements, we have found that this compound exhibits a three-dimensional ferromagnetic phase transition at TC = 1.54 K, and the specific heat just above TC shows a Schottky anomaly which originates from an energy gap caused by uniaxial magnetic anisotropy. These results suggest that [Co3(SBA)2(OH)2(H2O)2]n consists of weakly coupled 1D ferromagnetic Ising arrays.

  14. Synthesis and crystal structure of trans-[Ni(pyzdcH)M 2 (H 2 O) 2 ...

    African Journals Online (AJOL)

    The determined structure of the title compound C24H20Ni2N8O20 consists of the mononuclear trans-[Ni(pyzdc)2(H2O)2], (pyzdc = pyrazine-2,3- dicarboxylate). The Ni(II) atom is hexa-coordinated by two (pyzdcH)- groups and two water molecules. The coordinated water molecules are in trans-diaxial positions and the ...

  15. Nanoparticle formation in H2O/N-2 and H2O/Ar mixtures under irradiation by 20 MeV protons and positive corona discharge

    DEFF Research Database (Denmark)

    Imanaka, M.; Tomita, S.; Kanda, S.

    2010-01-01

    To investigate the contribution of ions to gas nucleation, we have performed experiments on the formation of water droplets in H2O/N-2 and H2O/Ar gas mixtures by irradiation with a 20 MeV proton beam and by positive corona discharge. The size of the formed nanoparticles was measured using...

  16. Synthesis and crystal structure of new uranyl selenite(IV)-selenate(VI) [C5H14N][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)(HSeO4)

    International Nuclear Information System (INIS)

    Krivovichev, S.V.; Tananaev, I.G.; Myasoedov, B.F.; Kalenberg, V.

    2006-01-01

    Crystals of new uranyl selenite(IV)-selenate(VI) [C 5 H 14 N][(UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)](H 2 SeO 3 )(HSeO 4 ) are obtained by the method of evaporation from aqueous solutions. Compound has triclinic lattice, space group P1-bar, a=11.7068(9), b=14.8165(12), c=16.9766(15), α=73.899(6), β=76.221(7), γ=89.361(6) Deg, V=2743.0(4) A 3 , Z=2. Laminated complexes (UO 2 ) 3 (SeO 4 ) 4 (HSeO 3 )(H 2 O)] 3- are the basis of the structure. [HSe(VI)O 4 ] - , [H 2 Se(IV)O 3 ] complexes and protonated methylbutylamine cations are disposed between layers [ru

  17. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    International Nuclear Information System (INIS)

    Weng Shengfeng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-01-01

    Two novel materials, [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1-bar (No. 2); compound 2 crystallized in monoclinic space group P2 1 /c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of Cu II ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d 1 excited state and two levels of the 4f 1 ground state ( 2 F 5/2 and 2 F 7/2 ). Compounds 1b and 2 containing Ce III ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers. - Graphical Abstract: [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2)—with 1D and 2D structures were synthesized and characterized. Highlights: ► Two MOF – [M(C 6 H 5 O 7 )(C 6 H 6 O 7 )(C 6 H 7 O 7 )(H 2 O)] . H 2 O (M=La(1a), Ce(1b)) and [Ce 2 (C 2 O 4 )(C 6 H 6 O 7 ) 2 ] . 4H 2 O (2) – with 1D and 2D structures. ► The adjacent chains of the 1D framework were correlated with each other through an oxalate ligand to form a 2D layer structure. ► The source of the oxalate ligand was the decomposition in situ of citric acid oxidized in the presence of Cu II ions.

  18. Ab initio electron correlated studies on the intracluster reaction of NO+ (H2O)(n) → H3O+ (H2O)(n-2) (HONO) (n = 4 and 5).

    Science.gov (United States)

    Asada, Toshio; Nagaoka, Masataka; Koseki, Shiro

    2011-01-28

    Hydrated nitrosonium ion clusters NO(+)(H(2)O)(n) (n = 4 and 5) were investigated by using MP2/aug-cc-pVTZ level of theory to clarify isomeric reaction pathways for formation of HONO and fully hydrated hydride ions. We found some new isomers and transition state structures in each hydration number, whose lowest activation energies of the intracluster reactions were found to be 4.1 and 3.4 kcal mol(-1) for n = 4 and n = 5, respectively. These thermodynamic properties and full quantum mechanical molecular dynamics simulation suggest that product isomers with HONO and fully hydrated hydride ions can be obtained at n = 4 and n = 5 in terms of excess hydration binding energies which can overcome these activation barriers.

  19. Thermal decomposition of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O: Influence on structure, microstructure and hydrofluorination

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Hall de Recherche de Pierrelatte, AREVA NC, BP 16, 26701 Pierrelatte (France); Rivenet, M., E-mail: murielle.rivenet@ensc-lille.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Berrier, E. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Waele, I. de [Université de Lille, CNRS, UMR 8516 – LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille (France); Arab, M.; Amaraggi, D.; Morel, B. [Hall de Recherche de Pierrelatte, AREVA NC, BP 16, 26701 Pierrelatte (France); Abraham, F. [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-01-15

    The thermal decomposition of uranyl peroxide tetrahydrate, (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2}.2H{sub 2}O, was studied by combining high temperature powder X-ray diffraction, scanning electron microscopy, thermal analyses and spectroscopic techniques (Raman, IR and {sup 1}H NMR). In situ analyses reveal that intermediates and final uranium oxides obtained upon heating are different from that obtained after cooling at room temperature and that the uranyl precursor used to synthesize (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O, sulfate or nitrate, has a strong influence on the peroxide thermal behavior and morphology. The decomposition of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O ex sulfate is pseudomorphic and leads to needle-like shaped particles of metastudtite, (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2}, and UO{sub 3-x}(OH){sub 2x}·zH{sub 2}O, an amorphous phase found in air in the following of (UO{sub 2})O{sub 2}(H{sub 2}O){sub 2} dehydration. (UO{sub 2})O{sub 2}(H{sub 2}O){sub 22H{sub 2}O and the compounds resulting from its thermal decomposition are very reactive towards hydrofluorination as long as their needle-like morphology is kept.

  20. High-Temperature Corrosion of T92 Steel in N{sub 2}/H{sub 2}O/H{sub 2}S-Mixed Gas

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yuke; Kim, Min Jung; Park, Soon Yong; Abro, M. Ali; Yadav, Poonam; Lee, Dong Bok [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-06-15

    The ASTM T92 steel was corroded at 600 ℃ and 800 ℃ at 1 atm of N{sub 2}/3.1%H{sub 2}O/2.42%H{sub 2}S-mixed gas. The formed scales were thick and fragile. They consisted primarily of the outer FeS scale and the inner (FeS, FeCr{sub 2}S{sub 4})-mixed scale containing a small amount of the Cr{sub 2}O{sub 3} scale. This indicated that corrosion occurred mainly via sulfidation rather than oxidation due to the H{sub 2}S gas. Since FeS was present throughout the whole scale, T92 steel was non-protective, displaying high corrosion rates.

  1. The denitrification paradox: The role of O2 in sediment N2O production

    Science.gov (United States)

    Barnes, Jonathan; Upstill-Goddard, Robert C.

    2018-01-01

    We designed a novel laboratory sediment flux chamber in which we maintained the headspace O2 partial pressure at preselected values, allowing us to experimentally regulate "in-situ" O2 to evaluate its role in net N2O production by an intertidal estuarine sediment (Tyne, UK). In short-term (30 h) incubations with 10 L of overlying estuarine water (∼3 cm depth) and headspace O2 regulation (headspace: sediment/water ratio ∼9:1), net N2O production was highest at 1.2% O2 (sub-oxic; 32.3 nmol N2O m-2 d-1), an order of magnitude higher than at either 0.0% (anoxic; 2.5 N2O nmol m-2 d-1) or 20.85% (ambient; 2.3 nmol N2O m-2 d-1) O2. In a longer-term sealed incubation (∼490 h) without O2 control, time-dependent behaviour of N2O in the tank headspace was highly non-linear with time, showing distinct phases: (i) an initial period of no or little change in O2 or N2O up to ∼ 100 h; (ii) a quasi-linear, inverse correlation between O2 and N2O to ∼360 h, in which O2 declined to ∼2.1% and N2O rose to ∼7800 natm; (iii) over the following 50 h a slower O2 decline, to ∼1.1%, and a more rapid N2O increase, to ∼12000 natm; (iv) over the next 24 h a slowed O2 decline towards undetectable levels and a sharp fall in N2O to ∼4600 natm; (iv) a continued N2O decrease at zero O2, to ∼3000 natm by ∼ 490 h. These results show clearly that rapid N2O consumption (∼115 nmol m-2 d-1), presumably via heterotrophic denitrification (HD), occurs under fully anoxic conditions and therefore that N2O production, which was optimal for sub-oxic O2, results from other nitrogen transformation processes. In experiments in which we amended sediment overlying water to either 1 mM NH4+ or 1 mM NO3-, N2O production rates were 2-134 nmol N2O m-2 d-1 (NH4+ addition) and 0.4-2.2 nmol N2O m-2 d-1 (NO3- addition). We conclude that processes involving NH4+ oxidation (nitrifier nitrification; nitrifier denitrification; nitrification-coupled denitrification) are principally responsible for N2O

  2. Poly[aqua-μ-bromido-(μ2-5-methylpyrazine-2-carboxylato-κ4N1,O2:O2,O2′lead(II

    Directory of Open Access Journals (Sweden)

    Pan Yang

    2012-09-01

    Full Text Available In the title coordination polymer, [PbBr(C6H5N2O2(H2O]n, the PbII atom is coordinated by one pyrazine N atom, two bridging Br atoms, a water molecule and three carboxylate O atoms. Bridging by the two anions generates a layer structure parallel to (001; the layers are linked by O—H...N and O—H...Br hydrogen bonds, forming a three-dimensional network. The lone pair is stereochemically active, resulting in a Ψ-dodecahedral coordination environment for PbII.

  3. H2O2 INDUCES DELAYED HYPEREXCITABILITY IN NUCLEUS TRACTUS SOLITARII NEURONS

    Science.gov (United States)

    Ostrowski, Tim D.; Hasser, Eileen M.; Heesch, Cheryl M.; Kline, David D.

    2014-01-01

    Hydrogen peroxide (H2O2) is a stable reactive oxygen species and potent neuromodulator of cellular and synaptic activity. Centrally, endogenous H2O2 is elevated during bouts of hypoxia-reoxygenation, a variety of disease states, and aging. The nucleus tractus solitarii (nTS) is the central termination site of visceral afferents for homeostatic reflexes and contributes to reflex alterations during these conditions. We determined the extent to which H2O2 modulates synaptic and membrane properties in nTS neurons in rat brainstem slices. Stimulation of the tractus solitarii (which contains the sensory afferent fibers) evoked synaptic currents that were not altered by 10 – 500 μM H2O2. However, 500 μM H2O2 modulated several intrinsic membrane properties of nTS neurons, including a decrease in input resistance, hyperpolarization of resting membrane potential (RMP) and action potential (AP) threshold (THR), and an initial reduction in AP discharge to depolarizing current. H2O2 increased conductance of barium-sensitive potassium currents, and block of these currents ablated H2O2-induced changes in RMP, input resistance and AP discharge. Following washout of H2O2 AP discharge was enhanced due to depolarization of RMP and a partially maintained hyperpolarization of THR. Hyperexcitability persisted with repeated H2O2 exposure. H2O2 effects on RMP and THR were ablated by intracellular administration of the antioxidant catalase, which was immunohistochemically identified in neurons throughout the nTS. Thus, H2O2 initially reduces excitability of nTS neurons that is followed by sustained hyperexcitability, which may play a profound role in cardiorespiratory reflexes. PMID:24397952

  4. Adiabatic burning velocity of H2-O2 mixtures diluted with CO2/N2/Ar

    International Nuclear Information System (INIS)

    Ratna Kishore, V.; Muchahary, Ringkhang; Ray, Anjan; Ravi, M.R.

    2009-01-01

    Global warming due to CO 2 emissions has led to the projection of hydrogen as an important fuel for future. A lot of research has been going on to design combustion appliances for hydrogen as fuel. This has necessitated fundamental research on combustion characteristics of hydrogen fuel. In this work, a combination of experiments and computational simulations was employed to study the effects of diluents (CO 2 , N 2 , and Ar) on the laminar burning velocity of premixed hydrogen/oxygen flames using the heat flux method. The experiments were conducted to measure laminar burning velocity for a range of equivalence ratios at atmospheric pressure and temperature (300 K) with reactant mixtures containing varying concentrations of CO 2 , N 2 , and Ar as diluents. Measured burning velocities were compared with computed results obtained from one-dimensional laminar premixed flame code PREMIX with detailed chemical kinetics and good agreement was obtained. The effectiveness of diluents in reduction of laminar burning velocity for a given diluent concentration is in the increasing order of argon, nitrogen, carbon dioxide. This may be due to increased capabilities either to quench the reaction zone by increased specific heat or due to reduced transport rates. The lean and stoichiometric H 2 /O 2 /CO 2 flames with 65% CO 2 dilution exhibited cellular flame structures. Detailed three-dimensional simulation was performed to understand lean H 2 /O 2 /CO 2 cellular flame structure and cell count from computed flame matched well with the experimental cellular flame. (author)

  5. (Carbonato-κ(2)O,O')bis-(5,5'-dimethyl-2,2'-bipyridyl-κ(2)N,N')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam

    2012-04-01

    In the title complex, [Co(CO(3))(C(12)H(12)N(2))(2)]Br·3H(2)O, the Co(III) cation has a distorted octa-hedral coordination environment. It is chelated by four N atoms of two different 5,5'-dimethyl-2,2'-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol-ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O-H⋯O hydrogen bonding. The crystal packing is consolidated by C-H⋯O and C-H⋯Br hydrogen bonds, as well as π-π stacking inter-actions between adjacent pyridine rings of the dmbpy ligands, with centroid-centroid distances of 3.694 (3) and 3.7053 (3) Å.

  6. Removal of Organic Dyes from Industrial Wastewaters Using UV/H2O2, UV/H2O2/Fe (II, UV/H2O2/Fe (III Processes

    Directory of Open Access Journals (Sweden)

    Nezamaddin Daneshvar

    2007-03-01

    Full Text Available UV/H2O2, UV/H2O2/Fe (II and UV/H2O2/Fe (III processes are very effective in removing pollutants from wastewater and can be used for treatment of dyestuff units wastewaters. In this study, Rhodamine B was used as a typical organic dye. Rhodamine B has found wide applications in wax, leather, and paper industries. The results from this study showed that this dye was degradable in the presence of hydrogen peroxide under UV-C irradiation (30W mercury light and Photo-Fenton process. The dye was resistant to UV irradiation. In the absence of UV irradiation, the decolorization efficiency was very negligible in the presence of hydrogen. The effects of different system variables such as initial dye concentration, duration of UV irradiation, and initial hydrogen peroxide concentration were investigated in the UV/H2O2 process. Investigation of the kinetics of the UV/H2O2 process showed that the semi-log plot of the dye concentration versus time was linear, suggesting a first order reaction. It was found that Rhodamine B decolorization efficiencies in the UV/H2O2/Fe (II and UV/H2O2/Fe (III processes were higher than that in the UV/H2O2 process. Furthermore, a solution containing 20 ppm of Rhodamine B was decolorized in the presence 18 mM of H2O2 under UV irradiation for 15 minutes. It was also found that addition of 0.1 mM Fe(II or Fe(III to the solution containing  20  ppm of the dye and 5 mM H2O2 under UV light  illumination decreased removal time to 10 min.

  7. Diaquabis[2-(2-hydroxyethylpyridine-κ2N,O]cobalt(II dichloride

    Directory of Open Access Journals (Sweden)

    Hocine Merazig

    2013-08-01

    Full Text Available In the title salt, [Co(C7H9NO2(H2O2]Cl2, the CoII cation, located on an inversion center, is N,O-chelated by two hydroxyethylpyridine ligands and coordinated by two water molecules in a distorted O4N2 octahedral geometry. In the crystal, the Cl− anions link with the complex cations via O—H...Cl hydrogen bonds, forming a three-dimensional supramolecular architecture. π–π stacking is observed between the pyridine rings of adjacent molecules [centroid–centroid distance = 3.5810 (11 Å].

  8. Synthesis, characterization and crystal structure of the new pentahydrate of bis(2,2'-bipyridine-κ(2)N,N')(oxalato-κ(2)O(1),O(2))nickel(II).

    Science.gov (United States)

    Farkašová, Nela; Cernák, Juraj; Tomás, Milagros; Falvello, Larry R

    2014-05-01

    The reaction of NiCl2, K2C2OH2O and 2,2'-bipyridine (bpy) in water-ethanol solution at 281 K yields light-purple needles of the new pentahydrate of bis(2,2'-bipyridine)oxalatonickel(II), [Ni(C2O4)(C10H8N2)2]·5H2O or [Ni(ox)(bpy)2]·5H2O, while at room temperature, deep-pink prisms of the previously reported tetrahydrate [Ni(ox)(bpy)2]·4H2O [Román, Luque, Guzmán-Miralles & Beitia (1995), Polyhedron, 14, 2863-2869] were gathered. The asymmetric unit in the crystal structure of the new pentahydrate incorporates the discrete molecular complex [Ni(ox)(bpy)2] and five solvent water molecules. Within the complex molecule, all three ligands are bonded as chelates. The complex molecules are involved in an extended system of hydrogen bonds with the solvent water molecules. Additionally, π-π interactions also contribute to the stabilization of the extended structure. The dehydration of the pentahydrate starts at 323 K and proceeds in at least two steps as determined by thermal analysis.

  9. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)2]·4H2O

    Science.gov (United States)

    Narsimhulu, M.; Hussain, K. A.

    2018-06-01

    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)2]·4H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  10. A detailed study of the dehydration process in synthetic strelkinite, Na[(UO2)(VO4)] . nH2O (n = 0, 1, 2)

    International Nuclear Information System (INIS)

    Suleimanov, Evgeny V.; Somov, Nikolay V.; Chuprunov, Evgeny V.; Mayatskikh, Ekaterina F.; Depmeier, Wulf

    2012-01-01

    Synthetic strelkinite Na[(UO 2 )(VO 4 )] . nH 2 O (n = 0, 1, 2) was systematically investigated by single crystal X-ray diffraction and thermoanalytical methods. The anhydrous form and two hydrates were isolated as single crystals and the structures of these phases solved: Na[(UO 2 )(VO 4 )], monoclinic, P2 1 /c, a = 6.0205(1) Aa, b = 8.3365(1) Aa, c = 10.4164(2) Aa, β = 100.466(2) , V = 514.10(1) Aa 3 , R 1 = 0.0337; Na[(UO 2 )(VO 4 )] . H 2 O, monoclinic, P2 1 /c, a = 7.722(2) Aa, b = 8.512(1) Aa, c = 10.480(4) Aa, β = 113.18(3) , V = 633.3(3) Aa 3 , R 1 = 0.1658; Na[(UO 2 )(VO 4 )] . 2 H 2 O, monoclinic, P2 1 /n, a = 16.2399(5) Aa, b = 8.2844(2) Aa, c = 10.5011(2) Aa, β = 97.644(2) , V = 1400.24(6) Aa 3 , R 1 = 0.0776. A possible mechanism of the structural transformation processes during dehydration is proposed based on the structures of the anhydrous phase and the hydrates. (orig.)

  11. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    Directory of Open Access Journals (Sweden)

    Erik Hennings

    2014-12-01

    Full Text Available The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetrahedral coordination with Cl− and in an octahedral environment defined by five water molecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O5] (pentaaqua-μ-chlorido-trichloridodizinc. The trihydrate {hexaaquazinc tetrachloridozinc, [Zn(H2O6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetrahedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octahedrally surrounded by water molecules. The [ZnCl4] tetrahedra and [Zn(H2O6] octahedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexaaquazinc tetrachloridozinc trihydrate, [Zn(H2O6][ZnCl4]·3H2O}, consists of isolated octahedral [Zn(H2O6] and tetrahedral [ZnCl4] units, as well as additional lattice water molecules. O—H...O hydrogen bonds between the water molecules as donor and ZnCl4 tetrahedra and water molecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures.

  12. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    Science.gov (United States)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by hydrogenases, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of hydrogenases: [FeFe]- and [NiFe]-hydrogenases. Due to differences in the active site, the α associated with H2 production for [FeFe]- and [NiFe]-hydrogenases separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that hydrogenase-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar

  13. Axial zero-field splitting in mononuclear Co(ii) 2-N substituted N-confused porphyrin: Co(2-NC3H5-21-Y-CH2C6H4CH3-NCTPP)Cl (Y = o, m, p) and Co(2-NC3H5-21-CH2C6H5-NCTPP)Cl.

    Science.gov (United States)

    Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu

    2016-03-21

    The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.

  14. Effects of interface modification by H2O2 treatment on the electrical properties of n-type ZnO/p-type Si diodes

    International Nuclear Information System (INIS)

    He, Guan-Ru; Lin, Yow-Jon; Chang, Hsing-Cheng; Chen, Ya-Hui

    2012-01-01

    The fabrication and detailed electrical properties of heterojunction diodes based on n-type ZnO and p-type Si were reported. The effect of interface modification by H 2 O 2 treatment on the electrical properties of n-type ZnO/p-type Si diodes was investigated. The n-type ZnO/p-type Si diode without H 2 O 2 treatment showed a poor rectifying behavior with an ideality factor (n) of 2.5 and high leakage, indicating that the interfacial ZnSi x O y layer influenced the electronic conduction through the device. However, the n-type ZnO/p-type Si diode with H 2 O 2 treatment showed a good rectifying behavior with n of 1.3 and low leakage. This is because the thin SiO x layer acts as a thermodynamically stable buffer layer to suppress interfacial reaction between ZnO and Si. In addition, the enhanced photo-responsivity can be interpreted by the device rectifying performance and interface passivation. - Highlights: ► The electrical properties of n-ZnO/p-Si heterojunction diodes were researched. ► The n-ZnO/p-Si diode without H 2 O 2 treatment showed a poor rectifying behavior. ► The n-ZnO/H 2 O 2 -treated p-Si diode showed a good rectifying behavior. ► The enhanced responsivity can be interpreted by the device rectifying performance.

  15. Determination and modeling for the solubility of Na_2WO_4·2H_2O and Na_2MoO_4·2H_2O in the (Na"+ + MoO_4"2"− + WO_4"2"− + SO_4"2"− + H_2O) system

    International Nuclear Information System (INIS)

    Ning, Pengge; Xu, Weifeng; Cao, Hongbin; Xu, Hongbin

    2016-01-01

    Highlights: • The solubility of Na_2MoO_4·2H_2O and Na_2WO_4·2H_2O in Na_2MoO_4–Na_2WO_4–Na_2SO_4–H_2O were performed. • The solubility of sodium tungstate dihydrate in Na_2WO_4–Na_2SO_4–H_2O was determined. • The new model was established via regressing the published and the determined data. • The Pitzer parameter and the solubility product constant of the salt in solution were calculated. • The model was used to estimate the solubility of the sodium molybdate and sodium tungstate. - Abstract: The solubility of sodium tungstate dihydrate and sodium molybdate dihydrate in the (Na_2MoO_4 + Na_2WO_4 + Na_2SO_4 + H_2O) system was studied using experimental and calculated methods. The osmotic coefficient of sodium tungstate was fitted to calculate the thermodynamics parameters of (Na_2WO_4 + H_2O) system. The solubility of sodium tungstate dihydrate was determined using the dynamic method in Na_2WO_4–Na_2SO_4–H_2O to establish the new model which can provide an estimate the solubility of sodium tungstate dihydrate in various conditions, combined with the data published, the solubility of sodium tungstate dihydrate and the sodium molybdate dihydrate in quaternary system of (Na_2MoO_4 + Na_2WO_4 + Na_2SO_4 + H_2O) was estimated using the parameters of the two ternary systems of (Na_2WO_4 + Na_2SO_4 + H_2O) and (Na_2MoO_4 + Na_2SO_4 + H_2O). The results show that the AARD is always small and the calculated value is basically consistent with the experimental values for the system studied.

  16. Keggin type polyoxometalate H4[αSiW12O40].nH2O as intercalant for hydrotalcite

    Directory of Open Access Journals (Sweden)

    Neza Rahayu Palapa

    2017-06-01

    Full Text Available The synthesis of hydrotalcite and polyoxometalate H4[αSiW12O40].nH2O with the ratio (2:1, (1:1, (1:2 and (1:3 has been done. The product of intercalation was characterized using FT-IR spectrophotometer, XRD, and TG-DTA. Polyoxometalate H4[αSiW12O40].nH2O intercalated layered double hydroxide was optimised to use as adsorbent Congo red dye. Characterization using FT-IR was not showing the optimal insertion process. The result using XRD characterization was showed successful of polyoxometalate H4[αSiW12O40].nH2O inserted layered double hydroxide with a ratio (1:1 which the basal spacing was expanded from 7,8 Ȧ to 9,81 Ȧ. Furthermore, the thermal analysis was performed using TG-DTA. The result show that the decomposition of polyoxometalate H4[αSiW12O40].nH2O intercalated  hydrotalcite with ratio (1:1 was occured at 80oC to 400oC with a loss of OH in the layer at 150oC to 220oC, and then the decomposition of the compound polyoxometalate H4[αSiW12O40].nH2O at 350oC to 420oC. Keywords: Hydrotalcite, Layered Double Hydroxide, Polyoxometalate, Intercalation

  17. Investigation of the Na2(H2PO2)2 - Ba(H2PO2)2 - H2O Water-Salt Ternary System at Room Temperature

    OpenAIRE

    Erge, Hasan; Turan, Hakan; Kul, Ali Riza

    2016-01-01

    Objective: In this study, the solubility, density, conductivity and phase equilibria of the Na2(H2PO2)2-Ba(H2PO2)2-H2O ternary system located in the structure of the Na+, Ba2+, (H2PO2)-//H2O quaternary reciprocal water-salt system were investigated using physicochemical analysis methods. Material and Methods: Riedel-de Haen and Merck salts were used to investigate the solubility and phase equilibria of the Na2(H2PO2)2 -Ba(H2PO2)2-H2O ternary water–salt system at room temperature Res...

  18. LED and low level laser therapy association in tooth bleaching using a novel low concentration H2O2/N-doped TiO2 bleaching agent

    Science.gov (United States)

    Bezerra Dias, Hércules; Teixeira Carrera, Emanuelle; Freitas Bortolatto, Janaína; Ferrarezi de Andrade, Marcelo; Nara de Souza Rastelli, Alessandra

    2016-01-01

    Since low concentration bleaching agents containing N-doped TiO2 nanoparticles have been introduced as an alternative to conventional agents, it is important to verify their efficacy and the hypersensitivity effect in clinical practice. Six volunteer patients were evaluated for color change and hypersensitivity after bleaching using 35% H2O2 (one session of two 12 min applications) and 6% H2O2/N-doped TiO2 (one session of three 12 min applications) and after low level laser therapy application (LLLT) (780 nm, 40 mW, 10 J.cm-2, 10 s). Based on this case study, the nanobleaching agent provided better or similar aesthetic results than the conventional agent under high concentration, and its association with LLLT satisfactorily decreased the hypersensitivity. The 6% H2O2/N-doped TiO2 agent could be used instead of conventional in-office bleaching agents under high concentrations to fulfill the rising patient demand for aesthetics.

  19. H2O2: A Dynamic Neuromodulator

    Science.gov (United States)

    Rice, Margaret E.

    2012-01-01

    Increasing evidence implicates hydrogen peroxide (H2O2) as an intra- and intercellular signaling molecule that can influence processes from embryonic development to cell death. Most research has focused on relatively slow signaling, on the order of minutes to days, via second messenger cascades. However, H2O2 can also mediate subsecond signaling via ion channel activation. This rapid signaling has been examined most thoroughly in the nigrostriatal dopamine (DA) pathway, which plays a key role in facilitating movement mediated by the basal ganglia. In DA neurons of the substantia nigra, endogenously generated H2O2 activates ATP-sensitive K+ (KATP) channels that inhibit DA neuron firing. In the striatum, H2O2 generated downstream from glutamatergic AMPA receptor activation in medium spiny neurons acts as a diffusible messenger that inhibits axonal DA release, also via KATP channels. The source of dynamically generated H2O2 is mitochondrial respiration; thus, H2O2 provides a novel link between activity and metabolism via KATP channels. Additional targets of H2O2 include transient receptor potential (TRP) channels. In contrast to the inhibitory effect of H2O2 acting via KATP channels, TRP channel activation is excitatory. This review describes emerging roles of H2O2 as a signaling agent in the nigrostriatal pathway and other basal ganglia neurons. PMID:21666063

  20. The catalytic performance of Cu-containing zeolites in N2O decomposition and the influence of O2, NO and H2O on recombination of oxygen

    NARCIS (Netherlands)

    Smeets, P.J.; Sels, B.F.; Teeffelen, van R.M.; Leeman, H.; Hensen, E.J.M.; Schoonheydt, R.A.

    2008-01-01

    The catalytic decomposition of N2O was studied over Cu-containing zeolites with different Cu loadings and framework topologies (MFI, MOR, FER, BEA, and FAU). The influence of NO, O2, and H2O on the rate of N2O decomposition was investigated in detail. A kinetic model was developed based on the

  1. Interactive effects of MnO2, organic matter and pH on abiotic formation of N2O from hydroxylamine in artificial soil mixtures

    Science.gov (United States)

    Liu, Shurong; Berns, Anne E.; Vereecken, Harry; Wu, Di; Brüggemann, Nicolas

    2017-02-01

    Abiotic conversion of the reactive nitrification intermediate hydroxylamine (NH2OH) to nitrous oxide (N2O) is a possible mechanism of N2O formation during nitrification. Previous research has demonstrated that manganese dioxide (MnO2) and organic matter (OM) content of soil as well as soil pH are important control variables of N2O formation in the soil. But until now, their combined effect on abiotic N2O formation from NH2OH has not been quantified. Here, we present results from a full-factorial experiment with artificial soil mixtures at five different levels of pH, MnO2 and OM, respectively, and quantified the interactive effects of the three variables on the NH2OH-to-N2O conversion ratio (RNH2OH-to-N2O). Furthermore, the effect of OM quality on RNH2OH-to-N2O was determined by the addition of four different organic materials with different C/N ratios to the artificial soil mixtures. The experiments revealed a strong interactive effect of soil pH, MnO2 and OM on RNH2OH-to-N2O. In general, increasing MnO2 and decreasing pH increased RNH2OH-to-N2O, while increasing OM content was associated with a decrease in RNH2OH-to-N2O. Organic matter quality also affected RNH2OH-to-N2O. However, this effect was not a function of C/N ratio, but was rather related to differences in the dominating functional groups between the different organic materials.

  2. Tetrakis(6-methyl-2,2′-bipyridine-1κ2N,N′;2κ2N,N′;3κ2N,N′;4κ2N,N′-tetra-μ-nitrato-1:2κ2O:O′;2:3κ3O:O′,O′′;2:3κ3O,O′:O′′;3:4κ2O:O′-tetranitrato-1κ4O,O′;4κ2O,O′-tetralead(II

    Directory of Open Access Journals (Sweden)

    Roya Ahmadi

    2009-10-01

    Full Text Available In the tetranuclear centrosymmetric title compound, [Pb4(NO38(C11H10N24], irregular PbN2O5 and PbN2O4 coordination polyhedra occur. The heptacoordinated lead(II ion is bonded to two bidentate and one monodentate nitrate ion and one bidentate 6-methyl-2,2′-bipyridine (mbpy ligand. The six-coordinate lead(II ion is bonded to one bidentate and two monodentate nitrate anions and one mbpy ligand. In the crystal, bridging nitrate anions lead to infinite chains propagating in [111]. A number of C—H...O hydrogen bonds may stabilize the structure.

  3. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters.

    Science.gov (United States)

    Pathak, A K; Mukherjee, T; Maity, D K

    2007-07-28

    We report vertical detachment energy (VDE) and IR spectra of Br2.-.(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2.-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150 K. A linear relationship is obtained for VDE versus (n+3)(-1/3) and bulk VDE of Br2.- aqueous solution is calculated as 10.01 eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by approximately 0.5 eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by approximately 6.4 eV. Calculated IR spectra show that the formation of Br2.--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2.-.(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  4. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters

    Science.gov (United States)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2007-07-01

    We report vertical detachment energy (VDE) and IR spectra of Br2•-•(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2•-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150K. A linear relationship is obtained for VDE versus (n+3)-1/3 and bulk VDE of Br2•- aqueous solution is calculated as 10.01eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by ˜0.5eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by ˜6.4eV. Calculated IR spectra show that the formation of Br2•--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2•-•(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  5. Phase formation in the systems ZrO2-H2SO4-Na2SO4 (NaCl)-H2O

    International Nuclear Information System (INIS)

    Sozinova, Yu.P.; Motov, D.L.; Rys'kina, M.P.

    1988-01-01

    Formation of solid phases in the systems ZrO 2 - H 2 SO 4 - Na 2 SO 4 (NaCl) - H 2 O at 25 and 75 deg C is studied. Three basic Na 2 Zr(OH) 2 (SO 4 ) 2 x (0.2 - 0.4)H 2 O, NaZrOH(SO 4 ) 2 x H 2 O, NaZrO 0.5 (OH) 2 SO 4 x 2H 2 O and three normal sodium sulfatozirconates Na 2 Zr(SO 4 ) 3 x 3H 2 O, Na 4 Zr(SO 4 ) 4 x 3H 2 O, Na 6 Zr(SO 4 ) 5 x 4H 2 O have been isolated, their solubility and crystal optical properties are determined

  6. Bis(2,2'-bipyridyl-κN,N')(carbonato-κO,O')cobalt(III) bromide trihydrate.

    Science.gov (United States)

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2007-12-06

    The title complex, [Co(CO(3))(C(10)H(8)N(2))(2)]Br·3H(2)O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2'-bipy)(2)CO(3)](+) cation (2,2'-bipy is 2,2'-bipyrid-yl), bromide ion and water mol-ecules are linked together via O-H⋯Br and O-H⋯O hydrogen bonds, generating a one-dimensional chain.

  7. Potassium (2,2'-bipyridine-κN,N')bis-(carbonato-κO,O')cobaltate(III) dihydrate.

    Science.gov (United States)

    Wang, Jian-Fei; Lin, Jian-Li

    2010-09-30

    In the title compound, K[Co(CO(3))(2)(C(10)H(8)N(2))]·2H(2)O, the Co(III) atom is coordinated by two bipyridine N atoms and four O atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octa-hedral N(2)O(4) environment. The [Co(bipy)(CO(3))(2)](-) (bipy is 2,2'-bipyridine) -units are stacked along [100] via π-π stacking inter-actions, with inter-planar distances between the bipyridine rings of 3.36 (4) and 3.44 (6) Å, forming chains. Classical O-H⋯O hydrogen-bonding inter-actions link the chains, forming channels along (100) in which the K(+) ions reside and leading to a three-dimensional supra-molecular architecture.

  8. Poly[[μ2-2,2′-diethyl-1,1′-(butane-1,4-diyldiimidazole-κ2N3:N3′](μ2-5-hydroxyisophthalato-κ2O1:O3zinc

    Directory of Open Access Journals (Sweden)

    Ying-Ying Liu

    2011-11-01

    Full Text Available In the title coordination polymer, [Zn(C8H4O5(C14H22N4]n, the ZnII cation is coordinated by an O2N2 donor set in a distorted tetrahedral geometry. The ZnII ions are linked by μ2-OH-bdc (OH-H2bdc = 5-hydroxyisophthalic acid and bbie ligands [bbie = 2,2′-diethyl-1,1′-(butane-1,4-diyldiimidazole], forming a two-dimensional layer parallel to the ab plane. The layers are further connected through intermolecular C—H...O and O—H...O hydrogen bonds, forming a three-dimensional supramolecular structure. In the bbie ligand, the two C atoms in the ethyl group are each disordered over two positions with a site-occupancy ratio of 0.69:0.31.

  9. Synthesis and X-ray Crystallography of [Mg(H2O)6][AnO2(C2H5COO)3]2 (An = U, Np, or Pu).

    Science.gov (United States)

    Serezhkin, Viktor N; Grigoriev, Mikhail S; Abdulmyanov, Aleksey R; Fedoseev, Aleksandr M; Savchenkov, Anton V; Serezhkina, Larisa B

    2016-08-01

    Synthesis and X-ray crystallography of single crystals of [Mg(H2O)6][AnO2(C2H5COO)3]2, where An = U (I), Np (II), or Pu (III), are reported. Compounds I-III are isostructural and crystallize in the trigonal crystal system. The structures of I-III are built of hydrated magnesium cations [Mg(H2O)6](2+) and mononuclear [AnO2(C2H5COO)3](-) complexes, which belong to the AB(01)3 crystallochemical group of uranyl complexes (A = AnO2(2+), B(01) = C2H5COO(-)). Peculiarities of intermolecular interactions in the structures of [Mg(H2O)6][UO2(L)3]2 complexes depending on the carboxylate ion L (acetate, propionate, or n-butyrate) are investigated using the method of molecular Voronoi-Dirichlet polyhedra. Actinide contraction in the series of U(VI)-Np(VI)-Pu(VI) in compounds I-III is reflected in a decrease in the mean An═O bond lengths and in the volume and sphericity degree of Voronoi-Dirichlet polyhedra of An atoms.

  10. Crystal structure of RbCe(SeO4)2 · 5H2O

    International Nuclear Information System (INIS)

    Ovanesyan, S.M.; Iskhakova, L.D.; Trunov, V.K.

    1987-01-01

    RbTR(SeO 4 ) 2 x5H 2 O TR=La-Pr are synthesized. Crystal structure of RbCe(SeO 4 ) 2 x5H 2 O is studied. Monoclinic unit parameters are: a=7,200(2), b=8,723(1), c=19,258(6) A, Β=90,88(2), ρ (calc) =3,304 sp.gr. P2 1 /c. Within the structure the Ce nine vertex cages are united by Se(1)- and Se(2)-tetrahedrons in (Ce(SeO 4 ) 2 (H 2 O) 5 ) 2n- layers. Some crystal structure regularities of the laminated MTR(EO 4 ) 2 xnH 2 O (M=NH 4 ,K,Rb,Cs; TR=La-Ln, E=S,Se) are considered

  11. μ-Oxalato-κ4O1,O2:O1′,O2′-bis[aqua(2,2′-bipyridine-κN(nitrato-κ2O,O′lead(II

    Directory of Open Access Journals (Sweden)

    Gang-Hong Pan

    2012-10-01

    Full Text Available The title compound, [Pb2(C2O4(NO32(C10H8N22(H2O2], was synthesized hydrothermally. The binuclear complex molecule is centrosymmetric, the inversion centre being located at the mid-point of the oxalate C—C bond. The PbII ion is heptacoordinated by the O atom of one water molecule, two oxalate O atoms, two nitrate O atoms and two 2,2′-bipyridine N atoms, forming an irregular coordination environemnt. Intermolecular O—H...O hydrogen bonds between water molecules and oxalate and nitrate ions result in the formation of layers parallel to (010. π–π interactions between pyridine rings in adjacent layers, with centroid–centroid distances of 3.584 (2 Å, stabilize the structural set-up.

  12. Bis(2,2′-bipyridyl-κ2N,N′(sulfato-κ2O,O′cobalt(II ethane-1,2-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2011-01-01

    Full Text Available The title compound, [Co(SO4(C10H8N22]·C2H6O2, has the Co2+ ion in a distorted octahedral CoN4O2 coordination geometry. A twofold rotation axis passes through the Co and S atoms, and through the mid-point of the C—C bond of the ethanediol molecule. In the crystal, the [CoSO4(C10H8N22] and C2H6O2 units are held together by a pair of O—H...O hydrogen bonds.

  13. [Zn(phen)(O,N,O)(H2O)] and [Zn(phen)(O,N)(H2O)] with O,N,O is 2,6-dipicolinate and N,O is L-threoninate: synthesis, characterization, and biomedical properties.

    Science.gov (United States)

    Chin, Lee-Fang; Kong, Siew-Ming; Seng, Hoi-Ling; Tiong, Yee-Lian; Neo, Kian-Eang; Maah, Mohd Jamil; Khoo, Alan Soo-Beng; Ahmad, Munirah; Hor, Tzi-Sum Andy; Lee, Hong-Boon; San, Swee-Lan; Chye, Soi-Moi; Ng, Chew-Hee

    2012-10-01

    Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.

  14. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils

    Science.gov (United States)

    Qu, Zhi; Wang, Jingguo; Almøy, Trygve; Bakken, Lars R

    2014-01-01

    China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long-term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate-induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH-control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils. PMID:24249526

  15. Bis[μ-2-(2,4-difluorophenyl-1,3-bis(1,2,4-triazol-1-ylpropan-2-olato-κ4N2,O:O,N2′]bis[(acetato-κ2O,O′nickel(II] methanol hemisolvate

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2010-01-01

    Full Text Available In the title complex, [Ni2(C13H11F2N6O2(C2H3O22]·0.5CH3OH, there are two half-molecules in the asymmetric unit. The two centrosymmetrically related NiII atoms, each attached to an acetate ligand, are linked by two fluconazole ligands. Each NiII atom is six-coordinated in a distorted octahedral geometry by two N atoms of the triazole groups and two bridging O atoms from two different fluconazole ligands and two O atoms from a chelating acetate ligand. In the crystal structure, the half-occupied methanol solvent molecule is linked to a triazole group via an O—H...N hydrogen bond.

  16. A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2

    International Nuclear Information System (INIS)

    Ershov, B.G.; Gordeev, A.V.

    2008-01-01

    Kinetic model for the radiolysis of pure water describing the formation of H 2 , H 2 O 2 and O 2 and the radiation chemical transformations of aqueous solutions containing these compounds over a broad range of concentrations, pH, absorbed doses and dose rates is proposed and substantiated. The model includes a set of chemical reactions with optimized rate constants and the radiation chemical yields of radiolysis products. The model applicability to the description of the whole set of data on the radiation chemical transformations of water and aqueous solutions of H 2 , H 2 O 2 and O 2 is demonstrated

  17. Hydrothermal synthesis and structural characterization of an organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en)2(H2O)]4[Cu(en)2(H2O)2][Cu2Na4(α-SbW9O33)2]·6H2O

    International Nuclear Information System (INIS)

    Liu, Yingjie; Cao, Jing; Wang, Yujie; Li, Yanzhou; Zhao, Junwei; Chen, Lijuan; Ma, Pengtao; Niu, Jingyang

    2014-01-01

    An organic–inorganic hybrid sandwich-type tungstoantimonate [Cu(en) 2 (H 2 O)] 4 [Cu(en) 2 (H 2 O) 2 ][Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ]·6H 2 O (1) has been synthesized by reaction of Sb 2 O 3 , Na 2 WO 4 ·2H 2 O, CuCl 2 ·2H 2 O with en (en=ethanediamine) under hydrothermal conditions and structurally characterized by elemental analysis, inductively coupled plasma atomic emission spectrometry, IR spectrum and single-crystal X-ray diffraction. 1 displays a centric dimeric structure formed by two equivalent trivacant Keggin [α-SbW 9 O 33 ] 9− subunits sandwiching a hexagonal (Cu 2 Na 4 ) cluster. Moreover, those related hexagonal hexa-metal cluster sandwiched tungstoantimonates have been also summarized and compared. The variable-temperature magnetic measurements of 1 exhibit the weak ferromagnetic exchange interactions within the hexagonal (Cu 2 Na 4 ) cluster mediated by the oxygen bridges. - Graphical abstract: An organic–inorganic hybrid (Cu 2 Na 4 ) sandwiched tungstoantimonate [Cu(en) 2 (H 2 O)] 4 [Cu (en) 2 (H 2 O) 2 ][Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ]·6H 2 O was synthesized and magnetic properties was investigated. Display Omitted - Highlights: • Organic–inorganic hybrid sandwich-type tungstoantimonate. • (Cu 2 Na 4 sandwiched) tungstoantimonate [Cu 2 Na 4 (α-SbW 9 O 33 ) 2 ] 10− . • Ferromagnetic tungstoantimonate

  18. Neutron Spectra in H{sub 2}O, D{sub 2}O, BeO and CH{sub 2}; Spectres de Neutrons dans H{sub 2}O, D{sub 2}O, BeO et CH{sub 2}; Spektry nejtronov v H{sub 2}O, D{sub 2}O, BeO i CH{sub 2}; Espectros Neutronicos en H{sub 2}O, D{sub 2}O, BeO y CH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Neill, J. M.; Young, J. C.; Trimble, G. D.; Beyster, J. R. [General Atomic Division of General Dynamics Corporation, John Jay Hopkins Laboratory for Pure and Applied Science, San Diego, CA (United States)

    1965-08-15

    Thermal neutron spectral measurements in moderators of interest to reactor technology are being made at General Atomic. The purpose of these measurements is to provide an integral check of the adequacy of proposed scattering models for these moderators. At present the scattering kernels are obtained by measuring the double differential scattering cross-sections directly, or by inferring them from a study of the vibrational and rotational motions of the molecules in a liquid or the lattice vibrational spectrum in a solid. The direct measurement has suffered from some experimental difficulties, such as obtaining the desired intensity and resolution and making the proper corrections for multiple scattering in the sample. From the standpoint of the application to reactor technology, the latter procedure for obtaining the scattering kernel has been more satisfactory in many instances. The integral measurements that have been made, coupled to comparative calculations of the neutron spectra, allow comment to be made on the status of the theoretical scattering models for H{sub 2}O, D{sub 2}O and BeO. In this paper, angular- and position-dependent spectra measured in H{sub 2}O and D{sub 2}O poisoned with boron or cadmium are presented and show improved agreement with the theoretical values. It appears that the Nelkin model for H{sub 2}O provides a reasonable first description for the scattering by that moderator. It also appears that the Honeck model for D{sub 2}O, an extension of the incoherent model for H{sub 2}O of Nelkin, is also an adequate description for some applications. This is surprising since deuterium, unlike hydrogen, is mostly a coherent scatterer; however it supports recent studies by Koppel which showed that the intramolecular and intermolecular interference scattering terms in D{sub 2}O tend to cancel. Measured angularly-dependent neutron spectra in BeO poisoned with borated stainless steel are also presented. In general the agreement of measurement with

  19. Profiles of CH4, HDO, H2O, and N2O with improved lower tropospheric vertical resolution from Aura TES radiances

    Directory of Open Access Journals (Sweden)

    D. Noone

    2012-02-01

    Full Text Available Thermal infrared (IR radiances measured near 8 microns contain information about the vertical distribution of water vapor (H2O, the water isotopologue HDO, and methane (CH4, key gases in the water and carbon cycles. Previous versions (Version 4 or less of the TES profile retrieval algorithm used a "spectral-window" approach to minimize uncertainty from interfering species at the expense of reduced vertical resolution and sensitivity. In this manuscript we document changes to the vertical resolution and uncertainties of the TES version 5 retrieval algorithm. In this version (Version 5, joint estimates of H2O, HDO, CH4 and nitrous oxide (N2O are made using radiances from almost the entire spectral region between 1100 cm−1 and 1330 cm−1. The TES retrieval constraints are also modified in order to better use this information. The new H2O estimates show improved vertical resolution in the lower troposphere and boundary layer, while the new HDO/H2O estimates can now profile the HDO/H2O ratio between 925 hPa and 450 hPa in the tropics and during summertime at high latitudes. The new retrievals are now sensitive to methane in the free troposphere between 800 and 150 mb with peak sensitivity near 500 hPa; whereas in previous versions the sensitivity peaked at 200 hPa. However, the upper troposphere methane concentrations are biased high relative to the lower troposphere by approximately 4% on average. This bias is likely related to temperature, calibration, and/or methane spectroscopy errors. This bias can be mitigated by normalizing the CH4 estimate by the ratio of the N2O estimate relative to the N2O prior, under the assumption that the same systematic error affects both the N2O and CH4 estimates. We demonstrate that applying this ratio theoretically reduces the CH4 estimate for non-retrieved parameters that jointly affect both the N2O and CH4 estimates. The relative upper troposphere to lower troposphere bias is approximately 2.8% after this bias

  20. Synthesis, structure and magnetic behavior of a new three-dimensional Manganese phosphite-oxalate: [C2N2H10][Mn2II(OH2)2(HPO3)2(C2O4)

    International Nuclear Information System (INIS)

    Ramaswamy, Padmini; Mandal, Sukhendu; Natarajan, Srinivasan

    2009-01-01

    A novel manganese phosphite-oxalate, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO 3 )] ∞ , formed by MnO 6 octahedra and HPO 3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one-dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn 2+ ions. - Abstract: A new antiferromagnetic three-dimensional inorganic-organic hybrid compound, [C 2 N 2 H 10 ][Mn 2 II (OH 2 ) 2 (HPO 3 ) 2 (C 2 O 4 )] has been prepared hydrothermally. The compound has neutral manganese layers pillared by oxalate units. The neutral manganese layers are shown here. Display Omitted

  1. Study of ZrO2-H2SO4-(NH4)2SO4(NH4Cl)-H2O systems

    International Nuclear Information System (INIS)

    Motov, D.L.; Sozinova, Yu.P.; Rys'kina, M.P.

    1988-01-01

    Regions of formation, composition and solubility of ammonium sulfatozirconates (ASZ) in ZrO 2 -H 2 SO 4 -(NH 4 ) 2 SO 4 (NH 4 Cl)-H 2 O systems at 25 and 75 deg C are studied by the isothermal method. Five ASZ: (NH 4 ) 2 Zr(OH) 2 (SO 4 ) 2 , NH 4 ZrOH(SO 4 ) 2 xH 2 O, NH 4 ZrO 0.5 (OH) 2 SO 4 x1.5H 2 O, (NH 4 ) 2 Zr(SO 4 ) 3 x2H 2 O, (NH 4 ) 4 Zr(SO 4 ) 4 x4H 2 O are detected, their properties are investigated. Main sulfates are new compounds never described ealier

  2. Crystal structure of poly[[hexaqua-1κ4O,2κ2O-bis(μ3-pyridine-2,4-dicarboxylato-1κO2:2κ2N,O2′;1′κO4cobalt(IIstrontium(II] dihydrate

    Directory of Open Access Journals (Sweden)

    Zhaojun Yu

    2015-09-01

    Full Text Available In the title polymeric complex, {[CoSr(C7H3NO42(H2O6]·2H2O}n, the CoII ion, which is situated on a crystallographic centre of inversion, is six-coordinated by two O atoms and two N atoms from two pyridine-2,4-dicarboxylate (pydc2− ligands and two terminal water molecules in a slightly distorted octahedral geometry, to form a trans-[Co(pydc2(H2O2]2− unit. The SrII ion, situated on a C2 axis, is coordinated by four O atoms from four pydc2− ligands and four water molecules. The coordination geometry of the SrII atom can be best described as a distorted dodecahedron. Each SrII ion bridges four [Co(pydc2(H2O2]2− units by four COO− groups of four pydc2− ligands to form a three-dimensional network structure. Two additional solvent water molecules are observed in the crystal structure and are connected to the three-dimensional coordination polymer by O—H...O hydrogen bonds. Further intra- and intermolecular O—H...O hydrogen bonds consolidate the overall structure.

  3. Bis[2-(2-pyridylmethyleneaminobenzenesulfonato-κ3N,N′,O]cadmium(II dihydrate

    Directory of Open Access Journals (Sweden)

    Miao Ou-Yang

    2008-11-01

    Full Text Available The title complex, [Cd(Paba22H2O or [Cd(C12H9N2O3S22H2O, was synthesized by the reaction of the potassium salt of 2-(2-pyridylmethyleneaminobenzenesulfonic acid (PabaK with CdCl2·2.5H2O in methanol. The CdII atom lies on a crystallographic twofold axis and is coordinated by four N atoms and two O atoms from two deprotonated tridentate 2-(2-pyridylmethyleneaminobenzenesulfonate ligands in a slightly distorted octahedral environment. There are extensive hydrogen bonds of the type O—H...O between the uncoordinated water molecules and the sulfonate O atoms, through which the complex forms a layered structure parallel to (001.

  4. (2-Formyl-6-methoxyphenolato-κ2O1,O2(perchlorato-κO(1,10-phenanthroline-κ2N,N′copper(II

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Wu

    2008-05-01

    Full Text Available In the title molecule, [Cu(C8H7O3(ClO4(C12H8N2], the CuII ion is five-coordinated by two N atoms [Cu—N = 1.995 (3 and 2.022 (3 Å] from a 1,10-phenanthroline ligand, two O atoms [Cu—O = 1.908 (2 and 1.927 (2 Å] from an o-vanillin ligand and one O atom [Cu—O = 2.510 (3 Å] from a perchlorate anion in a distorted square-pyramidal geometry. Three O atoms of the perchlorate anion are rotationally disordered between two orientations, with occupancies of 0.525 (13 and 0.475 (13. In the crystal structure, two molecules related by a centre of symmetry are paired in such a way that the phenolate O atom from one molecule completes the distorted octahedral Cu coordination in another molecule [Cu...O = 2.704 (2 Å].

  5. Two new barium-copper-ethylene glycol complexes: Synthesis and structure of BaCu(C2H6O2)n(C2H4O2)2 (N = 3, 6)

    International Nuclear Information System (INIS)

    Love, C.P.; Page, C.J.; Torardi, C.C.

    1992-01-01

    Two crystalline barium-copper-ethylene glycol complexes have been isolated and structurally characterized by single-crystal x-ray diffraction. The solution-phase complex has also been investigated as a molecular precursor for use in sol-gel synthesis of high-temperature superconductors. The first crystalline form has the formula BaCu(C 2 H 6 O 2 ) 6 (C 2 H 4 O 2 ) 2 (1) and has been isolated directly from ethylene glycol solutions of the barium-copper salt. In this molecule, copper is coordinated to the four xygens of two ethylene glycolate ligands in a nearly square planar geometry. Barium is coordinated by three bidentate ethylene glycol molecules and three monodentate ethylene glycol molecules; the 9-fold coordination resembles a trigonal prism with each rectangular face capped. Copper and barium moieties do not share any ethylene glycol or glycolate oxygens; they are found by hydrogen bonding to form linear chains. The second crystal type has formula BaCu(C 2 H 6 O 2 ) 3 (C 2 H 4 O 2 ) 2 (2). It was prepared via crystallization of the mixed-metal alkoxide from an ethylene glycol/methyl ethyl ketone solution. As for 1, the copper is coordinated to four oxygen atoms of two ethylene glycolate ligands in a nearly square planar arrangement. Barium is 8-coordinate in a distorted cubic geometry. It is coordinated to three bidentate ethylene glycol molecules and shares two of the oxygen atoms bound to the copper (one from each coordinated ethylene glycol) to form a discrete molecular barium-copper complex

  6. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  7. Hydrothermal synthesis and crystal structures of new uranyl oxalate hydroxides: α- and β-[(UO2)2(C2O4)(OH)2(H2O)2] and [(UO2)2(C2O4)(OH)2(H2O)2].H2O

    International Nuclear Information System (INIS)

    Duvieubourg, Laurence; Nowogrocki, Guy; Abraham, Francis; Grandjean, Stephane

    2005-01-01

    Two modifications of the new uranyl oxalate hydroxide dihydrate [UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ] (1 and 2) and one form of the new uranyl oxalate hydroxide trihydrate [(UO 2 ) 2 (C 2 O 4 )(OH) 2 (H 2 O) 2 ].H 2 O (3) were synthesized by hydrothermal methods and their structures determined from single-crystal X-ray diffraction data. The crystal structures were refined by full-matrix least-squares methods to agreement indices R(wR)=0.0372(0.0842) and 0.0267(0.0671) calculated for 1096 and 1167 unique observed reflections (I>2σ(I)), for α (1) and β (2) forms, respectively and to R(wR)=0.0301(0.0737) calculated for 2471 unique observed reflections (I>2σ(I)), for 3. The α-form of the dihydrate is triclinic, space group P1-bar , Z=1, a=6.097(2), b=5.548(2), c=7.806(3)A, α=89.353(5), β=94.387(5), γ=97.646(5) o , V=260.88(15)A 3 , β-form is monoclinic, space group C2/c, Z=4, a=12.180(3), b=8.223(2), c=10.777(3)A, β=95.817(4), V=1073.8(5)A 3 . The trihydrate is monoclinic, space group P2 1 /c, Z=4, a=5.5095(12), b=15.195(3), c=13.398(3)A, β=93.927(3), V=1119.0(4)A 3 . In the three structures, the coordination of uranium atom is a pentagonal bipyramid composed of dioxo UO 2 2+ cation perpendicular to five equatorial oxygen atoms belonging to one bidentate oxalate ion, one water molecule and two hydroxyl ions in trans configuration in 2 and in cis configuration in 1 and 3. The UO 7 polyhedra are linked through hydroxyl oxygen atoms to form different structural building units, dimers [U 2 O 10 ] obtained by edge-sharing in 1, chains [UO 6 ] ∼ and tetramers [U 4 O 26 ] built by corner-sharing in 2 and 3, respectively. These units are further connected by oxalate entities that act as bis-bidentate to form one-dimensional chains in 1 and bi-dimensional network in 2 and 3. These chains or layers are connected in frameworks by hydrogen-bond arrays

  8. Formation of Nanodroplets in N2/H2O/SO2 under Irradiation of Fast Proton Beams

    DEFF Research Database (Denmark)

    Nakai, Youchi; Shigeoka, Tomita; Funada, Shuhei

    of the droplet growth in thebinary nucleation process of water and H2SO4.We have performed irradiation of proton beam on the gas mixture of N2/H2O/SO2 andAir/H2O/SO2. The reduction of SO2 concentration by beam irradiation was monitored usingan SO2 meter and the size distributions of generated droplets were...

  9. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O–H2O and δ2H–H2O values by cavity ring-down spectroscopy

    Directory of Open Access Journals (Sweden)

    J. E. Johnson

    2017-08-01

    Full Text Available Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O–H2O and δ2H–H2O values based on the amplitude of water isotopologue absorption features around 7184 cm−1 (L2120-i, Picarro, Inc.. For background mixtures balanced with N2, the apparent δ18O values deviate from true values by −0.50 ± 0.001 ‰ O2 %−1 and −0.57 ± 0.001 ‰ Ar %−1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %−1 and 0.42 ± 0.004 ‰ Ar  %−1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  10. Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement

    Science.gov (United States)

    Kopp, E.

    1984-01-01

    A model for production and loss of oxonium ions in the high-latitude D-region is developed, based on the observed excess of 34(+) which has been interpreted as H2O2(+). The loss mechanism suggested in the study is the attachment of N2 and/or CO2 in three-body reactions. Furthermore, mesospheric water vapor and H2O2 densities are inferred from measurements of four high-latitude ion compositions, based on the oxonium model. Mixing ratios of hydrogen peroxide of up to two orders of magnitude higher than previous values were obtained. A number of reactions, reaction constants, and a block diagram of the oxonium ion chemistry in the D-region are given.

  11. Octa-akis(4-amino-pyridine)-1κN,2κN-aqua-2κO-μ-carbonato-1:2κO,O':O''-dinickel(II) dichloride penta-hydrate.

    Science.gov (United States)

    Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B; Alfred Cecil Raj, S

    2008-10-18

    In the title compound, [Ni(2)(CO(3))(C(5)H(6)N(2))(8)(H(2)O)]Cl(2)·5H(2)O, one of the the Ni(II) ions is six-coordinated in a distorted octa-hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino-pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other Ni(II) ion is also six-coordinated, by four other pyridine N atoms from four other amino-pyridine ligands and two carbonate O atoms to complete a distorted octa-hedral geometry. In the crystal structure, mol-ecules are linked into an infinite three-dimensional network by O-H⋯O, N-H⋯Cl, N-H⋯O, O-H⋯N, C-H⋯O, C-H⋯N and C/N-H⋯π inter-actions involving the pyridine rings.

  12. Synthesis and Crystal Structure of an Unprecedented Supramolecular Complex[Co(μ2-ClO4)2(H2O)22MA

    Institute of Scientific and Technical Information of China (English)

    XU,Jing; BAI,Zhengshuai; SUN,Weiyin

    2009-01-01

    A new supramolecular framework[Co(μ2-C104)2(H2O)22MA(1)[MA=melamine(C3H6N6)]has been syn-thesized by a hydrothermal method.Interestingly,there ale inorganic and organic building blocks with two different supramolecular synthons:(a)2D(4,4)network constructed by infinite inorganic 1D chains through interchain hy-drogen bonding interactions;(b)1D zigzag organic chains formed by hydrogen bonds, which further stack up through,ππ-interactions between the two adjacent MA molecules.The entire structure of 1 is a 3D supramolecular framework resulting from the presence of abundant hydrogen bonds between infinite[CO(μ2-C1O4)2(H2O)2]n chains and zigzag MA chains in different sheets.1 gives a nice example of supramolecular framework based on non-covalent interactions including hydrogen bonding and π-π interactions.

  13. (2,4-Dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylato-κ2O4,O5(4-oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylato-κ2O4,O5bis(1,10-phenanthroline-κ2N,N′yttrium(III dihydrate

    Directory of Open Access Journals (Sweden)

    Zilu Chen

    2008-09-01

    Full Text Available In the title compound, [Y(C5H2N2O4(C5H3N2O4(C12H8N22]·2H2O, the YIII ion lies on a twofold rotation axis and exhibits a distorted square-antiprismatic coordination geometry. It is chelated by two 1,10-phenanthroline ligands, a 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monoanion and a 4-oxido-2-oxo-1,2-dihydropyrimidine-5-carboxylate dianion. The H atom involved in an N—H...N hydrogen bond between the 1,2-dihydropyrimidine units has half occupancy and is disordered around a twofold rotation axis.

  14. Unprecedented connection mode of [V{sub 16}Sb{sub 4}O{sub 42}(H{sub 2}O)]{sup 8-} cluster anions by Mn{sup 2+} centered complexes. Solvothermal synthesis and properties of {[Mn(teta)]_4V_1_6Sb_4O_4_2(H_2O)}{sub n}.[(H{sub 2}O){sub 12}]{sub n}

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Maren; Naether, Christian; Bensch, Wolfgang [Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel (Germany); Leusen, Jan van; Koegerler, Paul [Institute of Inorganic Chemistry, RWTH Aachen University, Aachen (Germany)

    2017-11-17

    The new compound {[Mn(teta)]_4V_1_6Sb_4O_4_2}{sub n}.[(H{sub 2}O){sub 12}]{sub n} (teta = triethylenetetraamine) was synthesized under solvothermal conditions. The crystal structure features the high nuclearity [V{sub 16}{sup IV}Sb{sub 4}{sup III}O{sub 42}(H{sub 2}O)]{sup 8-} cluster anion, which consists of two rings composed of 8 edge-sharing VO{sub 5} polyhedra. The rings are perpendicular to each other generating four niches, which are occupied by two VO{sub 5} pyramids and two handle-like Sb{sub 2}O{sub 5} units. The two unique anions are each surrounded by eight Mn{sup 2+} centered complexes via Mn-O{sub term}-V bonds. Such an expansion has never been observed in heterometal polyoxovanadate chemistry. The connection mode between cluster anions and complex cations generates two individual layers stacked onto each other. Between the layers weak Sb..O contacts are observed. The crystal water molecules are mainly located in the empty space between the layers. Upon heating H{sub 2}O molecules are removed, while the crystal structure remains intact. The magnetic behavior is dominated by strong antiferromagnetic exchange interactions between the central V{sup 4+} ions, while the interaction between the cluster anion and central Mn{sup 2+} ions is significantly less pronounced. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    Science.gov (United States)

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. 2009 Elsevier Ltd. All rights reserved.

  16. Micropore Formation of [Zn2(Oxac) (Taz)2]·(H2O)2.5 via CO2 Adsorption.

    Science.gov (United States)

    Zubir, Moondra; Hamasaki, Atom; Iiyama, Taku; Ohta, Akira; Ohki, Hiroshi; Ozeki, Sumio

    2017-01-24

    As-synthesized [Zn 2 (Oxac) (Taz) 2 ]·(H 2 O) 2.5 , referred to as ZOTW 2.5 , was prepared from aqueous methanol solutions of Zn 5 (CO 3 ) 2 (OH) 6 and two kinds of ligands of 1,2,4-triazole (Taz) and oxalic acid (Oxac) at 453 K for 12 h. The crystal structure was determined by the Rietveld method. As-synthesized ZOTW 2.5 was pretreated at 383 K and 1 mPa for t pt h, ZOTW x (t pt h). ZOTW x (≥3h) showed a type I adsorption isotherm for N 2 at 77 K having a saturation amount (V s ) of 180 mg/g, but that pretreated shortly showed only 1/10 in V s . CO 2 was adsorbed at 303 K in sigmoid on nonporous ZOTW x (≤2h) and in Langmuir-type on ZOTW x (≥3h) to reach the adsorption amount of 120 mg/g at 700 Torr. N 2 adsorption on ZOTW x (≤2h)deCO 2 , degassed after CO 2 adsorption on ZOTW x (≤2h), was promoted 5-fold from 180 mg/g on ZOTW x (t pt h) and ZOTW x (≥3h)deCO 2 up to ca. 1000 mg/g. The interaction of CO 2 and H 2 O molecules in micropores may lead to a new route for micropore formation.

  17. NCI calculations for understanding a physical phase transition in (C6H14N2)[Mn(H2O)6](SeO4)2

    Science.gov (United States)

    Naïli, Houcine; François, Michel; Norquist, Alexander J.; Rekik, Walid

    2017-12-01

    An organically templated manganese selenate, (C6H14N2)[Mn(H2O)6](SeO4)2, has been synthesized by slow evaporation and crystallographically characterized. The title compound crystallizes at room temperature in the monoclinic centrosymmetric space group P21/n, with the following unit cell parameters: a = 7.2373(4) Å; b = 12.5600(7) Å; c = 10.1945(7) Å; β = 91.155(4)°, V = 926.50(10) Å3and Z = 2. Its crystal structure is built of manganese(II) cations coordinated by six water molecules in octahedral geometry, disordered dabcodiium cations and selenate anions, resulting in an extensive hydrogen-bonding network. Differential scanning calorimetry (DSC) measurement indicated that the precursor undergoes a reversible phase transition at about 216 and 218 K during the cooling and heating processes respectively. Below this temperature the title compound is noncentrosymmetric with space group P21 and lattice parameters a = 7.2033(8) Å; b = 12.4981(13) Å; c = 10.0888(11) Å; β = 91.281(2)°, V = 908.04(17) Å3 and Z = 2. The disorder-order transformation of the C atoms of (C6H14N2)2+ cation may drive the structural phase transition. The low temperature phase obtained by breaking symmetry presents a fully ordered structure. The noncovalent interaction (NCI) method was used not only to locate, quantify, and visualize intermolecular interactions in the high and low temperature phases but also to confirm the phase transition detected by DSC measurement. The thermal decomposition of this new compound proceeds through four stages giving rise to the manganese oxide as final product at 850 °C.

  18. Evolution of resistive switching mechanism through H2O2 sensing by using TaOx-based material in W/Al2O3/TaOx/TiN structure

    Science.gov (United States)

    Chakrabarti, Somsubhra; Panja, Rajeswar; Roy, Sourav; Roy, Anisha; Samanta, Subhranu; Dutta, Mrinmoy; Ginnaram, Sreekanth; Maikap, Siddheswar; Cheng, Hsin-Ming; Tsai, Ling-Na; Chang, Ya-Ling; Mahapatra, Rajat; Jana, Debanjan; Qiu, Jian-Tai; Yang, Jer-Ren

    2018-03-01

    Understanding of resistive switching mechanism through H2O2 sensing and improvement of switching characteristics by using TaOx-based material in W/Al2O3/TaOx/TiN structure have been reported for the first time. Existence of amorphous Al2O3/TaOx layer in the RRAM devices has been confirmed by transmission electron microscopy. By analyzing the oxidation states of Ta2+/Ta5+ for TaOx switching material and W0/W6+ for WOx layer at the W/TaOx interface through X-ray photoelectron spectroscopy and H2O2 sensing, the reduction-oxidation mechanism under Set/Reset occurs only in the TaOx layer for the W/Al2O3/TaOx/TiN structures. This leads to higher Schottky barrier height at the W/Al2O3 interface (0.54 eV vs. 0.46 eV), higher resistance ratio, and long program/erase endurance of >108 cycles with 100 ns pulse width at a low operation current of 30 μA. Stable retention of more than 104 s at 85 °C is also obtained. Using conduction mechanism and reduction-oxidation reaction, current-voltage characteristic has been simulated. Both TaOx and WOx membranes have high pH sensitivity values of 47.65 mV/pH and 49.25 mV/pH, respectively. Those membranes can also sense H2O2 with a low concentration of 1 nM in an electrolyte-insulator-semiconductor structure because of catalytic activity, while the Al2O3 membrane does not show sensing. The TaOx material in W/Al2O3/TaOx/TiN structure does not show only a path towards high dense, small size memory application with understanding of switching mechanism but also can be used for H2O2 sensors.

  19. Using H2O2 as oxidant in leaching of uranium ores. The new research on the reaction of H2O2 with Fe2+

    International Nuclear Information System (INIS)

    Gao Xizhen

    1997-05-01

    The new research on the reaction of H 2 O 2 with Fe 2+ has been studied. Through determining the electric potential, pH and O 2 release during the mutual titration between H 2 O 2 solution and FeSO 4 solution, deduced the chemical equations of H 2 O 2 (without free hydroxyl) oxidizing FeSO 4 and Fe 2 (SO 4 ) 3 oxidizing H 2 O 2 . The research results show that acid is a catalytic agent for decomposing H 2 O 2 to be O 2 and H 2 O besides iron ions. The maximum oxidizing potential is up to about 640 mV. While using H 2 O 2 as an oxidant in uranium heap leaching and in-situ leaching, controlling electric potential can be regarded as a method for adjusting the feeding speed of H 2 O 2 to keep the electric potential below 500 mV, thus the H 2 O 2 decomposition can be reduced. (13 refs., 3 tabs., 1 fig.)

  20. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    Science.gov (United States)

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  1. Poly[[diaqua-μ4-pyrazine-2,3-dicarboxylato-κ6N,O2:O2′:O3,O3′:O3-strontium(II] monohydrate

    Directory of Open Access Journals (Sweden)

    Vahid Amani

    2008-07-01

    Full Text Available In the title compound, {[Sr(C6H2N2O4(H2O2H2O}n, the SrII ions are bridged by the pyrazine-2,3-dicarboxylate ligands with the formation of two-dimensional polymeric layers parallel to the ac plane. Each SrII ion is eight-coordinated by one N and five O atoms from the four ligands and two water molecules. The coordination polyhedron is derived from a pentagonal bipyramid with an O atom at the apex on one side of the equatorial plane and two O atoms sharing the apical site on the other side. The coordinated and uncoordinated water molecules are involved in O—H...O and O—H...N hydrogen bonds, which consolidate the crystal structure.

  2. (μ-3-Acetyl-5-carboxylato-4-methylpyrazolido-1:2κ4N2,O3:N1,O5-μ-chlorido-tetrapyridine-1κ2N,2κ2N-chlorido-1κCl-dicopper(II propan-2-ol solvate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2009-10-01

    Full Text Available The title compound, [Cu2(C7H6N2O3Cl2(C5H5N4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octahedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H...O hydrogen bond connects the complex molecules and propan-2-ol solvent molecules into pairs. These pairs form columns along the a axis.

  3. Synthesis and vibrational spectra of cooper(II) and erbium(III) complexes with 2-diazo[2'-(oxymethyldiphenylphosphinyl)phenyl]-4-tert-butylphenol (HL) - [CuL22H2O and Er(NO3)3·2HL·2H2O. Crystal structure of [CuL22H2O

    International Nuclear Information System (INIS)

    Tsivadze, A.Yu.; Minacheva, L.Kh.; Ivanova, I.S.; Pyatova, E.N.; Sergienko, V.S.; Baulin, V.E.

    2008-01-01

    Paper describes synthesis of CuL 2 ·2H 2 O (I) complex cupric salt and of Er(NO 3 ) 3 ·2HL·2H 2 O (II) erbium nitrate complex (HL=2-diazo-[2'(oxymethyl-diphenyl-phosphinyl)phenyl]-4-tert-butylphenol). One interprets the fundamental frequencies within the IR-spectra of (I) and (II) compounds. One has performed X-ray diffraction analysis of I compound. The crystals are monoclinic ones, a=15.157(3), b=17.080(2), c=22.451(9) A, β=106.09(3) Deg, V=5584(3) A 3 , Z=4, C2/c sp.gr., R=0.0546 as to 1152 reflections with I>2σ(I). The copper atom coordination polyhedron (C 2 symmetry) may be described as a symmetrically-prolonged square bipyramid (4+2). Cu polyhedron central square is formed by substituted phenol oxygen atom and by one of diazo-group nitrogen atoms of either of two deprotonated ligands, namely: L - (Cu-N 1.969(6), Cu-O 1.899(5) A). The angles between lying opposite O and N atoms constitute 157.6 Deg, while the rest equatorial angles range within 90.6 Deg-95.9 Deg. The axial positions are occupied by O(2) and O(2A) anisole atoms (Cu-O 2.737(6) A, O(2)Cu(1)O(2A) angle constitutes 132.3 Deg). Within crystal I the complex molecules and the crystallization molecules of water are combined by by the hydrogen bond system. According to the IR-spectra data, within complex II in contrast to compound I erbium atom coordination by HL ligand involves oxygen phosphoryl atom [ru

  4. (2-Benzoyl-1-phenylethenolato-κ2O,O′bis[2-(1-phenyl-1H-benzimidazol-2-ylphenyl-κC1]iridium(III dichloromethane disolvate

    Directory of Open Access Journals (Sweden)

    Stanislav I. Bezzubov

    2016-12-01

    Full Text Available We present here synthesis and crystal structure of a neutral IrIII complex, [Ir(C19H13N22(C15H11O22CH2Cl2 or [Ir(C^N2O^O2CH2Cl2, where C^N is 1,2-diphenyl-1H-benzimidazole and O^O is 2-benzoyl-1-phenylethenolate. The coordination sphere of the IrIII atom, located on a twofold rotation axis, is that of a slighlty distorted C2N2O2 octahedron, with the N atoms in a trans configuration. In the crystal, complex molecules assemble through weak C—H...π interactions in the range 2.699 (3–2.892 (3 Å. The solvent CH2Cl2 molecules reside in channels aligned along the a axis and are connected to the complex molecules by C—H...O interactions.

  5. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3).

    Science.gov (United States)

    Srithep, Sirinthip; Phattarapattamawong, Songkeart

    2017-06-01

    The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H 2 O 2 , UV/O 3 , and UV/H 2 O 2 /O 3 ) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H 2 O 2 /O 3 was the most effective process for removing HAN precursors, followed by UV/H 2 O 2 , and UV/O 3 , respectively. For 20min contact time, the UV/H 2 O 2 /O 3 , UV/H 2 O 2 , and UV/O 3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL -1 in UV/O 3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H 2 O 2 , and UV/H 2 O 2 /O 3 ), except for the UV/O 3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k' DCANFP ) by the UV/H 2 O 2 /O 3 , UV/H 2 O 2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O 3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k' DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of H2O, CO2, and N2 Air Contaminants on Critical Airside Strain Rates for Extinction of Hydrogen-Air Counterflow Diffusion Flames

    Science.gov (United States)

    Pellett, G. L.; Wilson, L. G.; Northam, G. B.; Guerra, Rosemary

    1989-01-01

    Coaxial tubular opposed jet burners (OJB) were used to form dish shaped counterflow diffusion flames (CFDF), centered by opposing laminar jets of H2, N2 and both clean and contaminated air (O2/N2 mixtures) in an argon bath at 1 atm. Jet velocities for flame extinction and restoration limits are shown versus wide ranges of contaminant and O2 concentrations in the air jet, and also input H2 concentration. Blowoff, a sudden breaking of CFDF to a stable ring shape, occurs in highly stretched stagnation flows and is generally believed to measure kinetically limited flame reactivity. Restore, a sudden restoration of central flame, is a relatively new phenomenon which exhibits a H2 dependent hysteresis from Blowoff. For 25 percent O2 air mixtures, mole for mole replacement of 25 percent N2 contaminant by steam increased U(air) or flame strength at Blowoff by about 5 percent. This result is consistent with laminar burning velocity results from analogous substitution of steam for N2 in a premixed stoichiometric H2-O2-N2 (or steam) flame, shown by Koroll and Mulpuru to promote a 10 percent increase in experimental and calculated laminar burning velocity, due to enhanced third body efficiency of water in: H + O2 + M yields HO2 + M. When the OJB results were compared with Liu and MacFarlane's experimental laminar burning velocity of premixed stoichiometric H2 + air + steam, a crossover occurred, i.e., steam enhanced OJB flame strength at extinction relative to laminar burning velocity.

  7. Calcium and strontium salts of (glycinato-κ(2)N,O)oxidobis(peroxido-κ(2)O,O')vanadate(V) tetrahydrate.

    Science.gov (United States)

    Higuchi, Takeshi; Uchida, Ayana; Hashimoto, Masato

    2013-12-15

    The title salts calcium (glycinato-κ(2)N,O)oxidobis(peroxido-κ(2)O,O')vanadate(V) tetrahydrate, Ca[VO(O2)2(NH2CH2COO)]·4H2O, and strontium (glycinato-κ(2)N,O)oxidobis(peroxido-κ(2)O,O')vanadate(V) tetrahydrate, Sr[VO(O2)2(NH2CH2COO)]·4H2O, crystallized at pH ca 7.4 with similar lattice parameters. The glycinate anion acts as a bidentate N,O-chelating ligand, and the V atom has a pentagonal bipyramidal geometry, with two η(2)-peroxo groups and the glycinate N atom in the equatorial plane, and one terminal oxo and a glycinate O atom at the axial positions. The H atoms of three of the four water molecules in the strontium salt exhibited disorder over three positions for each molecule.

  8. Crystal structure of strontium aqua(ethylenediaminetetraacetato)cobaltate(II) tetrahydrate Sr[CoEdta(H2O)] · 4H2O

    International Nuclear Information System (INIS)

    Zasurskaya, L.A.; Polynova, T.N.; Polyakova, I.N.; Sergienko, V.S.; Poznyak, A.L.

    2001-01-01

    The complex Sr[Co II Edta] · 5H 2 O (I) (where Edta 4- is the ethylenediaminetetraacetate ion) has been synthesized. The crystal structure of this compound is determined by X-ray diffraction. Crystals are monoclinic, a = 7.906(2) A, b = 12.768(2) A, c = 18.254(3) A, β = 95.30(3) deg., V 1834.8 A 3 , space group P2 1 /n, Z = 4, and R = 0.036. The structure is built up of the binuclear complex fragments {Sr(H 2 O) 3 [CoEdta(H 2 O)]}, which consist of the anionic [CoEdta(H 2 O)] 2- and cationic [Sr(H 2 O) 3 ] 2+ units linked by the Sr-O bonds into a three-dimensional framework. The coordination polyhedra of the Co and Sr atoms are mono- and bicapped trigonal prisms. The coordination sphere of the Co atom (the coordination number is equal to 6 + 1) involves six donor atoms (2N and 4O) of the Edta 4- ligand and the O w atom of water molecule. One of the Co-O distances (2.718 A) is considerably longer than the other Co-O lig distances (2.092-2.190 A) and the Co-O w (1) distance (2.079 A). The Sr coordination polyhedron (the coordination number is eight) contains three water molecules, three carbonyl O atoms of the three different anionic complexes, and two O atoms of one acetate group of the fourth anionic complex. The Sr-O distances fall in the range 2.535-2.674 A. The structural formula of the compound is {Sr(H 2 O) 3 [CoEdta(H 2 O)]} 3∞ · H 2 O

  9. Preparation of acid salt M(HPO4)2.nH2 O thin films

    International Nuclear Information System (INIS)

    Kassem, M.

    1998-01-01

    The layered crystalline powders of Titanium Phosphate with the formula Ti(HPO 4 ) 2 .nH 2 O (phase α when n=2, phase γ when n=1) were prepared by reaction of titanium three chloride with phosphoric acid under specific thermal conditions. Starting from these powders thin films have been prepared using some methods such as: Thermal evaporation, sol-gel and vapor phase transport. The results of X-ray diffraction and differential thermal deferential analysis show that the temperature plays an important role in the determination of the crystalline phases and the phase transition of the prepared films. (author). 7 refs

  10. Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells.

    Science.gov (United States)

    Bozem, Monika; Knapp, Phillip; Mirčeski, Valentin; Slowik, Ewa J; Bogeski, Ivan; Kappl, Reinhard; Heinemann, Christian; Hoth, Markus

    2017-05-15

    H 2 O 2 is produced by all eukaryotic cells under physiological and pathological conditions. Due to its enormous relevance for cell signaling at low concentrations and antipathogenic function at high concentrations, precise quantification of extracellular local H 2 O 2 concentrations ([H 2 O 2 ]) originating from single cells is required. Using a scanning electrochemical microscope and bare platinum disk ultramicroelectrodes, we established sensitive long-term measurements of extracellular [H 2 O 2 ] kinetics originating from single primary human monocytes (MCs) ex vivo. For the electrochemical techniques square wave voltammetry, cyclic and linear scan voltammetry, and chronoamperometry, detection limits for [H 2 O 2 ] were determined to be 5, 50, and 500 nM, respectively. Following phorbol ester stimulation, local [H 2 O 2 ] 5-8 μm above a single MC increased by 3.4 nM/s within the first 10 min before reaching a plateau. After extracellular addition of H 2 O 2 to an unstimulated MC, the local [H 2 O 2 ] decreased on average by 4.2nM/s due to degradation processes of the cell. Using the scanning mode of the setup, we found that H 2 O 2 is evenly distributed around the producing cell and can still be detected up to 30 μm away from the cell. The electrochemical single-cell measurements were validated in MC populations using electron spin resonance spectroscopy and the Amplex ® UltraRed assay. Innovation and Conclusion: We demonstrate a highly sensitive, spatially, and temporally resolved electrochemical approach to monitor dynamics of production and degradation processes for H 2 O 2 separately. Local extracellular [H 2 O 2 ] kinetics originating from single cells is quantified in real time. Antioxid. Redox Signal. 00, 000-000.

  11. 2-(2-Pyridylpyridinium (2,2′-bipyridine-κ2N,N′tetrakis(nitrato-κ2O,O′bismuthate(III

    Directory of Open Access Journals (Sweden)

    Shu-Shen Zhang

    2011-10-01

    Full Text Available The structure of the title compound, (C10H9N2[Bi(NO34(C10H8N2], consists of 2-(2-pyridylpyridinium cations and anions [Bi(NO34(C10H8N2]−. The Bi3+ ion lies on the twofold axis. It is coordinated by two nitrogen atoms from one 2,2′-bipyridine ligand and eight oxygen atoms from four NO3− anions. The disordered cation is positioned at the inversion centre. The [Bi(NO34(C10H8N2]− anions and 2-(2-pyridylpyridinium cations are connected via N—H...O hydrogen bonds into chains. Moreover, these chains are further linked into a two-dimensional layered structure through π–π stacking interactions between bipyridine ligands along the c axis [centroid–centroid distance = 2.868 (4 Å].

  12. catena-Poly[[bis[2-(2,3-dimethylanilinobenzoato-κO]cadmium(II]-di-μ-3-pyridylmethanol-κ2N:O2O:N

    Directory of Open Access Journals (Sweden)

    Tadeusz Lis

    2008-03-01

    Full Text Available In the crystal structure of the title compound, [Cd(C15H14NO22(C6H7NO2]n, the Cd atom displays a distorted octahedral geometry, including two pyridine N atoms and two hydroxyl O from four symmetry-related 3-pyridylmethanol (3-pyme ligands and two carboxylate O atoms from mefenamate [2-(2,3-dimethylanilinobenzoate] anions. The Cd atoms are connected via the bridging 3-pyme ligands into chains, that extend in the a-axis direction. The Cd atom is located on a center of inversion, whereas the 3-pyme ligands and the mefenamate anions occupy general positions.

  13. A novel highly efficient adsorbent {[Co4(L)2(μ3-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n: Synthesis, crystal structure, magnetic and arsenic (V) absorption capacity

    Science.gov (United States)

    Zhang, Chong; Xiao, Yu; Qin, Yan; Sun, Quanchun; Zhang, Shuhua

    2018-05-01

    A novel highly efficient adsorbent-microporous tetranuclear Co(II)-based polymer, {[Co4(L)2(μ3-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n (1, H3L = 4-(N,N‧-bis(4-carboxybenzyl)amino) benzenesulfonic acid, 4,4‧-bipy = 4,4‧-bipyridine), was hydrothermally synthesized. The complex 1 is a metal-organic framework (MOF) material which was characterized by single-crystal X-ray diffraction, BET and platon software. Co-MOF (complex 1) reveals excellent adsorption property. The capacity of Co-MOF to remove arsenic As(V) from sodium arsenate aqueous solutions was investigated (The form of As(V) is AsO43-). The experimental results showed that Co-MOF had a higher stable and relatively high As(V) removal rate (> 98%) at pH 4-10. The adsorption kinetics followed a pseudo-second-order kinetic model, and the adsorption isotherm followed the Langmuir equation. Co-MOF exhibits a very high adsorption capacity of As(V) in aqueous solution (Qmax of 96.08 mg/g). Finally, the optimal adsorption conditions for the model were obtained through a Box-Behnken response surface experiment which was designed with adsorption time, dose, temperature and rotational speed of the shaker as the influencing factors to determine two-factor interaction effects. Co-MOF was further characterized using FTIR, PXRD, X-ray photoelectron spectroscopy before and after adsorption As (V). The magnetism of Co-MOF was also discussed.

  14. N-{2-[2-(5-Methyl-1H-pyrazol-3-ylacetamido]phenyl}benzamide monohydrate

    Directory of Open Access Journals (Sweden)

    Karim Chkirate

    2017-02-01

    Full Text Available The asymmetric unit of the title compound, C19H18N4O2·H2O, comprises the U-shaped pyrazole derivative and a solvent water molecule. The molecular conformation is partly determined by an intramolecular N—H...O hydrogen bond. The crystal packing is directed by an extensive network of O—H...O, N—H...O, N—H...N and C—H...O hydrogen bonds together with C—H...π(ring contacts that generate a three-dimensional network.

  15. Revisit the landscape of protonated water clusters H+(H2O)n with n = 10-17: An ab initio global search

    Science.gov (United States)

    Shi, Ruili; Li, Keyao; Su, Yan; Tang, Lingli; Huang, Xiaoming; Sai, Linwei; Zhao, Jijun

    2018-05-01

    Using a genetic algorithm incorporated with density functional theory, we explore the ground state structures of protonated water clusters H+(H2O)n with n = 10-17. Then we re-optimize the isomers at B97-D/aug-cc-pVDZ level of theory. The extra proton connects with a H2O molecule to form a H3O+ ion in all H+(H2O)10-17 clusters. The lowest-energy structures adopt a monocage form at n = 10-16 and core-shell structure at n = 17 based on the MP2/aug-cc-pVTZ//B97-D/aug-cc-pVDZ+ZPE single-point-energy calculation. Using second-order vibrational perturbation theory, we further calculate the infrared spectra with anharmonic correction for the ground state structures of H+(H2O)10-17 clusters at the PBE0/aug-cc-pVDZ level. The anharmonic correction to the spectra is crucial since it reproduces the experimental results quite well. The extra proton weakens the O-H bond strength in the H3O+ ion since the Wiberg bond order of the O-H bond in the H3O+ ion is smaller than that in H2O molecules, which causes a red shift of the O-H stretching mode in the H3O+ ion.

  16. Magnetic susceptibility and specific heat of the one-dimensional conductor (H3O) sub (1,6) Pt (C2O4)2.nH2O at low temperatures

    International Nuclear Information System (INIS)

    Raede, H.S.

    1985-01-01

    It has been shown recently that some transition metal complexes exhibit one-dimensional metallic properties. It is reported, in this context, susceptibility and specific heat measurements of polycrystalline (H 3 O) 1 , 6 Pt(C 2 O 4 ) 2 .nH 2 O in the low temperature range. It is found that the susceptibility can be described by a non-uniform Curie law with a characteristic break in the slope. The specific heat reveals no linear temperature contribution, which could be explained by a transition into a Peierls distorted state. Until 13 0 K, the heat capacity follows a T 3 -law. Deviations at higher temperatures are possibly attributed to the anisotropy of the system [pt

  17. Poly[(6-carboxypicolinato-κ3O2,N,O6(μ3-pyridine-2,6-dicarboxylato-κ5O2,N,O6:O2′:O6′dysprosium(III

    Directory of Open Access Journals (Sweden)

    Xu Li

    2009-11-01

    Full Text Available In the title complex, [Dy(C7H3NO4(C7H4NO4]n, one of the ligands is fully deprotonated while the second has lost only one H atom. Each DyIII ion is coordinated by six O atoms and two N atoms from two pyridine-2,6-dicarboxylate and two 6-carboxypicolinate ligands, displaying a bicapped trigonal-prismatic geometry. The average Dy—O bond distance is 2.40 Å, some 0.1Å longer than the corresponding Ho—O distance in the isotypic holmium complex. Adjacent DyIII ions are linked by the pyridine-2,6-dicarboxylate ligands, forming a layer in (100. These layers are further connected by π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.827 (3 Å] and C—H...O hydrogen-bonding interactions, assembling a three-dimensional supramolecular network. Within each layer, there are other π–π stacking interactions between neighboring pyridyl rings [centroid–centroid distance = 3.501 (2 Å] and O—H...O and C—H...O hydrogen-bonding interactions, which further stabilize the structure.

  18. Redetermination of Ce[B5O8(OH(H2O]NO3·2H2O

    Directory of Open Access Journals (Sweden)

    Ya-Xi Huang

    2012-05-01

    Full Text Available The crystal structure of Ce[B5O8(OH(H2O]NO3·2H2O, cerium(III aquahydroxidooctaoxidopentaborate nitrate dihydrate, has been redetermined from single-crystal X-ray diffraction data. In contrast to the previous determination [Li et al. (2003. Chem. Mater. 15, 2253–2260], the present study reveals the location of all H atoms, slightly different fundamental building blocks (FBBs of the polyborate anions, more reasonable displacement ellipsoids for all non-H atoms, as well as a model without disorder of the nitrate anion. The crystal structure is built from corrugated polyborate layers parallel to (010. These layers, consisting of [B5O8(OH(H2O]2− anions as FBBs, stack along [010] and are linked by Ce3+ ions, which exhibit a distorted CeO10 coordination sphere. The layers are additionally stabilized via O—H...O hydrogen bonds between water molecules and nitrate anions, located at the interlayer space. The [BO3(H2O]-group shows a [3 + 1] coordination and is considerably distorted from a tetrahedral configuration. Bond-valence-sum calculation shows that the valence sum of boron is only 2.63 valence units (v.u. when the contribution of the water molecule (0.49 v.u. is neglected.

  19. Oxidative damage to fibronectin. 2. The effect of H2O2 and the hydroxyl radical

    International Nuclear Information System (INIS)

    Vissers, M.C.; Winterbourn, C.C.

    1991-01-01

    The effect of H2O2 and the hydroxyl radical (.OH) on fibronectin was investigated. .OH was generated in three ways: (1) by radiolysis with 60Co under N2O, or by the Fenton system using either (2) equimolar Fe(2+)-EDTA and H2O2 or (3) H2O2 and catalytic amounts of Fe(2+)-EDTA recycled with ascorbate. Each system had a different effect. H2O2 alone caused no changes, even at an 800-fold molar excess. Radiolytic .OH caused a rapid loss of tryptophan fluorescence, an increase in bityrosine fluorescence, and extensive crosslinking. The Fenton system using Fe-EDTA, H2O2, and ascorbate caused a loss in tryptophan fluorescence, a smaller increase in bityrosine than was seen with radiolytic .OH, and a threefold increase in carbonyl groups. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis fragmentation of fibronectin was seen. In contrast, when .OH was generated with equimolar Fe-EDTA and H2O2, the only change was a small increase in bityrosine fluorescence at the highest dose of oxidant. None of the systems used affected cysteine. All the changes except the loss of tryptophan by radiolytic .OH were completely inhibited with mannitol. The differences seen with radiolytic .OH and the Fe-EDTA, H2O2, ascorbate system were not solely due to O2 in the latter system since similar results were obtained under N2. The differences between radiolytic .OH and the Fenton systems could be partly due to the components of the latter systems reacting with .OH and thus competing with fibronectin. The authors results demonstrate that the extent and type of fibronectin damage by .OH is dependent on the mode of radical generation

  20. Poly[(μ3-benzene-1,3,5-tricarboxylato-κ3O1:O3:O5(μ2-2-methylimidazolato-κ2N:N′tris(2-methylimidazole-κNdizinc(II

    Directory of Open Access Journals (Sweden)

    Palanikumar Maniam

    2011-06-01

    Full Text Available Hydrothermal reaction involving zinc nitrate hexahydrate, trisodium benzene-1,3,5-tricarboxylate (Na3BTC and 2-methylimidazole (2-MeImH yielded the title compound, [Zn2(C9H3O6(C4H5N2(C4H6N23]. In this mixed-ligand metal-organic compound, Zn2+ ions are coordinated by N atoms from 2-MeImH molecules and (2-MeIm− ions, as well as by O atoms from (BTC3− ions. This results in two different distorted tetrahedra, viz. ZnN3O and ZnN2O2. These tetrahedra are interconnected via (BTC3− ions and N:N′-bridging (2-MeIm− ions, thus forming a layered structure in the bc plane. Hydrogen bonds between the O atoms of carboxylate ions and NH groups of 2-MeImH ligands link the layers into a three-dimensional structure.

  1. The cocrystal μ-oxalato-κ4O1,O2:O1′,O2′-bis(aqua(nitrato-κO{[1-(2-pyridyl-κNethylidene]hydrazine-κN}copper(II μ-oxalato-κ4O1,O2:O1′,O2′-bis((methanol-κO(nitrato-κO{[1-(2-pyridyl-κNethylidene]hydrazine-κN}copper(II (1/1

    Directory of Open Access Journals (Sweden)

    Youssouph Bah

    2008-09-01

    Full Text Available The title cocrystal, [Cu2(C2O4(NO32(C7H9N32(H2O2][Cu2(C2O4(NO32(C7H9N32(CH4O2], is a 1:1 cocrystal of two centrosymmetric CuII complexes with oxalate dianions and Schiff base ligands. In each molecule, the CuII centre is in a distorted octahedral cis-CuN2O4 environment, the donor atoms of the N,N′-bidentate Schiff base ligand and the bridging O,O′-bidentate oxalate group lying in the equatorial plane. In one molecule, a monodentate nitrate anion and a water molecule occupy the axial sites, and in the other, a monodentate nitrate anion and a methanol molecule occupy these sites. In the crystal structure, intermolecular N—H...O, O—H...O and N—H...N hydrogen bonds link the molecules into a network. Weak intramolecular N—H...O interactions are also observed.

  2. Association equilibrium constants and populations of clusters (H2O)n(g) and (D2O)n(g): differences between isotopomers and a possible relation to isotope enrichment

    International Nuclear Information System (INIS)

    Slanina, Z.

    1986-01-01

    Equilibrium constants of H 2 O(g) and D 2 O(g) associations to clusters (H 2 O) n (g) and (D 2 O) n (g) were calculated on the basis of the ab initio SCF CI MCY-B water-water pair potential. Populations of the components of equilibrium cluster mixtures were evaluated at various temperatures and pressures for both isotopomeric series. Differences between the H and D steam are pointed out and possible consequences are discussed. (author)

  3. Relationship between interlayer hydration and photocatalytic water splitting of A'1-xNaxCa2Ta3O10.nH2O (A'=K and Li)

    International Nuclear Information System (INIS)

    Mitsuyama, Tomohiro; Tsutsumi, Akiko; Sato, Sakiko; Ikeue, Keita; Machida, Masato

    2008-01-01

    Partial replacement of alkaline metals in anhydrous KCa 2 Ta 3 O 10 and LiCa 2 Ta 3 O 10 was studied to control interlayer hydration and photocatalytic activity for water splitting under UV irradiation. A' 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O (A'=K and Li) samples were synthesized by ion exchange of CsCa 2 Ta 3 O 10 in mixed molten nitrates at 400 deg. C. In K 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O, two phases with the orthorhombic (C222) and tetragonal (I4/mmm) structures were formed at x≤0.7 and x≥0.5, respectively. Upon replacement by Na + having a larger enthalpy of hydration (ΔH h 0 ), the interlayer hydration occurred at x≥0.3 and the hydration number (n) was increased monotonically with an increase of x. Li 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O showed a similar hydration behavior, but the phase was changed from I4/mmm (x 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O exhibited the activity increasing in consistent with n, whereas Li 1-x Na x Ca 2 Ta 3 O 10 .nH 2 O exhibited the activity maximum at x=0.77, where the rates of H 2 /O 2 evolution were nearly doubled compared with those for end-member compositions (x=0 and 1). - Graphical abstract: The partial substitution of Na in the interlayer of anhydrous-layered perovskite has been found as useful structural modification toward highly active hydrated photocatalysts

  4. An open-framework three-dimensional indium oxalate: [In(OH)(C2O4)(H2O)]3.H2O

    International Nuclear Information System (INIS)

    Yang Sihai; Li Guobao; Tian Shujian; Liao Fuhui; Lin Jianhua

    2005-01-01

    By hydrothermal reaction of In 2 O 3 with H 2 C 2 O 4 .2H 2 O in the presence of H 3 BO 3 at 155 deg. C, an open-framework three-dimensional indium oxalate of formula [In(OH)(C 2 O 4 )(H 2 O)] 3 .H 2 O (1) has been obtained. The compound crystallizes in the trigonal system, space group R3c with a=18.668(3)A, c=7.953(2)A, V=2400.3(7)A 3 , Z=6, R 1 =0.0352 at 298K. The small pores in 1 are filled with water molecules. It loses its filled water at about 180 deg. C without the change of structure, then the bounded water at 260 deg. C, and completely decompounds at 324 deg. C. The residue is confirmed to be In 2 O 3

  5. Volume properties and refraction of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids lysine, threonine, and oxyproline (C60(C6H13N2O2)2, C60(C4H8NO3)2, and C60(C5H9NO2)2) at 25°C

    Science.gov (United States)

    Semenov, K. N.; Ivanova, N. M.; Charykov, N. A.; Keskinov, V. A.; Kalacheva, S. S.; Duryagina, N. N.; Garamova, P. V.; Kulenova, N. A.; Nabieva, A.

    2017-02-01

    Concentration dependences of the density of aqueous solutions of bisadducts of light fullerene C60 and essential amino acids are studied by pycnometry. Concentration dependences of the average molar volumes and partial volumes of components (H2O and corresponding bisadducts) are calculated for C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems at 25°C. Concentration dependences of the indices of refraction of C60(C6H13N2O2)2-H2O, C60(C4H8NO3)2-H2O, and C60(C5H9NO2)2-H2O binary systems are determined at 25°C. The concentration dependences of specific refraction and molar refraction of bisadducts and aqueous solutions of them are calculated.

  6. Investigation of nitrous oxide (N2O) abatement technologies. 2; Asanka chisso (N2O) no teigen taisaku ni kansuru chosa. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Emission amount of nitrous oxide (N2O) from anthropogenic sources is analyzed, and reduction effects by the abatement technologies are evaluated. The concentration of nitrous oxide in the atmosphere continues to increase and emissions from agricultural and ecosystem sources are drawing particular attention. For the emission of N2O in Japan, 8.28 Gg-N2O per year is emitted from fossil fuel combustion facilities, 6.95 from waste incineration facilities, 22.5 from transportation vehicles including automobiles, 26.7 from the chemical industry including establishments engaged in adipic acid production, 2.1 from sewage treatment facilities including septic tanks, 6.3 from farmland, and 7.1 from livestock excrement. For the N2O abatement technologies for different sources, fuel improvement, high temperature combustion, acceleration of reduction decomposition reaction, and development of catalysts are significant for the combustion technologies. In connection with N2O discharged in the process of adipic acid production, major businesses have internationally committed to up to 99% abatement of the N2O emissions by 1998. With regard to wastewater and sewage treatment facilities and septic tanks, improvement in COD/NO-N ratio, retention period, pH level, and reduction process is pointed out. 204 refs., 70 figs., 53 tabs.

  7. Aqua{2-(pyridin-2-yl-N-[(pyridin-2-ylmethylidene]ethanamine-κ3N,N′,N′′}(sulfato-κ2O,O′copper(II tetrahydrate

    Directory of Open Access Journals (Sweden)

    Daniel Tinguiano

    2013-01-01

    Full Text Available The title complex, [Cu(SO4(C13H13N3(H2O]·4H2O, was obtained by mixing copper sulfate pentahydrate and 2-(pyridin-2-yl-N-(pyridin-2-ylmethylideneethanamine in ethanol under reflux conditions. The CuII ion shows a Jahn–Teller-distorted octahedral geometry, with equatorial positions occupied by three N atoms from the tridentate ligand (average Cu—N = 2.004 Å and one O atom from a bidentate sulfate anion [Cu—O = 1.963 (2 Å]. The axial positions are occupied by one O atom from a coordinating water molecule [Cu—O = 2.230 (3 Å] and one weakly bonded O atom [Cu—O = 2.750 (2 Å] from the bidentate sulfate ion. The complex molecules are connected through O—H...O hydrogen bonds between the coordinating water molecules and sulfate ions from neighboring complexes, forming a double chain parallel to the c axis. The chains are stabilized through additional hydrogen bonds by one of the non-coordinating water molecules bridging between neighboring strands of the double chains. The remaining three water molecules fill the interstitial space between the double chains and are involved in an intricate hydrogen-bonding network that consolidates the structure.

  8. Hydrogen constituents of the mesosphere inferred from positive ions - H2O, CH4, H2CO, H2O2, and HCN

    Science.gov (United States)

    Kopp, E.

    1990-01-01

    The concentrations in the mesosphere of H2O, CH4, H2CO, H2O2, and HCN were inferred from data on positive ion compositions, obtained from one mid-latitude and four high-latitude rocket flights. The inferred concentrations were found to agree only partially with the ground-based microwave measurements and/or model prediction by Garcia and Solomon (1985). The CH4 concentration was found to vary between 70 and 4 ppb in daytime and 900 and 100 ppbv at night, respectively. Unexpectedly high H2CO concentrations were obtained, with H2CO/H2O ratios between 0.0006 and 0.1, and a mean HCN volume mixing ratio of 6 x 10 to the -10th was inferred.

  9. Reactions of electronically excited molecular nitrogen with H2 and H2O molecules: theoretical study

    Science.gov (United States)

    Pelevkin, Alexey V.; Sharipov, Alexander S.

    2018-05-01

    Comprehensive quantum chemical analysis with the usage of the second-order perturbation multireference XMCQDPT2 approach was carried out to study the processes in the   +  H2 and   +  H2O systems. The energetically favorable reaction pathways have been revealed based on the exploration of potential energy surfaces. It has been shown that the reactions   +  H2 and   +  H2O occur with small activation barriers and, primarily, lead to the formation of N2H  +  H and N2H  +  OH products, respectively. Further, the interaction of these species could give rise to the ground state and H2 (or H2O) products, however, the estimations, based on RRKM theory and dynamic reaction coordinate calculations, exhibited that the   +  H2 and   +  H2O reactions lead to the dissociative quenching predominately. Appropriate rate constants for revealed reaction channels have been estimated by using a canonical variational theory and capture approximation. Corresponding three-parameter Arrhenius expressions for the temperature range T  =  300  ‑  3000 K were reported.

  10. Photocatalytic Removal of Phenol under Natural Sunlight over N-TiO2-SiO2 Catalyst: The Effect of Nitrogen Composition in TiO2-SiO2

    Directory of Open Access Journals (Sweden)

    Viet-Cuong Nguyen

    2009-01-01

    Full Text Available In this present work, high specific surface area and strong visible light absorption nitrogen doped TiO2-SiO2 photocatalyst was synthesized by using sol-gel coupled with hydrothermal treatment method. Nitrogen was found to improve the specific surface area while it also distorted the crystal phase of the resulting N-TiO2-SiO2 catalyst. As the N/ (TiO2-SiO2 molar ratio was more than 10%, the derived catalyst presented the superior specific surface area up to 260 m2/g. Nevertheless, its photoactivity towards phenol removal was observed to significantly decrease, which could results from the too low crystallinity. The nitrogen content in N-TiO2-SiO2 catalyst was therefore necessary to be optimized in terms of phenol removal efficiency and found at ca. 5%. Under UVA light and natural sunlight irradiation of 80 min, N(5%-TiO2-SiO2 catalyst presented the phenol decomposition efficiencies of 68 and 100%, respectively. It was also interestingly found in this study that the reaction rate was successfully expressed using a Langmuir-Hinshelwood (L-H model, indicating the L-H nature of photocatalytic phenol decomposition reaction on the N-TiO2-SiO2 catalyst.

  11. {2-[(3,5-Dichloro-2-oxidobenzylideneamino-κ2N,O]-3-methylpentanoato-κO}(N,N′-dimethylformamide-κOcopper(II

    Directory of Open Access Journals (Sweden)

    Xiao Zhen Feng

    2008-05-01

    Full Text Available In the title compound, [Cu(C13H13Cl2NO3(C3H7NO], the CuII atom is coordinated in a slightly distorted square-planar geometry by two O atoms and one N atom from the tridentate chiral ligand 2-[(3,5-dichloro-2-oxidobenzylideneamino]-3-methylpentanoate and by one O atom from dimethylformamide. In the crystal structure, the Cu atom forms contacts with Cl and O atoms of two units (Cu...Cl and Cu...O = 3.401 and 2.947 Å, respectively, thereby forming an approximately octahedral arrangement. A three-dimensional network is constructed through Cl...Cu, O...Cu, Cl...Cl contacts and C—H...O hydrogen bonds.

  12. Bis{(E-3-[2-(hydroxyiminopropanamido]-2,2-dimethylpropan-1-aminium} bis[μ-(E-N-(3-amino-2,2-dimethylpropyl-2-(hydroxyiminopropanamido(2−]bis{[(E-N-(3-amino-2,2-dimethylpropyl-2-(hydroxyiminopropanamide]copper(II} bis((E-{3-[2-(hydroxyiminopropanamido]-2,2-dimethylpropyl}carbamate acetonitrile disolvate

    Directory of Open Access Journals (Sweden)

    Andrii I. Buvailo

    2012-12-01

    Full Text Available The reaction between copper(II nitrate and (E-N-(3-amino-2,2-dimethylpropyl-2-(hydroxyiminopropanamide led to the formation of the dinuclear centrosymmetric copper(II title complex, (C8H18N3O22[Cu2(C8H15N3O22(C8H17N3O22](C9H16N3O42·2CH3CN, in which an inversion center is located at the midpoint of the Cu2 unit in the center of the neutral [Cu2(C8H15N3O22(C8H17N3O22] complex fragment. The Cu2+ ions are connected by two N—O bridging groups [Cu...Cu separation = 4.0608 (5 Å] while the CuII ions are five-coordinated in a square-pyramidal N4O coordination environment. The complex molecule co-crystallizes with two molecules of acetonitrile, two molecules of the protonated ligand (E-3-[2-(hydroxyiminopropanamido]-2,2-dimethylpropan-1-aminium and two negatively charged (E-{3-[2-(hydroxyiminopropanamido]-2,2-dimethylpropyl}carbamate anions, which were probably formed as a result of condensation between (E-N-(3-amino-2,2-dimethylpropyl-2-(hydroxyiminopropanamide and hydrogencarbonate anions. In the crystal, the complex fragment [Cu2(C8H15N3O22(C8H17N3O22] and the ion pair C8H18N3O2+.C9H16N3O4− are connected via an extended system of hydrogen bonds.

  13. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    Full Text Available Biochar (BC application to soil suppresses emission of nitrous- (N2O and nitric oxide (NO, but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2 were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH.

  14. Aquachlorido{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilodimethylidyne]diphenolato-κ2O1,N,N′,O1′}cobalt(III monohydrate

    Directory of Open Access Journals (Sweden)

    Jianxin Xing

    2009-04-01

    Full Text Available The title compound, [Co(C18H18N2O4Cl(H2O]·H2O, contains a distorted octahedral cobalt(III complex with a 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilodimethylidyne]diphenolate ligand, a chloride and an aqua ligand, and also a disordered water solvent molecule (half-occupancy. The CoIII ion is coordinated in an N2O3Cl manner. Weak O—H...O hydrogen bonds may help to stabilize the crystal packing.

  15. Studies on the direct synthesis of [O-15]-H2O

    International Nuclear Information System (INIS)

    Hagami, Eiichi; Murakami, Matsutaro; Takahashi, Kazuhiro; Kanno, Iwao; Aizawa, Yasuo; Hachiya, Takenori; Shoji, Yasuaki; Shishido, Fumio; Uemura, Kazuo

    1986-01-01

    A direct [O-15]-H 2 O synthesis method and its critical point of non-radioactive NH 4 + contamination were described. The 6.4 MeV deuterons were irradiated into the target chamber of 177 ml, filled up with 3.5 kg/cm 2 of 0.1 % H 2 in N 2 . [O-15]-H 2 O vapor was transported to PET room by He flow of 2.5 l/min through the teflon tubing of 2 mm in internal diameter and of 30 m in length. [O-15]-H 2 O was trapped in the vial containing 10 ml of saline and passed through Millipore filter. In this condition, the small amount of non-radioactive NH 4 + (24.9 ± 12.8 (1 SD) μg/dl, n = 23) was detected. This NH 4 + concentration varied from 25 to 11,000 μg/dl with changing H 2 amount in the target from 0.1 to 4.0 %. The NH 4 + concentration was kept lower than a normal range of the healthy human blood with 0.5 % or less H 2 in N 2 in the target. Therefore, 0.1 % of H 2 was used in clinical use. By the present method, a yield of approximately 7 mCi/μA of [O-15]-H 2 O saline was obtained. About 10 % of radioactive gases, corresponding to C 15 O, C 15 O 2 and N 2 15 O, were detected in the waste gas. The radiochemical and radionuclidic impurity was not detected in the saline. The biological tests for bacteria and pyrogen were all passed. In conclusion, the direct synthesis method provides [O-15]-H 2 O saline in the PET room with the simple handling and is convenient for the clinical use. (author)

  16. The Cs2SO4-Ce2(SO4)3-H2SO4-H2O system at 150 and 200 deg C

    International Nuclear Information System (INIS)

    Bondar', S.A.; Belokoskov, V.I.; Trofimov, G.V.

    1982-01-01

    Solubility in the system Cs 2 SO 4 -Ce 2 (SO 4 ) 3 -H 2 SO 4 -H 2 O using the isothermal method at 150 and 200 deg C at molar ratios Cs 2 SO 4 :Ce 2 (SO 4 ) 3 =1:5 and conditions of sulfate crystallization Cs 2 SO 4 xCe 2 (SO 4 ) 3 , Ce 2 (SO 4 ) 3 x0.5H 2 SO 4 xnH 2 O (n=2-3) and Ce 2 (SO 4 ) 3 x3H 2 SO 4 are determined. Double sulfate Cs 2 SO 4 xCe 2 (SO 4 ) 3 is studied using the methods of crystallooptical, thermal, X-ray phase analyses and IR spectroscopy

  17. Weak ferrimagnetism, compensation point and magnetization reversal in Ni(HCOO)2x2H2O

    International Nuclear Information System (INIS)

    Kageyama, H.; Khomskii, D.I.; Levitin, R.Z.; Vasiliev, A.N.

    2003-01-01

    Nickel (II) format dihydrate Ni(HCOO) 2 x2H 2 O shows peculiar magnetic response at T N =15.5 K. The magnitude of weak magnetic moment increases initially below T N , equals zero at T*=8.5 K and increases again at lowering temperature. The sign of low field magnetization at any given temperature is determined by the sample's magnetic prehistory and the signs are opposite to each other at T N . This behavior suggests that Ni(HCOO) 2 x2H 2 O is a weak ferrimagnet and T* is a compensation point

  18. Airborne testing and demonstration of a new flight system based on an Aerodyne N2O-CO2-CO-H2O mini-spectrometer

    Science.gov (United States)

    Gvakharia, A.; Kort, E. A.; Smith, M. L.; Conley, S.

    2017-12-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and ozone depleting substance. With high atmospheric backgrounds and small relative signals, N2O emissions have been challenging to observe and understand on regional scales with traditional instrumentation. Fast-response airborne measurements with high precision and accuracy can potentially bridge this observational gap. Here we present flight assessments of a new flight system based on an Aerodyne mini-spectrometer as well as a Los Gatos N2O/CO analyzer during the Fertilizer Emissions Airborne Study (FEAST). With the Scientific Aviation Mooney aircraft, we conducted test flights for both analyzers where a known calibration gas was sampled throughout the flight (`null' tests). Clear altitude/cabin-pressure dependencies were observed for both analyzers if operated in an "off-the-shelf' manner. For the remainder of test flights and the FEAST campaign we used a new flight system based on an Aerodyne mini-spectrometer with the addition of a custom pressure control/calibration system. Instead of using traditional approaches with spectral-zeros and infrequent in-flight calibrations, we employ a high-flow system with stable flow control to enable high frequency (2 minutes), short duration (15 seconds) sampling of a known calibration gas. This approach, supported by the null test, enables correction for spectral drift caused by a variety of factors while maintaining a 90% duty cycle for 1Hz sampling from an aircraft. Preliminary in-flight precisions are estimated at 0.05 ppb, 0.1 ppm, 1 ppb, and 10 ppm for N2O, CO2, CO, and H2O respectively. We also present a further 40 hours of inter-comparison in flight with a Picarro 2301-f ring-down spectrometer demonstrating consistency between CO2 and H2O measurements and no altitude dependent error.

  19. Photochemical oxidation of short-chain polychlorinated n-alkane mixtures using H2O2/UV and the photo-Fenton reaction

    OpenAIRE

    Ken J. Friesen; Taha M. El-Morsi; Alaa S. Abd-El-Aziz

    2004-01-01

    The photochemical oxidation of a series of short-chain polychlorinated n-alkane (PCA) mixtures was investigated using H2O2/UV and modified photo-Fenton conditions (Fe3+/H2O2/UV) in both Milli-Q and lake water. All PCA mixtures, including chlorinated (Cl5 to Cl8) decanes, undecanes, dodecanes and tridecanes degraded in 0.02 M H2O2/UV at pH 2.8 in pure water, with 80±4% disappearance after 3 h of irradiation using a 300 nm light source. Degradation was somewhat enhanced under similar conditions...

  20. catena-Poly[[(benzoato-κ2O,O′(2,2′-bipyridine-κ2N,N′lead(II]-μ3-nitrato-κ4O:O,O′:O′′

    Directory of Open Access Journals (Sweden)

    Juan Yang

    2010-12-01

    Full Text Available In the title coordination polymer, [Pb(C7H5O2(NO3(C10H8N2]n, the PbII ion is eight-coordinated by two N atoms from one 2,2′-bipyridine ligand, two O atoms from one benzoate anion and four O atoms from three nitrate groups (one chelating, two bridging in a distorted dodecahedral geometry. Adjacent PbII ions are linked by bridging nitrate O atoms through the central Pb2O2 and Pb2O4N2 cores, resulting in an infinite chain structure along the b axis. The crystal structure is stabilized by π–π stacking interactions between 2,2′-bipyridine and benzoate ligands belonging to neighboring chains, with shortest centroid–centroid distances of 3.685 (8 and 3.564 (8 Å.

  1. Preparation, Characterization, and Structure of Two Layered Molybdenum(VI) Phosphates: KMo(H 2O)O 2PO 4 and NH 4Mo(H 2O)O 2PO 4

    Science.gov (United States)

    Millini, Roberto; Carati, Angela

    1995-08-01

    New layered Mo(VI) compounds, KMo(H 2O)O 2PO 4 (I) and NH 4Mo(H 2O)O 2PO 4 (II), were synthesized hydrothermally and their structures were determined from single-crystal X-ray analysis. Compounds (I) and (II) are isostructural and crystallize in the monoclinic P2 1/ n space group with a = 12.353(3), b = 8.623(2), c = 5.841(1) Å, β = 102.78(1)°, V = 606.8(2) Å 3, Z = 4, and R = 0.027 ( Rw = 0.030) for compound (I) and a = 12.435(3), b = 8.761(2), c = 6.015(1), β = 103.45(1)°, V = 637.3(2) Å 3, Z = 4, and R = 0.040 ( Rw = 0.041) for compound (II). The structure consists of layers built up of eight- and four-membered rings resulting from the alternation of corner-sharing [MoO 6] octahedra and [PO 4] tetrahedra. The layers stack along the (1¯01) direction by intercalating K and NH 4 ions.

  2. Synthesis and characterization of Cu2O/TiO2 photocatalysts for H2 evolution from aqueous solution with different scavengers

    Science.gov (United States)

    Li, Yanping; Wang, Baowei; Liu, Sihan; Duan, Xiaofei; Hu, Zongyuan

    2015-01-01

    A series of Cu2O/TiO2 photocatalysts with different molar fraction of Cu2O were prepared by a facile modified ethanol-induced approach followed by a calcination process. The chemical state of copper compound was proved to be cuprous oxide by the characterization of X-ray photoelectron spectra (XPS). Furthermore, these composite oxides were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption desorption and UV-vis techniques to study the morphologies, structures, and optical properties of the as-prepared samples. The results indicated that the photocatalytic activity of n-type TiO2 was significantly enhanced by combined with p-type Cu2O, due to the efficient p-n heterojunction. The p-n heterojunction between Cu2O and TiO2 can enhance visible-light adsorption, efficiently suppress charge recombination, improve interfacial charge transfer, and especially provide plentiful reaction active sites on the surface of photocatalyst. As a consequence, the prepared 2.5-Cu2O/TiO2 photocatalyst exhibited the highest photocatalytic activity for H2 evolution rate and reached 2048.25 μmol/(g h), which is 14.48 times larger than that of pure P25. The apparent quantum yield (AQY) of the 2.5-Cu2O/TiO2 sample at 365 nm was estimated to be 4.32%. In addition, the influence of different scavengers, namely methanol, anhydrous ethanol, ethylene glycol and glycerol, on the photocatalytic activity for H2 evolution rate was discussed.

  3. Intensities and cross sections of Ne, H2, N2, NO and O2 clusters in a molecular beam, ch. 4

    International Nuclear Information System (INIS)

    Deursen, A.P.J. van; Reuss, J.

    1976-01-01

    Molecular beams of Ne, H 2 , N 2 , NO, and O 2 clusters have been investigated. The temperature and pressure dependence of the ion signals have been measured for masses up to three times the monomer mass. (Auth.)

  4. Magnetism of CuCl{sub 22D{sub 2}O and CuCl{sub 22H{sub 2}O, and of CuBr{sub 2}·6H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    DeFotis, G.C., E-mail: gxdefo@wm.edu [Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 (United States); Hampton, A.S.; Van Dongen, M.J.; Komatsu, C.H.; Benday, N.S.; Davis, C.M. [Department of Chemistry, College of William and Mary, Williamsburg, VA 23187 (United States); Hays, K.; Wagner, M.J. [Department of Chemistry, George Washington University, Washington, D.C. 20052 (United States)

    2017-07-15

    Highlights: • CuCl{sub 22D{sub 2}O is examined magnetically and compared with CuCl{sub 22H{sub 2}O. • Slightly lower magnetic characteristic temperatures occur for deuterated dihydrate. • The new compound CuBr{sub 2}·6H{sub 2}O is examined magnetically. • Unexpected relationships appears between magnetic behaviors of CuBr{sub 2}·6H{sub 2}O and CuBr{sub 2}. • Two alternative monoclinic unit cells can account for diffraction data on CuBr{sub 2}·6H{sub 2}O. - Abstract: The magnetic properties of little examined CuCl{sub 22D{sub 2}O are studied and compared with those of CuCl{sub 22H{sub 2}O. New CuBr{sub 2}·6H{sub 2}O is also examined. Susceptibility maxima appear for chlorides at 5.35 and 5.50 K, in the above order, with estimated antiferromagnetic ordering at 4.15 and 4.25 K. Curie-Weiss fits yield g of 2.210 and 2.205, and Weiss θ of −6.0 and −4.7 K, respectively, in χ{sub M} = C/(T − θ). One-dimensional Heisenberg model fits to susceptibilities, including interchain exchange in a mean-field approximation, are performed. Interchain exchange is significant but much weaker than intrachain. The bromide hexahydrate strongly differs magnetically from any chloride hydrate, but exhibits notable similarities and differences compared to previously studied CuBr{sub 2}. A broad susceptibility maximum occurs near 218 K, only 4% lower than for CuBr{sub 2}, but with almost twice the magnitude. Powder X-ray diffraction data for CuBr{sub 2}·6H{sub 2}O may be best accounted for by a monoclinic unit cell that is metrically orthorhombic. The volume per formula unit is consistent with trends in metal ionic radii. However, an alternative monoclinic cell with 5% smaller volume more readily rationalizes the magnetism.

  5. Synthesis, crystal structure and magnetic properties of [Cu(mal(abpt(H2O].3/2H2O and [Cu2(sq(abpt 2].2H2O (mal = malonate, sq = squarate, abpt = 4-amino-3,5-di-2-pyridyl-4H-1,2,4 triazole

    Directory of Open Access Journals (Sweden)

    Eno A. Ededet

    2011-04-01

    Full Text Available Two new mixed-ligand complexes of formula [Cu(mal(abpt(H2O].3/2H2O (1 and [Cu2(sq(abpt2].2H2O (2 [mal = malonate, abpt = 4-amino-3,5-di-2-pyridyl-4H-1,2,4 triazole and sq = squarate], have been prepared and characterized by X-ray crystal structure determination and magnetic studies. Complex 1 crystallizes in the monoclinic system, space group C2/c, with a = 14.0086(2 Å, b = 10.0980(2 Å, c = 25.630(4 Å; β = 97.5900(10 o, and Z = 8. Complex 2 crystallizes in the triclinic system, space group P-1 with a = 7.5696(15 Å, b = 8.4697(17 Å, c = 11.049(2 Å; β = 93.00(3o, α = 96.98(3, γ = 90.111(3 and Z = 1. Complex 1 consist of a neutral mononuclear [Cu(mal(abpt(H2O] unit and water molecule of crystallization in a distorted square pyramidal coordination sphere, while complex 2 is viewed as being made up of [Cu(sq(abpt2] units with the squarato ligand bridging the two copper(II cations. Variable temperature magnetic behaviour of the complexes reveals the existence of weak antiferromagnetic interaction for complex 1 and weak ferromagnetic intrachain interaction for complex 2.

  6. N,N′-(Ethane-1,2-diyldi-o-phenylenebis(pyridine-2-carboxamide

    Directory of Open Access Journals (Sweden)

    Shuranjan Sarkar

    2011-11-01

    Full Text Available The title molecule, C26H22N4O2, is centrosymmetric and adopts an anti conformation. Two intramolecular hydrogen bonds, viz. amide–pyridine N—H...N and phenyl–amide C—H...O, stabilize the trans conformation of the (pyridine-2-carboxamidophenyl group about the amide plane. In the crystal, the presence of weak intermolecular C—H...O hydrogen bonds results in the formation of a three-dimensional network.

  7. Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process?

    Science.gov (United States)

    Liu, Jibao; Jia, Ruilai; Wang, Yawei; Wei, Yuansong; Zhang, Junya; Wang, Rui; Cai, Xing

    2017-04-01

    This study investigated the effects of residual H 2 O 2 on hydrolysis-acidification and methanogenesis stages of anaerobic digestion after microwave-H 2 O 2 (MW-H 2 O 2 ) pretreatment of waste activated sludge (WAS). Results showed that high sludge solubilization at 35-45 % was achieved after pretreatment, while large amounts of residual H 2 O 2 remained and refractory compounds were thus generated with high dosage of H 2 O 2 (0.6 g H 2 O 2 /g total solids (TS), 1.0 g H 2 O 2 /g TS) pretreatment. The residual H 2 O 2 not only inhibited hydrolysis-acidification stage mildly, such as hydrolase activity, but also had acute toxic effect on methanogens, resulting in long lag phase, low methane yield rate, and no increase of cumulative methane production during the 30-day BMP tests. When the low dosage of H 2 O 2 at 0.2 g H 2 O 2 /g TS was used in MW-H 2 O 2 pretreatment, sludge anaerobic digestion was significantly enhanced. The cumulative methane production increased by 29.02 %, but still with a lag phase of 1.0 day. With removing the residual H 2 O 2 by catalase, the initial lag phase of hydrolysis-acidification stage decreased from 1.0 to 0.5 day.

  8. Complexing in (NH4)2SeO4-UO2SeO4 H2O system

    International Nuclear Information System (INIS)

    Serezhkina, L.B.

    1994-01-01

    Isotherm of solubility in the (NH 4 ) 2 SeO 4 -UO 2 SeO 4 -H 2 O system has been constructed at 25 deg C. (NH 4 ) 2 (UO 2 ) 2 (SeO 4 ) 3 x6H 2 O formation is established for the first time and certain its physicochemical properties are determined. Regularities of complexing in the R 2 Se) 4 -UO 2 SeO 4 -H 2 O systems, where R-univalent cation are under discussion. 6 refs.; 3 tabs

  9. Study of UO{sub 2}F{sub 2} - H{sub 2}O - HF compounds; Etude des composes UO{sub 2}F{sub 2} - H{sub 2}O - HF

    Energy Technology Data Exchange (ETDEWEB)

    Neveu, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    We study various compounds resulting from the interaction of UO{sub 2}F{sub 2} with H{sub 2}O and HF (gas), and various triple compounds UO{sub 2}F{sub 2} - H{sub 2}O - HF; the conditions of decomposition and the thermodynamic limits of stability are specified. (author) [French] Nous etudions divers composes formes par reaction de UO{sub 2}F{sub 2} avec H{sub 2}O et HF (gaz) et divers composes triples UO{sub 2}F{sub 2} - H{sub 2}O - HF, en essayant de preciser les decompositions et domaines d'exisfence thermodynamiques de ces corps. (auteur)

  10. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Nazari Shahram

    2013-08-01

    Full Text Available Background & Aims of the Study: Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim of this study was to evaluate the performance of H2O2 and H2O2/Fe0 Iron in removal of dye Acid Red 18 from aqueous solutions. Materials & Methods: This study was conducted at the laboratory scale. In this study, the removal efficiency of Acid Red 18 from a synthetic solution by H2O2 and H2O2/Fe0 was investigated. As well as Effect of solution pH, dye concentration, Concentration of Nanoscale Zero-Valent Iron, H2O2 and contact time in decolorization efficiency was investigated. Results: Results show that in pH=3, Contact time of 80 minutes, dye concentration of 50 mg/l and Concentration of Nanoscale Zero-Valent Iron of 2 g/l and H2O2 concentration equal to 200 mmol/l, the removal efficiency was about 98%. Conclusions: According to the results of experiments, H2O2/Fe0 has high efficiency in removal of Acid Red 18 from aqueous solution.

  11. Untersuchungen am System NMMO/H2O/Cellulose

    OpenAIRE

    Cibik, T.

    2003-01-01

    Die vorliegende Arbeit befasst sich mit der Untersuchung des Zweistoffsystems N-Methylmorpholin-N-oxid (NMMO)/H2O und des Dreistoffsystems NMMO/H2O/Cellulose sowie mit der Herstellung und Charakterisierung von faserverstärkten Cellulosefolien. Das binäre System wird mittels Dynamischer Differenzkalorimetrie und Röntgenweitwinkel-Diffraktometrie untersucht und dadurch das Schmelzverhalten und die Phasenzusammensetzung dieses Systems im festen Zustand als Funktion des NMMO/H2O-Verhältnisses bes...

  12. Evaluation of the impact of H2O, O2, and SO2 on postcombustion CO2 capture in metal-organic frameworks.

    Science.gov (United States)

    Yu, Jiamei; Ma, Yuguang; Balbuena, Perla B

    2012-05-29

    Molecular modeling methods are used to estimate the influence of impurity species: water, O(2), and SO(2) in flue gas mixtures present in postcombustion CO(2) capture using a metal organic framework, HKUST-1, as a model sorbent material. Coordinated and uncoordinated water effects on CO(2) capture are analyzed. Increase of CO(2) adsorption is observed for both cases, which can be attributed to the enhanced binding energy between CO(2) and HKUST-1 due to the introduction of a small amount of water. Density functional theory calculations indicate that the binding energy between CO(2) and HKUST-1 with coordinated water is ~1 kcal/mol higher than that without coordinated water. It is found that the improvement of CO(2)/N(2) selectivity induced by coordinated water may mainly be attributed to the increased CO(2) adsorption on the hydrated HKUST-1. On the other hand, the enhanced selectivity induced by uncoordinated water in the flue gas mixture can be explained on the basis of the competition of adsorption sites between water and CO(2) (N(2)). At low pressures, a significant CO(2)/N(2) selectivity increase is due to the increase of CO(2) adsorption and decrease of N(2) adsorption as a consequence of competition of adsorption sites between water and N(2). However, with more water molecules adsorbed at higher pressures, the competition between water and CO(2) leads to the decrease of CO(2) adsorption capacity. Therefore, high pressure operation should be avoided in HKUST-1 sorbents for CO(2) capture. In addition, the effects of O(2) and SO(2) on CO(2) capture in HKUST-1 are investigated: The CO(2)/N(2) selectivity does not change much even with relatively high concentrations of O(2) in the flue gas (up to 8%). A slightly lower CO(2)/N(2) selectivity of a CO(2)/N(2)/H(2)O/SO(2) mixture is observed compared with that in a CO(2)/N(2)/H(2)O mixture, especially at high pressures, due to the strong SO(2) binding with HKUST-1.

  13. Structural, thermal, and magnetic study of solvation processes in spin-crossover [Fe(bpp)(2)][Cr(L)(ox)(2)](2).nH(2)O complexes.

    Science.gov (United States)

    Clemente-León, Miguel; Coronado, Eugenio; Giménez-López, M Carmen; Romero, Francisco M

    2007-12-24

    The influence of lattice water in the magnetic properties of spin-crossover [Fe(bpp)2]X2.nH2O salts [bpp = 2,6-bis(pyrazol-3-yl)pyridine] is well-documented. In most cases, it stabilizes the low-spin state compared to the anhydrous compound. In other cases, it is rather the contrary. Unraveling this mystery implies the study of the microscopic changes that accompany the loss of water. This might be difficult from an experimental point of view. Our strategy is to focus on some salts that undergo a nonreversible dehydration-hydration process without loss of crystallinity. By comparison of the structural and magnetic properties of original and rehydrated samples, several rules concerning the role of water at the microscopic level can be deduced. This paper reports on the crystal structure, thermal studies, and magnetic properties of [Fe(bpp)2][Cr(bpy)(ox)2]2.2H2O (1), [Fe(bpp)2][Cr(phen)(ox)2]2.0.5H2O.0.5MeOH (2), and [Fe(bpp)2][Cr(phen)(ox)2]2.5.5H2O.2.5MeOH (3). Salt 1 contains both high-spin (HS) and low-spin (LS) Fe2+ cations in a 1:1 ratio. Dehydration yields the anhydrous spin-crossover compound with T1/2 downward arrow = 353 K and T1/2 upward arrow = 369 K. Rehydration affords the dihydrate [Fe(bpp)2][Cr(bpy)(ox)2]2.2H2O (1r) with 100% HS Fe2+ sites. Salt 2 also contains both HS and LS Fe2+ cations in a 1:1 ratio. Dehydration yields the anhydrous spin-crossover compound with T1/2 downward arrow = 343 K and T1/2 upward arrow = 348 K. Rehydration affords [Fe(bpp)2][Cr(phen)(ox)2]2.0.5H2O (2r) with 72% Fe2+ sites in the LS configuration. The structural, magnetic, and thermal properties of these rehydrated compounds 1r and 2r are also discussed. Finally, 1 has been dehydrated and resolvated with MeOH to give [Fe(bpp)2][Cr(bpy)(ox)2]2.MeOH (1s) with 33% HS Fe2+ sites. The influence of the guest solvent in the Fe2+ spin state can anticipate the future applications of these compounds in solvent sensing.

  14. 1,5-Dimethyl-2-phenyl-1H-pyrazol-3(2H-one–4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] (1/1

    Directory of Open Access Journals (Sweden)

    Krzysztof Lyczko

    2013-01-01

    Full Text Available The asymmetric unit of the title compound, C11H12N2O·C25H28N4O2, contains two different molecules. The smaller is known as antipyrine [systematic name: 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one] and the larger is built up from two antypirine molecules which are connected through a C atom of the pyrazolone ring to a central propanyl part [systematic name: 4,4′-(propane-2,2-diylbis[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H-one]. Intramolecular C—H...O hydrogen bonds occur in the latter molecule. In the crystal, C—H...O hydrogen bonds link the molecules into a two-dimensional network parallel to (001.

  15. A Sequential Method to Prepare Polymorphs and Solvatomorphs of [Fe(1,3-bpp)2 ](ClO4 )2nH2 O (n=0, 1, 2) with Varying Spin-Crossover Behaviour.

    Science.gov (United States)

    Bartual-Murgui, Carlos; Codina, Carlota; Roubeau, Olivier; Aromí, Guillem

    2016-08-26

    Two polymorphs of the spin crossover (SCO) compound [Fe(1,3-bpp)2 ](ClO4 )2 (1 and 2; 1,3-bpp=2-(pyrazol-1-yl)-6-(pyrazol-3-yl)pyridine) were prepared using a novel, stepwise procedure. Crystals of 1 deposit from dry solvents, while 2 is obtained from a solid-state procedure, by sequentially removing lattice H2 O molecules from the solvatomorph [Fe(1,3-bpp)2 ](ClO4 )22H2 O (22H2 O), using single-crystal-to-single-crystal (SCSC) transformations. Hydrate 22H2 O is obtained through the same reaction as 1, now with 2.5 % of water added. Compounds 2 and 22H2 O are unstable in the atmosphere and absorb or lose one equivalent of water, respectively, to both yield the stable solvatomorph [Fe(1,3-bpp)2 ](ClO4 )2H2 O (2H2 O), also following SCSC processes. The four derivatives have been characterised by single-crystal X-ray diffraction (SCXRD). Furthermore, the homogeneity of the various compounds as well as their SCSC interconversions have been confirmed by powder X-ray diffraction (PXRD). Polymorphs 1 and 2 exhibit abrupt SCO behaviour near room temperature with T1/2↑ =279/316 K and T1/2↓ =276/314 K (near 40 K of shift) and different cooperativity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The effect of CO2, H2O and SO2 on the kinetics of NO reduction by CH4 over La2O3

    International Nuclear Information System (INIS)

    Toops, Todd J.; Walters, Arden B.; Vannice, M.A.

    2002-01-01

    The effect of CO 2 , H 2 O and SO 2 on the kinetics of NO reduction by CH 4 over unsupported La 2 O 3 has been examined between 773 and 973K in the presence of O 2 in the feed. La 2 O 3 can maintain a stable, high specific activity (mol/(sm 2 )) for NO reduction with high concentrations of CO 2 and H 2 O in the feed; however, either of these two products reversibly inhibits the activity by about one-half in the presence of excess O 2 . The catalyst is poisoned by SO 2 at these temperatures and an oxysulfate phase is formed, but partial regeneration can be achieved at 1023K. CO 2 in the feed causes the formation of lanthanum oxycarbonate, which reverts to La 2 O 3 when CO 2 is removed, but no bulk La oxyhydroxide is detected after quenching with H 2 O in the feed. The influence of CO 2 and H 2 O on kinetic behavior can be described by assuming they compete with reactants for adsorption on surface sites, including them in the site balance equation, and using the rate expression proposed previously for NO reduction by CH 4 in excess O 2 . With O 2 in the feed, integral conversions of CH 4 and O 2 frequently occurred due to the direct combustion of CH 4 by O 2 , although NO conversions remained differential; thus, an integral reactor model was chosen to analyze the data which utilized a recently determined rate equation for CH 4 combustion on La 2 O 3 in conjunction with a previously proposed model for NO reduction by CH 4 . The following rate expression described the rate of N 2 formation: N 2 T = ' NO P NO P CH 4 P O 2 0.5 / 1 + K NO P NO + K CH 4 P CH 4 + K O 2 0.5 P O 2 0.5 + K CO 2 P CO 2 + K H 2 O P H 2 O 2 . It gave a good fit to the experimental rate data for NO reduction, as well as providing enthalpies and entropies of adsorption obtained from the fitting parameters that demonstrated thermodynamic consistency and were similar to previous values. The heats of adsorption were altered somewhat when either CO 2 or H 2 O was added to the feed, and the following

  17. {2-[(2-Acetylhydrazin-1-ylidenemethyl-κ2N1,O]-6-methoxyphenolato-κO1}(nitrato-κOcopper(II monohydrate

    Directory of Open Access Journals (Sweden)

    Ibrahima Elhadj Thiam

    2010-02-01

    Full Text Available In the title complex, [Cu(C10H11N2O3(NO3]·H2O, prepared from the Schiff base N′-(3-methoxy-2-oxidobenzylideneacetohydrazide, the CuII atom is coordinated by two O atoms and one N atom from the ligand and one O atom from a nitrate group in a distorted square-planar geometry. The CuII atom has a weak interaction with another O atom of the nitrate group. The two O atoms of the tridentate Schiff base ligand are in a trans arrangement. O—H...O and N—H...O hydrogen bonds involving the uncoordinated water molecule are observed.

  18. Uptake properties of Ni2+ by nCaO.Al2O3.2SiO2 (n=1-4) prepared from solid-state reaction of kaolinite and calcite.

    Science.gov (United States)

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2005-08-31

    A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.

  19. (Pyridine-2-aldoximato-κ2N,N′bis[2-(pyridin-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Bimal Chandra Singh

    2013-03-01

    Full Text Available In the title complex, [Ir(C11H8N2(C6H5N2O], the octahedrally coordinated IrIII atom is bonded to two 2-(pyridin-2-ylphenyl ligands, through two phenyl C and two pydidine N atoms, and to one pyridine-2-aldoxime ligand through a pyridine N and an oxime N atom. The oxime O atom of the aldoxime unit forms intermolecular C—H...O hydrogen bonds, which result in a two-dimensional hydrogen-bonded polymeric network parallel to (100. C—H...π interactions are also observed.

  20. Adsorção de íons sulfato em ZrO2.nH2O preparado pelo método da precipitação convencional e da precipitação em solução homogênea Adsorption of sulfate ions in ZrO2.nH2O prepared by conventional precipitation and homogeneous solution methods

    Directory of Open Access Journals (Sweden)

    L. A. Rodrigues

    2009-03-01

    Full Text Available Este trabalho visa a preparação, caracterização e estudo da adsorção de íons sulfato em óxido de zircônio hidratado preparado pelos métodos da precipitação convencional e da precipitação em solução homogênea. Os materiais obtidos foram caracterizados por difração de raios X, análise termogravimétrica, microscopia eletrônica de varredura e análise de área superficial específica pelo método BET. Através da constante Q0, relacionada com a capacidade de adsorção máxima, observou-se que o ZrO2.nH2O/PSH possui maior capacidade de adsorção para íons sulfato que o ZrO2.nH2O/PC. Pelos resultados de ΔG, observou-se que os íons sulfato foram adsorvidos através de reações energeticamente favoráveis para toda a faixa de concentração estudada.This work reports the preparation, characterization and adsorption study of sulfate on hydrous zirconium oxides prepared by conventional and homogeneous solution precipitation methods. The materials prepared were characterized by X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and surface area measurements. Through the Q0 constant, related with the capacity of maximum adsorption, it was observed that the ZrO2.nH2O/PSH presented better adsorption capacity than ZrO2.nH2O/PC. By results of ΔG, it was observed that sulfate ions had been adsorbed through favorable reactions for all studied concentration ranges.

  1. Crystal structures of dibromido{N-[(pyridin-2-yl-κNmethylidene]picolinohydrazide-κ2N′,O}cadmium methanol monosolvate and diiodido{N-[(pyridin-2-yl-κNmethylidene]picolinohydrazide-κ2N′,O}cadmium

    Directory of Open Access Journals (Sweden)

    Ali Akbar Khandar

    2017-05-01

    Full Text Available The title compounds, [CdBr2(C12H10N4O]·CH3OH, (I, and [CdI2(C12H10N4O], (II, are cadmium bromide and cadmium iodide complexes of the ligand (E-N′-(pyridin-2-ylmethylenepicolinohydrazide. Complex (I crystallizes as the methanol monosolvate. In both compounds, the Cd2+ cation is ligated by one O atom and two N atoms of the tridentate ligand, and by two bromide anions forming a Br2N2O pentacoordination sphere for (I, and by two iodide anions forming an I2N2O pentacoordination sphere for (II, both with a distorted square-pyramidal geometry. In the crystal of complex (I, molecules are linked by pairs of N—H...O and O—H...Br hydrogen bonds, involving the solvent molecule, forming dimeric units, which are linked by C—H...Br hydrogen bonds forming layers parallel to (101. In the crystal of complex (II, molecules are linked by N—H...I hydrogen bonds, forming chains propagating along [010]. In complex (II, measured at room temperature, the two iodide anions are each disordered over two sites; the refined occupancy ratio is 0.75 (2:0.25 (2.

  2. Improved radiosensitive microcapsules using H2O2

    International Nuclear Information System (INIS)

    Harada, Satoshi; Ehara, Shigeru; Ishii, Keizo

    2010-01-01

    The radiation-induced releasing of the liquid-core of the microcapsules was improved using H 2 O 2 , which produced O 2 generation of H 2 O 2 after irradiation. Further, we tested whether these microcapsules enhanced the antitumor effects and decreased the adverse effects in vivo in C3He/J mice. The capsules were produced by spraying a mixture of 3.0% hyaluronic acid, 2.0% alginate, 3.0% H 2 O 2 , and 0.3 mmol of carboplatin on a mixture of 0.3 mol FeCl 2 and 0.15 mol CaCl 2 . The microcapsules were subcutaneously injected into MM46 tumors that had been inoculated in the left hind legs of C3He/J mice. The radiotherapy comprised tumor irradiation with 10 Gy or 20 Gy 60 Co. The antitumor effect of the microcapsules was tested by measuring tumor size and monitoring tumor growth. Three types of adverse effects were considered: fuzzy hair, loss of body weight, and death. The size of the capsule size was 23±2.4 μmφ and that of the liquid core, 20.2±2.2 μmφ. The injected microcapsules localized drugs around the tumor. The production of O 2 by radiation increased the release of carboplatin from the microcapsules. The antitumor effects of radiation, carboplatin, and released oxygen were synergistic. Localization of the carboplatin decreased its adverse effects. However, the H 2 O 2 caused ulceration of the skin in the treated area. The use of our microcapsules enhanced the antitumor effects and decreased the adverse effects of carboplatin. However, the skin-ulceration caused by H 2 O 2 must be considered before these microcapsules can be used clinically. (author)

  3. Synthesis, characterization, electrochemical investigation and antioxidant activities of a new hybrid cyclohexaphosphate: Cu1.5Li(C2H10N2)P6O18·7H2O

    Science.gov (United States)

    Sleymi, Samira; Lahbib, Karima; Rahmouni, Nihed; Rzaigui, Mohamed; Besbes-Hentati, Salma; Abid, Sonia

    2017-09-01

    A new organic-inorganic hybrid transition metal phosphate, Cu1.5Li(C2H10N2)P6O18·7H2O, has been prepared and characterized by X-ray diffraction, spectroscopy (infrared, Raman, diffuse reflectance and UV-Vis) and thermal analysis (TG). In addition, its electrochemical behaviors, as well as its antioxidant and antibacterial activities, have been investigated. Its structure is built up by the alternate linkages between copper and phosphate polyhedra, forming puckered layers with intersecting 12-membered rings, in which the ethylenediammonium cations reside. This compound is the first framework structure constructed from cyclohexaphosphates and three distinct copper cations. Cyclic voltammetry study in an acetonitrile solution reveals the facile anodic oxidation of its organic part on a platinum disk and a progressive growing of a thin film, though the repetitive cycling of potential. The title compound was tested for its in vitro antioxidant activities by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Ferrous chelating ability (FIC) and Ferric Reducing Power (FRP) methods. The antioxidant activity of Cu1.5Li(C2H10N2)P6O18·7H2O was analyzed simultaneously with its antibacterial capacity against Escherichia coli, Salmonella typhimurium, Staphylococus aureus, Enterococcus feacium, Streptococcus agalactiae and Candida albicans. The tested compound showed significant antioxidant activities with low antibacterial properties.

  4. Betaine Phosphate (CH3)3N+CH2COO-.H3PO4 Modification Using D2O

    International Nuclear Information System (INIS)

    Saryati; Ridwan; Deswita; Sugiantoro, Sugik

    2002-01-01

    Betaine fosfate (CH 3 ) 3 N + CH 2 COO - .H 3 PO 4 modification by using D 2 O has been studied. This modification was carried out by slowly evaporation the saturated Betaine phosphat in the D 2 O solution in the dry box at 40 o C, until the dry crystal were formed. Based on the NMR data, can be concluded that the exchange process with D has been runed well and Betaine phosphate-D (CH 3 ) 3 N + CH 2 COO - .H 3 PO 4 has been resulted. From the X-ray diffraction pattern data can be concluded that there are a deference in the crystal structure between Betaine phosphate and Betaine phosphate modification result. From the Differential Scanning Colorimeter (DSC) diagram at the range temperature from 30 o C to 250 o C, can be shown that the Betaine phosphate-H has two endothermic transition phase, at 99 o C with a very little adsorbed calor and at 221.50 o C with -26.75 cal/g. Modified Betaine phosphate has also two endothermic transition phase, at 99.86 o C with -1.94 cal/g and at 171.01 o C with -3.48 cal/g. It can be conclosed that the D atom substitution on the H atoms in Betaine phosphate, to change the crystal and the endothermic fase temperature and energy

  5. Poly[[aqua(μ2-4,4′-bipyridine-κ2N:N′[μ3-3-bromo-2-(carboxylatomethylbenzoato-κ3O1:O1′:O2]cadmium] monohydrate

    Directory of Open Access Journals (Sweden)

    Yangmei Liu

    2012-08-01

    Full Text Available In the title compound, {[Cd(C9H5BrO4(C10H8N2(H2O]·H2O}n, the CdII atom has a distorted octahedral coordination geometry. Two N atoms from two 4,4′-bipyridine (bipy ligands occupy the axial positions, while the equatorial positions are furnished by three carboxylate O atoms from three 3-bromo-2-(carboxylatomethylbenzoate (bcb ligands and one O atom from a water molecule. The bipy and bcb ligands link the CdII atoms into a three-dimensional network. O—H...O hydrogen bonds and π–π interactions between the pyridine and benzene rings [centroid–centroid distance = 3.736 (4 Å] are present in the crystal.

  6. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    Science.gov (United States)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  7. Ferromagnetic Coupling between Copper(II) Centers through the Diamagnetic Zinc(II) Ion: Crystal Structure and Magnetic Properties of [Cu(2)Zn(Hdmg)(2)(dmg)(2)(H(2)O)].0.5H(2)dmg.H(2)O (H(2)dmg = Dimethylglyoxime).

    Science.gov (United States)

    Ruiz, Rafael; Julve, Miguel; Faus, Juan; Lloret, Francesc; Muñoz, M. Carmen; Journaux, Yves; Bois, Claudette

    1997-07-30

    A new heterotrinuclear complex of formula [Cu(2)Zn(Hdmg)(2)(dmg)(2)(H(2)O)].0.5H(2)dmg.H(2)O (C(18)H(34)Cu(2)N(9)O(11)Zn, 1) (H(2)dmg = dimethylglyoxime) has been synthesized and its crystal structure determined by single-crystal X-ray diffraction. It crystallizes in the triclinic system, space group P&onemacr;, with a = 11.414(1) Å, b = 11.992(3) Å, c =12.567(10) Å, alpha = 91.27(6) degrees, beta = 111.46(2) degrees, gamma = 112.24(2) degrees, and Z = 2. The structure consists of a chain of neutral [Cu(2)Zn(Hdmg)(2)(dmg)(2)(H(2)O)] trinuclear units and noncoordinated H(2)dmg and water molecules. The configuration around the zinc atom is distorted trigonal bipyramidal with four oximate oxygens from two [Cu(Hdmg)(dmg)](-) fragments (each one acting as a bidentate ligand through its deprotonated oximate oxygens in cis positions) occupying one axial and the three equatorial positions and an additional oximate oxygen from a symmetry-related [Cu(Hdmg)(dmg)](-) fragment filling the remaining axial position. The environment around Cu(1) and Cu(2) is distorted square pyramidal with four oximate nitrogen atoms building the equatorial plane. An oxygen atom [O(9)] from a water molecule and an oximate oxygen from a symmetry-related [Cu(Hdmg)(dmg)](-) fragment occupy the apical position of the square pyramids around Cu(1) and Cu(2), respectively. The trinuclear units are repeated through inversion centers standing at the middle of the Zn(1).Zn(1)(i) and Cu(2).Cu(2)(ii) vectors leading to a chain which runs parallel to the diagonal of the ac-plane. The Cu(1).Cu(2), Zn(1).Zn(1)(i), and Cu(2).Cu(2)(ii) separations are 5.506(2), 3.390(2), and 3.930(2) Å, respectively. 1 exhibits a characteristic ferromagnetic behavior with a continuous increase of the chi(M)T product as the temperature is lowered from 300 to 2.0 K. The field dependence of the magnetization at 2.0 K is consistent with a low-lying quintet state. The only efficient exchange pathways responsible for the overall

  8. Aqua[bis(pyrimidin-2-yl-kappa N)amine](carbonato-kappa 2O,O')copper(II) dihydrate.

    Science.gov (United States)

    van Albada, Gerard A; Mutikainen, Ilpo; Turpeinen, Urho; Reedijk, Jan

    2002-03-01

    The title mononuclear complex, [Cu(CO(3))(C(8)H(7)N(5))(H(2)O)] x 2H(2)O, was obtained by fixation of CO(2) by a mixture of copper(II) tetrafluoroborate and the ligand bis(pyrimidin-2-yl)amine in ethanol/water. The Cu(II) ion of the complex has a distorted square-pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water molecule. In the solid state, hydrogen-bonding interactions are dominant, the most unusual being the Watson-Crick-type coplanar ligand pairing through two N--H...N bonds. Lattice water molecules also participate in hydrogen bonding.

  9. New family of lanthanide-based inorganic-organic hybrid frameworks: Ln2(OH)4[O3S(CH2)nSO3]·2H2O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4) and their derivatives.

    Science.gov (United States)

    Liang, Jianbo; Ma, Renzhi; Ebina, Yasuo; Geng, Fengxia; Sasaki, Takayoshi

    2013-02-18

    We report the synthesis and structure characterization of a new family of lanthanide-based inorganic-organic hybrid frameworks, Ln(2)(OH)(4)[O(3)S(CH(2))(n)SO(3)]·2H(2)O (Ln = La, Ce, Pr, Nd, Sm; n = 3, 4), and their oxide derivatives. Highly crystallized samples were synthesized by homogeneous precipitation of Ln(3+) ions from a solution containing α,ω-organodisulfonate salts promoted by slow hydrolysis of hexamethylenetetramine. The crystal structure solved from powder X-ray diffraction data revealed that this material comprises two-dimensional cationic lanthanide hydroxide {[Ln(OH)(2)(H(2)O)](+)}(∞) layers, which are cross-linked by α,ω-organodisulfonate ligands into a three-dimensional pillared framework. This hybrid framework can be regarded as a derivative of UCl(3)-type Ln(OH)(3) involving penetration of organic chains into two {LnO(9)} polyhedra. Substitutional modification of the lanthanide coordination promotes a 2D arrangement of the {LnO(9)} polyhedra. A new hybrid oxide, Ln(2)O(2)[O(3)S(CH(2))(n)SO(3)], which is supposed to consist of alternating {[Ln(2)O(2)](2+)}(∞) layers and α,ω-organodisulfonate ligands, can be derived from the hydroxide form upon dehydration/dehydroxylation. These hybrid frameworks provide new opportunities to engineer the interlayer chemistry of layered structures and achieve advanced functionalities coupled with the advantages of lanthanide elements.

  10. Continuous multi-plot measurements of CO2, CH4, N2O and H2O in a managed boreal forest - The importance of accounting for all greenhouse gases

    Science.gov (United States)

    Vestin, P.; Mölder, M.; Sundqvist, E.; Båth, A.; Lehner, I.; Weslien, P.; Klemedtsson, L.; Lindroth, A.

    2015-12-01

    In order to assess the effects of different management practices on the exchange of greenhouse gases (GHG), it is desirable to perform repeated and parallel measurements on both experimental and control plots. Here we demonstrate how a system system combining eddy covariance and gradient techniques can be used to perform this assessment in a managed forest ecosystem.The net effects of clear-cutting and stump harvesting on GHG fluxes were studied at the ICOS site Norunda, Sweden. Micrometeorological measurements (i.e., flux-gradient measurements in 3 m tall towers) allowed for quantification of CO2, CH4 and H2O fluxes (from May 2010) as well as N2O and H2O fluxes (from June 2011) at two stump harvested plots and two control plots. There was one wetter and one drier plot of each treatment. Air was continuously sampled at two heights in the towers and gas concentrations were analyzed for CH4, CO2, H2O (LGR DLT-100, Los Gatos Research) and N2O, H2O (QCL Mini Monitor, Aerodyne Research). Friction velocities and sensible heat fluxes were measured by sonic anemometers (Gill Windmaster, Gill Instruments Ltd). Automatic chamber measurements (CO2, CH4, H2O) were carried out in the adjacent forest stand and at the clear-cut during 2010.Average CO2 emissions for the first year ranged between 14.4-20.2 ton CO2 ha-1 yr-1. The clear-cut became waterlogged after harvest and a comparison of flux-gradient data and chamber data (from the adjacent forest stand) indicated a switch from a weak CH4 sink to a significant source at all plots. The CH4 emissions ranged between 0.8-4.5 ton CO2-eq. ha-1 yr-1. N2O emissions ranged between 0.4-2.6 ton CO2-eq. ha-1 yr-1. Enhanced N2O emission on the drier stump harvested plot was the only clear treatment effect on GHG fluxes that was observed. Mean CH4 and N2O emissions for the first year of measurements amounted up to 29% and 20% of the mean annual CO2 emissions, respectively. This highlights the importance of including all GHGs when assessing

  11. Structuring effects of [Ln6O(OH)8(NO3)6(H2O)12]2+ entities

    International Nuclear Information System (INIS)

    Guillou, O.; Daiguebonne, C.; Calvez, G.; Le Dret, F.; Car, P.-E.

    2008-01-01

    In order to obtain highly porous lanthanide-based coordination polymers we are currently investigating reactions between [Ln 6 O(OH) 8 (NO 3 ) 6 (H 2 O) 12 ] 2+ di-cationic hexanuclear entities and sodium salts of benzene-poly-carboxylic acids. Two new coordination polymers obtained during this study are reported here. In both cases, the hexanuclear entity has been destroyed during the reaction. However the resulting compounds are original thanks to a structuring effect of the poly-metallic complex. The first compound of chemical formula [Y 2 (C 8 H 4 O 4 ) 3 (DMF)(H 2 O)],2DMF crystallizes in the monoclinic system, space group P121/n (n o 14) with a = 16.0975(3) A, b = 14.4605(3) A, c = 17.7197(4) A, β = 92.8504(9) o and Z = 4. The second compound of chemical formula Y 2 (NO 3 ) 2 (C 10 H 2 O 8 )(DMF) 4 crystallizes in the triclinic system, space group P-1 (n o 2) with a = 7.5312(3) A, b = 9.0288(3) A, c = 13.1144(6) A, α = 92.6008(14) o , β = 94.9180(14) o , γ = 112.1824(16) o and Z = 2. Both crystal structures are 2D. Both crystal structures are described and the original structural features are highlighted and related to a potential structuring effect of the hexanuclear precursor

  12. Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation

    Science.gov (United States)

    Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro

    1996-08-01

    Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.

  13. Combined use of O3/H2O2 and O3/Mn2+ in flotation of dairy wastewater

    Directory of Open Access Journals (Sweden)

    Marta Cristina Silva Carvalho

    2018-05-01

    Full Text Available This work investigated the degradation of organic matter present in synthetic dairy wastewater by the combination of ozonation (ozone (O3/hydrogen peroxide (H2O2 and catalytic ozonation (ozone (O3/manganese (Mn2+ associated with dispersed air flotation process. The effect of independent factors such as O3 concentration, pH and H2O2 and Mn2+ concentration was evaluated. For the flotation/O3/H2O2 treatment, the significant variables (p ≤ 0.05 were: O3 concentration (linear and quadratic effect, H2O2 concentration linear and quadratic effect, pH values (linear and quadratic effect and interaction O3 concentration versus pH. For catalytic ozonation, it was observed that the significant variable was the linear effect of O3 concentration. According to the desirability function, it was concluded that the optimal condition for the treatment of flotation/O3/H2O2 can be obtained in acidic solution using O3 concentrations greater than 42.9 mg L-1 combined with higher concentrations of H2O2 to 1071.5 mg L-1. On other hand, at pH values higher than 9.0, the addition of O3 may be neglected when using higher concentrations than 1071.5 mg L-1 of H2O2. For flotation/ozonation catalyzed by Mn2+, it was observed that metal addition did not affect treatment, resulting in an optimum condition: 53.8 mg L-1 of O3 and pH 3.6.

  14. Monte Carlo analysis of Pu-H2O and UO2-PuO2-H2O critical assemblies with ENDF/B-IV data

    International Nuclear Information System (INIS)

    Hardy, J. Jr.; Ullo, J.J.

    1981-04-01

    A set of critical experiments, comprising thirteen homogeneous Pu-H 2 O assemblies and twelve UO 2 -PuO 2 lattices, was analyzed with ENDF/B-IV data and the RCPO1 Monte Carlo program, which modeled the experiments explicitly. Some major data sensitivities were also evaluated. For the Pu-H 2 O assemblies, calculated K/sub eff/ averaged 1.011. The large (2.7%) scatter of K/sub eff/ values for these assemblies was attributed mostly to uncertainties in physical specifications since no clear trends of K/sub eff/ were evident and data sensitivities were insignificant. The UO 2 -PuO 2 lattices showed just one trend of K/sub eff/, which indicated an overprediction of U238 capture consistent with that observed for uranium-H 2 O experiments. There was however a approx. 1% discrepancy in calculated K/sub eff/ between the two sets of UO 2 -PuO 2 lattices studied

  15. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2H2O and C2H4—H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.

    2017-01-01

    an intermolecular CH⋯O hydrogen-bonded configuration of C2v symmetry with the H2O subunit acting as the hydrogen bond acceptor. The observation and assignment of two large-amplitude donor OH librational modes of the C2H4—H2O complex at 255.0 and 187.5 cm−1, respectively, confirms an intermolecular OH⋯π hydrogen...

  16. (Acetato-κO(aqua-κO(2-{bis[(3,5-dimethyl-1H-pyrazol-1-yl-κN2methyl]amino-κN}ethanol-κOnickel(II perchlorate monohydrate

    Directory of Open Access Journals (Sweden)

    Jia Zhou

    2012-04-01

    Full Text Available In the structure of the title complex, [Ni(CH3CO2(C14H23N5O(H2O]ClOH2O, the NiII centre has a distorted octahedral environment defined by one O and three N atoms derived from the tetradentate ligand, and two O atoms, one from a water molecule and the other from an acetate anion. The molecules are connected into a three-dimensional architecture by O—H...O hydrogen bonds. The perchlorate anion is disordered over two positions; the major component has a site-occupancy factor of 0.525 (19.

  17. 2,6-Diaminopyridinium bis(4-hydroxypyridine-2,6-dicarboxylato-κ3O2,N,O6ferrate(III dihydrate

    Directory of Open Access Journals (Sweden)

    Andya Nemati

    2008-10-01

    Full Text Available The reaction of iron(II sulfate heptahydrate with the proton-transfer compound (pydaH(hypydcH (pyda = pyridine-2,6-diamine; hypydcH2 = 4-hydroxypyridine-2,6-dicarboxylic acid in an aqueous solution led to the formation of the title compound, (C5H8N3[Fe(C7H3NO52]·2H2O. The anion is a six-coordinated complex with a distorted octahedral geometry around the FeIII atom. Extensive intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds, involving the complex anion, (pydaH+ counter-ion and two uncoordinated water molecules, and π–π [centroid-to-centroid distance 3.323 (11 Å] and C—O...π [O–centroid distance 3.150 (15 Å] interactions connect the various components into a supramolecular structure.

  18. Poly[[(μ4-benzene-1,3,5-tricarboxylato-κ4O1:O1′:O2:O3bis(2,2-bipyridine-κ2N,N′(μ2-hydroxidodicopper(II] trihydrate

    Directory of Open Access Journals (Sweden)

    Mohamed N. El-kaheli

    2014-07-01

    Full Text Available In the title two-dimensional coordination polymer, {[Cu2(C9H3O6(OH(C10H8N22]·3H2O}n, each of the two independent CuII atoms is coordinated by a bridging OH group, two O atoms from two benzene-1,3,5-tricarboxylate (L ligands and two N atoms from a 2,2- bipyridine (bipy ligand in a distorted square-pyramidal geometry. Each L ligand coordinates four CuII atoms, thus forming a polymeric layer parallel to the bc plane with bipy molecules protruding up and down. The lattice water molecules involved in O—H...· O hydrogen bonding are situated in the inner part of each layer. The crystal packing is consolidated by π–π interactions between the aromatic rings of bipy ligands from neigbouring layers [intercentroid distance = 3.762 (3 Å].

  19. Application of UV/TiO2/H2O2 Advanced Oxidation to Remove Naphthalene from Water

    Directory of Open Access Journals (Sweden)

    Behroz Karimi

    2016-11-01

    Full Text Available Naphthalene is released into the environment by burning such organic materials as fossil fuels and wood and in industrial and vehicle exhaust emissions. Naphthalene is used in the manufacture of plastics, resins, fuels, and dyes. The aim of this study was to evaluate the performance of UV/TiO2/H2O2 process to decompose naphthalene in aqueous solutions. For this purpose, the photocatalytic degradation of naphthalene was investigated under UV light irradiation in the presence of TiO2 and H2O2 under a variety of conditions. Photodegradation efficiencies of H2O2/UV, TiO2/UV, and H2O2/TiO2/UV processes were compared in a batch reactor using the low pressure mercury lamp irradiation. The effects of operating parameters such as reaction time (min; solution pH; and initial naphthalene, TiO2, and H2O2 concentrations on photodegradation were examined. In the UV/TiO2/H2O2 system with a naphthalene concentration of 15 mg/L, naphthalene removal efficiencies of 63, 75, 80, 88, 92, 95, 96.5, and 98% were achieved, respectively, for reaction times of 5, 10, 20, 30, 40, 50, 60, 100 and 120 min. This is while removal efficienciesof 50, 59.5, 69, 80, 85, 88, 91, and 95% were obtained in the UV/TiO2 system under the same conditions. For initial pH values of 3, 4, 5, 6, 7,9, 10, and 12, naphthalene removal efficiencies of approximately 96.8, 85.5, 86, 75.5, 68.8, 57.8, and 52.5% were acheived, respectively, with the UV/TiO2/H2O2 system. Thus, it may be claiomed that, compared to either H2O2/UV or TiO2/UV process, the H2O2/TiO2/UV process yielded a far more efficient photodegradation.

  20. Bis(2,2′-bipyridyl-κ2 N,N′)(carbonato-κ2 O,O′)cobalt(III) bromide trihydrate

    Science.gov (United States)

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2008-01-01

    The title complex, [Co(CO3)(C10H8N2)2]Br·3H2O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2′-bipy)2CO3]+ cation (2,2′-bipy is 2,2′-bipyrid­yl), bromide ion and water mol­ecules are linked together via O—H⋯Br and O—H⋯O hydrogen bonds, generating a one-dimensional chain. PMID:21200495

  1. Structure of LaH(PO3H)2.3H2O

    International Nuclear Information System (INIS)

    Loukili, M.; Durand, J.; Larbot, A.; Cot, L.; Rafiq, M.

    1991-01-01

    Lanthanum hydrogen bis(hydrogenphosphite) trihydrate, LaH(Po 3 H) 2 .3H 2 O, M r =353.8, monoclinic, P2 1 /c, a=9.687 (3), b=7.138 (2), c=13.518 A, β=104.48 (3) deg, V=905.0 (5) A 3 , Z=4, D m =2.56 (2), D x =2.598 Mg m -3 , λ(MoKα)=0.71073 A, μ(MoKα)=5.103 mm -1 , F(000)=672, T=300 K, R=0.032 for 1018 independent observed reflections. The structure contains two phosphite anions connected by a hydrogen bond. The La 3+ cation is eight coordinated by seven O atoms from phosphite anions and one O atom of a water molecule. (orig.)

  2. Potassium (2,2′-bipyridine-κ2 N,N′)bis­(carbonato-κ2 O,O′)cobaltate(III) dihydrate

    Science.gov (United States)

    Wang, Jian-Fei; Lin, Jian-Li

    2010-01-01

    In the title compound, K[Co(CO3)2(C10H8N2)]·2H2O, the Co(III) atom is coordinated by two bipyridine N atoms and four O atoms from two bidentate chelating carbonate anions, and thus adopts a distorted octa­hedral N2O4 environment. The [Co(bipy)(CO3)2]− (bipy is 2,2′-bipyridine) ­units are stacked along [100] via π–π stacking inter­actions, with inter­planar distances between the bipyridine rings of 3.36 (4) and 3.44 (6) Å, forming chains. Classical O—H⋯O hydrogen-bonding inter­actions link the chains, forming channels along (100) in which the K+ ions reside and leading to a three-dimensional supra­molecular architecture. PMID:21587447

  3. Poly[diaqua(μ-4,4′-bipyridine-κ2N:N′[μ-2,2′-(p-phenylenedioxydiacetato-κ2O:O′]cadmium

    Directory of Open Access Journals (Sweden)

    Guang-Yin Wang

    2011-09-01

    Full Text Available In the title compound, [Cd(C10H8O6(C10H8N2(H2O2]n, the CdII ion has inversion symmetry and is coordinated by O atoms from two water molecules and two bridging 2,2′-(μ-p-phenylenedioxydiacetate ligands and two N atoms from two 4,4′-bipyridine ligands, giving a slightly distorted octahedral geometry. The diacetate and 4,4′-bipyridine ligands also lie across inversion centers. The bridging ligands form layers parallel to (11overline{1}, with adjacent layers interconnected via O—H...O hydrogen bonds between the coordinated water molecules and the carboxylate O atoms, giving a three-dimensional supramolecular architecture.

  4. Strong enhancement of the chemiluminescence of the Cu(II)-H2O2 system on addition of carbon nitride quantum dots, and its application to the detection of H2O2 and glucose.

    Science.gov (United States)

    Hallaj, Tooba; Amjadi, Mohammad; Song, Zhenlun; Bagheri, Robabeh

    2017-12-19

    The authors report that carbon nitride quantum dots (CN QDs) exert a strong enhancing effect on the Cu(II)/H 2 O 2 chemiluminescent system. Chemiluminescence (CL) intensity is enhanced by CN QDs by a factor of ~75, while other carbon nanomaterials have a much weaker effect. The possible mechanism of the effect was evaluated by recording fluorescence and CL spectra and by examining the effect of various radical scavengers. Emitting species was found to be excited-state CN QDs that produce green CL peaking at 515 nm. The new CL system was applied to the sensitive detection of H 2 O 2 and glucose (via glucose oxidase-catalyzed formation of H 2 O 2 ) with detection limits (3σ) of 10 nM for H 2 O 2 and 100 nM for glucose. The probe was employed for glucose determination in human plasma samples with satisfactory results. Graphical abstract The effect of carbon nitride quantum dots (CN QDs) on Cu(II)-H 2 O 2 chemiluminescence reaction was studied and the new CL system was applied for sensitive detection of glucose based on the glucose oxidase (GOx)-catalyzed formation of H 2 O 2 .

  5. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90).

    Science.gov (United States)

    Dierking, Christoph W; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-28

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H 2 O) n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for nphotoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H 2 O) n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  6. Complexation in the system K2SeO4-UO2SeO4-H2O

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Kuchumova, N.V.; Serezhkin, V.N.

    1994-01-01

    Complexation in the system K 2 SeO 4 -UO 2 SeO 4 -H 2 O at 25 degrees C is studied by isothermal solubility. Congruently soluble K 2 UO 2 (SeO 4 ) 2 ·4H 2 O (I) and incongruently soluble K 2 (UO 2 ) 2 (SeO 4 ) 3 ·6H 2 O (II) are observed. The unit-cell constants of I and II are determined from an X-ray diffraction investigation. For I, a = 12,969, b = 11.588, c = 8.533 angstrom, Z = 4, space group Pmmb. For II, a = 23.36, b = 6.784, c = 13.699 angstrom, β = 104.42 degrees, Z = 4, space group P2/m, P2, or Pm. Complexes I and II are representatives of the crystal-chemical groups AB 2 2 M 1 and A 2 T 3 3 M 1 , respectively, of uranyl complexes

  7. Decolorization and Mineralization of Reactive Dyes, by the H2O2/UV Process With Electrochemically Produced H2O2

    NARCIS (Netherlands)

    Jeric, T.; Bisselink, R.J.M.; Tongeren, W. van; Marechal. A.M. Le

    2013-01-01

    Decolorization of Reactive Red 238, Reactive Orange 16, Reactive Black 5 and Reactive Blue 4 was studied in the UV/H2O2 process with H2O2 being produced electrochemically. The experimental results show that decolorization increased considerably when switching on the electrochemical production of

  8. N-(2-Chlorophenyl-2-methylbenzamide

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2008-08-01

    Full Text Available In the structure of the title compound (N2CP2MBA, C14H12ClNO, the conformations of the N—H and C=O bonds are trans to each other. Furthermore, the conformation of the N—H bond is syn to the ortho-chloro group in the aniline ring and the C=O bond is syn to the ortho-methyl substituent in the benzoyl ring, similar to what is observed in 2-chloro-N-(2-chlorophenylbenzamide and 2-methyl-N-phenylbenzamide. The amide group makes almost the same dihedral angles of 41.2 (14 and 42.2 (13° with the aniline and benzoyl rings, respectively, while the dihedral angle between the benzoyl and aniline rings is only 7.4 (3°. The molecules in N2CP2MBA are packed into chains through N—H...O hydrogen bonds.

  9. Diaquabis[2,6-bis(4H-1,2,4-triazol-4-ylpyridine-κN2]bis(selenocyanato-κNcobalt(II

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Liu

    2012-08-01

    Full Text Available In the title compound, [Co(NCSe2(C9H7N72(H2O2], the Co2+ cation is coordinated by two selenocyanate anions, two 2,6-bis(4H-1,2,4-triazol-4-ylpyridine ligands and two water molecules within a slightly distorted N4O2 octahedron. The asymmetric unit consists of one Co2+ cation, which is located on a center of inversion, as well as one selenocyanate anion, one 2,6-bis(4H-1,2,4-triazol-4-ylpyridine ligand and one water molecule in general positions. Intermolecular O—H...N hydrogen bonds join the complex molecules into layers parallel to the bc plane. The layers are linked by C—H...N and C—H...Se hydrogen bonds into a three-dimensional supramolecular architecture.

  10. Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n](2 - n) (n + m = 5).

    Science.gov (United States)

    Ingram, Kieran I M; Häller, L Jonas L; Kaltsoyannis, Nikolas

    2006-05-28

    Gradient corrected density functional theory has been used to calculate the geometric and electronic structures of the family of molecules [UO2(H2O)m(OH)n](2 - n) (n + m = 5). Comparisons are made with previous experimental and theoretical structural and spectroscopic data. r(U-O(yl)) is found to lengthen as water molecules are replaced by hydroxides in the equatorial plane, and the nu(sym) and nu(asym) uranyl vibrational wavenumbers decrease correspondingly. GGA functionals (BP86, PW91 and PBE) are generally found to perform better for the cationic complexes than for the anions. The inclusion of solvent effects using continuum models leads to spurious low frequency imaginary vibrational modes and overall poorer agreement with experimental data for nu(sym) and nu(asym). Analysis of the molecular orbital structure is performed in order to trace the origin of the lengthening and weakening of the U-O(yl) bond as waters are replaced by hydroxides. No evidence is found to support previous suggestions of a competition for U 6d atomic orbitals in U-O(yl) and U-O(hydroxide)pi bonding. Rather, the lengthening and weakening of U-O(yl) is attributed to reduced ionic bonding generated in part by the sigma-donating ability of the hydroxide ligands.

  11. Crystal structure of (2-formylphenolato-κ2O,O′oxido(2-{[(2-oxidoethylimino]methyl}phenolato-κ3O,N,O′vanadium(V

    Directory of Open Access Journals (Sweden)

    Sowmianarayanan Parimala

    2015-05-01

    Full Text Available In the unsymmetrical title vanadyl complex, [V(C9H9NO2(C7H5O2O], one of the ligands (2-formylphenol is disordered over two sets of sites, with an occupancy ratio of 0.55 (2:0.45 (2. The metal atom is hexacoordinated, with a distorted octahedral geometry. The vanadyl O atom (which subtends the shortest V—O bond occupies one of the apical positions and the remaining axial bond (the longest in the polyhedron is provided by the (disordered formyl O atoms. The basal plane is defined by the two phenoxide O atoms, the iminoalcoholic O and the imino N atom. The planes of the two benzene rings are almost perpendicular to each other, subtending an interplanar angle of 84.1 (2° between the major parts. The crystal structure features weak C—H...O and C—H...π interactions, forming a lateral arrangement of adjacent molecules.

  12. Novel decavanadate cluster complexes [H2V10O28][LH]4·nH2O (L = Imidazole, n = 2 or 2-methylimidazole, n = 0): Preparation, characterization and genotoxic studies

    Science.gov (United States)

    Siddiqi, Zafar A.; Anjuli; Sharma, Prashant K.; Shahid, M.; Khalid, Mohd.; Siddique, Armeen; Kumar, Sarvendra

    2012-12-01

    The title complexes were obtained from the reaction of VOSO4 with imidazole or 2-methyl imidazole in presence of adipic acid/iminodiacetic acid. X-ray crystallographic investigations on [H2V10O28](2-MeImzH)4 (2) revealed a strong interaction between decavanadate anion and the protonated ligand moieties as counter cations to stabilize the crystal motif resulting in a high symmetry 2D sheet network. The cyclic voltammetry of (2) suggested formation of a quasi-reversible redox (VV/IV) couple in the solution. The genotoxic studies employing single cell gel electrophoresis (comet assay) confirmed the non-toxic nature of the compounds.

  13. A novel H2S/H2O2 fuel cell operating at the room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sanli, Ayse Elif [Gazi University (Turkey)], email: aecsanli@gmail.com; Aytac, Aylin [Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar (Turkey)], email: aytaca@gazi.edu.tr

    2011-07-01

    This study concerns the oxidation mechanism of hydrogen sulfide and a fuel cell; acidic peroxide is used as the oxidant and basic hydrogen sulfide is the fuel. A solid state H2S/H2O2 stable fuel cell was produced at room temperature. A cell potential of 0.85 V was reached; this is quite remarkable in comparison to the H2S/O2 fuel cell potential of 0.85 V obtained at 850-1000 degree celsius. The hydrogen sulfide goes through an oxidation reaction in the alkaline fuel cell (H2S/H2O2 fuel cell) which opens up the possibility of using the cheaper nickel as a catalyst. As a result, the fuel cell becomes a potentially low cost technology. A further benefit from using H2S as the alkaline liquid H2S/H2O2 fuel cell, is that sulfide ions are oxidized at the anode, releasing electrons. Sulfur produced reacts with the other sulfide ions and forms disulfide and polysulfide ions in basic electrolytes (such as Black Sea water).

  14. Synthesis, structural characterization, and dehydration analysis of uranyl zinc mellitate, (UO{sub 2})Zn(H{sub 2}O){sub 4}(H{sub 2}mel).2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Olchowka, Jakub; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry [Unite de Catalyse et Chimie du Solide (UCCS) - UMR CNRS 8181, Universite de Lille Nord de France, USTL-ENSCL, Villeneuve d' Ascq (France)

    2013-04-15

    A new heterometallic uranyl zinc carboxylate, (UO{sub 2})Zn(H{sub 2}O){sub 4}(H{sub 2}mel).2H{sub 2}O, has been hydrothermally prepared (150 C, 24 h) by using 1,2,3,4,5,6-benzenehexacarboxylic acid (mellitic acid) as organic linker in order to form a three-dimensional network. Four of the six carboxylate groups of the mellitate ligand interact with mononuclear uranyl or zinc cations, which are eightfold (hexagonal bipyramid, UO{sub 8}) or sixfold [octahedron, ZnO{sub 2}(H{sub 2}O){sub 4}] coordinated, respectively. The remaining free carboxylate arms of the mellitate species preferentially interact through hydrogen bonds with water molecules trapped within the framework. Thermogravimetric and X-ray thermodiffraction (up to 800 C) analyses and in situ infrared spectroscopy (up to 210 C) indicated that both free and bound water species are evacuated from the structure in one step between 80 and 170 C, followed by its transformation into an unknown, anhydrous, poorly crystalline phase [UO{sub 2}Zn(mel)] up to 320 C. After the formation of an amorphous phase, the re-crystallization of oxides α-ZnU{sub 3}O{sub 10} and ZnO was observed from 460 C. The fluorescence spectrum of the as-synthesized uranyl zinc mellitate shows the six bands that are typical for vibronic couplings of the [O=U=O]{sup 2+} moiety. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Bis(2,2′-bipyridine-κ2N,N′(3-methylbenzoato-κ2O,O′zinc 3-methylbenzoate–3-methylbenzoic acid–water (1/1/2

    Directory of Open Access Journals (Sweden)

    Qiu-qi Ye

    2012-09-01

    Full Text Available The title compound, [Zn(C8H7O2(C10H8N22](C8H7O2·C8H8O2·2H2O, is comprised of a Zn2+ cation, two 2,2′-bipydine (bipy ligands and one 3-methylbenzoate anion (L− together with one uncoordinating L− anion, one uncoordinating HL molecule and two lattice water molecules. The ZnII atom is coordinated by four N atoms of two bipy ligands and two O atoms from one L− ligand in a distorted octahedral geometry. Pairs of centrosymmetrically related complex molecules form dimers via slipped π-stacking interactions between bipy ligands with an interplanar distance of 3.470 (4 Å. The dimers are linked into supramolecular chains along [111], via C—H...O hydrogen bonds. The uncoordinated L− anions, HL molecules and water molecules are connected with each other via O—H...O hydrogen bonds, forming chains between the metal complex chains and binding them together via C—H...O contacts. The resulting layers parallel to (010 are further assembled into a three-dimensional supramolecular architecture through additional C—H...O interactions.

  16. Profiling of cytosolic and mitochondrial H2O2 production using the H2O2-sensitive protein HyPer in LPS-induced microglia cells.

    Science.gov (United States)

    Park, Junghyung; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Sang-Rae; Lee, Dong-Seok

    2017-07-27

    Dysregulation of the production of pro-inflammatory mediators in microglia exacerbates the pathologic process of neurodegenerative disease. ROS actively affect microglia activation by regulating transcription factors that control the expression of pro-inflammatory genes. However, accurate information regarding the function of ROS in different subcellular organelles has not yet been established. Here, we analyzed the pattern of cytosolic and mitochondrial H 2 O 2 formation in LPS-activated BV-2 microglia using the H 2 O 2- sensitive protein HyPer targeted to specific subcellular compartments. Our results show that from an early time, cytosolic H 2 O 2 started increasing constantly, whereas mitochondrial H 2 O 2 rapidly increased later. In addition, we found that MAPK affected cytosolic H 2 O 2 , but not mitochondrial H 2 O 2 . Consequently, our study provides the basic information about subcellular H 2 O 2 generation in activated microglia, and a useful tool for investigating molecular targets that can modulate neuroinflammatory responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An i.r. investigation on some calcium aluminate hydrates, Ca2Al(OH)6+X-.yH2O (= 3CaO.Al2O3.CaX2.nH2O, X- = univalent anion)

    NARCIS (Netherlands)

    Houtepen, C.J.M.; Stein, H.N.

    1976-01-01

    The i.r. spectra of some hydrated and dehydrated calcium aluminate hydrates of the type Ca2Al(OH)6+X-·yH2O with X- = Cl-, Br-, J-, ClO3-, NO3-, ClO4- (y = 2) and X- = BrO3-, JO3- (2

  18. Channels with ordered water and bipyridine molecules in the porous coordination polymer {[Cu(SiF6(C10H8N22]·2C10N2H8·5H2O}n

    Directory of Open Access Journals (Sweden)

    Emmanuel Aubert

    2016-11-01

    Full Text Available The coordination polymer {[Cu(SiF6(C10H8N22]·2C10H8N2·5H2O}n, systematic name: poly[[bis(μ2-4,4′-bipyridine(μ2-hexafluoridosilicatocopper(II] 4,4′-bipyridine disolvate pentahydrate], contains pores which are filled with water and 4,4′-bipyridine molecules. As a result of the presence of these ordered species, the framework changes its symmetry from P4/mmm to P21/c. The 4,4′-bipyridine guest molecules form chains inside the 6.5 × 6.9 Å pores parallel to [100] in which the molecules interact through π–π stacking. Ordered water molecules form infinite hydrogen-bonded chains inside a second pore system (1.6 × 5.3 Å free aperture perpendicular to the 4,4′-bipyridine channels.

  19. Improved transparent-conducting properties in N2- and H2- annealed GaZnO thin films grown on glass substrates

    International Nuclear Information System (INIS)

    Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon

    2012-01-01

    The effects of N 2 - and H 2 - annealing on the transparent-conducting properties of Ga-doped ZnO (GaZnO) were examined. The as-grown GaZnO thin film, which was deposited on a soda-lime glass substrate by r.f. magnetron sputtering, exhibited moderate transparent-conducting properties: a resistivity of ∼10 0 Ω·cm and an optical transmittance of ∼86%. After annealing in N 2 or H 2 , the GaZnO samples showed great improvements in both the electrical and the optical properties. Particularly, in the H 2 -annealed sample, a dramatic decrease in the resistivity (7 x 10 -4 Ω·cm) with a considerable increase in the carrier concentration (4.22 x 10 21 cm -3 ) was observed. This is attributed to both an increase in the number of Ga-O bonds and a reduction in the number of chemisorbed oxygen atoms though H 2 annealing. The sample revealed an enhanced optical transmittance (∼91%), which comes from the Burstein-Moss effect. Namely, a blue-shift of the optical absorption edge, which results from the increased carrier concentration, was observed in the H 2 -annealed sample. The results suggest that hydrogen annealing can help improve the transparent conducting properties of GaZnO via a modification of the electrochemical bonding structures.

  20. Effects of CO, O2, NO, H2O, and irradiation temperature on the radiation-induced oxidation of SO2

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Nishimura, Koichi; Suzuki, Nobutake; Washino, Masamitsu

    1977-01-01

    When a SO 2 -H 2 O-O 2 -N 2 gaseous mixture was irradiated by electron beams of 1.5 MeV, SO 2 was easily oxidized to H 2 SO 4 . Effects of CO, O 2 , NO, H 2 O, and irradiation temperature on the radiation-induced oxidation of SO 2 were studied by measuring the SO 2 concentration gas chromatographically. The G(-SO 2 ) increased greatly at the addition of a small amount of O 2 , and then decreased gradually with an increase in the O 2 concentration, i.e., the G(-SO 2 ) values were 0.9, 8.0, and 5.3 for the 0, 0.1, and 20% O 2 concentrations at 100 0 C, respectively (Fig.4). The G(-SO 2 ) was independent of the H 2 O concentration in the range of 0.84 to 8.4% (Fig.5). The G(-SO 2 ) decreased with a rise in the irradiation temperature (Fig.6) and an apparent activation energy of the oxidation reaction of SO 2 obtained was -4.2 kcal.mol -1 . The effects of CO, NO, and O 2 on the G(-SO 2 ) showed that SO 2 was mainly oxidized by OH and O and that the contribution of OH to the oxidation of SO 2 increased with an increase in the O 2 concentration (Table 1). The rate constants for the reactions of SO 2 with OH and O, obtained from competitive reactions of SO 2 with CO and O 2 , were 5.4 x 10 11 cm 3 .mol -1 .sec -1 and 5.0 x 10 11 cm 3 .mol -1 .sec -1 , respectively. (auth.)

  1. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    Science.gov (United States)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  2. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    International Nuclear Information System (INIS)

    Nefedov, R A; Ferapontov, Yu A; Kozlova, N P

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H 2 O 2 - H 2 O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li 2 O 2 ·H 2 O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li 2 O 2 ·H 2 O content on hydrogen peroxide decay contained in liquid phase of LiOH - H 2 O 2 - H 2 O trinary system under conditions of experiments conducted has been shown. (paper)

  3. LiOH - H2O2 - H2O trinary system study for the selection of optimal conditions of lithium peroxide synthesis

    Science.gov (United States)

    Nefedov, R. A.; Ferapontov, Yu A.; Kozlova, N. P.

    2016-01-01

    Using solubility method the decay kinetics of peroxide products contained in liquid phase of LiOH - H2O2 - H2O trinary system with 2 to 6% by wt hydrogen peroxide content in liquid phase in 21 to 33 °C temperature range has been studied. Conducted studies have allowed to determine temperature and concentration limits of solid phase existence of Li2O2·H2O content, distinctness of which has been confirmed using chemical and qualitative X- ray phase analysis. Stabilizing effect of solid phase of Li2O2·H2O content on hydrogen peroxide decay contained in liquid phase of LiOH - H2O2 - H2O trinary system under conditions of experiments conducted has been shown.

  4. Structure of Chloro bis(1,10-phenanthroline)Cobalt(II) Complex, [Co(phen)2(Cl)(H2O)]Cl · 2H2O

    International Nuclear Information System (INIS)

    Zhao, Pu Su; Lu, Lu De; Jian, Fang Fang

    2003-01-01

    The crystal structure of [Co(phen) 2 (Cl)(H 2 O)] Cl · 2H 2 O(phen=1,10-phenanthroline) has been determined by X-ray crystallography. It crystallizes in the triclinic system, space group P 1 , with lattice parameters a=9.662(2), b=11.445(1), c=13.037(2)A, α=64.02(1), β=86.364(9), γ=78.58(2) .deg., and Z=2. The coordinated cations contain a six-coordinated cobalt atom chelated by two phen ligands and one chloride anion and one water ligand in cis arrangement. In addition to the chloride coordinated to the cobalt, there are one chloride ion and four water molecules which complete the crystal structure. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds, within which exists the strongest hydrogen bond (O(3)-O(4)=2.33A). The intermolecular hydrogen bonds connect the [Co(phen) 2 (Cl)(H 2 O)] 1+ , H 2 O moieties and chloride ion

  5. (Acetonitrile{2-[bis(pyridin-2-ylmethyl-κ2Namino-κN]-N-(2,6-dimethylphenylacetamide-κO}(perchlorato-κOzinc (acetonitrile{2-[bis(pyridin-2-ylmethyl-κ2Namino-κN]-N-(2,6-dimethylphenylacetamide-κO}zinc tris(perchlorate

    Directory of Open Access Journals (Sweden)

    Ove Alexander Høgmoen Åstrand

    2013-02-01

    Full Text Available In the title salt, [Zn(C22H24N4O(CH3CN][Zn(ClO4(C22H24N4O(CH3CN](ClO43, two differently coordinated zinc cations occur. In the first complex, the metal ion is coordinated by the N,N′,N′′,O-tetradentate acetamide ligand and an acetonitrile N atom, generating an approximate trigonal–bipyramidal coordination geometry, with the O atom in an equatorial site and the acetonitrile N atom in an axial site. In the second complex ion, a perchlorate ion is also bonded to the zinc ion, generating a distorted trans-ZnO2N4 octahedron. Of the uncoordinating perchlorate ions, one lies on a crystallographic twofold axis and one lies close to a twofold axis and has a site occupancy of 0.5. N—H...O and N—H...(O,O hydrogen bonds are observed in the crystal. Disordered solvent molecules occupy about 11% of the unit-cell volume; their contribution to the scattering was removed with the SQUEEZE routine of the PLATON program [Spek (2009. Acta Cryst. D65, 148–155.].

  6. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90)

    Science.gov (United States)

    Dierking, Christoph W.; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-01

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H2O)n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H2O)n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

  7. Radiative transition probabilities for the main diatomic electronic systems of N2, N2+, NO, O2, CO, CO+, CN, C2 and H2 produced in plasma of atmospheric entry

    Science.gov (United States)

    Qin, Z.; Zhao, J. M.; Liu, L. H.

    2017-11-01

    Accurate radiative transition probabilities of diatomic electronic systems are required to calculate the discrete radiation of plasmas. However, most of the published transition probabilities are obtained using older spectroscopic constants and electronic transition moment functions (ETMFs), some of which deviates greatly from experimental data. Fortunately, a lot of new spectroscopic constants that include more anharmonic correction terms than the earlier ones have been published over the past few years. In this work, the Einstein coefficients, Franck-Condon factors and absorption band oscillator strengths are calculated for important diatomic radiative transition processes of N2-O2, CO2-N2 and H2 plasmas produced in entering into the atmosphere of Earth, Mars and Jupiter. The most up-to-date spectroscopic constants are selected to reconstruct the potential energy curves by the Rydberg-Klein-Rees (RKR) method. Then the vibrational wave functions are calculated through the resolution of the radial Schrödinger equation for such potential energy curves. These results, together with the latest "ab-initio" ETMFs derived from the literature are used to compute the square of electronic-vibrational transition moments, Einstein coefficients and absorption band oscillator strengths. Moreover, the Franck-Condon factors are determined with the obtained vibrational wave functions. In the supplementary material we present tables of the radiative transition probabilities for 40 band systems of N2, N2+, NO, O2, CO, CO+, CN, C2 and H2 molecules. In addition, the calculated radiative lifetimes are systematically validated by available experimental results.

  8. Tris(2,2′-bipyridine-κ2N,N′cobalt(III bis[bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cobaltate(III] perchlorate dimethylformamide hemisolvate 1.3-hydrate

    Directory of Open Access Journals (Sweden)

    Irina A. Golenya

    2012-10-01

    Full Text Available In the title compound, [Co(C10H8N23][Co(C7H3NO42]2(ClO4·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudooctahedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxylate O atoms of two doubly deprotonated pyridine-2,6-dicarboxylate ligands in a distorted octahedral geometry. One dimethylformamide solvent molecule and two water molecules are half-occupied and one water molecule is 0.3-occupied. O—H...O hydrogen bonds link the water molecules, the perchlorate anions and the complex anions. π–π interactions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3 Å].

  9. Broadening of spectral lines of CO2, N2O , H2CO, HCN, and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2)

    Science.gov (United States)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan

    2018-01-01

    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online http://hitran.org/2. Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.2017.06.0383. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  10. Complexing in the system Rb2SeO4-UO2SeO4-H2O

    International Nuclear Information System (INIS)

    Kuchumova, N.V.; Shtokova, I.P.; Serezhkina, L.B.; Serezhkin, V.N.

    1989-01-01

    Method of isothermal solubility at 25 deg C is used to study interaction of rubidium and uranyl selenates in aqueous solution. Formation of congruently soluble Rb 2 UO 2 (SeO 4 ) 2 x2H 2 O and Rb 2 (UO 2 ) 2 x(SeO 4 ) 3 x6H 2 O is stated. For the last compound crystallographic characteristics (a=10.668; b=14.935(9); c=13.891(7) A; β=104.94(1); Z=4, sp.gr. P2 1 /c) are determined. Thermal decomposition of a compound results in formation of Rb 2 U 2 O 7

  11. N2O Decomposition over Cu–Zn/γ–Al2O3 Catalysts

    Directory of Open Access Journals (Sweden)

    Runhu Zhang

    2016-12-01

    Full Text Available Cu–Zn/γ–Al2O3 catalysts were prepared by the impregnation method. Catalytic activity was evaluated for N2O decomposition in a fixed bed reactor. The fresh and used catalysts were characterized by several techniques such as BET surface area, X-ray diffraction (XRD, and scanning electron microscopy (SEM. The Cu–Zn/γ–Al2O3 catalysts exhibit high activity and stability for N2O decomposition in mixtures simulating real gas from adipic acid production, containing N2O, O2, NO, CO2, and CO. Over the Cu–Zn/γ–Al2O3 catalysts, 100% of N2O conversion was obtained at about 601 °C at a gas hourly space velocity (GHSV of 7200 h−1. Cu–Zn/γ–Al2O3 catalysts also exhibited considerably good durability, and no obvious activity loss was observed in the 100 h stability test. The Cu–Zn/γ–Al2O3 catalysts are promising for the abatement of this powerful greenhouse gas in the chemical industry, particularly in adipic acid production.

  12. Heterogeneous Ag-TiO2-SiO2 composite materials as novel catalytic systems for selective epoxidation of cyclohexene by H2O2.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available TiO2-SiO2 composites were synthesized using cetyl trimethyl ammonium bromide (CTAB as the structure directing template. Self-assembly hexadecyltrimethyl- ammonium bromide TiO2-SiO2/(CTAB were soaked into silver nitrate (AgNO3 aqueous solution. The Ag-TiO2-SiO2(Ag-TS composite were prepared via a precipitation of AgBr in soaking process and its decomposition at calcination stage. Structural characterization of the materials was carried out by various techniques including X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, N2 adsorption-desorption and ultraviolet visible spectroscopy (UV-Vis. Characterization results revealed that Ag particles were incorporated into hierarchical TiO2-SiO2 without significantly affecting the structures of the supports. Further heating-treatment at 723 K was more favorable for enhancing the stability of the Ag-TS composite. The cyclohexene oxide was the major product in the epoxidation using H2O2 as the oxidant over the Ag-TS catalysts. Besides, the optimum catalytic activity and stability of Ag-TS catalysts were obtained under operational conditions of calcined at 723 K for 2 h, reaction time of 120 min, reaction temperature of 353 K, catalyst amount of 80 mg, aqueous H2O2 (30 wt.% as oxidant and chloroform as solvent. High catalytic activity with conversion rate up to 99.2% of cyclohexene oxide could be obtainable in water-bathing. The catalyst was found to be stable and could be reused three times without significant loss of catalytic activity under the optimized reaction conditions.

  13. Selective photocatalytic reduction of CO{sub 2} by H{sub 2}O/H{sub 2} to CH{sub 4} and CH{sub 3}OH over Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} nanocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Muhammad, E-mail: mtahir@cheme.utm.my [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor (Malaysia); Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore, Punjab (Pakistan); Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar [Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor (Malaysia)

    2016-12-15

    Highlights: • Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} nanocatalysts tested for CO{sub 2} photoreduction with H{sub 2}O/H{sub 2}. • Production of CH{sub 4} and CH{sub 3}OH depends on reductants type and metal-loading to TiO{sub 2}. • CH{sub 4} production over Cu-In/TiO{sub 2} was 1.5 fold more than In/TiO{sub 2} and 5 times the TiO{sub 2}. • The Cu-promoted CH{sub 3}OH production while In gave more CH{sub 4} with water vapors. • The H{sub 2} reductant gave negative effect for CH{sub 4} but enhanced CH{sub 3}OH production. - Abstract: Photocatalytic CO{sub 2} reduction by H{sub 2}O and/or H{sub 2} reductant to selective fuels over Cu-promoted In{sub 2}O{sub 3}/TiO{sub 2} photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N{sub 2} adsorption-desorption, UV–vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO{sub 2}, oxidized as Cu{sup 2+} and In{sup 3+}, promoted efficient separation of photo-generated electron/hole pairs (e{sup −}/h{sup +}). The results indicate that the reduction rate of CO{sub 2} by H{sub 2}O to CH{sub 4} approached to 181 μmol g{sup −1} h{sup −1} using 0.5% Cu-3% In{sub 2}O{sub 3}/TiO{sub 2} catalyst, a 1.53 fold higher than the production rate over the 3% In{sub 2}O{sub 3}/TiO{sub 2} and 5 times the amount produced over the pure TiO{sub 2}. In addition, Cu was found to promote efficient production of CH{sub 3}OH and yield rate reached to 68 μmol g{sup −1} h{sup −1} over 1% Cu-3% In{sub 2}O{sub 3}/TiO{sub 2} catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H{sub 2} reductant was less favorable for CH{sub 4} production, yet a significant amount of CH{sub 4} and CH{sub 3}OH were obtained using a mixture of H{sub 2}O/H{sub 2} reductant. Therefore, Cu-loaded In{sub 2}O{sub 3}/TiO{sub 2} catalyst has shown to be capable for

  14. [Mechanism and performance of styrene oxidation by O3/H2O2].

    Science.gov (United States)

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  15. Direct Synthesis of H2O2 over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H2O2-ODS of Fuel

    International Nuclear Information System (INIS)

    Zhang, Han; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Hu, Shaozheng; Liu, Guangliang; Chen, Ping; Zhao, Zhixi

    2013-01-01

    Direct synthesis of H 2 O 2 and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active Au 0 species for H 2 O 2 synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in H 2 O 2 synthesis as CH 3 OH/H 2 O ratio of solvent changed. H 2 O 2 decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of O 2 /H 2 ratio on H 2 O 2 concentration, H 2 conversion and H 2 O 2 selectivity revealed a relationship between H 2 O 2 generation and H2 consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of O 2 /H 2 ratio and 60 .deg. C. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, H 2 conversion and oxidative desulfurization selectivity of H 2 were presented

  16. N2O isotopomers and N2:N2O ratio as indicators of denitrification in ecosystems

    International Nuclear Information System (INIS)

    Mander, Ülo; Zaman, Mohammad

    2015-01-01

    The world is experiencing climate change and variability due to increased greenhouse gas (GHG) emissions. The main GHG’s of concern are nitrous oxide (N 2 O), carbon dioxide (CO 2 ) and methane (CH 4 ). Agriculture contributes approximately 14% of the world’s GHG emissions. Nitrous oxide is one of the key GHG and ozone (O 3 ) depleting gas, constituting 7% of the anthropogenic greenhouse effect. On a molecular basis, N 2 O has a 310- and 16-fold greater global warming potential than each of CO 2 and CH 4 , respectively, over a 100-year period. Nitrous oxide can be produced through both chemical and biochemical pathways. They occur during denitrification (the stepwise conversion of nitrate (NO 3 - ) to nitrogen gas (N 2 ) and during nitrification by ammonia-oxidizing archea (bacteria) during the oxidation of hydroxylamine (NH 2 OH) to nitrite (NO 2 - ) which is then reduced to N 2 O and N 2 by nitrifier denitrification or heterotrophic denitrification

  17. Synthesis and characterization of a pentadentate Schiff base N3O2 ligand and its neutral technetium(V) complex. X-ray structure of (N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4(3H)-dionato)(3-)-O,O',N,N',N double-prime)oxotechnetium(V)

    International Nuclear Information System (INIS)

    Shuang Liu; Rettig, S.J.; Orvig, C.

    1991-01-01

    Preparations of a potentially pentadentate ligand, N,N'-3-azapentane-1,5-diylbis(3-(1-iminoethyl)-6-methyl-2H-pyran-2,4-(3H)-dione) (H 3 apa), and its neutral technetium(V) complex, [TcO(apa)], are described. The 13 C and 1 H NMR, infrared, optical, and mass spectra of the pentadentate ligand and its technetium(V) complex are reported. The X-ray structure of [TcO(apa)] has been determined. Crystals are orthorhombic, space group Pbca, with a = 12.833 (2) angstrom, b = 33.320 (5) angstrom, c = 9.942(4) angstrom, V = 4251 (2) angstrom, and Z = 8. The structure was solved by Patterson and Fourier methods and was refined by full-matrix least-squares procedures to R = 0.028 and R W = 0.032 for 4054 reflections with I ≥ 3σ(I). The technetium(V) complex has a highly distorted octahedral coordination geometry comprising a [TcO] 3+ core and the triply deprotonated pentadentate ligand wrapping around the metal center. One of the two oxygen donor atoms of the pentadentate ligand is located trans to the Tc double-bond O bond while the remaining four donor atoms, N 3 O, occupy the equatorial sites. The distance between the deprotonated N(1) atom to the Tc center is significantly shorter than a normal Tc-N single bond length of 2.10 angstroms, but longer than that for a Tc-N triple bond. 1 H NMR spectral data reveal a rigid solution structure for the complex, which undergoes no conformational and configurational exchange at temperatures up to 50C

  18. SYNTHESIS AND STRUCTURAL CHARACTERISTICS OF BIS(CITRATEGERMANATES(IV (Hbipy2[Ge(HCit2]•2H2O AND [CuCl(bipy2]2[Ge(HCit2]•8H2O

    Directory of Open Access Journals (Sweden)

    Inna Seifullina

    2016-12-01

    Full Text Available The crystalline compounds (Hbipy2[Ge(HCit22H2O (1 and CuCl(bipy2]2[Ge(HCit2]·8H2O (2 (where H4Cit is citric acid, bipy is 2,2ʹ-bipyridine were obtained for the fi rst time and their structures were determined by the single-crystal X-ray diffraction method. Compounds were characterized by IR spectroscopy, thermogravimetric (TGA and elemental analyses. Both compounds are formed with complex bis(citrategermanate anion and protonated 2,2’-bipyridine or [Cu(bipy2Cl]+ as cations in compounds 1 and 2, respectively.

  19. Structural and spectral analyses of N,N'-(2,2'-dithiodi-o-phenylene)bis-(furan-2-carboxamide)

    Science.gov (United States)

    Yıldırım, Sema Öztürk; Büyükmumcu, Zeki; Pekdur, Özlem Savaş; Butcher, Ray J.; Doǧan, Şengül Dilem

    2018-02-01

    In this study we report structure determination of N,N'-(2,2'-dithiodi-o-phenylene)bis-(furan-2-carboxamide). 2,2'-Dithiobis(benzamide) derivatives have been reported to possess important biological properties such as antibacterial, antifungal activities and inhibition of blood platelet aggregation and redeterrmined at 100(2)K from the data published by Raftery, Lallbeeharry, Bhowon, Laulloo & Joulea [Acta Cryst. 2009, E65, o16]. 2,2'-Dithiobis(N-butyl-benzamide) has been reported to be useful as an antiseptic for cosmetics. The structural properties of the compound have been characterized by using 1H NMR and the structure were determined by single-crystal X-ray diffraction. Molecular structure crystallizes in triclinic form, space group with a = 9.6396(7) Å, b = 9.9115(7) Å, c = 12.0026(8) Å, α = 109.743(6)°, β = 103.653(6)°, γ = 104.633(6)° and V = 977.15(13) Å3. In the solid state of the molecular structure N-H…S, N-H…O and C-H…O, type interactions provide for stabilization. The geometries of the title compound have been optimized using density functional theory (DFT) method. The calculated values were found to be in agreement with the experimental data.

  20. Reactivity of the biphasic trichloroacetonitrile-CH2Cl2/H2O2 system in the epoxidation of soybean oil

    Directory of Open Access Journals (Sweden)

    Martinelli, Márcia

    2002-06-01

    Full Text Available In this work we report on the epoxidation of soybean oil by the trichloroacetonitrile -CH2Cl2/H2O2 byphasic system. The reaction was carried out at room temperature and, most importantly, in non acid conditions which prevent the opening of the oxirane ring. The epoxidized soybean oil was characterized by infrared, 1H and 13C NMR. A maximum conversion of 81 % was achieved in two hours with 86% of selectivity in epoxy groupsEn el presente trabajo informamos sobre la epoxidación de aceite de soja mediante el sistema bifásico tricloroacetonitrilo-CH2Cl2/H2O2. La reacción fue realizada bajo condiciones de temperatura ambiente y, lo más importante, en condición no ácida, lo que evita la apertura del anillo oxirano. El aceite de soja fue caracterizado por infrarrojo y RMN de 1H and 13C. En dos horas se alcanzó una conversión máxima del 81 % obteniéndose una selectividad del 86 % en grupos epóxidos

  1. Dissociative phototionization cross sections of H2, SO2 and H2O

    International Nuclear Information System (INIS)

    Chung, Y.

    1989-01-01

    The partial photoionization cross sections of H 2 , SO 2 , and H 2 O were calculated from the measured photoionization branching ratios and the known total photoionization cross sections. The branching ratios were measured with a time-of-flight mass spectrometer and synchrotron radiation. The branching ratios Of H 2 , SO 2 , and H 2 O were measured for 100 ∼ 410, 150 ∼ 380 and 120 ∼ 720 angstrom. The author also measured the photoionization yield Of SO 2 from 520 to 665 angstrom using a double ion chamber and a glow discharge light source. The principle of a time-of-flight mass spectrometer is explained. New calculations were made to see how the design of the mass spectrometer, applied voltage, and kinetic energy of the ions affect the overall performance of the mass spectrometer. Several useful techniques that we used at the synchrotron for wavelength calibration and higher order suppression are also discussed

  2. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic perchlorates: (C6H18N3)·(ClO4)3H2O (I) and (C9H11N2)·ClO4(II)

    Science.gov (United States)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Ferretti, V.; Ben Nasr, C.

    2018-06-01

    The reaction of perchloric acid with 1-(2-aminoethyl)piperazine or 5,6-dimethyl-benzimidazole results in the formation of 1-(2-amonioethyl)piperazine-1,4-dium triperchlorate hydrate (C6H18N3)·(ClO4)3·H2O (I) or 5,6-dimethyl-benzylimidazolium perchlorate (C9H11N2)·ClO4(II). Both compounds were fully structurally characterized including single crystal X-ray diffraction analysis. Compound (I) crystallizes in the centrosymmetric triclinic space group P 1 bar with the lattice parameters a = 7.455 (2), b = 10.462 (2), c = 10.824 (2) Å, α = 80.832 (2), β = 88.243 (2), γ = 88.160 (2) °, Z = 2 and V = 832.77 (3) Å3. Compound (II) has been found to belong to the P21/c space group of the monoclinic system, with a = 7.590 (3), b = 9.266 (3), c = 16.503 (6) Å, β = 107.38 (2) °, V = 1107.69 (7) Å3 and Z = 4. The structures of (I) and (II) consist of slightly distorted [ClO4]- tetrahedra anions and 1-(2-amonioethyl)piperazine-1,4-dium trication (I) or 5,6-dimethyl-benzylimidazolium cations (II) and additionally a lattice water in (I). The crystal structures of (I) and (II) exhibit complex three-dimensional networks of H-bonds connecting all their components. In the atomic arrangement of (I), the ClO4- anions form corrugated chains, while in (II) the atomic arrangement exhibits wide pseudo-hexagonal channels of ClO4 tetrahedra including the organic entities. The lattice water serves as a link between pairs of cations and pairs of anions via several Osbnd H⋯O and N-H⋯O interactions in compound (I). The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. Intermolecular interactions were investigated by Hirshfeld surfaces. Electronic properties such as HOMO and LUMO energies were derived.

  3. Bis(μ-pyridazine-3-carboxylato-κ2O:O′bis[aquadioxido(pyridazine-3-carboxylato-κ2N2,Ouranium(VI] dihydrate

    Directory of Open Access Journals (Sweden)

    Janusz Leciejewicz

    2009-01-01

    Full Text Available The structure of the binuclear title complex, [U2(C5H3N2O24O4(H2O22H2O, is composed of centrosymmetric dimers in which each UO22+ ion is coordinated by two ligand molecules. One donates its N,O-bonding group and the other donates both carboxylate O atoms. Each of the latter bridges adjacent uranyl ions. The coordination environment of the metal center is a distorted pentagonal bipyramid. The dimers are interconnected by O—H...O hydrogen bonds between coordinated and uncoordinated water molecules and carboxylate O atoms. An intramolecular O—H...N interaction is also present.

  4. (μ-3-Acetyl-5-carboxyl­ato-4-methyl­pyrazolido-1:2κ4 N 2,O 3:N 1,O 5)-μ-chlorido-tetra­pyridine-1κ2 N,2κ2 N-chlorido-1κCl-dicopper(II) propan-2-ol solvate

    Science.gov (United States)

    Malinkin, Sergey; Penkova, Larisa; Pavlenko, Vadim A.; Haukka, Matti; Fritsky, Igor O.

    2009-01-01

    The title compound, [Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octa­hedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H⋯O hydrogen bond connects the complex mol­ecules and propan-2-ol solvent mol­ecules into pairs. These pairs form columns along the a axis. PMID:21577764

  5. Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: Insight into the electronic structure of the [Fe(H2O)6]2+ – [Fe(H2O)6]3+ complex

    Energy Technology Data Exchange (ETDEWEB)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-04-14

    We report the ground and low lying electronically excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters using multi-configuration electronic structure theory. In particular, we have constructed the Potential Energy Curves (PECs) with respect to the iron-oxygen distance when removing all water ligands at the same time from the cluster minima and established their correlation to the long range dissociation channels. Due to the fact that both the second and third ionization potentials of iron are larger than the one for water, the ground state products asymptotically correlate with dissociation channels that are repulsive in nature at large separations as they contain at least one H2O+ fragment and a positive metal center. The most stable equilibrium structures emanate – via intersections and/or avoided crossings – from the channels consisting of the lowest electronic states of Fe2+(5D; 3d6) or Fe3+(6S; 3d5) and six neutral water molecules. Upon hydration, the ground state of Fe2+(H2O)6 is a triply (5Tg) degenerate one with the doubly (5Eg) degenerate state lying slightly higher in energy. Similarly, Fe3+(H2O)6 has a ground state of 6Ag symmetry under Th symmetry. We furthermore examine a multitude of electronically excited states of many possible spin multiplicities, and report the optimized geometries for several selected states. The PECs for those cases are characterized by a high density of states. Focusing on the ground and the first few excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters, we studied their mutual interaction in the gas phase. We obtained the optimal geometries of the Fe2+(H2O)6 – Fe3+(H2O)6 gas phase complex for different Fe–Fe distances. For distances shorter than 6.0 Å, the water molecules in the respective first solvation shells located between the two metal centers were found to interact via weak hydrogen bonds. We examined a total of ten electronic states for this complex, including those corresponding to the

  6. Trapping {BW12}2 tungstoborate: synthesis and crystal structure of hybrid [{(H2BW12O42)2O}{Mo6O6S6(OH)4(H2O)2}]14- anion.

    Science.gov (United States)

    Korenev, V S; Abramov, P A; Vicent, C; Mainichev, D A; Floquet, S; Cadot, E; Sokolov, M N; Fedin, V P

    2012-12-28

    Reaction between monolacunary {BW(11)} tungstoborate and oxothiocationic building block, {Mo(2)O(2)S(2)}, results in the formation of a new polyoxothiometalate with a unique architecture in which two [H(2)BW(12)O(43)](9-) tungstoborate subunits are linked together with a hexamolybdate [Mo(V)(6)O(6)S(6)(OH)(4)(H(2)O)(2)](2+) bridge.

  7. Multicomponent Biginelli's synthesis of 3,4-dihydropyrimidin-2(1H-ones promoted by SnCl2.2H2O

    Directory of Open Access Journals (Sweden)

    Russowsky Dennis

    2004-01-01

    Full Text Available The ability of SnCl2.2H2O as catalyst to promote the Biginelli three-component condensation reaction from a diversity of aromatic aldehydes, ethyl acetoacetate and urea or thiourea is described. The reaction was carried out in acetonitrile or ethanol as solvents in neutral media and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3.6H2O, NiCl2.6H2O and CoCl2.6H2O which were used with HCl as co-catalyst. The synthesis of 3,4-dihydropyrimidinones was achieved in good to excelent yields.

  8. Characterization of a real time H2O2 monitor for use in studies on H2O2 production by antibodies and cells.

    Science.gov (United States)

    Sharma, Harish A; Balcavage, Walter X; Waite, Lee R; Johnson, Mary T; Nindl, Gabi

    2003-01-01

    It was recently shown that antibodies catalyze a reaction between water and ultraviolet light (UV) creating singlet oxygen and ultimately H2O2. Although the in vivo relevance of these antibody reactions is unclear, it is interesting that among a wide variety of non-antibody proteins tested, the T cell receptor is the only protein with similar capabilities. In clinical settings UV is believed to exert therapeutic effects by eliminating inflammatory epidermal T cells and we hypothesized that UV-triggered H2O2 production is involved in this process. To test the hypothesis we developed tools to study production of H2O2 by T cell receptors with the long-term goal of understanding, and improving, UV phototherapy. Here, we report the development of an inexpensive, real time H2O2 monitoring system having broad applicability. The detector is a Clark oxygen electrode (Pt, Ag/AgCl) modified to detect UV-driven H2O2 production. Modifications include painting the electrode black to minimize UV effects on the Ag/AgCl electrode and the use of hydrophilic, large pore Gelnots electrode membranes. Electrode current was converted to voltage and then amplified and recorded using a digital multimeter coupled to a PC. A reaction vessel with a quartz window was developed to maintain constant temperature while permitting UV irradiation of the samples. The sensitivity and specificity of the system and its use in cell-free and cell-based assays will be presented. In a cellfree system, production of H2O2 by CD3 antibodies was confirmed using our real time H2O2 monitoring method. Additionally we report the finding that splenocytes and Jurkat T cells also produce H2O2 when exposed to UV light.

  9. Cosmetic wastewater treatment by the ZVI/H2O2 process.

    Science.gov (United States)

    Bogacki, Jan; Marcinowski, Piotr; Zapałowska, Ewa; Maksymiec, Justyna; Naumczyk, Jeremi

    2017-10-01

    The ZVI/H 2 O 2 process was applied for cosmetic wastewater treatment. Two commercial zero-valent iron (ZVI) types with different granulations were chosen: Hepure Ferrox PRB and Hepure Ferrox Target. In addition, the pH and stirring method influence on ZVI/H 2 O 2 process efficiency was studied. During the ZVI and ZVI/H 2 O 2 processes, linear Fe ions concentration increase was observed. The addition of H 2 O 2 significantly accelerated the iron dissolution process. The highest COD removal was obtained using finer ZVI (Hepure Ferrox Target) for doses of reagents ZVI/H 2 O 2 1500/1600 mg/L, in a H 2 O 2 /COD weight ratio 2:1, at pH 3.0 with stirring on a magnetic stirrer. After 120 min of the process, 84.0% COD removal (from 796 to 127 mg/L) was achieved. It was found that the efficiency of the process depends, as in the case of the Fenton process, on the ratio of the reagents (ZVI/H 2 O 2 ) and their dose in relation to the COD (H 2 O 2 /COD) but does not depend on the dose of the iron itself. Statistical analysis confirms that COD removal efficiency depends primarily on H 2 O 2 /COD ratio and ZVI granulation, but ZVI dose influence is not statistically significant. The head space, solid-phase microextraction, gas chromatography, mass spectrometry results confirm high efficiency of the ZVI/H 2 O 2 process.

  10. [Protective effect of taxifolin on H2O2-induced 
H9C2 cell pyroptosis].

    Science.gov (United States)

    Ye, Yanqiong; Wang, Xiaoli; Cai, Qian; Zhuang, Jian; Tan, Xiaohua; He, Wei; Zhao, Mingyi

    2017-12-28

    To explore the effect of taxifolin on H2O2-induced pyroptosis in H9C2 cells and the possible mechanisms.
 Methods: The H9C2 cells was divided into 3 groups: a control group, a hydrogen peroxide (H2O2)group and a taxifolin group. The morphology of H9C2 cells was observed by inverted phase contrast microscope. The mitochondrial membrane potential was measured by JC-1 staining and flow cytometry. The alteration of the level of reactive oxygen species (ROS) was detected by specific mitochondrial probe. The protein levels of cysteinyl aspartate specific proteinase-1 (caspase-1)was determined by Western blot. The mRNA levels of interleukin-18 (IL-18), interleukin-1a (IL-1a), interleukin-1b (IL-1b), absent in melanoma 2 (AIM2), apoptosis-associated apeck-like protein (ASC), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)and nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain-containing protein 4 (NLRC4) were determined by reverse transcription-polymerase chain reaction (RT-PCR).
 Results: Compared with the control group, the morphology of H9C2 cells obviously changed in the H2O2-treated group, which was guadually improved in the presence of taxifolin. Compared with the control group, the mitochondrial membrane potential was markedly decreased in the H2O2-treated cells, accompanied by the increase ofROS (both PH2O2 group, the mitochondrial membrane potential changes in the taxifolin group was increased while the ROS was decreased, with significant difference (both PH2O2-treated group were significantly increased (all PH2O2-induced H9C2 cell pyroptosis through inhibition of AIM2, NLRP3 and NLRC4 in flammasome.

  11. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast ☆

    OpenAIRE

    Martins, Dorival; English, Ann M.

    2014-01-01

    Catalases are efficient scavengers of H2O2 and protect cells against H2O2 stress. Examination of the H2O2 stimulon in Saccharomyces cerevisiae revealed that the cytosolic catalase T (Ctt1) protein level increases 15-fold on H2O2 challenge in synthetic complete media although previous work revealed that deletion of the CCT1 or CTA1 genes (encoding peroxisomal/mitochondrial catalase A) does not increase the H2O2 sensitivity of yeast challenged in phosphate buffer (pH 7.4). This we attributed to...

  12. The first 3D malonate bridged copper [Cu(O2C–CH2–CO2H)2·2H2O]: Structure, properties and electronic structure

    International Nuclear Information System (INIS)

    Seguatni, A.; Fakhfakh, M.; Smiri, L.S.; Gressier, P.; Boucher, F.; Jouini, N.

    2012-01-01

    A new inorganic-organic compound [Cu(O 2 C–CH 2 –CO 2 H) 2 ·2H 2 O] ([Cumal]) was hydrothermally synthesized and characterized by IR spectroscopy, thermal analysis and single crystal X-ray diffraction. [Cumal] is the first three-dimensional compound existing in the system Cu(II)–malonic acid–H 2 O. Its framework is built up through carboxyl bridged copper where CuO 6 octahedra are elongated with an almost D 4h symmetry (4+2) due to the Jahn–Teller effect. The magnetic properties were studied by measuring its magnetic susceptibility in the temperature range of 2–300 K indicating the existence of weak ferromagnetic interactions. The electronic structure of [Cumal] was calculated within the density functional theory (DFT) framework. Structural features are well reproduced using DFT structural optimizations and the optical spectra, calculated within the dielectric formalism, explain very well the light blue colour of the compound. It is shown that a GGA+U approach with a U eff value of about 6 eV is necessary for a better correlation with the experiment. - Graphical abstract: [Cu(O 2 C–CH 2 –CO 2 H) 2 ·2H 2 O]: the first 3D hybrid organic–inorganic compound built up carboxyl groups. The network presents a diamond-like structure achieved via carboxyl. Highlights: ► A new organic–inorganic material with an unprecedented topology is synthesized. ► Crystallographic structure is determined using single crystal X-ray diffraction. ► Electronic structure is obtained from DFT, GGA+U calculation. ► Framework can be described as formed from CuC 4 tetrahedron sharing four corners. ► This structure can be classified as an extended diamond structure.

  13. I + (H2O)2 → HI + (H2O)OH Forward and Reverse Reactions. CCSD(T) Studies Including Spin-Orbit Coupling.

    Science.gov (United States)

    Wang, Hui; Li, Guoliang; Li, Qian-Shu; Xie, Yaoming; Schaefer, Henry F

    2016-03-03

    The potential energy profile for the atomic iodine plus water dimer reaction I + (H2O)2 → HI + (H2O)OH has been explored using the "Gold Standard" CCSD(T) method with quadruple-ζ correlation-consistent basis sets. The corresponding information for the reverse reaction HI + (H2O)OH → I + (H2O)2 is also derived. Both zero-point vibrational energies (ZPVEs) and spin-orbit (SO) coupling are considered, and these notably alter the classical energetics. On the basis of the CCSD(T)/cc-pVQZ-PP results, including ZPVE and SO coupling, the forward reaction is found to be endothermic by 47.4 kcal/mol, implying a significant exothermicity for the reverse reaction. The entrance complex I···(H2O)2 is bound by 1.8 kcal/mol, and this dissociation energy is significantly affected by SO coupling. The reaction barrier lies 45.1 kcal/mol higher than the reactants. The exit complex HI···(H2O)OH is bound by 3.0 kcal/mol relative to the asymptotic limit. At every level of theory, the reverse reaction HI + (H2O)OH → I + (H2O)2 proceeds without a barrier. Compared with the analogous water monomer reaction I + H2O → HI + OH, the additional water molecule reduces the relative energies of the entrance stationary point, transition state, and exit complex by 3-5 kcal/mol. The I + (H2O)2 reaction is related to the valence isoelectronic bromine and chlorine reactions but is distinctly different from the F + (H2O)2 system.

  14. A two-dimensional CdII coordination polymer: poly[diaqua[μ3-5,6-bis(pyridin-2-ylpyrazine-2,3-dicarboxylato-κ5O2:O3:O3,N4,N5]cadmium

    Directory of Open Access Journals (Sweden)

    Monserrat Alfonso

    2016-09-01

    Full Text Available The reaction of 5,6-bis(pyridin-2-ylpyrazine-2,3-dicarboxylic acid with cadmium dichloride leads to the formation of the title two-dimensional coordination polymer, [Cd(C16H8N4O4(H2O2]n. The metal atom is sevenfold coordinated by one pyrazine and one pyridine N atom, two water O atoms, and by two carboxylate O atoms, one of which bridges two CdII atoms to form a Cd2O2 unit situated about a centre of inversion. Hence, the ligand coordinates to the cadmium atom in an N,N′,O-tridentate and an O-monodentate manner. Within the polymer network, there are a number of O—H...O hydrogen bonds present, involving the water molecules and the carboxylate O atoms. There are also C—H...N and C—H...O hydrogen bonds present. In the crystal, the polymer networks lie parallel to the bc plane. They are aligned back-to-back along the a axis with the non-coordinating pyridine rings directed into the space between the networks.

  15. The solubility of gold in H 2 O-H 2 S vapour at elevated temperature and pressure

    Science.gov (United States)

    Zezin, Denis Yu.; Migdisov, Artashes A.; Williams-Jones, Anthony E.

    2011-09-01

    This experimental study sheds light on the complexation of gold in reduced sulphur-bearing vapour, specifically, in H 2O-H 2S gas mixtures. The solubility of gold was determined in experiments at temperatures of 300, 350 and 365 °C and reached 2.2, 6.6 and 6.3 μg/kg, respectively. The density of the vapour varied from 0.02 to 0.22 g/cm 3, the mole fraction of H 2S varied from 0.03 to 0.96, and the pressure in the cell reached 263 bar. Statistically significant correlations of the amount of gold dissolved in the fluid with the fugacity of H 2O and H 2S permit the experimental data to be fitted to a solvation/hydration model. According to this model, the solubility of gold in H 2O-H 2S gas mixtures is controlled by the formation of sulphide or bisulphide species solvated by H 2S or H 2O molecules. Formation of gold sulphide species is favoured statistically over gold bisulphide species and thus the gold is interpreted to dissolve according to reactions of the form: Au(s)+(n+1)HS(g)=AuS·(HS)n(g)+H(g) Au(s)+HS(g)+mHO(g)=AuS·(HO)m(g)+H(g) Equilibrium constants for Reaction (A1) and the corresponding solvation numbers ( K A1 and n) were evaluated from the study of Zezin et al. (2007). The equilibrium constants as well as the hydration numbers for Reaction (A2) ( K A2 and m) were adjusted simultaneously by a custom-designed optimization algorithm and were tested statistically. The resulting values of log K A2 and m are -15.3 and 2.3 at 300 and 350 °C and -15.1 and 2.2 at 365 °C, respectively. Using the calculated stoichiometry and stability of Reactions (A1) and (A2), it is now possible to quantitatively evaluate the contribution of reduced sulphur species to the transport of gold in aqueous vapour at temperatures up to 365 °C. This information will find application in modelling gold ore-forming processes in vapour-bearing magmatic hydrothermal systems, notably those of epithermal environments.

  16. Water-Lubricated Intercalation in V2 O5 ·nH2 O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries.

    Science.gov (United States)

    Yan, Mengyu; He, Pan; Chen, Ying; Wang, Shanyu; Wei, Qiulong; Zhao, Kangning; Xu, Xu; An, Qinyou; Shuang, Yi; Shao, Yuyan; Mueller, Karl T; Mai, Liqiang; Liu, Jun; Yang, Jihui

    2018-01-01

    Low-cost, environment-friendly aqueous Zn batteries have great potential for large-scale energy storage, but the intercalation of zinc ions in the cathode materials is challenging and complex. Herein, the critical role of structural H 2 O on Zn 2+ intercalation into bilayer V 2 O 5 ·nH 2 O is demonstrated. The results suggest that the H 2 O-solvated Zn 2+ possesses largely reduced effective charge and thus reduced electrostatic interactions with the V 2 O 5 framework, effectively promoting its diffusion. Benefited from the "lubricating" effect, the aqueous Zn battery shows a specific energy of ≈144 Wh kg -1 at 0.3 A g -1 . Meanwhile, it can maintain an energy density of 90 Wh kg -1 at a high power density of 6.4 kW kg -1 (based on the cathode and 200% Zn anode), making it a promising candidate for high-performance, low-cost, safe, and environment-friendly energy-storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. (3-Benzoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-olato-κ2O,Obis[2-(2-pyridylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Kaijun Luo

    2011-11-01

    Full Text Available The title compound, [Ir(C11H8N2(C17H19O2], has an octahedral coordination geometry around the IrIII atom, retaining the cis-C,C,trans–N,N chelate disposition of the two 2-phenylpyridine ligands. The chelate rings are nearly mutually perpendicular [the interplanar angles range from 85.48 (17 to 89.17 (19°]. The two 2-(2-pyridylphenyl ligands are approximately planar, with the plane of the phenyl ring being inclined to that of the pyridine ring by 2.3 (3 and 5.1 (3° in the two ligands. The interplanar angle between the phenyl ring in 3-benzoyl-camphor and the IrO2C3 chelate ring is 35.5 (2°.

  18. Ab initio and transition state theory study of the OH + HO2H2O + O2(3Σg−)/O2(1Δg) reactions: yield and role of O2(1Δg) in H2O2 decomposition and in combustion of H2

    KAUST Repository

    Monge Palacios, Manuel

    2018-01-22

    Reactions of hydroxyl (OH) and hydroperoxyl (HO2) are important for governing the reactivity of combustion systems. We performed post-CCSD(T) ab initio calculations at the W3X-L//CCSD = FC/cc-pVTZ level to explore the triplet ground-state and singlet excited-state potential energy surfaces of the OH + HO2H2O + O2(3Σg−)/O2(1Δg) reactions. Using microcanonical and multistructural canonical transition state theories, we calculated the rate constant for the triplet and singlet channels over the temperature range 200–2500 K, represented by k(T) = 3.08 × 1012T0.07 exp(1151/RT) + 8.00 × 1012T0.32 exp(−6896/RT) and k(T) = 2.14 × 106T1.65 exp(−2180/RT) in cm3 mol−1 s−1, respectively. The branching ratios show that the yield of singlet excited oxygen is small (<0.5% below 1000 K). To ascertain the importance of singlet oxygen channel, our new kinetic information was implemented into the kinetic model for hydrogen combustion recently updated by Konnov (Combust. Flame, 2015, 162, 3755–3772). The updated kinetic model was used to perform H2O2 thermal decomposition simulations for comparison against shock tube experiments performed by Hong et al. (Proc. Combust. Inst., 2013, 34, 565–571), and to estimate flame speeds and ignition delay times in H2 mixtures. The simulation predicted a larger amount of O2(1Δg) in H2O2 decomposition than that predicted by Konnov\\'s original model. These differences in the O2(1Δg) yield are due to the use of a higher ab initio level and a more sophisticated methodology to compute the rate constant than those used in previous studies, thereby predicting a significantly larger rate constant. No effect was observed on the rate of the H2O2 decomposition and on the flame speeds and ignition delay times of different H2–oxidizer mixtures. However, if the oxidizer is seeded with O3, small differences appear in the flame speed. Given that O2(1Δg) is much more reactive than O2(3Σg−), we do not preclude an effect of the

  19. Bis(acetylacetonato-κ2O,O′(2-amino-1-methyl-1H-benzimidazole-κN3oxidovanadium(IV

    Directory of Open Access Journals (Sweden)

    Zukhra Ch. Kadirova

    2009-07-01

    Full Text Available The title mixed-ligand oxidovanadium(IV compound, [VO(C5H7O22(C8H9N3], contains a VIV atom in a distorted octahedral coordination, which is typical for such complexes. The vanadyl group and the N-heterocyclic ligand are cis to each other. The coordination bond is located at the endocyclic N atom of the benzimidazole ligand. Intramolecular hydrogen bonds between the exo-NH2 group H atoms and acetylacetonate O atoms stabilize the crystal structure.

  20. Observations of different core water cluster ions Y-(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2011-01-01

    Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Successive heterolytic cleavages of H2 achieve N2 splitting on silica-supported tantalum hydrides: A DFT proposed mechanism

    KAUST Repository

    Soláns, Xavier Luis

    2012-07-02

    DFT(B3PW91) calculations have been carried out to propose a pathway for the N2 cleavage by H2 in the presence of silica-supported tantalum hydride complexes [(≡ SiO)2TaHx] that forms [(≡SiO)2Ta(NH)(NH2)] (Science2007, 317, 1056). The calculations, performed on the cluster models {μ-O[(HO)2SiO] 2}TaH1 and {μ-O[(HO)2SiO] 2}TaH3, labelled as (≡SiO)2TaH x (x = 1, 3), show that the direct hydride transfers to coordinated N-based ligands in (≡SiO)2TaH2-N2) and (≡SiO)2TaH2-HNNH) have high energy barrier barriers. These high energy barriers are due in part to a lack of energetically accessible empty orbitals in the negatively charged N-based ligands. It is shown that a succession of proton transfers and reduction steps (hydride transfer or 2 electron reduction by way of dihydride reductive coupling) to the nitrogen-based ligands leads to more energetically accessible pathways. These proton transfers, which occur by way of heterolytic activation of H2, increase the electrophilicity of the resulting ligand (diazenido, N 2H-, and hydrazido, NHNH2-, respectively) that can thus accept a hydride with a moderate energy barrier. In the case of (≡SiO)2TaH2-HNNH), the H 2 molecule that is adding across the Ta-N bond is released after the hydride transfer step by heterolytic elimination from (≡SiO) 2TaH(NH2)2, suggesting that dihydrogen has a key role in assisting the final steps of the reaction without itself being consumed in the process. This partly accounts for the experimental observation that the addition of H2 is needed to convert an intermediate, identified as a diazenido complex [(≡SiO)2TaH2-HNNH)] from its ν(N-H) stretching frequency of 3400 cm -1, to the final product. Throughout the proposed mechanism, the tantalum remains in its preferred high oxidation state and avoids redox-type reactions, which are more energetically demanding. © 2012 American Chemical Society.

  2. Neuroprotective effects of corn silk maysin via inhibition of H2O2-induced apoptotic cell death in SK-N-MC cells.

    Science.gov (United States)

    Choi, Doo Jin; Kim, Sun-Lim; Choi, Ji Won; Park, Yong Il

    2014-07-25

    Neuroprotective effects of maysin, which is a flavone glycoside that was isolated from the corn silk (CS, Zea mays L.) of a Korean hybrid corn Kwangpyeongok, against oxidative stress (H2O2)-induced apoptotic cell death of human neuroblastoma SK-N-MC cells were investigated. Maysin cytotoxicity was determined by measuring cell viability using MTT and lactate dehydrogenase (LDH) assays. Intracellular reactive oxygen species (ROS) were measured using a 2,7-dichlorofluorescein diacetate (DCF-DA) assay. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by a TUNEL assay. Antioxidant enzyme mRNA levels were determined by real-time PCR. The cleavage of poly (ADP-ribose) polymerase (PARP) was measured by western blotting. Maysin pretreatment reduced the cytotoxic effect of H2O2 on SK-N-MC cells, as shown by the increase in cell viability and by reduced LDH release. Maysin pretreatment also dose-dependently reduced the intracellular ROS level and inhibited PARP cleavage. In addition, DNA damage and H2O2-induced apoptotic cell death were significantly attenuated by maysin pretreatment. Moreover, maysin pretreatment (5-50 μg/ml) for 2h significantly and dose-dependently increased the mRNA levels of antioxidant enzymes (CAT, GPx-1, SOD-1, SOD-2 and HO-1) in H2O2 (200 μM)-insulted cells. These results suggest that CS maysin has neuroprotective effects against oxidative stress (H2O2)-induced apoptotic death of human brain SK-N-MC cells through its antioxidative action. This report is the first regarding neuroprotective health benefits of corn silk maysin by its anti-apoptotic action and by triggering the expression of intracellular antioxidant enzyme systems in SK-N-MC cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Butane-1,4-diammonium bis(pyridine-2,6-dicarboxylato-κ3O2,N,O6cadmate(II dihydrate

    Directory of Open Access Journals (Sweden)

    Najmeh Firoozi

    2008-10-01

    Full Text Available In the title compound, (C4H14N2[Cd(C7H3NO42]·2H2O, the CdII ion is coordinated by four O atoms [Cd—O = 2.2399 (17–2.2493 (17 Å] and two N atoms [Cd—N = 2.3113 (15 and 2.3917 (15 Å] from two tridentate pyridine-2,6-dicarboxylato ligands in a distorted octahedral geometry. The uncoordinated water molecules are involved in O—H...O and N—H...O hydrogen bonds, which contribute to the formation of a three-dimensional supramolecular structure, along with π–π stacking interactions [centroid–centroid distances of 3.5313 (13 and 3.6028 (11 Å between the pyridine rings of neighbouring dianions].

  4. Physical limit of stability in supercooled D2O and D2O+H2O mixtures

    Science.gov (United States)

    Kiselev, S. B.; Ely, J. F.

    2003-01-01

    The fluctuation theory of homogeneous nucleation was applied for calculating the physical boundary of metastable states, the kinetic spinodal, in supercooled D2O and D2O+H2O mixtures. The kinetic spinodal in our approach is completely determined by the surface tension and equation of state of the supercooled liquid. We developed a crossover equation of state for supercooled D2O, which predicts a second critical point of low density water-high density water equilibrium, CP2, and represents all available experimental data in supercooled D2O within experimental accuracy. Using Turnbull's expression for the surface tension we calculated with the crossover equation of state for supercooled D2O the kinetic spinodal, TKS, which lies below the homogeneous nucleation temperature, TH. We show that CP2 always lies inside in the so-called "nonthermodynamic habitat" and physically does not exist. However, the concept of a second "virtual" critical point is physical and very useful. Using this concept we have extended this approach to supercooled D2O+H2O mixtures. As an example, we consider here an equimolar D2O+H2O mixture in normal and supercooled states at atmospheric pressure, P=0.1 MPa.

  5. Synthesis and characterization of Cu{sub 2}O/TiO{sub 2} photocatalysts for H{sub 2} evolution from aqueous solution with different scavengers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanping; Wang, Baowei, E-mail: wangbw@tju.edu.cn; Liu, Sihan; Duan, Xiaofei; Hu, Zongyuan

    2015-01-01

    Graphical abstract: - Highlights: • Cu{sub 2}O/TiO{sub 2} photocatalyst are prepared by a facile ethanol reduction method. • The heterojunction between p-type Cu{sub 2}O and n-type TiO{sub 2} improves activity of TiO{sub 2}. • An optimal molar fraction of Cu{sub 2}O is reported in Cu{sub 2}O/TiO{sub 2} photocatalysts. • The effect of different alcohols scavengers on activity of Cu{sub 2}O/TiO{sub 2} is discussed. - Abstract: A series of Cu{sub 2}O/TiO{sub 2} photocatalysts with different molar fraction of Cu{sub 2}O were prepared by a facile modified ethanol-induced approach followed by a calcination process. The chemical state of copper compound was proved to be cuprous oxide by the characterization of X-ray photoelectron spectra (XPS). Furthermore, these composite oxides were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption desorption and UV–vis techniques to study the morphologies, structures, and optical properties of the as-prepared samples. The results indicated that the photocatalytic activity of n-type TiO{sub 2} was significantly enhanced by combined with p-type Cu{sub 2}O, due to the efficient p–n heterojunction. The p–n heterojunction between Cu{sub 2}O and TiO{sub 2} can enhance visible-light adsorption, efficiently suppress charge recombination, improve interfacial charge transfer, and especially provide plentiful reaction active sites on the surface of photocatalyst. As a consequence, the prepared 2.5-Cu{sub 2}O/TiO{sub 2} photocatalyst exhibited the highest photocatalytic activity for H{sub 2} evolution rate and reached 2048.25 μmol/(g h), which is 14.48 times larger than that of pure P25. The apparent quantum yield (AQY) of the 2.5-Cu{sub 2}O/TiO{sub 2} sample at 365 nm was estimated to be 4.32%. In addition, the influence of different scavengers, namely methanol, anhydrous ethanol, ethylene glycol and glycerol, on the photocatalytic activity for H{sub 2} evolution rate was

  6. Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst

    Science.gov (United States)

    Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul

    2014-10-01

    A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200°C) N - TiO2 followed by calcination at 200°C, 250°C and 300°C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 °C.

  7. Highly luminescent S,N co-doped carbon quantum dots-sensitized chemiluminescence on luminol-H2 O2 system for the determination of ranitidine.

    Science.gov (United States)

    Chen, Jianqiu; Shu, Juan; Chen, Jiao; Cao, Zhiran; Xiao, An; Yan, Zhengyu

    2017-05-01

    S,N co-doped carbon quantum dots (N,S-CQDs) with super high quantum yield (79%) were prepared by the hydrothermal method and characterized by transmission electron microscopy, photoluminescence, UV-Vis spectroscopy and Fourier transformed infrared spectroscopy. N,S-CQDs can enhance the chemiluminescence intensity of a luminol-H 2 O 2 system. The possible mechanism of the luminol-H 2 O 2 -(N,S-CQDs) was illustrated by using chemiluminescence, photoluminescence and ultraviolet analysis. Ranitidine can quench the chemiluminescence intensity of a luminol-H 2 O 2 -N,S-CQDs system. So, a novel flow-injection chemiluminescence method was designed to determine ranitidine within a linear range of 0.5-50 μg ml -1 and a detection limit of 0.12 μg ml -1 . The method shows promising application prospects. Copyright © 2016 John Wiley & Sons, Ltd.

  8. N2,N2,N5,N5-Tetrakis(2-chloroethyl-3,4-dimethylthiophene-2,5-dicarboxamide

    Directory of Open Access Journals (Sweden)

    Yi-Dan Tang

    2010-01-01

    Full Text Available In the title compound, C16H22Cl4N2O2S, the two imide groups adopt a trans arrangement relative to the central thienyl ring, so the four terminal 2-chloroethyl arms adopt different orientations. In the crystal, molecules are linked by weak C—H...Cl and C—H...O hydrogen bonds into a three-dimensional network.

  9. Application of H2O and UV/H2O2 processes for enhancing the biodegradability of reactive black 5 dye.

    Science.gov (United States)

    Kalpana, S Divya; Kalyanaraman, Chitra; Gandhi, N Nagendra

    2011-07-01

    Leather processing is a traditional activity in India during which many organic and inorganic chemicals are added while part of it is absorbed by the leather, the remaining chemicals are discharged along with the effluent. The effluent contains both easily biodegradable and not easily biodegradable synthetic organics like dyes, syntans. Easily biodegradable organics are removed in the existing biological treatment units whereas synthetic organics present in the wastewater are mostly adsorbed over the microbes. As the tannery effluent contains complex chemicals, it is difficult to ascertain the degradation of specific pollutants. To determine the increase in the biodegradability, one of the complex and synthetic organic chemical like dye used in the tanning operation was selected for Advanced Oxidation Process (AOPs) treatment for cleaving complex organics and its subsequent treatment in aerobic process. In the present study, Reactive Black 5 Dye used in the tanning operation was selected for Hydrogen Peroxide (H2O2) and UV/H2O2 pre-treatment for different operating conditions like pH, contact time and different volume of H2O2. A comparison was made between the untreated, Hydrogen Peroxide (H2O2) and UV/H2O2 treated effluent in order to ascertain the influence of AOP on the improvement of biodegradability of effluent. An increase in the BOD5/COD ratio from 0.21 to 0.435 was achieved in the UV/H2O2 pre-treatment process. This pre-treated effluent was further subjected to aerobic process. Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) removal efficiency of the UV/H2O2 pre-treated dye solution in the aerobic process was found to be 86.39% and 77.82% when compared to 52.43% of BOD5 and 51.55% of COD removal efficiency without any pre-treatment. Hence from these results, to increase the biodegradability of Reactive Black 5 dye pre-treatment methods like H2O2 and UV/H2O2 can be used prior to biological treatment process.

  10. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions.

    Science.gov (United States)

    Goff, George S; Brodnax, Lia F; Cisneros, Michael R; Peper, Shane M; Field, Stephanie E; Scott, Brian L; Runde, Wolfgang H

    2008-03-17

    In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.

  11. 2-(2-Chlorophenyl-2,3-dihydroquinazolin-4(1H-one

    Directory of Open Access Journals (Sweden)

    Ming-Jian Li

    2009-09-01

    Full Text Available The title compound, C14H11ClN2O, was synthesized by the reaction of 2-chlorobenzaldehyde and 2-aminobenzamide in an ionic liquid. The pyrimidine ring adopts a skew-boat conformation and the two benzene rings make a dihedral angle of 87.1 (1°. In the crystal, N—H...O and C—H...N hydrogen bonding links the molecules along b.

  12. Modeling Plasma-based CO2 and CH4 Conversion in Mixtures with N2, O2 and H2O: the Bigger Plasma Chemistry Picture

    KAUST Repository

    Wang, Weizong; Snoeckx, Ramses; Zhang, Xuming; Cha, Min; Bogaerts, Annemie

    2018-01-01

    performed regarding the single component gases, i.e. CO2 splitting and CH4 reforming, as well as for two component mixtures, i.e. dry reforming of methane (CO2/CH4), partial oxidation of methane (CH4/O2), artificial photosynthesis (CO2/H2O), CO2

  13. Stability of globular proteins in H2O and D2O

    NARCIS (Netherlands)

    Efimova, Y. M.; Haemers, S.; Wierczinski, B.; Norde, W.; van Well, A. A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  14. Modelling of phase equilibria in CH4–C2H6–C3H8–nC4H10–NaCl–H2O systems

    International Nuclear Information System (INIS)

    Li, Jun; Zhang, Zhigang; Luo, Xiaorong; Li, Xiaochun

    2015-01-01

    Highlights: • A new model was established for the phase equilibria of C1–C2–C3–nC4–brine systems. • The model can reproduce of hydrocarbon–brine equilibria to high T&P and salinity. • The model can well predict H 2 O solubility in light hydrocarbon rich phases. - Abstract: A thermodynamic model is presented for the mutual solubility of CH 4 –C 2 H 6 –C 3 H 8 –nC 4 H 10 –brine systems up to high temperature, pressure and salinity. The Peng–Robinson model is used for non-aqueous phase fugacity calculations, and the Pitzer model is used for aqueous phase activity calculations. The model can accurately reproduce the experimental solubilities of CH 4 , C 2 H 6 , C 3 H 8 and nC 4 H 10 in water or NaCl solutions and H 2 O solubility in the non-aqueous phase. The experimental data of mutual solubility for the CH 4 –brine subsystem are sufficient for temperatures exceeding 250 °C, pressures exceeding 1000 bar and NaCl molalities greater than 6 molal. Compared to the CH 4 –brine system, the mutual solubility data of C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine are not sufficient. Based on the comparison with the experimental data of H 2 O solubility in C 2 H 6 -, C 3 H 8 - or nC 4 H 10 -rich phases, the model has an excellent capability for the prediction of H 2 O solubility in hydrocarbon-rich phases, as these experimental data were not used in the modelling. Predictions of hydrocarbon solubility (at temperatures up to 200 °C, pressures up to 1000 bar and NaCl molalities greater than 6 molal) were made for the C 2 H 6 –brine, C 3 H 8 –brine and nC 4 H 10 –brine systems. The predictions suggest that increasing pressure generally increases the hydrocarbon solubility in water or brine, especially in the lower-pressure region. Increasing temperature usually decreases the hydrocarbon solubility at lower temperatures but increases the hydrocarbon solubility at higher temperatures. Increasing water salinity dramatically decreases

  15. Removal of pharmaceutically active compounds from synthetic and real aqueous mixtures and simultaneous disinfection by supported TiO2/UV-A, H2O2/UV-A, and TiO2/H2O2/UV-A processes.

    Science.gov (United States)

    Bosio, Morgana; Satyro, Suéllen; Bassin, João Paulo; Saggioro, Enrico; Dezotti, Márcia

    2018-05-01

    Pharmaceutically active compounds are carried into aquatic bodies along with domestic sewage, industrial and agricultural wastewater discharges. Psychotropic drugs, which can be toxic to the biota, have been detected in natural waters in different parts of the world. Conventional water treatments, such as activated sludge, do not properly remove these recalcitrant substances, so the development of processes able to eliminate these compounds becomes very important. Advanced oxidation processes are considered clean technologies, capable of achieving high rates of organic compounds degradation, and can be an efficient alternative to conventional treatments. In this study, the degradation of alprazolam, clonazepam, diazepam, lorazepam, and carbamazepine was evaluated through TiO 2 /UV-A, H 2 O 2 /UV-A, and TiO 2 /H 2 O 2 /UV-A, using sunlight and artificial irradiation. While using TiO 2 in suspension, best results were found at [TiO 2 ] = 0.1 g L -1 . H 2 O 2 /UV-A displayed better results under acidic conditions, achieving from 60 to 80% of removal. When WWTP was used, degradation decreased around 50% for both processes, TiO 2 /UV-A and H 2 O 2 /UV-A, indicating a strong matrix effect. The combination of both processes was shown to be an adequate approach, since removal increased up to 90%. H 2 O 2 /UV-A was used for disinfecting the aqueous matrices, while mineralization was obtained by TiO 2 -photocatalysis.

  16. Matrix Isolation Spectroscopy of H2O2, D2O, and HDO in Solid Parahydrogen

    National Research Council Canada - National Science Library

    Fajardo, Mario

    2003-01-01

    ...) solids doped with H2O, D2O and HDO molecules. Analysis of the rovibrational spectra of the isolated H20, D2O and HDO monomers reveals their existence as very slightly hindered rotors, typically showing only 2 to 5...

  17. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    Science.gov (United States)

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  18. Synthesis, solvatochromism and crystal structure of trans-[Cu(Et2NCH2CH2NH2)2.H2O](NO3)2 complex: Experimental with DFT combination

    Science.gov (United States)

    Warad, Ismail; Musameh, Sharif; Badran, Ismail; Nassar, Nashaat N.; Brandao, Paula; Tavares, Carlos Jose; Barakat, Assem

    2017-11-01

    In this study, two dicationic asymmetrical diamine/copper(II) nitrate salt complexes of the general formula trans-[CuII(NN‧)2.H2O](NO3)2 were successfully synthesized using N,N-dimethylethylenediamine and N,N-diethylethylenediamine as asymmetrical diamine ligands. The structure of complex 2 was identified by X-ray single crystal diffraction analysis confirming that the bidentate ligand N,N-dimethylethylenediamine forms a penta-coordinated complex with an H2O molecule located around the copper(II) ion in a trans configuration. It was found that the metal centre is coordinated in a distorted square pyramidal fashion with a τ value of 0.274. The desired complexes were fully characterized using, MS, UV-Vis, CV, FTIR, TG/DTA, and Hirshfeld surface computational analysis. High level theoretical calculations were also performed in order to investigate the complexes structure, conformers, vibrational frequencies, and their excited states.

  19. (Metformin-κ2N,N′(salicylato-κ2O,O′copper(II trihydrate

    Directory of Open Access Journals (Sweden)

    Sandra Julieta Gutiérrez Ojeda

    2018-02-01

    Full Text Available The hydrous title complex [systematic name: (1,1-dimethylbiguanide-κ2N2,N4(2-oxidobenzoato-κ2O,O′copper(II trihydrate], [Cu(C7H4O3(C4H11N5]·3H2O, was synthesized electrolytically from an ethanolic solution of metformin hydrochloride, acetylsalicylic acid, Pepto-Bismol and a copper sacrificial anode. Diffraction data were collected at 0.56 Å resolution, allowing the accurate determination of H-atom positions in the neutral metformin ligand. Both imine groups in metformin have very similar N=C bond lengths, 1.2978 (17 and 1.3033 (17 Å, and the salicylate dianion behaves as a chelating ligand. The coordination sphere of the copper(II cation deviates marginally from a square-planar arrangement. In the crystal, short Cu...Cu separations of 3.5476 (3 Å are observed, along with classical hydrogen-bonding interactions.

  20. Global minimum-energy structure and spectroscopic properties of I2(*-) x n H2O clusters: a Monte Carlo simulated annealing study.

    Science.gov (United States)

    Pathak, Arup Kumar; Mukherjee, Tulsi; Maity, Dilip Kumar

    2010-01-18

    The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine-dimer radical-anion clusters, I(2)(*-) x n H(2)O (n=1-10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum-energy structure by applying a Monte Carlo simulated annealing procedure including spin-orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I-I stretching band but enhances the intensity of the O-H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O-H bonds in a cyclic water network are observed for I(2)(*-) x n H(2)O clusters with n > or = 3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite-size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I(2)(*-) in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl(2)(*-) and Br(2)(*-).

  1. Syntheses, crystal structures, and properties of the isotypic pair [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Van, Nguyen-Duc; Kleeberg, Fabian M.; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2015-11-15

    Single crystals of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O were obtained by reactions of aqueous solutions of the acid (H{sub 3}O){sub 2}[B{sub 12}H{sub 12}] with chromium(III) hydroxide and indium metal shot, respectively. The title compounds crystallize isotypically in the trigonal system with space group R anti 3c (a = 1157.62(3), c = 6730.48(9) pm for the chromium, a = 1171.71(3), c = 6740.04(9) pm for the indium compound, Z = 6). The arrangement of the quasi-icosahedral [B{sub 12}H{sub 12}]{sup 2-} dianions can be considered as stacking of two times nine layers with the sequence..ABCCABBCA.. and the metal trications arrange in a cubic closest packed..abc.. stacking sequence. The metal trications are octahedrally coordinated by six water molecules of hydration, while another fifteen H{sub 2}O molecules fill up the structures as zeolitic crystal water or second-sphere hydrating species. Between these free and the metal-bonded water molecules, bridging hydrogen bonds are found. Furthermore, there is also evidence of hydrogen bonding between the anionic [B{sub 12}H{sub 12}]{sup 2-} clusters and the free zeolitic water molecules according to B-H{sup δ-}..{sup δ+}H-O interactions. Vibrational spectroscopy studies prove the presence of these hydrogen bonds and also show slight distortions of the dodecahydro-closo-dodecaborate anions from their ideal icosahedral symmetry (I{sub h}). Thermal decomposition studies for the example of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O gave no hints for just a simple multi-stepwise dehydration process. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis.

    Science.gov (United States)

    Yu, Bang-Wei; Li, Jin-Long; Guo, Bin-Bin; Fan, Hui-Min; Zhao, Wei-Min; Wang, He-Yao

    2016-11-01

    Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1-9) isolated from the leaves of Gynura nepalensis for their protective effect against H 2 O 2 -induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. H9c2 cardiomyoblasts were exposed to H 2 O 2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H 2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Exposure to H 2 O 2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H 2 O 2 -induced cell death. Pretreatment with compound 6 (1.56-100 μmol/L) dose-dependently alleviated all the H 2 O 2 -induced detrimental effects. Moreover, exposure to H 2 O 2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H 2 O 2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H 2 O 2 -induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H 2 O 2 -induced phosphorylation of JNK and ERK but not that of p38. Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2

  3. μ-Adipato-κ2O1:O4-bis{[2,6-bis(1H-benzimidazol-2-yl-κN3pyridine-κN](nitrato-κOlead(II}

    Directory of Open Access Journals (Sweden)

    Lian-Qiang Wei

    2010-01-01

    Full Text Available The dinuclear title compound, [Pb2(C6H8O4(NO32(C19H13N52], lies with the mid-point of the butyl chain of the bridging adipate unit on a center of inversion. The PbII ion is covalently bonded to the nitrate anion and is bonded to a carboxylate group of the adipate unit by another covalent bond. The N-heterocycle functions in a chelating tridentate mode. The metal atom exists in a Ψ-octahedral coordination environment. When weaker Pb...O interactions are also considered, the geometry is a Ψ-tricapped trigonal prism in which the lone-pair electrons occupy one face of the trigonal prism. Adjacent molecules are linked into a layer structure by N—H...O hydrogen bonds.

  4. Repairable and nonrepairable inactivation of irradiated aqueous papain: effect of OH, O2-, e/sub aq-/, and H2O2

    International Nuclear Information System (INIS)

    Lin, W.S.; Clement, J.R.; Gaucher, G.M.; Armstrong, D.A.

    1975-01-01

    Repairable inactivation of papain irradiated in dilute aqueous solutions saturated with air or nitrous oxide is caused predominantly by reversible oxidation of Cys 25 SH by H 2 O 2 . The same process occurs in nitrogen-saturated solutions but the yield of repairable product decreases at higher doses, probably because of the consumption of H 2 O 2 by intermediates formed from e - /sub aq/ and papain. The OH radical produces only nonrepairable damage, with the fraction of the OH radical causing nonrepairable inactivation (f/sub OH//sup n.r./) equal to 0.1 and this is accompanied by, if not solely due to, SH loss. The O 2 - radical with f/sub O 2 //sup -n.r. = 0.4 also causes nonrepairable damage resulting from or accompanied by SH loss. In addition, there is evidence that every O 2 - reacts with papain to produce a hydrogen peroxide molecule, thus causing a marked increase in the repairable yield. The solvated electron for which f/sub e//Sup n.r./ is 0.07 does not appear to destroy Cys 25 SH, and must, therefore, inactivate papain by damaging other essential residues or changing the active site geometry. The inactivation yields for the present papain solutions prepared by affinity chromatography are compared with other work. Discrepancies in previous determinations of sulfhydryl loss are attributed to the special properties of the sulfenic acid product of the H 2 O 2 -papain reaction and its different effects on pHMB and DTNB assays. (U.S.)

  5. Transcriptome analysis of H2O2-treated wheat seedlings reveals a H2O2-responsive fatty acid desaturase gene participating in powdery mildew resistance.

    Directory of Open Access Journals (Sweden)

    Aili Li

    Full Text Available Hydrogen peroxide (H(2O(2 plays important roles in plant biotic and abiotic stress responses. However, the effect of H(2O(2 stress on the bread wheat transcriptome is still lacking. To investigate the cellular and metabolic responses triggered by H(2O(2, we performed an mRNA tag analysis of wheat seedlings under 10 mM H(2O(2 treatment for 6 hour in one powdery mildew (PM resistant (PmA and two susceptible (Cha and Han lines. In total, 6,156, 6,875 and 3,276 transcripts were found to be differentially expressed in PmA, Han and Cha respectively. Among them, 260 genes exhibited consistent expression patterns in all three wheat lines and may represent a subset of basal H(2O(2 responsive genes that were associated with cell defense, signal transduction, photosynthesis, carbohydrate metabolism, lipid metabolism, redox homeostasis, and transport. Among genes specific to PmA, 'transport' activity was significantly enriched in Gene Ontology analysis. MapMan classification showed that, while both up- and down- regulations were observed for auxin, abscisic acid, and brassinolides signaling genes, the jasmonic acid and ethylene signaling pathway genes were all up-regulated, suggesting H(2O(2-enhanced JA/Et functions in PmA. To further study whether any of these genes were involved in wheat PM response, 19 H(2O(2-responsive putative defense related genes were assayed in wheat seedlings infected with Blumeria graminis f. sp. tritici (Bgt. Eight of these genes were found to be co-regulated by H(2O(2 and Bgt, among which a fatty acid desaturase gene TaFAD was then confirmed by virus induced gene silencing (VIGS to be required for the PM resistance. Together, our data presents the first global picture of the wheat transcriptome under H(2O(2 stress and uncovers potential links between H(2O(2 and Bgt responses, hence providing important candidate genes for the PM resistance in wheat.

  6. 2-(2,4-Dichlorophenyl-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylacetamide

    Directory of Open Access Journals (Sweden)

    B. Narayana

    2013-01-01

    Full Text Available In the crystal structure of the title compound, C19H17Cl2N3O2, the molecules form dimers of the R22(10 type through N—H...O hydrogen bonding. As a result of steric repulsion, the amide group is rotated with respect to both the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings, making dihedral angles of 80.70 (13 and 64.82 (12°, respectively. The dihedral angle between the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings is 48.45 (5° while that between the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings is 56.33 (6°.

  7. Flooding-induced N2O emission bursts controlled by pH and nitrate in agricultural soils

    DEFF Research Database (Denmark)

    Hansen, Mette; Clough, Tim J.; Elberling, Bo

    2014-01-01

    emissions is poorly studied for agricultural systems. The overall N2O dynamics during flooding of an agricultural soil and the effect of pH and NO3− concentration has been investigated based on a combination of the use of microsensors, stable isotope techniques, KCl extractions and modelling. This study...... within the soil. The magnitude of the emissions are, not surprisingly, positively correlated with the soil NO3− concentration but also negatively correlated with liming (neutral pH). The redox potential of the soil is found to influence N2O accumulation as the production and consumption of N2O occurs...... in narrow redox windows where the redox range levels are negatively correlated with the pH. This study highlights the potential importance of N2O bursts associated with flooding and infers that annual N2O emission estimates for tilled agricultural soils that are temporarily flooded will be underestimated...

  8. Adsorption of H2S molecule on TiO2/Au nanocomposites: A density functional theory study

    Directory of Open Access Journals (Sweden)

    Amirali Abbasi

    2017-01-01

    Full Text Available The adsorption of hydrogen sulfide molecule on undoped and N-doped TiO2/Au nanocomposites was investigated by density functional theory (DFT calculations. The results showed that the adsorption energies of H2S on the nanocomposites follow the order of 2N doped (Ti site>N-doped (Ti site>Undoped (Ti site. The structural properties including bond lengths, angles and adsorption energies and electronic properties in view of the projected density of states (PDOSs and molecular orbitals (MOs were analyzed in detail. The results indicated that the interaction between H2S molecule and N-doped TiO2/Au nanocomposite is stronger than that between H2S and undoped nanocomposite, suggesting that N-doping helps to strengthen the interaction of H2S with TiO2/Au nanocomposite. Mulliken population analysis was conducted to analyze the charge transfer between the nanocomposite and H2S molecule. Although H2S molecule has no significant interaction with undoped nanocomposite, it tends to be strongly adsorbed on the N-doped nanocomposite. The results also suggest that the two doped nitrogen atoms in TiO2 greatly strengthen the adsorption process, being a helpful procedure to help in the design and development of improved sensor devices for H2S detection.

  9. UV and IR laser induced ablation of Al2O3/SiN:H and a-Si:H/SiN:H

    Directory of Open Access Journals (Sweden)

    Schutz-Kuchly T.

    2014-01-01

    Full Text Available Experimental work on laser induced ablation of thin Al2O3(20 nm/SiN:H (70 nm and a-Si:H (20 nm/SiN:H (70 nm stacks acting, respectively, as p-type and n-type silicon surface passivation layers is reported. Results obtained using two different laser sources are compared. The stacks are efficiently removed using a femtosecond infra-red laser (1030 nm wavelength, 300 fs pulse duration but the underlying silicon surface is highly damaged in a ripple-like pattern. This collateral effect is almost completely avoided using a nanosecond ultra-violet laser (248 nm wavelength, 50 ns pulse duration, however a-Si:H flakes and Al2O3 lace remain after ablation process.

  10. Ion-molecule interactions in crossed-beams. [N/sup +/-H/sub 2/; F/sup +/-H; CO/sub 2//sup +/-D/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S.G.

    1980-09-01

    Interactions of the ions N/sup +/, F/sup +/, and CO/sub 2//sup +/ with H/sub 2/ and/or its isotopes were examined using the crossed-beam technique in the low (< 4 eV) initial relative energy. For the reaction N/sup +/(/sup 3/P) + H/sub 2/ ..-->.. NH/sup +/ + H, complex formation dominates up to 1.9 eV and a substantial interaction occurs between all collision partners up to 3.6 eV. The distribution of N/sup +/ scattered nonreactively from H/sub 2/ also showed a long-lived complex channel below 1.9 eV. The reaction F/sup +/(/sup 3/P) + H/sub 2/ ..-->..FH/sup +/ + H proceeded by a direct reaction mechanism at 0.20 to 1.07 eV. The reaction CO/sub 2//sup +/ + D/sub 2/ ..-->.. DCO/sub 2//sup +/ + D gives asymmetric product distributions at 0.27 eV and above, indicating a direct reaction mechanism. Results indicated that there are probably barriers in the exit channels for DCO/sub 2//sup +/, DCO/sup +/, and D/sub 2/O/sup +/ products. The electronic state distributions of the N/sup +/, F/sup +/, and CO/sub 2//sup +/ beams was investigated using beam attenuation and total luminescence techniques.

  11. IR and Raman spectra of LaH(SeO3)2 and FeH(SeO3)2

    International Nuclear Information System (INIS)

    Ratheesh, R.; Suresh, G.; Nayar, V.U.; Morris, R.E.

    1995-01-01

    The infrared and Raman spectra of LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals are recorded and analysed. Bands confirm the coexistence of HSeO 3 - and SeO 3 2- ions in both LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals. The Se-OH stretching vibrations are observed to be at lower wavenumbers in LaH(SeO 3 ) 2 than that in the iron compound in agreement with the short O-O distance in the former. Observed bands indicate that the SeO 3 2- ions are more angularly distorted in FeH(SeO 3 ) 2 crystal. ABC bands, characteristic of strong hydrogen bonded systems are observed in the infrared spectra of both the crystals. (author). 15 refs., 2 figs., 1 tab

  12. Manganese catalyzed cis-dihydroxylation of electron deficient alkenes with H(2)O(2).

    Science.gov (United States)

    Saisaha, Pattama; Pijper, Dirk; van Summeren, Ruben P; Hoen, Rob; Smit, Christian; de Boer, Johannes W; Hage, Ronald; Alsters, Paul L; Feringa, Ben L; Browne, Wesley R

    2010-10-07

    A practical method for the multigram scale selective cis-dihydroxylation of electron deficient alkenes such as diethyl fumarate and N-alkyl and N-aryl-maleimides using H(2)O(2) is described. High turnovers (>1000) can be achieved with this efficient manganese based catalyst system, prepared in situ from a manganese salt, pyridine-2-carboxylic acid, a ketone and a base, under ambient conditions. Under optimized conditions, for diethyl fumarate at least 1000 turnovers could be achieved with only 1.5 equiv. of H(2)O(2) with d/l-diethyl tartrate (cis-diol product) as the sole product. For electron rich alkenes, such as cis-cyclooctene, this catalyst provides for efficient epoxidation.

  13. A novel organic–inorganic hybrid with Anderson type polyanions as building blocks: (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Thabet, Safa, E-mail: safathabet@hotmail.fr [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia); Ayed, Brahim, E-mail: brahimayed@yahoo.fr [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia); Haddad, Amor [Laboratoire de matériaux et cristallochimie, Département de chimie, Institut Supérieur des Sciences Appliquées et Technologier, Avenue El Mourouj, 5111 Mahdia (Tunisia)

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of a novel inorganic–organic hybrid compound based on Anderson polyoxomolybdates. ► Characterization by X-ray diffraction, IR and UV–Vis spectroscopies of the new compound. ► Potential applications in catalysis, biochemical analysis and electrical conductivity of the organic–inorganic compound. -- Abstract: A new organic–inorganic hybrid compound based on Anderson polyoxomolybdates, (C{sub 6}H{sub 10}N{sub 3}O{sub 2}){sub 2}Na(H{sub 2}O){sub 2}[Al(OH){sub 6}Mo{sub 6}O{sub 18}]·6H{sub 2}O (1) have been isolated by the conventional solution method and characterized by single-crystal X-ray diffraction, infrared, ultraviolet spectroscopy and Thermogravimetric Analysis (TGA). This compound crystallized in the triclinic system, space group P−1, with a = 94.635(1) Å, b = 10.958(1) Å, c = 11.602(1) Å, α = 67.525(1)°, β = 71.049(1)°, γ = 70.124(1)° and Z = 1. The crystal structures of the compounds exhibit three-dimensional supramolecular assembly based on the extensive hydrogen bonding interactions between organic cations, sodium cations, water molecules and Anderson polyoxoanions. The infrared spectrum fully confirms the X-ray crystal structure and the UV spectrum of the title compound exhibits an absorption peak at 210 nm.

  14. Borate mineral assemblages in the system Na2OCaOMgOB2O3H2O

    Science.gov (United States)

    Christ, C.L.; Truesdell, A.H.; Erd, Richard C.

    1967-01-01

    he significant known hydrated borate mineral assemblages (principally of the western United States) in the system Na2OCaOz.sbnd;MgOB2O3H2O are expressible in three ternary composition diagrams. Phase rule interpretation of the diagrams is consistent with observation, if the activity of H2O is generally considered to be determined by the geologic environment. The absence of conflicting tie-lines on a diagram indicates that the several mineral assemblages of the diagram were formed under relatively narrow ranges of temperature and pressure. The known structural as well as empirical formulas for the minerals are listed, and the more recent (since 1960) crystal structure findings are discussed briefly. Schematic Gibbs free energy-composition diagrams based on known solubility-temperature relations in the systems Na2B4O7-H2O and Na2B4O7-NaCl-H2O, are highly useful in the interpretation and prediction of the stability relations in these systems; in particular these diagrams indicate clearly that tincalconite, although geologically important, is everywhere a metastable phase. Crystal-chemical considerations indicate that the same thermodynamic and kinetic behavior observed in the Na2B4O7-H2O system will hold in the Ca2B6O11-H2O system. This conclusion is confirmed by the petrologic evidence. The chemical relations among the mineral assemblages of a ternary diagram are expressed by a schematic "activity-activity" diagram. These activity-activity diagrams permit the tracing-out of the paragenetic sequences as a function of changing cation and H2O activities. ?? 1967.

  15. H2O2 augments cytosolic calcium in nucleus tractus solitarii neurons via multiple voltage-gated calcium channels.

    Science.gov (United States)

    Ostrowski, Tim D; Dantzler, Heather A; Polo-Parada, Luis; Kline, David D

    2017-05-01

    Reactive oxygen species (ROS) play a profound role in cardiorespiratory function under normal physiological conditions and disease states. ROS can influence neuronal activity by altering various ion channels and transporters. Within the nucleus tractus solitarii (nTS), a vital brainstem area for cardiorespiratory control, hydrogen peroxide (H 2 O 2 ) induces sustained hyperexcitability following an initial depression of neuronal activity. The mechanism(s) associated with the delayed hyperexcitability are unknown. Here we evaluate the effect(s) of H 2 O 2 on cytosolic Ca 2+ (via fura-2 imaging) and voltage-dependent calcium currents in dissociated rat nTS neurons. H 2 O 2 perfusion (200 µM; 1 min) induced a delayed, slow, and moderate increase (~27%) in intracellular Ca 2+ concentration ([Ca 2+ ] i ). The H 2 O 2 -mediated increase in [Ca 2+ ] i prevailed during thapsigargin, excluding the endoplasmic reticulum as a Ca 2+ source. The effect, however, was abolished by removal of extracellular Ca 2+ or the addition of cadmium to the bath solution, suggesting voltage-gated Ca 2+ channels (VGCCs) as targets for H 2 O 2 modulation. Recording of the total voltage-dependent Ca 2+ current confirmed H 2 O 2 enhanced Ca 2+ entry. Blocking VGCC L, N, and P/Q subtypes decreased the number of cells and their calcium currents that respond to H 2 O 2 The number of responder cells to H 2 O 2 also decreased in the presence of dithiothreitol, suggesting the actions of H 2 O 2 were dependent on sulfhydryl oxidation. In summary, here, we have shown that H 2 O 2 increases [Ca 2+ ] i and its Ca 2+ currents, which is dependent on multiple VGCCs likely by oxidation of sulfhydryl groups. These processes presumably contribute to the previously observed delayed hyperexcitability of nTS neurons in in vitro brainstem slices. Copyright © 2017 the American Physiological Society.

  16. Dexmedetomidine attenuates H2O2-induced cell death in human osteoblasts.

    Science.gov (United States)

    Yoon, Ji-Young; Park, Jeong-Hoon; Kim, Eun-Jung; Park, Bong-Soo; Yoon, Ji-Uk; Shin, Sang-Wook; Kim, Do-Wan

    2016-12-01

    Reactive oxygen species play critical roles in homeostasis and cell signaling. Dexmedetomidine, a specific agonist of the α 2 -adrenoceptor, has been commonly used for sedation, and it has been reported to have a protective effect against oxidative stress. In this study, we investigated whether dexmedetomidine has a protective effect against H 2 O 2 -induced oxidative stress and the mechanism of H 2 O 2 -induced cell death in normal human fetal osteoblast (hFOB) cells. Cells were divided into three groups: control group-cells were incubated in normoxia without dexmedetomidine, hydrogen peroxide (H 2 O 2 ) group-cells were exposed to H 2 O 2 (200 µM) for 2 h, and Dex/H 2 O 2 group-cells were pretreated with dexmedetomidine (5 µM) for 2 h then exposed to H 2 O 2 (200 µM) for 2 h. Cell viability and apoptosis were evaluated. Osteoblast maturation was determined by assaying bone nodular mineralization. Expression levels of bone-related proteins were determined by western blot. Cell viability was significantly decreased in the H 2 O 2 group compared with the control group, and this effect was improved by dexmedetomidine. The Hoechst 33342 and Annexin-V FITC/PI staining revealed that dexmedetomidine effectively decreased H 2 O 2 -induced hFOB cell apoptosis. Dexmedetomidine enhanced the mineralization of hFOB cells when compared to the H 2 O 2 group. In western blot analysis, bone-related protein was increased in the Dex/H 2 O 2 group. We demonstrated the potential therapeutic value of dexmedetomidine in H 2 O 2 -induced oxidative stress by inhibiting apoptosis and enhancing osteoblast activity. Additionally, the current investigation could be evidence to support the antioxidant potential of dexmedetomidine in vitro.

  17. Three-dimensional WS2 nanosheet networks for H2O2 produced for cell signaling

    Science.gov (United States)

    Tang, Jing; Quan, Yingzhou; Zhang, Yueyu; Jiang, Min; Al-Enizi, Abdullah M.; Kong, Biao; An, Tiance; Wang, Wenshuo; Xia, Limin; Gong, Xingao; Zheng, Gengfeng

    2016-03-01

    Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in living RAW 264.7 macrophage cells and neurons. First-principles calculations further demonstrate that the enhanced sensitivity of probing H2O2 is attributed to the efficient and spontaneous H2O2 adsorption on WS2 nanosheet edge sites. The combined features of 3D WS2 nanosheet networks suggest attractive new opportunities for exploring the physiological roles of reactive oxygen species like H2O2 in living systems.Hydrogen peroxide (H2O2) is an important molecular messenger for cellular signal transduction. The capability of direct probing of H2O2 in complex biological systems can offer potential for elucidating its manifold roles in living systems. Here we report the fabrication of three-dimensional (3D) WS2 nanosheet networks with flower-like morphologies on a variety of conducting substrates. The semiconducting WS2 nanosheets with largely exposed edge sites on flexible carbon fibers enable abundant catalytically active sites, excellent charge transfer, and high permeability to chemicals and biomaterials. Thus, the 3D WS2-based nano-bio-interface exhibits a wide detection range, high sensitivity and rapid response time for H2O2, and is capable of visualizing endogenous H2O2 produced in

  18. Nickel(II) in chelate N2O2 environment. DFT approach and in-depth molecular orbital and configurational analysis

    NARCIS (Netherlands)

    Trifunovic, Srecko R.; Miletic, Vesna D.; Jevtic, Verica V.; Meetsma, Auke; Matovic, Zoran D.

    2013-01-01

    The O-N-N-O-type tetradentate ligands H2S,S-eddp (H2S,S-eddp stands for S,S-ethylenediamine-N,N'-di-2-propionic acid) and H(2)edap (H(2)edap stands for ethylenediamine-N-acetic-N'-3-propionic acid) and the corresponding novel octahedral nickel(II) complexes have been prepared and characterized. N2O2

  19. Quasielastic neutron scattering and infra-red band contour study of H2O reorientations in [Ni(H2O)6] (ClO4)2

    International Nuclear Information System (INIS)

    Janik, J.A.; Janik, J.M.; Otnes, K.; Stanek, T.

    1980-01-01

    IR band contour measurements carried out for [Ni(H 2 O) 6 ] (ClO 4 ) 2 revealed an existence of fast H 2 O 180 deg flips around Ni-O axes at room temperatures. These flips were subjected to a more accurate study by the quasielastic neutron scattering method. Correlation times of the order of picosecond were obtained for room temperatures and the barrier to rotation of ca. 7 kcal/mole. The results are compared to those previously obtained for [Mg(H 2 O) 6 ] (ClO 4 ) 2 and also to those for [Ni(NH 3 ) 6 ] (ClO 4 ) 2 and [Mg(NH 3 ) 6 ] (ClO 4 ) 2 . (author)

  20. The crystal structure of Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Verena; Schlosser, Marc; Pfitzner, Arno [Regensburg Univ. (Germany). Inst. fuer Anorganische Chemie

    2016-08-01

    A reinvestigation of the alkali metal thiosulfates has led to the new phase Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O. At first cesium thiosulfate monohydrate was obtained as a byproduct of the synthesis of Cs{sub 4}In{sub 2}S{sub 5}. Further investigations were carried out using the traditional synthesis reported by J. Meyer and H. Eggeling. Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O crystallizes in transparent, colorless needles. The crystal structure of the title compound was determined by single crystal X-ray diffraction at room temperature: space group C2/m (No. 12), unit cell dimensions: a = 11.229(4), b = 5.851(2), c = 11.260(5) Aa, β = 95.89(2) , with Z = 4 and a cell volume of V = 735.9(5) Aa{sup 3}. The positions of all atoms including the hydrogen atoms were located in the structure refinement. Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O is isotypic with Rb{sub 2}S{sub 2}O{sub 3}.H{sub 2}O. Isolated tetrahedra [S{sub 2}O{sub 3}]{sup 2-} are coordinated by the alkali metal cations, and in addition they serve as acceptors for hydrogen bonding. For both Cs atoms the shortest distances are observed to oxygen atoms of the S{sub 2}O{sub 3}{sup 2-} anions whereas the terminating sulfur atom has its shortest contacts to the water hydrogen atoms. Thus, an extended hydrogen bonding network is formed. The title compound has also been characterized by IR spectroscopy. IR spectroscopy reveals the vibrational bands of the water molecules at 3385 cm{sup -1}. They show a red shift in the OH stretching and bending modes as compared to free water. This is due both to the S..H hydrogen bonding and to the coordination of H{sub 2}O molecules to the cesium atoms.

  1. Proton conducting system (ImH2)2SeO2H2O investigated with vibrational spectroscopy

    Science.gov (United States)

    Zięba, Sylwia; Mizera, Adam; Pogorzelec-Glaser, Katarzyna; Łapiński, Andrzej

    2017-06-01

    Imidazolium selenate dihydrate (ImH2)2SeO2H2O crystals have been investigated using Raman and IR spectroscopy. Experimental data were supported by the quantum-chemical calculations (DFT), Hirshfield surfaces and fingerprint plots analysis, and Bader theory calculations. The imidazolium selenate dihydrate crystal exhibits high proton conductivity of the order of 10- 1 S/m at T = 333 K. The spectra of this compound are dominated by bands related to the lattice modes, the internal vibrations of the protonated imidazole cation, selenate anion, water molecules, and hydrogen bonds network. For the imidazolium selenate dihydrate crystal, the formal classification of the fundamental modes has been carried out.

  2. Synthesis and X-ray structure of the dysprosium(III complex derived from the ligand 5-chloro-1,3-diformyl-2-hydroxybenzene-bis-(2-hydroxybenzoylhydrazone [Dy2(C22H16ClN4O53](SCN 3.(H2O.(CH3OH

    Directory of Open Access Journals (Sweden)

    Aliou H. Barry

    2003-12-01

    Full Text Available The title compound [Dy2(C22H16ClN4O53](SCN 3.(H2O.(CH3OH has been synthesized and its crystal structure determined by single X-ray diffraction at room temperature. The two nine coordinated Dy(III are bound to three macromolecules ligand through the phenolic oxygens of the p-chlorophenol moieties, the nitrogen atoms and the carbonyl functions of the hydrazonic moieties. The phenolic oxygen atoms of the 2-hydroxybenzoyl groups are not bonded to the metal ions. In the bases of the coordination polyhedra the six Dy-N bonds are in the range 2.563(13-2.656(13 Å and the twelve Dy-O bonds are in the range 2.281(10-2.406(10 Å.

  3. Synthesis and characterization of sodium vanadium oxide gels: the effects of water (n) and sodium (x) content on the electrochemistry of Na(x)V2OnH2O.

    Science.gov (United States)

    Lee, Chia-Ying; Marschilok, Amy C; Subramanian, Aditya; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-10-28

    Sodium vanadium oxide gels, Na(x)V(2)O(5)·nH(2)O, of varying sodium content (0.12 n > 0.01) and interlayer spacing were found to be inversely proportional to the sodium level (x), thus control of sodium (x) content provided a direct, chimie douce approach for control of hydration level (n) and interlayer spacing, without the need for high temperature treatment to affect dehydration. Notably, the use of high temperatures to modify hydration levels can result in crystallization and collapse of the interlayer structure, highlighting the distinct advantage of our novel chimie douce synthesis strategy. Subsequent to synthesis and characterization, results from an electrochemical study of a series of Na(x)V(2)O(5)·nH(2)O samples highlight the significant impact of interlayer water on delivered capacity of the layered materials. Specifically, the sodium vanadium oxide gels with higher sodium content and lower water content provided higher capacities in lithium based cells, where capacity delivered to 2.0 V under C/20 discharge ranged from 170 mAh/g for Na(0.12)V(2)O(5)·0.23H(2)O to 300 mAh/g for Na(0.32)V(2)O(5)·0.01H(2)O. The capacity differences were maintained as the cells were cycled. This journal is © the Owner Societies 2011

  4. Comparative Study of Catalytic Systems T iO2 and N b2O5 Estudio catalítico comparativo de los sistemas TiO2 y Nb2O5 en la degradación de cianuro en función del tipo de oxidante

    Directory of Open Access Journals (Sweden)

    Aida Liliana Barbosa López

    2012-12-01

    Full Text Available This article discusses the viability of using agents such as niobium photocatalyst in decreasing higher energy of the band gap. To do so competitively withT iO2, the presence of oxidation helpers such as H2O2 and O3 could presentsurprising results in the catalytic performance due to higher generation ofOH o radicals. Oxidation helpers are shown to assist in obtaining larger areaoxides and textural properties different from commercial niobium oxide, andenhancing its catalytic activity in free cyanide removing. The article presentsexperimental results of cyanide photodegradation of 100mg/l with Degussa P-25 T iO2 and Nb2O53H2O, using a type CPC photoreactor and sunlight as theradiation source. Taking an inclination equal to Cartagena latitude of 10,450,the results show a clear effect of pH, catalyst type and oxidation auxiliar agenton photodegradation reaction. The ion cyanide reduction of polluted effluentwas enhanced by oxidizing agent (O3 and H2O2 addition. This may suggesta greater susceptibility to free cyanide oxidation and cianate indirect oxidation due to higher hydroxyl radical generation, which was induced by H2O2or O3 presence under solar radiation. The results showed free cyanide photocatalytic oxidation percentages between 64% and 72% using Nb2O5 3H2Oand 67% and 71% using T iO2 Degussa P-25. The catalysts were characterizedstructurally by XRD, BET, Raman and FTIR, with the purpose of correlatingmorphological changes in catalytic performing.La viabilidad del uso de otros agentes fotocatalizadores como el niobio, radicaen disminuir las energías altas de la banda prohibida para hacerlo competitivofrente al TiO2, sin embargo la presencia de coayudantes de oxidación, talescomo H2O2 y O3 podrían presentar resultados sorprendentes en el desempeñocatalítico, debido a una mayor generación del radicales OH. La obtención deóxidos de mayor área y propiedades texturales diferentes al oxido de niobiocomercial, mejoran su actividad catal

  5. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    Science.gov (United States)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  6. Fabrication of a Co(OH)2/ZnCr LDH "p-n" Heterojunction Photocatalyst with Enhanced Separation of Charge Carriers for Efficient Visible-Light-Driven H2 and O2 Evolution.

    Science.gov (United States)

    Sahoo, Dipti Prava; Nayak, Susanginee; Reddy, K Hemalata; Martha, Satyabadi; Parida, Kulamani

    2018-04-02

    Photocatalytic generation of H 2 and O 2 by water splitting remains a great challenge for clean and sustainable energy. Taking into the consideration promising heterojunction photocatalysts, analogous energy issues have been mitigated to a meaningful extent. Herein, we have architectured a highly efficient bifunctional heterojunction material, i.e., p-type Co(OH) 2 platelets with an n-type ZnCr layered double hydroxide (LDH) by an ultrasonication method. Primarily, the Mott-Schottky measurements confirmed the n- and p-type semiconductive properties of LDH and CH material, respectively, with the construction of a p-n heterojunction. The high resolution transmission electron microscopy results suggest that surface modification of ZnCr LDH by Co(OH) 2 hexagonal platelets could form a fabulous p-n interfacial region that significantly decreases the energy barrier for O 2 and H 2 production by effectively separating and transporting photoinduced charge carriers, leading to enhanced photoreactivity. A deep investigation into the mechanism shows that a 30 wt % Co(OH) 2 -modified ZnCr LDH sample liberates maximum H 2 and O 2 production in 2 h, i.e., 1115 and 560 μmol, with apparent conversion efficiencies of H 2 and O 2 evolution of 13.12% and 6.25%, respectively. Remarkable photocatalytic activity with energetic charge pair transfer capability was illustrated by electrochemical impedance spectroscopy, linear sweep voltammetry, and photoluminescence spectra. The present study clearly suggests that low-cost Co(OH) 2 platelets are the most crucial semiconductors to provide a new p-n heterojunction photocatalyst for photocatalytic H 2 and O 2 production on the platform of ZnCr LDH.

  7. Time-dependent one-dimensional simulation of atmospheric dielectric barrier discharge in N2/O2/H2O using COMSOL Multiphysics

    Science.gov (United States)

    Sohbatzadeh, F.; Soltani, H.

    2018-04-01

    The results of time-dependent one-dimensional modelling of a dielectric barrier discharge (DBD) in a nitrogen-oxygen-water vapor mixture at atmospheric pressure are presented. The voltage-current characteristics curves and the production of active species are studied. The discharge is driven by a sinusoidal alternating high voltage-power supply at 30 kV with frequency of 27 kHz. The electrodes and the dielectric are assumed to be copper and quartz, respectively. The current discharge consists of an electrical breakdown that occurs in each half-period. A detailed description of the electron attachment and detachment processes, surface charge accumulation, charged species recombination, conversion of negative and positive ions, ion production and losses, excitations and dissociations of molecules are taken into account. Time-dependent one-dimensional electron density, electric field, electric potential, electron temperature, densities of reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as: O, O-, O+, {O}2^{ - } , {O}2^{ + } , O3, {N}, {N}2^{ + } , N2s and {N}2^{ - } are simulated versus time across the gas gap. The results of this work could be used in plasma-based pollutant degradation devices.

  8. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    Science.gov (United States)

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  9. Water Ice Radiolytic O2, H2, and H2O2 Yields for Any Projectile Species, Energy, or Temperature: A Model for Icy Astrophysical Bodies

    Science.gov (United States)

    Teolis, B. D.; Plainaki, C.; Cassidy, T. A.; Raut, U.

    2017-10-01

    O2, H2, and H2O2 radiolysis from water ice is pervasive on icy astrophysical bodies, but the lack of a self-consistent, quantitative model of the yields of these water products versus irradiation projectile species and energy has been an obstacle to estimating the radiolytic oxidant sources to the surfaces and exospheres of these objects. A major challenge is the wide variation of O2 radiolysis yields between laboratory experiments, ranging over 4 orders of magnitude from 5 × 10-7 to 5 × 10-3 molecules/eV for different particles and energies. We revisit decades of laboratory data to solve this long-standing puzzle, finding an inverse projectile range dependence in the O2 yields, due to preferential O2 formation from an 30 Å thick oxygenated surface layer. Highly penetrating projectile ions and electrons with ranges ≳30 Å are therefore less efficient at producing O2 than slow/heavy ions and low-energy electrons (≲ 400 eV) which deposit most energy near the surface. Unlike O2, the H2O2 yields from penetrating projectiles fall within a comparatively narrow range of (0.1-6) × 10-3 molecules/eV and do not depend on range, suggesting that H2O2 forms deep in the ice uniformly along the projectile track, e.g., by reactions of OH radicals. We develop an analytical model for O2, H2, and H2O2 yields from pure water ice for electrons and singly charged ions of any mass and energy and apply the model to estimate possible O2 source rates on several icy satellites. The yields are upper limits for icy bodies on which surface impurities may be present.

  10. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2O production

    DEFF Research Database (Denmark)

    Blum, Jan-Michael; Su, Qingxian; Ma, Yunjie

    2018-01-01

    causing steric changes in catalytic sites or proton/electron transfer routes that alter the enzymes' overall activity. Augmenting molecular information with, e.g., nitritation or denitrification rates yields explanations of changes in net N2 O production with pH. Ammonia oxidizing bacteria are of highest...... relevance for N2 O production, while heterotrophic denitrifiers are relevant for N2 O consumption at pH > 7.5. Net N2 O production in N-cycling water engineering systems is predicted to display a 'bell-shaped' curve in the range of pH 6.0-9.0 with a maximum at pH 7.0-7.5. Net N2 O production at acidic p...

  11. Degradation of n-butylparaben and 4-tert-octylphenol in H2O2/UV system

    International Nuclear Information System (INIS)

    BLedzka, Dorota; Gryglik, Dorota; Olak, Magdalena; Gebicki, Jerzy L.; Miller, Jacek S.

    2010-01-01

    The degradation of two endocrine disrupting compounds: n-butylparaben (BP) and 4-tert-octylphenol (OP) in the H 2 O 2 /UV system was studied. The effect of operating variables: initial hydrogen peroxide concentration, initial substrate concentration, pH of the reaction solution and photon fluency rate of radiation at 254 nm on reaction rate was investigated. The influence of hydroxyl radical scavengers, humic acid and nitrate anion on reaction course was also studied. A very weak scavenging effect during BP degradation was observed indicating reactions different from hydroxyl radical oxidation. The second-order rate constants of BP and OP with OH radicals were estimated to be 4.8x10 9 and 4.2x10 9 M -1 s -1 , respectively. For BP the rate constant equal to 2.0x10 10 M -1 s -1 was also determined using water radiolysis as a source of hydroxyl radicals.

  12. X-ray-induced dissociation of H.sub.2O and formation of an O.sub.2-H.sub.2 alloy at high pressure

    Science.gov (United States)

    Mao, Ho-kwang [Washington, DC; Mao, Wendy L [Washington, DC

    2011-11-29

    A novel molecular alloy of O.sub.2 and H.sub.2 and a method of producing such a molecular alloy are provided. When subjected to high pressure and extensive x-radiation, H.sub.2O molecules cleaved, forming O--O and H--H bonds. In the method of the present invention, the O and H framework in ice VII was converted into a molecular alloy of O.sub.2 and H.sub.2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrate that this crystalline solid differs from previously known phases.

  13. A neodymium(III)-ammonium complex involving oxalate and carbonate ligands: (NH4)2[Nd2(C2O4)3(CO3)(H2O)].H2O.

    Science.gov (United States)

    Trombe, Jean-Christian; Galy, Jean; Enjalbert, Renée

    2002-10-01

    The title compound, diammonium aqua-mu-carbonato-tri-mu-oxalato-dineodymium(III) hydrate, (NH(4))(2)[Nd(2)(CO(3))(C(2)O(4))(3)(H(2)O)].H(2)O, involving the two ligands oxalate and carbonate, has been prepared hydrothermally as single crystals. The Nd atoms form a tetranuclear unit across the inversion centre at (1/2, 1/2, 1/2). Starting from this tetranuclear unit, the oxalate ligands serve to develop a three-dimensional network. The carbonate group acts as a bis-chelating ligand to two Nd atoms, and is monodentate to a third Nd atom. The oxalate groups are all bis-chelating. The two independent Nd atoms are ninefold coordinated and the coordination polyhedron of these atoms is a distorted monocapped antiprism.

  14. Investigation of dehydration reaction of BaCl2.2H2O and SrCl2.6H2O by thermal analysis under pressure

    International Nuclear Information System (INIS)

    Homma, Tsuneyuki; Yamada, Tetsuo

    1978-01-01

    The dehydration reactions of BaCl 2 .2H 2 O and SrCl 2 .6H 2 O were investigated by the techniques of thermal analysis, i.e. thermogravimetry (TG and DTG) and differential thermal analysis (DTA) under pressures of 1, 4, 10 and 40 atm. For BaCl 2 .2H 2 O, the DTA curves showed two peaks at 1 atm and three or four peaks at pressures above 4 atm, and the TG curves showed two steps over the range of 1 -- 10 atm and 3 steps at 40 atm. For SrCl 2 .6H 2 O, the DTA curves showed five peaks at respective pressure, and the TG curves showed three steps at 1 atm and two steps at pressures above 4 atm. As a common effect of pressure to the dehydration of these two salts, DTG peaks and some of DTA peaks shifted to higher temperatures with a increase in pressure, but a few peaks remained unshifted on DTA curves in spite of increasing pressure. The peaks which corresponded to these unshifted peaks on DTA curves were not observed on DTG curves. The unshifted peaks on DTA curves were attributed to the endothermic reaction accompanied by the dissociation of coordination water. The DTA and TG curves suggested that both salts formed the intermediate state between anhydrous and monohydrate states. (auth.)

  15. Photochemical degradation of diethyl phthalate with UV/H2O2

    International Nuclear Information System (INIS)

    Xu Bin; Gao Naiyun; Sun Xiaofeng; Xia Shengji; Rui Min; Simonnot, Marie-Odile; Causserand, Christel; Zhao Jianfu

    2007-01-01

    The decomposition of diethyl phthalate (DEP) in water using UV-H 2 O 2 process was investigated in this paper. DEP cannot be effectively removed by UV radiation and H 2 O 2 oxidation alone, while UV-H 2 O 2 combination process proved to be effective and could degrade this compound completely. With initial concentration about 1.0 mg/L, more than 98.6% of DEP can be removed at time of 60 min under intensity of UV radiation of 133.9 μW/cm 2 and H 2 O 2 dosage of 20 mg/L. The effects of applied H 2 O 2 dose, UV radiation intensity, water temperature and initial concentration of DEP on the degradation of DEP have been examined in this study. Degradation mechanisms of DEP with hydroxyl radicals oxidation also have been discussed. Removal rate of DEP was sensitive to the operational parameters. A simple kinetic model is proposed which confirms to pseudo-first order reaction. There is a linear relationship between rate constant k and UV intensity and H 2 O 2 concentration

  16. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon)

    International Nuclear Information System (INIS)

    Medellin-Castillo, Nahum A.; Ocampo-Pérez, Raúl; Leyva-Ramos, Roberto; Sanchez-Polo, Manuel; Rivera-Utrilla, José; Méndez-Díaz, José D.

    2013-01-01

    The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H 2 O 2 , O 3 /AC, O 3 /H 2 O 2 ) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between π electrons of its aromatic ring with π electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O 3 /H 2 O 2 and O 3 /AC systems is faster than that with only O 3 . The technologies based on AOPs (UV/H 2 O 2 , O 3 /H 2 O 2 , O 3 /AC) significantly improve the degradation of DEP compared to conventional technologies (O 3 , UV). AC adsorption, UV/H 2 O 2 , O 3 /H 2 O 2 , and O 3 /AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O 3 /AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity. -- Highlights: ► Activated carbons showed a high adsorption capacity (up to 858 mg/g) to remove DEP. ► The pH solution did not significantly affect the photodegradation kinetics of DEP. ► The O 3 /H 2 O 2 and O 3 /AC systems were more efficient than O 3 to degrade DEP. ► The generation of HO • from O 3 was enhanced by ACs, mainly by those of basic nature. ► O

  17. Bis[2-(2H-benzotriazol-2-yl-4-methylphenolato]palladium(II

    Directory of Open Access Journals (Sweden)

    Chen-Yen Tsai

    2009-06-01

    Full Text Available In the title complex, [Pd(C13H10N3O2], the PdII atom is tetracoordinated by two N atoms and two O atoms from two bidentate 2-(2H-benzotriazol-2-yl-4-methylphenolate ligands, forming a square-planar environment. The asymmetric unit contains one half molecule in which the Pd atom lies on a centre of symmetry.

  18. Study of directionally solidified eutectic Al2O3-ZrO2(3%Y2O3 doped with TiO2

    Directory of Open Access Journals (Sweden)

    Peña, J. I.

    2007-06-01

    Full Text Available An study of directionally grown samples of the eutectic composition in the Al2O3-ZrO2 (3 mol% Y2O3 system, with small TiO2 additions (1 wt%, is presented. The microstructural changes induced by this addition are analysed using SEM (EDX techniques. The mechanical changes, when TiO2 is added, are studied by measuring the flexural strength by three point bending. Also, the toughness is determined by Vickers indentation method. When slow growth rates (10 mm/h are used, interpenetratred and homogeneous microstructure is obtained, independently of the TiO2 doping. When growth rates are higher (300 and 1000 mm/h the structure changes and the phases are organized in form of colonies or cells, which have smaller size when TiO2 is present. This size reduction is accompanied with an increase of the toughness.Este trabajo presenta un estudio de muestras crecidas direccionalmente del sistema Al2O3-ZrO2 (3 mol% Y2O3 en su composición eutéctica con pequeñas adiciones de óxido de titanio (1% de TiO2 en peso. Se analizan los cambios microestructurales inducidos por esta adición mediante SEM (EDX y se estudian los cambios en su comportamiento mecánico medido por flexión en tres puntos, así como la tenacidad de fractura mediante indentación Vickers. Con velocidades lentas de solidificación (10 mm/h se obtiene en ambos casos una microestructura homogénea e interpenetrada, mientras que a velocidades mayores, 300 y 1000 mm/h, se forma una estructura en las que las fases se organizan en forma de colonias o células, siendo éstas de menor tamaño en las muestras dopadas. Esta disminución en el tamaño viene acompañada de un aumento de la tenacidad de fractura medida por indentación.

  19. Bis(di-2-pyridylamine-κ2N2,N2'platinum(II dibromide monohydrate

    Directory of Open Access Journals (Sweden)

    Kwang Ha

    2012-04-01

    Full Text Available The asymmetric unit of the title compound, [Pt(C10H9N32]Br2·H2O, contains two crystallographically independent half-molecules of the cationic PtII complex, two Br− anions and a lattice water molecule; an inversion centre is located at the centroid of each complex. Each PtII ion is four-coordinated in an essentially square-planar environment by four pyridine N atoms derived from the two chelating di-2-pyridylamine (dpa ligands, and the PtN4 unit is exactly planar. The chelate ring formed by the dpa ligand displays a boat conformation, with dihedral angles between the pyridine rings of 35.9 (2 and 41.0 (2°. The complex cations, Br− anions and solvent water molecules are linked by O—H...Br, N—H...Br, C—H...O and C—H...Br hydrogen bonds, forming a three-dimensional network.

  20. Relationship between C2H2 reduction, H2 evolution and 15N2 fixation in root nodules of pea (Pisum sativum)

    DEFF Research Database (Denmark)

    Skøt, Leif

    1983-01-01

    for N2 reduction, is often stated as the relative efficiency (1-H2/C2H2). This factor varied significantly (P 2 and N2, expressed as the H2/N2 ratio, was independent of plant age, however. This discrepancy and the observation......The quantitative relationship between C2H2 reduction, H2 evolution and 15N2 fixation was investigated in excised root nodules from pea plants (Pisum sativum L. cv. Bodil) grown under controlled conditions. The C2H2/N2 conversion factor varied from 3.31 to 5.12 between the 32nd and the 67th day...... after planting. After correction for H2 evolution in air, the factor (C2H2-H2)/N2 decreased to values near the theoretical value 3, or in one case to a value significantly (P 2 production but used...

  1. Photodegradation of amoxicillin by catalyzed Fe3+/H2O2 process

    Institute of Scientific and Technical Information of China (English)

    Xiaoming Li; Tingting Shen; Dongbo Wang; Xiu Yue; Xian Liu; Qi Yang; Jianbin Cao; Wei Zheng; Guangming Zeng

    2012-01-01

    Three oxidation processes of UV-Fe3+(EDTA)/H2O2 (UV:ultraviolet light; EDTA:ethylenediaminetetraacetic acid),UV-Fe3+/H2O2 and Fe3+/H2O2 were simultaneously investigated for the degradation of amoxicillin at pH 7.0.The results indicated that,100% amoxicillin degradation and 81.9% chemical oxygen demand (CODcr) removal could be achieved in the UV-Fe3+ (EDTA)/H2O2 process.The treatment efficiency of amoxicillin and CODcr removal were found to decrease to 59.0% and 43.0% in the UV-Fe3+/H2O2 process;39.6% and 31.3% in the Fe3+/H2O2 process.Moreover,the results of biodegradability (biological oxygen demand (BOD5)/CODCr ratio) revealed that the UV-Fe3+ (EDTA)/H2O2 process was a promising strategy to degrade amoxicillin as the biodegradability of the effluent was improved to 0.45,compared with the cases of UV-Fe3+/H2O2 (0.25) and Fe3+/H2O2 (0.10) processes.Therefore,it could be deduced that EDTA and UV light performed synergetic catalytic effect on the Fe3+/H2O2 process,enhancing the treatment efficiency.The degradation mechanisms were also investigated via UV-Vis spectra,and high performance liquid chromatography-mass spectra.The degradation pathway of amoxicillin was further proposed.

  2. Investigation of N2O Production from 266 and 532 nm Laser Flash Photolysis of O3/N2/O2 Mixtures

    Science.gov (United States)

    Estupinan, E. G.; Nicovich, J. M.; Li, J.; Cunnold, D. M.; Wine, P. H.

    2002-01-01

    Tunable diode laser absorption spectroscopy has been employed to measure the amount of N2O produced from laser flash photolysis of O3/N2/O2 mixtures at 266 and 532 nm. In the 532 nm photolysis experiments very little N2O is observed, thus allowing an upper limit yield of 7 x 10(exp -8) to be established for the process O3 + N2 yield N2O + O2, where O3 is nascent O3 that is newly formed via O(3P(sub J)) + O2 recombination (with vibrational excitation near the dissociation energy of O3). The measured upper limit yield is a factor of approx. 600 smaller than a previous literature value and is approximately a factor of 10 below the threshold for atmospheric importance. In the 266 nm photolysis experiments, significant N2O production is observed and the N2O quantum yield is found to increase linearly with pressure over the range 100 - 900 Torr in air bath gas. The source of N2O in the 266 nm photolysis experiments is believed to be the addition reaction O(1D(sub 2)) + N2 + M yields (k(sub sigma)) N2O + M, although reaction of (very short-lived) electronically excited O3 with N2 cannot be ruled out by the available data. Assuming that all observed N2O comes from the O(1D(sub 2)) + N2 + M reaction, the following expression describes the temperature dependence of k(sub sigma) (in its third-order low-pressure limit) that is consistent with the N2O yield data: k(sub sigma) = (2.8 +/- 0.1) x 10(exp -36)(T/300)(sup -(0-88+0.36)) cm(sup 6) molecule(sup -2)/s, where the uncertainties are 2(sigma) and represent precision only. The accuracy of the reported rate coefficients at the 95% confidence level is estimated to be 30 - 40% depending on the temperature. Model calculations suggest that gas phase processes initiated by ozone absorption of a UV photon represent about 1.4% of the currently estimated global source strength of atmospheric N2O. However, these processes could account for a significant fraction of the oxygen mass-independent enrichment observed in atmospheric N2O, and

  3. Human milk H2O2 content: does it benefit preterm infants?

    Science.gov (United States)

    Cieslak, Monika; Ferreira, Cristina H F; Shifrin, Yulia; Pan, Jingyi; Belik, Jaques

    2018-03-01

    BackgroundHuman milk has a high content of the antimicrobial compound hydrogen peroxide (H 2 O 2 ). As opposed to healthy full-term infants, preterm neonates are fed previously expressed and stored maternal milk. These practices may favor H 2 O 2 decomposition, thus limiting its potential benefit to preterm infants. The goal of this study was to evaluate the factors responsible for H 2 O 2 generation and degradation in breastmilk.MethodsHuman donors' and rats' milk, along with rat mammary tissue were evaluated. The role of oxytocin and xanthine oxidase on H 2 O 2 generation, its pH-dependent stability, as well as its degradation via lactoperoxidase and catalase was measured in milk.ResultsBreast tissue xanthine oxidase is responsible for the H 2 O 2 generation and its milk content is dependent on oxytocin stimulation. Stability of the human milk H 2 O 2 content is pH-dependent and greatest in the acidic range. Complete H 2 O 2 degradation occurs when human milk is maintained, longer than 10 min, at room temperature and this process is suppressed by lactoperoxidase and catalase inhibition.ConclusionFresh breastmilk H 2 O 2 content is labile and quickly degrades at room temperature. Further investigation on breastmilk handling techniques to preserve its H 2 O 2 content, when gavage-fed to preterm infants is warranted.

  4. Redox and catalytic properties of new polypyrrole modified electrodes functionalized by [Ru(bpea)(bpy)H{sub 2}O]{sup 2+} complexes; bpea=N,N'-bis(2-pyridylmethyl)ethylamine, bpy=2,2'-bipyridine

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Montserrat; Romero, Isabel; Sens, Cristina; Llobet, Antoni; Deronzier, Alain

    2003-04-05

    New ruthenium(II) complexes containing one or two pyrrole-functionalized polypyridylic ligands have been prepared in order to study their electrochemical behaviour in heterogeneous phase, after anodic polymerization from CH{sub 2}Cl{sub 2} solution on an electrode surface. Complexes containing one pyrrole unit have general formula [Ru(bpea-pyr)(bpy)(L)]{sup 2+} (bpea-pyr=N-[3-bis(2-pyridylmethyl)aminopropyl]pyrrole, bpy=2,2'-bipyridine, L=Cl, complex 3, or L=H{sub 2}O, complex 1), whereas compounds having two pyrrole units correspond to [Ru(bpea-pyr)(bpy-pyr)(L)]{sup 2+} (bpy-pyr=4-methyl-4'-pyrrolylbutyl-2,2'-bipyridine, L=Cl, complex 4, or L=H{sub 2}O, complex 2). Upon oxidative polymerization, all complexes form highly stable polypyrrolic films on a graphite disk electrode surface. An electrode modified with complex 2 polypyrrole coating film, C/poly-2, has been tested as heterogeneous catalyst for the oxidation of benzyl alcohol, showing a remarkably high efficiency and notably improving the results obtained with analogous complexes in homogeneous phase.

  5. Vibrational and thermodynamic properties of Ar, N2, O2, H2 and CO adsorbed and condensed into (H,Na)-Y zeolite cages as studied by variable temperature IR spectroscopy.

    Science.gov (United States)

    Gribov, Evgueni N; Cocina, Donato; Spoto, Giuseppe; Bordiga, Silvia; Ricchiardi, Gabriele; Zecchina, Adriano

    2006-03-14

    The adsorption of Ar, H2, O2, N2 and CO on (H,Na)-Y zeolite (Si/Al = 2.9, H+/Na+ approximately 5) has been studied at variable-temperature (90-20 K) and sub-atmospheric pressure (0-40 mbar) by FTIR spectroscopy. Unprecedented filling conditions of the zeolite cavities were attained, which allowed the investigation of very weakly adsorbed species and of condensed, liquid-like or solid-like, phases. Two pressure regimes were singled out, characterized by: (i) specific interaction at low pressure of the probe molecules (P) with the internal Brønsted and Lewis sites, and (ii) multilayer adsorption at higher pressure. In the case of CO the perturbation of the protonic sites located inside the sodalite cages was also observed. As the molecule is too large to penetrate the sodalite cage, the perturbation is thought to involve a proton jump tunneling mechanism. The adsorption energy for the (HF)OH...P (P = Ar, H2, O2, N2 and CO) specific interaction involving the high frequency Brønsted acid sites exposed in the supercages was derived following the VTIR (variable temperature infrared spectroscopy) method described by E. Garrone and C. Otero Areán (Chem. Soc. Rev., 2005, 34, 846).

  6. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    Science.gov (United States)

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  7. (Acetylacetonato-κ2O,O′bis[5-methoxy-2-(naphth[1,2-d][1,3]oxazol-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Yuan-Yuan Zhou

    2011-10-01

    Full Text Available In the title compound, [Ir(C18H12NO22(C5H7O2], the Ir atom is O,O′-chelated by the acetylacetonate group and C,N-chelated by the 2-arylnaphth[1,2-d]oxazole groups. The six-coordinate metal atom displays a distorted octahedral geometry. Intramolecular C—H...O hydrogen bonds occur. In the crystal, intermolecular C—H...O hydrogen bonds link the molecules into columns parallel to the b axis.

  8. Inhibitory Effect of Dissolved Silica on the H2O2 Decomposition by Iron(III) and Manganese(IV) Oxides: Implications for H2O2-based In Situ Chemical Oxidation

    Science.gov (United States)

    Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.

    2011-01-01

    The decomposition of H2O2 on iron minerals can generate •OH, a strong oxidant that can transform a wide range of contaminants. This reaction is critical to In Situ Chemical Oxidation (ISCO) processes used for soil and groundwater remediation, as well as advanced oxidation processes employed in waste treatment systems. The presence of dissolved silica at concentrations comparable to those encountered in natural waters decreases the reactivity of iron minerals toward H2O2, because silica adsorbs onto the surface of iron minerals and alters catalytic sites. At circumneutral pH values, goethite, amorphous iron oxide, hematite, iron-coated sand and montmorillonite that were pre-equilibrated with 0.05 – 1.5 mM SiO2 were significantly less reactive toward H2O2 decomposition than their original counterparts, with the H2O2 loss rates inversely proportional to the SiO2 concentration. In the goethite/H2O2 system, the overall •OH yield, defined as the percentage of decomposed H2O2 producing •OH, was almost halved in the presence of 1.5 mM SiO2. Dissolved SiO2 also slows the H2O2 decomposition on manganese(IV) oxide. The presence of dissolved SiO2 results in greater persistence of H2O2 in groundwater, lower H2O2 utilization efficiency and should be considered in the design of H2O2-based treatment systems. PMID:22129132

  9. A novel layered bimetallic phosphite intercalating with organic amines: Synthesis and characterization of Co(H2O)4Zn4(HPO3)6.C2N2H1

    International Nuclear Information System (INIS)

    Lin Zhien; Fan Wei; Gao Feifei; Chino, Naotaka; Yokoi, Toshiyuki; Okubo, Tatsuya

    2006-01-01

    A new layered cobalt-zinc phosphite, Co(H 2 O) 4 Zn 4 (HPO 3 ) 6 .C 2 N 2 H 1 has been synthesized in the presence of ethylenediamine as the structure-directing agent. The compound crystallizes in the monoclinic system, space group Cc (No. 9), a=18.2090(8), b=9.9264(7), c=15.4080(7) A, β=114.098(4) o , V=2542.3(2) A 3 , Z=4, R=0.0323, wR=0.0846. The structure consists of ZnO 4 tetrahedra, CoO 6 octahedra and HPO 3 pseudopyramids through their vertices forming bimetallic phosphite layers parallel to the ab plane. Organic cations, which reside between the inorganic layers, are mobile and can be exchanged by NH 4 + cations without the collapse of the framework

  10. Activity and Selectivity for O-2 Reduction to H2O2 on Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Verdaguer Casadevall, Arnau; Karamad, Mohammadreza

    2013-01-01

    Industrially viable electrochemical production of H2O2 requires active, selective and stable electrocatalyst materials to catalyse the oxygen reduction reaction to H2O2. On the basis of density functional theory calculations, we explain why single site catalysts such as Pd/Au show improved...

  11. Assessment of cellular responses to oxidative stress using MCF-7 breast cancer cells, black seed (N. Sativa L.) extracts and H2O2.

    Science.gov (United States)

    Farah, Ibrahim O

    2005-12-01

    Black seed (N. Sativa L) is an oriental spice of the family Ranunculaceae that has long been rationally used as a natural medicine for treatment of many acute as well as chronic conditions including cardiovascular disease and immunological disorders. It has been used in the treatment of diabetes, hypertension, and dermatological conditions. There have been very few studies on the effects of N. Sativa as a chemoprevention of chronic diseases as well as in cancer prevention and/or therapy. Oxidative stress is a condition that underlies many acute as well as chronic conditions. The combination and role of oxidative stress and antioxidants in vivo is still a matter of conjecture. Our objective for the present study was to expose MCF-7 breast cancer cells in vitro (as a chronic disease example) to aqueous and alcohol extracts and in combination with H[2]O[2] as an oxidative stressor. Measurement of cell survival under various concentrations and mixtures was conducted using standard cell culture techniques, exposure protocols in 96 well plates and Fluorospectrosphotometry. Following cellular growth to 90% confluencey, exposure to water (WE) and ethanol (AE) extracts of N. sativa and H[2]O[2] was performed. Cell survival indices were calculated from percent survival using regression analysis. Results showed that the alcohol extract and its mixtures were able to influence the survival of MCF-7 cells (indices ranged from 357.15- 809.50 mug/ml in descending potency for H[2]O[2]+AE to the mix of 3). In contrast, H[2]O[2] alone reduced effectively the survival of MCF-7 cells and the least effective combinations in descending potency were AE+H[2]O[2], WE+H[2]O[2], AE+WE, and WE+AE+H[2]O[2]. Mixtures other than AE+H[2]O[2] showed possible interactions and loss of potency. In conclusion, N. Sativa alone or in combination with oxidative stress was found to be effective (in vitro) in influencing the survival of MCF-7 breast cancer cells, unveiling promising opportunities in the

  12. Assessment of Cellular Responses to Oxidative Stress using MCF-7 Breast Cancer Cells, Black Seed (N. Sativa L. Extracts and H2O2

    Directory of Open Access Journals (Sweden)

    Ibrahim O. Farah

    2005-12-01

    Full Text Available Black seed (N. Sativa L is an oriental spice of the family Ranunculaceae that has long been rationally used as a natural medicine for treatment of many acute as well as chronic conditions including cardiovascular disease and immunological disorders. It has been used in the treatment of diabetes, hypertension, and dermatological conditions. There have been very few studies on the effects of N. Sativa as a chemoprevention of chronic diseases as well as in cancer prevention and/or therapy. Oxidative stress is a condition that underlies many acute as well as chronic conditions. The combination and role of oxidative stress and antioxidants in vivo is still a matter of conjecture. Our objective for the present study was to expose MCF-7 breast cancer cells in vitro (as a chronic disease example to aqueous and alcohol extracts and in combination with H2O2 as an oxidative stressor. Measurement of cell survival under various concentrations and mixtures was conducted using standard cell culture techniques, exposure protocols in 96 well plates and Fluorospectrosphotometry. Following cellular growth to 90% confluencey, exposure to water (WE and ethanol (AE extracts of N. sativa and H2O2 was performed. Cell survival indices were calculated from percent survival using regression analysis. Results showed that the alcohol extract and its mixtures were able to influence the survival of MCF-7 cells (indices ranged from 357.15- 809.50 Bg/ml in descending potency for H2O2+AE to the mix of 3. In contrast, H2O2 alone reduced effectively the survival of MCF-7 cells and the least effective combinations in descending potency were AE+H2O2, WE+H2O2, AE+WE, and WE+AE+H2O2. Mixtures other than AE+H2O2 showed possible interactions and loss of potency. In conclusion, N. Sativa alone or in combination with oxidative stress was found to be effective (in vitro in influencing the survival of MCF-7 breast cancer cells, unveiling promising opportunities in the field of cancer

  13. Activation of sp3-CH Bonds in a Mono(pentamethylcyclopentadienyl)yttrium Complex. X-ray Crystal Structures and Dynamic Behavior of Cp*Y(o-C6H4CH2NMe2)2 and Cp*Y[o-C6H4CH2NMe(CH2-μ)][μ-o-C6H4CH2NMe(CH2-μ)]YCp*[THF

    NARCIS (Netherlands)

    Booij, Martin; Kiers, Niklaas H.; Meetsma, Auke; Teuben, Jan H.; Smeets, Wilberth J.J.; Spek, Anthony L.

    1989-01-01

    Reaction of Y(o-C6H4CH2NMe2)3 (1) with Cp*H gives Cp*Y(o-C6H4CH2NMe2)2 (2), which crystallizes in the monoclinic space group P21/n (No. 14) with a = 18.607 (4) Å, b = 15.633 (3) Å, c = 8.861 (3) Å, β = 102.73 (3)°, and Z = 4. Least-squares refinement with 3006 independent reflections (F > 4.0σ(F))

  14. Thermodynamic modeling of NH_3-CO_2-SO_2-K_2SO_4-H_2O system for combined CO_2 and SO_2 capture using aqueous NH_3

    International Nuclear Information System (INIS)

    Qi, Guojie; Wang, Shujuan

    2017-01-01

    Highlights: • A new application of aqueous NH_3 based combined CO_2 and SO_2 process was proposed. • A thermodynamic model simulated the heat of absorption and the K_2SO_4 precipitation. • The CO_2 content can be regenerated in a stripper with lower heat of desorption. • The SO_2 content can be removed by K_2SO_4 precipitation from the lean NH_3 solvent. - Abstract: A new application of aqueous NH_3 based post-combustion CO_2 and SO_2 combined capture process was proposed to simultaneously capture CO_2 and SO_2, and remove sulfite by solid (K_2SO_4) precipitation method. The thermodynamic model of the NH_3-CO_2-SO_2-K_2SO_4-H_2O system for the combined CO_2 and SO_2 capture process was developed and validated in this work to analyze the heat of CO_2 and SO_2 absorption in the NH_3-CO_2-SO_2-H_2O system, and the K_2SO_4 precipitation characteristics in the NH_3-CO_2-SO_2-K_2SO_4-H_2O system. The average heat of CO_2 absorption in the NH_3-CO_2-H_2O system at 40 °C is around −73 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N. The average heat of SO_2 absorption in the NH_3-SO_2-H_2O system at 40 °C is around −120 kJ/mol SO_2 in 2.5 wt% NH_3 with SO_2 loading between 0 and 0.5 S/N. The average heat of CO_2 absorption in the NH_3-CO_2-SO_2-H_2O system at 40 °C is 77, 68, and 58 kJ/mol CO_2 in 2.5 wt% NH_3 with CO_2 loading between 0.2 and 0.5 C/N, when SO_2 loading is 0, 0.1, 0.2 S/N, respectively. The solubility of K_2SO_4 increases with temperature, CO_2 and SO_2 loadings, but decreases with NH_3 concentration in the CO_2 and SO_2 loaded aqueous NH_3. The thermodynamic evaluation indicates that the combined CO_2 and SO_2 capture process could employ the typical absorption/regeneration process to simultaneously capture CO_2 and SO_2 in an absorber, thermally desorb CO_2 in a stripper, and feasibly remove sulfite (oxidized to sulfate) content by precipitating K_2SO_4 from the lean NH_3 solvent after the lean/rich heat exchanger.

  15. Estudo de oxidação avançada de corantes básicos via reação Fenton (Fe2+/H2O2

    Directory of Open Access Journals (Sweden)

    Thiago Romário Soares Paulino

    2015-09-01

    Full Text Available RESUMOO processo de oxidação avançada do tipo reação Fenton (Fe2+/H2O2 foi estudado neste trabalho para descoloração de dois efluentes sintéticos, contendo os corantes Azul de Metileno (AM e Rodamina B (RB. Experimentalmente, soluções em concentração de 10 mg L-1 dos corantes foram submetidas a diferentes dosagens de agente oxidante (H2O2 e catalisador (Fe2+ em uma temperatura de 27 °C e pH 3. Os resultados obtidos apresentaram altos níveis de remoção de cor, com eficiência da ordem de 96% para o AM e 86% no RB. Os dados mostraram bom ajuste ao modelo cinético. O monitoramento do espectro de absorção dos corantes mostrou uma diminuição da amplitude dos picos relacionados aos grupos cromóforos em ambos compostos, corroborando com os níveis de eficiência alcançados. A análise de remoção de matéria orgânica em termos de Demanda Química de Oxigênio (DQO não acompanhou a mesma taxa de decréscimo de descoloração, obtendo-se reduções de 40,9% para o AM e 25,5% para o RB.

  16. Hydrothermal synthesis and characterization of the praseodymium borate-nitrate Pr[B{sub 5}O{sub 8}(OH)(H{sub 2}O){sub 0.87}]NO{sub 3}.2H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Ortner, Teresa S.; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2017-10-01

    The praseodymium borate-nitrate Pr[B{sub 5}O{sub 8}(OH)(H{sub 2}O){sub 0.87}]NO{sub 3}.2H{sub 2}O was obtained in a hydrothermal synthesis. It crystallizes monoclinically in the space group P2{sub 1}/n (no. 14) with four formula units (Z=4) and unit cell parameters of a=641.9(3), b=1551.8(7), c=1068.4(5) pm, with β=90.54(2) yielding V=1.0643(8) nm{sup 3}. The defect variant constitutes the missing member in the series of isostructural, early rare earth borate-nitrates of the composition RE[B{sub 5}O{sub 8}(OH)(H{sub 2}O){sub x}]NO{sub 3}.2H{sub 2}O [RE=La (x=0; 1), Ce (x=1), Nd (x=0.85), Sm (x=0)]. In addition to powder and single-crystal X-ray diffraction data, the novel borate-nitrate was characterized through IR and Raman spectroscopy.

  17. Magnetocaloric effect in gadolinium-oxalate framework Gd2(C2O4)3(H2O)6⋅(0⋅6H2O)

    International Nuclear Information System (INIS)

    Sibille, Romain; Didelot, Emilie; Mazet, Thomas; Malaman, Bernard; François, Michel

    2014-01-01

    Magnetic refrigerants incorporating Gd 3+ ions and light organic ligands offer a good balance between isolation of the magnetic centers and their density. We synthesized the framework material Gd 2 (C 2 O 4 ) 3 (H 2 O) 6 ⋅0.6H 2 O by a hydrothermal route and characterized its structure. The honeycomb lattice of Gd 3+ ions interlinked by oxalate ligands in the (a,c) plane ensures their decoupling in terms of magnetic exchange interactions. This is corroborated by magnetic measurements indicating negligible interactions between the Gd 3+ ions in this material. The magnetocaloric effect was evaluated from isothermal magnetization measurements. The maximum entropy change −ΔS M max reaches 75.9 mJ cm −3 K −1 (around 2 K) for a moderate field change (2 T)

  18. Mesospheric H2O Concentrations Retrieved from SABER/TIMED Measurements

    Science.gov (United States)

    Feofilov, A. G.; Marshall, B. T.; Garcia-Comas, M.; Kutepov, A. A.; Lopez-Puertas, M.; Manuilova, R. O.; Yankovsky, V.A.; Goldberg, R. A.; Gordley, L. L.; Petelin, S.; hide

    2008-01-01

    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed.

  19. Nitration of benzene with N{sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Kikuo; Yoshizawa, FUjiroku; Akutsu, Yoshiaki; Arai, Mitsuru; Tamura, Masamitsu [The University of Tokyo, Tokyo (Japan). School of Engineering

    1999-08-31

    In order to clarify the mechanism of aromatic nitration with N{sub 2}O{sub 5}, the nitrations of benzene and of nitrobenzene with N{sub 2}O{sub 5} were carried out and the yield of the products and the isomer distribution of dinitrobenzenes were investigated. As a result, the isomer distribution of the dinitrobenzenes in the nitration of benzene was quite different from that in the nitration of nitrobenzene. Moreover, the ratio of [dinitrobenzenes]/[nitrobenzene] increased with the reaction temperature. The nitration of benzene with N{sub 2}O{sub 5}/N{sub 2}O{sub 4} was also carried out and showed the dependence of the ratio of [dinitrobenzenes]/[nitrobenzene] on the ratio of N{sub 2}O{sub 4}. As a result, it is suggested that N{sub 2}O{sub 5} should be dissociated homolytically in CCl{sub 4}, that the aromatic nitration with N{sub 2}O{sub 5} over 25 degree C should produce a large amount of N{sub 2}O{sub 4}(2NO{sub 2}) and the attack of NO{sub 2} on the intermediate [Ar(H)(ONO{sub 2})] should form the intermediates [Ar(H)(ONO{sub 2})(H)(NO{sub 2})] following the production of a large amount of dinitrobenzenes. (author)

  20. Experimental studies on cycling stable characteristics of inorganic phase change material CaCl2·6H2O-MgCl2·6H2O modified with SrCl2·6H2O and CMC

    Science.gov (United States)

    He, Meizhi; Yang, Luwei; Zhang, Zhentao

    2018-01-01

    By means of mass ratio method, binary eutectic hydrated salts inorganic phase change thermal energy storage system CaCl2·6H2O-20wt% MgCl2·6H2O was prepared, and through adding nucleating agent 1wt% SrCl2·6H2O and thickening agent 0.5wt% carboxy methyl cellulose (CMC), inoganic phase change material (PCM) modified was obtained. With recording cooling-melting curves simultaneously, this PCM was frozen and melted for 100 cycles under programmable temperature control. After per 10 cycles, the PCM was charaterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD) and density meter, then analysing variation characteristics of phase change temperature, supercooling degree, superheat degree, latent heat, crystal structure and density with the increase of cycle index. The results showed that the average values of average phase change temperature for cooling and heating process were 25.70°C and 27.39°C respectively with small changes. The average values of average supercooling and superheat degree were 0.59°C and 0.49°C respectively, and the maximum value was 1.10°C. The average value and standard deviation of latent heat of fusion were 120.62 J/g and 1.90 J/g respectively. Non-molten white solid sediments resulted from phase separation were tachyhydrite (CaMg2Cl6·12H2O), which was characterized by XRD. Measuring density of the PCM after per 10 cycles, and the results suggested that the total mass of tachyhydrite was limited. In summary, such modified inoganic PCM CaCl2·6H2O-20wt% MgCl2·6H2O-1wt% SrCl2·6H2O-0.5wt% CMC could stay excellent circulation stability within 100 cycles, and providing reference value in practical use.

  1. The H2O/D2O exchange across vesicular lipid bilayers

    International Nuclear Information System (INIS)

    Engelbert, H.P.; Lawaczek, R.

    1985-01-01

    A new method to measure the water (D 2 O/H 2 O) permeation across vesicular lipid bilayers is described. The method is based on the solvent isotope effect of the light scattering which is a consequence of the different indices of refraction of D 2 O and H 2 O. Unilamellar lipid vesicles in excess of H 2 O are rapidly mixed with D 2 O or vice versa. As result of the H 2 O/D 2 O exchange across the vesicular bilayer the light scattering signal has a time dependent, almost single exponential component allowing the deduction of the exchange relaxation rate and, at known size, of the permeability coefficient. The experimental results are in accord with calculations from the Mie theory of light scattering for coated spheres. The method is applicable for large vesicles where the permeation is the rate-limiting step. Size separations are performed by a flow dialysis through a sequence of pore-membrane-filters. For dimyristoyl-lecithin bilayers the water permeability-coefficient is 1.9 . 10 -5 cm/s in the crystalline phase and increases by a factor of 10-100 in the liquid-crystalline state. The temperature dependence of the permeation exhibits a sharp change at the phase transition. For binary mixtures of lecithins this sharp change follows the solidus curve of the non-ideal phase diagram determined by spectroscopic techniques. (orig.)

  2. Ni2Sr(PO42·2H2O

    Directory of Open Access Journals (Sweden)

    Lahcen El Ammari

    2010-12-01

    Full Text Available The title compound, dinickel(II strontium bis[orthophosphate(V] dihydrate, was obtained under hydrothermal conditions. The crystal structure consists of linear chains ∞1[NiO2/2(OH22/2O2/1] of edge-sharing NiO6 octahedra (overline{1} symmetry running parallel to [010]. Adjacent chains are linked to each other through PO4 tetrahedra (m symmetry and arranged in such a way to build layers parallel to (001. The three-dimensional framework is accomplished by stacking of adjacent layers that are held together by SrO8 polyhedra (2/m symmetry. Two types of O—H...O hydrogen bonds involving the water molecule are present, viz. one very strong hydrogen bond perpendicular to the layers and weak trifurcated hydrogen bonds parallel to the layers.

  3. Stability of globular proteins in H2O and in D2O

    NARCIS (Netherlands)

    Efimova, Y.M.; Haemers, S.; Wierczinsky, B.; Norde, W.; Well, van A.A.

    2007-01-01

    In several experimental techniques D2O rather then H2O is often used as a solvent for proteins. Concerning the influence of the solvent on the stability of the proteins, contradicting results have been reported in literature. In this paper the influence of H2O-D2O solvent substitution on the

  4. (Dimethylformamide-κO(2-hydroxybenzoato-κ2O1,O1′[tris(1-methyl-1H-benzimidazol-2-ylmethyl-κN3amine-κN]manganese(II perchlorate dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Baoliang Qi

    2010-10-01

    Full Text Available In the title complex, [Mn(C7H5O3(C27H27N7(C3H7NO]ClO4·C3H7NO, the MnII ion is coordinated in a slightly distorted monocapped trigonal-prismatic geometry. The tris(1-methyl-1H-benzimidazol-2-ylmethylamine (Mentb ligand coordinates in a tetradentate mode and the coordination is completed by a bis-chelating salicylate ligand and a dimethylformamide ligand. The hydroxy group and the ortho H atoms of the salicylate ligand were refined as disordered over two sites with occupancies of 0.581 (8 and 0.419 (8. Both disorder components of the hydroxy group form intramolecular O—H...O hydrogen bonds.

  5. Diaqua{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolato-κ2O,N,N′,O′}manganese(III perchlorate 18-crown-6 hemisolvate monohydrate

    Directory of Open Access Journals (Sweden)

    Ming-Ming Yu

    2009-02-01

    Full Text Available In the cation of the title compound, [Mn(C18H18N2O4(H2O2]ClO4·0.5C12H24OH2O, the MnIII ion is coordinated by two water O atoms, and two O atoms and two N atoms from the tetradentate 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolate ligand, completing a distorted octahedral geometry. One O atom of the 18-crown-6-ether is disordered over two positions with occupancies of 0.70 (2 and 0.30 (2.

  6. SIMULTANEOUS OBSERVATIONS OF SiO AND H{sub 2}O MASERS TOWARD KNOWN STELLAR H{sub 2}O MASER SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeheon [Yonsei University Observatory, Seongsan-ro 262, Seodaemun, Seoul 120-749 (Korea, Republic of); Cho, Se-Hyung [Korean VLBI Network Yonsei Radio Astronomy Observatory, Yonsei University, Seongsan-ro 262, Seodaemun, Seoul 120-749 (Korea, Republic of); Kim, Sang Joon, E-mail: jhkim@kasi.re.kr, E-mail: cho@kasi.re.kr, E-mail: sjkim1@khu.ac.kr [Department of Astronomy and Space Science, Kyung Hee University, Seocheon-Dong, Giheung-Gu, Yongin, Gyeonggi-Do 446-701 (Korea, Republic of)

    2013-01-01

    We present the results of simultaneous observations of SiO v = 1, 2, {sup 29}SiO v = 0, J = 1-0, and H{sub 2}O 6{sub 16}-5{sub 23} maser lines toward 152 known stellar H{sub 2}O maser sources using the Yonsei 21 m radio telescope of the Korean VLBI Network from 2009 June to 2011 January. Both SiO and H{sub 2}O masers were detected from 62 sources with a detection rate of 40.8%. The SiO-only maser emission without H{sub 2}O maser detection was detected from 27 sources, while the H{sub 2}O-only maser without SiO maser detection was detected from 22 sources. Therefore, the overall SiO maser emission was detected from 89 sources, resulting in a detection rate of 58.6%. We have identified 70 new detections of the SiO maser emission. For both H{sub 2}O and SiO maser detected sources, the peak and integrated antenna temperatures of SiO masers are stronger than those of H{sub 2}O masers in both Mira variables and OH/IR stars and the relative intensity ratios of H{sub 2}O to SiO masers in OH/IR stars are larger than those in Mira variables. In addition, distributions of 152 observed sources were investigated in the IRAS two-color diagram.

  7. Characterization of remote O2-plasma-enhanced CVD SiO2/GaN(0001) structure using photoemission measurements

    Science.gov (United States)

    Truyen, Nguyen Xuan; Ohta, Akio; Makihara, Katsunori; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2018-01-01

    The control of chemical composition and bonding features at a SiO2/GaN interface is a key to realizing high-performance GaN power devices. In this study, an ∼5.2-nm-thick SiO2 film has been deposited on an epitaxial GaN(0001) surface by remote O2-plasma-enhanced chemical vapor deposition (O2-RPCVD) using SiH4 and Ar/O2 mixture gases at a substrate temperature of 500 °C. The depth profile of chemical structures and electronic defects of the O2-RPCVD SiO2/GaN structures has been evaluated from a combination of SiO2 thinning examined by X-ray photoelectron spectroscopy (XPS) and the total photoelectron yield spectroscopy (PYS) measurements. As a highlight, we found that O2-RPCVD is effective for fabricating an abrupt SiO2/GaN interface.

  8. Synthesis and crystal structure of a new neodymium(III) selenate-selenite: Nd2(SeO4)(SeO3)2(H2O)2

    International Nuclear Information System (INIS)

    Feng Meiling; Mao Jianggao

    2005-01-01

    The title new neodymium(III) selenate-selenite was obtained by hydrothermal reactions of neodymium(III) oxide, H 2 SeO 4 and 1,10-phenanthroline at 140 o C. Its structure was established by single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space group C2/c with cell parameters of a = 12.258(2) A, b 7.1024(15) A, c = 13.391(3) A, β = 104.250(2) o . The structure of Nd 2 (SeO 4 )(SeO 3 ) 2 (H 2 O) 2 is isomorphous with that of Er 2 (SeO 4 )(SeO 3 ) 2 (H 2 O) 2 , which was refined in the monoclinic space group C2 with the disordered selenate group. It features an ordered 3D network with channels along b-axis. The selenate or selenite groups alone can form a 2D layer with the Nd(III) ions. IR spectrum, TGA and luminescent studies have also been performed

  9. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules

    Science.gov (United States)

    Buchen, Caroline; Well, Reinhard; Flessa, Heinz; Fuß, Roland; Helfrich, Mirjam; Lewicka-Szczebak, Dominika

    2017-04-01

    . Investigations were carried out over a study period of one year following grassland renewal and grassland conversion to maize cropping on two different soil sites (Plaggic Anthrosol and Histic Gleysol) near Oldenburg, Lower Saxony Germany. Our observations indicate heterotrophic bacterial denitrification and/or nitrifier denitrification as the main source of N2O production, with a significant contribution of N2O reduction to N2 rather than nitrification (i.e. hydroxylamine oxidation) and fungal denitrification throughout the entire study period. A tendency to a higher contribution of N2O reduction to N2 was observed for the often water-saturated Histic Gleysol, while lower N2O reduction was found for the Plaggic Anthrosol. For two samples, we attempt to validate our results from the isotopocule mapping approach with a parallel 15N labelling study at the field scale (Buchen et al., 2016), as conditions of soil moisture, nitrate availability and N2O flux were similar. References: Buchen, C., Lewicka-Szczebak, D., Fuß, R., Helfrich, M., Flessa, H., Well, R., 2016. Fluxes of N2 and N2O and contributing processes in summer after grassland renewal and grassland conversion to maize cropping on a Plaggic Anthrosol and a Histic Gleysol. Soil Biology and Biochemistry 101, 6-19.

  10. Field induced 4f5d [Re(salen)]2O3[Dy(hfac)3(H2O)]2 single molecule magnet.

    Science.gov (United States)

    Pointillart, Fabrice; Bernot, K; Sessoli, R; Gatteschi, D

    2010-05-03

    The reaction between the mononuclear [ReO(salen)(OMe)] (salen(2-) = N,N'-ethan-1,2-diylbis(salicylidenamine) dianion) and Dy(hfac)(3).2H(2)O (hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate anion) complexes lead to the formation of a compound with the formula {[Re(salen)](2)O(3)[Dy(hfac)(3)(H(2)O)](2)}(CHCl(3))(2)(CH(2)Cl(2))(2) noted (Dy(2)Re(2)). This compound has been characterized by single crystal and powder X-ray diffraction and has been found isostructural to the Y(III) derivative (Y(2)Re(2)) that we previously reported. The cyclic voltammetry demonstrates the redox activity of the system. The characterization of both static and dynamic magnetic properties is reported. Static magnetic data has been analyzed after the cancellation of the crystal field contribution by two different methods. Weak ferromagnetic exchange interactions between the Dy(III) ions are highlighted. The compound Dy(2)Re(2) displays slow relaxation of the magnetization when an external magnetic field is applied. Alternating current susceptibility shows a thermally activated behavior with pre-exponential factors of 7.13 (+/-0.10) x 10(-6) and 5.76 (+/-0.27) x 10(-7) s, and energy barriers of 4.19 (+/-0.02) and 8.52 (+/-0.55) K respectively for low and high temperature regimes.

  11. Solar kerosene from H2O and CO2

    Science.gov (United States)

    Furler, P.; Marxer, D.; Scheffe, J.; Reinalda, D.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A.

    2017-06-01

    The entire production chain for renewable kerosene obtained directly from sunlight, H2O, and CO2 is experimentally demonstrated. The key component of the production process is a high-temperature solar reactor containing a reticulated porous ceramic (RPC) structure made of ceria, which enables the splitting of H2O and CO2 via a 2-step thermochemical redox cycle. In the 1st reduction step, ceria is endo-thermally reduced using concentrated solar radiation as the energy source of process heat. In the 2nd oxidation step, nonstoichiometric ceria reacts with H2O and CO2 to form H2 and CO - syngas - which is finally converted into kerosene by the Fischer-Tropsch process. The RPC featured dual-scale porosity for enhanced heat and mass transfer: mm-size pores for volumetric radiation absorption during the reduction step and μm-size pores within its struts for fast kinetics during the oxidation step. We report on the engineering design of the solar reactor and the experimental demonstration of over 290 consecutive redox cycles for producing high-quality syngas suitable for the processing of liquid hydrocarbon fuels.

  12. Calculation of intermolecular potentials for H2H2 and H2O2 dimers ab initio and prediction of second virial coefficients

    International Nuclear Information System (INIS)

    Pham Van, Tat; Deiters, Ulrich K.

    2015-01-01

    Highlights: • We construct the angular orientations of dimers H 2H 2 and H 2O 2 . • We calculate the ab initio intermolecular interaction energies for all built orientations. • Extrapolating the interaction energies to the complete basis set limit aug-cc-pV23Z. • We develop two 5-site ab initio intermolecular potentials of dimers H 2H 2 , H 2O 2 . • Calculating the virial coefficients of dimer H 2H 2 and H 2O 2 . - Abstract: The intermolecular interaction potentials of the dimers H 2H 2 and H 2O 2 were calculated from quantum mechanics, using coupled-cluster theory CCSD(T) and correlation-consistent basis sets aug-cc-pVmZ (m = 2, 3); the results were extrapolated to the basis set limit aug-cc-pV23Z. The interaction energies were corrected for the basis set superposition error with the counterpoise scheme. For comparison also Møller–Plesset perturbation theory (at levels 2–4) with the basis sets aug-cc-pVTZ were considered, but the results proved inferior. The quantum mechanical results were used to construct analytical pair potential functions. From these functions the second virial coefficients of hydrogen and the cross virial coefficients of the hydrogen–oxygen system were obtained by integration; in both cases corrections for quantum effects were included. The results agree well with experimental data, if available, or with empirical correlations

  13. Aquachlorido{6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethanylylidene]diphenolato-κ2O1,N,N′,O1′}cobalt(III dimethylformamide monosolvate

    Directory of Open Access Journals (Sweden)

    Yun Wei

    2012-04-01

    Full Text Available In the title compound, [Co(C18H18N2O4Cl(H2O]·C3H7NO, the CoIII ion is six-coordinated by a tetradentate 6,6′-dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethanylylidene]diphenolate ligand, with a chloride ion and an aqua ligand in the apical positions. The compound crystallized as a dimethylformamide (DMF monosolvate. In the crystal, complex molecules are linked via O—Hwater...O hydrogen bonds to form a dimer-like arrangement. These dimers are linked via a C—H...Cl interaction, and the DMF molecule is linked to the complex molecule by C—H...O interactions.

  14. The influence of solar ultraviolet radiation on the photochemical production of H2O2 in the equatorial Atlantic Ocean

    NARCIS (Netherlands)

    Gerringa, LJA; Rijkenberg, MJA; Timmermans, KR; Buma, AGJ

    Hydrogen peroxide (H2O2) was measured in marine surface waters of the eastern Atlantic Ocean between 25degreesN and 25degreesS. H2O2 concentrations decreased from 80 nM in the north to 20 nM in the south, in agreement with earlier observations. A diel cycle of H2O2 production as a function of

  15. Double molybdates in Li2MoO4 - Na2MoO4 - H2O system at 25 grad C

    International Nuclear Information System (INIS)

    Karov, Z.G.; Mirzoev, R.S.; Makitova, D.D.; Zhilova, S.B.; Podnek, A.G.; Urusova, R.Kh.

    1989-01-01

    Solubility in Li 2 MoO 4 - Na 2 MoO 4 - H 2 O system at 25 deg C is first stuied. Formation of two Li 2 MoO 4 · Na 2 MoO 4 · 4H 2 O and Li 2 MoO 4 · 3Na 2 MoO 4 · 12H 2 O compounds in a system is ascertained. Density, refractive index, viscosity, surface tension, electric conductivity and pH of saturated solutions are determined. Isothermes of mole volume, equivalent and reduced electric conductivity and seeming mole volume of salts sum in solutions are calculated. All these properties adequtely confirm the character of components interaction in a system determined by solubility method. Crystallhydrates of binary molybdates are separated, indentified and studied

  16. μ-Acetato-κ2O:O′-[7,23-dibenzyl-15,31-dichloro-3,7,11,19,23,27-hexaazatricyclo[27.3.1.113,17]tetratriconta-1(32,2,11,13,15,17(34,18,27,29(33,30-decaene-33,34-diolato-κ10N4,N5,N6,O1,O2:N1,N2,N3,O1,O2]dinickel(II perchlorate acetonitrile disolvate

    Directory of Open Access Journals (Sweden)

    Juan Kong

    2008-01-01

    Full Text Available The title complex, [Ni2(C42H46Cl2N6O2(C2H3O2]ClO2CH3CN, was synthesized by condensation of 2,6-diformyl-4-chlorophenol with N,N-bis(aminopropylbenzylamine in the presence of NiII ions. The ligand is a 28-membered macrocycle with two identical pendant arms. The coordination geometries of the Ni atoms are both octahedral. The two Ni atoms are bridged by two phenolate O atoms of the macrocyclic ligand and one acetate ligand, with an Ni...Ni distance of 3.147 (4 Å.

  17. Production of 34S-labeled gypsum (Ca34SO4.2H2O Produção de gesso (Ca34SO4.2H2O, marcado com 34S

    Directory of Open Access Journals (Sweden)

    Alexssandra Luiza Rodrigues Molina Rossete

    2006-08-01

    Full Text Available Agricultural gypsum (CaSO4.2H2O stands out as an effective source of calcium and sulfur, and to control aluminum saturation in the soil. Labeled as 34S it can elucidate important aspects of the sulfur cycle. Ca34SO4.2H2O was obtained by chemical reaction between Ca(OH2 and H2(34SO4, performed under slow agitation. The acid was produced by ion exchange chromatography using the Dowex 50WX8 cation exchange resin and a Na2(34SO4 eluting solution. After precipitation, the precipitate was separated and dried in a ventilated oven at 60ºC. From 2.2 L H2SO4 0.2 mol L-1 and 33.6 g Ca(OH2, 73.7 ± 0.6 g Ca34SO4.2H2O were produced on average in the tests, representing a mean yield of 94.6 ± 0.8%, with 98% purity. The 34SO2 gas was obtained from Ca34SO4.2H2O in the presence of NaPO3 in a high vacuum line and was used for the isotopic determination of S in an ATLAS-MAT model CH-4 mass spectrometer.O gesso agrícola (CaSO4.2H2O destaca-se como fonte eficiente de cálcio e enxofre e na redução da saturação de alumínio no solo. O 34S como traçador isotópico pode elucidar aspectos importantes no ciclo do enxofre. Para tanto o Ca34SO4.2H2O foi obtido por reação química entre o Ca(OH2 e solução de H2(34SO4, realizada sob agitação lenta. O ácido foi produzido por cromatografia de troca iônica, utilizando resina catiônica Dowex 50WX8 e solução eluente de Na2(34SO4. Após a precipitação foi separado o precipitado e realizada a secagem em estufa ventilada à temperatura de 60ºC. Nos testes, a partir de 2,2 L de H2SO4 0,2 mol L-1 e 33,6 g de Ca(OH2, foram produzidos em média 73,7 ± 0,6 g de Ca34SO4.2H2O representando um rendimento médio de 94,6 ± 0,8%, com pureza de 98%. A partir do Ca34SO4.2H2O na presença de NaPO3, em linha de alto vácuo, obteve-se o gás 34SO2 utilizado para a determinação isotópica do S no espectrômetro de massas ATLAS-MAT modelo CH-4.

  18. Binding water to a PEG-linked flexible bichromophore: IR spectra of diphenoxyethane-(H{sub 2}O){sub n} clusters, n = 2-4

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Patrick S.; Buchanan, Evan G.; Gord, Joseph R.; Zwier, Timothy S., E-mail: zwier@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084 (United States)

    2015-04-21

    The single-conformation infrared (IR) and ultraviolet (UV) spectroscopies of neutral 1,2-diphenoxyethane-(H{sub 2}O){sub n} clusters with n = 2-4 (labeled henceforth as 1:n) have been studied in a molecular beam using a combination of resonant two-photon ionization, IR-UV holeburning, and resonant ion-dip infrared (RIDIR) spectroscopies. Ground state RIDIR spectra in the OH and CH stretch regions were used to provide firm assignments for the structures of the clusters by comparing the experimental spectra with the predictions of calculations carried out at the density functional M05-2X/6-31+G(d) level of theory. At all sizes in this range, the water molecules form water clusters in which all water molecules engage in a single H-bonded network. Selective binding to the tgt monomer conformer of 1,2-diphenoxyethane (C{sub 6}H{sub 5}-O-CH{sub 2}-CH{sub 2}-O-C{sub 6}H{sub 5}, DPOE) occurs, since this conformer provides a binding pocket in which the two ether oxygens and two phenyl ring π clouds can be involved in stabilizing the water cluster. The 1:2 cluster incorporates a water dimer “chain” bound to DPOE much as it is in the 1:1 complex [E. G. Buchanan et al., J. Phys. Chem. Lett. 4, 1644 (2013)], with primary attachment via a double-donor water that bridges the ether oxygen of one phenoxy group and the π cloud of the other. Two conformers of the 1:3 cluster are observed and characterized, one that extends the water chain to a third molecule (1:3 chain) and the other incorporating a water trimer cycle (1:3 cycle). A cyclic water structure is also observed for the 1:4 cluster. These structural characterizations provide a necessary foundation for studies of the perturbations imposed on the two close-lying S{sub 1}/S{sub 2} excited states of DPOE considered in the adjoining paper [P. S. Walsh et al., J. Chem. Phys. 142, 154304 (2015)].

  19. Nitration of toluene with N[sub 2]O[sub 5

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Kikuo.; Yoshizawa, Fujiroku.; Akutsu, Yoshiaki.; Arai, Mitsuru.; Tamura, Masamitsu. (The University of Tokyo, Tokyo (Japan). School of Engineering)

    1999-06-30

    In order to clarify the mechanism of aromatic nitration with N[sub 2]O[sub 5], the nitration of toluene with N[sub 2]O[sub 5] in CCl[sub 4] was carried out and was investigated the yields of the products and the isomer distributions. As a result, the reaction should be very rapid and should involve a typical electrophilic substitution. Moreover, in order to investigate the effect of the solvent, the nitration of toluene with N[sub 2]O[sub 5] powder without CCl[sub 4] was also carried out. The nitration of toluene with N[sub 2]O[sub 5]/N[sub 2]O[sub 4] was also carried out, and the dependence of the isomer distribution and the ratio of produced nitrotoluenes on the ratio of N[sub 2]O[sub 5] was showed. As a result, it is suggested that N[sub 2]O[sub 5] should be dissociated homolytically in CCl[sub 4] and that the aromatic nitration with N[sub 2]O[sub 5] in CCl[sub 4] should proceed with NO[sub 3] as the initial attacking species. The thermal decomposition of N[sub 2]O[sub 5] over 25 degree C should produce a large amount of N[sub 2]O[sub 4](2NO[sub 2]), and the attack of NO[sub 2] on the intermediate [Ar(H)(ONO[sub 2])] should form the intermediates [AR(H)(ONO[sub 2])(H)(NO[sub 2])] following the specific isomer distributions. (author)

  20. Nitration of toluene with N{sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Kikuo.; Yoshizawa, Fujiroku.; Akutsu, Yoshiaki.; Arai, Mitsuru.; Tamura, Masamitsu. [The University of Tokyo, Tokyo (Japan). School of Engineering

    1999-06-30

    In order to clarify the mechanism of aromatic nitration with N{sub 2}O{sub 5}, the nitration of toluene with N{sub 2}O{sub 5} in CCl{sub 4} was carried out and was investigated the yields of the products and the isomer distributions. As a result, the reaction should be very rapid and should involve a typical electrophilic substitution. Moreover, in order to investigate the effect of the solvent, the nitration of toluene with N{sub 2}O{sub 5} powder without CCl{sub 4} was also carried out. The nitration of toluene with N{sub 2}O{sub 5}/N{sub 2}O{sub 4} was also carried out, and the dependence of the isomer distribution and the ratio of produced nitrotoluenes on the ratio of N{sub 2}O{sub 5} was showed. As a result, it is suggested that N{sub 2}O{sub 5} should be dissociated homolytically in CCl{sub 4} and that the aromatic nitration with N{sub 2}O{sub 5} in CCl{sub 4} should proceed with NO{sub 3} as the initial attacking species. The thermal decomposition of N{sub 2}O{sub 5} over 25 degree C should produce a large amount of N{sub 2}O{sub 4}(2NO{sub 2}), and the attack of NO{sub 2} on the intermediate [Ar(H)(ONO{sub 2})] should form the intermediates [AR(H)(ONO{sub 2})(H)(NO{sub 2})] following the specific isomer distributions. (author)

  1. Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-fenton degradation of rhodamine B.

    Science.gov (United States)

    Yuan, Songhu; Fan, Ye; Zhang, Yucheng; Tong, Man; Liao, Peng

    2011-10-01

    A novel electro-Fenton process was developed for wastewater treatment using a modified divided electrolytic system in which H2O2 was generated in situ from electro-generated H2 and O2 in the presence of Pd/C catalyst. Appropriate pH conditions were obtained by the excessive H+ produced at the anode. The performance of the novel process was assessed by Rhodamine B (RhB) degradation in an aqueous solution. Experimental results showed that the accumulation of H2O2 occurred when the pH decreased and time elapsed. The maximum concentration of H2O2 reached 53.1 mg/L within 120 min at pH 2 and a current of 100 mA. Upon the formation of the Fenton reagent by the addition of Fe2+, RhB degraded completely within 30 min at pH 2 with a pseudo first order rate constant of 0.109 ± 0.009 min(-1). An insignificant decline in H2O2 generation and RhB degradation was found after six repetitions. RhB degradation was achieved by the chemisorption of H2O2 on the Pd/C surface, which subsequently decomposed into •OH upon catalysis by Pd0 and Fe2+. The catalytic decomposition of H2O2 to •OH by Fe2+ was more powerful than that by Pd0, which was responsible for the high efficiency of this novel electro-Fenton process.

  2. Hexa-μ-acetato-1:2κ4O,O′;1:2κ2O:O;2:3κ4O,O′;2:3κ2O:O-bis(4,4′-dimethyl-2,2′-bipyridine-1κ2N,N′;3κ2N,N′-2-calcium-1,3-dizinc

    Directory of Open Access Journals (Sweden)

    Md. Alamgir Hossain

    2013-12-01

    Full Text Available In the centrosymmetric trinuclear ZnII...CaII...ZnII title complex, [CaZn2(CH3COO6(C12H12N22], the CaII ion lies on an inversion centre and is octahedrally coordinated by six acetate O atoms. The ZnII ion is coordinated by two N atoms from a bidentate dimethylbipyridine ligand and three O atoms from acetate ligands bridging to the CaII ion, leading to a distorted square-pyramidal coordination sphere. The Zn...Ca distance is 3.4668 (5 Å.

  3. Cs2SeO4-UO2SeO4-H2O system at 25 deg C

    International Nuclear Information System (INIS)

    Serezhkina, L.B.; Serezhkin, V.N.

    1987-01-01

    Using the method of isothermal solubility at 25 deg C the interaction of cesium and uranyl selenates in aqueous solution is studied. Formation of congruently soluble Cs 2 UO 2 (SeO 4 ) 2 x2H 2 O and Cs 2 (UO 2 ) 2 x(SeO 4 ) 3 is ascertained, their crystallographic characteristics being determined

  4. [μ-N,N′-Bis(2-aminoethylethane-1,2-diamine-κ4N1,N1′:N2,N2′]bis{[N,N′-bis(2-aminoethylethane-1,2-diamine-κ4N,N′,N′′,N′′′]cadmium} tetrakis(perchlorate

    Directory of Open Access Journals (Sweden)

    Hamid Goudarziafshar

    2012-09-01

    Full Text Available The centrosymmetric dinuclear cadmium title complex, [Cd2(C6H18N43](ClO44, was obtained by the reaction of N,N′-bis(2-aminoethylethane-1,2-diamine (trien with Cd(NO32·4H2O and sodium perchlorate in methanol. The CdII cation is coordinated by four N atoms of a non-bridging trien ligand and by two N atoms of a bridging trien ligand in a slightly distorted octahedral coordination geometry. The bridging ligand shares another two N atoms with a neighboring symmetry-equivalent CdII cation. The structure displays C—H...O and N—H...O hydrogen bonding. The perchlorate anion is disordered over two sets of sites in a 0.854 (7: 0.146 (7 ratio.

  5. Poly[mu2-(N-hydroxypyridine-2-carboxamidine)-mu2-nitrato-silver(I)].

    Science.gov (United States)

    Cui, Ai-Li; Han, Peng; Yang, Hui-Juan; Wang, Ru-Ji; Kou, Hui-Zhong

    2007-12-01

    In the title complex, [Ag(NO3)(C6H7N3O)]n or [Ag(NO3)(pyaoxH2)] (pyaoxH2 is N-hydroxypyridine-2-carboxamidine), the Ag+ ion is bridged by the pyaoxH2 ligands and nitrate anions, giving rise to a two-dimensional molecular structure. Each pyaoxH2 ligand coordinates to two Ag+ ions using its pyridyl and carboxamidine N atoms, and the OH and the NH2 groups are uncoordinated. Each nitrate anion uses two O atoms to coordinate to two Ag+ ions. The Ag...Ag separation via the pyaoxH2 bridge is 2.869 (1) A, markedly shorter than that of 6.452 (1) A via the nitrate bridge. The two-dimensional structure is fishscale-like, and can be described as pyaoxH2-bridged Ag2 nodes that are further linked by nitrate anions. Hydrogen bonding between the amidine groups and the nitrate O atoms connects adjacent layers into a three-dimensional network.

  6. The temperature dependences of the N2+ + N2N4+ and O2+ + O2O4+ association reactions

    International Nuclear Information System (INIS)

    Boehringer, H.; Arnold, F.; Smith, D.; Adams, N.G.

    1983-01-01

    The temperature dependencies of three body association reactions have been investigated in attempts to elucidate the mechanisms of ion-molecule association. The variation with temperature of the three-body rate coefficients is described usually as a power law k approximately Tsup(-n). Experience has shown that with measurements over limited temperature ranges as with previous methods the derived coefficients n are wrong and measurements over large temperature ranges are desirable. The selected ion flow-tube and the drift tube methods developed in Birmingham and Heidelberg provide measurements over (overlapping) wide temperature rang. In collaboration of the Birmingham and the Heidelberg group the He stabilized reactions N 2 + + N 2 + He → N 4 + + He and O 2 + + O 2 + He → O 4 + + He reactions over 30 to 600 deg K. A power law dependence is found above 100 K. The temperature dependencies of the rate constants are interpred and used as a critical test of recent theories of association reactions by D.R. Bates and E. Herbst. (G.Q.)

  7. Novel optical and structural properties of porous GaAs formed by anodic etching of n±GaAs in a HF:C_2H_5OH:HCl:H_2O_2:H_2O electrolyte: effect of etching time

    International Nuclear Information System (INIS)

    Naddaf, M.; Saad, M.

    2014-01-01

    Porous GaAs layers have been formed by anodic etching of n±type GaAs (10.0) substrates in a HF:C_2H_5OH:HCl:H_2O_2:H_2O electrolyte. A dramatic impact of etching time on the optical and structural properties of porous GaAs layer is demonstrated. The nano/micro-features of porous GaAs layers are revealed by scanning electron microscopy (SEM) imaging. Two-peak room temperature photoluminescence (PL), "blue-green"and "green-yellow", is obtained in all prepared porous GaAs samples. Proper adjustment of etching time is found to produce a white color layer, instead of the usual dark gray color of porous GaAs. This is found to cause vast enhancement in the intensity of the visible PL in porous GaAs layer. Chemical composition and structural characterization by means of X-ray photoelectron spectroscopic (XPS), X-ray diffraction (XRD), and micro-Raman spectroscopy, confirm that this layer is characterized with monoclinic β-Ga_2O_3 rich surface. Etching time induced-modification of structural and chemical properties of porous GaAs layer is discussed and correlated to its PL behavior. It is inferred that the "blue-green"PL in porous GaAs can be ascribed to different degrees of quantum confinement in GaAs nano crystallites, whereas, the "green-yellow"PL is highly influenced by the As_2O_3 and Ga_2O_3, content in the porous GaAs layer. In addition, the reflectance measurements reveal an anti-refection trend of behavior of porous GaAs layers in the spectral range (500-1,100 nm). (author)

  8. 1-Methoxy-3-o-tolylbicyclo[2.2.2]oct-5-ene-2,2-dicarbonitrile

    Directory of Open Access Journals (Sweden)

    Orhan Büyükgüngör

    2009-09-01

    Full Text Available In the title compound, C18H18N2O, the cyclohexene and cyclohexane rings of the bicyclo[2.2.2]oct-5-ene unit adopt distorted boat conformations. In the crystal, molecules exist as C—H...N hydrogen-bonded centrosymmetric R22(14 dimers, which are further linked by C—H...π interactions.

  9. The crystal structure of ianthinite, [U24+(UO2)4O6(OH)4(H2O)4](H2O)5: a possible phase for Pu4+ incorporation during the oxidation of spent nuclear fuel

    International Nuclear Information System (INIS)

    Burns, P.C.; Hawthorne, F.C.; Miller, M.L.; Ewing, R.C.

    1997-01-01

    Ianthinite, [U 4+ 2 (UO 2 ) 4 O 6 (OH) 4 (H 2 O) 4 ](H 2O) 5 , is the only known uranyl oxide hydrate mineral that contains U 4+ , and it has been proposed that ianthinite may be an important Pu 4+ -bearing phase during the oxidative dissolution of spent nuclear fuel. The crystal structure of ianthinite, orthorhombic, a=0.7178(2), b=1.1473(2), c=3.039(1) nm, V=2.5027 nm 3 , Z=4, space group P2 1 cn, has been solved by direct methods and refined by least-squares methods to an R index of 9.7% and a wR index of 12.6% using 888 unique observed [ vertical stroke F vertical stroke ≥5σ vertical stroke F vertical stroke ] reflections. The structure contains both U 6+ and U 4+ . The U 6+ cations are present as roughly linear (U 6+ O 2 ) 2+ uranyl ions (Ur) that are in turn coordinated by five O 2- and OH - located at the equatorial positions of pentagonal bipyramids. The U 4+ cations are coordinated by O 2- , OH - and H 2 O in a distorted octahedral arrangement. The Urφ 5 and U 4+ φ 6 (φ: O 2- , OH - , H 2 O) polyhedra link by sharing edges to form two symmetrically distinct sheets at z∼0.0 and z∼0.25 that are parallel to (001). The sheets have the β-U 3 O 8 sheet anion-topology. There are five symmetrically distinct H 2 O groups located at z∼0.125 between the sheets of Uφ n polyhedra, and the sheets of Uφ n polyhedra are linked together only by hydrogen bonding to the intersheet H 2 O groups. The crystal-chemical requirements of U 4+ and Pu 4+ are very similar, suggesting that extensive Pu 4+ U 4+ substitution may occur within the sheets of Uφ n polyhedra in the structure of ianthinite. (orig.)

  10. H2SO4-HNO3-H2O ternary system in the stratosphere

    Science.gov (United States)

    Kiang, C. S.; Hamill, P.

    1974-01-01

    Estimation of the equilibrium vapor pressure over the ternary system H2SO4-HNO3-H2O to study the possibility of stratospheric aerosol formation involving HNO3. It is shown that the vapor pressures for the ternary system H2SO4-HNO3-H2O with weight composition around 70-80% H2SO4, 10-20% HNO3, 10-20% H2O at -50 C are below the order of 10 to the minus 8th mm Hg. It is concluded that there exists more than sufficient nitric acid and water vapor in the stratosphere to participate in ternary system aerosol formation at -50 C. Therefore, HNO3 should be present in stratospheric aerosols, provided that H2SO4 is also present.

  11. Polyaniline as a cathode for O/sub 2/ reduction - kinetics of the reaction with H/sub 2/O/sub 2/ and use of the polymer in a model H/sub 2/O/sub 2/ fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Doubova, L.; Mengoli, G.; Musiani, M.M.; Valcher, S.

    1989-03-01

    Oxygen reduction at a polyaniline cathode occurs in aqueous sulfuric acid through a chemical-electrochemical route which involves the intermediate oxidation of leucoemeraldine to emeraldine with the formation of H/sub 2/O/sub 2/. This paper specifically deals with the conversion of leucoemeraldine to emeraldine by H/sub 2/O/sub 2/ whose kinetics, apparently second order on the charge exchange, are similar to those found for the reaction with O/sub 2/, although they occur at lower rate. The catalytic four electron O/sub 2/ reduction mediated by the Fe(III)/Fe(II) couple which decomposes H/sub 2/O/sub 2/ is not fully achieved. However, polyaniline proved to be a reliable cathode for O/sub 2/, sustaining the working of a model H/sub 2//O/sub 2/ fuel cell.

  12. The Role of Peroxiredoxins in the Transduction of H2O2 Signals.

    Science.gov (United States)

    Rhee, Sue Goo; Woo, Hyun Ae; Kang, Dongmin

    2018-03-01

    Hydrogen peroxide (H 2 O 2 ) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H 2 O 2 -eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H 2 O 2 . Peroxiredoxins possess a high-affinity binding site for H 2 O 2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H 2 O 2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H 2 O 2 effectors are therefore at a competitive disadvantage for reaction with H 2 O 2 . Recent Advances: Here we review intracellular sources of H 2 O 2 as well as H 2 O 2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H 2 O 2 -mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H 2 O 2 effector proteins localized in specific subcellular compartments participates in H 2 O 2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H 2 O 2 signaling. Antioxid. Redox Signal. 28, 537-557.

  13. Tricyclic sesquiterpene copaene prevents H2O2-induced neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hasan Turkez

    2014-02-01

    Full Text Available Aim: Copaene (COP, a tricyclic sesquiterpene, is present in several essential oils of medicinal and aromatic plants and has antioxidant and anticarcinogenic features. But, very little information is known about the effects of COP on oxidative stress induced neurotoxicity. Method: We used hydrogen peroxide (H2O2 exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of COP in H2O2-induced toxicity in rat cerebral cortex cell cultures for the first time. For this purpose, methyl thiazolyl tetrazolium (MTT and lactate dehydrogenase (LDH release assays were carried out to evaluate cytotoxicity. Total antioxidant capacity (TAC and total oxidative stress (TOS parameters were used to evaluate oxidative changes. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG levels, the single cell gel electrophoresis (SCGE or comet assay was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Result: The results of this study showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage increased in the H2O2 alone treated cultures. But pre-treatment of COP suppressed the cytotoxicity, genotoxicity and oxidative stress which were increased by H2O2. Conclusion: It is proposed that COP as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative diseases. [J Intercult Ethnopharmacol 2014; 3(1.000: 21-28

  14. Magnetic measurements and neutron diffraction study of the layered hybrid compounds Mn(C8H4O4)(H2O)2 and Mn2(OH)2(C8H4O4)

    International Nuclear Information System (INIS)

    Sibille, Romain; Mesbah, Adel; Mazet, Thomas; Malaman, Bernard; Capelli, Silvia; François, Michel

    2012-01-01

    Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ) layered organic–inorganic compounds based on manganese(II) and terephthalate molecules (C 8 H 4 O 4 2− ) have been studied by DC and AC magnetic measurements and powder neutron diffraction. The dihydrated compound behaves as a 3D antiferromagnet below 6.5 K. The temperature dependence of its χT product is typical of a 2D Heisenberg system and allows determining the in-plane exchange constant J≈−7.4 K through the carboxylate bridges. The magnetic structure confirms the in-plane nearest neighbor antiferromagnetic interactions and the 3D ordering. The hydroxide based compound also orders as a 3D antiferromagnet with a higher Néel temperature (38.5 K). Its magnetic structure is described from two antiferromagnetically coupled ferromagnetic sublattices, in relation with the two independent metallic sites. The isothermal magnetization data at 2 K are consistent with the antiferromagnetic ground-state of these compounds. However, in both cases, a slope change points to field-induced modification of the magnetic structure. - Graphical abstract: The macroscopic magnetic properties and magnetic structures of two metal-organic frameworks based on manganese (II) and terephthalate molecules are presented. Highlights: ► Magnetic study of Mn(C 8 H 4 O 4 )(H 2 O) 2 and Mn 2 (OH) 2 (C 8 H 4 O 4 ). ► Two compounds with common features (interlayer linker/distance, S=5/2 spin). ► Magnetic measurements quantitatively analyzed to deduce exchange constants. ► Magnetic structures determined from neutron powder diffraction experiments.

  15. Photogeneration of H2O2 in SPEEK/PVA aqueous polymer solutions.

    Science.gov (United States)

    Little, Brian K; Lockhart, PaviElle; Slaten, B L; Mills, G

    2013-05-23

    Photolysis of air-saturated aqueous solutions containing sulphonated poly(ether etherketone) and poly(vinyl alcohol) results in the generation of hydrogen peroxide. Consumption of oxygen and H2O2 formation are initially concurrent processes with a quantum yield of peroxide generation of 0.02 in stirred or unstirred solutions within the range of 7 ≤ pH ≤ 9. The results are rationalized in terms of O2 reduction by photogenerated α-hydroxy radicals of the polymeric ketone in competition with radical-radical processes that consume the macromolecular reducing agents. Generation of H2O2 is controlled by the photochemical transformation that produces the polymer radicals, which is most efficient in neutral and slightly alkaline solutions. Quenching of the excited state of the polyketone by both H3O(+) and OH(-) affect the yields of the reducing macromolecular radicals and of H2O2. Deprotonation of the α-hydroxy polymeric radicals at pH > 9 accelerate their decay and contribute to suppressing the peroxide yields in basic solutions. Maxima in [H2O2] are observed when illuminations are performed with static systems, where O2 reduction is faster than diffusion of oxygen into the solutions. Under such conditions H2O2 can compete with O2 for the reducing radicals resulting in a consumption of the peroxide.

  16. Graphitic Carbon Nitride Nanosheets-Based Ratiometric Fluorescent Probe for Highly Sensitive Detection of H2O2 and Glucose.

    Science.gov (United States)

    Liu, Jin-Wen; Luo, Ying; Wang, Yu-Min; Duan, Lu-Ying; Jiang, Jian-Hui; Yu, Ru-Qin

    2016-12-14

    Graphitic carbon nitride (g-C 3 N 4 ) nanosheets, an emerging graphene-like carbon-based nanomaterial with high fluorescence and large specific surface areas, hold great potential for biosensor applications. Current g-C 3 N 4 nanosheets based fluorescent biosensors majorly rely on single fluorescent intensity reading through fluorescence quenching interactions between the nanosheets and metal ions. Here we report for the first time the development of a novel g-C 3 N 4 nanosheets-based ratiometric fluorescence sensing strategy for highly sensitive detection of H 2 O 2 and glucose. With o-phenylenediamine (OPD) oxidized by H 2 O 2 in the presence of horseradish peroxidase (HRP), the oxidization product can assemble on the g-C 3 N 4 nanosheets through hydrogen bonding and π-π stacking, which effectively quenches the fluorescence of g-C 3 N 4 while delivering a new emission peak. The ratiometric signal variations enable robust and sensitive detection of H 2 O 2 . On the basis of the glucose converting into H 2 O 2 through the catalysis of glucose oxidase, the g-C 3 N 4 -based ratiometric fluorescence sensing platform is also exploited for glucose assay. The developed strategy is demonstrated to give a detection limit of 50 nM for H 2 O 2 and 0.4 μM for glucose, at the same time, it has been successfully used for glucose levels detection in human serum. This strategy may provide a cost-efficient, robust, and high-throughput platform for detecting various species involving H 2 O 2 -generation reactions for biomedical applications.

  17. Poly[μ2-benzene-1,3-dicarboxylato-κ2O:O′-μ2-1,3-di-4-pyridylpropane-κ2N:N′-zinc(II

    Directory of Open Access Journals (Sweden)

    En Tang

    2008-02-01

    Full Text Available The title compound, [Zn(C8H4O4(C13H14N2]n, was obtained by the hydrothermal reaction of Zn(OAc2·H2O with 1,3-di-4-pyridylpropane (bpp and isophthalic acid (H2ip. The ZnII ion is coordinated by two bpp and two ip ligands in a distorted tetrahedral environment. Each ligand coordinates in a bridging mode to connect ZnII ions into a three-dimensional diamondoid-type structure.

  18. Synthesis, characterization and electrochemical properties of the V2O5.nH2O/AlO(OH).nH2O xerogel composite

    International Nuclear Information System (INIS)

    Zampronio, Elaine C.; Lassali, Tania A.F.; Oliveira, Herenilton P.

    2005-01-01

    In this work, we report the synthesis, characterization and electrochemical properties of a new multicomponent material obtained from the polymerization of vanadium pentoxide in an inorganic matrix (alumina xerogel), forming a xerogel composite. The material has been characterized by X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, electron microscopy, energy dispersive X-ray spectrometry, cyclic voltammetry and impedance spectroscopy. It was found that the V 2 O 5 xerogel is dispersed in the alumina matrix, but its lamellar structure is not strongly affected, thus, its conductivity properties are maintained. Moreover, the electrochemical behaviour of the V 2 O 5 xerogel dispersed in the alumina matrix is quite similar to that found for the V 2 O 5 xerogel alone and the inorganic matrix leads to stabilization of V 2 O 5 xerogel structure

  19. H2O2 modulates the energetic metabolism of the cloud microbiome

    Directory of Open Access Journals (Sweden)

    N. Wirgot

    2017-12-01

    Full Text Available Chemical reactions in clouds lead to oxidation processes driven by radicals (mainly HO⚫, NO3⚫, or HO2⚫ or strong oxidants such as H2O2, O3, nitrate, and nitrite. Among those species, hydrogen peroxide plays a central role in the cloud chemistry by driving its oxidant capacity. In cloud droplets, H2O2 is transformed by microorganisms which are metabolically active. Biological activity can therefore impact the cloud oxidant capacity. The present article aims at highlighting the interactions between H2O2 and microorganisms within the cloud system. First, experiments were performed with selected strains studied as a reference isolated from clouds in microcosms designed to mimic the cloud chemical composition, including the presence of light and iron. Biotic and abiotic degradation rates of H2O2 were measured and results showed that biodegradation was the most efficient process together with the photo-Fenton process. H2O2 strongly impacted the microbial energetic state as shown by adenosine triphosphate (ATP measurements in the presence and absence of H2O2. This ATP depletion was not due to the loss of cell viability. Secondly, correlation studies were performed based on real cloud measurements from 37 cloud samples collected at the PUY station (1465 m a.s.l., France. The results support a strong correlation between ATP and H2O2 concentrations and confirm that H2O2 modulates the energetic metabolism of the cloud microbiome. The modulation of microbial metabolism by H2O2 concentration could thus impact cloud chemistry, in particular the biotransformation rates of carbon compounds, and consequently can perturb the way the cloud system is modifying the global atmospheric chemistry.

  20. H2O2 modulates the energetic metabolism of the cloud microbiome

    Science.gov (United States)

    Wirgot, Nolwenn; Vinatier, Virginie; Deguillaume, Laurent; Sancelme, Martine; Delort, Anne-Marie

    2017-12-01

    Chemical reactions in clouds lead to oxidation processes driven by radicals (mainly HO⚫, NO3⚫, or HO2⚫) or strong oxidants such as H2O2, O3, nitrate, and nitrite. Among those species, hydrogen peroxide plays a central role in the cloud chemistry by driving its oxidant capacity. In cloud droplets, H2O2 is transformed by microorganisms which are metabolically active. Biological activity can therefore impact the cloud oxidant capacity. The present article aims at highlighting the interactions between H2O2 and microorganisms within the cloud system. First, experiments were performed with selected strains studied as a reference isolated from clouds in microcosms designed to mimic the cloud chemical composition, including the presence of light and iron. Biotic and abiotic degradation rates of H2O2 were measured and results showed that biodegradation was the most efficient process together with the photo-Fenton process. H2O2 strongly impacted the microbial energetic state as shown by adenosine triphosphate (ATP) measurements in the presence and absence of H2O2. This ATP depletion was not due to the loss of cell viability. Secondly, correlation studies were performed based on real cloud measurements from 37 cloud samples collected at the PUY station (1465 m a.s.l., France). The results support a strong correlation between ATP and H2O2 concentrations and confirm that H2O2 modulates the energetic metabolism of the cloud microbiome. The modulation of microbial metabolism by H2O2 concentration could thus impact cloud chemistry, in particular the biotransformation rates of carbon compounds, and consequently can perturb the way the cloud system is modifying the global atmospheric chemistry.

  1. Propane-1,2-diammonium bis(pyridine-2,6-dicarboxylato-κ3O,N,O′nickelate(II tetrahydrate

    Directory of Open Access Journals (Sweden)

    Mohammad Ghadermazi

    2008-07-01

    Full Text Available The reaction of nickel(II nitrate hexahydrate, propane-1,2-diamine and pyridine-2,6-dicarboxylic acid in a 1:2:2 molar ratio in aqueous solution resulted in the formation of the title compound, (C3H12N2[Ni(C7H3NO42]·4H2O or (p-1,2-daH2[Ni(pydc2]·4H2O (where p-1,2-da is propane-1,2-diamine and pydcH2 is pyridine-2,6-dicarboxylic acid. The geometry of the resulting NiN2O4 coordination can be described as distorted octahedral. Considerable C=O...π stacking interactions are observed between the carboxylate C=O groups and the pyridine rings of the (pydc2− fragments, with O...π distances of 3.1563 (12 and 3.2523 (12 Å and C=O...π angles of 95.14 (8 and 94.64 (8°. In the crystal structure, a wide range of non-covalent interactions, consisting of hydrogen bonding [O—H...O, N—H...O and C—H...O, with D...A distances ranging from 2.712 (2 to 3.484 (2 Å], ion pairing, π–π [centroid-to-centroid distance = 3.4825 (8 Å] and C=O...π stacking, connect the various components to form a supramolecular structure.

  2. High-Resolution Denitrification Kinetics in Pasture Soils Link N2O Emissions to pH, and Denitrification to C Mineralization.

    Directory of Open Access Journals (Sweden)

    Md Sainur Samad

    Full Text Available Denitrification in pasture soils is mediated by microbial and physicochemical processes leading to nitrogen loss through the emission of N2O and N2. It is known that N2O reduction to N2 is impaired by low soil pH yet controversy remains as inconsistent use of soil pH measurement methods by researchers, and differences in analytical methods between studies, undermine direct comparison of results. In addition, the link between denitrification and N2O emissions in response to carbon (C mineralization and pH in different pasture soils is still not well described. We hypothesized that potential denitrification rate and aerobic respiration rate would be positively associated with soils. This relationship was predicted to be more robust when a high resolution analysis is performed as opposed to a single time point comparison. We tested this by characterizing 13 different temperate pasture soils from northern and southern hemispheres sites (Ireland and New Zealand using a fully automated-high-resolution GC detection system that allowed us to detect a wide range of gas emissions simultaneously. We also compared the impact of using different extractants for determining pH on our conclusions. In all pH measurements, soil pH was strongly and negatively associated with both N2O production index (IN2O and N2O/(N2O+N2 product ratio. Furthermore, emission kinetics across all soils revealed that the denitrification rates under anoxic conditions (NO+N2O+N2 μmol N/h/vial were significantly associated with C mineralization (CO2 μmol/h/vial measured both under oxic (r2 = 0.62, p = 0.0015 and anoxic (r2 = 0.89, p<0.0001 conditions.

  3. Manganese catalyzed cis-dihydroxylation of electron deficient alkenes with H2O2

    NARCIS (Netherlands)

    Saisaha, Pattama; Pijper, Dirk; van Summeren, Ruben P.; Hoen, Robert; Smit, Christian; de Boer, Johannes W.; Hage, Ronald; Alsters, Paul L.; Feringa, Bernard; Browne, Wesley R.

    2010-01-01

    A practical method for the multigram scale selective cis-dihydroxylation of electron deficient alkenes such as diethyl fumarate and N-alkyl and N-aryl-maleimides using H2O2 is described. High turnovers (>1000) can be achieved with this efficient manganese based catalyst system, prepared in situ from

  4. System of Sr(NO2)2-Sr(OH)2-H2O at 25 deg C

    International Nuclear Information System (INIS)

    Popova, T.B.; Berdyukova, V.A.; Khutsistova, F.M.

    1990-01-01

    Sr(NO 2 ) 2 -Sr(OH) 2 -H 2 O system was investigated by the methods of solubility, density, viscosity, electric conductivity and refractometry. It was established that its compoments form the compound 4Sr(NO 2 ) 2 xSr(OH) 2 x8H 2 O. The compound was separated from solution; its density, decomposition temperature were determined; IR spectra and X-ray patterns of prepared and initial compounds were obtained

  5. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4.nH2O nanorods

    Science.gov (United States)

    Ghosh, Debasis; Giri, Soumen; Das, Chapal Kumar

    2013-10-01

    One-dimensional NiMoO4.nH2O nanorods and their graphene based hybrid composite with good electrochemical properties have been synthesized by a cost effective hydrothermal procedure. The formation of the mixed metal oxide and the composite was confirmed by XRD, XPS and Raman analyses. The morphological characterizations were carried out using FESEM and TEM analyses. The materials were subjected to electrochemical characterization through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies with 6 M KOH as the supporting electrolyte. For NiMoO4.nH2O, a maximum specific capacitance of 161 F g-1 was obtained at 5 A g-1 current density, accompanied with an energy density of 4.53 W h kg-1 at a steady power delivery rate of 1125 W kg-1. The high utility of the pseudocapacitive NiMoO4.nH2O was achieved in its graphene based composite, which exhibited a high specific capacitance of 367 F g-1 at 5 A g-1 current density and a high energy density of 10.32 W h kg-1 at a power density of 1125 W kg-1 accompanied with long term cyclic stability.One-dimensional NiMoO4.nH2O nanorods and their graphene based hybrid composite with good electrochemical properties have been synthesized by a cost effective hydrothermal procedure. The formation of the mixed metal oxide and the composite was confirmed by XRD, XPS and Raman analyses. The morphological characterizations were carried out using FESEM and TEM analyses. The materials were subjected to electrochemical characterization through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) studies with 6 M KOH as the supporting electrolyte. For NiMoO4.nH2O, a maximum specific capacitance of 161 F g-1 was obtained at 5 A g-1 current density, accompanied with an energy density of 4.53 W h kg-1 at a steady power delivery rate of 1125 W kg-1. The high utility of the pseudocapacitive NiMoO4.nH2O was achieved in its graphene

  6. Direct Synthesis of H{sub 2}O{sub 2} over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H{sub 2}O{sub 2}-ODS of Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Hu, Shaozheng [Northeast Forestry Univ., Harbin (China); Liu, Guangliang [Univ. of Connecticut, Storrs (United States); Chen, Ping; Zhao, Zhixi [Xinjiang Normal Univ., Urumqi (China)

    2013-10-15

    Direct synthesis of H{sub 2}O{sub 2} and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active Au{sup 0} species for H{sub 2}O{sub 2} synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in H{sub 2}O{sub 2} synthesis as CH{sub 3}OH/H{sub 2}O ratio of solvent changed. H{sub 2}O{sub 2} decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of O{sub 2}/H{sub 2} ratio on H{sub 2}O{sub 2} concentration, H{sub 2} conversion and H{sub 2}O{sub 2} selectivity revealed a relationship between H{sub 2}O{sub 2} generation and H2 consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of O{sub 2}/H{sub 2} ratio and 60 .deg. C. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, H{sub 2} conversion and oxidative desulfurization selectivity of H{sub 2} were presented.

  7. Synthesis and the crystal and molecular structures of 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 Mono- and dibromohydrates (HL)Br . 3H2O and (H2L)Br2 . 3H2O

    International Nuclear Information System (INIS)

    Kovalchukova, O. V.; Stash, A. I.; Belsky, V. K.; Strashnova, S. B.; Zaitsev, B. E.; Ryabov, M. A.

    2009-01-01

    4-(Piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 monobromohydrate (HL)Br . 3H 2 O (I) and 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 dibromohydrate (H 2 L)Br 2 . 3H 2 O (II) are isolated in the crystalline state. The crystal structures of compounds I and II are determined using X-ray diffraction. It is established that the protonation of 4-(piperidyl-1)-2-phenylpyrido[2,3-a]anthraquinone-7,12 proceeds primarily through the pyridine atom at pH 2-3. The attachment of the second proton occurs through the piperidine nitrogen atom at pH ∼ 1.

  8. Transfer of π- from hydrogen to deuterium in H2O + D2O mixtures

    International Nuclear Information System (INIS)

    Stanislaus, S.; Measday, D.F.; Vetterli, D.; Weber, P.; Aniol, K.A.; Harston, M.R.; Armstrong, D.S.

    1989-07-01

    The transfer of stopping π - mesons from hydrogen to deuterium has been investigated in mixtures of H 2 O+D 2 O as a function of D 2 O concentration. The concentration dependence of the transfer probability is similar to that observed for the gas mixtures of H 2 and D 2 but slightly more transfer is found for H 2 O+D 2 O. (Author) 17 refs., 2 tabs., 4 figs

  9. Synthesis and structure of heptaaqua(nitrilotris(methylenephosphonato))(dibarium)sodium monohydrate [Na(H{sub 2}O){sub 3}(μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(μ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Somov, N. V., E-mail: somov@phys.unn.ru [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Chausov, F. F., E-mail: xps@ftiudm.ru [Russian Academy of Sciences, Physical–Technical Institute, Ural Branch (Russian Federation); Zakirova, R. M., E-mail: ftt@udsu.ru [Udmurt State University (Russian Federation)

    2017-03-15

    Crystals of the monohydrate form of heptaaqua(nitrilotris(methylenephosphonato))(dibarium) sodium [Na(H{sub 2}O{sub )3}(µ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(µ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O are obtained; space group P2{sub 1}/c, Z = 4; a = 13.9117(10) Å, b = 11.54030(10) Å, and c = 24.1784(17) Å, ß = 148.785(18)°. The Na atom is coordinated octahedrally by one oxygen atom of a phosphonate group and five water molecules, including two bridging molecules. Ba atoms occupy two inequivalent crystallographic positions with coordination number eight and nine. The coordination spheres of both Ba atoms include two water molecules. Each ligand is bound to one Na atom and five Ba atoms forming three Ba–O–P–O and five Ba–O–P–C–N–C–P–O chelate cycles. In addition to the coordination bonds, molecules, including the solvate water molecule, are involved in hydrogen bonds in the crystal packing.

  10. Absolute linestrengths in the H2O2 nu6 band

    Science.gov (United States)

    May, Randy D.

    1991-01-01

    Absolute linestrengths at 295 K have been measured for selected lines in the nu6 band of H2O2 using a tunable diode-laser spectrometer. H2O2 concentrations in a flowing gas mixture were determined by ultraviolet (uv) absorption at 254 nm using a collinear infrared (ir) and uv optical arrangement. The measured linestrengths are approx. 60 percent larger than previously reported values when absorption by hot bands in H2O2 is taken into account.

  11. Viscosity of HI-I2-H2O solution at atmospheric pressure

    International Nuclear Information System (INIS)

    Chen, Songzhe; Zhang, Ping; Wang, Laijun; Xu, Jingming; Gao, Mengxue

    2014-01-01

    Iodine-Sulfur thermochemical cycle (IS-cycle) is one of the most promising massive hydrogen production methods. Basic properties data of the HI-I 2 -H 2 O solution involved in the HI decomposition section of IS-cycle are found to be very important. HI, I 2 , and H 2 O make up a highly non-ideal solution system. Viscosity and its variation with the composition/temperature are very essential for the flowsheet work and HI-H 2 O-I 2 solution’s fluid simulation, especially in the distillation and electro-electrodialysis processes. In this paper, viscosity values of HI-H 2 O-I 2 solutions were measured at atmospheric pressure and varying temperatures (from 20 to 125 ºC). As for the composition, the HI/H2O molar ratio of the samples ranged from 1:5.36 to 1:12.00, while the HI/I 2 molar ratio from 1.0 to 1.4.0. Both temperature and composition have dramatic influence on the viscosity. Increasing temperature or H 2 O/HI molar ratio will lead to the reduction of viscosity; while increasing of I 2 /HI molar ratio results in the increase of viscosity. It was also found that I 2 content has a larger and more complex influence on the viscosity of the HI-H 2 O-I 2 solution than H 2 O content does, especially at low temperature (<50 °C). (author)

  12. Nd(BrO3)3-Yb(BrO3)3-H2O and Nd2(SeO4)3-Yb2(SeO4)3-H2O systems at 25 deg C

    International Nuclear Information System (INIS)

    Serebrennikov, V.V.; Batyreva, V.A.; Tsybukova, T.N.

    1981-01-01

    Using the methods of isothermal solubility the Nd(BrO 3 ) 3 - Yb(BrO 3 ) 3 -H 2 O and Nd 2 (SeO 4 ) 3 -Yb 2 (SeO 4 ) 3 -H 2 O systems are studied at 25 deg C. The compositions of the solid phases are determined by the method of ''residues''. The formation of two series of solid solutions in both systems is established. Besides, there is a crystallization region of Nd 2 (SeO 4 ) 3 in the system of selenates. The solubility diagrams of the systems are presented [ru

  13. Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration

    Science.gov (United States)

    Treberg, Jason R.; Munro, Daniel; Banh, Sheena; Zacharias, Pamela; Sotiri, Emianka

    2015-01-01

    Mitochondria are often regarded as a major source of reactive oxygen species (ROS) in animal cells, with H2O2 being the predominant ROS released from mitochondria; however, it has been recently demonstrated that energized brain mitochondria may act as stabilizers of H2O2 concentration (Starkov et al. [1]) based on the balance between production and the consumption of H2O2, the later of which is a function of [H2O2] and follows first order kinetics. Here we test the hypothesis that isolated skeletal muscle mitochondria, from the rat, are able to modulate [H2O2] based upon the interaction between the production of ROS, as superoxide/H2O2, and the H2O2 decomposition capacity. The compartmentalization of detection systems for H2O2 and the intramitochondrial metabolism of H2O2 leads to spacial separation between these two components of the assay system. This results in an underestimation of rates when relying solely on extramitochondrial H2O2 detection. We find that differentiating between these apparent rates found when using extramitochondrial H2O2 detection and the actual rates of metabolism is important to determining the rate constant for H2O2 consumption by mitochondria in kinetic experiments. Using the high rate of ROS production by mitochondria respiring on succinate, we demonstrate that net H2O2 metabolism by mitochondria can approach a stable steady-state of extramitochondrial [H2O2]. Importantly, the rate constant determined by extrapolation of kinetic experiments is similar to the rate constant determined as the [H2O2] approaches a steady state. PMID:26001520

  14. [N,N-Bis(2-aminoethylethane-1,2-diamine](ethane-1,2-diaminenickel(II thiosulfate trihydrate

    Directory of Open Access Journals (Sweden)

    Beatrix Seidlhofer

    2012-02-01

    Full Text Available The title compound, [Ni(C2H8N2(C6H18N4]S2O3·3H2O, was accidentally synthesized under solvothermal conditions applying [Ni(en3]Cl2 (en is ethane-1,2-diamine as the Ni source. The asymmetric unit consists of one discrete [Ni(tren(en]2+ complex [tren is N,N-bis(2-aminoethylethane-1,2-diamine] in which the Ni2+ cation is sixfold coordinated within a slightly distorted octahedron, one thiosulfate anion and three water molecules. In the crystal, the complex cations, anions and water molecules are linked by an intricate hydrogen-bonding network. One C atom of the tren ligand, as well as one O atom of a water molecule, are disordered over two sites and were refined using a split model (occupancy ratios = 0.85:15 and 0.60:0.40, respectively.

  15. (Bipyridine-κ2N,N′chlorido[N-(2-hydroxyethyl-N-isopropyldithiocarbamato-κ2S,S′]zinc(II

    Directory of Open Access Journals (Sweden)

    Fatin Allia Mohamad

    2012-07-01

    Full Text Available The ZnII atom in the title compound, [Zn(C6H12NOS2Cl(C10H8N2], is coordinated by a chelating N-2-hydroxyethyl-N-isopropyldithiocarbamate ligand, a 2,2′-bipyridine ligand and a Cl atom. The resulting ClN2S2 donor set defines a distorted square-pyramidal coordination geometry. Helical supramolecular chains sustained by O—H...S hydrogen bonds and propagating along the b axis feature in the crystal packing. A three-dimensional architecture is stabilized by C—H...O, C—H...S and C—H...Cl interactions.

  16. Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O2 and H2O2 Yield Ferric Heme b.

    Science.gov (United States)

    Streit, Bennett R; Celis, Arianna I; Shisler, Krista; Rodgers, Kenton R; Lukat-Rodgers, Gudrun S; DuBois, Jennifer L

    2017-01-10

    A recently discovered pathway for the biosynthesis of heme b ends in an unusual reaction catalyzed by coproheme decarboxylase (HemQ), where the Fe(II)-containing coproheme acts as both substrate and cofactor. Because both O 2 and H 2 O 2 are available as cellular oxidants, pathways for the reaction involving either can be proposed. Analysis of reaction kinetics and products showed that, under aerobic conditions, the ferrous coproheme-decarboxylase complex is rapidly and selectively oxidized by O 2 to the ferric state. The subsequent second-order reaction between the ferric complex and H 2 O 2 is slow, pH-dependent, and further decelerated by D 2 O 2 (average kinetic isotope effect of 2.2). The observation of rapid reactivity with peracetic acid suggested the possible involvement of Compound I (ferryl porphyrin cation radical), consistent with coproheme and harderoheme reduction potentials in the range of heme proteins that heterolytically cleave H 2 O 2 . Resonance Raman spectroscopy nonetheless indicated a remarkably weak Fe-His interaction; how the active site structure may support heterolytic H 2 O 2 cleavage is therefore unclear. From a cellular perspective, the use of H 2 O 2 as an oxidant in a catalase-positive organism is intriguing, as is the unusual generation of heme b in the Fe(III) rather than Fe(II) state as the end product of heme synthesis.

  17. Tris(2,2′-bipyridine-κ2 N,N′)cobalt(III) bis­[bis­(pyridine-2,6-dicarboxyl­ato-κ3 O 2,N,O 6)cobaltate(III)] perchlorate dimethyl­formamide hemisolvate 1.3-hydrate

    Science.gov (United States)

    Golenya, Irina A.; Boyko, Alexander N.; Kotova, Natalia V.; Haukka, Matti; Iskenderov, Turganbay S.

    2012-01-01

    In the title compound, [Co(C10H8N2)3][Co(C7H3NO4)2]2(ClO4)·0.5C3H7NO·1.3H2O, the CoIII atom in the complex cation is pseudoocta­hedrally coordinated by six N atoms of three chelating bipyridine ligands. The CoIII atom in the complex anion is coordinated by two pyridine N atoms and four carboxyl­ate O atoms of two doubly deprotonated pyridine-2,6-dicarboxyl­ate ligands in a distorted octa­hedral geometry. One dimethyl­formamide solvent mol­ecule and two water mol­ecules are half-occupied and one water mol­ecule is 0.3-occupied. O—H⋯O hydrogen bonds link the water mol­ecules, the perchlorate anions and the complex anions. π–π inter­actions between the pyridine rings of the complex anions are also observed [centroid–centroid distance = 3.804 (3) Å]. PMID:23125573

  18. Solar degradation of 5-amino-6-methyl-2-benzimidazolone by TiO2 and iron(III) catalyst with H2O2 and O2 as electron acceptors

    International Nuclear Information System (INIS)

    Sarria, Victor; Peringer, Paul; Caceres, Julia; Blanco, Julian; Malato, Sixto; Pulgarin, Cesar

    2004-01-01

    Wastewater containing mainly 5-amino-6-methyl-2-benzimidazolone (AMBI), used in the manufacture of dyes, was characterized as bio-recalcitrant by means of different biodegradability tests. In order to enhance the biodegradability of this important pollutant, solar photocatalytic degradation methods were explored. The systems light/TiO 2 /O 2 , light/TiO 2 /H 2 O 2 , light/Fe 3+ /O 2 and light/Fe 3+ /H 2 O 2 were compared under direct sunlight at the Plataforma Solar de Almeria (Spain), using a Compound Parabolic Collector (CPC). The iron photo-assisted systems exhibited the most interesting behaviour, from the kinetic and engineering points of view, especially if their combination (as pre-treatment) with a biological process is considered. To compare the efficiency of these systems, the evolution of the following parameters were studied: (a) the dissolved organic carbon and initial compound concentration, (b) the toxicity, and (c) the biodegradability of treated solution. At lab scale, using a solar lamp, the degradation rate of the system light/Fe 3+ /H 2 O 2 was two times higher than the system light/Fe 3+ /O 2 but this last system does not need H 2 O 2 addition, improving the economical requirements of the system

  19. Positronium formation and hydrated positron reactions in H2O, D2O, 1.74 M PPS/H2O and 1.74 M PPS/D2O solutions of Cl−, Br− and I−

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Pedersen, Niels Jørgen

    1986-01-01

    Angular correlation of annihilation photons were measured for H2O, D2O, 1.74 M PPS/H2O and 1.74 M PPS/D2O solutions of Cl−, Br− and I−. The three components of the angular correlation spectra for D2O and H2O were nearly identical in shape. The positronium (Ps) yields for the H2O and D2O solutions...... before annihilation (lifetime 400 ps) was determined for the three halides in the four solvents. Simple kinetic equations (“trapping model”) with time dependent rate constant, solved analytically, could explain the [X−, e+] formation in H2O fairly well for concentrations below 0.03 M X−, if a diffusion...... controlled reaction with positron diffusion constant D = 5 × 10−5 cm2/s and reaction radius R = 1 nm were assumed. The three halides gave roughly identical [X−, e+] formation below 0.03 M X−. The difference between the four solutions could be explained partly only in terms of viscosity change for the model...

  20. Bis(1,10-phenanthroline-κ2N,N′(sulfato-κ2O,O′cobalt(II butane-2,3-diol monosolvate

    Directory of Open Access Journals (Sweden)

    Shi-Juan Wang

    2011-04-01

    Full Text Available In the title compound, [Co(SO4(C12H8N22]·C4H10O2, the Co2+ ion has a distorted octahedral coordination environment composed of four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from an O,O′-bidentate sulfate anion. The dihedral angle between the two chelating N2C2 groups is 83.48 (1°. The Co2+ ion, the S atom and the mid-point of the central C—C bond of the butane-2,3-diol solvent molecule are situated on twofold rotation axes. The molecules of the complex and the solvent molecules are held together by pairs of symmetry-related O—H...O hydrogen bonds with the uncoordinated O atoms of the sulfate ions as acceptors. The solvent molecule is disordered over two sets of sites with site occupancies of 0.40 and 0.60.

  1. 2-{N-[(2,3,4,9-Tetrahydro-1H-carbazol-3-ylmethyl]methylsulfonamido}ethyl methanesulfonate

    Directory of Open Access Journals (Sweden)

    Mustafa Göçmentürk

    2014-01-01

    Full Text Available In the title compound, C17H24N2O5S2, the indole ring system is nearly planar [maximum deviation = 0.032 (1 Å] and the cyclohexene ring has a half-chair conformation. In the crystal, N—H...O hydrogen bonds link the molecules into a chain running along the b-axis direction. Weak C—H...O hydrogen bonds and weak C—H...π interactions are observed between the chains.

  2. Hydrothermal synthesis, structural elucidation, spectroscopic studies, thermal behavior and luminescence properties of a new 3-d compound: FeAlF2(C10H8N2)(HPO4)2(H2O)

    Science.gov (United States)

    Bouzidia, Nabaa; Salah, Najet; Hamdi, Besma; Ben Salah, Abdelhamid

    2017-04-01

    The study of metal phosphate has been a proactive field of research thanks to its applied and scientific importance, especially in terms of the development of optical devices such as solid state lasers as well as optical fibers. The present paper seeks to investigate the synthesis, crystal structure, elemental analysis and properties of FeAlF2(C10H8N2)(HPO4)2(H2O) compound investigated by spectroscopic studies (FT-IR and FT-Raman), thermal behavior and luminescence. The Hirshfeld surface analysis and 2-D fingerprint plot have been performed to explore the behavior of these weak interactions and crystal cohesion. This investigation shows that the molecules are connected by hydrogen bonds of the type Osbnd H⋯O and Osbnd H⋯F. In addition, the 2,2'‒bipyridine ligand plays a significant role in the construction of 3-D supramolecular framework via π‒π stacking. FT‒IR and FT‒Raman spectra were used so as to ease the responsibilities of the vibration modes of the title compound. The thermal analysis (TGA) study shows a mass loss evolution as a temperature function. Finally, the optical properties were evaluated by photoluminescence spectroscopy.

  3. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    Science.gov (United States)

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. pH Control Enables Simultaneous Enhancement of Nitrogen Retention and N2O Reduction in Shewanella loihica Strain PV-4

    Directory of Open Access Journals (Sweden)

    Hayeon Kim

    2017-09-01

    Full Text Available pH has been recognized as one of the key environmental parameters with significant impacts on the nitrogen cycle in the environment. In this study, the effects of pH on NO3–/NO2– fate and N2O emission were examined with Shewanella loihica strain PV-4, an organism with complete denitrification and respiratory ammonification pathways. Strain PV-4 was incubated at varying pH with lactate as the electron donor and NO3–/NO2– and N2O as the electron acceptors. When incubated with NO3– and N2O at pH 6.0, transient accumulation of N2O was observed and no significant NH4+ production was observed. At pH 7.0 and 8.0, strain PV-4 served as a N2O sink, as N2O concentration decreased consistently without accumulation. Respiratory ammonification was upregulated in the experiments performed at these higher pH values. When NO2– was used in place of NO3–, neither growth nor NO2– reduction was observed at pH 6.0. NH4+ was the exclusive product from NO2– reduction at both pH 7.0 and 8.0 and neither production nor consumption of N2O was observed, suggesting that NO2– regulation superseded pH effects on the nitrogen-oxide dissimilation reactions. When NO3– was the electron acceptor, nirK transcription was significantly upregulated upon cultivation at pH 6.0, while nrfA transcription was significantly upregulated at pH 8.0. The highest level of nosZ transcription was observed at pH 6.0 and the lowest at pH 8.0. With NO2– as the electron acceptor, transcription profiles of nirK, nrfA, and nosZ were statistically indistinguishable between pH 7.0 and 8.0. The transcriptions of nirK and nosZ were severely downregulated regardless of pH. These observations suggested that the kinetic imbalance between N2O production and consumption, but neither decrease in expression nor activity of NosZ, was the major cause of N2O accumulation at pH 6.0. The findings also suggest that simultaneous enhancement of nitrogen retention and N2O emission reduction may be

  5. {6,6′-Dimethoxy-2,2′-[ethane-1,2-diylbis(nitrilomethylidyne]diphenolato-1κ4O1,O1′,O6,O6′:2κ4O1,N,N′,O1′}(ethanol-1κO-μ-nitrato-1:2κ2O:O′-dinitrato-1κ4O,O′-samarium(IIIzinc(II

    Directory of Open Access Journals (Sweden)

    Qiang Huang

    2009-10-01

    Full Text Available In the title heteronuclear ZnII–SmIII complex, [SmZn(C18H18N2O4(NO33(CH3CH2OH], with the hexadentate Schiff base compartmental ligand N,N′-bis(3-methoxysalicylideneethylenediamine (H2L, the SmIII and ZnII ions are triply bridged by two phenolate O atoms from the Schiff base ligand and one nitrate anion. The five-coordinate ZnII ion is in a square-pyramidal geometry formed by the donor centers of two imine N atoms, two phenolate O atoms and one of the bridging nitrate O atoms. The SmIII center is in a ten-fold coordination of O atoms, involving the phenolate O atoms, two methoxy O atoms, one ethanol O atom, and two O atoms from two nitrate anions and one from the bridging nitrate anion. In the crystal, intermolecular O—H...O and C—H...O interactions generate a layer structure extending parallel to (101.

  6. Nd2(SeO3)2(SeO4) . 2H2O - a mixed-valence compound containing selenium in the oxidation states +IV and +VI

    International Nuclear Information System (INIS)

    Berdonosov, P.S.; Dityat'yev, O.A.; Dolgikh, V.A.; Schmidt, P.; Ruck, Michael; Lightfoot, P.

    2004-01-01

    Pale pink crystals of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O were synthesized under hydrothermal conditions from H 2 SeO 3 and Nd 2 O 3 at about 200 C. X-ray diffraction on powder and single-crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) A, b = 7.0783(5) A, c = 13.329(1) A, β = 104.276(7) ). The crystal structure of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the Nd III atom in the shape of a bi-capped trigonal prism. The oxygen atoms are part of pyramidal (Se IV O 3 ) 2- groups, (Se VI O 4 ) 2- tetrahedra and water molecules. The [NdO 8 ] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three-dimensional framework. The dehydration of Nd 2 (SeO 3 ) 2 (SeO 4 ) . 2H 2 O starts at 260 C. The thermal decomposition into Nd 2 SeO 5 , SeO 2 and O 2 at 680 C is followed by further loss of SeO 2 leaving cubic Nd 2 O 3 . (Abstract Copyright [2004], Wiley Periodicals, Inc.) [de

  7. Generation of H2 and CO by solar thermochemical splitting of H2O and CO2 by employing metal oxides

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Dey, Sunita

    2016-01-01

    Generation of H 2 and CO by splitting H 2 O and CO 2 respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H 2 O or CO 2 over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H 2 O or CO 2 . While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites of the type Ln 1−x A x Mn 1−y M y O 3 (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H 2 and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y 0.5 Sr 0.5 MnO 3 which releases 483 µmol/g of O 2 at 1673 K and produces 757 µmol/g of CO from CO 2 at 1173 K. The production of H 2 from H 2 O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H 2 based on the Mn 3 O 4 /NaMnO 2 cycle briefly. - Graphical abstract: Ln 0.5 A 0.5 Mn 1−x M x O 3 (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO 2 and H 2 O for the generation of CO and H 2 . - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO 2 and H 2 O. • In Ln 1−x A x MnO 3 perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H 2 O splitting is also achieved by the use of the Mn 3 O 4 -sodium carbonate system. • Thermochemical splitting of CO 2 and H

  8. Laser-induced photochemical reaction of aqueous maleic acid solutions containing H2O2

    International Nuclear Information System (INIS)

    Shimizu, Yuichi; Kawanishi, Shunichi; Suzuki, Nobutake

    1995-01-01

    Hydroxy acid such as glycolic, tartaric and malic acids was directly produced by XeF-laser irradiation of the N 2 -saturated maleic acid aqueous solution containing H 2 O 2 . The selectivities of these products at the maximum of tartaric acid were 71, 4, and 2% at H 2 O 2 feeding rate of 3.2 ml h -1 , respectively. On the other hand, the irradiation of maleates such as dipotassium, calcium, and disodium greatly enhanced the selectivities of tartaric acid formation to 19%, and of malic acid formation to 13%, respectively, for dipotassium maleate. It may be considered from these results that the stability of the hydroxylated intermediate radical plays an important role for the efficient formations of tartaric and malic acids. (author)

  9. GaAs micromachining in the 1 H2SO4:1 H2O2:8 H2O system. From anisotropy to simulation

    Science.gov (United States)

    Tellier, C. R.

    2011-02-01

    The bulk micromachining on (010), (110) and (111)A GaAs substrates in the 1 H2SO4:1 H2O2:8 H2O system is investigated. Focus is placed on anisotropy of 3D etching shapes with a special emphasis on convex and concave undercuts which are of prime importance in the wet micromachining of mechanical structures. Etched structures exhibit curved contours and more and less rounded sidewalls showing that the anisotropy is of type 2. This anisotropy can be conveniently described by a kinematic and tensorial model. Hence, a database composed of dissolution constants is further determined from experiments. A self-elaborated simulator which works with the proposed database is used to derive theoretical 3D shapes. Simulated shapes agree well with observed shapes of microstructures. The successful simulations open up two important applications for MEMS: CAD of mask patterns and meshing of simulated shapes for FEM simulation tools.

  10. Atomic-Scale View on the H2O Formation Reaction from H2 on O-Rich RuO2(110)

    DEFF Research Database (Denmark)

    Wei, Yinying; Martinez, Umberto; Lammich, Lutz

    2014-01-01

    The H2O formation reaction from H-2 on O-rich RuO2(110) was studied by temperature-programmed desorption and reaction (TPD/TPR) and scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations. On the one hand, following H-2 adsorption at 270 K, our TPD/TPR me...

  11. Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system

    KAUST Repository

    Bukola, Saheed; Merzougui, Belabbes A.; Akinpelu, Akeem; Laoui, Tahar; Hedhili, Mohamed N.; Swain, Greg M.; Shao, Minhua

    2014-01-01

    Non-precious metal (NPM) catalysts are synthesized by polymerizing aniline salt using an aqueous Fe3+/H2O2 coupled catalytic system on a carbon matrix with a porous creating agent. The sulfur containing compunds such as ammonium peroxydisulfate, are eliminated in this method resulting in a much simpler process. The catalysts' porous structures are enhanced with ammonium carbonate as a sacrificial material that yields voids when decomposed during the heat treatment at 900 °C in N2 atmosphere. Two catalysts Fe-N-C/Vu and Fe-N-C/KB (Vu = Vulcan and KB = Ketjen black) were synthesized and characterized. Their oxygen reduction reaction (ORR) activities were investigated using a rotating ring-disk electrode (RRDE) in both 0.1 M KOH and 0.1 M HClO4. The catalysts show improved ORR activities close to that of Pt-based catalysts, low H2O2 formation and also demonstrated a remarkable tolerance towards methanol oxidation.

  12. Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system

    KAUST Repository

    Bukola, Saheed

    2014-11-01

    Non-precious metal (NPM) catalysts are synthesized by polymerizing aniline salt using an aqueous Fe3+/H2O2 coupled catalytic system on a carbon matrix with a porous creating agent. The sulfur containing compunds such as ammonium peroxydisulfate, are eliminated in this method resulting in a much simpler process. The catalysts\\' porous structures are enhanced with ammonium carbonate as a sacrificial material that yields voids when decomposed during the heat treatment at 900 °C in N2 atmosphere. Two catalysts Fe-N-C/Vu and Fe-N-C/KB (Vu = Vulcan and KB = Ketjen black) were synthesized and characterized. Their oxygen reduction reaction (ORR) activities were investigated using a rotating ring-disk electrode (RRDE) in both 0.1 M KOH and 0.1 M HClO4. The catalysts show improved ORR activities close to that of Pt-based catalysts, low H2O2 formation and also demonstrated a remarkable tolerance towards methanol oxidation.

  13. Active sites and mechanisms for H2O2 decomposition over Pd catalysts

    Science.gov (United States)

    Plauck, Anthony; Stangland, Eric E.; Dumesic, James A.; Mavrikakis, Manos

    2016-01-01

    A combination of periodic, self-consistent density functional theory (DFT-GGA-PW91) calculations, reaction kinetics experiments on a SiO2-supported Pd catalyst, and mean-field microkinetic modeling are used to probe key aspects of H2O2 decomposition on Pd in the absence of cofeeding H2. We conclude that both Pd(111) and OH-partially covered Pd(100) surfaces represent the nature of the active site for H2O2 decomposition on the supported Pd catalyst reasonably well. Furthermore, all reaction flux in the closed catalytic cycle is predicted to flow through an O–O bond scission step in either H2O2 or OOH, followed by rapid H-transfer steps to produce the H2O and O2 products. The barrier for O–O bond scission is sensitive to Pd surface structure and is concluded to be the central parameter governing H2O2 decomposition activity. PMID:27006504

  14. Applicability of new spin trap agent, 2-diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide, in biological system

    International Nuclear Information System (INIS)

    Karakawa, Tomohiro; Sato, Keizo; Muramoto, Yosuke; Mitani, Yoshihiro; Kitamado, Masataka; Iwanaga, Tatsuya; Nabeshima, Tetsuji; Maruyama, Kumiko; Nakagawa, Kazuko; Ishida, Kazuhiko; Sasamoto, Kazumi

    2008-01-01

    Electron spin resonance using spin-trapping is a useful technique for detecting direct reactive oxygen species, such as superoxide (O 2 .- ). However, the widely used spin trap 2,2-dimethyl-3,4-dihydro-2H-pyrrole N-oxide (DMPO) has several fundamental limitations in terms of half-life and stability. Recently, the new spin trap 2-diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (DPhPMPO) was developed by us. We evaluated the biological applicability of DPhPMPO to analyze O 2 .- in both cell-free and cellular systems. DPhPMPO had a larger rate constant for O 2 .- and formed more stable spin adducts for O 2 .- than DMPO in the xanthine/xanthine oxidase (X/XO) system. In the phorbol myristate acetate-activated neutrophil system, the detection potential of DPhPMPO for O 2 .- was significantly higher than that of DMPO (k DMPO = 13.95 M -1 s -1 , k DPhPMPO = 42.4 M -1 s -1 ). These results indicated that DPhPMPO is a potentially good candidate for trapping O 2 .- in a biological system

  15. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses

    OpenAIRE

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-01-01

    Background The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. Findings The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decrease...

  16. C-H and C-C activation of n -butane with zirconium hydrides supported on SBA15 containing N-donor ligands: [(≡SiNH-)(≡SiX-)ZrH2], [(≡SiNH-)(≡SiX-)2ZrH], and[(≡SiN=)(≡SiX-)ZrH] (X = -NH-, -O-). A DFT study

    KAUST Repository

    Pasha, Farhan Ahmad; Bendjeriou-Sedjerari, Anissa; Huang, Kuo-Wei; Basset, Jean-Marie

    2014-01-01

    : [(≡SiNH-)(≡SiO-)ZrH2] (A), [(≡SiNH-)2ZrH2] (B), [(≡SiNH-)(≡SiO-) 2ZrH] (C), [(≡SiNH-)2(≡SiO-)ZrH] (D), [(≡SiN=)(≡Si-O-)ZrH] (E), and [(≡SiN=)(≡SiNH-)ZrH] (F). The roles of these hydrides have been investigated in C-H/C-C bond activation and cleavage

  17. Sources of superoxide/H2O2 during mitochondrial proline oxidation

    Directory of Open Access Journals (Sweden)

    Renata L.S. Goncalves

    2014-01-01

    Full Text Available p53 Inducible gene 6 (PIG6 encodes mitochondrial proline dehydrogenase (PRODH and is up-regulated several fold upon p53 activation. Proline dehydrogenase is proposed to generate radicals that contribute to cancer cell apoptosis. However, there are at least 10 mitochondrial sites that can produce superoxide and/or H2O2, and it is unclear whether proline dehydrogenase generates these species directly, or instead drives production by other sites. Amongst six cancer cell lines, ZR75-30 human breast cancer cells had the highest basal proline dehydrogenase levels, and mitochondria isolated from ZR75-30 cells consumed oxygen and produced H2O2 with proline as sole substrate. Insects use proline oxidation to fuel flight, and mitochondria isolated from Drosophila melanogaster were even more active with proline as sole substrate than ZR75-30 mitochondria. Using mitochondria from these two models we identified the sites involved in formation of superoxide/H2O2 during proline oxidation. In mitochondria from Drosophila the main sites were respiratory complexes I and II. In mitochondria from ZR75-30 breast cancer cells the main sites were complex I and the oxoglutarate dehydrogenase complex. Even with combinations of substrates and respiratory chain inhibitors designed to minimize the contributions of other sites and maximize any superoxide/H2O2 production from proline dehydrogenase itself, there was no significant direct contribution of proline dehydrogenase to the observed H2O2 production. Thus proline oxidation by proline dehydrogenase drives superoxide/H2O2 production, but it does so mainly or exclusively by providing anaplerotic carbon for other mitochondrial dehydrogenases and not by producing superoxide/H2O2 directly.

  18. (Carbonato-κ2 O,O′)bis­(5,5′-dimethyl-2,2′-bipyridyl-κ2 N,N′)cobalt(III) bromide trihydrate

    Science.gov (United States)

    Arun Kumar, Kannan; Meera, Parthsarathi; Amutha Selvi, Madhavan; Dayalan, Arunachalam

    2012-01-01

    In the title complex, [Co(CO3)(C12H12N2)2]Br·3H2O, the CoIII cation has a distorted octa­hedral coordination environment. It is chelated by four N atoms of two different 5,5′-dimethyl-2,2′-bipyridyl (dmbpy) ligands in axial and equatorial positions, and by two O atoms of a carbonate anion completing the equatorial positions. Although the water mol­ecules are disordered and their H atoms were not located, there are typical O⋯O distances between 2.8 and 3.0 Å, indicating O—H⋯O hydrogen bonding. The crystal packing is consolidated by C—H⋯O and C—H⋯Br hydrogen bonds, as well as π–π stacking inter­actions between adjacent pyridine rings of the dmbpy ligands, with centroid–centroid distances of 3.694 (3) and 3.7053 (3) Å. PMID:22589773

  19. Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water

    International Nuclear Information System (INIS)

    Zhou, Chao; Gao, Naiyun; Deng, Yang; Chu, Wenhai; Rong, Wenlei; Zhou, Shengdong

    2012-01-01

    Highlights: ► NAms with three-induced toxicity, as emerging DBPs, has caused a great public attention. ► No paper regards UV/H 2 O 2 oxidation of mixed NAms in an aquatic environment. ► The treatment effect is typically affected by a few factors in water. ► NPIP and NDPhA are the most readily and difficult to be degraded due to unique structure. ► All the NAms degradation exhibited a pseudo-first-order kinetics pattern. - Abstract: Disinfection by-products (DBPs) are a great challenge to our drinking water security. Particularly, nitrosamines (NAms), as emerging DBPs, are potently carcinogenic, mutagenic, and teratogenic, and have increasingly attained public attention. This study was to evaluate the performance of the NAms degradation by the ultraviolet (UV) irradiation (253.7 nm) in the presence of hydrogen peroxide (H 2 O 2 ). In the UV/H 2 O 2 system, hydroxyl radicals (OH·), a type of nonselective and powerful oxidant, was produced to attack the molecules of NAms. Factors affecting the treatment efficiency, including the H 2 O 2 dosage, initial NAms concentration, UV irradiation intensity, initial solution pH, and inorganic anions present in water, were evaluated. All the NAms degradation exhibited a pseudo-first-order kinetics pattern. Within 60 min, 0.1 mg/L of any NAms could be almost decomposed except NDPhA that required 120 min for complete removal, at 25 μmol/L H 2 O 2 and at initial pH 7. Results demonstrate that the UV/H 2 O 2 treatment is a viable option to control NAms in water.

  20. Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: Effects of reaction conditions and sludge matrix

    International Nuclear Information System (INIS)

    Zhang, Ai; Li, Yongmei

    2014-01-01

    Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using ultraviolet light (UV), hydrogen peroxide (H 2 O 2 ), and the combined UV/H 2 O 2 processes. Effects of initial EDC concentration, H 2 O 2 dosage, and pH value were investigated. Particularly, the effects of 11 metal ions and humic acid (HA) contained in a sludge matrix on EDC degradation were evaluated. A pseudo-first-order kinetic model was used to describe the EDC degradation during UV, H 2 O 2 , and UV/H 2 O 2 treatments of WAS. The results showed that the degradation of the 6 EDCs during all the three oxidation processes fitted well with pseudo-first-order kinetics. Compared with the sole UV irradiation or H 2 O 2 oxidation process, UV/H 2 O 2 treatment was much more effective for both EDC degradation and WAS solubilization. Under their optimal conditions, the EDC degradation rate constants during UV/H 2 O 2 oxidation were 45–197 times greater than those during UV irradiation and 11–53 times greater than those during H 2 O 2 oxidation. High dosage of H 2 O 2 and low pH were favorable for the degradation of EDCs. Under the conditions of pH = 3, UV wavelength = 253.7 nm, UV fluence rate = 0.069 mW cm −2 , and H 2 O 2 dosage = 0.5 mol L −1 , the removal efficiencies of E1, E2, EE2, E3, BPA, and NP in 2 min were 97%, 92%, 95%, 94%, 89%, and 67%, respectively. The hydroxyl radical (·OH) was proved to take the most important role for the removal of EDCs. Metal ions in sludge could facilitate the removal of EDCs during UV/H 2 O 2 oxidation. Fe, Ag, and Cu ions had more obvious effects compared with other metal ions. The overall role of HA was dependent on the balance between its competition as organics and its catalysis/photosensitization effects. These indicate that the sludge matrix plays an important role in the degradation of EDCs. - Highlights:

  1. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    Science.gov (United States)

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  2. Degradation of Pentachlorophenol in Aqueous Solution by the UV/ZrO 2 /H 2 O 2 Photocatalytic Process

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Samarghandi

    2015-12-01

    Full Text Available Pentachlorophenol (PCP, which is one of the resistant phenolic compounds, has been classified in the category of EPA’s priority pollutants due to its high toxicity and carcinogenic potential. Therefore, its removal from water and wastewater is very important. Various methods have been studied for removing the compound, among which advanced oxidation processes (AOPs have attracted much attention because of ease of application and high efficiency. Thus the aim of this study was to investigate the efficiency of the UV/ZrO2/H2O2 process, as an AOP, for PCP removal from aquatic environments. The effects of several parameters such as ultraviolet (UV exposure time, initial PCP concentration, pH, concentration of zirconium dioxide (ZrO2 nanoparticles, and H2O2 concentration were studied. Kinetics of the reaction was also detected. The concentration of the stated materials in the samples was determined using a spectrophotometer at 500 nm. The results showed that the highest efficiency (approximately 100% was reached at optimized conditions of pH 6, contact time of 30 minutes, initial PCP concentration of 20 mg/L, the nanoparticles concentration of 0.1 g/L and H2O2 concentration of 14.7 mM/L. Also, the process followed the first order kinetics reaction. The obtained results illustrated that the UV/ZrO2/H2O2 process has a high ability in removing PCP.

  3. Frozen cropland soil in northeast China as source of N2O and CO2 emissions.

    Science.gov (United States)

    Miao, Shujie; Qiao, Yunfa; Han, Xiaozeng; Brancher Franco, Roberta; Burger, Martin

    2014-01-01

    Agricultural soils are important sources of atmospheric N2O and CO2. However, in boreal agro-ecosystems the contribution of the winter season to annual emissions of these gases has rarely been determined. In this study, soil N2O and CO2 fluxes were measured for 6 years in a corn-soybean-wheat rotation in northeast China to quantify the contribution of wintertime N2O and CO2 fluxes to annual emissions. The treatments were chemical fertilizer (NPK), chemical fertilizer plus composted pig manure (NPKOM), and control (Cont.). Mean soil N2O fluxes among all three treatments in the winter (November-March), when soil temperatures are below -7°C for extended periods, were 0.89-3.01 µg N m(-2) h(-1), and in between the growing season and winter (October and April), when freeze-thaw events occur, 1.73-5.48 µg N m(-2) h(-1). The cumulative N2O emissions were on average 0.27-1.39, 0.03-0.08 and 0.03-0.11 kg N2O_N ha(-1) during the growing season, October and April, and winter, respectively. The average contributions of winter N2O efflux to annual emissions were 6.3-12.1%. In all three seasons, the highest N2O emissions occurred in NPKOM, while NPK and Cont. emissions were similar. Cumulative CO2 emissions were 2.73-4.94, 0.13-0.20 and 0.07-0.11 Mg CO2-C ha(-1) during growing season, October and April, and winter, respectively. The contribution of winter CO2 to total annual emissions was 2.0-2.4%. Our results indicate that in boreal agricultural systems in northeast China, CO2 and N2O emissions continue throughout the winter.

  4. Carbonate hydrates of the heavy alkali metals: preparation and structure of Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O; Carbonat-Hydrate der schweren Alkalimetalle: Darstellung und Struktur von Rb{sub 2}CO{sub 3} . 1,5 H{sub 2}O und Cs{sub 2}CO{sub 3} . 3 H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Cirpus, V.; Wittrock, J.; Adam, A. [Koeln Univ. (Germany). Inst. fuer Anorganische Chemie

    2001-03-01

    Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O and Cs{sub 2}CO{sub 3} . 3 H{sub 2}O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four-circle diffractometer data, the crystal structures were determined (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, {beta} = 120.133(8) , V{sub EZ} = 1109.3(6) . 10{sup 6} pm{sup 3}; Cs{sub 2}CO{sub 3} . 3 H{sub 2}O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, {beta} = 90.708(14) , V{sub EZ} = 393.9(2) . 10{sup 6} pm{sup 3}). Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O is isostructural with K{sub 2}CO{sub 3} . 1.5 H{sub 2}O. In case of Cs{sub 2}CO{sub 3} . 3 H{sub 2}O no comparable structure is known. Both structures show {sub {infinity}}{sup 1}[(CO{sub 3}{sup 2-})(H{sub 2}O)]-chains, being connected via additional H{sub 2}O forming columns (Rb{sub 2}CO{sub 3} . 1.5 H{sub 2}O) and layers (Cs{sub 2}CO{sub 3} . 3 H{sub 2}O), respectively. (orig.)

  5. Single-molecule magnets: structure and properties of [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 with spin S = 13.

    Science.gov (United States)

    Brechin, E K; Sañudo, E C; Wernsdorfer, W; Boskovic, C; Yoo, J; Hendrickson, D N; Yamaguchi, A; Ishimoto, H; Concolino, T E; Rheingold, A L; Christou, G

    2005-02-07

    The reaction of 2-(hydroxyethyl)pyridine (hepH) with a 2:1 molar mixture of [Mn3O(O2CMe)6(py)3]ClO4 and [Mn3O(O2CMe)6(py)3] in MeCN afforded the new mixed-valent (16Mn(III), 2Mn(II)), octadecanuclear complex [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) in 20% yield. Complex 1 crystallizes in the triclinic space group P. Direct current magnetic susceptibility studies in a 1.0 T field in the 5.0-300 K range, and variable-temperature variable-field dc magnetization studies in the 2.0-4.0 K and 2.0-5.0 T ranges were obtained on polycrystalline samples. Fitting of magnetization data established that complex 1 possesses a ground-state spin of S = 13 and D = -0.18 K. This was confirmed by the value of the in-phase ac magnetic susceptibility signal. Below 3 K, the complex exhibits a frequency-dependent drop in the in-phase signal, and a concomitant increase in the out-of-phase signal, consistent with slow magnetization relaxation on the ac time scale. This suggests the complex is a single-molecule magnet (SMM), and this was confirmed by hysteresis loops below 1 K in magnetization versus dc field sweeps on a single crystal. Alternating current and direct current magnetization data were combined to yield an Arrhenius plot from which was obtained the effective barrier (U(eff)) for magnetization reversal of 21.3 K. Below 0.2 K, the relaxation becomes temperature-independent, consistent with relaxation only by quantum tunneling of the magnetization (QTM) through the anisotropy barrier via the lowest-energy MS = +/-13 levels of the S = 13 spin manifold. Complex 1 is thus the SMM with the largest ground-state spin to display QTM.

  6. Structures, physicochemical and cytoprotective properties of new oxidovanadium(IV) complexes -[VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O

    Science.gov (United States)

    Drzeżdżon, Joanna; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Inkielewicz-Stępniak, Iwona; Sikorski, Artur; Tesmar, Aleksandra; Chmurzyński, Lech

    2017-09-01

    New oxidovanadium(IV) complexes with a modification of the ligand in the VO2+ coordination sphere were synthesized. [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O were obtained as dark green crystals and grey-green powder, respectively (mIDA = N-methyliminodiacetic anion, IDA = iminodiacetic anion, dmbipy = 4,4‧-dimethoxy-2,2‧-dipyridyl). The crystal structure of [VO(mIDA)(dmbipy)]·1.5H2O has been determined by the X-ray diffraction method. The studies of structure of [VO(mIDA)(dmbipy)]•1.5H2O have shown that this compound occurs in the crystal as two rotational conformers. Furthermore, the stability constants of [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O complexes in aqueous solutions were studied by using the potentiometric titration method and, consequently, determined using the Hyperquad2008 program. Moreover, the title complexes were investigated as antioxidant substances. The impact of the structure modification in the VO2+ complexes on the radical scavenging activity has been studied. The ability to scavenge the superoxide radical by two complexes - [VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O was studied by cyclic voltammetry (CV) and nitrobluetetrazolium (NBT) methods. The title complexes were also examined by the spectrophotometric method as scavengers of neutral organic radical - 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and radical cation - 2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS•+). Furthermore, the biological properties of two oxidovanadium(IV) complexes were investigated in relation to its cytoprotective properties by the MTT and LDH tests based on the hippocampal HT22 neuronal cell line during the oxidative damage induced by hydrogen peroxide. Finally, the results presented in this paper have shown that the both new oxidovanadium(IV) complexes with the 4,4‧-dimethoxy-2,2‧-dipyridyl ligand can be treated as the cytoprotective substances.

  7. H2O2 Synthesis Induced by Irradiation of H2O with Energetic H(+) and Ar(+) Ions at Various Temperatures

    Science.gov (United States)

    Baragiola, R. A.; Loeffler, M. J.; Raut, U.; Vidal, R. A.; Carlson, R. W.

    2004-01-01

    The detection of H2O2 on Jupiter's icy satellite Europa by the Galileo NIMS instrument presented a strong evidence for the importance of radiation effects on icy surfaces. A few experiments have investigated whether solar flux of protons incident on Europa ice could cause a significant if any H2O2 production. These published results differ as to whether H2O2 can be formed by ions impacting water at temperatures near 80 K, which are appropriate to Europa. This discrepancy may be a result of the use of different incident ion energies, different vacuum conditions, or different ways of processing the data. The latter possibility comes about from the difficulty of identifying the 3.5 m peroxide OH band on the long wavelength wing of the much stronger water 3.1 m band. The problem is aggravated by using straight line baselines to represent the water OH band with a curvature, in the region of the peroxide band, that increases with temperature. To overcome this problem, we use polynomial baselines that provide good fits to the water band and its derivative.

  8. Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2

    Institute of Scientific and Technical Information of China (English)

    CAI Tiejun; LIAO Yuchao; PENG Zhenshan; LONG Yunfei; WEI Zongyuan; DENG Qian

    2009-01-01

    The binary composite photo-catalysts CeO2/TiO2, ZrO2/TiO2 and the ternary composite photo-catalysts H3PW12O40-CeO2/TiO2,H2PW12O40-ZrO2/TiO2 were prepared by sol-gel method. The catalysts were characterized by thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photocatalyfic elimination of methanol was used as model reaction to evaluate the photocatalytic activity of the composite catalysts under ultraviolet light irradiation. The effects of doped content, activation temperature, time, initial concentration of methanol and gas flow rate on the catalytic activity were investigated. The results showed that after doping a certain amount of CeO2 and ZrO2, crystaniTation process of TiO2 was restrained, particles of catalysts are smaller and more uniform. Doping ZrO2 not only significantly improved the catalytic activity, but also increased thermal stability. Doping H3PW12O40 also enhanced the catalytic activity. The catalytic activities of binary and ternary composite photocatalysts were significantly higher than tin-doped TiO2. The dynamics law of photocatalytic reaction over the binary CeO2/TiO2 and ZrO2/TiO2 catalysts has been studied. The activation energy 15.627 and 15.631 kJ/mol and pre-exponential factors 0.5176 and 0.9899 s-1 over each corresponding catalyst were obtained. This reaction accords to the first order dynamics law.

  9. Potential hydroxyl ultraviolet laser. [Ar-H/sub 2/O

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C H; Payne, M G

    1976-09-01

    A strong emission band extending from 3060 to 3120 A was observed following proton beam excitation of an Ar--H/sub 2/O mixture. This emission band was assigned to the transition of OH(A/sup 2/Sigma/sup +/)/sub nu=o/ ..-->.. OH(X/sup 2/Pi)/sub nu=o/. At high argon partial pressure (> 200 torr), the precursor of this emission band is believed to be the argon excimer Ar/sup *//sub 2/(1/sub u/). The fluorescence efficiency of Ar--H/sub 2/O is estimated to be a factor of 4 times that of Ar--N/sub 2/. Development of a highly efficient, tunable uv laser by e-beam pumping is promising.

  10. [(2S-2-(3,5-Dichloro-2-oxidobenzylideneamino-3-(4-hydroxyphenylpropionato-κ3O,N,O′](dimethylformamide-κOcopper(II

    Directory of Open Access Journals (Sweden)

    Hong Liang

    2008-04-01

    Full Text Available In the title complex, [Cu(C16H11Cl2NO4(C3H7NO] , the CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L2− {LH2 = (2S-[2-(3,5-dichloro-2-hydroxybenzylideneimino]-3-(4-hydroxyphenylpropionic acid} and one O atom from a dimethylformamide molecule, resulting in a slightly distorted square-planar geometry. The structure forms a one-dimensional chain through weak coordination bonds [Cu...O 3.080 (1, Cu...Cl 3.269 (1 Å] and a three-dimensional network through O—H...O and C—H...O hydrogen bonds.

  11. Crystal structure of tetrakis[μ2-2-(dimethylaminoethanolato-κ3N,O:O]di-μ3-hydroxido-dithiocyanato-κ2N-dichromium(IIIdilead(II dithiocyanate acetonitrile monosolvate

    Directory of Open Access Journals (Sweden)

    Julia A. Rusanova

    2016-04-01

    Full Text Available The tetranuclear complex cation of the title compound, [Cr2Pb2(NCS2(OH2(C4H10NO4](SCN2·CH3CN, lies on an inversion centre. The main structural feature of the cation is a distorted seco-norcubane Pb2Cr2O6 cage with a central four-membered Cr2O2 ring. The CrIII ion is coordinated in a distorted octahedron, which involves two N atoms of one bidentate ligand and one thiocyanate anion, two μ2-O atoms of 2-(dimethylaminoethanolate ligands and two μ3-O atoms of hydroxide ions. The coordination geometry of the PbII ion is a distorted disphenoid, which involves one N atom, two μ2-O atoms and one μ3-O atom. In addition, weak Pb...S interactions involving the coordinating and non-coordinating thiocyanate anions are observed. In the crystal, the complex cations are linked through the thiocyanate anions via the Pb...S interactions and O—H...N hydrogen bonds into chains along the c axis. The chains are further linked together via S...S contacts. The contribution of the disordered solvent acetonitrile molecule was removed with the SQUEEZE [Spek (2015. Acta Cryst. C71, 9–18] procedure in PLATON. The solvent is included in the reported molecular formula, weight and density.

  12. (C6H16N2)Zn3(HPO3)4H2O: a new layered zinc phosphite templated by diprotonated trans-1,4-diaminocyclohexane

    International Nuclear Information System (INIS)

    Wang Yu; Yu Jihong; Li Yi; Du Yu; Xu Ruren; Ye Ling

    2003-01-01

    Employing trans-1,4-diaminocyclohexane (trans-1,4-DACH) as a template, a new two-dimensional layered zinc phosphite (C 6 H 16 N 2 )Zn 3 (HPO 3 ) 4 H 2 O (1) has been prepared hydrothermally. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic space group P2 1 /n with a=10.458(2) A, b=14.720(3) A, c=13.079(3) A, β=97.93(3) deg. , V=1994.1(7) A 3 , Z=4, R 1 =0.0349 (I>2σ(I)) and wR 2 =0.0605 (all data). The inorganic layer is built up by alternation of ZnO 4 tetrahedra and HPO 3 pseudo pyramids forming a 4.6.8-net. The sheet is featured by a series of capped six-membered rings. The diprotonated trans-1,4-DACH molecules reside in the interlayer region and interact with the inorganic network through H-bonds

  13. The first 3D malonate bridged copper [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: Structure, properties and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Seguatni, A., E-mail: seguatni@gmail.com [LBPC-INSERM U 698, Institut Galilee, Universite Paris XIII, 99, avenue J. B. Clement 93430, Villetaneuse (France); Fakhfakh, M. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada); Smiri, L.S. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Gressier, P.; Boucher, F. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Jouini, N. [Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada)

    2012-03-15

    A new inorganic-organic compound [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O] ([Cumal]) was hydrothermally synthesized and characterized by IR spectroscopy, thermal analysis and single crystal X-ray diffraction. [Cumal] is the first three-dimensional compound existing in the system Cu(II)-malonic acid-H{sub 2}O. Its framework is built up through carboxyl bridged copper where CuO{sub 6} octahedra are elongated with an almost D{sub 4h} symmetry (4+2) due to the Jahn-Teller effect. The magnetic properties were studied by measuring its magnetic susceptibility in the temperature range of 2-300 K indicating the existence of weak ferromagnetic interactions. The electronic structure of [Cumal] was calculated within the density functional theory (DFT) framework. Structural features are well reproduced using DFT structural optimizations and the optical spectra, calculated within the dielectric formalism, explain very well the light blue colour of the compound. It is shown that a GGA+U approach with a U{sub eff} value of about 6 eV is necessary for a better correlation with the experiment. - Graphical abstract: [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: the first 3D hybrid organic-inorganic compound built up carboxyl groups. The network presents a diamond-like structure achieved via carboxyl. Highlights: Black-Right-Pointing-Pointer A new organic-inorganic material with an unprecedented topology is synthesized. Black-Right-Pointing-Pointer Crystallographic structure is determined using single crystal X-ray diffraction. Black-Right-Pointing-Pointer Electronic structure is obtained from DFT, GGA+U calculation. Black-Right-Pointing-Pointer Framework can be described as formed from CuC{sub 4} tetrahedron sharing four corners. Black-Right-Pointing-Pointer This structure can be classified as an extended diamond structure.

  14. Surface tension of H2O and D2O

    International Nuclear Information System (INIS)

    Vargaftik, N.B.; Voljak, L.D.; Volkov, B.N.

    1975-01-01

    There is a great number of works on surface tension of clean water (H 2 O) at temperatures up to 100 deg C and very few above the boiling point. Works on surface tension of heavy water (D 2 O) are insufficient. A review of works on surface tension of both kinds of water is given

  15. Flooding-related increases in CO2 and N2O emissions from a temperate coastal grassland ecosystem

    Science.gov (United States)

    Gebremichael, Amanuel W.; Osborne, Bruce; Orr, Patrick

    2017-05-01

    Given their increasing trend in Europe, an understanding of the role that flooding events play in carbon (C) and nitrogen (N) cycling and greenhouse gas (GHG) emissions will be important for improved assessments of local and regional GHG budgets. This study presents the results of an analysis of the CO2 and N2O fluxes from a coastal grassland ecosystem affected by episodic flooding that was of either a relatively short (SFS) or long (LFS) duration. Compared to the SFS, the annual CO2 and N2O emissions were 1.4 and 1.3 times higher at the LFS, respectively. Mean CO2 emissions during the period of standing water were 144 ± 18.18 and 111 ± 9.51 mg CO2-C m-2 h-1, respectively, for the LFS and SFS sites. During the growing season, when there was no standing water, the CO2 emissions were significantly larger from the LFS (244 ± 24.88 mg CO2-C m-2 h-1) than the SFS (183 ± 14.90 mg CO2-C m-2 h-1). Fluxes of N2O ranged from -0.37 to 0.65 mg N2O-N m-2 h-1 at the LFS and from -0.50 to 0.55 mg N2O-N m-2 h-1 at the SFS, with the larger emissions associated with the presence of standing water at the LFS but during the growing season at the SFS. Overall, soil temperature and moisture were identified as the main drivers of the seasonal changes in CO2 fluxes, but neither adequately explained the variations in N2O fluxes. Analysis of total C, N, microbial biomass and Q10 values indicated that the higher CO2 emissions from the LFS were linked to the flooding-associated influx of nutrients and alterations in soil microbial populations. These results demonstrate that annual CO2 and N2O emissions can be higher in longer-term flooded sites that receive significant amounts of nutrients, although this may depend on the restriction of diffusional limitations due to the presence of standing water to periods of the year when the potential for gaseous emissions are low.

  16. Collisional Removal of OH (X (sup 2)Pi, nu=7) by O2, N2, CO2, and N2O

    Science.gov (United States)

    Knutsen, Karen; Dyer, Mark J.; Copeland, Richard A.

    1996-01-01

    Collisional removal rate constants for the OH (X 2PI, nu = 7) radical are measured for the colliders O2, CO2, and N2O, and an upper limit is established for N2. OH(nu = 4) molecules, generated in a microwave discharge flow cell by the reaction of hydrogen atoms with ozone, are excited to v = 7 by the output of a pulsed infrared laser via direct vibrational overtone excitation. The temporal evolution of the P = 7 population is probed as a function of the collider gas partial pressure by a time-delayed pulsed ultraviolet laser. Fluorescence from the B 21 + state is detected in the visible spectral region.

  17. Combined treatment of organic material in oilfield fracturing wastewater by coagulation and UV/H2O2/ferrioxalate complexes process.

    Science.gov (United States)

    Ge, Dan

    2018-02-01

    Organic material is considered to be a main component of oilfield fracturing wastewater (OFW). This work is intended to optimize the experimental conditions for the maximum oxidative degradation of organic material by coagulation and the UV/H 2 O 2 /ferrioxalate complexes process. Optimal reaction conditions are proposed based on the chemical oxygen demand (COD) removal efficiency. The overall removal efficiency of COD reached 83.8% when the dilution ratio of raw wastewater was 1:2, the pH was 4 and the FeCl 3 loading was 1,000 mg/L in the coagulation process; the dosage of H 2 O 2 (30%,v/v) was 0.6% (v/v) and added in three steps, the n(H 2 O 2 )/n(Fe 2+ ) was 2:1, n(Fe 2+ )/n(C 2 O 4 2- ) was 3:1 and the pH was 4 in the UV/H 2 O 2 /ferrioxalate complexes process; the pH was adjusted to 8.5-9 with NaOH and then 2 mg/L of cationic polyacrylamide (CPAM) was added in the neutralization and flocculation process. The decrease in COD during the coagulation process reduced the required H 2 O 2 dosage and improve efficiency in the subsequent UV/H 2 O 2 /ferrioxalate complexes process. Furthermore, there was a significant increase of 13.4% in the COD removal efficiency with the introduction of oxalate compared with UV/Fenton. Experimental results show that the coagulation and UV/H 2 O 2 /ferrioxalate complexes process could efficiently remove the organic material dissolved in OFW. An optimal combination of these parameters produced treated wastewater that met the GB8978-1996' Integrated Wastewater Discharge Standard' level III emission standard.

  18. Hydrothermal crystallization in the KOH-TiO2-GeO2-H2O system at 500 deg C and 0.1 GPa

    International Nuclear Information System (INIS)

    Ilyushin, G.D.

    2003-01-01

    The identification of structural phases and crystallochemical analysis of phases in a KOH-TiO 2 -GeO 2 -H 2 O system under conditions of high temperatures and pressures are performed. A comparison is made with earlier obtained results for a system of KOH-GeO 2 (quartz-like structure)-H 2 O. It is established that K 2 Ti 6 O 13 skeleton potassium titanate is a basic phase in the system of KOH-TiO 2 -GeO 2 -H 2 O at 500 deg C and 0.1 GPa within a wide range of varying TiO 2 :GeO 2 and KOH concentrations [ru

  19. Oxyhydroxide of metallic nanowires in a molecular H2O and H2O2 environment and their effects on mechanical properties.

    Science.gov (United States)

    Aral, Gurcan; Islam, Md Mahbubul; Wang, Yun-Jiang; Ogata, Shigenobu; Duin, Adri C T van

    2018-06-14

    To avoid unexpected environmental mechanical failure, there is a strong need to fully understand the details of the oxidation process and intrinsic mechanical properties of reactive metallic iron (Fe) nanowires (NWs) under various aqueous reactive environmental conditions. Herein, we employed ReaxFF reactive molecular dynamics (MD) simulations to elucidate the oxidation of Fe NWs exposed to molecular water (H2O) and hydrogen peroxide (H2O2) environment, and the influence of the oxide shell layer on the tensile mechanical deformation properties of Fe NWs. Our structural analysis shows that oxidation of Fe NWs occurs with the formation of different iron oxide and hydroxide phases in the aqueous molecular H2O and H2O2 oxidizing environments. We observe that the resulting microstructure due to pre-oxide shell layer formation reduces the mechanical stress via increasing the initial defect sites in the vicinity of the oxide region to facilitate the onset of plastic deformation during tensile loading. Specifically, the oxide layer of Fe NWs formed in the H2O2 environment has a relatively significant effect on the deterioration of the mechanical properties of Fe NWs. The weakening of the yield stress and Young modulus of H2O2 oxidized Fe NWs indicates the important role of local oxide microstructures on mechanical deformation properties of individual Fe NWs. Notably, deformation twinning is found as the primary mechanical plastic deformation mechanism of all Fe NWs, but it is initially observed at low strain and stress level for the oxidized Fe NWs.

  20. Dehydration of MoO 3 · 2H 2O: A Neutron Thermodiffractometry Study

    Science.gov (United States)

    Boudjada, N.; Rodríguez-Carvajal, J.; Anne, M.; Figlarz, M.

    1993-07-01

    A neutron powder thermodiffractometric study of the dehydration reactions MoO 3 · 2H 2O → MoO 3 · H 2O → MoO 3 has been carried out in order to investigate the topotactic mechanism previously reported. The topotactic character of the reactions is confirmed and an approximate model for the crystal structure of MoO 3 · H 2O is proposed. Quantitative data about the relative amount of the existing phases, as a function of temperature, have been deduced from multiphase profile analysis. The anomalous behavior of the cell parameters of MoO 3 · H 2O, at about 100°C, indicates the existence of a new phase transition. The evolution of the crystallite size of MoO 3 has also been obtained from the broadening of Bragg reflections at high temperature. The preferred direction of growth is along [021].

  1. Luteolin Prevents H2O2-Induced Apoptosis in H9C2 Cells through Modulating Akt-P53/Mdm2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hong Chang

    2016-01-01

    Full Text Available Introduction. Luteolin, a falconoid compound in many Chinese herbs and formula, plays important roles in cardiovascular diseases. The underlying mechanism of luteolin remains to be further elaborated. Methods. A model of hydrogen peroxide- (H2O2- induced H9C2 cells apoptosis was established. Cell viabilities were examined with an MTT assay. 2′,7′-Dichlorofluorescin diacetate (DCFH-DA and flow cytometry were used to detect ROS level and apoptosis rate, respectively. The expressions of signaling proteins related to apoptosis were analyzed by western blot and mRNA levels were detected by real-time polymerase chain reaction (PCR. Quercetin was applied as positive drug. Results. Incubation with various concentrations of H2O2 (0, 50, 100, and 200 μM for 1 h caused dose-dependent loss of cell viability and 100 μM H2O2 reduced the cell viability to approximately 50%. Treatments with luteolin and quercetin protected cells from H2O2-induced cytotoxicity and reduced cellular ROS level and apoptosis rate. Moreover, luteolin could downregulate the expressions of Bax, caspase-8, cleaved-caspase-3, and p53 in apoptotic signaling pathway. Further study showed that the expressions of Akt, Bcl-2, and Mdm2 were upregulated by luteolin. Conclusion. Luteolin protects H9C2 cells from H2O2-induced apoptosis. The protective and antiapoptotic effects of luteolin could be mediated by regulating the Akt-P53/Mdm2 apoptotic pathway.

  2. Free radical behaviours during methylene blue degradation in the Fe2+/H2O2 system.

    Science.gov (United States)

    Wang, Zhonghua; Zhao, Haiqian; Qi, Hanbing; Liu, Xiaoyan; Liu, Yang

    2017-12-22

    Behaviours of the free radicals during the methylene blue (MB) oxidation process in the Fe 2+ /H 2 O 2 system were studied to reveal the reason for the low utilization efficiency of H 2 O 2 . The roles of [Formula: see text], [Formula: see text] and [Formula: see text] radicals were proven to be different in the MB oxidation process. The results showed that [Formula: see text] radicals had a strong ability to oxidize MB; however, they were not the main active substances for MB degradation due to the low concentration in the traditional Fe 2+ /H 2 O 2 system. [Formula: see text] radicals could not oxidize MB. [Formula: see text] radicals were the main active substances for MB oxidation. In the short initial stage, the utilization efficiency of H 2 O 2 was high, because the generation rate of [Formula: see text] was much higher than that of [Formula: see text]. More [Formula: see text] radicals were involved in the MB oxidation reaction. In the long deceleration stage (after the short initial stage), a large amount of H 2 O 2 was consumed, but the amount of oxidized MB was very small. Most of the [Formula: see text] radicals were consumed via the rapid useless reaction between [Formula: see text] and [Formula: see text] in this stage, resulting in the serious useless consumption of H 2 O 2 . It is a feasible method to improve the utilization efficiency of H 2 O 2 by adding suitable additives into the Fe 2+ /H 2 O 2 system to weaken the useless reaction between [Formula: see text] and [Formula: see text].

  3. Bis(2,6-dihydroxybenzoato-κ2O1,O1′(nitrato-κ2O,O′bis(1,10-phenanthroline-κ2N,N′cerium(III

    Directory of Open Access Journals (Sweden)

    Hongxiao Jin

    2011-01-01

    Full Text Available The mononuclear title complex, [Ce(C7H5O32(NO3(C12H8N22], is isostructural to other related lanthanide structures. The Ce atom is in a pseudo-bicapped square-antiprismatic geometry formed by four N atoms from two chelating 1,10-phenanthroline (phen ligands and by six O atoms, four from two 2,6-dihydroxybenzoate (DHB ligands and the other two from a nitrate anion. π–π stacking interactions between phen and DHB ligands [centroid–centroid distances = 3.513 (3 and 3.762 (2 Å] and phen and phen ligands [face-to-face separation = 3.423 (7 Å] of adjacent complexes stabilize the crystal structure. Intramolecular O—H...O hydrogen bonds are observed in the DHB ligands.

  4. Inorganic-organic hybrid structure: Synthesis, structure and magnetic properties of a cobalt phosphite-oxalate, [C4N2H12][Co4(HPO3)2(C2O4)3

    International Nuclear Information System (INIS)

    Mandal, Sukhendu; Natarajan, Srinivasan

    2005-01-01

    A hydrothermal reaction of a mixture of cobalt (II) oxalate, phosphorous acid, piperazine and water at 150 o C for 96h followed by heating at 180 o C for 24h gave rise to a new inorganic-organic hybrid solid, [C 4 N 2 H 12 ][Co 4 (HPO 3 ) 2 (C 2 O 4 ) 3 ], I. The structure consists of edge-shared CoO 6 octahedra forming a [Co 2 O 10 ] dimers that are connected by HPO 3 and C 2 O 4 units forming a three-dimensional structure with one-dimensional channels. The amine molecules are positioned within these channels. The oxalate units have a dual role of connecting within the plane of the layer as well as out of the plane. Magnetic susceptibility measurement shows the compound orders antiferromagnetically at low temperature (T N =22K). Crystal data: I, monoclinic, space group=P2 1 /c (No. 14). a=7.614(15), b=7.514(14), c=17.750(3)A, β=97.351(3) o , V=1007.30(3)A 3 , Z=2, ρ calc =2.466g/cm 3 , μ (MoKα) =3.496mm -1 , R 1 =0.0310 and wR 2 =0.0807 data [I>2σ(I)

  5. Synthesis, crystal structure and properties of [Co(L2](ClO42 (L=1,3-bis(1H-benzimidazol-2-yl-2-oxapropane

    Directory of Open Access Journals (Sweden)

    Tavman Aydin

    2015-01-01

    Full Text Available The reaction of 1,3-bis(1H-benzimidazol-2-yl-2-oxapropane (L with Co(ClO42•6H2O in absolute ethanol produces di[1,3-bis(1H-benzimidazol-2-yl-2-oxapropane-k2N,N’]cobalt(IIdiperchlorate chelate complex ([Co(L2](ClO42, 1. The complex 1 was characterized by elemental analysis, magnetic moment, molar conductivity, thermogravimetric analysis, FT-IR, UV-visible, mass spectrometry, and its solid state structure was determined by single crystal X-ray diffraction. According to the thermogravimetric analysis data, there is no any water coordinated or uncoordinated in 1 as well as elemental analysis. The complex 1 has 1:2 M:L ionic characteristic according to the molar conductivity. In the complex, the distances between the cobalt and the ethereal oxygen atoms (Co1-O2: 2.805(3; Co2-O1: 2.752(2 Å show the semi-coordination bonding and the Co(II ion is six-coordinated with a N4O2 ligand set, resulting in a distorted octahedron.

  6. Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2013-01-01

    The influence of inserting a Ga 2 O 3 thin film as an n-type semiconductor layer on the obtainable photovoltaic properties in Cu 2 O-based heterojunction solar cells was investigated with a transparent conductive Al-doped ZnO (AZO) thin film/n-Ga 2 O 3 thin film/p-Cu 2 O sheet structure. It was found that this Ga 2 O 3 thin film can greatly improve the performance of Cu 2 O-based heterojunction solar cells fabricated using polycrystalline Cu 2 O sheets that had been prepared by a thermal oxidization of copper sheets. The obtained photovoltaic properties in the AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells were strongly dependent on the deposition conditions of the Ga 2 O 3 films. The external quantum efficiency obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells was found to be greater at wavelengths below approximately 500 nm than that obtained in AZO/Cu 2 O heterojunction solar cells (i.e., prepared without a Ga 2 O 3 layer) at equivalent wavelengths. This improvement of photovoltaic properties is mainly attributed to a decrease in the level of defects at the interface between the Ga 2 O 3 thin film and the Cu 2 O sheet. Conversion efficiencies over 5% were obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells fabricated using an n-Ga 2 O 3 thin-film layer prepared with a thickness of 40–80 nm at an O 2 gas pressure of approximately 1.7 Pa by a pulsed laser deposition. - Highlights: • We demonstrate high-efficiency Cu 2 O-based p-n heterojunction solar cells. • A non-doped Ga 2 O 3 thin film was used as an n-type semiconductor layer. • The Ga 2 O 3 thin film was prepared at a low temperature by a low damage deposition. • p-type Cu 2 O sheets prepared by thermal oxidization of copper sheets were used. • Conversion efficiencies over 5% were obtained in AZO/n-Ga 2 O 3 /p-Cu 2 O solar cells

  7. Hydrothermal syntheses, structural, Raman, and luminescence studies of Cm[M(CN)2]3.3H2O and Pr[M(CN)2]3.3H2O (M=Ag, Au)

    International Nuclear Information System (INIS)

    Assefa, Zerihun; Haire, Richard G.; Sykora, Richard E.

    2008-01-01

    We have prepared Cm[Au(CN) 2 ] 3 .3H 2 O and Cm[Ag(CN) 2 ] 3 .3H 2 O as a part of our continuing investigations into the chemistry of the 5f-elements' dicyanometallates. Single crystals of Cm[Au(CN) 2 ] 3 .3H 2 O were obtained from the reaction of CmCl 3 and KAu(CN) 2 under mild hydrothermal conditions. Due to similarities in size, the related praseodymium compounds were also synthesized and characterized for comparison with the actinide systems. The compounds crystallize in the hexagonal space group P6 3 /mcm, where the curium and the transition metals interconnect through cyanide bridging. Crystallographic data (Mo Kα, λ=0.71073 A): Cm[Au(CN) 2 ] 3 .3H 2 O (1), a=6.6614(5) A, c=18.3135(13) A, V=703.77(9), Z=2; Pr[Au(CN) 2 ] 3 .3H 2 O (3), a=6.6662(8) A, c=18.497(3) A, V=711.83(17), Z=2; Pr[Ag(CN) 2 ] 3 .3H 2 O (4), a=6.7186(8) A, c=18.678(2) A, V=730.18(14), Z=2. The Cm 3+ and/or Pr 3+ ions are coordinated to six N-bound CN - groups resulting in a trigonal prismatic arrangement. Three oxygen atoms of coordinated water molecules tricap the trigonal prismatic arrangement providing a coordination number of nine for the f-elements. The curium ions in both compounds exhibit a strong red emission corresponding to the 6 D 7/2 → 8 S 7/2 transition. This transition is observed at 16,780 cm -1 , with shoulders at 17,080 and 16,840 cm -1 for the Ag complex, while the emission is red shifted by ∼100 cm -1 in the corresponding gold complex. The Pr systems also provide well-resolved emissions upon f-f excitation. - Graphical abstract: Coordination polymeric compounds between a trans-plutonium element, curium and transition metal ions, gold(I) and silver(I), were prepared using the hydrothermal synthetic procedure. The curium ion and the transition metals are interconnected through cyanide bridging. The Cm ion has a tricapped trigonal prismatic coordination environment with coordination number of nine. Detail photoluminescence studies of the complexes are also reported

  8. THz spectroscopy of liquid H2O and D2O

    DEFF Research Database (Denmark)

    Rønne, C.; Åstrand, P.-O.; Keiding, S.R.

    1999-01-01

    We have measured and analyzed the dielectric (0.1-2 THz) response of liquid H2O and D2O from 270 to 365 K. The response has been modeled using a Debye model with a fast and a slow decay time. By shifting the temperature scale for the slow decay time of D2O by 7.2 K we find identical behavior for D2......O and H2O. The temperature dependence and isotope shift of the intermolecular structural relaxation characterized by the slow decay time can be modeled with a singular point at 228 K for H2O and 235 K for D2O. [S0031-9007(99)08896-1]....

  9. cis-Aquabis(2,2'-bipyridine-κ2N,N')-fluoridochromium(III) bis(perchlorate) dihydrate

    DEFF Research Database (Denmark)

    Birk, Torben; Bendix, Jesper

    2010-01-01

    The title mixed aqua-fluoride complex, [CrF(C(10)H(8)N(2))(2)(H(2)O)](ClO(4))(22H(2)O, has been synthesized by aqua-tion of the corresponding difluoride complex using lanthan-ide(III) ions as F(-) acceptors. The complex crystallizes with a Cr(III) ion at the center of a distorted octa-hedral co......-hedral coordination polyhedron with a cis arrangement of ligands. The crystal packing shows a hydrogen-bonding pattern involving water mol-ecules, the coordinated F atom and the perchlorate anions....

  10. Luminescence of a new class of UV-blue-emitting phosphors MSi2O2-deltaN2+2/3delta:Ce3+ (M = Ca, Sr, Ba)

    NARCIS (Netherlands)

    Li, Y.Q.; With, de G.; Hintzen, H.T.J.M.

    2005-01-01

    The luminescence properties of Ce3+,Na+-codoped MSi2O22dN2+2/3d (M 5 Ca, Sr, Ba) are reported. The undoped and Ce3+,Na+-codoped MSi2O22dN2+2/3d powders were prepared by a solid-state reaction at temperatures between 1300–1400 uC under N2H2 (10%) atmosphere in the system MO–SiO2–Si3N4 (M 5 Ca, Sr,

  11. Reduction Mechanisms of Cu2+-Doped Na2O-Al2O3-SiO2 Glasses during Heating in H2 Gas.

    Science.gov (United States)

    Nogami, Masayuki; Quang, Vu Xuan; Ohki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2018-01-25

    Controlling valence state of metal ions that are doped in materials has been widely applied for turning optical properties. Even though hydrogen has been proven effective to reduce metal ions because of its strong reducing capability, few comprehensive studies focus on practical applications because of the low diffusion rate of hydrogen in solids and the limited reaction near sample surfaces. Here, we investigated the reactions of hydrogen with Cu 2+ -doped Na 2 O-Al 2 O 3 -SiO 2 glass and found that a completely different reduction from results reported so far occurs, which is dominated by the Al/Na concentration ratio. For Al/Na glass body. For Al/Na > 1, on the other hand, the reduction of Cu 2+ ions occurred simultaneously with the formation of OH bonds, whereas the reduced Cu metal moved outward and formed a metallic film on glass surface. The NMR and Fourier transform infrared results indicated that the Cu 2+ ions were surrounded by Al 3+ ions that formed AlO 4 , distorted AlO 4 , and AlO 5 units. The diffused H 2 gas reacted with the Al-O - ···Cu + units, forming Al-OH and metallic Cu, the latter of which moved freely toward glass surface and in return enhanced H 2 diffusion.

  12. System of Sr(NO sub 2 ) sub 2 -Sr(OH) sub 2 -H sub 2 O at 25 deg C. Sistema Sr(NO sub 2 ) sub 2 -H sub 2 O pri 25 grad C

    Energy Technology Data Exchange (ETDEWEB)

    Popova, T B; Berdyukova, V A; Khutsistova, F M [Kalmytskij Gosudarstvennyj Univ., Ehlista (USSR) Rostovskij-na-Donu Gosudarstvennyj Univ., Rostov-na-Donu (USSR)

    1990-02-01

    Sr(NO{sub 2}){sub 2}-Sr(OH){sub 2}-H{sub 2}O system was investigated by the methods of solubility, density, viscosity, electric conductivity and refractometry. It was established that its compoments form the compound 4Sr(NO{sub 2}){sub 2}xSr(OH){sub 2}x8H{sub 2}O. The compound was separated from solution; its density, decomposition temperature were determined; IR spectra and X-ray patterns of prepared and initial compounds were obtained.

  13. Histone peptide AKRHRK enhances H2O2-induced DNA damage and alters its site specificity

    International Nuclear Information System (INIS)

    Midorikawa, Kaoru; Murata, Mariko; Kawanishi, Shosuke

    2005-01-01

    Histone proteins are involved in compaction of DNA and the protection of cells from oxygen toxicity. However, several studies have demonstrated that the metal-binding histone reacts with H 2 O 2 , leading to oxidative damage to a nucleobase. We investigated whether histone can accelerate oxidative DNA damage, using a minimal model for the N-terminal tail of histone H4, CH 3 CO-AKRHRK-CONH 2 , which has a metal-binding site. This histone peptide enhanced DNA damage induced by H 2 O 2 and Cu(II), especially at cytosine residues, and induced additional DNA cleavage at the 5'-guanine of GGG sequences. The peptide also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and ESR spin-trapping signal from H 2 O 2 and Cu(II). Cyclic redox reactions involving histone-bound Cu(II) and H 2 O 2 , may give rise to multiple production of radicals leading to multiple hits in DNA. It is noteworthy that the histone H4 peptide with specific sequence AKRHRK can cause DNA damage rather than protection under metal-overloaded condition

  14. Co3(PO4)2·4H2O

    Science.gov (United States)

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  15. Aquabis(3,5-dimethyl-1H-pyrazole-κN(oxalato-κ2O,O′copper(II

    Directory of Open Access Journals (Sweden)

    Andrii I. Buvailo

    2008-01-01

    Full Text Available In the title compound, [Cu(C2O4(C5H8N22(H2O], the CuII atom is coordinated in a slightly distorted square-pyramidal geometry by two N atoms belonging to the two 3,5-dimethyl-1H-pyrazole ligands, two O atoms of the oxalate anion providing an O,O′-chelating coordination mode, and an O atom of the water molecule occupying the apical position. The crystal packing shows a well defined layer structure. Intra-layer connections are realised through a system of hydrogen bonds while the nature of the inter-layer interactions is completely hydrophobic, including no hydrogen-bonding interactions.

  16. NH4In(SeO4)2x4H2O crystal structure interpretation

    International Nuclear Information System (INIS)

    Soldatov, E.A.; Kuz'min, Eh.A.; Ilyukhin, V.V.

    1979-01-01

    The rhomb method has been applied to interpret the structure of monoclinic ammonium indium selenate NH 4 In(SeO 4 ) 2 x4H 2 O the elementary cell of which contains Z=4 formula units (a=10.728, b=9.434, c=11.086 A, γ=101.58). The space group is P2 1 /b. The structure foundation is composed of [In(SeO 4 ) 2 x2H 2 O] 1- mixed layers parallel to (100). ''Free'' H 2 O molecules and NH 4 + cations are situated between the layers

  17. A2TiF5.nH2O (A=K, Rb, or Cs; n=0 or 1): Synthesis, structure, characterization, and calculations of three new uni-dimensional titanium fluorides

    International Nuclear Information System (INIS)

    Jo, Vinna; Woo Lee, Dong; Koo, Hyun-Joo; Ok, Kang Min

    2011-01-01

    Three new uni-dimensional alkali metal titanium fluoride materials, A 2 TiF 5 .nH 2 O (A=K, Rb, or Cs; n=0 or 1) have been synthesized by hydrothermal reactions. The structures of A 2 TiF 5 .nH 2 O have been determined by single-crystal X-ray diffraction. The Ti 4+ cations have been reduced to Ti 3+ during the synthesis reactions. All three A 2 TiF 5 .nH 2 O materials contain novel 1-D chain structures that are composed of the slightly distorted Ti 3+ F 6 corner-sharing octahedra attributable to the Jahn-Teller distortion. The coordination environment of the alkali metal cations plays an important role to determine the degree of turning in the chain structures. Complete structural analyses, Infrared and UV-vis diffuse reflectance spectra, and thermal analyses are presented, as are electronic structure calculations. -- Graphical abstract: Ball-and-stick and polyhedral representations for (a) β-K 2 TiF 5 and (b) Rb 2 TiF 5 .H 2 O or Cs 2 TiF 5 .H 2 O with the K + and Rb + (or Cs + ) coordination environment emphasized. Display Omitted Research highlights: → Synthesis, structure, characterization, and calculation of new titanium fluorides. → Study of reduction of starting Ti 4+ cations to Ti 3+ by DMF. → Novel 1-D chain structures with Jahn-Teller distorted TiF 6 octahedra.

  18. Tinnunculite, C5H4N4O3 · 2H2O: Occurrences on the Kola Peninsula and Redefinition and Validation as a Mineral Species

    Science.gov (United States)

    Pekov, I. V.; Chukanov, N. V.; Yapaskurt, V. O.; Belakovskiy, D. I.; Lykova, I. S.; Zubkova, N. V.; Shcherbakova, E. P.; Britvin, S. N.; Chervonnyi, A. D.

    2017-12-01

    Based on a study of samples found in the Khibiny (Mt. Rasvumchorr: the holotype) and Lovozero (Mts Alluaiv and Vavnbed) alkaline complexes on the Kola Peninsula, Russia, tinnunculite was approved by the IMA Commission on New Minerals, Nomenclature, and Classification as a valid mineral species (IMA no. 2015-02la) and, taking into account a revisory examination of the original material from burnt dumps of coal mines in the southern Urals, it was redefined as crystalline uric acid dihydrate (UAD), C5H4N4O3 · 2H2O. Tinnunculite is poultry manure mineralized in biogeochemical systems, which could be defined as "guano microdeposits." The mineral occurs as prismatic or tabular crystals up to 0.01 × 0.1 × 0.2 mm in size and clusters of them, as well as crystalline or microglobular crusts. Tinnunculite is transparent or translucent, colorless, white, yellowish, reddish or pale lilac. Crystals show vitreous luster. The mineral is soft and brittle, with a distinct (010) cleavage. D calc = 1.68 g/cm3 (holotype). Tinnunculite is optically biaxial (-), α = 1.503(3), β = 1.712(3), γ = 1.74(1), 2 V obs = 40(10)°. The IR spectrum is given. The chemical composition of the holotype sample (electron microprobe data, content of H is calculated by UAD stoichiometry) is as follows, wt %: 37.5 O, 28.4 C, 27.0 N, 3.8 Hcalc, total 96.7. The empirical formula calculated on the basis of (C + N+ O) = 14 apfu is: C4.99H8N4.07O4.94. Tinnunculite is monoclinic, space group (by analogy with synthetic UAD) P21/ c. The unit cell parameters of the holotype sample (single crystal XRD data) are a = 7.37(4), b = 6.326(16), c = 17.59(4) Å, β = 90(1)°, V = 820(5) Å3, Z = 4. The strongest reflections in the XRD pattern ( d, Å- I[ hkl]) are 8.82-84[002], 5.97-15[011], 5.63-24[102̅, 102], 4.22-22[112], 3.24-27[114̅,114], 3.18-100[210], 3.12-44[211̅, 211], 2.576-14[024].

  19. D/H fractionation in the H2-H2O system at supercritical water conditions: Compositional and hydrogen bonding effects

    Science.gov (United States)

    Foustoukos, Dionysis I.; Mysen, Bjorn O.

    2012-06-01

    A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the

  20. cyclo-Tetrakis(μ-3-acetyl-4-methyl-1H-pyrazole-5-carboxylato-κ4N2,O3:N1,O5tetrakis[aquacopper(II] tetradecahydrate

    Directory of Open Access Journals (Sweden)

    Sergey Malinkin

    2011-09-01

    Full Text Available The title compound, [Cu4(C7H6N2O34(H2O4]·14H2O, a tetranuclear [2 × 2] grid-type complex with S4 symmetry, contains four CuII atoms which are bridged by four pyrazolecarboxylate ligand anions and are additionally bonded to a water molecule. Each CuII atom is coordinated by two O atoms of the carboxylate and acetyl groups, two pyrazole N atoms of doubly deprotonated 3-acetyl-4-methyl-1H-pyrazole-5-carboxylic acid and one O atom of a water molecule. The geometry at each CuII atom is distorted square-pyramidal, with the two N and two O atoms in the equatorial plane and O atoms in the axial positions. O—H...O hydrogen-bonding interactions additionally stabilize the structure. One of the uncoordinated water molecules shows half-occupancy.

  1. Importance of halogen···halogen contacts for the structural and magnetic properties of CuX2(pyrazine-N,N′-dioxide)(H2O)2 (X = Cl and Br).

    Science.gov (United States)

    Schlueter, John A; Park, Hyunsoo; Halder, Gregory J; Armand, William R; Dunmars, Cortney; Chapman, Karena W; Manson, Jamie L; Singleton, John; McDonald, Ross; Plonczak, Alex; Kang, Jinhee; Lee, Chaghoon; Whangbo, Myung-Hwan; Lancaster, Tom; Steele, Andrew J; Franke, Isabel; Wright, Jack D; Blundell, Stephen J; Pratt, Francis L; deGeorge, Joseph; Turnbull, Mark M; Landee, Christopher P

    2012-02-20

    The structural and magnetic properties of the newly crystallized CuX(2)(pyzO)(H(2)O)(2) (X = Cl, Br; pyzO = pyrazine-N,N'-dioxide) coordination polymers are reported. These isostructural compounds crystallize in the monoclinic space group C2/c with, at 150 K, a = 17.0515(7) Å, b = 5.5560(2) Å, c = 10.4254(5) Å, β = 115.400(2)°, and V = 892.21(7) Å(3) for X = Cl and a = 17.3457(8) Å, b = 5.6766(3) Å, c = 10.6979(5) Å, β = 115.593(2)°, and V = 950.01(8) Å(3) for X = Br. Their crystal structure is characterized by one-dimensional chains of Cu(2+) ions linked through bidentate pyzO ligands. These chains are joined together through OH···O hydrogen bonds between the water ligands and pyzO oxygen atoms and Cu-X···X-Cu contacts. Bulk magnetic susceptibility measurements at ambient pressure show a broad maximum at 7 (Cl) and 28 K (Br) that is indicative of short-range magnetic correlations. The dominant spin exchange is the Cu-X···X-Cu supersuperexchange because the magnetic orbital of the Cu(2+) ion is contained in the CuX(2)(H(2)O)(2) plane and the X···X contact distances are short. The magnetic data were fitted to a Heisenberg 1D uniform antiferromagnetic chain model with J(1D)/k(B) = -11.1(1) (Cl) and -45.9(1) K (Br). Magnetization saturates at fields of 16.1(3) (Cl) and 66.7(5) T (Br), from which J(1D) is determined to be -11.5(2) (Cl) and -46.4(5) K (Br). For the Br analog the pressure dependence of the magnetic susceptibility indicates a gradual increase in the magnitude of J(1D)/k(B) up to -51.2 K at 0.84 GPa, suggesting a shortening of the Br···Br contact distance under pressure. At higher pressure X-ray powder diffraction data indicates a structural phase transition at ∼3.5 GPa. Muon-spin relaxation measurements indicate that CuCl(2)(pyzO)(H(2)O)(2) is magnetically ordered with T(N) = 1.06(1) K, while the signature for long-range magnetic order in CuBr(2)(pyzO)(H(2)O)(2) was much less definitive down to 0.26 K. The results for the Cu

  2. The system Ba(H2PO4)2-Sr(H2PO4)2-H3PO4(30%)-H2O at 25, 40 and 60 deg C

    International Nuclear Information System (INIS)

    Taranenko, N.P.; Serebrennikova, G.M.; Stepin, B.D.; Oboznenko, Yu.V.

    1982-01-01

    The system Ba(H 2 PO 4 ) 2 -Sr(H 2 PO 4 ) 2 -H 3 PO 4 (30%)-H 2 O (25 deg C) belongs to eutonic type systems. Solubility isotherms of salt components at 40 and 60 deg C are calculated. Polytherms (25-60 deg C) of solubility of monosubstituted barium and strontium phosphates in 30-60% H 3 PO 4 are obtained. The value of cocrystallization coefficient of Sr 2 + and Ba(H 2 PO 4 ) 2 Dsub(Sr)=0.042+-0.005 remains stable in the temperature range of 25-60 deg C and concentrations 30-60% phosphoric acid at initial content [Sr 2 + ]=1x10 - 2 mass%

  3. Crystal structures of tetramethylammonium (2,2′-bipyridinetetracyanidoferrate(III trihydrate and poly[[(2,2′-bipyridine-κ2N,N′di-μ2-cyanido-dicyanido(μ-ethylenediamine(ethylenediamine-κ2N,N′cadmium(IIiron(II] monohydrate

    Directory of Open Access Journals (Sweden)

    Songwuit Chanthee

    2016-05-01

    Full Text Available The crystal structures of the building block tetramethylammonium (2,2′-bipyridine-κ2N,N′tetracyanidoferrate(III trihydrate, [N(CH34][Fe(CN4(C10H8N2]·3H2O, (I, and a new two-dimensional cyanide-bridged bimetallic coordination polymer, poly[[(2,2′-bipyridine-κ2N,N′di-μ2-cyanido-dicyanido(μ-ethylenediamine-κ2N:N′(ethylenediamine-κ2N,N′cadmium(IIiron(II] monohydrate], [CdFe(CN4(C10H8N2(C2H8N22]·H2O, (II, are reported. In the crystal of (I, pairs of [Fe(2,2′-bipy(CN4]− units (2,2′-bipy is 2,2′-bipyridine are linked together through π–π stacking between the pyridyl rings of the 2,2′-bipy ligands to form a graphite-like structure parallel to the ab plane. The three independent water molecules are hydrogen-bonded alternately with each other, forming a ladder chain structure with R44(8 and R66(12 graph-set ring motifs, while the disordered [N(CH34]+ cations lie above and below the water chains, and the packing is stabilized by weak C—H...O hydrogen bonds. The water chains are further linked with adjacent sheets into a three-dimensional network via O—H...O hydrogen bonds involving the lattice water molecules and the N atoms of terminal cyanide groups of the [Fe(2,2′-bipy(CN4]− building blocks, forming an R44(12 ring motif. Compound (II features a two-dimensional {[Fe(2,2′-bipy(CN4Cd(en2]}n layer structure (en is ethylenediamine extending parallel to (010 and constructed from {[Fe(2,2′-bipy(CN4Cd(en]}n chains interlinked by bridging en ligands at the Cd atoms. Classical O—H...N and N—H...O hydrogen bonds involving the lattice water molecule and N atoms of terminal cyanide groups and the N—H groups of the en ligands are observed within the layers. The layers are further connected via π–π stacking interactions between adjacent pyridine rings of the 2,2′-bipy ligands, completing a three-dimensional supramolecular structure.

  4. Anti-inflammatory drugs. X. Hydrated pyrrolidinium [2-[(2,6-dichlorophenyl)amino]phenyl]acetate(HP.D.H2O).

    Science.gov (United States)

    Castellari, C; Comelli, F; Ottani, S

    2001-10-01

    In the solid-state structure of the title compound, C(4)H(10)N(+).C(14)H(10)Cl(2)NO(2)(-).H(2)O, the asymmetric unit contains one cation, one anion and a water molecule. There is a network of hydrogen bonds which is similar to that found in the hydrated diethylammonium diclofenac salt. A comparison is made of the molecular conformation of the anions in the two related structures.

  5. Specific heat and thermodynamic functions of uranovanadates of the M2+(VUO6)2 · nH2O series (M2+ = Mg, Ca, Sr, Ba, Pb)

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, N.G.; Sulejmanov, E.V.; Trostin, V.L.; Alimzhanov, M.I.; Razuvaeva, E.A.

    1999-01-01

    Isobaric specific heat of crystal uranovanadates Ca(VUO 6 ) 2 · 8H 2 O, Ba(VUO 6 ) 2 · 4H 2 O in the temperature range of 10 - 300 K and of M 1 (VUO 6 ) 2 · 5H 2 O, (M 1 = Mg, Ca, Sr, Pb) at 80 -300 K are measured by the method of adiabatic vacuum calorimetry. The functions H 0 (T) - H 0 (0), S 0 (T), G 0 (T) - H 0 (T) for all the above-mentioned compounds in the range of 0 - 300 K have been calculated, the standard entropies and Gibbs functions of uranovanadates formation at 298.15 K being calculated as well [ru

  6. UV-induced N2O emission from plants

    Science.gov (United States)

    Bruhn, Dan; Albert, Kristian R.; Mikkelsen, Teis N.; Ambus, Per

    2014-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone-depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2h-1, mostly due to the UV component. The emission response to UV-A is of the same magnitude as that to UV-B. Therefore, UV-A is more important than UV-B given the natural UV-spectrum at Earth's surface. Plants also emitted N2O in darkness, although at reduced rates. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  7. N-(2-Chlorophenyl-2-({5-[4-(methylsulfanylbenzyl]-4-phenyl-4H-1,2,4-triazol-3-yl}sulfanylacetamide

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2011-08-01

    Full Text Available In the title molecule, C24H21ClN4OS2, the central 1,2,4-triazole ring forms dihedral angles of 89.05 (9, 86.66 (9 and 82.70 (10° with the chloro-substituted benzene ring, the methylsulfanyl-substituted benzene ring and the phenyl ring, respectively. In the crystal, molecules are linked into sheets parallel to (100 by intermolecular N—H...N and weak C—H...O hydrogen bonds.

  8. Degradation of 5-FU by means of advanced (photo)oxidation processes: UV/H{sub 2}O{sub 2}, UV/Fe{sup 2+}/H{sub 2}O{sub 2} and UV/TiO{sub 2} — Comparison of transformation products, ready biodegradability and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbeck, Carlos Alexandre, E-mail: lutterbeck@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg (Germany); Graduate Program in Environmental Technology, Universidade de Santa Cruz do Sul — UNISC, Av. Independência, 2293, CEP 96815-900 Santa Cruz do Sul, Rio Grande do Sul (Brazil); Wilde, Marcelo Luís, E-mail: wilde@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg (Germany); Baginska, Ewelina, E-mail: ewelina.baginska@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg (Germany); Leder, Christoph, E-mail: cleder@leuphana.de [Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Scharnhorststraße 1/C13, DE-21335 Lüneburg (Germany); Machado, Ênio Leandro, E-mail: enio@unisc.br [Graduate Program in Environmental Technology, Universidade de Santa Cruz do Sul — UNISC, Av. Independência, 2293, CEP 96815-900 Santa Cruz do Sul, Rio Grande do Sul (Brazil); and others

    2015-09-15

    The present study investigates the degradation of the antimetabolite 5-fluorouracil (5-FU) by three different advanced photo oxidation processes: UV/H{sub 2}O{sub 2}, UV/Fe{sup 2+}/H{sub 2}O{sub 2} and UV/TiO{sub 2}. Prescreening experiments varying the H{sub 2}O{sub 2} and TiO{sub 2} concentrations were performed in order to set the best catalyst concentrations in the UV/H{sub 2}O{sub 2} and UV/TiO{sub 2} experiments, whereas the UV/Fe{sup 2+}/H{sub 2}O{sub 2} process was optimized varying the pH, Fe{sup 2+} and H{sub 2}O{sub 2} concentrations by means of the Box–Behnken design (BBD). 5-FU was quickly removed in all the irradiation experiments. The UV/Fe{sup 2+}/H{sub 2}O{sub 2} and UV/TiO{sub 2} processes achieved the highest degree of mineralization, whereas the lowest one resulted from the UV/H{sub 2}O{sub 2} treatment. Six transformation products were formed during the advanced (photo)oxidation processes and identified using low and high resolution mass spectrometry. Most of them were formed and further eliminated during the reactions. The parent compound of 5-FU was not biodegraded, whereas the photolytic mixture formed in the UV/H{sub 2}O{sub 2} treatment after 256 min showed a noticeable improvement of the biodegradability in the closed bottle test (CBT) and was nontoxic towards Vibrio fischeri. In silico predictions showed positive alerts for mutagenic and genotoxic effects of 5-FU. In contrast, several of the transformation products (TPs) generated along the processes did not provide indications for mutagenic or genotoxic activity. One exception was TP with m/z 146 with positive alerts in several models of bacterial mutagenicity which could demand further experimental testing. Results demonstrate that advanced treatment can eliminate parent compounds and its toxicity. However, transformation products formed can still be toxic. Therefore toxicity screening after advanced treatment is recommendable. - Highlights: • Full primary elimination of 5-FU was

  9. Infrared spectroscopic investigation of M(H2PO4)2x2H2O (M=Mg, Mn, Cd) dehydration products

    International Nuclear Information System (INIS)

    Pechkovskij, V.V.; Dzyuba, E.D.; Mel'nikova, R.Ya.; Salonets, G.I.; Kovalishina, V.I.; Malashonok, I.E.

    1982-01-01

    Using the method of IR spectroscopy the composition of products separated at different stages of M(H 2 PO 4 ) 2 x2H 2 O dehydration, where M=Mg, Mn, Cd, has been investigated. It is shown that cation influence is expressed in strengthening of bond of proton-containing groups in the structure of initial compounds from magnesium to cadmium. A supposition is made that the difference in bond character of the groups more evidently expressed for partially dehydrated products of the composition M(H 2 PO 4 ) 2 , conditions a possibility of dehydration in two directions- with the formation of intermediate phase MH 2 P 2 O 7 or with separation of three phosphoric acid

  10. Diaquabis[5-(2-pyridyltetrazolato-κ2N1,N5]iron(II

    Directory of Open Access Journals (Sweden)

    Min Hu

    2009-04-01

    Full Text Available The title complex, [Fe(C6H4N52(H2O2], was synthesized by the reaction of ferrous sulfate with 5-(2-pyridyl-2H-tetrazole (HL. The FeII atom, located on a crystallographic center of inversion, is coordinated by four N-atom donors from two planar trans-related deprotonated L ligands and two O atoms from two axial water molecules in a distorted octahedral geometry. The FeII mononuclear units are further connected by intermolecular O—H...N and C—H...O hydrogen-bonding interactions, forming a three-dimensional framework.

  11. Decapado de un acero inoxidable austenítico mediante mezclas ecológicas basadas en H2O2 - H2SO4 - iones F-

    Directory of Open Access Journals (Sweden)

    Narváez, L.

    2013-04-01

    Full Text Available This study reports the pickling of 316L stainless steel using mixtures of hydrogen peroxide (H2O2, sulphuric acid (H2SO4 and fluoride ions as hydrofluoric acid (HF, sodium fluoride (NaF and potassium fluoride (KF. The decomposition of H2O2 in the mixtures was assessed at different temperatures 25 °C to 60 °C, with ferric ion contents from 0 to 40 g/l. According to the results obtained, were established the optimal condition pickling at 20 g/l of ferric ions, 25 °C and p-toluensulphonic acid as stabilizer of H2O2. The HF pickling mixture was the only capable to remove totally the oxide layer from the 316L stainless steel after 300 s. The fluoride salts pickling mixtures only remove partially the oxide layer (20 to 40 % aprox. after 300 s. When the pickling time was increased until 1200 s, the removal percentages were around to 80 %.En este estudio se presenta el decapado del acero inoxidable austenítico 316L utilizando mezclas de peróxido de hidrógeno (H2O2/ácido sulfúrico (H2SO4/iones fluoruro; los iones fluoruro provienen del ácido fluorhídrico (HF, fluoruro de sodio (NaF y fluoruro de potasio (KF. La estabilidad del H2O2 fue valorada modificando las concentraciones del ión férrico de 0 a 40 g/l y las temperaturas de 25 °C a 60 °C en las mezclas decapantes. Se establecieron las condiciones óptimas de decapado utilizando 20 g/l de iones férrico a 25 °C empleando el ácido p-toluensulfónico como estabilizante del H2O2. La mezcla que contenía HF fue la única capaz de eliminar completamente los óxidos superficiales del acero a tiempos de 300 s. Las mezclas a base de sales fluoradas eliminaron parcialmente los óxidos (20 y 40 % aprox. en 300 s. Al incrementar el tiempo de decapado hasta 1200 s se obtuvieron porcentajes de eliminación alrededor de un 80 %.

  12. Crystallization of rare earth germanates in the K2O-Ln2O3-GeO2-H2O at 280 deg C

    International Nuclear Information System (INIS)

    Panasenko, E.B.; Begunova, R.G.; Sklokina, N.F.

    1980-01-01

    Crystallization of rare earth germanates in potassium hydroxide solutions is studied at 280 deg C. Stability limits for different crystalline phases are established. Diorthogermanates Ln 2 O 3 x2GeO 3 (three structural modifications) are formed with all lanthanides except lanthanum. Germanates-apatites 7Ln 2 O 3 x9GeO 2 are characteristic for ''large'' lanthanides La-Nd. Alkali germanate of the composition 0.5 K 2 OxLn 2 O 3 xGeO 2 xnH 2 O is realized with the elements of the end of rare earth series, i.e., Tm-Lu. Some properties of the germanates synthesized are considered [ru

  13. Definitive difference among [DS-D2O], [DS-H2O] and [Bulk-D2O] cells in the deuterization and deuterium-reaction

    International Nuclear Information System (INIS)

    Arata, Yoshiaki; Zhang, Yue Chang

    2000-01-01

    We observed a new phenomena that the enormous amount of deuterium/hydrogen can be absorbed quickly as a 'solute-atom' into fine metal powders embedded inside a double-structure (DS) cathode in the electrolyses of D 2 O and H 2 O-electrolytes, respectively, but such highly deuterated powders can be produced only using DS-cathode immersed in D 2 O-electrolyte; [DS-D 2 O], and never generated in H 2 O-electrolyte even using the DS-cathode; [DS-H 2 O]. On the other hand, [Bulk-D 2 O] with bulk-cathode made by the bulk Pd metal never produces highly deuterated metal as mentioned above even though using D 2 O-electrolyte. In short, the deuterium-concentration generating in [Bulk-D 2 O] is found to be much lower than that in [DS-D 2 O]. As a result, because of reason mentioned above, in marked contrast to the case with the [DS-D 2 O], neither excess heat nor 4 He production are observed with both [DS-H 2 O] and [Bulk-D 2 O]. (author)

  14. NO and H2O2 contribute to SO2 toxicity via Ca2+ signaling in Vicia faba guard cells.

    Science.gov (United States)

    Yi, Min; Bai, Heli; Xue, Meizhao; Yi, Huilan

    2017-04-01

    NO and H 2 O 2 have been implicated as important signals in biotic and abiotic stress responses of plants to the environment. Previously, we have shown that SO 2 exposure increased the levels of NO and H 2 O 2 in plant cells. We hypothesize that, as signaling molecules, NO and H 2 O 2 mediate SO 2 -caused toxicity. In this paper, we show that SO 2 hydrates caused guard cell death in a concentration-dependent manner in the concentration range of 0.25 to 6 mmol L -1 , which was associated with elevation of intracellular NO, H 2 O 2 , and Ca 2+ levels in Vicia faba guard cells. NO donor SNP enhanced SO 2 toxicity, while NO scavenger c-PTIO and NO synthesis inhibitors L-NAME and tungstate significantly prevented SO 2 toxicity. ROS scavenger ascorbic acid (AsA) and catalase (CAT), Ca 2+ chelating agent EGTA, and Ca 2+ channel inhibitor LaCl 3 also markedly blocked SO 2 toxicity. In addition, both c-PTIO and AsA could completely block SO 2 -induced elevation of intracellular Ca 2+ level. Moreover, c-PTIO efficiently blocked SO 2 -induced H 2 O 2 elevation, and AsA significantly blocked SO 2 -induced NO elevation. These results indicate that extra NO and H 2 O 2 are produced and accumulated in SO 2 -treated guard cells, which further activate Ca 2+ signaling to mediate SO 2 toxicity. Our findings suggest that both NO and H 2 O 2 contribute to SO 2 toxicity via Ca 2+ signaling.

  15. CO2-induced pH reduction increases physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus

    Science.gov (United States)

    Hu, Menghong; Lin, Daohui; Shang, Yueyong; Hu, Yi; Lu, Weiqun; Huang, Xizhi; Ning, Ke; Chen, Yimin; Wang, Youji

    2017-01-01

    The increasing usage of nanoparticles has caused their considerable release into the aquatic environment. Meanwhile, anthropogenic CO2 emissions have caused a reduction of seawater pH. However, their combined effects on marine species have not been experimentally evaluated. This study estimated the physiological toxicity of nano-TiO2 in the mussel Mytilus coruscus under high pCO2 (2500-2600 μatm). We found that respiration rate (RR), food absorption efficiency (AE), clearance rate (CR), scope for growth (SFG) and O:N ratio were significantly reduced by nano-TiO2, whereas faecal organic weight rate and ammonia excretion rate (ER) were increased under nano-TiO2 conditions. High pCO2 exerted lower effects on CR, RR, ER and O:N ratio than nano-TiO2. Despite this, significant interactions of CO2-induced pH change and nano-TiO2 were found in RR, ER and O:N ratio. PCA showed close relationships among most test parameters, i.e., RR, CR, AE, SFG and O:N ratio. The normal physiological responses were strongly correlated to a positive SFG with normal pH and no/low nano-TiO2 conditions. Our results indicate that physiological functions of M. coruscus are more severely impaired by the combination of nano-TiO2 and high pCO2.

  16. Observations of interstellar H2O emission at 183 Gigahertz

    International Nuclear Information System (INIS)

    Waters, J.W.; Gustincic, J.J.; Kakar, R.K.; Kuiper, T.B.H.; Roscoe, H.K.; Swanson, P.N.; Rodriguez Kuiper, E.N.; Kerr, A.R.; Thaddeus, P.

    1980-01-01

    Line emission at 183 GHz by the 3 13 --2 20 rotational transition of water vapor has been detected from the Orion Nebula with the NASA Kuiper Airborne Observatory 91 cm telescope. The peak antenna temperature of the line is 15 K, its LSR velocity is 8 km s -1 , and its width is 15 km s -1 . The velocity profile has characteristics similar to those for CO:a narrow (approx.4 km s -1 ) ''spike'' centered at 9.5 km s -1 and a broad ''plateau'' with flaring wings centered at approx.8 km s -1 . Our 7'.5 antenna beam did not resolve the source. The 183 GHz H 2 O plateau emission appears enhanced above that expected for thermal excitation if it originates from the no greater than 1' region characteristic of plateau emission from all other observed molecules. The spike emission is consistent with an optically thick source of the approximated size of the well-known molecular ridge in Orion having the H 2 O in thermal equilibrium at Tapprox. =50 K. If this is the case, then the H 2 O column density giving rise to the spike is N/sub H/2/sub O/> or =3 x 10 17 cm -2 . An excitation calculation implies N/sub H/2/sub O/approx. =10 18 cm -2 for a source the size of the molecular ridge. These results imply that H 2 O is one of the more abundant species in the Orion Molecualr Cloud.H 2 O emission at 183 GHz was not detected in Sgr A, Sgr B2, W3, W43, W49, W51, DR 21, NGC 1333, NGC 7027, GL 2591, or the rho Oph cloud; it may have been detected in M17

  17. Tyrphostin AG-related compounds attenuate H2O2-induced TRPM2-dependent and -independent cellular responses.

    Science.gov (United States)

    Yamamoto, Shinichiro; Toda, Takahiro; Yonezawa, Ryo; Negoro, Takaharu; Shimizu, Shunichi

    2017-05-01

    TRPM2 is a Ca 2+ -permeable channel that is activated by H 2 O 2 . TRPM2-mediated Ca 2+ signaling has been implicated in the aggravation of inflammatory diseases. Therefore, the development of TRPM2 inhibitors to prevent the aggravation of these diseases is expected. We recently reported that some Tyrphostin AG-related compounds inhibited the H 2 O 2 -induced activation of TRPM2 by scavenging the intracellular hydroxyl radical. In the present study, we examined the effects of AG-related compounds on H 2 O 2 -induced cellular responses in human monocytic U937 cells, which functionally express TRPM2. The effects of AG-related compounds on H 2 O 2 -induced changes in intracellular Ca 2+ concentrations, extracellular signal-regulated kinase (ERK) activation, and CXCL8 secretion were assessed using U937 cells. Ca 2+ influxes via TRPM2 in response to H 2 O 2 were blocked by AG-related compounds. AG-related compounds also inhibited the H 2 O 2 -induced activation of ERK, and subsequent secretion of CXCL8 mediated by TRPM2-dependent and -independent mechanisms. Our results show that AG-related compounds inhibit H 2 O 2 -induced CXCL8 secretion following ERK activation, which is mediated by TRPM2-dependent and -independent mechanisms in U937 cells. We previously reported that AG-related compounds blocked H 2 O 2 -induced TRPM2 activation by scavenging the hydroxyl radical. The inhibitory effects of AG-related compounds on TRPM2-independent responses may be due to scavenging of the hydroxyl radical. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. Aluminum (III) and gallium (III) complexes with methyliminodiacetic acid: Crystal structures of Cat[M(Mida)2] (Cat+=Na, K, NH4; M3+=Al, Ga) and Me4N[Ga(Mida)2H2O

    International Nuclear Information System (INIS)

    Ilyukhin, A.B.; Petrosyants, S.P.; Milovanov, S.V.; Malyarik, M.A.

    1997-01-01

    The bis chelate complexes Cat[M(Mida) 2 ] and Me 4 N[Ga(Mida) 2H 2 O are synthesized from aqueous solutions M(NO 3 ) 3 -2H 2 Mida-CatOH (M 3+ =Al, Ga; Cat + =Na, K, NH 4 ) and Ga(OH) 3 -2H 2 Mida-Me 4 NOH. The crystal structures of the isostructural compounds Cat[M(Mida) 2 ] (Cat=Na, M=Al; Cat=K, M=Al; Cat=Na, M=Ga) and Me 4 N[Ga(Mida) 2H 2 O are determined by X-ray structure analysis. According to the X-ray powder diffraction analysis, all the six compounds Cat[M(Mida) 2 ] (Cat=Na, K, NH 4 ; M=Al, Ga) are isostructural. The octahedral anion in Cat[M(Mida) 2 ] and Me 4 N[Ga(Mida) 2H 2 O exhibits a trans(N)- fac configuration

  19. H2O2 Production in Microbial Electrochemical Cells Fed with Primary Sludge.

    Science.gov (United States)

    Ki, Dongwon; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2017-06-06

    We developed an energy-efficient, flat-plate, dual-chambered microbial peroxide producing cell (MPPC) as an anaerobic energy-conversion technology for converting primary sludge (PS) at the anode and producing hydrogen peroxide (H 2 O 2 ) at the cathode. We operated the MPPC with a 9 day hydraulic retention time in the anode. A maximum H 2 O 2 concentration of ∼230 mg/L was achieved in 6 h of batch cathode operation. This is the first demonstration of H 2 O 2 production using PS in an MPPC, and the energy requirement for H 2 O 2 production was low (∼0.87 kWh/kg H 2 O 2 ) compared to previous studies using real wastewaters. The H 2 O 2 gradually decayed with time due to the diffusion of H 2 O 2 -scavenging carbonate ions from the anode. We compared the anodic performance with a H 2 -producing microbial electrolysis cell (MEC). Both cells (MEC and MPPC) achieved ∼30% Coulombic recovery. While similar microbial communities were present in the anode suspension and anode biofilm for the two operating modes, aerobic bacteria were significant only on the side of the anode facing the membrane in the MPPC. Coupled with a lack of methane production in the MPPC, the presence of aerobic bacteria suggests that H 2 O 2 diffusion to the anode side caused inhibition of methanogens, which led to the decrease in chemical oxygen demand removal. Thus, the Coulombic efficiency was ∼16% higher in the MPPC than in the MEC (64% versus 48%, respectively).

  20. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    Science.gov (United States)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  1. X-ray irradiation activates K+ channels via H2O2 signaling.

    Science.gov (United States)

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-09-09

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.

  2. 2-(1H-Benzimidazol-2-ylphenol

    Directory of Open Access Journals (Sweden)

    S. M. Prakash

    2014-02-01

    Full Text Available The title molecule, C13H10N2O, is essentially planar, the maximum deviation from the plane of the non-H atoms being 0.016 (2 Å. The imidazole ring makes a dihedral angle of 0.37 (13° with the attached benzene ring. An intramolecular O—H...N hydrogen bond generates an S(6 ring motif. In the crystal, molecules are linked through N—H...O hydrogen bonds, forming chains propagating in [001]. The crystal packing also features four π–π stacking interactions involving the imidazole ring, fused benzene ring and attached benzene ring system [centroid–centroid distances = 3.6106 (17, 3.6108 (17, 3.6666 (17 and 3.6668 (17 Å].

  3. Hexaaquabis[3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanido-κ2N3,O4]barium tetrahydrate

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Do

    2013-11-01

    Full Text Available In the title compound, [Ba(C7H5N2O52(H2O6]·4H2O, the Ba2+ cation lies on a twofold rotation axis and is ten-coordinated by two 3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanide oxo O atoms [Ba—O = 2.8715 (17 Å], two hydroxyimino N atoms [Ba—N = 3.036 (2 Å], and six water molecules [Ba—O = 2.847 (2, 2.848 (2, and 2.880 (2 Å]. The 3,5-bis(hydroxyimino-1-methyl-2,4,6-trioxocyclohexanide monoanions act in a bidentate chelating manner, coordinating through an N atom of the non-deprotonated hydroxyimino group and an O atom of the neighboring oxo group. Two lattice water molecules are located in the cavities of the framework and are involved in hydrogen bonding to O atoms of one of the coordinating water molecules and the O atom of a keto group of the ligand. As a result, a three-dimensional network is formed.

  4. Structures and Spectroscopic Properties of F-(H2O) n with n = 1-10 Clusters from a Global Search Based On Density Functional Theory.

    Science.gov (United States)

    Shi, Ruili; Wang, Pengju; Tang, Lingli; Huang, Xiaoming; Chen, Yonggang; Su, Yan; Zhao, Jijun

    2018-04-05

    Using a genetic algorithm incorporated in density functional theory, we explore the ground state structures of fluoride anion-water clusters F - (H 2 O) n with n = 1-10. The F - (H 2 O) n clusters prefer structures in which the F - anion remains at the surface of the structure and coordinates with four water molecules, as the F - (H 2 O) n clusters have strong F - -H 2 O interactions as well as strong hydrogen bonds between H 2 O molecules. The strong interaction between the F - anion and adjacent H 2 O molecule leads to a longer O-H distance in the adjacent molecule than in an individual water molecule. The simulated infrared (IR) spectra of the F - (H 2 O) 1-5 clusters obtained via second-order vibrational perturbation theory (VPT2) and including anharmonic effects reproduce the experimental results quite well. The strong interaction between the F - anion and water molecules results in a large redshift (600-2300 cm -1 ) of the adjacent O-H stretching mode. Natural bond orbital (NBO) analysis of the lowest-energy structures of the F - (H 2 O) 1-10 clusters illustrates that charge transfer from the lone pair electron orbital of F - to the antibonding orbital of the adjacent O-H is mainly responsible for the strong interaction between the F - anion and water molecules, which leads to distinctly different geometric and vibrational properties compared with neutral water clusters.

  5. Nitroxides protect horseradish peroxidase from H2O2-induced inactivation and modulate its catalase-like activity.

    Science.gov (United States)

    Samuni, Amram; Maimon, Eric; Goldstein, Sara

    2017-08-01

    Horseradish peroxidase (HRP) catalyzes H 2 O 2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H 2 O 2 -induced inactivation, have been investigated. HRP reaction with H 2 O 2 was studied by following H 2 O 2 depletion, O 2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow. Nitroxide protects HRP against H 2 O 2 -induced inactivation. The rate of H 2 O 2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H 2 O 2 . The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO)>4-OH-TPO>3-carbamoyl proxyl>4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III. Nitroxide catalytically protects HRP against inactivation induced by H 2 O 2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex. Nitroxides catalytically protect heme proteins against inactivation induced by H 2 O 2 revealing an additional role played by nitroxide antioxidants in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hollow mesoporous CuCo2O4 microspheres derived from metal organic framework: A novel functional materials for simultaneous H2O2 biosensing and glucose biofuel cell.

    Science.gov (United States)

    Cui, Shiqiang; Gu, Shuqing; Ding, Yaping; Zhang, Jiangjiang; Zhang, Zhen; Hu, Zongqian

    2018-02-01

    Hollow mesoporous CuCo 2 O 4 (meso-CuCo 2 O 4 ) microspheres were successfully synthesized by decomposing metal-organic frameworks (MOFs) as the template. The as-prepared CuCo 2 O 4 microspheres were first simultaneously used for H 2 O 2 biosensing and glucose biofuel cell (GFC) as the enzyme mimic. The resulting of meso-CuCo 2 O 4 displayed not only excellent catalytic performances to H 2 O 2 including a super-fast response time (within 2s), a super-high sensitivity (654.23 μA mM -1 cm -2 ) and a super-low detection limit (3nM at S/N = 3) on the sensor, but also great values in GFC as anode material with an open circuit voltage of 0.85V, a maximum power density of 0.33 mWcm -2 and a limiting current density of 1.27 mAcm -2 , respectively. The preeminent catalytic abilities to H 2 O 2 and glucose may be attributed to the surpassing intrinsic catalytic activity of CuCo 2 O 4 and large specific area of mesoporous structure. These significant findings deriving from this work not only provided a novel exploration for the fabrication of hollow spherical mesoporous bimetallic oxides, but also promoted the development of the supersensitive detection of H 2 O 2 and non-enzymatic biofuel cell. Copyright © 2017. Published by Elsevier B.V.

  7. Phosphinodi(benzylsilane) PhP{(o-C6H4CH2)SiMe2H}2: a versatile "PSi2Hx" pincer-type ligand at ruthenium.

    Science.gov (United States)

    Montiel-Palma, Virginia; Muñoz-Hernández, Miguel A; Cuevas-Chávez, Cynthia A; Vendier, Laure; Grellier, Mary; Sabo-Etienne, Sylviane

    2013-09-03

    The synthesis of the new phosphinodi(benzylsilane) compound PhP{(o-C6H4CH2)SiMe2H}2 (1) is achieved in a one-pot reaction from the corresponding phenylbis(o-tolylphosphine). Compound 1 acts as a pincer-type ligand capable of adopting different coordination modes at Ru through different extents of Si-H bond activation as demonstrated by a combination of X-ray diffraction analysis, density functional theory calculations, and multinuclear NMR spectroscopy. Reaction of 1 with RuH2(H2)2(PCy3)2 (2) yields quantitatively [RuH2{[η(2)-(HSiMe2)-CH2-o-C6H4]2PPh}(PCy3)] (3), a complex stabilized by two rare high order ε-agostic Si-H bonds and involved in terminal hydride/η(2)-Si-H exchange processes. A small free energy of reaction (ΔrG298 = +16.9 kJ mol(-1)) was computed for dihydrogen loss from 3 with concomitant formation of the 16-electron species [RuH{[η(2)-(HSiMe2)-CH2-o-C6H4]PPh[CH2-o-C6H4SiMe2]}(PCy3)] (4). Complex 4 features an unprecedented (29)Si NMR decoalescence process. The dehydrogenation process is fully reversible under standard conditions (1 bar, 298 K).

  8. Hydrothermal synthesis and crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Mei, Dajiang; Sun, Chuanling; Liu, Yunsheng; Wu, Yuandong [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science (China)

    2017-09-04

    The selenites, Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}, were synthesized under hydrothermal conditions. The crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} were determined by single-crystal X-ray diffractions. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O crystallizes in the triclinic space group P1 (no. 2) with unit cell parameters a = 4.8493(9), b = 12.013(2), c = 12.077(2) Aa, and Z = 2, whereas Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} crystallizes in the monoclinic space group C2/m (no. 12) with lattice cell parameters a = 12.596(6), b = 7.297(4), c = 16.914(8) Aa, and Z = 2. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O features a three-dimensional open framework structure formed by BeO{sub 4} tetrahedra and SeO{sub 3} trigonal pyramids. Na cations and H{sub 2}O molecules are located in different tunnels. Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} has a structure composed of isolated [Mg(H{sub 2}O){sub 6}] octahedra and SeO{sub 3} trigonal pyramids interacted by hydrogen bonds, and Cs cations are resided in-between. Both compounds were characterized by thermogravimetric analysis and FT-IR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Description and crystal structure of albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mereiter, K. [Vienna Univ. of Technology (Austria). Inst. of Chemical Technologies and Analytics

    2013-04-15

    Albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O, triclinic, space group P anti 1, a = 13.569(2), b = 13.419(2), c = 11.622(2) Aa, α = 115.82(1), β = 107.61(1), γ = 92.84(1) (structural unit cell, not reduced), V = 1774.6(5) Aa{sup 3}, Z = 2, Dc = 2.69 g/cm{sup 3} (for 17.5 H{sub 2}O), is a mineral that was found in small amounts with schroeckingerite, NaCa{sub 3}F[UO{sub 2}(CO{sub 3}){sub 3}](SO{sub 4}).10H{sub 2}O, on a museum specimen of uranium ore from Joachimsthal (Jachymov), Czech Republic. The mineral forms small grain-like subhedral crystals (= 0.2 mm) that resemble in appearance liebigite, Ca{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]. ∝ 11H{sub 2}O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX = 1.511(2), nY = 1.550(2), nZ = 1.566(2), 2V = 65(1) (λ = 589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO{sub 2} and H{sub 2}O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1 = 0.0206 and wR2 = 0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO{sub 2}(CO{sub 3}){sub 3}]{sup 4-} anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF{sub 2}(O{sub carbonate}){sub 3}(H{sub 2}O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO{sub 6}, CaF{sub 2}O{sub 2}(H{sub 2}O){sub 4}, CaFO{sub 3}(H{sub 2}O){sub 4} and CaO{sub 2}(H{sub 2}O){sub 6} coordination polyhedra. The crystal structure is built up from MgCa{sub 3}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}].8H{sub 2}O layers parallel to (001) which

  10. Kinetics and branching ratios of the reactions NH2+NO2->N2O+H2O and NH2+NO2->H2NO+NO studied by pulse radiolysis combined with time-resolved infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Meunier, H.; Pagsberg, Palle Bjørn; Sillesen, A.

    1996-01-01

    studied by monitoring the decay of NH2 and the simultaneous formation of N2O and NO by time-resolved infrared diode laser spectroscopy. The decay rate of NH2 was studied as a function of NO2 concentration to obtain an overall rate constant k(NH2 + NO2) = (1.35 +/- 0.15) X 10(-11) molecule(-1) cm(3) s(-1...

  11. Magnetic properties of CoBr2.6[(1-x)H2O.xD2O

    International Nuclear Information System (INIS)

    Hijmans, J.P.A.M.

    1979-01-01

    The magnetic properties of CoBr 2 .6H 2 O and the anomalous effects upon deuteration have been studied. The experimental techniques employed are described and the high-temperature behaviour of the susceptibility analysed in terms of a crystal-field model combined with a high-temperature expansion for the exchange contribution. The high-temperature behaviour of the specific heat is studied and several kinds of experiments performed in the ordered state below Tsub(N). The XY plane anisotropy is deduced from antiferromagnetic resonance data and attention paid to the spatial dimensionality of the system. A comparison of parameters determined from experiments below and above Tsub(N) is made and the effects of deuteration discussed. (Auth.)

  12. Improved transparent-conducting properties in N{sub 2{sup -}} and H{sub 2{sup -}} annealed GaZnO thin films grown on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Kim, Deukyoung; Lee, Sejoon [Dongguk University, Seoul (Korea, Republic of)

    2012-01-15

    The effects of N{sub 2{sup -}} and H{sub 2{sup -}} annealing on the transparent-conducting properties of Ga-doped ZnO (GaZnO) were examined. The as-grown GaZnO thin film, which was deposited on a soda-lime glass substrate by r.f. magnetron sputtering, exhibited moderate transparent-conducting properties: a resistivity of {approx}10{sup 0} {Omega}{center_dot}cm and an optical transmittance of {approx}86%. After annealing in N{sub 2} or H{sub 2}, the GaZnO samples showed great improvements in both the electrical and the optical properties. Particularly, in the H{sub 2}-annealed sample, a dramatic decrease in the resistivity (7 x 10{sup -4} {Omega}{center_dot}cm) with a considerable increase in the carrier concentration (4.22 x 10{sup 21} cm{sup -3}) was observed. This is attributed to both an increase in the number of Ga-O bonds and a reduction in the number of chemisorbed oxygen atoms though H{sub 2} annealing. The sample revealed an enhanced optical transmittance ({approx}91%), which comes from the Burstein-Moss effect. Namely, a blue-shift of the optical absorption edge, which results from the increased carrier concentration, was observed in the H{sub 2}-annealed sample. The results suggest that hydrogen annealing can help improve the transparent conducting properties of GaZnO via a modification of the electrochemical bonding structures.

  13. Intermolecular potential and rovibrational states of the H{sub 2}O-D{sub 2} complex

    Energy Technology Data Exchange (ETDEWEB)

    Avoird, Ad van der, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Scribano, Yohann [Laboratoire Interdisciplinaire Carnot de Bourgogne-UMR 5209, CNRS-Universite de Bourgogne, 9 Av. Alain Savary, B.P. 47870, F-21078 Dijon Cedex (France); Faure, Alexandre [UJF-Grenoble 1/CNRS, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble F-38041 (France); Weida, Miles J. [Daylight Solutions, 15378 Avenue of Science, San Diego, CA 92128 (United States); Fair, Joanna R. [Department of Radiology, MSC10 5530, 1 University of New Mexico, Albuquerque, NM 87131-0001 (United States); Nesbitt, David J. [JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0440 (United States)

    2012-05-03

    Graphical abstract: H{sub 2}O-D{sub 2} potential surface and pH{sub 2}O-oD{sub 2} ground state wave function, for planar geometries. Highlights: Black-Right-Pointing-Pointer The interaction between H{sub 2}O and H{sub 2} is of great astrophysical interest. Black-Right-Pointing-Pointer The rovibrational states of H{sub 2}O-D{sub 2} were computed on an ab initio potential surface. Black-Right-Pointing-Pointer Results are compared with the rovibrational states of H{sub 2}O-H{sub 2} computed recently. Black-Right-Pointing-Pointer We measured the high-resolution infrared spectrum of H{sub 2}O-D{sub 2} in the H{sub 2}O bend region. Black-Right-Pointing-Pointer Comparison with the calculations provides information on H{sub 2}O-H{sub 2} potential surface. - Abstract: A five-dimensional intermolecular potential for H{sub 2}O-D{sub 2} was obtained from the full nine-dimensional ab initio potential surface of Valiron et al. [P. Valiron, M. Wernli, A. Faure, L. Wiesenfeld, C. Rist, S. Kedzuch, J. Noga, J. Chem. Phys. 129 (2008) 134306] by averaging over the ground state vibrational wave functions of H{sub 2}O and D{sub 2}. On this five-dimensional potential with a well depth D{sub e} of 232.12 cm{sup -1} we calculated the bound rovibrational levels of H{sub 2}O-D{sub 2} for total angular momentum J = 0-3. The method used to compute the rovibrational levels is similar to a scattering approach-it involves a basis of coupled free rotor wave functions for the hindered internal rotations and the overall rotation of the dimer-while it uses a discrete variable representation of the intermolecular distance coordinate R. The basis was adapted to the permutation symmetry associated with the para/ortho (p/o) nature of both H{sub 2}O and D{sub 2}, as well as to inversion symmetry. As expected, the H{sub 2}O-D{sub 2} dimer is more strongly bound than its H{sub 2}O-H{sub 2} isotopologue [cf. A. van der Avoird, D.J. Nesbitt, J. Chem. Phys. 134 (2011) 044314], with dissociation energies D

  14. Comparative study of CO2 and H2O activation in the synthesis of carbon electrode for supercapacitors

    Science.gov (United States)

    Taer, E.; Apriwandi, Yusriwandi, Mustika, W. S.; Zulkifli, Taslim, R.; Sugianto, Kurniasih, B.; Agustino, Dewi, P.

    2018-02-01

    The physical activation for the comparative study of carbon electrode synthesized for supercapacitor applications made from rubber wood sawdust has been performed successfully. Comparison of physical activation used in this research is based on the different gas activation such as CO2 and H2O. The CO2 and H2O activation are made by using an integrated carbonization and activation system. The carbonization process is performed in N2 atmosphere followed by CO2 and H2O activation process. The carbonization process at temperature of 600°C, the CO2 and H2O activation process at a temperature of 900°C and maintained at this condition for 2 h and 3 h. The electrochemical properties were analyzed using cyclic voltammetric (CV) method. The CV results show that the carbon electrode with CO2 activation has better capacitive properties than H2O, the highest specific capacitance obtained is 93.22 F/g for 3 h of activation time. In addition, the analysis of physical properties such as surface morphology and degree of crystallinity was also performed.

  15. Photogeneration of H2O2 in Water-Swollen SPEEK/PVA Polymer Films.

    Science.gov (United States)

    Lockhart, PaviElle; Little, Brian K; Slaten, B L; Mills, G

    2016-06-09

    Efficient reduction of O2 took place via illumination with 350 nm photons of cross-linked films containing a blend of sulfonated poly(ether etherketone) and poly(vinyl alcohol) in contact with air-saturated aqueous solutions. Swelling of the solid macromolecular matrices in H2O enabled O2 diffusion into the films and also continuous extraction of the photogenerated H2O2, which was the basis for a method that allowed quantification of the product. Peroxide formed with similar efficiencies in films containing sulfonated polyketones prepared from different precursors and the initial photochemical process was found to be the rate-determining step. Generation of H2O2 was most proficient in the range of 4.9 ≤ pH ≤ 8 with a quantum yield of 0.2, which was 10 times higher than the efficiencies determined for solutions of the polymer blend. Increases in temperature as well as [O2] in solution were factors that enhanced the H2O2 generation. H2O2 quantum yields as high as 0.6 were achieved in H2O/CH3CN mixtures with low water concentrations, but peroxide no longer formed when film swelling was suppressed. A mechanism involving reduction of O2 by photogenerated α-hydroxy radicals from the polyketone in competition with second-order radical decay processes explains the kinetic features. Higher yields result from the films because cross-links present in them hinder diffusion of the radicals, limiting their decay and enhancing the oxygen reduction pathway.

  16. (4-Chloroacetanilido-κ2N,Obis[2-(pyridin-2-ylphenyl-κ2C1,N]iridium(III

    Directory of Open Access Journals (Sweden)

    Lijun Sun

    2013-02-01

    Full Text Available In the neutral mononuclear iridium(III title compound, [Ir(C8H7ClNO(C11H8N2], the IrIII atom adopts an octahedral geometry, and is coordinated by two 2-phenylpyridyl ligands and one anionic 4-chloroacetanilide ligand. The 2-phenylpyridyl ligands are arranged in a cis-C,C′ and cis-N,N′ fashion. Each 2-phenylpyridyl ligand forms a five-membered ring with the IrIII atom. The 2-phenylpyridyl planes are perpendicular to each other [dihedral angle = 89.9 (1°]. The Ir—C and Ir—N bond lengths are comparable to those reported for related iridium(III 2-phenylpyridyl complexes. The remaining two coordination sites are occupied by the amidate N and O atoms, which form a four-membered ring with the iridium atom (Ir—N—C—O. The amidate plane is nearly perpendicular to both 2-phenylpyridyl ligands [dihedral angles = 87.8 (2 and 88.3 (2°].

  17. 1-(Furan-2-yl-2-(2H-indazol-2-ylethanone

    Directory of Open Access Journals (Sweden)

    Özden Özel Güven

    2014-04-01

    Full Text Available The asymmetric unit of the title compound, C13H10N2O2, contains two crystallographically independent molecules (A and B. The indazole ring systems are approximately planar [maximum deviations = 0.0037 (15 and −0.0198 (15 Å], and their mean planes are oriented at 80.10 (5 and 65.97 (4° with respect to the furan rings in molecules A and B, respectively. In the crystal, pairs of C—H...N hydrogen bonds link the B molecules, forming inversion dimers. These dimers are bridged by the A molecules via C—H...O hydrogen bonds, forming sheets parallel to (011. There are also C—H...π interactions present, and π–π interactions between neighbouring furan and the indazole rings [centroid–centroid distance = 3.8708 (9 Å] of inversion-related molecules, forming a three-dimensional structure.

  18. Solubility of uranovanadates of the series A2+(VUO6)2 · nH2O (A2+ = Mg, Ca, Sr, Ba, Co, Ni, Cu, Pb) in water or aqueous solutions

    International Nuclear Information System (INIS)

    Chernorukov, N.G.; Sulejmanov, E.V.; Nipruk, O.V.; Lizunova, G.M.

    2001-01-01

    Solubility of uranovanadates of the series A 2+ (VUO 6 ) 2 · nH 2 O (A 2+ - Mg, Ca, Sr, Ba, Co, Ni, Cu, Pb) in water and aqueous solutions of inorganic acids at 25 deg C and different pH values was determined experimentally. The data obtained permitted calculation the Gibbs standard functions of formation and consideration of their state under conditions that were not studied experimentally, in the presence of carbon dioxide, in particular [ru

  19. Attikaite, Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O, a new mineral species

    Science.gov (United States)

    Chukanov, N. V.; Pekov, I. V.; Zadov, A. E.

    2007-12-01

    Attikaite, a new mineral species, has been found together with arsenocrandalite, arsenogoyazite, conichalcite, olivenite, philipsbornite, azurite, malachite, carminite, beudantite, goethite, quartz, and allophane at the Christina Mine No. 132, Kamareza, Lavrion District, Attiki Prefecture (Attika), Greece. The mineral is named after the type locality. It forms spheroidal segregations (up to 0.3 mm in diameter) consisting of thin flexible crystals up to 3 × 20 × 80 μm in size. Its color is light blue to greenish blue, with a pale blue streak. The Mohs’ hardness is 2 to 2.5. The cleavage is eminent mica-like parallel to {001}. The density is 3.2(2) g/cm3 (measured in heavy liquids) and 3.356 g/cm3 (calculated). The wave numbers of the absorption bands in the infrared spectrum of attikaite are (cm-1; sh is shoulder; w is a weak band): 3525 sh, 3425, 3180, 1642, 1120 w, 1070 w, 1035 w, 900 sh, 874, 833, 820, 690 w, 645 w, 600 sh, 555, 486, 458, and 397. Attikaite is optically biaxial, negative, α = 1.642(2), β = γ = 1.644(2) ( X = c) 2 V means = 10(8)°, and 2 V calc = 0°. The new mineral is microscopically colorless and nonpleochroic. The chemical composition (electron microprobe, average over 4 point analyses, wt %) is: 0.17 MgO, 17.48 CaO, 0.12 FeO, 16.28 CuO, 10.61 Al2O3, 0.89 P2O5, 45.45 As2O5, 1.39 SO3, and H2O (by difference) 7.61, where the total is 100.00. The empirical formula calculated on the basis of (O,OH,H2O)22 is: Ca2.94Cu{1.93/2+} Al1.97Mg0.04Fe{0.02/2+} [(As3.74S0.16P0.12)Σ4.02O16.08](OH)3.87 · 2.05H2 O. The simplified formula is Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O. Attikaite is orthorhombic, space group Pban, Pbam or Pba2; the unit-cell dimensions are a = 10.01(1), b = 8.199(5), c = 22.78(1) Å, V = 1870(3) Å3, and Z = 4. In the result of the ignition of attikaite for 30 to 35 min at 128 140°, the H2O bands in the IR spectrum disappear, while the OH-group band is not modified; the weight loss is 4.3%, which approximately corresponds to two H2O

  20. Relaxation of photogenerated carriers under He, H sub 2 , CO sub 2 and O sub 2 on ZnO

    CERN Document Server

    Han, C S; Jun, J

    1998-01-01

    The relaxation process of photogenerated carriers was investigated using conductivity measurement on ZnO under He,H sub 2 ,CO sub 2 and O sub 2. The process was well explained with the rate constant of reaction or recombination of hole and electron, k sub h and k sub e (k sub h >k sub e), respectively. Generally, k sub h increased with the pressure of the gases. The slope of k sub h with respect to the pressure increased in the order of H sub 2<=He2 , while k sub h of O sub 2 was sensitive to the history of the sample. The relaxation process on ZnO which was exposed to oxygen at 298 K and 573 K was observed during the illumination time. From the result, it was suggested that the rate constant of photo generated excess carriers was affected by the surface barrier of the semiconductor.