WorldWideScience

Sample records for h13 steel tooling

  1. Thermally-Induced Crack Evaluation in H13 Tool Steel

    Directory of Open Access Journals (Sweden)

    Hassan Abdulrssoul Abdulhadi

    2017-11-01

    Full Text Available This study reported the effect of thermal wear on cylindrical tool steel (AISI H13 under aluminum die-casting conditions. The AISIH13 steels were immersed in the molten aluminum alloy at 700 °C before water-quenching at room temperature. The process involved an alternating heating and cooling of each sample for a period of 24 s. The design of the immersion test apparatus stylistically simulated aluminum alloy dies casting conditions. The testing phase was performed at 1850, 3000, and 5000 cycles. The samples were subjected to visual inspection after each phase of testing, before being examined for metallographic studies, surface crack measurement, and hardness characteristics. Furthermore, the samples were segmented and examined under optical and Scanning Electron Microscopy (SEM. The areas around the crack zones were additionally examined under Energy Dispersive X-ray Spectroscopy (EDXS. The crack’s maximum length and Vickers hardness profiles were obtained; and from the metallographic study, an increase in the number of cycles during the testing phase resulted in an increase in the surface crack formation; suggesting an increase in the thermal stress at higher cycle numbers. The crack length of Region I (spherically shaped was about 47 to 127 µm, with a high oxygen content that was analyzed within 140 µm from the surface of the sample. At 700 °C, there is a formation of aluminum oxides, which was in contact with the surface of the H13 sample. These stresses propagate the thermal wear crack length into the tool material of spherically shaped Region I and cylindrically shape Region II, while hardness parameters presented a different observation. The crack length of Region I was about 32% higher than the crack length of Region II.

  2. Effects of advanced laser processing on the microstructure and residual stresses of H13 tool steel

    NARCIS (Netherlands)

    Trojan, Karel; Ocelík, Václav; Ganev, Nikolaj; Němeček, Stanislav; Čapek, Jiří

    2017-01-01

    The aim of this paper is to describe the effects of laser processing on the microstructure and residual stresses of laser cladded H13 tool steel on the classical construct steel S355 substrate. This research paper concludes that in this case of laser cladding, phase transformation and not shrinkage

  3. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.

    2016-04-01

    This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.

  4. Influence of Cooling Rate on Phase Formationin Spray-Formed H13 Tool Steel

    Energy Technology Data Exchange (ETDEWEB)

    K. M. Mchugh; Y. Lin; Y. Zhou; E. J. Lavernia

    2006-04-01

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern’s features. The pattern is removed and the die is fitted into a standard holding fixture. This approach results in significant cost and lead-time savings compared to conventional machining, Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life over conventional dies. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die’s properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate and other processing parameters during spray processing and heat treatment of H13 tool steel influence phase formation. Results of case studies on spray-formed die performance in forging, extrusion and die casting, conducted by industry during production runs, will be described.

  5. Effect of the Ultrasonic Nanocrystalline Surface Modification (UNSM on Bulk and 3D-Printed AISI H13 Tool Steels

    Directory of Open Access Journals (Sweden)

    In-Sik Cho

    2017-11-01

    Full Text Available A comparative study of the microstructure, hardness, and tribological properties of two different AISI H13 tool steels—classified as the bulk with no heat treatment steel or the 3D-printed steel—was undertaken. Both samples were subjected to ultrasonic nanocrystalline surface modification (UNSM to further enhance their mechanical properties and improve their tribological behavior. The objective of this study was to compare the mechanical properties and tribological behavior of these tool steels since steel can exhibit a wide variety of mechanical properties depending on different manufacturing processes. The surface hardness of the samples was measured using a micro-Vickers hardness tester. The hardness of the 3D-printed AISI H13 tool steel was found to be much higher than that of the bulk one. The surface morphology of the samples was characterized by electron backscattered diffraction (EBSD in order to analyze the grain size and number of fractions with respect to the misorientation angle. The results revealed that the grain size of the 3D-printed AISI H13 tool steel was less than 0.5 μm, whereas that of the bulk tool steel was greater than 4 μm. The number of fractions of the bulk tool steel was about 0.5 μm at a low misorientation angle, and it decreased gradually with increasing misorientation angle. The low-angle grain boundary (LAGB and high-angle grain boundary (HAGB of the bulk sample were about 21% and 79%, respectively, and those of the 3D-printed sample were about 8% and 92%, respectively. Moreover, the friction and wear behavior of the UNSM-treated AISI H13 tool steel specimen was better than those of the untreated one. This study demonstrated the capability of 3D-printed AISI H13 tool steel to exhibit excellent mechanical and tribological properties for industrial applications.

  6. Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Additively Manufactured AISI H13 Tool Steel

    Science.gov (United States)

    Chen, ChangJun; Yan, Kai; Qin, Lanlan; Zhang, Min; Wang, Xiaonan; Zou, Tao; Hu, Zengrong

    2017-11-01

    The effect of heat treatment on microstructure and mechanical properties (microhardness, wear resistance and impact toughness) of laser additively manufactured AISI H13 tool steel was systemically investigated. To understand the variation of microstructure and mechanical properties under different heat treatments, the as-deposited samples were treated at 350, 450, 550, 600 and 650 °C/2 h, respectively. Microstructure and phase transformation were investigated through optical microscopy, scanning electron microscope and transmission electron microscope. The mechanical properties were characterized by nanoindentation tests, Charpy tests and high-temperature wear tests. The microstructure of as-deposited samples consisted of martensite, ultrafine carbides and retained austenite. After the tempering treatment, the martensite was converted into tempered martensite and some fine alloy carbides which precipitated in the matrix. When treated at 550 °C, the greatest hardness and nanohardness were 600 HV0.3 and 6119.4 MPa due to many needle-like carbides precipitation. The value of hardness increased firstly and then decreased when increasing the temperature. When tempered temperatures exceeded 550 °C, the carbides became coarse, and martensitic matrix recrystallized at the temperature of 650 °C. The least impact energy was 6.0 J at a temperature of 550 °C. Samples tempered at 550 °C had larger wear volume loss than that of others. Wear resistances of all samples under atmospheric condition at 400 °C showed an oxidation mechanism.

  7. Superplasticity of Annealed H13 Steel.

    Science.gov (United States)

    Duan, Zhenxin; Pei, Wen; Gong, Xuebo; Chen, Hua

    2017-07-28

    H13 steel is a widely used hot work die material. A new type of hot working method is imperative to develop complex and precise dies. In this paper, the heat treatment of H13 steel (AISI) was carried out by annealing, the final structure is a point or spherical pearlite, and the grain size is about 30-40 μm. The tensile properties of the annealed microstructure were investigated at 650, 750, and 850 °C with the strain rates of 1 × 10(-3) s(-1), 5 × 10(-4) s(-1), and 1 × 10(-4) s(-1). The tensile fracture and microstructure were analyzed by SEM and HREM. The results show that the tensile samples reach superplasticity at the strain rate of 1 × 10(-4) s(-1) in the temperature range of 750-850 °C. When the temperature is 850 °C, the maximum elongation rate reaches 112.5%. This demonstrates the possibility of making superplastic forming molds. During the tensile process, the refined M23C₆ and other high hardness carbides which are dispersed uniformly in the matrix, effectively inhibits grain growth and hinders dislocation movement, leading to the improvement of plasticity.

  8. Mechanism of generation of large (Ti,Nb,V)(C,N)-type precipitates in H13 + Nb tool steel

    Science.gov (United States)

    Xie, You; Cheng, Guo-guang; Chen, Lie; Zhang, Yan-dong; Yan, Qing-zhong

    2016-11-01

    The characteristics and generation mechanism of (Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of (Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich (Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2-5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of (Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is (Ti0.511V0.356Nb0.133)(C x N y ), whereas that for the single Nb-rich phase is (Ti0.061V0.263Nb0.676)(C x N y ). The calculation results based on the Scheil-Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.

  9. Comparison of surface roughness and chip characteristics obtained under different modes of lubrication during hard turning of AISI H13 tool work steel.

    Science.gov (United States)

    Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.

    2016-09-01

    Surface roughness is one of the important parameters, which not only affects the service life of a component but also serves as a good index of machinability. Near Dry Machining, methods (NDM) are considered as sustainable alternative for workshops trying to bring down their dependence on cutting fluids and the hazards associated with their indiscriminate usage. The present work presents a comparison of the surface roughness and chip characteristics during hard turning of AISI H13 tool work steel using hard metal inserts under two popular NDM techniques namely the minimal fluid application and the Minimum Quantity Lubrication technique(MQL) using an experiment designed based on Taguchi's techniques. The statistical method of analysis of variance (ANOVA) was used to determine the relative significance of input parameters consisting of cutting speed, feed and depth of cut on the attainable surface finish and the chip characteristics. It was observed that the performance during minimal fluid application was better than that during MQL application.

  10. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...... serves primarily two purpose (i) to improve the hardenabillity and (ii) to provide harder and thermally more stable carbides than cementite. Assuming proper heattreatment, the properties of a tool steel depends on the which alloying elements are added and their respective concentrations....

  11. Precipitation Behavior of Carbides in H13 Hot Work Die Steel and Its Strengthening during Tempering

    Directory of Open Access Journals (Sweden)

    Angang Ning

    2017-02-01

    Full Text Available The properties of carbides, such as morphology, size, and type, in H13 hot work die steel were studied with optical microscopy, transmission electron microscopy, electron diffraction, and energy dispersive X-ray analysis; their size distribution and quantity after tempering, at different positions within the ingot, were analyzed using Image-Pro Plus software. Thermodynamic calculations were also performed for these carbides. The microstructures near the ingot surface were homogeneous and had slender martensite laths. Two kinds of carbide precipitates have been detected in H13: (1 MC and M6C, generally smaller than 200 nm; and (2 M23C6, usually larger than 200 nm. MC and M6C play the key role in precipitation hardening. These are the most frequent carbides precipitating at the halfway point from the center of the ingot, and the least frequent at the surface. From the center of the ingot to its surface, the size and volume fraction of the carbides decrease, and the toughness improves, while the contribution of the carbides to the yield strength increases.

  12. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    Science.gov (United States)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  13. Relations of Counterface Hardness with Wear Behavior and Tribo-Oxide Layer of AISI H13 Steel

    Science.gov (United States)

    Zhang, Q. Y.; Wang, S. Q.; Li, X. X.; Zhou, Y.; Chen, K. M.; Cui, X. H.

    2016-12-01

    Dry sliding wear tests of AISI H13 steel (50 HRC) against AISI D2 steel counterface with three hardness levels (55, 50, and 42 HRC) were performed at 298 K to 873 K (25 °C to 600 °C). The relations of counterface hardness with the wear behavior and tribo-oxide layer of AISI H13 steel were explored. When sliding against the different-hardness counterface, H13 steel presents appreciably changed wear behavior as a function of temperature. For H d/ H p (the hardness ratio of disk to pin) > 1, the wear rate increases with the increase of temperature, but the wear rate variation is roughly inversed for H d/ H p 1, at 474 K (200 °C) for H d/ H p = 1, and at 673 K (400 °C) for H d/ H p 1 and at 673 K to 873 K (400 °C to 600 °C) for H d/ H p = 1. These findings suggest that the tribo-oxide layers are liable to exist stably for H d/ H p ≤ 1 but to readily delaminate for H d/ H p > 1.

  14. Tool steels. 5. edition

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.; Krauss, G.; Kennedy, R.

    1998-12-31

    The revision of this authoritative work contains a significant amount of new information from the past nearly two decades presented in an entirely new outline, making this a must have reference for engineers involved in tool-steel production, as well as in the selection and use of tool steels in metalworking and other materials manufacturing industries. The chapter on tool-steel manufacturing includes new production processes, such as electroslag refining, vacuum arc remelting, spray deposition processes (Osprey and centrifugal spray), and powder metal processing. The seven chapters covering tool-steel types in the 4th Edition have been expanded to 11 chapters covering nine main groups of tool steels as well as other types of ultrahigh strength steels sometimes used for tooling. Each chapter discusses in detail processing, composition, and applications specific to the particular group. In addition, two chapters have been added covering surface modification and trouble shooting production and performance problems.

  15. Characterization of an AISI H-13 steel for work in hot; Caracterizacion del acero H-13 AISI para trabajado en caliente

    Energy Technology Data Exchange (ETDEWEB)

    Godinez, J.; Robles, E. [Instituto Nacional de Investigaciones Nucleares, Departamento de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    Two materials were acquired which elaborated through secondary refining processes known as electroslag refusing (ESR) and electric arc in vacuum refusing (VAR) were acquired. These materials were thermically treated, for subsequently to determine their mechanical properties in longitudinal and transversal directions with respect to rolling direction, moreover they were characterized through scanning electron microscopy and X-ray diffraction determining microstructure, carbides and non-metallic inclusions. The results of the mechanical essays allowed to evaluate the fracture toughness to this steel by the Barsom and Rolfe method. (Author)

  16. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    Directory of Open Access Journals (Sweden)

    José Britti Bacalhau

    2014-06-01

    Full Text Available Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition on the nitriding response have been evaluated. From forged steel bars, Charpy impact test and characterization via EPMA have been conducted. The proposed contents of Cr, Mo, and Al have attributed to the new VEX grade a much better tempering resistance than H13, as well as a deeper and harder nitrided layer. Due to the unique characteristics, this new steel provides an interesting alternative to the aluminum extrusion companies to increase their competitiveness.

  17. Flank wears Simulation by using back propagation neural network when cutting hardened H-13 steel in CNC End Milling

    Science.gov (United States)

    Hazza, Muataz Hazza F. Al; Adesta, Erry Y. T.; Riza, Muhammad

    2013-12-01

    High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models.

  18. Improved life of die casting dies of H13 steel by attaining improved mechanical properties and distortion control during heat treatment. Year 1 report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.F.; Schwam, D. [Case Western Reserve Univ., Cleveland, OH (United States)

    1995-03-01

    Optimum heat treatment of dies (quenching) is critical in ensuring satisfactory service performance: rapid cooling rates increase the thermal fatigue/heat checking resistance of the steel, although very fast cooling rates can also lead to distortion and lower fracture toughness, increasing the danger of catastrophic fracture. Goal of this project is to increase die life by using fast enough quenching rates (> 30 F/min ave cooling rate from 1750 to 550 F, 1/2 in. below working surfaces) to obtain good toughness and fatigue resistance in Premium grade H-13 steel dies. An iterative approach of computer modeling validated by experiment was taken. Cooling curves during gas quenching of H-13 blocks and die shapes were measured under 2, 5, and 7.5 bar N2 and 4 bar Ar. Resulting dimensional changes and residual stresses were determined. To facilitate the computer modeling work, a database of H-13 mechanical and physical properties was compiled. Finite element analysis of the heat treated shapes was conducted. Good fit of modeled vs measured quenched rates was demonstrated for simple die shapes. The models predict well the phase transformation products from the quench. There is good fit between predicted and measured distortion contours; however magnitude of predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required.

  19. Improved Life of Die Casting Dies of H13 Steel by Attaining Improved Mechanical Properties and Distortion Control During Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    J. F. Wallace; D. Schwam

    1998-10-01

    The ultimate goal of this project is to increase die casting die life by using fast enough quenching rates to obtain good toughness and fatigue resistance in premium grade H-13 steel dies. The main tasks of the project were to compile a database on physical and mechanical properties of H-13; conduct gas quenching experiments to determine cooling rates of dies in difference vacuum furnaces; measure the as-quenched distortion of dies and the residual stresses; generate finite element analysis models to predict cooling rates, distortion, and residual stress of gas quenched dies; and establish rules and create PC-based expert system for prediction of cooling rates, distortion, and residual stress in vacuum/gas quenched H-13 dies. Cooling curves during gas quenching of H-13 blocks and die shapes have been measured under a variety of gas pressure. Dimensional changes caused by the gas quenching processes have been determined by accurate mapping of all surfaces with coordinate measuring machines before and after the quench. Residual stresses were determined by the ASTM E837 hole-drilling strain gage method. To facilitate the computer modeling work, a comprehensive database of H-13 mechanical and physical properties has been compiled. Finite element analysis of the heat treated shapes has been conducted using the TRAST/ABAQUS codes. There is a good fit between the predicted and measured distortion contours. However, the magnitude of the predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required before it can be used to predict distortion and residual stress in a quantitative manner. This last step is a prerequisite to generating rules for a reliable expert system.

  20. MICROSTRUCTURE AND CORROSION RESISTANCE OF CHROMIUM NITRIDES OBTAINED BY VACUUM GAS NITRIDING OF ELECTROLYTIC CHROMIUM DEPOSITED ON AISI H13 STEEL

    Directory of Open Access Journals (Sweden)

    H. Cifuentes

    2013-06-01

    Full Text Available In this scientific research paper, the microstructure and corrosion resistance of chromium nitrides obtained from a duplex treatment consisting of an electroplated hard chromium coating applied on a steel AISI H13 follow by a thermochemical treatment in vacuum using NH3 as precursor gas of nitrogen, is evaluated. This type of duplex treatments combine the benefits of each individual treatment in order to obtain, with this synergic effect, compounds type CrxN more economic than those obtained by other kind of treatments e.g. physical vapor deposition (PVD. The results obtained by X-Ray Diffraction (XRD indicate the surface and subsurface transformation of the electrolytic hard chromium coating by formation of CrN and Cr2N phases. Likewise, potentiodynamic polarization tests indicate an increase in corrosion resistance of such kind of compounds in comparison with the obtained results with electroplated hard chromium.

  1. 3D thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2017-10-01

    In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.

  2. Automated Steel Cleanliness Analysis Tool (ASCAT)

    Energy Technology Data Exchange (ETDEWEB)

    Gary Casuccio (RJ Lee Group); Michael Potter (RJ Lee Group); Fred Schwerer (RJ Lee Group); Dr. Richard J. Fruehan (Carnegie Mellon University); Dr. Scott Story (US Steel)

    2005-12-30

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel

  3. Method for machining steel with diamond tools

    Science.gov (United States)

    Casstevens, J.M.

    1984-01-01

    The present invention is directed to a method for machine optical quality finishes and contour accuracies of workpieces of carbon-containing metals such as steel with diamond tooling. The wear rate of the diamond tooling is significantly reduced by saturating the atmosphere at the interface of the workpiece and the diamond tool with a gaseous hydrocarbon during the machining operation. The presence of the gaseous hydrocarbon effectively eliminates the deterioration of the diamond tool by inhibiting or preventing the conversion of the diamond carbon to graphite carbon at the point of contact between the cutting tool and the workpiece.

  4. 30 CFR 57.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  5. 30 CFR 56.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 56.7050 Section 56... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  6. Study of hot hardness characteristics of tool steels

    Science.gov (United States)

    Chevalier, J. L.; Dietrich, M. W.; Zaretsky, E. V.

    1972-01-01

    Hardness measurements of tool steel materials in electric furnace at elevated temperatures and low oxygen environment are discussed. Development of equation to predict short term hardness as function of intial room temperature hardness of steel is reported. Types of steel involved in the process are identified.

  7. THE MACHINING OF HARDENED CARBON STEELS BY COATED CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Yusuf ŞAHİN

    2001-02-01

    Full Text Available The investigation of machining AISI 1050 carbon steels hardened to the 60 HRC hardness was carried out to determine the tool life and wear behaviour of the various cutting tools under different conditions. These experiments were conducted at using coated ceramic cutting tools and carbide cutting tools. The experimental results showed that the coated ceramic tools exhibited better performance than those of the coated carbide tools when machining the hardened steels. Moreover, wear behaviour of cutting tools were investigated in a scanning electron microscope. Electron microscopic examination also indicated that flank wear, thermal cracks on the tool nose combined with the nose deformation on the tools were responsible for the wear behaviour of the ceramic tools. For the carbide tools, however, removal of coated material from the substrate tool and combined with the crater wear were effective for the machining the hardened steel.

  8. Novel PM Tool Steel with improved hardness and toughness

    OpenAIRE

    Deirmina, Faraz

    2017-01-01

    Ultrafine grained (~ 1μm) steels have been the subject of extensive research work during the past years. These steels generally offer interesting perspectives looking for improved mechanical properties. UFG Powder Metallurgy hot work tool steels (HWTS) can be fabricated by high energy mechanical milling (MM) followed by spark plasma sintering (SPS). However, similarly to most UFG and Nano-Crystalline (NC) metals, reduced ductility and toughness result from the early plastic instabilities in t...

  9. Pitting corrosion behaviour of diamond coated tool steel

    NARCIS (Netherlands)

    Buijnsters, J.G.; Subba Rao, R.V.; Shankar, P.; Enckevort, W.J.P. van; Schermer, J.J.; Gebert, A.; Meulen, J.J. ter

    2005-01-01

    Using a hot filament chemical vapour deposition reactor, diamond films of approximately 2-3 mum in thickness were deposited on tool steel specimens with three different interlayer systems, namely CrN, Si and borided steel. The morphology, defect densities and residual stresses of the diamond films

  10. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography...... and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items...

  11. Thick tool steel coatings with laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; de Oliveira, U.; De Hosson, J. Th. M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2007-01-01

    This paper concentrates on thick and crack-free laser clad coatings (up to 3 mm). The coating material is a chromium-molybdenum-tungsten-vanadium alloyed high-speed steel that shows high wear resistance, high compressive strength, good toughness, very good dimensional stability on heat treatment and

  12. Friction and wear behaviour of tool steels sliding against 22MnB5 steel

    Directory of Open Access Journals (Sweden)

    Elena Gracia-Escosa

    2017-07-01

    Full Text Available Boron steels are used in hot stamping process due to their good mechanical properties. During the stamping process, the dies are exposed to aggressive conditions including adhesive wear, abrasion, thermal stresses and fatigue. In the present work, QRO 90 and UNIMAX slid against 22MnB5 steel in four conditions: with and without hardening treatment and, with and without Al–10%Si coating, in order to evaluate the influence of both coating and austenitization treatment on friction and wear of tool steels. The results showed that Al–10%Si reduces the friction coefficient, while the hardening treatment results in an increase of COF due to Fe2Al5 brittle compounds. Wear mechanism of both tool steels is adhesive and oxidative when tested against coated and uncoated 22MnB5, respectively.

  13. Tool steel quality and surface finishing of plastic molds

    Directory of Open Access Journals (Sweden)

    Rafael Agnelli Mesquita

    2010-01-01

    Full Text Available Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grinding, polishing and texturing, and also related to the tool steel quality, in relation to microstructure homogeneity and non-metallic inclusions (cleanliness. The present paper is then focused on this interrelationship between steel quality and manufacturing process, which are both related to the final quality of plastic mold surfaces. Examples are discussed in terms of surface finishing of plastic molds and the properties or the microstructure of mold steels.

  14. Transverse rupture strength of a PM tool steel

    Directory of Open Access Journals (Sweden)

    Oscar Olimpio de Araujo Filho

    2005-06-01

    Full Text Available Powder Metallurgy has been reported as a suitable alternate processing route for the manufacture of tool steels. The advantage of this technique is in being able to obtain a refined and more uniform microstructure that improves properties such high wear resistance and toughness. A molybdenum containing AISI M3:2 tool steel, (trade name Sinter 23, manufactured from spherical gas-atomized powders by hot isostatic pressing followed by hot working was tested in three-point bending tests after various heat treatments. Transverse rupture strength (TRS samples were cut and heat treated at four distinct austenitizing temperatures. Each austenitizing temperature was combined with three tempering temperatures, giving a total of twelve different hardening conditions. Hardness tests were carried out to establish correlations among the effectiveness of heat treatment, the hardness values and the TRS results. At least five parallel samples were tested in each heat treatment condition.

  15. Rapid tooling for functional prototyping of metal mold processes: Literature review on cast tooling

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.D. [Sandia National Labs., Albuquerque, NM (United States); Hochanadel, P.W. [Colorado School of Mines, Golden, CO (United States). Dept. of Metallurgical and Materials Engineering

    1995-11-01

    This report is a literature review on cast tooling with the general focus on AISI H13 tool steel. The review includes processing of both wrought and cast H13 steel along with the accompanying microstructures. Also included is the incorporation of new rapid prototyping technologies, such as Stereolithography and Selective Laser Sintering, into the investment casting of tool steel. The limiting property of using wrought or cast tool steel for die casting is heat checking. Heat checking is addressed in terms of testing procedures, theories regarding the mechanism, and microstructural aspects related to the cracking.

  16. Laser grooving of surface cracks on hot work tool steel

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2011-10-01

    Full Text Available The paper presents the analysis of laser grooving of 1.2343 tool steel hardened to 46 HRC. The effect of laser power and grooving speed on groove shape (i.e. depth and width, the material removal rate and the purity of produced groove as a measure of groove quality was investigated and analyzed using response surface methodology. Optimal parameters of laser grooving were found, which enables pure grooves suitable for laser welding.

  17. Micromilling of hardened tool steel for mould making applications

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    geometries as those characterizing injection moulding moulds. The realization of the micromilling process in connection with hardened tool steel as workpiece material is particularly challenging. The low strength of the miniaturized end mills implies reduction and accurate control of the chip load which......The implementation of replication techniques for mass production of micro components relies on the availability of tooling technologies for manufacturing of tools and moulds. Micromilling is a suitable technique for manufacturing of microstructures characterized by high aspect ratios and complex...... requires high positioning accuracy. Size effects, mainly related to the microstructure of the workpiece material and to the limited scalability of tool geometry and surface topography, critically influence the performance of the process in terms of part accuracy, surface roughness, cutting forces and tool...

  18. The influence of Ti, N and Ti + N implantation on phase change, microstructure, growth of metallic compounds and correlated effects in hardness and wear resistance in H13 steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Tonghe; Ji Chengzhou; Shen Jinghua; Chen Ju (Inst. of Low Energy Nuclear Physics, Beijing Normal Univ. (China)); Tan Fujin (Dept. of Physics, Jinan Univ., Guangzhou (China)); Gao Yuzun (General Research Inst. for Non-Ferrous Metal, Beijing (China))

    1992-12-01

    The lattice damage, small intermetallic compound (Fe[sub 2]Ti), metallic compound (TiN, Fe[sub 2]N) formation and supersaturated solutions of Ti or Ti + N-ion implanted into steel with various ion doses and energies were measured by TEM and X-ray diffraction formation and growth of the metallic compound has found to depend on ion dose and energy. Change of phases and microstructure were particularly enhanced with high dose and high energy. Metal hardening also increases with increasing ion dose, energy and the amount and size of metallic compounds. Specimens implanted at target temperature ranging from 300degC to 400degC (HT) or implanted at room temperature (RT) and then annealed at temperature ranging from 300 to 500degC, showed significant increase in hardness. The wear resistance of high energy and high dose implanted steel is better than that of low energy and lower dose implantation. The wear rate decreases 2-2.6 times for low temperature implantation, 10.4 times for HT implantation and high energy implantation. The Fe[sub 2]Ti and TiC precipitates, phase and microstructural changes in the implanted layer are responsible for such a drastic reduction in wear. (orig.).

  19. SELF-LUBRICATING THIN FILMS FOR TOOL STEELS

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2012-02-01

    Full Text Available Specimens made from Vanadis 6 cold work tool steel were machined, ground, heat processed by standard regime and finally mirror polished. After that, they were layered with CrAgN. The Ag-content in the layers was chosen to 3 wt% and 15 wt% respectively. Microstructural analysis revealed that the addition of 3 wt%Ag did not influence the growth manner of the films but the addition of 15 wt%Ag has made considerable changes in the film growth. The layer with 3 wt%Ag had excellent adhesion on the steel substrate. On the other hand, the addition of 15%Ag had strongly negative impact on the coating adhesion. Similar effect of different Ag addition has been established also to both the hardness and the Young modulus of the films, also. Both films have superior tribological properties against hard material (alumina as well as against soft counterpart (CuSn6 as-cast bronze.

  20. SELF-LUBRICATING THIN FILMS FOR TOOL STEELS

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2012-03-01

    Full Text Available Specimens made from Vanadis 6 cold work tool steel were machined, ground, heat processed by standard regime and finally mirror polished. After that, they were layered with CrAgN. The Ag-content in the layers was chosen to 3 wt% and 15 wt% respectively. Microstructural analysis revealed that the addition of 3 wt%Ag did not influence the growth manner of the films but the addition of 15 wt%Ag has made considerable changes in the film growth. The layer with 3 wt%Ag had excellent adhesion on the steel substrate. On the other hand, the addition of 15%Ag had strongly negative impact on the coating adhesion. Similar effect of different Ag addition has been established also to both the hardness and the Young modulus of the films, also. Both films have superior tribological properties against hard material (alumina as well as against soft counterpart (CuSn6 as-cast bronze.

  1. Tribological performances of new steel grades for hot stamping tools

    Science.gov (United States)

    Medea, F.; Venturato, G.; Ghiotti, A.; Bruschi, S.

    2017-09-01

    In the last years, the use of High Strength Steels (HSS) as structural parts in car body-in-white manufacturing has rapidly increased thanks to their favourable strength-to-weight ratio and stiffness, which allow a reduction of the fuel consumption to accommodate the new restricted regulations for CO2 emissions control. The survey of the technical and scientific literature shows a large interest in the development of different coatings for the blanks from the traditional Al-Si up to new Zn-based coatings and on the analysis of hard PVD, CVD coatings and plasma nitriding applied on the tools. By contrast, fewer investigations have been focused on the development and test of new tools steels grades capable to improve the wear resistance and the thermal properties that are required for the in-die quenching during forming. On this base, the paper deals with the analysis and comparison the tribological performances in terms of wear, friction and heat transfer of new tool steel grades for high-temperature applications, characterized by a higher thermal conductivity than the commonly used tools. Testing equipment, procedures as well as measurements analyses to evaluate the friction coefficient, the wear and heat transfer phenomena are presented. Emphasis is given on the physical simulation techniques that were specifically developed to reproduce the thermal and mechanical cycles on the metal sheets and dies as in the industrial practice. The reference industrial process is the direct hot stamping of the 22MnB5 HSS coated with the common Al-Si coating for automotive applications.

  2. Factors influencing the surface quality of polished tool steels

    Science.gov (United States)

    Rebeggiani, S.; Rosén, B.-G.

    2014-09-01

    Today’s demands on surface quality of moulds for injection moulding of plastic components involve no/low defect contents and roughness levels in the nm-range for high gloss applications. Material properties as well as operating conditions influence the mould finish, and thus the final surface of moulded products. This paper focuses on how particle content and different polishing strategies influence final surface qualities of moulds. Visual estimations of polished tool steel samples were combined with non-contact 3D-surface texture analysis in order to correlate traditional assessments to more quantitative methods, and to be able to analyse the surfaces at nanometre-level. It was found that steels with a lower proportion of particles, like carbides and oxides, gave rise to smoother polished surfaces. In a comparative study of polishers from different polishing shops, it was found that while different surface preparation strategies can lead to similar final roughness, similar preparation techniques can produce high-quality surfaces from different steel grades. However, the non-contact 3D-surface texture analysis showed that not all smooth polished surfaces have desirable functional topographies for injection moulding of glossy plastic components.

  3. High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools

    Science.gov (United States)

    Valls, I.; Hamasaiid, A.; Padré, A.

    2017-09-01

    In hot stamping/press hardening, in addition to its shaping function, the tool controls the cycle time, the quality of the stamped components through determining the cooling rate of the stamped blank, the production costs and the feasibility frontier for stamping a given component. During the stamping, heat is extracted from the stamped blank and transported through the tool to the cooling medium in the cooling lines. Hence, the tools’ thermal properties determine the cooling rate of the blank, the heat transport mechanism, stamping times and temperature distribution. The tool’s surface resistance to adhesive and abrasive wear is also an important cost factor, as it determines the tool durability and maintenance costs. Wear is influenced by many tool material parameters, such as the microstructure, composition, hardness level and distribution of strengthening phases, as well as the tool’s working temperature. A decade ago, Rovalma developed a hot work tool steel for hot stamping that features a thermal conductivity of more than double that of any conventional hot work tool steel. Since that time, many complimentary grades have been developed in order to provide tailored material solutions as a function of the production volume, degree of blank cooling and wear resistance requirements, tool geometries, tool manufacturing method, type and thickness of the blank material, etc. Recently, Rovalma has developed a new generation of high thermal conductivity, high wear resistance tool steel grades that enable the manufacture of cost effective tools for hot stamping to increase process productivity and reduce tool manufacturing costs and lead times. Both of these novel grades feature high wear resistance and high thermal conductivity to enhance tool durability and cut cycle times in the production process of hot stamped components. Furthermore, one of these new grades reduces tool manufacturing costs through low tool material cost and hardening through readily

  4. Tool degradation during sheet metal forming of three stainless steel alloys

    DEFF Research Database (Denmark)

    Wadman, Boel; Nielsen, Peter Søe; Wiklund, Daniel

    2010-01-01

    To evaluate if changes in tool design and tool surface preparation are needed when low-Ni stainless steels are used instead of austenitic stainless steels, the effect on tool degradation in the form of galling was investigated with three different types of stainless steel. The resistance to tool...... degradation was analysed by the strip reduction test, simulating resistance to galling during ironing. It was shown that the surface condition of both the tools and the sheet metal was of importance to the galling resistance. Numerical simulations of the experimental tests were compared with the experimental...

  5. A comprehensive review on cold work of AISI D2 tool steel

    Science.gov (United States)

    Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin

    2017-11-01

    As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.

  6. Predicting the Abrasion Resistance of Tool Steels by Means of Neurofuzzy Model

    Directory of Open Access Journals (Sweden)

    Dragutin Lisjak

    2013-07-01

    Full Text Available This work considers use neurofuzzy set theory for estimate abrasion wear resistance of steels based on chemical composition, heat treatment (austenitising temperature, quenchant and tempering temperature, hardness after hardening and different tempering temperature and volume loss of materials according to ASTM G 65-94. Testing of volume loss for the following group of materials as fuzzy data set was taken: carbon tool steels, cold work tool steels, hot work tools steels, high-speed steels. Modelled adaptive neuro fuzzy inference system (ANFIS is compared to statistical model of multivariable non-linear regression (MNLR. From the results it could be concluded that it is possible well estimate abrasion wear resistance for steel whose volume loss is unknown and thus eliminate unnecessary testing.

  7. R-Curve Approach to Describe the Fracture Resistance of Tool Steels

    Science.gov (United States)

    Picas, Ingrid; Casellas, Daniel; Llanes, Luis

    2016-06-01

    This work addresses the events involved in the fracture of tool steels, aiming to understand the effect of primary carbides, inclusions, and the metallic matrix on their effective fracture toughness and strength. Microstructurally different steels were investigated. It is found that cracks nucleate on carbides or inclusions at stress values lower than the fracture resistance. It is experimentally evidenced that such cracks exhibit an increasing growth resistance as they progressively extend, i.e., R-curve behavior. Ingot cast steels present a rising R-curve, which implies that the effective toughness developed by small cracks is lower than that determined with long artificial cracks. On the other hand, cracks grow steadily in the powder metallurgy tool steel, yielding as a result a flat R-curve. Accordingly, effective toughness for this material is mostly independent of the crack size. Thus, differences in fracture toughness values measured using short and long cracks must be considered when assessing fracture resistance of tool steels, especially when tool performance is controlled by short cracks. Hence, material selection for tools or development of new steel grades should take into consideration R-curve concepts, in order to avoid unexpected tool failures or to optimize microstructural design of tool steels, respectively.

  8. Photoemission Electron Microscopy as a Tool for Studying Steel Grains

    Science.gov (United States)

    Roese, Peter; Keutner, Christoph; Berges, Ulf; Espeter, Philipp; Westphal, Carsten

    2017-03-01

    Key properties of steel like stability, weldability, or ability for absorbing deformation energy are defined by their grain structure. The knowledge about their micrometer and submicrometer structure is of particular interest for tailor-cut macroscopic steel properties. We report on photoemission electron microscopy studies which in principle yield a higher magnification than comparable optical techniques. A flat surface without any topographic features was obtained by applying a non-etching preparation procedure. PEEM images showed very tiny phase islands embedded within a steel phase matrix. Furthermore, we developed an analysis procedure for PEEM images for dual-phase steels. As a result, it is possible to identify the individual work functions of different steel phases at the surface.

  9. Effects of deep cryogenic treatment on mechanical and tribological properties of AISI D3 tool steel

    National Research Council Canada - National Science Library

    Khun, Nay Win; Liu, Erjia; Tan, Adrian Wei Yee; Senthilkumar, D; Albert, Bensely; Mohan Lal, D

    2015-01-01

    In this study, the effects of deep cryogenic treatment (DCT) on the mechanical and tribological properties of AISI D3 tool steel were investigated together with a systematic correlation between their hardness and wear resistance...

  10. Microstructural Quantification of Rapidly Solidified Undercooled D2 Tool Steel

    Science.gov (United States)

    Valloton, J.; Herlach, D. M.; Henein, H.; Sediako, D.

    2017-10-01

    Rapid solidification of D2 tool steel is investigated experimentally using electromagnetic levitation (EML) under terrestrial and reduced gravity conditions and impulse atomization (IA), a drop tube type of apparatus. IA produces powders 300 to 1400 μm in size. This allows the investigation of a large range of cooling rates ( 100 to 10,000 K/s) with a single experiment. On the other hand, EML allows direct measurements of the thermal history, including primary and eutectic nucleation undercoolings, for samples 6 to 7 mm in diameter. The final microstructures at room temperature consist of retained supersaturated austenite surrounded by eutectic of austenite and M7C3 carbides. Rapid solidification effectively suppresses the formation of ferrite in IA, while a small amount of ferrite is detected in EML samples. High primary phase undercoolings and high cooling rates tend to refine the microstructure, which results in a better dispersion of the eutectic carbides. Evaluation of the cell spacing in EML and IA samples shows that the scale of the final microstructure is mainly governed by coarsening. Electron backscattered diffraction (EBSD) analysis of IA samples reveals that IA powders are polycrystalline, regardless of the solidification conditions. EBSD on EML samples reveals strong differences between the microstructure of droplets solidified on the ground and in microgravity conditions. While the former ones are polycrystalline with many different grains, the EML sample solidified in microgravity shows a strong texture with few much larger grains having twinning relationships. This indicates that fluid flow has a strong influence on grain refinement in this system.

  11. Wear of soft tool materials in sliding contact with zinc coated steel sheet

    NARCIS (Netherlands)

    van der Heide, Emile; Burlat, M.; Bolt, P.J.; Schipper, Dirk J.

    2003-01-01

    In order to reduce costs of tooling for press operations, efforts are made to use alternative tool materials like wood or plastic. Friction and wear characteristics in sliding contact with zinc-coated steel sheet could, however, limit the applicability of these tool materials for automotive

  12. Tooling solutions for sheet metal forming and punching of lean duplex stainless steel

    DEFF Research Database (Denmark)

    Wadman, Boel; Madsen, Erik; Bay, Niels

    2012-01-01

    .4509 and lean duplex EN1.4162 in a production designed for austenitic stainless steels, such as EN1.4301 and 1.4401. The result is a guideline that summarizes how stainless material properties may affect tool degradation, and suggests tool solutions for reduced production disturbances and tool maintenance cost....

  13. Characterization and Performance of Laser Alloyed Commercial Tool Steels

    Directory of Open Access Journals (Sweden)

    Miroslaw Sebastian Bonek

    2013-07-01

    Full Text Available The paper presents the effect of alloying with tungsten carbide on properties of the X40CrMoV5-1 steel surface layer, using the high power diode laser (HPDL. Selection of laser operating conditions is discussed, as well as alloying material, and their influence on structure and chemical composition of the steel. Analysis of the process conditions influence on thicknesses of the alloyed layer and heat-affected zone is presented.

  14. A quantitative method to estimate high gloss polished tool steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rebeggiani, S; Rosen, B-G [Halmstad University, The Functional Surfaces Research Group, Box 823, SE-301 18 HALMSTAD (Sweden); Sandberg, A, E-mail: sabina.rebeggiani@hh.se [Uddeholms AB, SE-683 85 Hagfors (Sweden)

    2011-08-19

    Visual estimations are today the most common way to assess the surface quality of moulds and dies; a method that are both subjective and, with today's high demands on surfaces, hardly usable to distinguish between the finest surface qualities. Instead a method based on non-contact 3D-surface texture analysis is suggested. Several types of tool steel samples, manually as well as machine polished, were analysed to study different types of surface defects such as pitting, orange peel and outwardly features. The classification of the defect structures serves as a catalogue where known defects are described. Suggestions of different levels of 'high surface quality' defined in numerical values adapted to high gloss polished tool steel surfaces are presented. The final goal is to develop a new manual that can work as a 'standard' for estimations of tool steel surfaces for steel producers, mould makers, polishers etc.

  15. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...

  16. Heat Treatment of Cr- and Cr-V ledeburitic tool steels

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2014-11-01

    Full Text Available Cr- and Cr-V ledeburitic cold work tool steels belong to the most important tool materials for large series manufacturing. To enable high production stability, the tools must be heat treated before use. This overview paper brings a comprehensive study on the heat treatment of these materials, starting from the soft annealing and finishing with the tempering. Also, it describes the impact of any step of the heat treatment on the most important structural and mechanical characteristics, like the hardness, the toughness and the wear resistance. The widely used AIS D2- steel (conventionally manufactured and Vanadis 6 (PM are used as examples in most cases.

  17. Analysis of carbides and inclusions in high speed tool steels

    DEFF Research Database (Denmark)

    Therkildsen, K.T.; Dahl, K.V.

    2002-01-01

    The fracture surfaces of fatigued specimens were investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The aim was to quantify the distribution of cracked carbides and non-metallic inclusions on the fracturesurfaces as well as on polished cross...... sections. The specimens were made of Böhler P/M steel grade 390s and 690s in both micro-clean and conventional grades. The results show that the content of non-metallic inclusions are higher in the conventionalgrades than in the microclean grades, but there were found to be no link between non-metallic...... inclusions and the crack initiation. Surprisingly, no differences were found between the carbide size distributions of the micro-clean and conventional grades.Also, the distribution of the fractured carbides was found to be the same regardless of steel type, manufacturing method or location on the specimen....

  18. Characterization of Tool Wear in High-Speed Milling of Hardened Powder Metallurgical Steels

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2011-01-01

    Full Text Available In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC. The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill (0 = 6, TiAlN coating. It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.

  19. Model and numerical analysis of mechanical phenomena of tools steel hardening

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2010-01-01

    Full Text Available This paper the model hardening of tool steel takes into considerations of mechanical phenomena is presented. Fields stresses and strains are obtained from solutions by FEM equilibrium equations in rate form. The stresses generated during hardening were assumed to result from thermal load, structural deformation, and plastic deformation and transformation plasticity. Thermophysical values in the constitutive relations are depended upon both the temperature and the phase composition. Condition Huber-Misses with the isotropic strengthening for the creation of plastic strains is used. However model Leblond to determined transformations plasticity applied. The analysis of stresses associated of the elements hardening made of tool steel was done.

  20. Tool Steels in Die-Casting Utilization and Increased Mold Life

    Directory of Open Access Journals (Sweden)

    Sepanta Naimi

    2015-01-01

    Full Text Available In die-casting molds, heat-checking is the typical failure mechanism. Optimizing the parameters that decrease this failure venture should be considered when designing and heat treating steels. The quality of die steels and their treatment continue to improve. This research investigated properties of the traditional materials 1.2343 and 1.2344 and the new steels (Dievar and TOOLOX 44 when applied to the die-casting mold specimens, after different experimental cycles. Also microstructures of the mentioned materials were analyzed by scanning electron microscopy (SEM test. Chrome-molybdenum-silicon-vanadium steels have good hardening ability in oil and in air. Therefore, the hot-work steels have considerable toughness and plastic attributes through both regular and higher temperatures. So, it is a good traditional die-casting material. However, another special die steel, such as Dievar, is a particularly developed steel grade; its exclusivity profile is exceptional due to its chemical composition and the use of the latest production techniques. Dievar has good heat-checking and gross-cracking resistance as a result of both high toughness and good hot strength. An additional material, a new prehardened tool steel known as TOOLOX 44, exhibits control of the failure described above by optimizing the parameters of impact toughness that could reduce the heat-checking failures. A variety of heat treatment parameters exist for various reasons because the heat treatment operation is performed by a variety of companies. This issue of the diversity in heat treatments is resolved by TOOLOX 44; this steel is quenched and tempered in delivered state.

  1. Laser Surface Treatment Of AISI 420 Tool Steel

    Science.gov (United States)

    Vilar, R.; Miranda, R. M.; Oliveira, A. S.

    1989-01-01

    Samples of a martensitic stainless steel containing 0.47%C and 12.8%Cr were surface melted using continuous wave CO2 laser radiation and a multiple pass technique. The structure of the laser modified layer was studied by optical microscopy, scanning electron microscopy and X ray diffraction. The melted zone presents a narrow region near the fusion line with a ferritic--martensitic structure, that seems to have solidified by an almost partitionless mechanism. It is followed by a cellular-dendritic structure in the center of the melted trail, that consists on δ -ferrite, martensite and M23C6 carbide. The absence of austenite is surprising; it can be explained by the tempering effects of the solidification structure, due to subsequent laser passes.

  2. Microstructural evolution of a cold work tool steel after pulsed laser remelting

    Directory of Open Access Journals (Sweden)

    L. Kosec

    2012-01-01

    Full Text Available The aim of this study is the investigation of micro-structural behaviour of a Mat. No. 1.2379 (EN-X160CrMoV121; AISI D2 cold work tool steel after remelting with a precise pulsed Nd:YAG laser. The investigated steel is one of the most hard to weld tool steels, due to large amount of alloying elements. The analysis was done on single spots remelted with specific laser pulse shape and parameters, assuring crack-less solidification. Re-solidifi ed areas were investigated with microscopy, hardness measurements, X-ray spectroscopy and diffraction method. Laser treatment causes rapid solidifi cation leading into a formation of a fine dendritic microstructures containing high amount of retained austenite causing a significant decrease of hardness.

  3. Increasing the life of high-speed steel cutting tools

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, Y.G.

    1984-05-01

    The paper describes work on determining the rational area of use, mastering of production operations, and introduction into the plants of the industry of various methods of increasing the life of high-speed tools. Among these methods are carbonitriding, treatment of the tool by shock cooling and by application of a magnetic field, and the application of wear resistant coatings by the method of cathodic-ionic bombardment. The article briefly characterizes each method. Experience in the introduction of the carbonitriding process has shown that the greatest increase in life is obtained for relatively large cutting tools such as hubs and large diameter drills. The effectiveness of shock cooling depends to a great degree upon the original structure of the tool material and upon the requirements imposed on it in service (for stability). Experience in the magnetic treatment of drills and end mills up to 30mm in diameter has shown that the life of a magnetically treated tool with subsequent demagnetization increases by 1.2-1.4 times and without demagnetization by 1.7-2 times. The effectiveness of magnetic hardening depends not only upon the correctly selected strength of the magnetic field and time of application, but also upon the time of postmagnetic aging. Wear resistant coatings applied by the cathodic-ionic bombardment method increases by 2-5 times the life of a cutting tool. However, careful preparation of the tool surface is required as well as careful control of the temperature and thickness of the coating.

  4. Microstructure Charaterization of a Hardened and Tempered Tool Steel: from Macro to Nano Scale

    DEFF Research Database (Denmark)

    Højerslev, Christian; Somers, Marcel A. J.; Carstensen, Jesper V.

    2002-01-01

    The microstructure of a conventionally heat treated PM AISI M3:2 tool steel, was characterised by a combination of light optical and electron microscopy, covering the range from micro to nano scale. Dilatometry and X-ray diffractometry were used for an overall macro characterisation of the phases...... present and the transformations occurring during heat treatment....

  5. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test

  6. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in 't Veld, A.J.; Hosson, J.T. de

    1998-01-01

    Titanium-nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test

  7. Characterisation of Wear Resistant Boride Layers on a Tool Steel by Activity Controlled Pack Boronising

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work addresses the production and characterisation of iron boride layers by pack boronising of a Vanadis 6 tool steel. The boride layers were produced at 900°C for 2h using different pack compositions in order to obtain a single-phase boride layer. The layers were characterized by ele...

  8. Experimental research on the durability cutting tools for cutting-off steel profiles

    OpenAIRE

    Cristea Alexandru; Fetecău Cătălin; Stanciu Nicoleta Violeta

    2017-01-01

    The production lines used for manufacturing U-shaped profiles are very complex and they must have high productivity. One of the most important stages of the fabrication process is the cutting-off. This paper presents the experimental research and analysis of the durability of the cutting tools used for cutting-off U-shaped metal steel profiles. The results of this work can be used to predict the durability of the cutting tools.

  9. Experimental research on the durability cutting tools for cutting-off steel profiles

    Directory of Open Access Journals (Sweden)

    Cristea Alexandru

    2017-01-01

    Full Text Available The production lines used for manufacturing U-shaped profiles are very complex and they must have high productivity. One of the most important stages of the fabrication process is the cutting-off. This paper presents the experimental research and analysis of the durability of the cutting tools used for cutting-off U-shaped metal steel profiles. The results of this work can be used to predict the durability of the cutting tools.

  10. The Influence of Laser Surface Alloying on the Thermal Fatigue Resistance of Hot Work Tool Steels

    Directory of Open Access Journals (Sweden)

    Jonda E.

    2016-09-01

    Full Text Available The paper presents results of the effect of laser surface remelting and alloying by carbides powders of NbC, TaC, TiC, VC and WC on the structure and thermal fatigue resistance of the surface layer of hot work tool steels X40CrMoV5-1 and 32CrMoV12-28. The laser surface alloying and remelting treatments was performed using a high power diode laser (HPDL ROFIN SINAR DL 020. In order to investigate the effect of applied laser treatments and used alloying powders on the microstructure and thermal fatigue resistance of processed surface layer of hot work tool steels, the microstructure evaluation by light microscopy, hardness test, and dedicated thermal fatigue resistance test were performed. The best results regarding fatigue cracks inhibition was obtained when the surface of hot work tool steels was alloyed with TiC and VC carbides at the laser beam power of 2.0 and 2.3 kW. The grain refinement effect of laser remelting has a lower impact on the thermal crack inhibition, than a strong strengthening effect of matrix saturation in alloying elements and precipitation of fine carbides in the steel matrix.

  11. Internal grinding of high-speed steels: Shorter processing times with boron nitride grinding tools

    Science.gov (United States)

    Borse, D.

    Boron nitride grinding tools can be used to advantage for the grinding of high speed steel (HSS) with a high vanadium content. the abrasives available to date are of limited value because the HSS materials contain very hard carbides, grinding of which, and of vanadium carbide in particular, results in very rapid wear in silicon carbide or corundum grinding wheels. The hardness of these steels is usually 62 RC to 70 RC. Boron nitride grinding tools are advantageous for internal grinding of workpieces made of high speed steel for example, sockets, milling tool bores, cutting wheels and crushing rollers. To date, boron nitride grinding wheels or pencil grinders were bonded with synthetic resin. Consequently internal grinding is usually carried out as wet grinding. In the meantime grinding tools bonded with electrodeposited metal bonds (GSS) were developed and proved to be successful for internal grinding. The abrasive grains which are arranged in a single layer protrude freely from the electrobond. During grinding very little heat is generated, so that dry grinding is possible.

  12. Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel

    Science.gov (United States)

    Podgornik, B.; Puš, G.; Žužek, B.; Leskovšek, V.; Godec, M.

    2017-12-01

    The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.

  13. Optimization of Processing Parameters in ECM of Die Tool Steel Using Nanofluid by Multiobjective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    V. Sathiyamoorthy

    2015-01-01

    Full Text Available Formation of spikes prevents achievement of the better material removal rate (MRR and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA. This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm3/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm3/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models.

  14. Optimization of Processing Parameters in ECM of Die Tool Steel Using Nanofluid by Multiobjective Genetic Algorithm.

    Science.gov (United States)

    Sathiyamoorthy, V; Sekar, T; Elango, N

    2015-01-01

    Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm(3)/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm(3)/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models.

  15. Study of casting and solidification of slab ingot from tool steel using numerical modelling

    OpenAIRE

    Tkadlečková, Markéta; Michalek, Karel; Machovčák, Pavel; Kováč, Marek; Socha, Ladislav

    2015-01-01

    The main problem in the production of forgings from tool steels, especially thick plates, blocks, pulleys and rods which are used for special machine components for demanding applications, it is the inhomogeneous structure with segregations, cracks in segregations or complex type of non-metallic inclusions MnS and TiCN. These forgings are actually produced from conventional forging ingots. Due to the size of forgings, it would be interesting the production of these forgings from slab ingots. ...

  16. The Effect of Grinding and Polishing Procedure of Tool Steels in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Lindvall, F.; Bergström, J.; Krakhmalev, P.

    2010-01-01

    The surface finish of tools in sheet metal forming has a large influence on the performance of the forming tool. Galling, concern of wear in sheet metal forming, is a severe form of adhesive wear where sheet material is transferred on to the tool surface. By polishing the tools to a fine surface...... finish, material pick-up has traditionally been reduced, but some surface preparations withstand adhesive wear better. To investigate the effect on galling performance of different surface preparations lubricated tests have been performed using a strip reduction rig. Two different tool materials, Vancron...... 40 and Vanadis 6 and up to ten different grinding and polishing treatments were tested against AISI 316 stainless steel. The tests showed that an optimum surface preparation might be found at the transition between abrasive and adhesive wear....

  17. THE EVALUATION OF TOOL WEAR IN THE MACHINING AISI 1050 STEEL HARDENED UP TO 53 HRC WITH COATED CARBIDE TOOL

    Directory of Open Access Journals (Sweden)

    Ali Rıza MOTORCU

    2006-03-01

    Full Text Available In this study, the machining of AISI 1050 steel which is hardened up to 53 HRC is carried out with two carbide tool materials (three layer coated carbide of TP100 containing Ti (C, N/Al2O3/TiN and (multi layer coated carbide of TP1000 containing Ti (C, N/Al2O3/ Ti (C, N/TiN. Cutting tests are performed with constant depth of cut and feed rate under dry cutting conditions. The flank wear is examined using an optical microscope. Tool life curves and Taylor Tool Life Equation constants (n, C are obtained via the flank wear data at various cutting speeds. The test results show that tools' performance is adversely affected by increasing cutting speed due to increased temperatures and stress generated at the cutting edges during machining. Flank wear and chipping/fracture of the tool edges are identified the major failure modes at the cutting conditions. TP1000 multilayer coated inserts give longer tool life than those of TP100 three layer coated inserts.

  18. Numerical modelling of tools steel hardening. A thermal phenomena and phase transformations

    Directory of Open Access Journals (Sweden)

    T. Domański

    2010-01-01

    Full Text Available This paper the model hardening of tool steel takes into considerations of thermal phenomena and phase transformations in the solid state are presented. In the modelling of thermal phenomena the heat equations transfer has been solved by Finite Elements Method. The graph of continuous heating (CHT and continuous cooling (CCT considered steel are used in the model of phase transformations. Phase altered fractions during the continuous heating austenite and continuous cooling pearlite or bainite are marked in the model by formula Johnson-Mehl and Avrami. For rate of heating >100 K/s the modified equation Koistinen and Marburger is used. Modified equation Koistinen and Marburger identify the forming fraction of martensite.

  19. An ALMA Survey of DCN/H13CN and DCO+/H13CO+ in Protoplanetary Disks

    Science.gov (United States)

    Huang, Jane; Öberg, Karin I.; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M.; Furuya, Kenji; Guzmán, Viviana V.; Loomis, Ryan A.; van Dishoeck, Ewine F.; Wilner, David J.

    2017-02-01

    The deuterium enrichment of molecules is sensitive to their formation environment. Constraining patterns of deuterium chemistry in protoplanetary disks is therefore useful for probing how material is inherited or reprocessed throughout the stages of star and planet formation. We present ALMA observations at ˜0.″6 resolution of DCO+, H13CO+, DCN, and H13CN in the full disks around T Tauri stars AS 209 and IM Lup, in the transition disks around T Tauri stars V4046 Sgr and LkCa 15, and in the full disks around Herbig Ae stars MWC 480 and HD 163296. We also present ALMA observations of HCN in the IM Lup disk. DCN, DCO+, and H13CO+ are detected in all disks, and H13CN in all but the IM Lup disk. We find efficient deuterium fractionation for the sample, with estimates of disk-averaged DCO+/HCO+ and DCN/HCN abundance ratios ranging from ˜0.02-0.06 and ˜0.005-0.08, respectively, which is comparable to values reported for other interstellar environments. The relative distributions of DCN and DCO+ vary between disks, suggesting that multiple formation pathways may be needed to explain the diverse emission morphologies. In addition, gaps and rings observed in both H13CO+ and DCO+ emission provide new evidence that DCO+ bears a complex relationship with the location of the midplane CO snowline.

  20. The influence of machining condition and cutting tool wear on surface roughness of AISI 4340 steel

    Science.gov (United States)

    Natasha, A. R.; Ghani, J. A.; Che Haron, C. H.; Syarif, J.

    2018-01-01

    Sustainable machining by using cryogenic coolant as the cutting fluid has been proven to enhance some machining outputs. The main objective of the current work was to investigate the influence of machining conditions; dry and cryogenic, as well as the cutting tool wear on the machined surface roughness of AISI 4340 steel. The experimental tests were performed using chemical vapor deposition (CVD) coated carbide inserts. The value of machined surface roughness were measured at 3 cutting intervals; beginning, middle, and end of the cutting based on the readings of the tool flank wear. The results revealed that cryogenic turning had the greatest influence on surface roughness when machined at lower cutting speed and higher feed rate. Meanwhile, the cutting tool wear was also found to influence the surface roughness, either improving it or deteriorating it, based on the severity and the mechanism of the flank wear.

  1. Wear of Cutting Tool with Excel Geometry in Turning Process of Hardened Steel

    Directory of Open Access Journals (Sweden)

    Samardžiová Michaela

    2016-09-01

    Full Text Available This paper deals with hard turning using a cutting tool with Xcel geometry. This is one of the new geometries, and there is not any information about Xcel wear in comparison to the conventional geometry. It is already known from cutting tools producers that using the Xcel geometry leads to higher quality of machined surface, perticularly surface roughness. It is possible to achieve more than 4 times lower Ra and Rz values after turning than after using conventional geometry with radius. The workpiece material was 100Cr6 hardened steel with hardness of 60 ± 1 HRC. The machine used for the experiment was a lathe with counter spindle DMG CTX alpha 500, which is located in the Centre of Excellence of 5–axis Machining at the Faculty of Materials Science and Technology in Trnava. The cutting tools made by CBN were obtained from Sandvik COROMANT Company.

  2. Tool Wear Analysis due to Machining In Super Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Polishetty Ashwin

    2017-01-01

    Full Text Available This paper presents tool wear study when a machinability test was applied using milling on Super Austenitic Stainless Steel AL6XN alloy. Eight milling trials were performed under two cutting speeds, 100 m/min and 150 m/min, combined with two feed rates at 0.1mm/tooth and 0.15 mm/tooth and two depth of cuts at 2 mm and 3 mm. An Alicona 3D optical surface profilometer was used to scan cutting inserts flank and rake face areas for wear. Readings such as maximum and minimum deviations were extracted and used to analyse the outcomes. Results showed various types of wear were generated on the tool rake and flank faces. The common formed wear was the crater wear. The formation of the build-up edge was observed on the rake face of the cutting tool.

  3. Development of a robust modeling tool for radiation-induced segregation in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Field, Kevin G [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Allen, Todd R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Busby, Jeremy T [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in Light Water Reactor (LWR) components has been linked to changes in grain boundary composition due to irradiation induced segregation (RIS). This work developed a robust RIS modeling tool to account for thermodynamics and kinetics of the atom and defect transportation under combined thermal and radiation conditions. The diffusion flux equations were based on the Perks model formulated through the linear theory of the thermodynamics of irreversible processes. Both cross and non-cross phenomenological diffusion coefficients in the flux equations were considered and correlated to tracer diffusion coefficients through Manning’s relation. The preferential atomvacancy coupling was described by the mobility model, whereas the preferential atom-interstitial coupling was described by the interstitial binding model. The composition dependence of the thermodynamic factor was modeled using the CALPHAD approach. Detailed analysis on the diffusion fluxes near and at grain boundaries of irradiated austenitic stainless steels suggested the dominant diffusion mechanism for chromium and iron is via vacancy, while that for nickel can swing from the vacancy to the interstitial dominant mechanism. The diffusion flux in the vicinity of a grain boundary was found to be greatly influenced by the composition gradient formed from the transient state, leading to the oscillatory behavior of alloy compositions in this region. This work confirms that both vacancy and interstitial diffusion, and segregation itself, have important roles in determining the microchemistry of Fe, Cr, and Ni at irradiated grain boundaries in austenitic stainless steels.

  4. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    OpenAIRE

    Carvalho, N.J.M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test technique (modified pin-on-ring test) to obtain some clarifications of the mechanism of interfacial failure. Tests were run using PVD-coated rings finished by polishing or grinding to produce different sur...

  5. INFLUENCE OF QUANTITATIVE ALLOYING OF TOOL STEELS FOR HOT DEFORMATION ON THE LEVEL OF HARDENING

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2015-01-01

    Full Text Available The influence of complexly experimental tool steels: C (0,4–0,50%, Si (0,6–1,2%, Mn (0,17–0,8%, Cr (0,8–3%, W (0,9– 4%, Mo (0,01–3.5% and V (0,28–1,8% on their ability to hardening due to only high-temperature tempering after induction melting, casting in the ceramic mold and air cooling (without deformation and after the various modes of complete heat treatment cycle

  6. Effect of Cutting Parameters on Microhardness in 2 mm Slot Milling Hardened Tool Steel

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    This paper presents an experimental study on the dependency of surface integrity on cutting parameters in slot milling of hardened tool steel. A series of 2 mm slot milling tests have been performed with different cutting parameters. Microhardness was chosen for evaluation of subsurface integrity....... The process was found to be sensitive to cutting parameters. An increase of feed per tooth or depth of cut produced a reduction of the microhardness of the slot surface. An optimal combination of machining parameters was found to be 80-110 m/min in cutting speed, 0.005 mm in feed per tooth and 0.1 mm in axial...... depth of cut....

  7. DIRECT CALCULUS FORMULAS FOR THE LATHE TOOL EQUIVALENT STRESS VALUES DURING THE MANUFACTURING OF STEEL SHAFTS

    Directory of Open Access Journals (Sweden)

    Catălin ROŞU

    2015-05-01

    Full Text Available In this paper, starting from the stress values presented in Roşu (2015 [1], a method for determining direct calculus formulas for the lathe tool equivalent stress values during the manufacturing of steel shafts is established. There is used the regression analysis for the formulas determination. The equivalent stress will be dependant on the cutting depth. The obtained formulas will be verified by using an analytical model from Strength of Materials. The results and the calculus formulas are presented from an original point of view.

  8. Effect of TiC addition on surface oxidation behavior of SKD11 tool steel composites

    Science.gov (United States)

    Cho, Seungchan; Jo, Ilguk; Kim, Heebong; Kwon, Hyuk-Tae; Lee, Sang-Kwan; Lee, Sang-Bok

    2017-09-01

    Titanium carbide (TiC) reinforced tool steel matrix composites were successfully fabricated by a liquid pressing infiltration process and research was subsequently conducted to investigate the composites' oxidation resistance. The mass gain of the tested TiC-SKD11 composite held at 700 °C for 50 h in an air environment decreased by about 60%, versus that of the SKD11, which indicates improved oxidation resistance. Improved oxidation resistance of the TiC-SKD11 composite originates from uniformly reinforced TiC, with a phase transition to thermodynamically stable, volume-expanded TiO2.

  9. Feasibility of surface-coated friction stir welding tools to join AISI 304 grade austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    A.K. Lakshminarayanan

    2014-12-01

    Full Text Available An attempt is made to develop the tools that are capable enough to withstand the shear, impact and thermal forces that occur during friction stir welding of stainless steels. The atmospheric plasma spray and plasma transferred arc hardfacing processes are employed to deposit refractory ceramic based composite coatings on the Inconel 738 alloy. Five different combinations of self-fluxing alloy powder and 60% ceramic reinforcement particulate mixtures are used for coating. The best friction stir welding tool selected based on tool wear analysis is used to fabricate the austenitic stainless steel joints.

  10. Statistical analysis of the V-tool bending process parameters in the bending of HC260Y steel

    Directory of Open Access Journals (Sweden)

    J. Cumin

    2016-04-01

    Full Text Available This paper presents statistical analysis of the parameters in the V-tool bending process of the HC260Y steel. Assessment of the mathematical model and analysis of variance (ANOVA were performed within the design of experiments. The hydraulic testing machine Amsler and the developed V-tool were used in the experiments.

  11. Statistical analysis of the V-tool bending process parameters in the bending of HC260Y steel

    OpenAIRE

    Cumin, J.; Samardžić, I.; Maglić, L.

    2016-01-01

    This paper presents statistical analysis of the parameters in the V-tool bending process of the HC260Y steel. Assessment of the mathematical model and analysis of variance (ANOVA) were performed within the design of experiments. The hydraulic testing machine Amsler and the developed V-tool were used in the experiments.

  12. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    Science.gov (United States)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  13. Influence of Workpiece Material on Tool Wear Performance and Tribofilm Formation in Machining Hardened Steel

    Directory of Open Access Journals (Sweden)

    Junfeng Yuan

    2016-04-01

    Full Text Available In addition to the bulk properties of a workpiece material, characteristics of the tribofilms formed as a result of workpiece material mass transfer to the friction surface play a significant role in friction control. This is especially true in cutting of hardened materials, where it is very difficult to use liquid based lubricants. To better understand wear performance and the formation of beneficial tribofilms, this study presents an assessment of uncoated mixed alumina ceramic tools (Al2O3+TiC in the turning of two grades of steel, AISI T1 and AISI D2. Both workpiece materials were hardened to 59 HRC then machined under identical cutting conditions. Comprehensive characterization of the resulting wear patterns and the tribofilms formed at the tool/workpiece interface were made using X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy. Metallographic studies on the workpiece material were performed before the machining process and the surface integrity of the machined part was investigated after machining. Tool life was 23% higher when turning D2 than T1. This improvement in cutting tool life and wear behaviour was attributed to a difference in: (1 tribofilm generation on the friction surface and (2 the amount and distribution of carbide phases in the workpiece materials. The results show that wear performance depends both on properties of the workpiece material and characteristics of the tribofilms formed on the friction surface.

  14. Acetylene Flow Rate as a Crucial Parameter of Vacuum Carburizing Process of Modern Tool Steels

    Directory of Open Access Journals (Sweden)

    Rokicki P.

    2016-12-01

    Full Text Available Carburizing is one of the most popular and wide used thermo-chemical treatment methods of surface modification of tool steels. It is a process based on carbon diffusive enrichment of the surface material and is applied for elements that are supposed to present higher hardness and wear resistance sustaining core ductility. Typical elements submitted to carburizing process are gears, shafts, pins and bearing elements. In the last years, more and more popular, especially in highly advanced treatment procedures used in the aerospace industry is vacuum carburizing. It is a process based on chemical treatment of the surface in lower pressure, providing much higher uniformity of carburized layer, lower process cost and much lesser negative impact on environment to compare with conventional carburizing methods, as for example gas carburizing in Endo atmosphere. Unfortunately, aerospace industry requires much more detailed description of the phenomena linked to this process method and the literature background shows lack of tests that could confirm fulfilment of all needed requirements and to understand the process itself in much deeper meaning. In the presented paper, authors focused their research on acetylene flow impact on carburized layer characteristic. This is one of the most crucial parameters concerning homogeneity and uniformity of carburized layer properties. That is why, specific process methodology have been planned based on different acetylene flow values, and the surface layer of the steel gears have been investigated in meaning to impact on any possible change in potential properties of the final product.

  15. Numerical predicting of the structure and stresses state in hardened element made of tool steel

    Directory of Open Access Journals (Sweden)

    A. Bokota

    2008-03-01

    Full Text Available The paper presents numerical model of thcrmal phcnomcna, phasc transformation and mcchanical phcnomcna associated with hardeningof carbon tool steel. Model for evaluation or fractions OF phases and their kinetics bascd on continuous heating diagram (CHT andcontinuous cooling diagram (CCT. The stresses generated during hardening were assumed to rcsult from ~hermal load. stntcturaI plasticdeformations and transformation plasricity. Thc hardened material was assumed to be elastic-plastic, and in ordcr to mark plastic strains the non-isothermal plastic law of flow with the isotropic hardening and condition plasticity of Huber-Misses were used. TherrnophysicaI values of mechanical phenomena dependent on bo~hth e phase composition and temperature. In the numerical example thc simulated estimation of the phasc Fraction and strcss distributions in the hardened axisimmetrical elemcnt was performed.

  16. Induction hardening of tool steel for heavily loaded aircraft engine components

    Directory of Open Access Journals (Sweden)

    Rokicki P.

    2017-03-01

    Full Text Available Induction hardening is an innovative process allowing modification of the materials surface with more effective, cheaper and more reproducible way to compare with conventional hardening methods used in the aerospace industry. Unfortunately, high requirements and strict regulation concerning this branch of the industry force deep research allowing to obtain results that would be used for numerical modelling of the process. Only by this way one is able to start the industrial application of the process. The main scope of presented paper are results concerning investigation of microstructure evolution of tool steel after single-frequency induction hardening process. The specimens that aim in representing final industrial products (as heavily loaded gears, were heat- -treated with induction method and subjected to metallographic preparation, after which complex microstructure investigation was performed. The results obtained within the research will be a basis for numerical modelling of the process of induction hardening with potential to be introduced for the aviation industrial components.

  17. A study of factors affecting the performance of micro square endmills in milling of hardened tool steels

    NARCIS (Netherlands)

    Li, P.; Aristimuno, P.X.; Arrazola, P.J.; Hoogstrate, A.M.; Oosterling, J.A.J.; Langen, H.H.

    2008-01-01

    Proper setting of cutting conditions is critical for the performance of micro endmills in micro milling of hardened tool steels. In this paper, the influence of the cutting parameters on the wear behaviour of micro square endmills is presented. The selected parameters are cutting speed, depth of

  18. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    Rafał Świercz

    2017-12-01

    Full Text Available New materials require the use of advanced technology in manufacturing complex shape parts. One of the modern materials widely used in the tool industry for injection molds or hot stamping dies is high conductivity tool steel (HTCS 150. Due to its hardness (55 HRC and thermal conductivity at 66 W/mK, this material is difficult to machine by conventional treatment and is being increasingly manufactured by nonconventional technology such as electrical discharge machining (EDM. In the EDM process, material is removed from the workpiece by a series of electrical discharges that cause changes to the surface layers properties. The final state of the surface layer directly influences the durability of the produced elements. This paper presents the influence of EDM process parameters: discharge current Ic and the pulse time ton on surface layer properties. The experimental investigation was carried out with an experimental methodology design. Surface layers properties including roughness 3D parameters, the thickness of the white layer, heat affected zone, tempered layer and occurring micro cracks were investigated and described. The influence of the response surface methodology (RSM of discharge current Ic and the pulse time ton on the thickness of the white layer and roughness parameters Sa, Sds and Ssc were described and established.

  19. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    Directory of Open Access Journals (Sweden)

    Aleš Hančič

    2013-05-01

    Full Text Available This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals’ peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  20. Acoustic emission detection of macro-cracks on engraving tool steel inserts during the injection molding cycle using PZT sensors.

    Science.gov (United States)

    Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

    2013-05-14

    This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  1. CHARACTERIZATION AND PERFORMANCE OF DUPLEX-COATINGS ON Cr-V COLD WORK TOOL STEEL

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2015-09-01

    Full Text Available Specimens made of Vanadis 6 steel were heat treated, plasma nitrided and coated with Cr2N. The microstructure, phase constitution and mechanical properties of plasma nitrided areas and duplex-coatings have been investigated using the light microscopy, scanning electron microscopy, X-ray diffraction and microhardness measurements. The adhesion of the coatings and the wear performance were studied using the scratch test and ring-on-plate tribological testing. Worn surfaces were examined by scanning electron microscopy. Nitrided areas formed at lower temperature were free of compound “white” layer while hose developed at higher temperatures contained as the white layer so the nitrided network. Significant increase in substrate hardness was detected due to the nitriding. Beneficial effect of the nitriding on the adhesion of Cr2N coatings was clearly determined whereas the extent in improvement of the adhesion depends on the presence/no presence of “white” layer on the surface. The extent of beneficial effect of plasma nitriding on the wear performance follows the impact of the constitution of nitrided areas on the adhesion. The amelioration of wear performance of Cr2N coatings can be attributed to the supporting effect of hard nitrided intermediate region, which provides excellent resistance of the substrate against plastic deformation, under heavy loading in particular. Practical testing demonstrated many times prolonged service-time of duplex-treated tools for sheet metal working.

  2. Influence of cryogenic cooling rate on mechanical properties of tool steels

    Science.gov (United States)

    Mazor, G.; Ladizhensky, I.; Shapiro, A.

    2017-09-01

    The effect of the rapid cryogenic treatment on hardness and wear resistance of several kinds of tool steel was examined. Two ways of cryogenic cooling were evaluated: direct immersion of the metallic samples into liquid nitrogen and three-stage rapid cryogenic cooling (1 - precooling in LN2 to -20°C, 2 - formation on the sample of a frost layer from air by natural humidity, 3 - second cooling of the frost-covered sample in LN2 to -195.7°C). Material in “as is” conditions and after a preliminary heat treatment (850°C) were used as the reference points. The HV microhardness and the wear rate under dry abrasive friction were evaluated. Despite the very different types of the examined metals’ nature, microstructure, and hardening mechanisms, the rapid cryogenic cooling improves both the hardness and the wear resistance values. For all investigated metals rapid cryogenic cooling assisted with the frost layer produces the best results.

  3. Regression Modeling of EDM Process for AISI D2 Tool Steel with RSM

    Directory of Open Access Journals (Sweden)

    Shakir M. Mousa

    2018-01-01

    Full Text Available In this paper, Response Surface Method (RSM is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T. [Gr, Cu and CuW], pulse duration of current (Ip, pulse duration on time (Ton, and pulse duration off time (Toff on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra. Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of Variance (ANOVA at the 5 % confidence interval. The outcomes discover that Surface Roughness (Ra is much more impacted by E.T., Ton, Toff, Ip and little of their interactions action or influence. To predict the average Surface Roughness (Ra, a mathematical regression model was developed. Furthermore, for saving in time, the created model could be utilized for the choice of the high levels in the EDM procedure. The model adequacy was extremely agreeable as the constant Coefficient of Determination (R2 is observed to be 99.72% and adjusted R2-measurement (R2adj 99.60%.

  4. Influence of minimum quantity of lubricant (MQL on tool life of carbide cutting tools during milling process of steel AISI 1018

    Directory of Open Access Journals (Sweden)

    Diego Núñez

    2017-03-01

    Full Text Available Nowadays, high productivity of machining is an important issue to obtain economic benefits in the industry. This purpose could be reached with high cutting velocity and feed rate. However, the inherently behavior produce high temperatures in the interface of couple cutting tool/workpiece. Many cutting fluids have been developed to control temperature in process and increase tool life. The objective of this paper is to compare the carbide milling tool wear using different systems cutting fluids: flood and minimum quantity of lubrication (MQL. The values of carbide milling cutting tool wear was evaluate according with the standard ISO 8688-1 1989. The experimental results showed that using MQL reduces significantly (about 40% tool wear in milling AISI 1018 steel at industrial cutting conditions.

  5. CONTRIBUTION OF CAST STRUCTURE TO THE LEVEL OF HARDENING OF THE TOOL STEEL FOR HOT FORMING, RECEIVED AT INDUCTION MELTING

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2014-01-01

    Full Text Available The matters of influence of cast structure on level of hardening of tool steel of type 4X2BMC with various proportions of elements in their structure are considered. It is shown that presence of cast structure can provide hardness increase up to 5-15% of the experience value that is especially necessary at tempering temperatures of 600 ° C and over.

  6. Feasibility of surface-coated friction stir welding tools to join AISI 304 grade austenitic stainless steel

    OpenAIRE

    A.K. Lakshminarayanan; C.S. Ramachandran; V. Balasubramanian

    2014-01-01

    An attempt is made to develop the tools that are capable enough to withstand the shear, impact and thermal forces that occur during friction stir welding of stainless steels. The atmospheric plasma spray and plasma transferred arc hardfacing processes are employed to deposit refractory ceramic based composite coatings on the Inconel 738 alloy. Five different combinations of self-fluxing alloy powder and 60% ceramic reinforcement particulate mixtures are used for coating. The best friction sti...

  7. Spray-formed tooling for injection molding and die casting applications

    Energy Technology Data Exchange (ETDEWEB)

    K. M. McHugh; B. R. Wickham

    2000-06-26

    Rapid Solidification Process (RSP) Tooling{trademark} is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  8. Spray-formed Tooling for Injection Molding and Die Casting Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mc Hugh, Kevin Matthew

    2000-06-01

    Rapid Solidification Process (RSP) ToolingTM is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  9. Effect of welding parameters of plasma transferred arc welding method on abrasive wear resistance of 12V tool steel deposit

    OpenAIRE

    Keränen, Marko

    2010-01-01

    In the plasma transferred arc, PTA, welding method the powder consumable makes it possible to weld wide variety of alloys. The dilution of the deposit is typically 3-10 % and, thus, the properties of the deposit can be achieved with one-layer deposit. The studied alloy was an iron-based 12V tool steel reinforced with primarily precipitating vanadium carbides. Wide deposits are welded by oscillating the plasma arc and overlapping the weld beads. The mobility of the molten pool of 12V tool...

  10. Retained Austenite Transformation during Heat Treatment of a 5 Wt Pct Cr Cold Work Tool Steel

    Science.gov (United States)

    Rehan, M. Arbab; Medvedeva, Anna; Svensson, Lars-Erik; Karlsson, Leif

    2017-11-01

    Retained austenite transformation was studied for a 5 wt pct Cr cold work tool steel tempered at 798 K and 873 K (525 °C and 600 °C) followed by cooling to room temperature. Tempering cycles with variations in holding times were conducted to observe the mechanisms involved. Phase transformations were studied with dilatometry, and the resulting microstructures were characterized with X-ray diffraction and scanning electron microscopy. Tempering treatments at 798 K (525 °C) resulted in retained austenite transformation to martensite on cooling. The martensite start ( M s ) and martensite finish ( M f ) temperatures increased with longer holding times at tempering temperature. At the same time, the lattice parameter of retained austenite decreased. Calculations from the M s temperatures and lattice parameters suggested that there was a decrease in carbon content of retained austenite as a result of precipitation of carbides prior to transformation. This was in agreement with the resulting microstructure and the contraction of the specimen during tempering, as observed by dilatometry. Tempering at 873 K (600 °C) resulted in precipitation of carbides in retained austenite followed by transformation to ferrite and carbides. This was further supported by the initial contraction and later expansion of the dilatometry specimen, the resulting microstructure, and the absence of any phase transformation on cooling from the tempering treatment. It was concluded that there are two mechanisms of retained austenite transformation occurring depending on tempering temperature and time. This was found useful in understanding the standard tempering treatment, and suggestions regarding alternative tempering treatments are discussed.

  11. Digital image rectification tool for metrification of gusset plate connections in steel truss bridges.

    Science.gov (United States)

    2009-03-01

    A method was developed to obtain dimensional data from photographs for analyzing steel truss gusset plate : connections. The method relies on a software application to correct photographic distortion and to scale the : photographs for analysis. The a...

  12. Experimental evaluation of tool wear throughout a continuous stroke blanking process of quenched 22MnB5 ultra-high-strength steel

    Science.gov (United States)

    Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.

    2017-09-01

    Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.

  13. The influence of deformation-induced microvoids on mechanical failure of AISI A8-Mod martensitic tool steel

    Science.gov (United States)

    Ghasemi-Nanesa, Hadi; Jahazi, Mohammad; Heidari, Majid; Levasseur, Tom

    2017-10-01

    Tool steels are considered as hard to deform materials since they have a mixture of soft ferritic matrix with hard carbides as secondary particles. In this study, 5 mm thick plates of AISI A8-Modified tool steel were subjected to cold rolling prior to the quench-temper cycle with the view to investigate the work hardening behavior of this steel during rolling and to reduce the brittleness of the product after the quench-temper cycle. 5mm thick samples were rolled 10, 20, 30, 40, and 50 (%) under similar conditions and then cut parallel to the rolling direction. Microstructure evolution, deformation-induced microvoids, and hardness evolution as a function of prior deformation were investigated. Electron microscopy was used to investigate the root causes for the formation of microvoids and potential alligatoring failure. The influence of microvoids on mechanical properties after the quench-temper cycle was evaluated through bending tests. Results showed no failure for 50% cold rolled sample in comparison with fracture for non-deformed sample indicating that prior deformation could be a novel route for improving the in service properties of these alloys. Hardness of 50% cold rolled after thermal hardening was lower than that for non-deformed sample. The analysis of prior austenite grain size, volume fraction of retained austenite, and volume fraction of carbides for both testing conditions showed that hardness reduction can be related to the presence of microvoids formed in the microstructure during rolling.

  14. The Mechanical and Tribology Properties of Sputtered Titanium Aluminum Nitride Coating on the Tungsten Carbide Insert Tool in the Dry Turning of Tool Steel

    Directory of Open Access Journals (Sweden)

    Esmar Budi

    2015-02-01

    Full Text Available The effect of the sputtering parameters on the mechanical tribology properties of Titanium Aluminum Nitride coating on the tungsten cabide insert tool in the dry turning of tool steel has been investigated. The coating was deposited using a Direct Current magnetron sputtering system with various substrate biases (-79 to -221 V and nitrogen flow rates (30 to 72 sccm. The dry turning test was carried out on a Computer Numeric Code machine using an optimum cutting parameter setting. The results show that the lowest flank wear (~0.4 mm was achieved using a Titanium Aluminum Nitride-coated tool that was deposited at a high substrate bias (-200 V and a high nitrogen flow rate (70 sccm. The lowest flank wear was attributed to high coating hardness.

  15. A Novel Methods for Fracture Toughness Evaluation of Tool Steels with Post-Tempering Cryogenic Treatment

    Directory of Open Access Journals (Sweden)

    Ramona Sola

    2017-02-01

    Full Text Available Cryogenic treatments are usually carried out immediately after quenching, but their use can be extended to post tempering in order to improve their fracture toughness. This research paper focuses on the influence of post-tempering cryogenic treatment on the microstructure and mechanical properties of tempered AISI M2, AISI D2, and X105CrCoMo18 steels. The aforementioned steels have been analysed after tempering and tempering + cryogenic treatment with scanning electron microscopy, X-ray diffraction for residual stress measurements, and micro- and nano-indentation to determine Young’s modulus and plasticity factor measurement. Besides the improvement of toughness, a further aim of the present work is the investigation of the pertinence of a novel technique for characterizing the fracture toughness via scratch experiments on cryogenically-treated steels. Results show that the application of post-tempering cryogenic treatment on AISI M2, AISI D2, and X105CrCoMo18 steels induce precipitation of fine and homogeneously dispersed sub-micrometric carbides which do not alter hardness and Young’s modulus values, but reduce residual stresses and increase fracture toughness. Finally, scratch test proved to be an alternative simple technique to determine the fracture toughness of cryogenically treated steels.

  16. Sub-zero Treatment of P/M Vanadis 6 Ledeburitic Tool Steel

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2013-05-01

    Full Text Available The Cr-V ledeburitic steel Vanadis 6 was vacuum austenitized, nitrogen gas quenched and double tempered at various combinations of regimes. For selected samples, a sub-zero period was inserted between quenching and tempering. The obtained results infer that: I as-quenched microstructure consisted of martensite, retained austenite and undissolved carbides, II sub-zero processing reduced the amount of the retained austenite and increased the tetragonality of the martensitic lattice, III as-quenched hardness of the steel was higher by 2 – 3 HRC due to sub-zero processing, IV as-tempered hardness increased with increasing austenitizing temperature but it decreased slightly with the sub-zero period, V no negative impact of sub-zero processing on toughness was recorded, VI wear resistance increased with sub-zero period when 100Cr6 steel has been used as a counterpart.

  17. EMS-45 Tool Steels Hardenability Experiment using Jominy ASTM A255 Test Method

    Directory of Open Access Journals (Sweden)

    Syamsul Hadi

    2013-04-01

    Full Text Available Hardenability of steels is an important way to determine heat treatment and material properties that produce component products. Jominy test is one of the method to know hardenability of steels. The Jominy ASTM A255 in used as a method for carriying out and this reseach. Parameter such as austenite temperature, holding time, cooling rate and then the results is dedicated by the prediction result, with Non Linear Numerical Equation Method. Based on test, it’s known, increasing austenite temperature, longer holding time and high cooling rate, will increase hardenability of steels. The different between the results and the prediction result done by Sonh Yue-Peng[15], Matja equation[14] and Zehtab equation[10], about 5 % -10 %. The data obtained from this experiment can be used to determine the appropriated heat treatment in order to get the desired mechanical properties, as well as to avoid distortion.

  18. Effect of changing polarity of graphite tool/ Hadfield steel workpiece couple on machining performances in die sinking EDM

    Directory of Open Access Journals (Sweden)

    Özerkan Haci Bekir

    2017-01-01

    Full Text Available In this study, machining performance ouput parameters such as machined surface roughness (SR, material removal rate (MRR, tool wear rate (TWR, were experimentally examined and analyzed with the diversifying and changing machining parameters in (EDM. The processing parameters (input par. of this research are stated as tool material, peak current (I, pulse duration (ton and pulse interval (toff. The experimental machinings were put into practice by using Hadfield steel workpiece (prismatic and cylindrical graphite electrodes with kerosene dielectric at different machining current, polarity and pulse time settings. The experiments have shown that the type of tool material, polarity (direct polarity forms higher MRR, SR and TWR, current (high current lowers TWR and enhances MRR, TWR and pulse on time (ton=48□s is critical threshold value for MRR and TWR were influential on machining performance in electrical discharge machining.

  19. RESEARCH OF INFLUENCE OF LIQUID ALUMINUM ON RESISTANCE OF THE STEEL AND CAST-IRON TOOL

    Directory of Open Access Journals (Sweden)

    S. S. Zhizhchenko

    2013-01-01

    Full Text Available The study of the interaction of steel and cast iron with aluminum was performed by immersion, and isothermal holding. By optical and electron microscopy, the microstructure of the reaction zone was investigated. The partial enthalpy of dissolution of iron, steel and cast iron in liquid aluminum has been investigated by high-temperature calorimetry at 1773 K. X-ray analysis and microhardness measurements was used to study the phase composition of the reaction zone. The thermodynamic descriptions of the system Al–Fe and Al–C–Fe are performed within the CALPHAD-method.

  20. Parametric Optimization of Wire Electrical Discharge Machining of Powder Metallurgical Cold Worked Tool Steel using Taguchi Method

    Science.gov (United States)

    Sudhakara, Dara; Prasanthi, Guvvala

    2017-04-01

    Wire Cut EDM is an unconventional machining process used to build components of complex shape. The current work mainly deals with optimization of surface roughness while machining P/M CW TOOL STEEL by Wire cut EDM using Taguchi method. The process parameters of the Wire Cut EDM is ON, OFF, IP, SV, WT, and WP. L27 OA is used for to design of the experiments for conducting experimentation. In order to find out the effecting parameters on the surface roughness, ANOVA analysis is engaged. The optimum levels for getting minimum surface roughness is ON = 108 µs, OFF = 63 µs, IP = 11 A, SV = 68 V and WT = 8 g.

  1. Localized dispersing of ceramic particles in tool steel surfaces by pulsed laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hilgenberg, K., E-mail: hilgenberg@uni-kassel.de [Metal Forming Technology, University of Kassel (Germany); Behler, K. [Laser Technology, THM University of Applied Sciences (Germany); Steinhoff, K. [Metal Forming Technology, University of Kassel (Germany)

    2014-06-01

    In this paper the capability of a localized laser dispersing technique for changing the material microstructure and the surface topology of steels is discussed. The laser implantation named technique bases on a discontinuous dispersing of ceramic particles into the surface of steels by using pulsed laser radiation. As ceramic particles TiC, WC and TiB{sub 2} are used, substrate material is high-alloyed cold working steel (X153CrMoV12). The influence of the laser parameters pulse length and pulse intensity was investigated in a comprehensive parameter study. The gained surface topology and microstructure were evaluated by optical microscopy, energy dispersive X-ray spectroscopy (EDX) and white light interferometry; mechanical properties were analyzed by micro hardness measurement. The experiments reveal that the alignment of separated, elevated, dome-shaped spots on the steel surface is feasible. The geometrical properties as well as the mechanical properties are highly controllable by the laser parameters. The laser implanted spots show a mostly crack-free and pore-free bonding to the substrate material as well as a significant increase of micro hardness.

  2. Localized dispersing of ceramic particles in tool steel surfaces by pulsed laser radiation

    Science.gov (United States)

    Hilgenberg, K.; Behler, K.; Steinhoff, K.

    2014-06-01

    In this paper the capability of a localized laser dispersing technique for changing the material microstructure and the surface topology of steels is discussed. The laser implantation named technique bases on a discontinuous dispersing of ceramic particles into the surface of steels by using pulsed laser radiation. As ceramic particles TiC, WC and TiB2 are used, substrate material is high-alloyed cold working steel (X153CrMoV12). The influence of the laser parameters pulse length and pulse intensity was investigated in a comprehensive parameter study. The gained surface topology and microstructure were evaluated by optical microscopy, energy dispersive X-ray spectroscopy (EDX) and white light interferometry; mechanical properties were analyzed by micro hardness measurement. The experiments reveal that the alignment of separated, elevated, dome-shaped spots on the steel surface is feasible. The geometrical properties as well as the mechanical properties are highly controllable by the laser parameters. The laser implanted spots show a mostly crack-free and pore-free bonding to the substrate material as well as a significant increase of micro hardness.

  3. Effect of vacuum oxy-nitrocarburizing on the microstructure of tool steels: an experimental and modeling study

    Directory of Open Access Journals (Sweden)

    Nikolova Maria

    2017-01-01

    Full Text Available The thermochemical treatments of tool steels improve the performance of the components with respect to surface hardness, wear and tribological performance as well as corrosion resistance. Compared to the conventional gas ferritic nitrocarburizing process, the original vacuum oxy-nitrocarburizing is a time-, cost-effective and environmentally-friendly gas process. Because of the oxidizing nature of the gas atmosphere, there is no need to perform subsequent post-oxidation.In this study, a vacuum oxynitrocarburizing process was carried out onto four tool steels (AISI H10, H11, H21 and D2 at 570 °C, after hardening and single tempering. The structural analysis of the compound and diffusion layers was performed by optical and electron microscopy, X-ray diffraction and glow discharge optical emission spectrometry (GDOES methods. A largely monophase ε- layer is formed with a carbon accumulation at the substrate adjacent area. The overlaying oxides adjacent to the ε-carbonitride phase contained Fe3O4 (magnetite as a main constituent. A thermodynamic modelling approach was also performed to understand and optimize the process. The “Equilib module” of FactSage software which uses Gibbs energy minimization method, was used to estimate the possible products during vacuum oxynitrocarburising process.

  4. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Gregorčič, Peter, E-mail: peter.gregorcic@fs.uni-lj.si [Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana (Slovenia); Sedlaček, Marko; Podgornik, Bojan [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Reif, Jürgen [Brandenburgische Technische Universitaet – BTU Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany)

    2016-11-30

    Highlights: • Low number of differently polarized ps laser pulses is superimposed on tool steel. • Last pulses determine the ripples orientation for single spot and coherent traces. • Previously formed structures are overridden by later incident pulses. • Ripples contrast depends on total exposure, independent on pulses’ polarization. • Weak role of pre-formed structures makes interference scenarios questionable. - Abstract: Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete – erasing the previous orientation – after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  5. Structure and Properties of Burnished and Nitrided AISI D2 Tool Steel

    Directory of Open Access Journals (Sweden)

    Daniel TOBOŁA

    2015-11-01

    Full Text Available D2 belongs to traditional steels, frequently used in metalworking industry. Shot peening and nitriding are known to improve the wear resistance of D2. In this work we focus on processes of slide burnishing and industrial low temperature gas nitriding. The D2 steel specimens were first subjected to heat treatments (HT prescribed by the manufacturer, turning (T, then burnishing (B and nitriding (N. The reason for turning was achieving appropriate surface roughness. Deformation induced in slide burnishing can be better controlled then in shot peening because of deterministic nature of this process. Four different paths to prepare surfaces were employed: HT + T, HT + T + B, HT + T + N, HT + T + B + N. D2 steel is very sensitive to the final finishing, wear rates vary up to 300 %. Two of our procedures (HT + T + N and HT + T + B + N are much superior to the others. Moreover, in the HT + T + N case, apparently the surface fatigue scaling off takes place.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.7224

  6. Refining the microstructure of an AISI M2 tool steel by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Postiglioni, R.V.; Alamino, A.E; Vurobi Junior, S., E-mail: roposti@hotmail.com, E-mail: anderalamino@yahoo.com.br, E-mail: selaucojunior@uol.com.br [Centro Interdisciplinar de Pesquisa e Pos-Graduacao (CIPP), Ponta Grossa, PR (Brazil)

    2009-07-01

    Samples of AISI M2 steel were produced by high-energy milling from chips of machining in Spex high energy mill, compaction and sintering of the powder obtained. The powder was analyzed by X-ray diffraction, and then compressed in discs of 8mm in diameter. The specimens have sintering at 1200 deg C for 1 hour under vacuum atmosphere, followed by annealing, quenching and tempering for 1 hour at 315 deg C and 540°C. Along with each disc, a sample of as-received steel was subjected to the same heat treatments to compare the final microstructure. After standard metallographic preparation, samples were etched with Beraha's reagent, characterized by optical microscopy, quantitative metallography, scanning electron microscopy with micro analysis and mapping by EDS, besides Vickers hardness. The steel produced by high-energy milling presented more refined carbide and better distribution in the microstructure. There was also reduction in the size of prior austenitic grains. (author)

  7. Development of HPDC Advanced Dies by Casting with Reinforced Tool Steels

    Directory of Open Access Journals (Sweden)

    I. Vicario

    2015-01-01

    Full Text Available High pressure die casting (HPDC dies are nowadays manufactured with high quality forged steels. Cavities are made by electrical discharge machining (EDM or by high speed milling. The average life of an aluminium HPDC die is about 125.000 injections. Refrigeration circuits have simple configurations, because they are produced by drilling the die with straight holes. They are limitations in the distances and diameters of holes. Sensors are placed where the geometry of the die permits an easy machining. In order to obtain complex figures, several rapid prototyping methods have been developed. However, there is a limitation in the life of the dies produced by this technique, from several parts to thousands. A new method to obtain semifinished high pressure die casting dies in a steel of higher mechanical properties and with the refrigeration circuits and sensors embedded into it is described in this paper. The method consists in producing a molten steel alloy with micro-nano-special ceramic particles inserted in it and casting the composite material in sand moulds of the desired geometry. The resultant solidified near-net shape die with the cooling tubes and sensors embedded into it. A use-life and a productivity about 50% and 10% higher are obtained.

  8. Applications of ArcelorMittal Thermodynamic Computation Tools to Steel Production

    Science.gov (United States)

    Lehmann, Jean

    CEQCSI is an ArcelorMittal in-house built thermodynamic equilibrium calculation software which is used both at high temperatures typically for slag-metal reactions but also at "low" temperatures to study solid phase transformations and precipitation in solid steel. It has been built to accommodate different thermodynamic models for slag (the Cell model, the Generalized Central Atom model - product of a collaboration between ArcelorMittal Global R&D Maizieres and CSIRO Melbourne), for steel (sublattice model, Wagner Interaction Parameter Formalism) as well as for oxide, sulfide, carbide… solid solutions. Examples of application concern Si, Mn, S slag-metal equilibrium in Blast-Furnace, P partition in BOF slags, slag-metal equilibrium for flat and long products in ladle… Apart from data relating to mass transfer between different phases at equilibrium, CEQCSI proposes several estimates for slag viscosities with among them one delivered by a new model based on the Generalized Central Atom thermodynamic model for slags. CEQCSI conception allows also handling some kinetic problems such as desulfurization in ladle or slag/metal reaction in mold.

  9. Formation of Hard Composite Layer on Tool Steel by Laser Alloying

    Directory of Open Access Journals (Sweden)

    Bonek M.

    2016-06-01

    Full Text Available Investigations include alloying the PMHSS6-5-3 steel surface layer with carbide and ceramic powders WC, VC, TiC, SiC, Si3N4 and Al2O3, using the high power diode laser (HPDL. Laser treatment is especially promising for solving contemporary surface engineering problems making it possible to focus precisely the delivered energy in the form of heat in the surface layer. The structural mechanism was determined of surface layers development, effect was studied of alloying parameters, method on structure refinement and influence of these factors on the mechanical properties of surface layer, and especially on its abrasive wear resistance. The fine grained martensite structure is responsible for hardness increase of the alloyed layer. The tribological wear relationships were determined for laser treated surface layers, determining friction coefficient, and wear trace shape developed due to the abrasive wear of the investigated surfaces. Comparison of the laser treatment parameters and tribological properties of surface layer after remelting and alloying with hard particles of the PMHSS6-5-3 steel using the high power diode laser to obtain the optimum service properties is the outcome of the investigations carried out.

  10. Experimental and Numerical Investigations of Applying Tip-bottomed Tool for Bending Advanced Ultra-high Strength Steel Sheet

    Science.gov (United States)

    Mitsomwang, Pusit; Borrisutthekul, Rattana; Klaiw-awoot, Ken; Pattalung, Aran

    2017-09-01

    This research was carried out aiming to investigate the application of a tip-bottomed tool for bending an advanced ultra-high strength steel sheet. The V-die bending experiment of a dual phase steel (DP980) sheet which had a thickness of 1.6 mm was executed using a conventional bending and a tip-bottomed punches. Experimental results revealed that the springback of the bent worksheet in the case of the tip-bottomed punch was less than that of the conventional punch case. To further discuss bending characteristics, a finite element (FE) model was developed and used to simulate the bending of the worksheet. From the FE analysis, it was found that the application of the tip-bottomed punch contributed the plastic deformation to occur at the bending region. Consequently, the springback of the worksheet reduced. In addition, the width of the punch tip was found to affect the deformation at the bending region and determined the springback of the bent worksheet. Moreover, the use of the tip-bottomed punch resulted in the apparent increase of the surface hardness of the bent worksheet, compared to the bending with the conventional punch.

  11. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  12. Effect of cutting parameters on sustainable machining performance of coated carbide tool in dry turning process of stainless steel 316

    Science.gov (United States)

    Bagaber, Salem A.; Yusoff, Ahmed Razlan

    2017-04-01

    The manufacturing industry aims to produce many products of high quality with relatively less cost and time. Different cutting parameters affect the machining performance of surface roughness, cutting force, and material removal rate. Nevertheless, a few studies reported on the effects of sustainable factors such as power consumed, cycle time during machining, and tool life on the dry turning of AISI 316. The present study aims to evaluate the machining performance of coated carbide in the machining of hard steel AISI 316 under the dry turning process. The influence of cutting parameters of cutting speed, feed rate, and depth of cut with their five (5) levels is established by a central composite design. Highly significant parameters were determined by analysis of variance (ANOVA), and the main effects of power consumed and time during machining, surface roughness, and tool wear were observed. Results showed that the cutting speed was proportional to power consumption and tool wear. Meanwhile, insignificant to surface roughness, feed rate most significantly affected surface roughness and power consumption followed by depth of cut.

  13. Image processing, analysis, and management tools for gusset plate connections in steel truss bridges.

    Science.gov (United States)

    2016-10-01

    This report details the research undertaken and software tools that were developed that enable digital : images of gusset plates to be converted into orthophotos, establish physical dimensions, collect : geometric information from them, and conduct s...

  14. Dry metal forming of high alloy steel using laser generated aluminum bronze tools

    Directory of Open Access Journals (Sweden)

    Freiße Hannes

    2015-01-01

    Full Text Available Regarding the optimization of forming technology in economic and environmental aspects, avoiding lubricants is an approach to realize the vision of a new green technology. The resulting direct contact between the tool and the sheet in non-lubricated deep drawing causes higher stress and depends mainly on the material combination. The tribological system in dry sliding has to be assessed by means on the one hand of the resulting friction coefficient and on the other hand of the wear of the tool and sheet material. The potential to generate tailored tribological systems for dry metal forming could be shown within the investigations by using different material combinations and by applying different laser cladding process parameters. Furthermore, the feasibility of additive manufacturing of a deep drawing tool was demonstrated. The tool was successfully applied to form circular cups in a dry metal forming process.

  15. An improved flow-injection system for spectrophotometric determination of molybdenum and tungsten in tool steels.

    Science.gov (United States)

    Gervasio, Ana P G; Fortes, Paula R; Meneses, Silvia R P; Miranda, Carlos E S; Zagatto, Elias A G

    2006-06-15

    A flow-injection procedure for simultaneous spectrophotometric determination of tungsten and molybdenum in steel alloys is proposed. The method exploits the catalytic effects of Mo(VI) and W(VI) on the rate of iodide oxidation by hydrogen peroxide under acidic conditions. A novel strategy for ion-exchange separation of the potential interfering species is proposed, and an AG50W-X8 cationic resin mini-column is used. The sample is injected twice, originating two sequential plugs, citrate being added to one of them in order to suppress the W(VI) catalytic activity thus providing the kinetic discrimination. The system handles 70 samples per hour and requires 1.6mg KI per determination. A linear response is verified up to 10mgl(-1) Mo (or W) in the injectate, and signal additivity is 98-103%. Results are precise (R.S.D.<0.04) and in agreement with ICP-OES. Running a standard reference material (IPT-50) assessed also accuracy.

  16. Comparison of tool life and surface roughness with MQL, flood cooling, and dry cutting conditions with P20 and D2 steel

    Science.gov (United States)

    Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.

    2017-09-01

    Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.

  17. New tools for steel catenary risers inspection; Novas ferramentas para inspecao de risers tipo SCR

    Energy Technology Data Exchange (ETDEWEB)

    Camerini, Claudio Soligo; Marinho, Carla Alves; Raphael, Fabiana N.; Maia, Carlos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Freitas, Miguel [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil); Lopes, Ricardo Tadeu; Rocha, Henrique [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2005-07-01

    The Research Center of PETROBRAS and two of the Federal Brazilian Universities, PUC-Rio and UFRJ, have been developing two new projects in order to inspect risers of petroleum production. The first tool is an instrumented pig for profiling internal corrosion, having flexibility under diameter variations and independence related to thickness wall pipeline. The second one is a gammagraphy system remotely operated by ROVs, to be employed in alveoli corrosion and fatigue cracks detection in underwater pipelines. This work shows the trajectory of these two tools, describing laboratory and field tests and the future activities. (author)

  18. Computer simulation of the relationship between selected properties of laser remelted tool steel surface layer

    Energy Technology Data Exchange (ETDEWEB)

    Bonek, Mirosław, E-mail: miroslaw.bonek@polsl.pl; Śliwa, Agata; Mikuła, Jarosław

    2016-12-01

    Highlights: • Prediction of the properties of laser remelted surface layer with the use of FEM analysis. • The simulation was applied to determine the shape of molten pool of remelted surface. • Applying of numerical model MES for simulation of surface laser treatment to meaningfully shorten time of selection of optimum parameters. • An FEM model was established for the purpose of building a computer simulation. - Abstract: Investigations >The language in this paper has been slightly changed. Please check for clarity of thought, and that the meaning is still correct, and amend if necessary.include Finite Element Method simulation model of remelting of PMHSS6-5-3 high-speed steel surface layer using the high power diode laser (HPDL). The Finite Element Method computations were performed using ANSYS software. The scope of FEM simulation was determination of temperature distribution during laser alloying process at various process configurations regarding the laser beam power and method of powder deposition, as pre-coated past or surface with machined grooves. The Finite Element Method simulation was performed on five different 3-dimensional models. The model assumed nonlinear change of thermal conductivity, specific heat and density that were depended on temperature. The heating process was realized as heat flux corresponding to laser beam power of 1.4, 1.7 and 2.1 kW. Latent heat effects are considered during solidification. The molten pool is composed of the same material as the substrate and there is no chemical reaction. The absorptivity of laser energy was dependent on the simulated materials properties and their surface condition. The Finite Element Method simulation allows specifying the heat affected zone and the temperature distribution in the sample as a function of time and thus allows the estimation of the structural changes taking place during laser remelting process. The simulation was applied to determine the shape of molten pool and the

  19. Research of Tool Durability in Surface Plastic Deformation Processing by Burnishing of Steel Without Metalworking Fluids

    Science.gov (United States)

    Grigoriev, S. N.; Bobrovskij, N. M.; Melnikov, P. A.; Bobrovskij, I. N.

    2017-05-01

    Modern vector of development of machining technologies aimed at the transition to environmentally safe technologies - “green” technologies. The concept of “green technology” includes a set of signs of knowledge intended for practical use (“technology”). One of the ways to improve the quality of production is the use of surface plastic deformation (SPD) processing methods. The advantage of the SPD is a capability to combine effects of finishing and strengthening treatment. The SPD processing can replace operations: fine turning, grinding or polishing. The SPD is a forceful contact impact of indentor on workpiece’s surface in condition of their relative motion. It is difficult to implement the core technology of the SPD (burnishing, roller burnishing, etc.) while maintaining core technological advantages without the use of lubricating and cooling technology (metalworking fluids, MWF). The “green” SPD technology was developed by the authors for dry processing and has not such shortcomings. When processing with SPD without use of MWF requirements for tool’s durability is most significant, especially in the conditions of mass production. It is important to determine the period of durability of tool at the design stage of the technological process with the purpose of wastage preventing. This paper represents the results of durability research of natural and synthetic diamonds (polycrystalline diamond - ASPK) as well as precision of polycrystalline superabrasive tools made of dense boron nitride (DBN) during SPD processing without application of MWF.

  20. Inverse Processing of Undefined Complex Shape Parts from Structural High Alloyed Tool Steel

    Directory of Open Access Journals (Sweden)

    Katarina Monkova

    2014-02-01

    Full Text Available The paper deals with the process of 3D digitization as a tool for increasing production efficiency of complex shaped parts. Utilizes the concept of reverse engineering and new the model of NC program generation STEP-NC, for the of templates production for winding the stator coil of electromotors that is for electric household appliances. The manual production of prototype was substituted by manufacturing with NC machines. A 3D scanner was used for data digitizing, CAD/CAM system Pro/Engineering was used for NC program generation, and 3D measuring equipment was used for verification of new produced parts. The company estimated that only due to the implementation of STEP NC standard into production process it was allowed to read the 3D geometry of the product without problems. It helps the workshop to shorten the time needed for part production by about 30%.

  1. Size Effects in Residual Stress Formation during Quenching of Cylinders Made of Hot-Work Tool Steel

    Directory of Open Access Journals (Sweden)

    Manuel Schemmel

    2015-01-01

    Full Text Available The present work investigates the residual stress formation and the evolution of phase fractions during the quenching process of cylindrical specimens of different sizes. The cylinders are made of hot-work tool steel grade X36CrMoV5-1. A phase transformation kinetic model in combination with a thermomechanical model is used to describe the quenching process. Two phase transformations are considered for developing a modelling scheme: the austenite-to-martensite transformation and the austenite-to-bainite transformation. The focus lies on the complex austenite-to-bainite transformation which can be observed at low cooling rates. For an appropriate description of the phase transformation behaviour nucleation and growth of bainite are taken into account. The thermomechanical model contains thermophysical data and flow curves for each phase. Transformation induced plasticity (TRIP is modelled by considering phase dependent Greenwood-Johnson parameters for martensite and bainite, respectively. The influence of component size on residual stress formation is investigated by the finite element package Abaqus. Finally, for one cylinder size the simulation results are validated by X-ray stress measurements.

  2. Metallurgical Characterization of a Weld Bead Coating Applied by the PTA Process on the D2 Tool Steel

    Directory of Open Access Journals (Sweden)

    Ali Tahaei

    Full Text Available Abstract In this investigation, a nickel-base powder mixed with tungsten carbide particles was applied by Plasma Transferred Arc welding (PTA on the surface of the D2 cold work tool steel to improve surface quality and to extend its lifetime during applications. The Design of Experiment (DoE method was applied to obtain the appropriate combination of hardfacing parameters and to run the minimum number of tests. Current, travel speed and preheat were considered as variable parameters. These parameters are important to reach a final layer with an appropriate bead geometry accompanied with good metallurgical properties. All samples were prepared for metallurgical investigations and the effect of process parameters on the weld bead geometry was considered. For each experiment run, weld bead geometry parameters were measured including dilution, penetration and reinforcement. Microstructures and the distribution of tungsten carbide particles after welding were analyzed by Optical Microscopy (OM and Scanning Electron Microscopy (SEM equipped with an EDS microprobe. In addition, hardness tests were performed to evaluate the mechanical properties of the weld bead layers. Finally, among all the experiments, the best sample with appropriate bead geometry and microstructure was selected.

  3. High dose implantation of nitrogen in tool steel: Auger electron spectroscopy and hardness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bredell, L.J. (Dept. of Physics, Univ. of Pretoria (South Africa)); Malherbe, J.B. (Dept. of Physics, Univ. of Pretoria (South Africa))

    1993-05-15

    Tool stell samples were implanted with 100 keV N[sup +] ions at liquid nitrogen temperature to doses of 3 x 10[sup 17] and 1 x 10[sup 18] cm[sup -2]. Only the dose of 1 x 10[sup 18] cm[sup -2] caused a significant hardening effect. Two mechanisms contributed to this hardness increase, namely nitride formation and radiation damage. Cooling during implantation caused additional hardening, owing to a martensitic phase transformation. The projected range (R[sub p] = 110 nm) for the implanted species was obtained by Auger sputter depth profiling. If the hardened layer thickness was taken as 2R[sub p], then the Joensson-Hogmark model gave an average hardness value of 2010 HV for the implanted layer. However, a more realistic value of 900 HV was calculated under the assumption that typical radiation damage profiles (R[sub d] = 3R[sub p]) contributed to the hard film thickness. It is difficult to judge the accuracy of the model for predicting the correct absolute hardness of the implanted layer but it is shown that deep radiation-induced damage plays a major role in surface hardening. (orig.)

  4. Synthesis, structural characterization, and reactivity studies of 5-CF3SO3-B10H13.

    Science.gov (United States)

    Berkeley, Emily R; Ewing, William C; Carroll, Patrick J; Sneddon, Larry G

    2014-05-19

    In contrast to previous reactions carried out in cyclopentane solvent at room temperature that produced 6-TfO-B10H13 (TfO = CF3SO3), the reaction of closo-B10H10(2-) with a large excess of trifluoromethanesulfonic acid in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (bmimOTf) gave exclusively the previously unknown 5-TfO-B10H13 isomer. Experimental and computational studies demonstrated that the difference in the products of the two reactions is a result of 6-TfO-B10H13 isomerizing to 5-TfO-B10H13 above room temperature in bmimOTf solutions. Reactivity studies showed that 5-TfO-B10H13: (1) is deprotonated by reaction with 1,8-bis(dimethylamino)naphthalene to form the 5-TfO-B10H12(1-) anion; (2) reacts with alcohols to produce 6-RO-B10H13 boryl ethers (R = Me and 4-CH3O-C6H4); (3) undergoes olefin-hydroboration reactions to form 5-TfO-6,9-R2-B10H11 derivatives; and (4) forms a 5-TfO-6,9-(Me2S)2-B10H11 adduct at its Lewis acidic 6,9-borons upon reaction with dimethylsulfide. The 5-TfO-6,9-(Me2S)2-B10H11 adduct was also found to undergo alkyne-insertion reactions to form a range of previously unreported triflate-substituted 4-TfO-ortho-carboranes (1-R-4-TfO-1,2-C2B10H10) and reactions with triethylamine or ammonia to form the first TfO-substituted decaborate [R3NH(+)]2[2-TfO-B10H9(2-)], and [R3NH(+)]2[1-TfO-B10H9(2-)] (R = H, Et) salts.

  5. The refinement of the surface layer of HS 7425 high speed tool steel by laser and electric arc plasma

    Directory of Open Access Journals (Sweden)

    W. Bochnowski

    2008-10-01

    Full Text Available The paper present two different techniques: laser remelting surface and plasma remelting surface of the high speed steel HS 7425. Thestructure of the remelted layers were examined by means of SEM – microscopy. Measurement of microhardness in remelting zone usingVickers method. The remelting zone consist of dendritic cells and columnar crystals. Increase of hardness was observed in remelted zonein comparison to the substrate of the steel. The hardness in the remelted zone increases with the increasing cooling rate.

  6. Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam; John F. Wallace; Quanyou Zhou

    2002-01-30

    An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can cost well over one million dollars. These costs provide a strong incentive for extension of die life. While vacuum quenched Premium Grade H13 dies have become the most widely used in the United States, tool makers and die casters are constantly searching for new steels and heat treating procedures to extend die life. This project was undertaken to investigate the effects of composition and heat treating on die life and optimize these parameters.

  7. 1H, 13C and 19F NMR studies on fluorinated ethers

    Science.gov (United States)

    Balonga, P. E.; Kowalewski, V. J.; Contreras, R. H.

    The enflurane and ethoxyflurane 1H, 13C and 19F NMR spectra are examined—including sign determination of FF and FH couplings—and considered in the light of previously reported results for methoxyflurane. Conformational differences between methoxyflurane and the former two molecules are indicated by through space FH coupling constants and by the nonequivalence of geminal fluorine nuclei. Populations of conformers about the CC bond are estimated.

  8. [Isolation and degradation characteristics of dichloromethane-degradation bacterial strain by Methylobacterium rhodesianum H13].

    Science.gov (United States)

    Liu, Hong-xia; Zhu, Run-ye; Ouyang, Du-juan; Zhuang, Qing-feng; Chen, Dong-zhi; Chen, Jian-meng

    2013-09-01

    A dichloromethane-degrading bacterium Methylobacterium rhodesianum H13 which utilized the DCM as the sole carbon and energy source was isolated. According to the research, M. rhodesianum H13 could completely degrade 5 mmol x L(-1) DCM in 23 h with the initial cell concentration of 0.82 mg x L(-1), pH 7.0, 30 degrees C, and the cell yield rate was about 0.136 g x g(-1) DCM. With the degradation of DCM, Cl- concentration gradually raised (the release of Cl- concentration was about 2 times higher as the DCM), pH value dropped to 6.75, and the solution was weakly acidic. Temperature, pH, DCM concentration, Cl- concentration and other factors were investigated through the shake flask experiments, and the optimal conditions for DCM degradation were: temperature 30 degrees C, pH 7.0. The study also indicated that 5 mmol x L(-1) of DCM was the optimum concentration for M. rhodesianum H13 and high levels of DCM could inhibit the degradation. The research has an important application value for the DCM environmental pollution.

  9. Effect of Tooling Material on the Internal Surface Quality of Ti6Al4V Parts Fabricated by Hot Isostatic Pressing

    Science.gov (United States)

    Cai, Chao; Song, Bo; Wei, Qingsong; Yan, Wu; Xue, Pengju; Shi, Yusheng

    2017-01-01

    For the net-shape hot isostatic pressing (HIP) process, control of the internal surface roughness of as-HIPped parts remains a challenge for practical engineering. To reveal the evolution mechanism of the internal surface of the parts during the HIP process, the effect of different tooling materials (H13, T8, Cr12 steel, and graphite) as internal cores on the interfacial diffusion and surface roughness was systematically studied.

  10. Experimental investigation on flank wear and tool life, cost analysis and mathematical model in turning hardened steel using coated carbide inserts

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Sahoo

    2013-10-01

    Full Text Available Turning hardened component with PCBN and ceramic inserts have been extensively used recently and replaces traditional grinding operation. The use of inexpensive multilayer coated carbide insert in hard turning is lacking and hence there is a need to investigate the potential and applicability of such tools in turning hardened steels. An attempt has been made in this paper to have a study on turning hardened AISI 4340 steel (47 ± 1 HRC using coated carbide inserts (TiN/TiCN/Al2O3/ZrCN under dry environment. The aim is to assess the tool life of inserts and evolution of flank wear with successive machining time. From experimental investigations, the gradual growth of flank wear for multilayer coated insert indicates steady machining without any premature tool failure by chipping or fracturing. Abrasion is found to be the dominant wear mechanisms in hard turning. Tool life of multilayer coated carbide inserts has been found to be 31 minute and machining cost per part is Rs.3.64 only under parametric conditions chosen i.e. v = 90 m/min, f = 0.05 mm/rev and d = 0.5 mm. The mathematical model shows high determination coefficient, R2 (99% and fits the actual data well. The predicted flank wear has been found to lie very close to the experimental value at 95% confidence level. This shows the potential and effectiveness of multilayer coated carbide insert used in hard turning applications.

  11. Effects of hard chrome and MoN-coated stainless steel on wear behaviour and tool life model under two-body abrasion wear testing

    Directory of Open Access Journals (Sweden)

    P. Srisattayakul

    2017-01-01

    Full Text Available The objectives of this study were to investigate the effect of the electroplated hard chrome (HC and the MoNcoated AISI 316 stainless steel coatings on weight loss under two-body abrasion wear testing and to predict the tool life of both materials used as a fishing net-weaving machine component, namely the hook. Both materials were used to carry out the wear experiments under two-body abrasion behavior. These specimens were wear tested with the in-house wear testing apparatus base on ASTM: G133-05 standard. The Taylor’s equation was used to formulate the tool life model whereas the Monte Carlo simulation was used to predict the tool life of the machine part. The results showed that the MoN-HC exhibited higher wear resistance than that of the HC.

  12. Surface Layer States of Worn Uncoated and TiN-Coated WC/Co-Cemented Carbide Cutting Tools after Dry Plain Turning of Carbon Steel

    Directory of Open Access Journals (Sweden)

    Johannes Kümmel

    2013-01-01

    Full Text Available Analyzing wear mechanisms and developments of surface layers in WC/Co-cemented carbide cutting inserts is of great importance for metal-cutting manufacturing. By knowing relevant processes within the surface layers of cutting tools during machining the choice of machining parameters can be influenced to get less wear and high tool life of the cutting tool. Tool wear obviously influences tool life and surface integrity of the workpiece (residual stresses, surface quality, work hardening, etc., so the choice of optimised process parameters is of great relevance. Vapour-deposited coatings on WC/Co-cemented carbide cutting inserts are known to improve machining performance and tool life, but the mechanisms behind these improvements are not fully understood. The interaction between commercial TiN-coated and uncoated WC/Co-cemented carbide cutting inserts and a normalised SAE 1045 steel workpiece was investigated during a dry plain turning operation with constant material removal under varied machining parameters. Tool wear was assessed by light-optical microscopy, scanning electron microscopy (SEM, and EDX analysis. The state of surface layer was investigated by metallographic sectioning. Microstructural changes and material transfer due to tribological processes in the cutting zone were examined by SEM and EDX analyses.

  13. An investigation of force, surface roughness and chip in surface grinding of SKD 11 tool steel using minimum quantity lubrication-MQL technique

    Science.gov (United States)

    Soepangkat, Bobby O. P.; Agustin, H. C. Kis; Subiyanto, H.

    2017-06-01

    This research aimed to analyze the viability of the minimum quantity of lubricant (MQL) technique towards normal force, tangential force, surface roughness and chip formation in surface grinding of SKD 11 tool steel. The three surface grinding parameters were varied including the type of cooling method (MQL and dry), table speed, and depth of cut. Based on statistical analysis, depth of cut is the most influential factor which affects the four responses in both dry and MQL grinding. MQL could reduce normal force and tangential force considerably, but produce higher surface roughness. In MQL grinding, the chips removal took place mostly by shearing and fracturing.

  14. Heat treatment of nitrided layer formed on X37CrMoV5-1 hot working tool steel

    Science.gov (United States)

    Ciski, A.; Wach, P.; Tacikowski, J.; Babul, T.; Šuchmann, P.

    2017-02-01

    The paper presents the technology consisting of combination of the nitriding process with subsequent austenitizing at temperature above eutectoid temperature of the Fe-C system and further rapid cooling. Such treatment will cause formation of the martensite in the area of the primarily nitrided layer and the additional precipitation hardening by tempering of heat treated steel. The article shows that the heat treatment process of nitrided layer formed on X37CrMoV5-1 steel leads to strengthening of surface layer, the substrate and the core of nitrided part. Heat treatment of nitrided steel with the tempering in inert (nitrogen) or active (ammonia) atmosphere can increase the thickness of the layer formed by short-term nitriding process. After the nitriding process of X37CrMoV5-1 steel the nitrided layer had a thickness of about 160 μm, while a subsurface layer of iron nitrides had a thickness of 7 μm. After subsequent quenching and tempering processes, the nitrided layer undergoes additional diffusion and its thickness is increased to about 220 μm (inert atmosphere) or 280 μm (active atmosphere). If the tempering process is carried out in an inert atmosphere, the primarily formed layer of iron nitrides disappears. Tempering in an active atmosphere leads to forming of white layer with a thickness of 7 μm. Basic properties of nitrided layers formed in such way, like the hardness and the wear resistance, are presented.

  15. Effective utilization of dichloromethane by a newly isolated strain Methylobacterium rhodesianum H13.

    Science.gov (United States)

    Chen, Dong-Zhi; Ouyang, Du-Juan; Liu, Hong-Xia; Chen, Jing; Zhuang, Qing-Feng; Chen, Jian-Meng

    2014-01-01

    An effective dichloromethane (DCM) utilizer Methylobacterium rhodesianum H13 was isolated from activated sludge. A response surface methodology was conducted, and the optimal conditions were found to be 4.5 g/L Na2HPO4·12H2O, 0.5 g/L (NH4)2SO4, an initial pH of 7.55, and a temperature of 33.7 °C. The specific growth rate of 0.25 h(-1) on 10 mM DCM was achieved, demonstrating that M. rhodesianum H13 was superior to the other microorganisms in previous investigations of DCM utilization. DCM mineralization paralleled the production of cells, CO2, and water-soluble metabolites, as well as the release of Cl(-), whereas the carbon distribution and Cl(-) yield varied with DCM concentrations. The facts that complete degradation only occurred with DCM concentrations below 15 mM and repetitive degradation of 5 mM DCM could proceed for only three cycles were ascribed to pH decrease (from 7.55 to 3.02) though a buffer system was employed.

  16. The effects of the size of Al2O3 particles in nanolubricant with added SDBS on surface roughness and tool wear during turning of mild steel

    Science.gov (United States)

    Ali, M. A. M.; Khalil, A. N. M.; Azmi, A. I.; Salleh, H. M.

    2017-09-01

    The technology of using Al2O3 nanoparticles in machining seems to solve major machining problems related to friction and heat generation. This achievement is strongly related to the size of particles itself. The purpose of this study is to observe the effects of the size of Al2O3 particles dispersed in solcut base oil with added Sodium Dodecylbenzene Sulfonate (SDBS), during the turning operation of mild steel under Minimum Quantity Lubrication (MQL) condition. The two dependent variables of interest are surface roughness and tool wear. Two different Al2O3 particle sized (600nm and cutting region under MQL system. The experimental results show that MQL nanolubricant (tool wear by 62.5% compared to that of MQL nanolubricant (600nm) with SDBS.

  17. Laser-Hardened and Ultrasonically Peened Surface Layers on Tool Steel AISI D2: Correlation of the Bearing Curves' Parameters, Hardness and Wear

    Science.gov (United States)

    Lesyk, D. A.; Martinez, S.; Mordyuk, B. N.; Dzhemelinskyi, V. V.; Lamikiz, A.; Prokopenko, G. I.; Grinkevych, K. E.; Tkachenko, I. V.

    2017-12-01

    This paper is focused on the effects of the separately applied laser heat treatment (LHT) and ultrasonic impact treatment (UIT) and the combined LHT + UIT process on the wear and friction behaviors of the hardened surface layers of the tool steel AISI D2. In comparison with the initial state, wear losses of the treated specimens after long-term wear tests were decreased by 68, 41, and 77% at the LHT, UIT, and combined LHT + UIT processes, respectively. The Abbott-Firestone bearing curves were used to analyze the material ratio and functional characterization (bearing capacity and oil capacitance) of the studied surface specimens. The wear losses registered after short (15 min) tests correlate well with the changes in experimental surface roughness Ra, and the predictive Rpk, and bearing capacity B C parameters, respectively, evaluated using the Abbott-Firestone curves and Kragelsky-Kombalov formula. The wear losses after the long-term (45 min) tests are in good correlation with the reciprocal surface microhardness HV and with the W L and W P wear parameters, respectively, estimated using Archard-Rabinowicz formula and complex roughness-and-strength approach. The observed HV increase is supported by nanotwins (LHT), by dense dislocation nets (UIT), and by dislocation cells/nanograins fixed with fine carbides (LHT + UIT) formed in the surface layers of the steel.

  18. Use of RSP Tooling to Manufacture Die Casting Dies

    Energy Technology Data Exchange (ETDEWEB)

    Kevin McHugh

    2004-07-01

    summarizes properties of H13 tool steel dies.

  19. Experimental Investigation Of Segregation Of Carbon Atoms Due To Sub-Zero Cryogenic Treatment In Cold Work Tool Steel By Mechanical Spectroscopy And Atom Probe Tomography

    Directory of Open Access Journals (Sweden)

    Min N.

    2015-06-01

    Full Text Available In this work, we present mechanical spectroscopy of cold work tool steel subjected to sub-zero cryogenic soaking treatment to reveal the carbon segregation and the subsequent carbides refinement. The maximum of Snoek-Köster (SK peak height was obtained in the sample subjected to soaking 1h at −130°C cryogenic treatment. The SK peak height is reduced with prolonging the soaking time. The results indicate that an increase in the height of SK peak is connected with an increase in dislocation density and the number of segregated carbon atoms in the vicinity of dislocations or twin planes after martensite transformation at −130°C which is confirmed by corresponding TEM and atom probe tomography measurement. Hence, it is suggested that the isothermal martensite, formed during the cryogenic soaking treatment decreases (APT the height of SK peak.

  20. Plasma nitriding and simultaneous tempering of VF 800AT tool steel; Nitretacao por plasma com revenimento simultaneo do aco ferramenta VF 800AT

    Energy Technology Data Exchange (ETDEWEB)

    Prass, Andre Ricardo; Fontana, Luis Cesar; Recco, Abel Andre Candido, E-mail: prass.andrericardo@gmail.com, E-mail: luis.fontana@udesc.br, E-mail: abel.recco@udesc.br [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil)

    2017-04-15

    Plasma nitriding of tool steels improves the surface hardness due to formation of diffusion zone and/or compound layer. The process parameters such as temperature, gas composition and dwell time, allow to control the layer thickness, the microstructure, the crystalline phases and the type of layer (for example white layer or diffusion zone). This paper discusses an alternative procedure for the heat treatment of tempering and surface treatment, both in plasma or combining conventional heat treatment with subsequent plasma nitriding. Carrying out both treatments in plasma could enable reduction in manufacturing costs, lower energy consumption and less time for tools manufacturing. Samples of VF800AT steel were treated and characterized (at surface and core of samples) through the following technique: X-ray diffraction, optical microscopy, scanning electron microscopy, micro-hardness profile and Rockwell C measurement. Temperature measurements during the plasma treatment, show that arise thermal gradient between the surface and the core of the samples. In this work, it was observed that the surface was up to 7% hotter than the core of sample, during the plasma treatment with temperature of magnitude about 5 x 10{sup 2} °C. This thermal gradient seems inherent to the plasma process, so that it can produce different microstructure, hardness and crystalline phases between core and edge of samples. However, when two tempering operations are prior carried out in a muffle furnace and the third tempering treatment is subsequently carried out simultaneously with the plasma nitriding, it is observed that the microstructure, the crystalline phases, hardness and micro hardness (in both, edge and core) are similar to treatments done in conventional mode cycle (in muffle furnace) with subsequent plasma nitriding. (author)

  1. Modeling and multi-objective optimization of surface roughness and productivity in dry turning of AISI 52100 steel using (TiCN-TiN coating cermet tools

    Directory of Open Access Journals (Sweden)

    Ouahid Keblouti

    2017-01-01

    Full Text Available The present work concerns an experimental study of turning with coated cermet tools with TiCN-TiN coating layer of AISI 52100 bearing steel. The main objectives are firstly focused on the effect of cutting parameters and coating material on the performances of cutting tools. Secondly, to perform a Multi-objective optimization for minimizing surface roughness (Ra and maximizing material removal rate by desirability approach. A mathematical model was developed based on the Response Surface Methodology (RSM. ANOVA method was used to quantify the cutting parameters effects on the machining surface quality and the material removal rate. The results analysis shows that the feed rate has the most effect on the surface quality. The effect of coating layers on the surface quality is also studied. It is observed that a lower surface roughness is obtained when using PVD (TiCN-TiN coated insert when compared with uncoated tool. The values of root mean square deviation and coefficient of correlation between the theoretical and experimental data are also given in this work where the maximum calculated error is 2.65 %.

  2. Measurement of surface roughness and flank wear on hard martensitic stainless steel by CBN and PCBN cutting tools

    OpenAIRE

    S. Thamizhmanii; S. Hasan

    2008-01-01

    Purpose: The experiments with different operating parameters using CBN and PCBN tools on hard AISI 440 C material were investigated in this paper.Design/methodology/approach: In this research AISI 440 C stainless was used under hard condition. The cutting tools are having three cutting edges and each edge repeated for 5 times. The test conducted by each cutting edge was termed as trail 1, 2, 3, 4 & 5. The length of cutting was 150 mm and each trail. The surface roughness and flank wear, crate...

  3. Improvement of the surface finish obtained by laser ablation with a Nd: YAG laser on pre-ablated tool steel

    CSIR Research Space (South Africa)

    Steyn, J

    2007-01-01

    Full Text Available Surface finish is an important requirement for tool and die makers and remains a challenge with conventional machining technologies. Nd: YAG lasers have been utilised for many years in the area of laser marking, engraving and micro machining...

  4. Tool life of the edges coated with the c-BN+h-BN coatings with different structures during hard machinable steel machining

    Directory of Open Access Journals (Sweden)

    Kupczyk, M.

    2005-12-01

    Full Text Available In the presented paper the experimental results concerning the functional quality (durability during steel machining of thin, superhard coatings produced on the cutting edges are described. Differences among mentioned properties of coatings mainly result from a coating structure. But the structure of coatings results from deposition parameters Superhard boron nitride coatings were deposited on insert cutting edges made of cemented carbides by the pulse-plasma method applying different values of the discharge voltage. The comparative investigations of mentioned coatings have been concerned of tool life of edges during hard machinable material machining (nitriding steel hardened in oil. In these investigations for the purpose of additional increase of coatings adhesion to substrates an interfacial layers were applied.

    En este trabajo se describen los resultados experimentales referentes a la calidad funcional (durabilidad durante el mecanizado del acero de recubrimientos delgados, de elevada dureza del filo de corte. Las diferencias en las propiedades de los recubrimientos se deben, principalmente, a la estructura del recubrimiento. No obstante, la estructura del recubrimiento está relacionada con los parámetros de la deposición. Recubrimientos de nitruro de boro de elevada dureza se depositaron sobre filos de corte insertados, fabricados con carburos cementados mediante el método de pulsos de plasma aplicando diferentes valores de voltaje de descarga. Las investigaciones comparativas de los mencionados recubrimientos han relacionado la vida del filo de la herramienta durante el mecanizado del material (acero nitrurado endurecido en aceite. En estas investigaciones se aplicaron capas interfaciales para aumentar la adherencia del recubrimiento.

  5. Stahlschüssel key to steel

    CERN Document Server

    Wegst, W S

    2016-01-01

    The Key to Steel (Stahlschlüssel/Stahlschluessel) cross reference book will help you to decode / decipher steel designations and find equivalent materials worldwide. The 2016 edition includes more than 70,000 standard designations and trade names from approximately 300 steelmakers and suppliers. Presentation is trilingual: English, French, and German. Materials covered include structural steels, tool steels, valve steels, high temperature steels and alloys, stainless and heat-resisting steels, and more. Standards and designations from 25 countries are cross-referenced.

  6. 1H, 13C and 15N NMR assignments of a calcium-binding protein from Entamoeba histolytica.

    Science.gov (United States)

    Verma, Deepshikha; Bhattacharya, Alok; Chary, Kandala V R

    2016-04-01

    We report almost complete sequence specific (1)H, (13)C and (15)N NMR assignments of a 150-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaBP6), as a prelude to its structural and functional characterization.

  7. Sequence specific 1H, 13C and 15N resonance assignments of hahellin in 8 M urea.

    Science.gov (United States)

    Srivastava, Atul K; Chary, K V R

    2010-10-01

    The sequence specific (1)H, (13)C and (15)N resonance assignments of hahellin in 8 M urea-denatured state have been accomplished by NMR spectroscopy. Secondary chemical shift analysis reveals the native-like propensities for β-rich conformation in the denatured state.

  8. The metal-tool contact friction at the ultrasonic vibration drawing of ball-bearing steel wires

    Directory of Open Access Journals (Sweden)

    Susan, Mihai

    1999-12-01

    Full Text Available The friction reversion mechanism during the ultrasonic vibration drawing (UVD of wires has been detailed for the case when the die is located at the oscillation maxima of the waves and actuated parallel to the friction force direction. The decrease of the drawing force for the UVD technology as compared to classical drawing has been explained by means of the intermittent contact in the metal-die forming area. A relationship has been derived for the UVD friction coefficient, μUS that allowed the analytical determination of the drawing force. In the case of the Romanian RUL 1V (AISI 52100 ball bearing steel wires, a good agreement has been found between the analytical and the experimental values of the drawing forces that have decreased, as compared to classical drawing, by more than 5 % for drawing rates lower than 0.66m/s.

    Se hace un análisis pormenorizado del mecanismo de reversión de la fricción al estirado por vibraciones ultrasonoras (EVU de los alambres, para el caso en que la trefiladora está ubicada en los máximos de oscilación de las ondas y activada paralelamente a la dirección de estirado. La disminución de la fuerza de estirado para la tecnología EVU en comparación con el estirado clásico, se ha explicado a través del contacto intermitente en el área de deformación metal-herramienta. Se halló una relación para el coeficiente de fricción EVU, μUS que permitió la determinación analítica de la fuerza de estirado. En el caso de los alambres de acero rumano de rodamientos RUL 1V (AISI 52100 se encontró una justa concordancia entre los valores analítico y experimental de la fuerza de estirado que, en comparación con los de estirado clásico, se encontraron disminuidos en más de un 5 % para velocidades de estirado menores de 0,66m/s.

  9. Tempering stability of Fe-Cr-Mo-W-V hot forging die steels

    Science.gov (United States)

    Shi, Yuan-ji; Wu, Xiao-chun; Li, Jun-wan; Min, Na

    2017-10-01

    The tempering stability of three Fe-Cr-Mo-W-V hot forging die steels (DM, H21, and H13) was investigated through hardness measurements and transmission electron microscopy (TEM) observations. Both dilatometer tests and TEM observations revealed that DM steel has a higher tempering stability than H21 and H13 steels because of its substantial amount of M2C (M represents metallic element) carbide precipitations. The activation energies of the M2C carbide precipitation processes in DM, H21, and H13 steels are 236.4, 212.0, and 228.9 kJ/mol, respectively. Furthermore, the results indicated that vanadium atoms both increase the activation energy and affect the evolution of M2C carbides, resulting in gradual dissolution rather than over-aging during tempering.

  10. Influence of Hardness, Matrix and Carbides in Combination with Nitridation on Abrasive Wear Resistance of X210Cr12 Tool Steel

    Directory of Open Access Journals (Sweden)

    Martin Orečný

    2016-10-01

    Full Text Available Materials used in abrasive wear conditions are usually selected according to their microstructure and hardness, however, other factors such as grain size, matrix saturation, carbides size and morphology are rarely considered. Therefore, the present study deals with the influence of different heat and chemical-heat treatments including their combination on abrasive wear resistance of X210Cr12 tool steel. The effects of material hardness, carbide morphology and microstructure on wear resistance after quenching and nitriding were also investigated. One sample series was quenched after austenitization at 960 °C for 20 min and tempered at 180 °C for 2 h. The second sample series was quenched from 1060 °C austenitization for 20 min and afterwards twice tempered at 530 °C for 1 h. From both the quenched and tempered states, one half of the samples was gas nitrided in NH3 atmosphere for 3 h and then diffusion annealed in N2 atmosphere for 4 h. Abrasion wear tests were performed by sliding the samples on Al2O3 paper. The samples weight loss was considered the main criterion for the wear resistance evaluation. The microstructures, nitrided layers and worn surfaces were observed using SEM microscopy. The highest abrasion wear resistance was obtained for the nitrided samples that were previously quenched from 1060 °C and tempered at 530 °C.

  11. Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel

    Science.gov (United States)

    Yao, Jun; Qu, Xuan-hui; He, Xin-bo; Zhang, Lin

    2012-07-01

    The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30 μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa·m1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.

  12. Optimization of multi response in end milling process of ASSAB XW-42 tool steel with liquid nitrogen cooling using Taguchi-grey relational analysis

    Science.gov (United States)

    Norcahyo, Rachmadi; Soepangkat, Bobby O. P.

    2017-06-01

    A research was conducted for the optimization of the end milling process of ASSAB XW-42 tool steel with multiple performance characteristics based on the orthogonal array with Taguchi-grey relational analysis method. Liquid nitrogen was applied as a coolant. The experimental studies were conducted under varying the liquid nitrogen cooling flow rates (FL), and the end milling process variables, i.e., cutting speed (Vc), feeding speed (Vf), and axial depth of cut (Aa). The optimized multiple performance characteristics were surface roughness (SR), flank wear (VB), and material removal rate (MRR). An orthogonal array, signal-to-noise (S/N) ratio, grey relational analysis, grey relational grade, and analysis of variance were employed to study the multiple performance characteristics. Experimental results showed that flow rate gave the highest contribution for reducing the total variation of the multiple responses, followed by cutting speed, feeding speed, and axial depth of cut. The minimum surface roughness, flank wear, and maximum material removal rate could be obtained by using the values of flow rate, cutting speed, feeding speed, and axial depth of cut of 0.5 l/minute, 109.9 m/minute, 440 mm/minute, and 0.9 mm, respectively.

  13. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  14. Metabolite Characterization in Peritoneal Dialysis Effluent Using High-resolution 1H and 1H-13C NMR Spectroscopy

    CERN Document Server

    Guleria, Anupam; Rawat, Atul; Khetrapal, C L; Prasad, Narayan; Kumar, Dinesh

    2014-01-01

    Metabolite analysis of peritoneal dialysis (PD) effluent may provide information regarding onset and progression of complications associated with prolonged PD therapy. In this context, the NMR detectable small metabolites of PD effluent samples were characterized using high resolution 1H and 1H-13C NMR spectroscopy. The various spectra were recorded (at 800 MHz proton frequency) on PD effluent samples obtained after 4 hour (intraperitoneal) dwell time from patients with end stage renal failure (ESRF) and continuing normally on PD therapy. Inspite of devastating spectral feature of PD effluent due to the presence of intense resonances from glucose and lactate, we were able to identify about 53 small endogenous metabolites (including many complex coupled spin systems) and more than 90 % of the total CH cross peaks of 1H-13C HSQC spectrum were identified specific to various metabolites of PD effluent. We foresee that the characteristic fingerprints of various metabolites of control PD effluent samples will be us...

  15. Virtual Steel Connection Sculpture--Student Learning Assessment

    Science.gov (United States)

    Chou, Karen C.; Moaveni, Saeed; Drane, Denise

    2016-01-01

    A Virtual Steel Connection Sculpture was developed through a grant from the National Science Foundation. The Virtual Sculpture is an interactive tool that shows students and anyone interested in connections how steel members are connected. This tool is created to complement students' steel design courses. The features of this educational tool,…

  16. Influence of Tool Rotational Speed and Post-Weld Heat Treatments on Friction Stir Welded Reduced Activation Ferritic-Martensitic Steel

    Science.gov (United States)

    Manugula, Vijaya L.; Rajulapati, Koteswararao V.; Reddy, G. Madhusudhan; Mythili, R.; Bhanu Sankara Rao, K.

    2017-08-01

    The effects of tool rotational speed (200 and 700 rpm) on evolving microstructure during friction stir welding (FSW) of a reduced activation ferritic-martensitic steel (RAFMS) in the stir zone (SZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) have been explored in detail. The influence of post-weld direct tempering (PWDT: 1033 K (760 °C)/ 90 minutes + air cooling) and post-weld normalizing and tempering (PWNT: 1253 K (980 °C)/30 minutes + air cooling + tempering 1033 K (760 °C)/90 minutes + air cooling) treatments on microstructure and mechanical properties has also been assessed. The base metal (BM) microstructure was tempered martensite comprising Cr-rich M23C6 on prior austenite grain and lath boundaries with intra-lath precipitation of V- and Ta-rich MC precipitates. The tool rotational speed exerted profound influence on evolving microstructure in SZ, TMAZ, and HAZ in the as-welded and post-weld heat-treated states. Very high proportion of prior austenitic grains and martensite lath boundaries in SZ and TMAZ in the as-welded state showed lack of strengthening precipitates, though very high hardness was recorded in SZ irrespective of the tool speed. Very fine-needle-like Fe3C precipitates were found at both the rotational speeds in SZ. The Fe3C was dissolved and fresh precipitation of strengthening precipitates occurred on both prior austenite grain and sub-grain boundaries in SZ during PWNT and PWDT. The post-weld direct tempering caused coarsening and coalescence of strengthening precipitates, in both matrix and grain boundary regions of TMAZ and HAZ, which led to inhomogeneous distribution of hardness across the weld joint. The PWNT heat treatment has shown fresh precipitation of M23C6 on lath and grain boundaries and very fine V-rich MC precipitates in the intragranular regions, which is very much similar to that prevailed in BM prior to FSW. Both the PWDT and PWNT treatments caused considerable reduction in the hardness of SZ

  17. OPTIMIZATION OF TEMPERATURE HARDENING FOR IMPROVING THE HEAT RESISTANCE OF TOOL STEEL 4X5MФ1С IN VARIOUS WORKPIECES Part 1. INFLUENCE OF HEATING TEMPERATURE 1040 °С IN THE OIL HARDENING AND HARDERING ON THE HARDNESS AND STRUCTURE OF FORGINGS AND CASTINGS MADE OF STEEL 4X5MФ1C

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2017-01-01

    Full Text Available Influence of the oil quenching temperature with the heating 1040 °С near 1 hour of tool steel 4X5МФ1С forgings and castings on the microstructure and the ability to hardening after high temperature tempering at 500–650 °C for 1, 5 hours. It was shown that increase of hardening level in comparison with the required index has not been achieved.

  18. Fracture Mechanisms in Steel Castings

    Directory of Open Access Journals (Sweden)

    Stradomski Z.

    2013-09-01

    Full Text Available The investigations were inspired with the problem of cracking of steel castings during the production process. A single mechanism of decohesion - the intergranular one - occurs in the case of hot cracking, while a variety of structural factors is decisive for hot cracking initiation, depending on chemical composition of the cast steel. The low-carbon and low-alloyed steel castings crack due to the presence of the type II sulphides, the cause of cracking of the high-carbon tool cast steels is the net of secondary cementite and/or ledeburite precipitated along the boundaries of solidified grains. Also the brittle phosphor and carbide eutectics precipitated in the final stage solidification are responsible for cracking of castings made of Hadfield steel. The examination of mechanical properties at 1050°C revealed low or very low strength of high-carbon cast steels.

  19. Fatigue tests results of blade steels with modified surface

    Science.gov (United States)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Lebedeva, A. I.

    2017-11-01

    The paper presents the results of metallographic studies and fatigue tests of blade steel 12kH13 and EI961samples with modified nearsurface layer. Fatigue tests and studies of the samples with the modified layer were carried out using the research equipment URI (unique research installation) “Hydroshock rig Erosion-M” of NRU “MPEI”. The surface modification is found to increase the fatigue strength of blade steel up to 50%. Sample surface after modifications features a cell structure with the characteristic cell size ranging from 1÷2 μm to 4÷8 μm total thickness of the modified layer for steel samples 12kH13 and EI961 was about 40 μm.

  20. Una herramienta para la selección automatizada de aceros en el contexto // A tool for the automated selection of steels in the Mechanical Engineering´s context

    Directory of Open Access Journals (Sweden)

    L. Dumitrescu

    2010-01-01

    Full Text Available ResumenEl diseno de Ingenieria de un producto o componente constituye una actividad dificil, compleja ymultidisciplinaria, enfocada a la resolucion de problemas. En el presente trabajo se muestra eldesarrollo de una herramienta automatizada para la seleccion de los aceros mas utilizados en laconstruccion de maquinarias. La herramienta constituye una ayuda para la seleccion de losmateriales desde la etapa conceptual del proceso de diseno, donde se identifican las diferentescategorias de materiales a utilizar. La herramienta comprende las caracteristicas y propiedades masrelevantes de los aceros de Ingenieria disponibles en seis normas internacionales: Japonesa (JIS,Alemana (DIN, Vbn, DIN-Vbn, Rusa (GOST, Americana (AISI, SAE, AISI-SAE, ASTM, Inglesa (BS, EN,GB, Francesa (AFNOR y la Norma Cubana (NC vigente.Palabras claves: materiales, automatizada, aceros, ingenieria.____________________________________________________________AbstractThe product or component design constitutes a difficult, complex and multidisciplinary activity,focused to the resolution of problems. Presently work show the development of an automated toolfor the selection of the more used steels in the construction of machineries. The tool constitute ahelp for the selection of the materials from the conceptual stage of the design process, where thedifferent categories of materials are identified to use. The tool analyze the characteristics and morecommon properties of the available steels in six international standards: JIS (Japan, DIN, Vbn, DINVbn(Germany, GOST (Russia, AISI, SAE, AISI-SAE, ASTM (USA, BS, IN, GB (England, AFNOR(France and NC (Cuba.Key words: materials, automated, steels, engineering.

  1. Micromilling of hardened tool steels

    NARCIS (Netherlands)

    Li, P.

    2009-01-01

    Miniaturized parts are increasingly demanded in different fields like medical, transportation, environmental, and communication industries. In order to manufacture these parts in an economical way, mass replication methods, such as micro injection molding, have to be applied. Currently, Electro

  2. The Numerical Analysis of the Phenomena of Superficial Hardening of the Hot-Work Tool Steel Elements / Analiza Numeryczna Zjawisk Przypowierzchniowego Hartowania Elementów Ze Stali Narzędziowej Do Pracy Na Gorąco

    Directory of Open Access Journals (Sweden)

    Bokota A.

    2015-12-01

    Full Text Available In the paper the complex model of hardening of the hot-work tool steel is presented. Model of estimation of phase fractions and their kinetics is based on the continuous heating diagram (CHT and cooling diagram (CCT. Phase fractions which occur during the continuous heating and cooling (austenite, pearlite or bainite are described by Johnson-Mehl (JM formula. To determine of the formed martensite the modified Koistinen-Marburger (KM equation is used. Model takes into account the thermal, structural, plastic strains and transformation plasticity. To calculate the plastic strains the Huber-Mises plasticity condition with isotopic hardening is used. Whereas to determine transformations induced plasticity the Leblond model is applied. The numerical analysis of phase compositions and residual stresses in the hot-work steel (W360 element is considered.

  3. Influence of cementite particle size distribution on machinability and tool life of high carbon Cr-bearing steels; Kotanso kuromuko no sessaku kako ni oyobosu tankabutsu bunpu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T.; Hosoi, Y.; Nakajima, K. [Daido Institute of Technology, Nagoya (Japan); Hanyuda, T. [Daido Steel Co. Ltd., Nagoya (Japan); Takenaka, H.

    1998-05-01

    Relations between tool life and metal structure are discussed taking up extremely hard ball-bearing steels. Examined in the experiment are specimens constituted basically of the same high carbon Cr-bearing steel but prepared different in hardness, and in cementite diameter, area rate, and amount. Also examined are other specimens with their matrices almost constant in hardness and in contents, with the exception of C and Cr contents which are different among the specimens so that the cementite interparticle distance may be varied. Machining is done on an NC (numerically controlled) lathe, with a center-to-center distance of 860mm and swing distance of 350mm, by a dry type peripheral turn machining method. Some findings are stated below. Tool life is shorter when the size is larger or area rate is higher of cementite precipitates in the material, and is affected by the machining speed. An empirical formula is worked out, with which tool life may be predicted in hours by use of the average cementite interparticle distance. The machining distance to be covered before the termination of tool life is affected by the cementite interparticle distance. The roughness of a machine-finished surface is affected by precipitated cementite. 9 refs., 8 figs., 3 tabs.

  4. Variable H13CO+ Emission in the IM Lup Disk: X-Ray Driven Time-dependent Chemistry?

    Science.gov (United States)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Öberg, Karin I.; Andrews, Sean; Wilner, David; Loomis, Ryan

    2017-07-01

    We report the first detection of a substantial brightening event in an isotopologue of a key molecular ion, HCO+, within a protoplanetary disk of a T Tauri star. The H13CO+ J=3-2 rotational transition was observed three times toward IM Lup between 2014 July and 2015 May with the Atacama Large Millimeter/submillimeter Array. The first two observations show similar spectrally integrated line and continuum fluxes, while the third observation shows a doubling in the disk-integrated J=3-2 line flux compared to the continuum, which does not change between the three epochs. We explore models of an X-ray active star irradiating the disk via stellar flares, and find that the optically thin H13CO+ emission variation can potentially be explained via X-ray-driven chemistry temporarily enhancing the HCO+ abundance in the upper layers of the disk atmosphere during large or prolonged flaring events. If the HCO+ enhancement is indeed caused by an X-ray flare, future observations should be able to spatially resolve these events and potentially enable us to watch the chemical aftermath of the high-energy stellar radiation propagating across the face of protoplanetary disks, providing a new pathway to explore ionization physics and chemistry, including electron density, in disks.

  5. Efficient production of (2)H, (13)C, (15)N-enriched industrial enzyme Rhizopus chinensis lipase with native disulfide bonds.

    Science.gov (United States)

    Zhang, Meng; Yu, Xiao-Wei; Swapna, G V T; Xiao, Rong; Zheng, Haiyan; Sha, Chong; Xu, Yan; Montelione, Gaetano T

    2016-07-13

    In order to use most modern methods of NMR spectroscopy to study protein structure and dynamics, isotope-enriched protein samples are essential. Especially for larger proteins (>20 kDa), perdeuterated and Ile (δ1), Leu, and Val methyl-protonated protein samples are required for suppressing nuclear relaxation to provide improved spectral quality, allowing key backbone and side chain resonance assignments needed for protein structure and dynamics studies. Escherichia coli and Pichia pastoris are two of the most popular expression systems for producing isotope-enriched, recombinant protein samples for NMR investigations. The P. pastoris system can be used to produce (13)C, (15)N-enriched and even (2)H,(13)C, (15)N-enriched protein samples, but efficient methods for producing perdeuterated proteins with Ile (δ1), Leu and Val methyl-protonated groups in P. pastoris are still unavailable. Glycosylation heterogeneity also provides challenges to NMR studies. E. coli expression systems are efficient for overexpressing perdeuterated and Ile (δ1), Leu, Val methyl-protonated protein samples, but are generally not successful for producing secreted eukaryotic proteins with native disulfide bonds. The 33 kDa protein-Rhizopus chinensis lipase (RCL), an important industrial enzyme, was produced using both P. pastoris and E. coli BL21 trxB (DE3) systems. Samples produced from both systems exhibit identical native disulfide bond formation and similar 2D NMR spectra, indicating similar native protein folding. The yield of (13)C, (15)N-enriched r27RCL produced using P. pastoris was 1.7 times higher that obtained using E. coli, while the isotope-labeling efficiency was ~15 % lower. Protein samples produced in P. pastoris exhibit O-glycosylation, while the protein samples produced in E. coli were not glycosylated. The specific activity of r27RCL from P. pastoris was ~1.4 times higher than that produced in E. coli. These data demonstrate efficient production of (2)H, (13)C, (15)N

  6. Genomic analysis of a 1 Mb region near the telomere of Hessian fly chromosome X2 and avirulence gene vH13

    Directory of Open Access Journals (Sweden)

    Chen Ming-Shun

    2006-01-01

    Full Text Available Abstract Background To have an insight into the Mayetiola destructor (Hessian fly genome, we performed an in silico comparative genomic analysis utilizing genetic mapping, genomic sequence and EST sequence data along with data available from public databases. Results Chromosome walking and FISH were utilized to identify a contig of 50 BAC clones near the telomere of the short arm of Hessian fly chromosome X2 and near the avirulence gene vH13. These clones enabled us to correlate physical and genetic distance in this region of the Hessian fly genome. Sequence data from these BAC ends encompassing a 760 kb region, and a fully sequenced and assembled 42.6 kb BAC clone, was utilized to perform a comparative genomic study. In silico gene prediction combined with BLAST analyses was used to determine putative orthology to the sequenced dipteran genomes of the fruit fly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, and to infer evolutionary relationships. Conclusion This initial effort enables us to advance our understanding of the structure, composition and evolution of the genome of this important agricultural pest and is an invaluable tool for a whole genome sequencing effort.

  7. INFLUENCE OF COOLING CONDITIONS AND THE SIZE OF STOCK MATERIAL DURING CASTING OF TOOL STEEL ON CAPABILITY TO THE SUBSEQUENT THERMAL HARD-FACING

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2016-01-01

    Full Text Available Influence of cooling conditions and the size of stock material of instrumental steel 4H5MF1S on сability to surface hardening after high-temperature tempering at 500–650 °C is investigated. Comparison with hardening of forgings is given.

  8. Wear properties of H13 with micron scale and nano scale grains bionic units processed by laser remelting

    Science.gov (United States)

    Zhang, Peng; Zhou, Hong; Wang, Cheng-tao; Liu, Yan; Ren, Lu-quan

    2013-12-01

    By simulating the cuticles of some soil animals, a combination of soft part (untreated substrate) and hard part (laser remelting area) structure was designed on metal surface to get an improved performance. Different specimens were prepared which contained units with micro and nano scale grains. The microstructures were observed by environmental field emission scanning electron microscopy. X-ray diffraction was used to identify the phases. The results of these tests indicate that due to the rapid solidification condition in the water, nano scale grains have a high microhardness between 1300 and 1000 HV. Retained austenite was found in it. Some of them transform to martensite in block on ring wear test. Specimens with bionic unit have a better wear resistance. Especially, the units with nano grains bring a further enhancement. The alternate soft and hard in macroscopic (substrate and laser remelting area) and microscopic (austenite and martensite) structure played a key role in improving the H13 wear resistance.

  9. Basic mechanical properties of layered steels

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2013-01-01

    Full Text Available This article deals with identifying attributes of layered steel materials (damask steel with the help of mechanical tests. Experimentally verify basic mechanical properties of layered steel and subsequently assessed it in comparison with the values obtained for the classic steel materials. In conclusion, there are listed the possibilities of using multilayer steel materials in technical practice, depending on the economics of production.The damask steel was prepared by forge welding from a packet consisting of 17 layers (9 layers of tool steel 19 133 (ČSN with the thickness of 6 mm and 8 layers 80NiCr11 steel in the form of saw bands with the thickness of 1.2 mm. The packet was cut into 8 parts, folded 3 times and forged together, which provided damask steel with 136 layers. The resulting steel bars were used to make semi-finished products with the approximate dimensions of the test specimens. For evaluation of mechanical properties were applied the following tests: tensile test, Charpy impact test, hardness and microhardness measurementsThe results of tests proved that the properties of damask steel are dependent not only on the direction led impact quality forge weld layers and content iof nhomogeneities in the place of discord, but also on the quenching and tempering temperature, resp. on the choice of quenching bath, which determine the final structure of steel and the resulting hardness, respectively microhardness.

  10. Statistical Approach to Optimize the Process Parameters of HAZ of Tool Steel EN X32CrMoV12-28 after Die-Sinking EDM with SF-Cu Electrode

    Directory of Open Access Journals (Sweden)

    L’uboslav Straka

    2017-01-01

    Full Text Available The paper describes the results of the experimental research of the heat affected zone (HAZ of an eroded surface after die-sinking electrical discharge machining (EDM. The research was carried out on chrome-molybdenum-vanadium alloyed tool steel EN X32CrMoV12-28 (W.-Nr. 1.2365 after die-sinking EDM with a SF-Cu electrode. The aim of the experimental measurements was to contribute to the database of knowledge that characterizes the significant impact of the main technological and process parameters on the eroded surface properties during die-sinking EDM. The quality of the eroded surface was assessed from the viewpoint of surface roughness, microhardness variation, and the total HAZ depth of the thin sub-surface layer adjacent to the eroded surface. On the basis of measurement results, mathematical models were established by statistical methods. These models can be applied for computer simulation and prediction of the resultant quality of the machined surface after die-sinking EDM. The results achieved by simulation were compared with the results of experimental measurements and high correlation indexes between the predicted and real values were achieved. Suggested mathematical models can be also applied for the determination of the optimal combination of significant technological parameters in order to minimize microhardness and total HAZ depth variations of tool steel EN X32CrMoV12-28 after die-sinking EDM with a SF-Cu electrode.

  11. 1H, 13C and 15N resonance assignments and secondary structures of cyclophilin 2 from Trichomonas vaginalis.

    Science.gov (United States)

    Martin, Tesmine; Lou, Yuan-Chao; Aryal, Sarita; Tai, Jung-Hsiang; Chen, Chinpan

    2017-09-05

    Cyclophilins are peptidyl prolyl isomerases that play an important role in a wide variety of biological functions like protein folding and trafficking, intracellular and extracellular signaling pathways, nuclear translocation and in pre-mRNA splicing. Two cyclophilins have been identified in the parasitic organism Trichomonas vaginalis and were named as TvCyP1 and TvCyP2. The 2 enzymes have been found to interact with Myb transcription factors in the parasite which regulate the iron induced expression of ap65-1 gene leading to cytoadherence of the parasite to human vaginal epithelial cells to cause the disease trichomoniasis. TvCyP2 was found to interact specifically with Myb3 to regulate nuclear translocation of the transcription factor. It would be intriguing to identify the binding site of both proteins as it could pave way to newer targets for drug discovery. Here we report the 1H, 13C and 15N resonance assignments and secondary structure information of TvCyP2 that could help us investigate the interaction between Myb3 and TvCyP2 in detail using NMR.

  12. Moessbauer spectroscopic investigation of retained-austenite content of high-carbon tool steel during isothermal tempering of as-quenched samples

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Piotr, E-mail: pbala@agh.edu.pl; Krawczyk, Janusz [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science (Poland); Hanc, Aneta [University of Silesia, Faculty of Computer and Materials Science (Poland)

    2009-04-15

    This work presents the results of investigations using Moessbauer spectroscopy technique and their interpretation concerning retained austenite (RA) and its transformation during tempering in relation to previously conducted dilatometric, microscopic and mechanical investigations. This research was conducted on a new high-carbon alloy steel 120 MnCrMoV8-6-4-2, which was designed in 1998, in Phase Transformations Research Group at the AGH UST. The influence of the tempering time on the mechanical and chemical stability of retained austenite and on the products of its transformation, nucleation and solubility of {epsilon} carbides and cementite nucleation and growth, was determined.

  13. Influence of the austenite-martensite transformation in the dimensional stability of a new tool steel alloyed with niobium (0.08% wt.) and vanadium (0.12% wt.); Influencia de la transformacion austenita-martensita en la estabilidad dimensional de un nuevo acero para herramientas aleado con niobio (0,08%) y vanadio (0,12%)

    Energy Technology Data Exchange (ETDEWEB)

    Conejero Ortega, G.; Candela Vazquez, N.; Pichel Martinez, M.; Barea del Cerro, R.; Carsi Cebrian, M.

    2014-07-01

    Austenite-martensite transformation influence on the dimensional stability of a new experimental tool steel alloyed with niobium (0.08% wt.) and vanadium (0.12% wt.) has been studied. The dimensional stability of this new steel was compared with the dimensional stability of commercial steel, after and before two thermal treatments, T1 (860 degree centigrade) and T2 (900 degree centigrade). The thermal treatments consisted on heating and cooling, at 1 atmosphere of pressure, in N{sub 2} atmosphere furnace, following by heating in a conventional furnace at 180 degree centigrade during 1 hour. Initially, the experimental steel composition and Ac{sub 1} and Ac{sub 3} transformation temperatures were determined by glow-discharge luminescence (GDL) and dilatometric tests, respectively, in order to select the austenization temperatures of T1 and T2 treatments. After hardness measurement, the microstructure of both steels was characterized by X-Ray Diffraction (XRD) and optical metallography, before and after of T1 and T2 thermal treatments. Finally, longitudinal and angular dimensional stability analyses were realized for both commercial and experimental steels. After a contrastive hypothesis analysis, the results showed that the longitudinal relative variation of the experimental steel calculated was around 0.2% and the angular relative variation was not significant. (Author)

  14. Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid.

    Science.gov (United States)

    Wibberg, Daniel; Blom, Jochen; Jaenicke, Sebastian; Kollin, Florian; Rupp, Oliver; Scharf, Birgit; Schneiker-Bekel, Susanne; Sczcepanowski, Rafael; Goesmann, Alexander; Setubal, Joao Carlos; Schmitt, Rüdiger; Pühler, Alfred; Schlüter, Andreas

    2011-08-20

    Agrobacterium sp. H13-3, formerly known as Rhizobium lupini H13-3, is a soil bacterium that was isolated from the rhizosphere of Lupinus luteus. The isolate has been established as a model system for studying novel features of flagellum structure, motility and chemotaxis within the family Rhizobiaceae. The complete genome sequence of Agrobacterium sp. H13-3 has been established and the genome structure and phylogenetic assignment of the organism was analysed. For de novo sequencing of the Agrobacterium sp. H13-3 genome, a combined strategy comprising 454-pyrosequencing on the Genome Sequencer FLX platform and PCR-based amplicon sequencing for gap closure was applied. The finished genome consists of three replicons and comprises 5,573,770 bases. Based on phylogenetic analyses, the isolate could be assigned to the genus Agrobacterium biovar I and represents a genomic species G1 strain within this biovariety. The highly conserved circular chromosome (2.82 Mb) of Agrobacterium sp. H13-3 mainly encodes housekeeping functions characteristic for an aerobic, heterotrophic bacterium. Agrobacterium sp. H13-3 is a motile bacterium driven by the rotation of several complex flagella. Its behaviour towards external stimuli is regulated by a large chemotaxis regulon and a total of 17 chemoreceptors. Comparable to the genome of Agrobacterium tumefaciens C58, Agrobacterium sp. H13-3 possesses a linear chromosome (2.15 Mb) that is related to its reference replicon and features chromosomal and plasmid-like properties. The accessory plasmid pAspH13-3a (0.6 Mb) is only distantly related to the plasmid pAtC58 of A. tumefaciens C58 and shows a mosaic structure. A tumor-inducing Ti-plasmid is missing in the sequenced strain H13-3 indicating that it is a non-virulent isolate. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Analysis of the effect of ultrasonic vibrations on the performance of micro-electrical discharge machining of A2 tool steel

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    a systematic analysis of the influence of kinetic effects of the ultrasonic vibrations on the material removal rate (MRR) and tool electrode wear rate (TWR). The tool wear ratio was estimated for the process at all processing conditions. The maximum variation in tool wear ratio is observed to be 82%. Therefore......The application of ultrasonic vibrations to a workpiece or tool is a novel hybrid approach in micro-electrical discharge machining. The advantages of this method include effective flushing out of debris, higher machining efficiency and lesser short-circuits during machining. This paper presents...

  16. Study of Casting and Solidification of Slab Ingot from Tool Steel Using Numerical Modelling / Modelowanie Numeryczne Odlewania I Krzepnięcia Wlewków Stalowych Ze Stali Narzędziowej

    Directory of Open Access Journals (Sweden)

    Tkadlečková M.

    2015-12-01

    Full Text Available The main problem in the production of forgings from tool steels, especially thick plates, blocks, pulleys and rods which are used for special machine components for demanding applications, it is the inhomogeneous structure with segregations, cracks in segregations or complex type of non-metallic inclusions MnS and TiCN. These forgings are actually produced from conventional forging ingots. Due to the size of forgings, it would be interesting the production of these forgings from slab ingots. It is possible that the production of forgings from slab ingots (which are distinguished by a characteristic aspect ratio A/B, it would reduce the occurrence of segregations. The paper presents the verification of the production process of slab steel ingots in particular by means of numerical modelling using finite element method. The paper describes the pre-processing, processing and post-processing phases of numerical modelling. The attention was focused on the prediction of behavior of hot metal during the mold filling, on the verification of the final porosity, of the final segregation and on the prediction of risk of cracks depending on the actual geometry of the mold.

  17. Hegelian Steel

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    2015-01-01

    . Developing a Hegelian inspired historical-sociological approach this paper however argues that national and transnational societies emerged simultaneously and in a co-evolutionary and mutually supportive fashion. In most European settings national societies did not become the central horizon of individuals...... of the European steel industry....

  18. IMPACT STRENGTH AND FAILURE ANALYSIS OF WELDED DAMASCUS STEEL

    Directory of Open Access Journals (Sweden)

    Rastislav Mintách

    2012-01-01

    Full Text Available The aim of this work was the experimental research of damascus steel from point of view of the structural analyze, impact strength and failure analyzes. The damascus steel was produced by method of forged welding from STN 41 4260 spring steel and STN 41 9312 tool steel. The damascus steel consisted of both 84 and 168 layers. The impact strength was experimentally determined for original steels and damascus steels after heat treatment in dependence on temperature in the range from -60 to 160 °C. It has been found that the impact strength of experimental steels decreased with decreasing temperature behind with correlated change of damage mode. In the case of experimental tests performed at high temperature ductile fracture was revealed and with decreasing temperature proportion of cleavage facets increased. Only the STN 41 9312 steel did not show considerable difference in values of the impact strength with changing temperature.

  19. 1H, 13C and 15N NMR assignments of an unusual Ca2+-binding protein from Entamoeba histolytica in its apo form.

    Science.gov (United States)

    Verma, Deepshikha; Sakuntala, Mutyala; Murmu, Aruna; Bhattacharya, Alok; Chary, Kandala V R

    2017-04-01

    We report almost complete sequence specific 1H, 13C and 15N NMR assignments of an unusual Ca2+-binding protein from Entamoeba histolytica (EhCaBP6) in its apo form as a prelude to its structural and functional characterization.

  20. Estimation of procyanidin/prodelphinidin and cis/trans flavanol ratios of condensed tannin fractions by 1H-13C HSQC NMR spectroscopy: Correlation with thiolysis

    Science.gov (United States)

    Integration of cross-peak contours of H/C-2’,6’ signals from prodelphinidin (PD) and of H/C-6’ signals from procyanidin (PC) units in 1H-13C HSQC nuclear magnetic resonance (NMR) spectra of condensed tannins yielded nuclei-adjusted PC/PD estimates that were highly correlated with PC/PD ratios obtain...

  1. Sequence specific 1H, 13C, and 15N resonance assignments of Hahellin from Hahella chejuensis, a putative member of the betagamma-crystallin superfamily.

    Science.gov (United States)

    Srivastava, Atul K; Sharma, Yogendra; Chary, K V R

    2008-12-01

    The sequence specific (1)H, (13)C, and (15)N resonance assignments of Hahellin, a putative member of betagamma-crystallin family, from Hahella Chejuensis, have been accomplished by NMR spectroscopy. The resonance assignments reveal that the protein adopts predominantly a beta-sheet conformation as in the case of betagamma-crystallin folds.

  2. Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel

    Energy Technology Data Exchange (ETDEWEB)

    AL-Bukhaiti, M.A., E-mail: m.albukhaiti@gmail.com [Mechanical Engineering Department, Faculty of Engineering, Sana’a University, Sana’a 12544 (Yemen); Al-hatab, K.A. [Mechanical Engineering Department, Faculty of Engineering, Sana’a University, Sana’a 12544 (Yemen); Tillmann, W.; Hoffmann, F.; Sprute, T. [Institute of Materials Engineering, Technische Universitat Dortmund, Leonhard-Euler-Str.2, 44227 Dortmund (Germany)

    2014-11-01

    Highlights: • New Ti/TiAlN/TiAlCN multilayer coating was developed. • It showed low wear rates (10{sup −16} m{sup 3}/N m), low friction coefficients (μ ∼ 0.25), and good hardness (17–20 GPa). • Friction coefficients and wear rates decrease and increase, respectively, with the increase in normal load and sliding velocity. • The coating/Al{sub 2}O{sub 3} pair showed superior wear resistance and low friction coefficient in comparison to coating/100Cr6 pair. - Abstract: A new [Ti/TiAlN/TiAlCN]{sub 5} multilayer coatings were deposited onto polished substrate AISI H11 (DIN 1.2343) steel by an industrial magnetron sputtering device. The tribological performance of the coated system was investigated by a ball-on-disk tribometer against 100Cr6 steel and Al{sub 2}O{sub 3} balls. The friction coefficients and specific wear rates were measured at various normal loads (2, 5, 8, and 10 N) and sliding velocities (0.2, 0.4, and 0.8 m/s) in ambient air and dry conditions. The phase structure, composition, wear tracks morphologies, hardness, and film/substrate adhesion of the coatings were characterized by light-microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), 3D-surface analyzer, nanoindentation, and scratch tests. Results showed that the deposited coatings showed low wear rates in the scale of 10{sup −15} m{sup 3}/N m, low friction coefficients against 100Cr6 and Al{sub 2}O{sub 3} balls in the range of 0.25–0.37, and good hardness in the range of 17–20 GPa. Results also revealed that the friction coefficients and disc wear rates decrease and increase, respectively with the increase in normal load and sliding velocity for both coating/Al{sub 2}O{sub 3} and coating/100Cr6 sliding system. Compared with the uncoated-H11 substrate, the deposited coating exhibited superior tribological and mechanical properties. The dominant wear mechanism was abrasive wear for coating/Al{sub 2}O{sub 3} pair, while

  3. Steel designers' handbook

    CERN Document Server

    Gorenc, Branko; Tinyou, Ron

    2012-01-01

    The Revised 7th Edition of Steel Designers' Handbook is an invaluable tool for all practising structural, civil and mechanical engineers as well as engineering students at university and TAFE in Australia and New Zealand. It has been prepared in response to changes in the design Standard AS 4100, the structural Design Actions Standards, AS /ANZ 1170, other processing Standards such as welding and coatings, updated research as well as feedback from users. This edition is based on Australian Standard (AS) 4100: 1998 and subsequent amendments. The worked numerical examples in the book have been e

  4. Mutational Analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti Flagellin Genes: Importance of Flagellin A for Flagellar Filament Structure and Transcriptional Regulation

    OpenAIRE

    Scharf, Birgit; Schuster-Wolff-Bühring, Henriette; Rachel, Reinhard; Schmitt, Rüdiger

    2001-01-01

    Complex flagellar filaments are unusual in their fine structure composed of flagellin dimers, in their right-handed helicity, and in their rigidity, which prevents a switch of handedness. The complex filaments of Rhizobium lupini H13-3 and those of Sinorhizobium meliloti are composed of three and four flagellin (Fla) subunits, respectively. The Fla-encoding genes, named flaA through flaD, are separately transcribed from ς28-specific promoters. Mutational analysis of the fla genes revealed tha...

  5. Machining tools in AISI M2 high-speed steel obtained by spray forming process; Ferramentas de usinagem em aco rapido AISI M2 obtido por conformacao por 'spray'

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Edilson Rosa Barbosa de. E-mail: erbjesus@usp.br

    2004-07-01

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  6. Fatigue strength tests of layered steel

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2013-01-01

    Full Text Available The work deals with original measurement of fatigue properties of formed layered steel material – damask steel. This is a material that exhibits a fine micro-structure as well as a regular composition of many material layers with complementary properties. The article experimentally verifies high-cycle fatigue properties of layered steel and evaluates them from the point of view of fatigue tests of conventional steel materials and a parallel application of a non-destructive – acoustic emission – testing. Finally, it discusses the influence of production on fatigue strength and the possibilities of using multi-layered steel materials in technological practice. A serious result of this pilot experiment is the fact documented no only by the fractographic observation, but mainly by the AE records that the fatigue service life of this material is high if it its not stressed by tension approximating the yield point Re. However, such stress is not common in practical use of tools made of damask steel and thus under common bending stress an exceptionally long service life of tools made of this type of material is demonstrable. The fact that damask steel behaves like a homogeneous material is mainly confirmed by the records of the AE signal at lower values of stress σa. When stressed by higher amplitudes of tension σa damask responds in AE records similarly to a laminate material that is stressed by bending.

  7. Development of materials for the rapid manufacture of die cast tooling

    Science.gov (United States)

    Hardro, Peter Jason

    The focus of this research is to develop a material composition that can be processed by rapid prototyping (RP) in order to produce tooling for the die casting process. Where these rapidly produced tools will be superior to traditional tooling production methods by offering one or more of the following advantages: reduced tooling cost, shortened tooling creation time, reduced man-hours for tool creation, increased tool life, and shortened die casting cycle time. By utilizing RP's additive build process and vast material selection, there was a prospect that die cast tooling may be produced quicker and with superior material properties. To this end, the material properties that influence die life and cycle time were determined, and a list of materials that fulfill these "optimal" properties were highlighted. Physical testing was conducted in order to grade the processability of each of the material systems and to optimize the manufacturing process for the downselected material system. Sample specimens were produced and microscopy techniques were utilized to determine a number of physical properties of the material system. Additionally, a benchmark geometry was selected and die casting dies were produced from traditional tool materials (H13 steel) and techniques (machining) and from the newly developed materials and RP techniques (selective laser sintering (SLS) and laser engineered net shaping (LENS)). Once the tools were created, a die cast alloy was selected and a preset number of parts were shot into each tool. During tool creation, the manufacturing time and cost was closely monitored and an economic model was developed to compare traditional tooling to RP tooling. This model allows one to determine, in the early design stages, when it is advantageous to implement RP tooling and when traditional tooling would be best. The results of the physical testing and economic analysis has shown that RP tooling is able to achieve a number of the research objectives, namely

  8. Minimum Requirements of Flagellation and Motility for Infection of Agrobacterium sp. Strain H13-3 by Flagellotropic Bacteriophage 7-7-1

    Science.gov (United States)

    Yen, Jiun Y.; Broadway, Katherine M.

    2012-01-01

    The flagellotropic phage 7-7-1 specifically adsorbs to Agrobacterium sp. strain H13-3 (formerly Rhizobium lupini H13-3) flagella for efficient host infection. The Agrobacterium sp. H13-3 flagellum is complex and consists of three flagellin proteins: the primary flagellin FlaA, which is essential for motility, and the secondary flagellins FlaB and FlaD, which have minor functions in motility. Using quantitative infectivity assays, we showed that absence of FlaD had no effect on phage infection, while absence of FlaB resulted in a 2.5-fold increase in infectivity. A flaA deletion strain, which produces straight and severely truncated flagella, experienced a significantly reduced infectivity, similar to that of a flaB flaD strain, which produces a low number of straight flagella. A strain lacking all three flagellin genes is phage resistant. In addition to flagellation, flagellar rotation is required for infection. A strain that is nonmotile due to an in-frame deletion in the gene encoding the motor component MotA is resistant to phage infection. We also generated two strains with point mutations in the motA gene resulting in replacement of the conserved charged residue Glu98, which is important for modulation of rotary speed. A change to the neutral Gln caused the flagellar motor to rotate at a constant high speed, allowing a 2.2-fold-enhanced infectivity. A change to the positively charged Lys caused a jiggly motility phenotype with very slow flagellar rotation, which significantly reduced the efficiency of infection. In conclusion, flagellar number and length, as well as speed of flagellar rotation, are important determinants for infection by phage 7-7-1. PMID:22865074

  9. Proton-detected 3D (1)H/(13)C/(1)H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz.

    Science.gov (United States)

    Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2015-10-28

    A proton-detected 3D (1)H/(13)C/(1)H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of (13)C-(1)H connectivities, and proximities of (13)C-(1)H and (1)H-(1)H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including (1)H-(1)H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) (1)H/(1)H and 2D (13)C/(1)H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of (1)H-(1)H proximity and (13)C-(1)H connectivity. In addition, the 2D (F1/F2) (1)H/(13)C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of (1)H-(1)H dipolar couplings, enables the measurement of proximities between (13)C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of (1)H-(1)H-(13)C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H2O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  10. Ultrahigh carbon steels, Damascus steels, and superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Sherby, O.D. [Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Wadsworth, J. [Lawrence Livermore National Lab., CA (United States)

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  11. 2,9-Dichloro-6H,13H-5:12,7:14-dimethanodibenzo[d,i][1,3,6,8]tetraazecine

    Directory of Open Access Journals (Sweden)

    Augusto Rivera

    2011-09-01

    Full Text Available The title compound, C16H14Cl2N4, is isomorphous with 2,9-dimethyl-6H,13H-5:12,7:14-dimethanodibenzo[d,i]-[1,3,6,8]tetraazecine [Rivera et al. (2009. Acta Cryst. E65, o2553] and has twofold symmetry, with two carbon atoms located on a twofold axis. Only van der Waals forces occur between molecules in the crystal. In the isomorphous compound the crystal structure is stabilized by weak C—H...π interactions.

  12. Evaluation of Hole Quality in Hardened Steel with High-Speed Drilling Using Different Cooling Systems

    Directory of Open Access Journals (Sweden)

    Lincoln Cardoso Brandão

    2011-01-01

    Full Text Available This work evaluates the hole quality on AISI H13 hardened steel using high-speed drilling. Specimens were machined with new and worn out drills with 8.6 mm diameter and (TiAlN coating. Two levels of cutting speed and three levels of cooling/lubrication systems (flooded, minimum lubrication quantity, and dry were used. The hole quality is evaluated on surface roughness (Ra parameter, diameter error, circularity, and cylindricity error. A statistical analysis of the results shows that the cooling/lubrication system significantly affects the hole quality for all measured variables. This analysis indicates that dry machining produces the worst results. Higher cutting speeds not only prove beneficial to diameter error and circularity errors, but also show no significant difference on surface roughness and cylindricity errors. The effects of the interaction between the cooling/lubrication systems, tool wear, and cutting speed indicate that only cylindricity error is influenced. Thus, the conclusion is that the best hole quality is produced with a higher cutting speed using flooded or minimum lubrication quantity independent of drill wear.

  13. Nanocomposites for Machining Tools

    Directory of Open Access Journals (Sweden)

    Daria Sidorenko

    2017-10-01

    Full Text Available Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  14. Nanocomposites for Machining Tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Mishnaevsky, Leon

    2017-01-01

    . A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools......Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials......, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance....

  15. Nanocomposites for Machining Tools.

    Science.gov (United States)

    Sidorenko, Daria; Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny

    2017-10-13

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  16. Nanocomposites for Machining Tools

    Science.gov (United States)

    Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny

    2017-01-01

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926

  17. Experimental research results of solid particle erosion resistance of blade steel with protective coating

    Science.gov (United States)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Seleznev, L. I.

    2017-11-01

    The paper presents the results of metallographic studies and solid particle erosion tests of uncoated blade steel 20kH13 samples and samples with a protective coating based on chromium carbide (Cr-CrC) at a flow (air) velocity CA = 180 m/s, flow temperature tA = 25 °C, attack angle α = 30° and consumption of solid abrasive particles GP = 5·10-4 kg/s. It was found that the coating has a granular structure, a thickness is about 11 μm, the microhardness of the surface is 1520 ± 50 HV0.05. Processing of the obtained data by statistical analysis methods showed that the protective coating based on Cr-CrC increases the solid particle erosion resistance of the blade steel 20kH13 by the incubation-transitional period duration more than 2.5 times.

  18. Development of precision casting in high speed steel; Seimitsu chuzo haisu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, H.; Fujii, T. [Daido Steel Co. Ltd., Nagoya (Japan)

    1997-07-25

    As to the high speed steel manufactured by precision casting process, effect of decarbonization technology and low temperature casting, and difference between the characteristics of a steel and a high speed steel were examined. The high speed steel was cast by vacuum casing process using a mold manufactured by the lost wax process. Effect of superheating in casting on the product structure and the bending strength was examined. Decarbonization can be prevented by the vacuum casting process. By low temperature casting, the high speed steel structure becomes fine, and the bending strength or toughness is improved; 80% of the T-direction bending strength of the steel can be secured in the high speed steel. The high speed steel exceeds the steel by a little bit in abrasion resistance. When the high speed steel was applied to a spiral cutter, the high speed steel product exceeded 1.2 times the machined steel in the tool life. In the high speed steel, the cutting process is drastically reduced, and reduction of the material cost is also possible compared with the machined steel. The high speed steel is considered to show good results because of excellent abrasion resistance since the tool life depended more on abrasion than on toughness because of the machining conditions. 4 refs., 8 figs., 2 tabs.

  19. Effect of composition and processing on the thermal fatigue and toughness of high performance die steels. Year 1 report

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.F.; Wang, Yumin; Schwam, D.

    1996-06-01

    The goal of this project is to extend the lifetime of dies for die casting by 20%. Since the die contributes about 10% to the cost of die cast parts, such an improvement in lifetime would result in annual savings of over $200 Million dollars. This is based on the estimated annual die production of one Billion dollars in the US. The major tasks of this two year project are: (1) Evaluate NEW DIE STEEL COMPOSITIONS that have been developed for demanding applications and compare them to Premium Grade H-13 die steel. (2) Optimize the AUSTENITIZING TREATMENT of the new composition. Assess the effects of fast, medium and slow COOLING RATES DURING HEAT TREATMENT, on the thermal fatigue resistance and toughness of the die steel. (3) Determine the effect of ELECTRO-DISCHARGE MACHINING (EDM) on the thermal fatigue resistance and impact properties of the steel. (4) Select demanding components and conduct IN-PLANT TESTING by using the new steel. Compare the performance of the new steel with identical components made of Premium Grade H-13. The immersion thermal fatigue specimen developed at CWRU is being used to determine resistance to heat checking, and the Charpy V-notch test for evaluating the toughness. The overall result of this project will be identification of the best steel available on the market and the best processing methods for aluminum die casting dies. This is an interim report for year 1 of the project.

  20. Single-Dish Observations of H(13) CO(+) and SiO in the Circumnuclear Molecular Disk of the Galactic Center

    Science.gov (United States)

    Sherman, Leslie A.; Marr, Jonathan M.

    1995-03-01

    We will present the results from observations with the 37-meter telescope at the Haystack Observatory of H(13) CO(+) (J=1->0) and SiO (J=2->1, v=0) in two particular clumps of the circumnuclear molecular disk at the Galactic Center. The H(13) CO(+) intensity is used in conjuction with previous data of H(12) CO(+) and HCN (Marr, Wright, and Backer 1993) to estimate the abundance ratio of HCO(+) to HCN in one clump. Marr, Wright, and Backer (1993) had found this abundance ratio to be exceptionally low throughout the disk. In the brightest clump of the circumnuclear disk, where enhanced emission by shocked H_2 is also seen (DePoy, Gatley, and McLean 1989), we obtain an upper limit to the opacity of SiO, which when compared to that of HCN (Marr, Wright, and Backer 1993) is a good indicator of shocked regions (Ziurys et al. 1989). We are grateful to the William Keck foundation for providing primary support for this research, including summer salary for LES, through the Keck Northeast Astronomy Consortium.

  1. The effect of microstructure on abrasive wear of steel

    Science.gov (United States)

    Kešner, A.; Chotëborský, R.; Linda, M.

    2017-09-01

    Abrasive wear of agricultural tools is one of the biggest problems in currently being. The amount of abrasive wear, depending on the microstructure, has been investigated in this work. Steels 25CrMo4 and 51CrV4 were used in this work to determine the effect of the microstructure on the abrasive wear. These steels are commonly used for components that have to withstand abrasive wear.SEM analysis was used to detect the microstructure. The standardized ASTM G65 method was used to compare the abrasive wear of steels. The results show that the abrasive wear depends on the microstructure of steels.

  2. The steel scrap age.

    Science.gov (United States)

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  3. 1H, 13C, and 15N resonance assignments for the protein coded by gene locus BB0938 of Bordetella bronchiseptica

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo; Ramelot, Theresa A.; Xiao, Rong; Ho, Chi K.; Ma, LiChung; Acton, Thomas; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    The product of gene locus BB0938 from Bordetella bronchiseptica (Swiss-Prot ID: Q7WNU7-BORBR; NESG target ID: BoR11; Wunderlich et al., 2004; Pfam ID: PF03476) is a 128-residue protein of unknown function. This broadly conserved protein family is found in eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 98% of backbone and 94% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a b topology with a seven-residue helical insert, ??????????. BMRB deposit with accession number 6693. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  4. 1H, 13C, and 15N resonance assignments for Escherichia coli ytfP, a member of the broadly conserved UPF0131 protein domain family

    Energy Technology Data Exchange (ETDEWEB)

    Aramini, James M.; Swapna, G.V.T.; Huang, Yuanpeng; Rajan, Paranji K.; Xiao, Rong; Shastry, Ritu; Acton, Thomas; Cort, John R.; Kennedy, Michael A.; Montelione, Gaetano

    2005-11-01

    Protein ytfP from Escherichia coli (Swiss-Prot ID: YTFP-ECOLI; NESG target ID: ER111; Wunderlich et al., 2004) is a 113-residue member of the UPF0131 protein family (Pfam ID: PF03674) of unknown function. This domain family is found in organisms from all three kingdoms, archaea, eubacteria and eukaryotes. Using triple resonance NMR techniques, we have determined 97% of backbone and 91% of side chain 1H, 13C, and 15N resonance assignments. The chemical shift and 3J(HN?Ha) scalar coupling data reveal a mixed a/b topology,????????. BMRB deposit with Accession No. 6448. Reference: Wunderlich et al. (2004) Proteins, 56, 181?187.

  5. More About Cutting Tool For Shaving Weld Beads

    Science.gov (United States)

    Oelgoetz, Peter A.; Davis, William M.

    1996-01-01

    Report describes modification and testing of proposed tool discussed in "Cutting Tool For Shaving Weld Beads" (MFS-30056). Modified version of commercial pneumatically driven rotary cutting tool removes such hard metals as nickel alloys, titanium, and stainless steels.

  6. Friction stir processing on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Sergei Yu., E-mail: tsy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, Alexander G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Rubtsov, Valery E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2014-11-14

    Friction stir processing of medium carbon steel samples has been carried out using a milling machine and tools made of cemented tungsten carbide. Samples have been machined from 40 and 40X steels. The tools have been made in the shape of 5×5×1.5 mm and 3×3×1.5 mm tetrahedrons. The microstructure of stirred zone has been obtained using the smaller tool and consists of fine recrystallized 2-3 μm grains, whereas the larger tool has produced the 'onion-like' structures comprising hard quenched 'white' 500-600 MPa layers with 300-350 MPa interlayers of bainite needles. The mean values of wear intensity obtained after measuring the wear scar width were 0.02 mm/m and 0.001 mm/m for non-processed and processed samples, respectively.

  7. Nickel: makes stainless steel strong

    Science.gov (United States)

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  8. BORONIZING OF STEEL

    OpenAIRE

    ULUKÖY, Arzum; CAN, Ahmet Çetin

    2006-01-01

    Boride layer has many advantages in comparison with traditional hardening methods. The boride layer has high hardening value and keeps it's hardeness at high temperatures, and it also shows favorible properties, such as the resistance to wear, oxidation and corrosion. The process can be applied at variety of materials, for instance steel, cast iron, cast steel, nickel and cobalt alloys and cermets. In this rewiew, boronizing process properties, boride layer on steel surfaces and specification...

  9. Compresibility and sinterability of HCx PM steel diluted with stainless steels

    Directory of Open Access Journals (Sweden)

    Elena Gordo

    2003-12-01

    Full Text Available HCx powder metallurgy steel contains in its composition high contents of Cr and C, and significant quantities of alloy elements typical of tool steels (Mo, V, W, to provide the corrosion resistance of stainless steel with wear resistance of tool steels. HCx appears to be a suitable material for applications in aggressive environments, as valve seat inserts in automotive engines. However, this steel presents a low compressibility leading to high production costs. In this work, some results carried out to improve the compressibility of HCx are presented. The way to attempt this improvement is the dilution of base material with two stainless steels, the ferritic 430LHC and the austenitic 316L. The powder mixes prepared were uniaxially pressed to study the compressibility. The sinterability was study by determining of density, hardness, transverse rupture strength (TRS and microstructural evolution after vacuum sintering at different temperatures. As a result, better compressibility is observed in the mixes although not all of them present the properties required.

  10. Development of Next Generation Heating System for Scale Free Steel Reheating

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  11. Characterization of isolated 1-aza-adamantan-4-one (C9H13NO) from microwave, millimeter-wave and infrared spectroscopy supported by electronic structure calculations

    Science.gov (United States)

    Pirali, O.; Goubet, M.; Boudon, V.; D'Accolti, L.; Fusco, C.; Annese, C.

    2017-08-01

    We have synthesized 1-aza-adamantan-4-one (C9H13NO) starting from commercial 1,4-cyclohexanedionemonoethylene acetal and tosylmethylisocianide, following a procedure already described in the literature. The high degree of sample purity was demonstrated by gas chromatography and mass spectrometric measurements and its structure evidenced by 1H and 13C NMR spectroscopy. Among numerous interests in physical chemistry, this target molecule is of high relevance for mechanistic evaluation and the synthesis of novel pharmaceutical compounds. We present a thorough spectroscopic study of this molecule by gas phase vibrational and rotational spectroscopy. Accurate vibrational frequencies have been determined from infrared and far-infrared spectra. The pure rotational spectrum of the molecule has been recorded both by cavity-based Fourier transform microwave spectroscopy in the 2-20 GHz region by supersonically expanding the vapor pressure of the warm sample and by room-temperature absorption spectroscopy in the 140-220 GHz range. Accurate sets of rotational and centrifugal distortion parameters of 1-aza-adamantan-4-one in its ground state and in five vibrationally excited states have been derived from these measurements and compared to accurate quantum chemical calculations. The hyperfine parameters have been discussed in terms of molecular structure around the nitrogen quadrupole nucleus.

  12. 2D 1H -13C Heteronuclear Shift Correlation Of 2a - Hydroxy Aiantolactone From Pulicaria Undulata C.A. Mey

    Directory of Open Access Journals (Sweden)

    A. Rustaiyan

    1992-07-01

    Full Text Available We have reported recently the isolation and characterization of several sesquiterpene lactones from Pulicaria undulata (1."nThe lactones were isolated from an Et20 - Petrol (1:3 fraction by different chromatographic techniques including HPLC (RP 8, MeOH - H2O, 13:7."nIn this way three eudesmanolides 1 - 3, a guaianolide 4, a nor -guaianolide 5, as well as the pseudoguaianolide 6 and the xanthanolide 7 were isolated. One of the eudesmanolides (2a - hydroxy aiantolactone, 1, was present as the main component."nSuch lactones being known as biologically active substances, we have decided to describe for the first time a detailed interpretation of proton, 1H -NMR, 13C - NMR and 2D lH -13C - heteronuclear shift correlation spectra of 2a - hydroxy aiantolactone. The stereochemistry of C - 2 , C - 7 and C - 8 was determined by the NOESY experiments, H - 7 and H - 8 are in the a configuration and H - 2 is in the b configuration.

  13. Water Powered Tools

    Science.gov (United States)

    1976-01-01

    Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.

  14. Heat affected zone in surfacing chromium ledeburitic steel

    Directory of Open Access Journals (Sweden)

    M. Tonkovič Prijanovič

    2010-07-01

    Full Text Available Tools get failured during work; wear is a major factor that contributes to failures. Damaged tools are replaced or filed. This paper describes typical changes that occur in the heat affected zone of tool (HAZ, which was repaired by surfacing with a TIG and with micro-plasma procedure. Microstructure of the steel on the repaired tool was analysed by an optical and scanning electron microscope. The tool was made of chromium ledeburitic steel type W.N. 1.2379 and it was repaired by surfacing steel type W.N. 1.4718. Changes in the HAZ also depend on the type of surfacing. Besides microstructural changes, dissolution of carbides, especially primary carbides. This way the concentration of the carbide-forming elements and carbon is increased in the base around the primary carbides in the HAZ so the result is so-called secondary eutectic or secondary ledeburite.

  15. Modern Steel Framed Schools.

    Science.gov (United States)

    American Inst. of Steel Construction, Inc., New York, NY.

    In view of the cost of structural framing for school buildings, ten steel-framed schools are examined to review the economical advantages of steel for school construction. These schools do not resemble each other in size, shape, arrangement or unit cost; some are original in concept and architecture, and others are conservative. Cost and…

  16. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated...... show that the dry lubricant provides better lubrication and generates less galling than the rust protection oil. Also, the nitrogen alloyed PM steel grade shows a significantly higher galling resistance as compared with the conventional steel grade and can, in combination with a dry lubricant......The increasing use of high strength steels in a variety of mechanical engineering applications has illuminated problems associated with galling in sheet metal forming operations. Galling is a tribological phenomenon associated with transfer of material from the steel sheet to the tool surface...

  17. COMPOSITION OF DIE STEEL 5HVMFS WITH INCREASED WEAR RESISTANCE AND THE SCHEME OF ITS SMELTING WITH USE OF UNDIVIDED SCRAP OF STEELS R6M5 AND 45

    Directory of Open Access Journals (Sweden)

    V. N. Fedulov

    2013-01-01

    Full Text Available The technological scheme of the new tool steel 5HVMFS smelting by means of electroslag casting method with the use of different combinations of steel scrap of R6M5 and CH5 steels and dressing the chemical composition directly in the bowl and also filling into metal bowl is developed.

  18. 78 FR 16252 - Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, and Thailand: Final Results...

    Science.gov (United States)

    2013-03-14

    ...-rectangular shapes, not in coils, which are the result of having been processed by cutting or stamping and...). Scope of the Orders The merchandise subject to these orders is hot-rolled steel of a rectangular shape... bearings steels, as defined in the HTSUS. --Tool steels, as defined in the HTSUS. --Silico-manganese (as...

  19. Machine Tool Software

    Science.gov (United States)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  20. BORONIZING OF STEEL

    Directory of Open Access Journals (Sweden)

    Arzum ULUKÖY

    2006-02-01

    Full Text Available Boride layer has many advantages in comparison with traditional hardening methods. The boride layer has high hardening value and keeps it's hardeness at high temperatures, and it also shows favorible properties, such as the resistance to wear, oxidation and corrosion. The process can be applied at variety of materials, for instance steel, cast iron, cast steel, nickel and cobalt alloys and cermets. In this rewiew, boronizing process properties, boride layer on steel surfaces and specifications and the factors that effect boride layer are examined

  1. ASPECTS REGARDING MECHANICAL PROCESSING OF STEELS FOR MAGNETS, NDFEB BASED

    Directory of Open Access Journals (Sweden)

    MELANIA TĂMAŞ

    2015-05-01

    Full Text Available This paper presents experimental research concerning the behavior on cutting by turning of steels for magnets NdFeB based. In this context, cutting by rough turning of steels magnet neodymium and boron ferrite based were performed. Turning processing with the values of the cutting parameters recommended by European Union and Sandvik Coromant company rules, taking into account the chemical composition of the processed material and cutting tool were performed. The tables have been drawn up with different values of the cutting parameters. By comparing these data it can be concluded that steels for permanent magnets, NdFeB based have acceptable behavior, the process by rough turning. A full assessment of the optimization of the cutting by turning process of steels for permanent magnet, NdFeB base will result from subsequent experimental research that will take into account the wear of cutting tools and quality (roughness of processed surface.

  2. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra.

    Science.gov (United States)

    Chen, Kang; Freedberg, Darón I; Keire, David A

    2015-02-01

    2D NMR (1)H-X (X=(15)N or (13)C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited(1)H-(13)C HSQC pulse sequences generate opposite signs between peaks of CH(2) and CH/CH(3) at a cost of lower signal-to-noise due to the (13)C T(2) relaxation during an additional 1/(1)JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than (13)C (i.e.(15)N), to resolve more peaks, to reduce T(2) losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated(1)H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H(2)O/5% D(2)O. In this pulse sequence, the 1/(1)JXH editing-period is incorporated in to the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved (1)J(XH)-active and the (1)J(XH)-inactive HSQC experiments yield two separate spectra for XH(2) and XH/XH(3). Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach. Published by Elsevier Inc.

  3. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra

    Science.gov (United States)

    Chen, Kang; Freedberg, Darón I.; Keire, David A.

    2015-02-01

    2D NMR 1H-X (X = 15N or 13C) HSQC spectra contain cross-peaks for all XHn moieties. Multiplicity-edited1H-13C HSQC pulse sequences generate opposite signs between peaks of CH2 and CH/CH3 at a cost of lower signal-to-noise due to the 13C T2 relaxation during an additional 1/1JCH period. Such CHn-editing experiments are useful in assignment of chemical shifts and have been successfully applied to small molecules and small proteins (e.g. ubiquitin) dissolved in deuterated solvents where, generally, peak overlap is minimal. By contrast, for larger biomolecules, peak overlap in 2D HSQC spectra is unavoidable and peaks with opposite phases cancel each other out in the edited spectra. However, there is an increasing need for using NMR to profile biomolecules at natural abundance dissolved in water (e.g., protein therapeutics) where NMR experiments beyond 2D are impractical. Therefore, the existing 2D multiplicity-edited HSQC methods must be improved to acquire data on nuclei other than 13C (i.e.15N), to resolve more peaks, to reduce T2 losses and to accommodate water suppression approaches. To meet these needs, a multiplicity-separated1H-X HSQC (MS-HSQC) experiment was developed and tested on 500 and 700 MHz NMR spectrometers equipped with room temperature probes using RNase A (14 kDa) and retroviral capsid (26 kDa) proteins dissolved in 95% H2O/5% D2O. In this pulse sequence, the 1/1JXH editing-period is incorporated into the semi-constant time (semi-CT) X resonance chemical shift evolution period, which increases sensitivity, and importantly, the sum and the difference of the interleaved 1JXH-active and the 1JXH-inactive HSQC experiments yield two separate spectra for XH2 and XH/XH3. Furthermore we demonstrate improved water suppression using triple xyz-gradients instead of the more widely used z-gradient only water-suppression approach.

  4. ETUDE STRUCTURALE CRISTALLINE EXPERIMENTALE A PARTIR DE LA DIFFRACTION X ET THEORIQUE (DFT DE L’IODODURENE (C10H13I

    Directory of Open Access Journals (Sweden)

    A.N HAMDOUNI

    2015-06-01

    Full Text Available Dans cette étude nous présentons d’une part la structure cristalline du 1-iodo-2,3,5,6-tétraméthylebenzène (C10H13I aussi connu comme iododurène à partir de la diffraction des rayons X à température ambiante et d’autre part la conformation moléculaire de ce même composé à partir des calculs de la théorie de la fonctionnelle de la densité (DFT. Ce composé cristallise dans le système orthorhombique, groupe spatial P212121 et Z=4. L’empilement moléculaire se fait suivant le plus court axe cristallographique a. Les résultats de calcul de la mécanique quantique en utilisant la chaîne de programme Gaussian03 (DFT avec deux fonctionnelles B3LYP et MPW1PW91 et le jeu de base DGDZVP ont conduit à deux conformations différences  de symétrie C2v et Cs avec des énergies de formation minimales voisines. En prenant en compte les résultats de calcul de la fonctionnelle MPW1PW91/DGDZVP comparés à l'expérience on trouve que les écarts sont compris entre  ± 0.103° pour les angles de liaison  et ± 0.001 Å  pour les longueurs de liaison. Le programme permet également d’obtenir en  plus  du calcul d’optimisation de prédire les modes normaux de vibrations internes de l’iododurène. Ainsi, l’attribution des modes donne un très bon accord entre les fréquences calculées et observées.

  5. Glass Stronger than Steel

    Science.gov (United States)

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  6. Metallurgy: Printing steels

    Science.gov (United States)

    Todd, Iain

    2018-01-01

    Additive manufacturing has been used to fabricate a common stainless steel, which imparts a unique microstructure to this material, making it stronger and more ductile than that produced with conventional methods.

  7. Life after Steel

    Science.gov (United States)

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  8. Friction Stir Welding of Steel Alloys

    Science.gov (United States)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  9. Quantification of indium in steel using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J.C.

    1989-04-01

    The quantitative analysis of steel endodontics tools was carried out using low-energy protons (/le/ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important. (orig.).

  10. the use and integration of Tekla Structures components for steel connections' calculations

    OpenAIRE

    Starešinič, Marko

    2015-01-01

    The main objective of this graduation thesis is the development of Tekla Structures integrated Excel Macro files, which allow for design of steel connections: moment connection with end plate, pinned connection with fin plate and bracing connection. After building a model of a steel structures and appliying components for steel connections in Tekla Structures, a user can export component data from Tekla Structures to Excel Macro using a ComponentVariableImporter tool. Excel Macro ...

  11. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  12. Continuous steel production and apparatus

    Science.gov (United States)

    Peaslee, Kent D [Rolla, MO; Peter, Jorg J [McMinnville, OR; Robertson, David G. C. [Rolla, MO; Thomas, Brian G [Champaign, IL; Zhang, Lifeng [Trondheim, NO

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  13. Brazing titanium to stainless steel

    Science.gov (United States)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  14. A tale of Wootz steel

    National Research Council Canada - National Science Library

    Ranganathan, S; Srinivasan, Sharada

    2006-01-01

    The extraordinary romance and thrilling adventure associated with the tale of wootz steel shows how Indian metallurgists were the world leaders in antiquity in the manufacture of this legendary high-grade steel...

  15. PECULIARITIES OF METALLOGRAPHIC RESEARCHES OF STRUCTURE OF CAST METAL FROM WASTE OF HIGH-SPEED STEEL P6M5

    Directory of Open Access Journals (Sweden)

    A. L. Valko

    2014-01-01

    Full Text Available Techniques metallographic researches of structure and definition of size of grain of tool steels are offered. The structure of the fast-cutting steel received by a method electroslag remelting from a waste of tool manufacture is investigated.

  16. Fatigue damage of steel components

    DEFF Research Database (Denmark)

    Fæster, Søren; Zhang, Xiaodan; Huang, Xiaoxu

    2014-01-01

    Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials......Railway rails and the inner ring in roller bearings in wind turbines are both experiencing steel-to-steel contact in small areas with huge loads resulting in extremely high stresses in the base materials...

  17. Application of dynamic milling in stainless steel processing

    Science.gov (United States)

    Shan, Wenju

    2017-09-01

    This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.

  18. Thermally Stable Nanocrystalline Steel

    Science.gov (United States)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  19. A-3 steel work completed

    Science.gov (United States)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  20. 76 FR 49726 - Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Sheet and Strip in...

    Science.gov (United States)

    2011-08-11

    ... between 0.127 and 1.270 mm. It exhibits magnetic remanence between 9,000 and 12,000 gauss, and a... the scope. This product is defined as a non-magnetic stainless steel manufactured to American Society... stainless steel strip in coils used in the production of textile cutting tools (e.g., carpet knives).\\4...

  1. 78 FR 79667 - Stainless Steel Sheet and Strip in Coils From Japan: Initiation of Expedited Changed...

    Science.gov (United States)

    2013-12-31

    ... iron, in widths 228.6 mm or less, and a thickness between 0.127 and 1.270 mm. It exhibits magnetic... defined as a non-magnetic stainless steel manufactured to American Society of Testing and Materials (ASTM... the production of textile cutting tools (e.g., carpet knives).\\7\\ This steel is similar to AISI grade...

  2. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  3. Guns, Germs and Steel

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 1. Guns, Germs and Steel - A Short History of Everybody for the Last 13,000 years. Suri Venkatachalam. Book Review Volume 6 Issue 1 January 2001 pp 84-88. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Japan steel mill perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murase, K. [Kobe Steel Ltd., Tokyo (Japan)

    2004-07-01

    The international and Japan's steel industry, the coking coal market, and Japan's expectations from Canada's coal industry are discussed. Japan's steel mills are operating at full capacity. Crude steel production for the first half of 2004 was 55.8 million tons. The steel mills are profitable, but costs are high, and there are difficulties with procuring raw materials. Japan is trying to enhance the quality of coke, in order to achieve higher productivity in the production of pig iron. Economic growth is rising disproportionately in the BRICs (Brazil, Russia, India, and China), with a large increase in coking coal demand from China. On the supply side, there are several projects underway in Australia and Canada to increase production. These include new developments by Elk Valley Coal Corporation, Grande Cache Coal, Western Canadian Coal, and Northern Energy and Mining in Canada. The Elga Mine in the far eastern part of Russia is under development. But the market is expected to remain tight for some time. Japan envisions Canadian coal producers will provide a stable coal supply, expansion of production and infrastructure capabilities, and stabilization of price. 16 slides/overheads are included.

  5. Braze alloy spreading on steel

    Science.gov (United States)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  6. Relationship Between pH and Electrochemical Corrosion Behavior of Thermal-Sprayed Ni-Al-Coated Q235 Steel in Simulated Soil Solutions

    Science.gov (United States)

    Wei, Wei; Wu, Xin-qiang; Ke, Wei; Xu, Song; Feng, Bing; Hu, Bo-tao

    2017-09-01

    Electrochemical corrosion behavior of a thermal-sprayed Ni-Al-coated Q235 steel was investigated in the simulated soil solutions at different pH values using measurements of potentiodynamic polarization curves and electrochemical impedance spectroscopy as well as surface analyses including x-ray diffraction analysis, scanning electron microscope equipped with an energy-dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The results showed that the corrosion resistance of the Ni-Al-coated Q235 steel was dependent on the pH of the test solution. From pH = 3.53 to pH = 4.79, the corrosion resistance of the coated steel increased rapidly. In the pH range from 4.79 to 12.26, the corrosion resistance exhibited no significant change. At pH 13.25, the corrosion resistance of the sample was found to decrease. The calculated corrosion rate of Ni-Al-coated Q235 steel was lower than that of the uncoated Q235 steel and galvanized steel in all the test solutions. Over a wide range of pH values, the Ni-Al-coated Q235 steel exhibited extremely good corrosion resistance. The experimental data together with the potential-pH diagrams provided a basis for a detailed discussion of the related corrosion mechanisms of the coated steel.

  7. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study

    Science.gov (United States)

    Jiang, Jin-yang; Wang, Danqian; Chu, Hong-yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-01-01

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed. PMID:28772772

  8. Fractography analysis of tool samples used for cold forging

    DEFF Research Database (Denmark)

    Dahl, K.V.

    2002-01-01

    Three fractured tool dies used for industrial cold forging have been investigated using light optical microscopy and scanning electron microscopy. Two of the specimens were produced using the traditional Böhler P/M steel grade s790, while the lastspecimen was a third generation P/M steel produced...... using new technology developed by Böhler. All three steels have the same nominal composition of alloying elements. The failure in both types of material occurs as a crack formation at a notch inside ofthe tool. Generally the cold forging dies constructed in third generation steels have a longer lifetime...... than the ones constructed in traditional steel, which is connected to differences in micro-structure. Focus has been put on differences in the size anddistribution of car-bides. It is found that the third generation steel contains smaller and more finely dis-persed carbides and has an increased...

  9. Microstructure, state of internal stress and corrosion resistance of the short-time laser heat-treated nitrogen high-alloyed tool steel X30CrMoN151; Mikrostruktur, Eigenspannungszustand und Korrosionsbestaendigkeit des kurzzeitlaserwaermebehandelten hochstickstofflegierten Werkzeugstahls X30CrMoN151

    Energy Technology Data Exchange (ETDEWEB)

    Bohne, C. (ed.)

    2000-07-01

    This study compares the crystalline structure, state of internal stress and chemical properties of the high-alloyed nitrogen tool steel X30CrMoN15 1 and conventional cold work steel X39CrMo17 1. Transformation points A{sub c}1b and A{sub c}1e were calculated from residual austenite analysis and the c{sub m}/a{sub m} martensite ratios for various heating rates. This was used to generate a TTA (time-temperature-austenitisation) graph for X30CrMoN15 1 for the first time. Transmission electron microscopy and small-angle neutron scattering show that precipitates in nitrogen high-alloyed steel X30CrMoN15 1 can be eliminated completely by short-time laser heat treatment. The corrosion tests show that in contrast to X39CrMo17 1 X30CrMoN15 1 reacts more sensitively to parameter changes during short-time heat treatment in oxidising acid at pH 5-6. [German] Im Rahmen der Arbeit werden die Gefuegeausbildung, Eigenspannungen und chemische Eigenschaften des hochstickstofflegierten Werkzeugstahls X30CrMoN15 1 und des konventionellen Kaltarbeitsstahls X39CrMo17 1 verglichen. Aus den Restaustenitanalysen und den c{sub m}/a{sub m}-Verhaeltnissen des Martensits konnten die Umwandlungspunkte A{sub c1b} und A{sub c1e} fuer verschiedene Aufheizraten bestimmt und daraus ein bisher nicht bekanntes ZTA-Schaubild fuer den X30CrMoN15 1 erstellt werden. Transmissionselektronenmikroskopie und Neutronenkleinwinkelstreuung zeigen, dass sich die Ausscheidungen im hochstickstofflegierten Stahl X30CrMoN14 1 durch die Kurzzeitlaserwaermebehandlung vollstaendig aufloesen koennen. Die Korrosionsversuche zeigen, dass im Gegensatz zum X39CrMo17 1 der X30CrMoN15 1 in oxidierender Saeure bei pH 5-6 empfindlicher auf Parameteraenderungen bei der Kurzzeitwaermebehandlung reagiert. (orig.)

  10. Cutting Tool For Shaving Weld Beads

    Science.gov (United States)

    Hoffman, David S.; Mcferrin, David C.; Daniel, Ronald L., Jr.; Coby, John B., Jr.; Dawson, Sidney G.

    1995-01-01

    Cutting tool proposed for use in shaving weld beads flush with adjacent surfaces of weldments. Modified version of commercial pneumatically driven rotary cutting tool, cutting wheel of which turns at speeds sufficient for machining nickel alloys, titanium, and stainless steels. Equipped with forward-mounted handle and rear-mounted skid plate to maximize control and reduce dependence on skill of technician.

  11. History of ultrahigh carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  12. Stereology of concrete reinforced with short steel fibres

    NARCIS (Netherlands)

    Stroeven, P.

    1986-01-01

    Mechanical tests on steel fibre reinforced concrete (SFRC) can only be interpreted on the basis of a structural analysis. Stereological tools are available for that purpose. Results of recent investigations will be presented, revealing quite complex characteristics of the fibre dispersion in the

  13. Microstructure and Mechanical Properties of Dissimilar Friction Stir Spot Welding Between St37 Steel and 304 Stainless Steel

    Science.gov (United States)

    Khodadadi, Ali; Shamanian, Morteza; Karimzadeh, Fathallah

    2017-05-01

    In the present study, St37 low-carbon steel and 304 stainless steel were welded successfully, with the thickness of 2 mm, by a friction stir spot welding process carried out at the tool dwell time of 6 s and two different tool rotational speeds of 630 and 1250 rpm. Metallographic examinations revealed four different zones including SZ and HAZ areas of St37 steel and SZ and TMAZ regions of 304 stainless steel in the weld nugget, except the base metals. X-ray diffraction and energy-dispersive x-ray spectroscopy experiments were used to investigate the possible formation of such phases as chromium carbide. Based on these experiments, no chromium carbide precipitation was found. The recrystallization of the weld nugget in the 304 steel and the phase transformations of the weld regions in the St37 steel enhanced the hardness of the weld joint. Hardness changes of joint were acceptable and approximately uniform, as compared to the resistance spot weld. In this research, it was also observed that the tensile/shear strength, as a crucial factor, was increased with the rise in the tool rotational speed. The bond length along the interface between metals, as an effective parameter to increase the tensile/shear strength, was also determined. At higher tool rotational speeds, the bond length was found to be improved, resulting in the tensile/shear strength of 6682 N. Finally, two fracture modes were specified through the fracture mode analysis of samples obtained from the tensile/shear test consisting of the shear fracture mode and the mixed shear/tensile fracture mode.

  14. The Cracking Mechanism of Ferritic-Austenitic Cast Steel

    Directory of Open Access Journals (Sweden)

    Stradomski G.

    2016-12-01

    Full Text Available In the high-alloy, ferritic - austenitic (duplex stainless steels high tendency to cracking, mainly hot-is induced by micro segregation processes and change of crystallization mechanism in its final stage. The article is a continuation of the problems presented in earlier papers [1 - 4]. In the range of high temperature cracking appear one mechanism a decohesion - intergranular however, depending on the chemical composition of the steel, various structural factors decide of the occurrence of hot cracking. The low-carbon and low-alloy cast steel casting hot cracking cause are type II sulphide, in high carbon tool cast steel secondary cementite mesh and / or ledeburite segregated at the grain solidified grains boundaries, in the case of Hadfield steel phosphorus - carbide eutectic, which carrier is iron-manganese and low solubility of phosphorus in high manganese matrix. In duplex cast steel the additional factor increasing the risk of cracking it is very “rich” chemical composition and related with it processes of precipitation of many secondary phases.

  15. Modelling Steel Behaviour

    OpenAIRE

    Anderberg, Yngve

    1986-01-01

    When modelling material mechanical behaviour, an analytical description is required of the relationship between stresses and strains. A computer oriented mechanical behaviour model for steel is described. The model is based on the fact that the deformation process at transient high temperature conditions can be desribed by three strain components which are separately found in different steady state tests. It is shown that a behaviour model based on steady state data satisfactorily predicts be...

  16. Wootz Damascus steel blades

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeven, J.D.; Gibson, E.D. [Ames Lab., IA (United States); Pendray, A.H. [ABS Master Bladesmith, Williston, FL (United States)

    1996-07-01

    Wootz Damascus steel blades contain surface patterns produced by bands of cementite particles which are generated in situ as the blades are forged from small ingots. A process for making these blades has recently been developed which involves making ingots in a gas-fired furnace followed by forging to blade shapes. This study presents a series of additional experiments which provide strong evidence that the mechanism responsible for the formation of the aligned cementite bands is similar to the mechanism that produces banded hypoeutectoid steels. That mechanism attributes the selective formation of ferrite bands to microsegregated alloying elements. The results of this study show that the cementite bands will form in ultraclean hypereutectoid steels (P and S levels <0.003 wt. %) by the addition of small amounts of carbide-forming elements V, Cr, and Ti at a combined level of <0.02 wt. %. The results present strong evidence that the cementite bands are formed by a selective coarsening of cementite particles during the thermal cycling of the forging process. The particle coarsening is induced to occur preferentially in the interdendritic regions of the alloys by the very small additions of the carbide-forming elements.

  17. Turning conditions of Ck 45 steel with alternate hardness zones

    OpenAIRE

    A. Stoić; J. Kopač; T. Ergić; M. Duspar

    2009-01-01

    Purpose: of this paper is investigation of dynamic impacts on cutting edge during machining of locally hardened steel. Alteration of hardness on a single work piece is a source of impact on tool, which could lead to breakage of cutting tool and work piece surface damage in turning. Influence of material properties (primary hardness) is important when work piece is hardened locally by induction and part of material is soft annealed.Design/methodology/approach: Experimental tests of cutting out...

  18. Hole expansion test of third generation steels

    Science.gov (United States)

    Agirre, Julen; Mendiguren, Joseba; Galdos, Lander; de Argandoña, Eneko Sáenz

    2017-10-01

    The trend towards the implementation of new materials in the chassis of the automobiles is considerably making more complex the manufacturing of the components that built it up. In this scenario materials with higher strengths and lower formabilities are daily faced by tool makers and component producers what reduces the process windows and makes the forming processes to be in the limits of the materials. One of the concerns that tool makers must face during the definition of the tools is the expansion ratios that the holes in the sheet may reach before producing a breakage due to the stretching of the material (also known as edge cracks). For the characterization of such limits, a standard test, the hole expansion test, can be applied so that the limits of the material are known. At the present study, hole expansion tests of a third generation steel, Fortiform1050 with a thickness of 1.2 millimeters have been carried out and compared them to a mild steel, DX54D with a thickness of 0.6 millimeters. A comparison for each material in terms of technology used to punch the hole, mechanical punching vs laser cutting has also been conducted. In addition, the measurement technique (online measurement vs offline measurement) followed in the Hole Expansion Ratio (HER) identification has also been analyzed. Finally, differences between both materials and techniques are presented.

  19. Simulation of quenching and tempering of steels

    Science.gov (United States)

    Jin, Long

    An efficient simulation method, which includes microstructure, temperature and stress analysis applicable to both quenching and tempering processes, is developed and implemented using the commercial FEM package ABAQUS. This simulation encompasses phase transformations and their effects on the temperature distribution and stress/strain evolution, including the dependency of material properties on temperature and microstructure, transformation strains, latent heats and transformation plasticity. Three different multi-phase constitutive models, namely the average property model, the Voigt model and the Reuss model, have been implemented. The average property model is based on the linear mixture of material properties of different phase, while the Voigt model assumes the same strain field in all phases and the Reuss model assumes the iso-stress field. The simulation model has been applied to quenching and tempering of modified 4320 steel. Experiments of tempering and quenching on carburized circular plates of the same steel have been performed. The calculated distortion and residual stress profiles are in good agreement with corresponding measurements made in experiments and thus verifies the correctness of the model. The simulation model developed in this study is a useful design tool for quenching and tempering as well as machining of steels.

  20. Synthesis of thermit noncorrodible steels

    OpenAIRE

    Жигуц, Юрій Юрійович

    2013-01-01

    The present paper the basic solutions to the problem of obtaining cavitation-resistant steels examined the use of thermite steels, the benefits of combining thermite steels with metallotermic methods of getting is showed. The advantages of metallotermic synthesis methods include: autonomy of processes, independence of energy sources, simplicity of equipment, high-performance process and easy transition from experimental research to industrial production. The need to developed the technology o...

  1. Volumetric Properties of the Mixture 2-Methylpropan-2-ol C4H10O + C5H13NO2S N,N-Diethylmethanesulfonamide (VMSD1111, LB3713_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture 2-Methylpropan-2-ol C4H10O + C5H13NO2S N,N-Diethylmethanesulfonamide (VMSD1111, LB3713_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  2. Volumetric Properties of the Mixture 2-Methylpropan-2-ol C4H10O + C5H13NO2S N,N-Diethylmethanesulfonamide (VMSD1212, LB3711_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture 2-Methylpropan-2-ol C4H10O + C5H13NO2S N,N-Diethylmethanesulfonamide (VMSD1212, LB3711_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  3. (1)H, (13)C, and (15)N backbone and side-chain chemical shift assignments for the 36 proline-containing, full length 29 kDa human chimera-type galectin-3.

    Science.gov (United States)

    Ippel, Hans; Miller, Michelle C; Berbís, Manuel Alvaro; Suylen, Dennis; André, Sabine; Hackeng, Tilman M; Cañada, F Javier; Weber, Christian; Gabius, Hans-Joachim; Jiménez-Barbero, Jesús; Mayo, Kevin H

    2015-04-01

    Galectin-3, an adhesion/growth regulatory lectin, has a unique trimodular design consisting of the canonical carbohydrate recognition domain, a collagen-like tandem-repeat section, and an N-terminal peptide with two sites for Ser phosphorylation. Structural characterization of the full length protein with its non-lectin part (115 of 250 residues total) will help understand the multi functionality of this potent cellular effector. Here, we report (1)H, (13)C, and (15)N chemical shift assignments as determined by heteronuclear NMR spectroscopy .

  4. Study of wear performance of deep drawing tooling

    Science.gov (United States)

    Naranje, Vishal G.; Karthikeyan, Ram; Nair, Vipin

    2017-09-01

    One of the most common challenges for many of the mechanical engineers and also in the field of materials science is the issue of occurrences of wear of the material parts which is used in certain applications that involves such surface interactions. In this paper, wear behaviour of particular grade High Carbon High Chromium Steel and many most famously D2, H13, O1 known as the Viking steel has been studied, evaluated and analyzed under certain processing parameters such as speed, load, track diameter and time required for deep drawing process to know it’s the wear rate and coefficient of friction. Also, the significance of the processing parameters which is used for wear testing analysis is also examined.

  5. Effect of unit size on thermal fatigue behavior of hot work steel repaired by a biomimetic laser remelting process

    Science.gov (United States)

    Cong, Dalong; Li, Zhongsheng; He, Qingbing; Chen, Dajun; Chen, Hanbin; Yang, Jiuzhou; Zhang, Peng; Zhou, Hong

    2018-01-01

    AISI H13 hot work steel with fatigue cracks was repaired by a biomimetic laser remelting (BLR) process in the form of lattice units with different sizes. Detailed microstructural studies and microhardness tests were carried out on the units. Studies revealed a mixed microstructure containing martensite, retained austenite and carbide particles with ultrafine grain size in units. BLR samples with defect-free units exhibited superior thermal fatigue resistance due to microstructure strengthening, and mechanisms of crack tip blunting and blocking. In addition, effects of unit size on thermal fatigue resistance of BLR samples were discussed.

  6. The investment location decisions in the steel industry

    Directory of Open Access Journals (Sweden)

    M. M. Abrudan

    2016-04-01

    Full Text Available The global dimension of the economy in general and of the steel industry in particular makes the decision regarding the location of new production facilities a challenge for managers. This paper tries to provide tools that make the decision taking process easier. Is assumed that certain tax levy rates are important to this process and they are compared and analyzed. Finally, based on this analysis this paper tries to prioritize some countries in terms of their economic attractiveness in order to identify the most suitable country for placing a steel factory.

  7. Effects of quenching and tempering temperature on microstructure and hardness of P/M tool steel for hot working; P/M ho de sakuseishita SKD6 netsukan koguko no soshiki to katasa ni oyobosu yakiire oyobi yakimodoshi ondo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, D.; Tsuji, N.; Fukaura, K.; Sunada, H. [Himeji Institute of Technology, Hyogo (Japan); Abe, G. [Sanyo Special Steel Co. Ltd., Hyogo (Japan)

    1995-04-15

    The SKD6 is a 5% Cr-Mo-V based hot-working tool steel specified in JIS standard, and used as a hot-working press die material. However, the rolled materials made by using the conventional melt manufacturing process (abbreviated to I/M process) have non-uniformity caused from banded structure in the rolling direction, which affects adversely the strength characteristics. This paper describes comparisons and discussions on effects of quenching and tempering temperature on microstructure and hardness by using extruded materials made by the powder metallurgy process with very little demixing (abbreviated to P/M process). The result obtained may be summarized as follows: the SKD6 made by the P/M process had a homogenous structure with carbides distributed uniformly; the temperature that starts the old austenite crystalline particles to grow coarser as a result of rising quenching temperature was found higher by more than 50K in the P/M materials, with the particle growth more suppressed than in the I/M materials; both materials had the hardness increased with rising quenching temperature, having reached a constant value at temperatures higher than 1350K; and the quenching and tempering hardness was slightly lower in the P/M materials. 4 refs., 6 figs., 1 tab.

  8. SYNTHESIS AND CHARACTERIZATION OF 3-ARYL-5H,13AH-QUINOLINO(3,2-F (1,2,4TRIAZOLO(4,3-B(1,2-DIAZA-4-SULPHOAZEPINES: IN VITRO ANTIFUNGAL AND ANTIBACTERIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Hemant Panwar

    2011-11-01

    Full Text Available 3-Aryl-5H,13aH-quinolino(3,2-f(1,2,4triazolo(4,3-b(1,2-diaza-4-sulphoazepines [2a-i] have been prepared by the cyclisation of 5-aryl-4-amino-3-mercapto-1,2,4-triazole by reaction with 2-chloro-3-formylquinoline in catalytic presence of p-toluene sulphonic acid. All the synthesized compounds have been characterized by elemental and spectral (IR, 1H- NMR and Mass analysis. Furthermore, all compounds were evaluated for their antibacterial and antifungal activities against selected panel of pathogenic strains. Ampicillin trihydrate and fluconazole were used as standard drugs for antibacterial and antifungal activity, respectively. 3-(2-Chlorophenyl-5H,13aH-quinolino(3,2-f(1,2,4triazolo(4,3-b(1,2-diaza-4-sulphoazepine [2h] was found, one of the most potent with lesser toxicity among the all prepared thiazepine derivatives.

  9. Study on Spheroidization and Related Heat Treatments of Medium Carbon Alloy Steels

    Directory of Open Access Journals (Sweden)

    Harisha S. R.

    2018-01-01

    Full Text Available The importance of medium carbon steels as engineering materials is reflected by the fact that out of the vast majority of engineering grade ferrous alloys available and used in the market today, a large proportion of them are from the family of medium carbon steels. Typically medium carbon steels have a carbon range of 0.25 to 0.65% by weight, and a manganese content ranging from 0.060 to 1.65% by weight. Medium carbon steels are more resistive to cutting, welding and forming as compared to low carbon steels. From the last two decades a number of research scholars reported the use of verity of heat treatments to tailor the properties of medium carbon steels. Spheroidizing is the novel industrial heat treatment employed to improve formability and machinability of medium/high carbon low alloy steels. This exclusive study covers procedure, the effects and possible outcomes of various heat treatments on medium carbon steels. In the present work, other related heat treatments like annealing and special treatments for property alterations which serve as pretreatments for spheroidizing are also reviewed. Medium carbon steels with property alterations by various heat treatment processes are finding increased responsiveness in transportation, aerospace, space, underwater along with other variegated fields. Improved tribological and mechanical properties consisting of impact resistance, stiffness, abrasion and strength are the main reasons for the increased attention of these steels in various industries. In the present scenario for the consolidation of important aspects of various heat treatments and effects on mechanical properties of medium carbons steel, a review of different research papers has been attempted. This review may be used as a guide to provide practical data for heat treatment industry, especially as a tool to enhance workability and tool life.

  10. Typhoon of Steel

    OpenAIRE

    Hamamoto, Gena

    2012-01-01

    Typhoon of Steel is a short community-based documentary film that explores the lives of two Okinawan American Kibei Nisei who served in the U.S. military as linguists in the Battle of Okinawa during World War II. While Japanese Americans on the West Coast were incarcerated in camps, these men risked their lives to prove their loyalty to America. Born in the U.S. and raised in Okinawa, their cultural and linguistic skills were a tactical asset to the military. But emotions ran high as they ...

  11. Mechanics in Steels through Microscopy

    NARCIS (Netherlands)

    Zandbergen, H.W.; Tirumalasetty, G.K.

    The goal of the study consolidated in this thesis is to understand the mechanics in steels using microscopy. In particular, the mechanical response of Transformation Induced Plasticity (TRIP) steels is correlated with their microstructures. Chapter 1 introduces the current state of the art of TRIP

  12. corrosion inhibitor for carbon steels

    African Journals Online (AJOL)

    potentiodynamic polarisation techniques. It was found that. CNSL reduces the extent of the electrochemical processes taking place on carbon steel undergoing corrosion. The corrosion rate of the carbon steel was reduced by over 92 % when only 300 ppm of CNSL was applied. This indicates that. CNSL is a potential ...

  13. Mechanics in Steels through Microscopy

    NARCIS (Netherlands)

    Tirumalasetty, G.K.

    2013-01-01

    The goal of the study consolidated in this thesis is to understand the mechanics in steels using microscopy. In particular, the mechanical response of Transformation Induced Plasticity (TRIP) steels is correlated with their microstructures. Chapter 1 introduces the current state of the art of TRIP

  14. Friction stir welding of F/M ODS steel plug and F/M steel tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon, E-mail: shkang77@kaeri.re.kr [Nuclear Materials Division, Korea Atomic Energy Research Institute (Korea, Republic of); Vasudevan, M. [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Noh, Sanghoon; Jin, Hyun Ju; Jang, Jinsung; Kim, Tae Kyu [Nuclear Materials Division, Korea Atomic Energy Research Institute (Korea, Republic of)

    2016-11-01

    Highlights: • Friction stir welding (FSW) was used for joining of oxide dispersion strengthened (ODS) steel plug and F/M steel tube. • The curvature and smaller thickness of tube was the major limitation for applying FSW method, it was solved using specially designed jig. • Considerable hardening occurs in the joint because the cooling rate was sufficient to reproduce a martensitic microstructure. • The measured hoop strength of the FSWed joint was 70–90 MPa, the value was at around 70% of the tube. - Abstract: Friction stir welding (FSW) was used for joining of oxide dispersion strengthened (ODS) steel plug and F/M steel tube. The dimensions of the tube included outer diameter of 7 mm, wall thickness of 0.5 mm. The objective was to find suitable process variables for gaining enough frictional heat from those thin and curved pieces. A specially designed jig was used for stabilization and slow rotation of tube during FSW. Additionally, the plug was designed to overlap the tube. Inconel 718 was used as FSW tool, the diameter was 3.5 mm. The adequate rotation speed of the tool and jig were 1200 rpm and 1.5 rpm, respectively. The joining was successfully accomplished using above combination, showing a good possibility. The hoop stress tests of joint were conducted by blowing Ar gas into the tube, the flow rate of gas was 10 MPa/min. The measured hoop stress was 70–90 MPa, the value was at around 70% of the tube.

  15. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  16. Austenite grain growth calculation of 0.028% Nb steel

    Directory of Open Access Journals (Sweden)

    Priadi D.

    2011-01-01

    Full Text Available Modeling of microstructural evolution has become a powerful tool for materials and process design by providing quantitative relationships for microstructure, composition and processing. Insufficient attention has been paid to predicting the austenite grain growth of microalloyed steel and the effect of undissolved microalloys. In this research, we attempted to calculate a mathematical model for austenite grain growth of 0.028% Nb steel, which can account for abnormal grain growth. The quantitative calculation of austenite grain growth generated from this model fit well with the experimental grain growth data obtained during reheating of niobium steels. The results of this study showed that increasing the temperature increases the austenite grain size, with a sharp gradient observed at higher temperatures.

  17. A friction model for cold forging of aluminum, steel and stainless steel provided with conversion coating and solid film lubricant

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2011-01-01

    Adopting a simulative tribology test system for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature....... The results show, that friction is strongly influenced by normal pressure and tool/work piece interface temperature, whereas the other process parameters investigated show minor influence on friction. Based on the experimental results a mathematical model has been established for friction as a function...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reduction in cold forward rod extrusion....

  18. 75 FR 6631 - Stainless Steel Sheet and Strip in Coils from Japan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-02-10

    ... between 0.127 and 1.270 mm. It exhibits magnetic remanence between 9,000 and 12,000 gauss, and a... the scope of this order. This product is defined as a non-magnetic stainless steel manufactured to... order. These include stainless steel strip in coils used in the production of textile cutting tools (e.g...

  19. 76 FR 2332 - Stainless Steel Sheet and Strip in Coils From Mexico; Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-01-13

    ... mm. It exhibits magnetic remanence between 9,000 and 12,000 gauss, and a coercivity of between 50 and... the order. This product is defined as a non-magnetic stainless steel manufactured to American Society... order. These include stainless steel strip in coils used in the production of textile cutting tools (e.g...

  20. 75 FR 62104 - Certain Stainless Steel Sheet and Strip in Coils From Germany, Japan, the Republic of Korea, and...

    Science.gov (United States)

    2010-10-07

    ... iron, in widths 228.6 mm or less, and a thickness between 0.127 and 1.270 mm. It exhibits magnetic... defined as a non-magnetic stainless steel manufactured to ] American Society of Testing and Materials... stainless steel strip in coils used in the production of textile cutting tools (e.g., carpet knives).\\5...

  1. 75 FR 76700 - Stainless Steel Sheet and Strip in Coils From Taiwan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-12-09

    ... iron, in widths 228.6 mm or less, and a thickness between 0.127 and 1.270 mm. It exhibits magnetic... non-magnetic stainless steel manufactured to American Society of Testing and Materials specification... of textile cutting tools (e.g., carpet knives).\\4\\ This steel is similar to AISI grade 420 but...

  2. 75 FR 81221 - Stainless Steel Sheet and Strip in Coils From Mexico; Preliminary Results of the Five-Year...

    Science.gov (United States)

    2010-12-27

    ... between 0.127 and 1.270 mm. It exhibits magnetic remanence between 9,000 and 12,000 gauss, and a... the scope of the order. This product is defined as a non-magnetic stainless steel manufactured to... order. These include stainless steel strip in coils used in the production of textile cutting tools (e.g...

  3. 75 FR 6627 - Stainless Steel Sheet and Strip in Coils From Mexico; Final Results of Antidumping Duty...

    Science.gov (United States)

    2010-02-10

    ....127 and 1.270 mm. It exhibits magnetic remanence between 9,000 and 12,000 gauss, and a coercivity of... the scope of the order. This product is defined as a non-magnetic stainless steel manufactured to... order. These include stainless steel strip in coils used in the production of textile cutting tools (e.g...

  4. 75 FR 49467 - Stainless Steel Sheet and Strip in Coils From Taiwan: Preliminary Results and Rescission in Part...

    Science.gov (United States)

    2010-08-13

    ... or less, and a thickness between 0.127 and 1.270 mm. It exhibits magnetic remanence between 9,000 and... also excluded from the scope of the order. This product is defined as a non-magnetic stainless steel... include stainless steel strip in coils used in the production of textile cutting tools (e.g., carpet...

  5. 76 FR 49450 - Stainless Steel Sheet and Strip in Coils From Germany, Italy, and Mexico: Revocation of...

    Science.gov (United States)

    2011-08-10

    ... iron, in widths 228.6 mm or less, and a thickness between 0.127 and 1.270 mm. It exhibits magnetic... defined as a non-magnetic stainless steel manufactured to American Society of Testing and Materials (ASTM... the production of textile cutting tools (e.g., carpet knives).\\7\\ This steel is similar to AISI grade...

  6. 75 FR 62101 - Stainless Steel Sheet and Strip in Coils From the Republic of Korea: Final Results of Expedited...

    Science.gov (United States)

    2010-10-07

    ... between 0.127 and 1.270 mm. It exhibits magnetic remanence between 9,000 and 12,000 gauss, and a... the scope of the order. This product is defined as a non-magnetic stainless steel manufactured to... order. These include stainless steel strip in coils used in the production of textile cutting tools (e.g...

  7. 75 FR 5947 - Stainless Steel Sheet and Strip in Coils from Taiwan: Final Results and Rescission in Part of...

    Science.gov (United States)

    2010-02-05

    ... between 0.127 and 1.270 mm. It exhibits magnetic remanence between 9,000 and 12,000 gauss, and a... the scope of the order. This product is defined as a non-magnetic stainless steel manufactured to... include stainless steel strip in coils used in the production of textile cutting tools (e.g., carpet...

  8. Performance evaluation of vegetable-based oils in drilling austenitic stainless steel

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    2004-01-01

    The efficiency of six cutting oils was evaluated in drilling AISI 316L austenitic stainless steel using conventional HSS-Co tools by measurements of tool life, tool wear, cutting forces and chip formation. Seven tools were tested with each fluid to catastrophic failure. Cutting forces and chip...... that a performing fluid produces longer tool life, better chip breaking, lower wear and cutting forces. In particular, good correlation was found between tool life and cutting forces. Differences in cutting forces due to the fluid could be measured with a higher repeatability than tool life, thus resulting...... in a measurement capability comparable to that obtained using tool life as a performance criterion. As a consequence, it is suggested that drilling thrust can be used to assess the performance of cutting fluids in drilling stainless steel, resulting in considerable time savings and cost reduction with respect...

  9. Reliability-based condition assessment of steel containment and liners

    Energy Technology Data Exchange (ETDEWEB)

    Ellingwood, B.; Bhattacharya, B.; Zheng, R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-11-01

    Steel containments and liners in nuclear power plants may be exposed to aggressive environments that may cause their strength and stiffness to decrease during the plant service life. Among the factors recognized as having the potential to cause structural deterioration are uniform, pitting or crevice corrosion; fatigue, including crack initiation and propagation to fracture; elevated temperature; and irradiation. The evaluation of steel containments and liners for continued service must provide assurance that they are able to withstand future extreme loads during the service period with a level of reliability that is sufficient for public safety. Rational methodologies to provide such assurances can be developed using modern structural reliability analysis principles that take uncertainties in loading, strength, and degradation resulting from environmental factors into account. The research described in this report is in support of the Steel Containments and Liners Program being conducted for the US Nuclear Regulatory Commission by the Oak Ridge National Laboratory. The research demonstrates the feasibility of using reliability analysis as a tool for performing condition assessments and service life predictions of steel containments and liners. Mathematical models that describe time-dependent changes in steel due to aggressive environmental factors are identified, and statistical data supporting the use of these models in time-dependent reliability analysis are summarized. The analysis of steel containment fragility is described, and simple illustrations of the impact on reliability of structural degradation are provided. The role of nondestructive evaluation in time-dependent reliability analysis, both in terms of defect detection and sizing, is examined. A Markov model provides a tool for accounting for time-dependent changes in damage condition of a structural component or system. 151 refs.

  10. Computational algorithms to simulate the steel continuous casting

    Science.gov (United States)

    Ramírez-López, A.; Soto-Cortés, G.; Palomar-Pardavé, M.; Romero-Romo, M. A.; Aguilar-López, R.

    2010-10-01

    Computational simulation is a very powerful tool to analyze industrial processes to reduce operating risks and improve profits from equipment. The present work describes the development of some computational algorithms based on the numerical method to create a simulator for the continuous casting process, which is the most popular method to produce steel products for metallurgical industries. The kinematics of industrial processing was computationally reproduced using subroutines logically programmed. The cast steel by each strand was calculated using an iterative method nested in the main loop. The process was repeated at each time step (Δ t) to calculate the casting time, simultaneously, the steel billets produced were counted and stored. The subroutines were used for creating a computational representation of a continuous casting plant (CCP) and displaying the simulation of the steel displacement through the CCP. These algorithms have been developed to create a simulator using the programming language C++. Algorithms for computer animation of the continuous casting process were created using a graphical user interface (GUI). Finally, the simulator functionality was shown and validated by comparing with the industrial information of the steel production of three casters.

  11. 49 CFR 192.55 - Steel pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for use...

  12. Improving the toughness of ultrahigh strength steel

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Koji [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors.

  13. (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain.

    Science.gov (United States)

    Alexandropoulos, Ioannis I; Argyriou, Aikaterini I; Marousis, Kostas D; Topouzis, Stavros; Papapetropoulos, Andreas; Spyroulias, Georgios A

    2016-10-01

    The H-NOX (Heme-nitric oxide/oxygen binding) domain is conserved across eukaryotes and bacteria. In human soluble guanylyl cyclase (sGC) the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). sGC contains the heme-binding H-NOX domain at its N-terminus, which regulates the catalytic site contained within the C-terminal end of the enzyme catalyzing the conversion of GTP (guanosine 5'-triphosphate) to GMP (guanylyl monophosphate). Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 183-residue H-NOX domain from Nostoc sp. through solution NMR.

  14. Identification, synthesis and characterization of an unknown process related impurity in eslicarbazepine acetate active pharmaceutical ingredient by LC/ESI–IT/MS, 1H, 13C and 1H–1H COSY NMR

    Directory of Open Access Journals (Sweden)

    Saji Thomas

    2014-10-01

    Full Text Available A new impurity was detected during high performance liquid chromatographic (HPLC analysis of eslicarbazepine acetate active pharmaceutical ingredient. The structure of unknown impurity was postulated based on liquid chromatography mass spectrometry using electrospray ionization and ion trap analyzer (LC/ESI–IT/MS analysis. Proposed structure of impurity was unambiguously confirmed by synthesis followed by characterization using 1H, 13C nuclear magnetic resonance spectrometry (NMR, 1H–1H correlation spectroscopy (COSY and infrared spectroscopy (IR. Based on the spectroscopic and spectrometric data, unknown impurity was characterized as 5-carbamoyl-10,11-dihydro-5H-dibenzo[b,f]azepin-10-yl propionate. Keywords: Eslicarbazepine acetate, Characterization, LC/ESI–IT/MS, NMR, Impurity

  15. Structural and conformational analysis of 1-oxaspiro[2.5]octane and 1-oxa-2-azaspiro[2.5]octane derivatives by (1) H, (13) C, and (15) N NMR.

    Science.gov (United States)

    Montalvo-González, Rubén; Ariza-Castolo, Armando

    2012-01-01

    A structural and conformational analysis of 1-oxaspiro[2.5]octane and 1-oxa-2-azaspiro[2.5]octane derivatives was performed using (1) H, (13)  C, and (15)  N NMR spectroscopy. The relative configuration and preferred conformations were determined by analyzing the homonuclear coupling constants and chemical shifts of the protons and carbon atoms in the aliphatic rings. These parameters directly reflected the steric and electronic effects of the substituent bonded to the aliphatic six-membered ring or to C3 or N2. The parameters also were sensitive to the anisotropic positions of these atoms in the three-atom ring. The preferred orientation of the exocyclic substituents directed the oxidative attack. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Methods of making bainitic steel materials

    Energy Technology Data Exchange (ETDEWEB)

    Bakas, Michael Paul; Chu, Henry Shiu-Hung; Zagula, Thomas Andrew; Langhorst, Benjamin Robert

    2018-01-16

    Methods of making bainitic steels may involve austenitizing a quantity of steel by exposing the quantity of steel to a first temperature. A composition of the quantity of steel may be configured to impede formation of non-bainite ferrite, pearlite, and Widmanstatten ferrite. The quantity of steel may be heat-treated to form bainite by exposing the quantity of steel to a second, lower temperature. The second, lower temperature may be stabilized by exposing the quantity of steel to the second, lower temperature in the presence of a thermal ballast.

  17. Modelling fracture in ferritic steel

    CERN Document Server

    Smith, G

    2002-01-01

    Results from mathematical models and computer simulations of fracture in polycrystalline steels are presented for a range of temperatures. The proportions of intergranular and intragranular failure predicted are compared with experimental results for brittle fracture, ductile fracture and in the transition region. Interactive software to create two-dimensional polycrystalline models, which allow a range of physical to be varied independently, is described. The results include those for model materials chosen to match steels used by the power generation industry. The models simulate segregation and cavitation effects in steel and fracture of weldments and their associated heat-affected zones.

  18. Cold-formed steel design

    CERN Document Server

    Yu, Wei-Wen

    2010-01-01

    The definitive text in the field, thoroughly updated and expanded Hailed by professionals around the world as the definitive text on the subject, Cold-Formed Steel Design is an indispensable resource for all who design for and work with cold-formed steel. No other book provides such exhaustive coverage of both the theory and practice of cold-formed steel construction. Updated and expanded to reflect all the important developments that have occurred in the field over the past decade, this Fourth Edition of the classic text provides you with more of the detailed, up-to-the-minute techni

  19. Steel fiber replacement of mild steel in prestressed concrete beams

    Science.gov (United States)

    2010-10-01

    In traditional prestressed concrete beams, longitudinal prestressed tendons serve to resist bending moment and : transverse mild steel bars (or stirrups) are used to carry shear forces. However, traditional prestressed concrete I-beams : exhibit earl...

  20. High-strength, low-alloy steels.

    Science.gov (United States)

    Rashid, M S

    1980-05-23

    High-strength, low-alloy (HSLA) steels have nearly the same composition as plain carbon steels. However, they are up to twice as strong and their greater load-bearing capacity allows engineering use in lighter sections. Their high strength is derived from a combination of grain refinement; precipitation strengthening due to minor additions of vanadium, niobium, or titanium; and modifications of manufacturing processes, such as controlled rolling and controlled cooling of otherwise essentially plain carbon steel. HSLA steels are less formable than lower strength steels, but dualphase steels, which evolved from HSLA steels, have ferrite-martensite microstructures and better formability than HSLA steels of similar strength. This improved formability has substantially increased the utilization potential of high-strength steels in the manufacture of complex components. This article reviews the development of HSLA and dual-phase steels and discusses the effects of variations in microstructure and chemistry on their mechanical properties.

  1. 2169 steel waveform experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, Michael David; Alexander, C. Scott; Reinhart, William Dodd; Brown, Justin L.

    2012-11-01

    In support of LLNL efforts to develop multiscale models of a variety of materials, we have performed a set of eight gas gun impact experiments on 2169 steel (21% Cr, 6% Ni, 9% Mn, balance predominantly Fe). These experiments provided carefully controlled shock, reshock and release velocimetry data, with initial shock stresses ranging from 10 to 50 GPa (particle velocities from 0.25 to 1.05 km/s). Both windowed and free-surface measurements were included in this experiment set to increase the utility of the data set, as were samples ranging in thickness from 1 to 5 mm. Target physical phenomena included the elastic/plastic transition (Hugoniot elastic limit), the Hugoniot, any phase transition phenomena, and the release path (windowed and free-surface). The Hugoniot was found to be nearly linear, with no indications of the Fe phase transition. Releases were non-hysteretic, and relatively consistent between 3- and 5-mmthick samples (the 3 mm samples giving slightly lower wavespeeds on release). Reshock tests with explosively welded impactors produced clean results; those with glue bonds showed transient releases prior to the arrival of the reshock, reducing their usefulness for deriving strength information. The free-surface samples, which were steps on a single piece of steel, showed lower wavespeeds for thin (1 mm) samples than for thicker (2 or 4 mm) samples. A configuration used for the last three shots allows release information to be determined from these free surface samples. The sample strength appears to increase with stress from ~1 GPa to ~ 3 GPa over this range, consistent with other recent work but about 40% above the Steinberg model.

  2. Some peculiarities of corrosion of wheel steel

    OpenAIRE

    Alexander SHRAMKO; Alfred KOZLOWSKY; Elena BELAJA; Yuriy PROIDAK; Sofia PINCHUK; Svetlana GUBENKO

    2009-01-01

    Corrosion mechanism and rate of different chemical composition and structural condition of wheel steel were investigated. It was shown that “white layers”, variation in grain size and banding of wheel steel structure results in corrosion rate. Microstructure of steel from different elements of railway wheels after operation with corrosion was investigated. Wheel steel with addition of vanadium corroded more quickly than steel without vanadium. Non-metallic inclusions are the centre of corrosi...

  3. Review on Cold-Formed Steel Connections

    OpenAIRE

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connection...

  4. Thermomechanical modelling of dissimilar Friction Melt Bonding of AA6061 to Dual-phase steel: Prediction of solidification cracking and residual stresses

    OpenAIRE

    Jimenez Mena, Norberto; Drezet, Jean-Marie; Jacques, Pascal; Simar, Aude; Thermec

    2016-01-01

    Friction Melt Bonding (FMB) is a novel technique that has been successfully applied to weld aluminium to steel in lap-joint configuration. To carry out the weld, a rotating cylindrical tool showing no pin is pressed against the surface of the steel sheet which is placed over the aluminium one. Heat will is generated from the friction and plastic dissipation induced by the tool in the steel plate. This heat does not melt the steel, but locally melts the aluminium in contact underneath owing to...

  5. A study on the die steel surface modification by electron beam

    CERN Document Server

    Wu Ai Min; Zou Jian Xin; Hao Sheng Zhi; Dong Chuang; Zhang Ai Ming; Xu Tao

    2002-01-01

    A new surface modification technology-high current pulsed electron beam treatment method was applied to the surface of die steel to improve its properties. It has been shown that as a result of the HCPEB treatment, the most pronounced changes of the structure-phase state occur in the near-surface layers quenched from the liquid state, where the crystallization front velocity reaches its maximum. In these layers partial or complete dissolving of second phases and formation of over saturated solid solutions and ordered nano-sized structures may take place. This makes it possible to improve substantially the electrochemical and strength properties of the surface layer. The authors found that the thickness of remelt layer is about 10 mu m, and the sectional microhardness increased accompanied by the enhancement of the wear resistance of the material. After modification, the relative wear resistance of D2 steel have increased 5.63 times and that of H13 steel increased 11.76 times

  6. Use of technical analysis indicators at trading shares of steel companies

    Directory of Open Access Journals (Sweden)

    J. Zuzik

    2014-04-01

    Full Text Available When trading on capital markets, used are multitude of methods. The intention set out in the present paper is to analyse probability of profit of the businessman using selected technical analysis indicators whilst trading with shares of the globally largest steel companies. Selected for analysing were 21 steel companies, and selected as the technical analysis tool was the relative strength index (RSI indicator. Analysed have been the period of one year commencing in May 2012 and ending in May 2013, based on daily closing prices of the shares of steel companies.

  7. Stainless steel reinforcement as a replacement for epoxy coated steel in bridge decks : final report.

    Science.gov (United States)

    2013-08-01

    The corrosion resistance of 2304 stainless steel reinforcement and stainless steel clad reinforcement was compared to conventional and epoxy-coated reinforcement (ECR). 2304 stainless steel was tested in both the as-received condition (dark mottled f...

  8. Steels for cryogenic power engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ermakov, B.S.; Nikolaich A.Y.; Oparin, V.A.

    1986-09-01

    The authors investigated steels containing 0.9% C and 30% Mnwhich were additionally alloyed with 2, 4, 6, 8, 10, and 11% Al. Phase analysis on a diffractometer established that steels containing up to 10% Al have a single-phase austenitic structure and do not undergo any transformations whatsoever in plastic deformation and when cooled to 4 K. The magnetic permeability in an external magnetic field with intensity 620 kA/m and the mechanical properties of the investigated steels are presented in a table. These properties improve when their aluminum content increases to 10%; further alloying with aluminum causes some impairment of the plastic and ductile properties which is connected with the formation of alpha-phase in the structure of the steels.

  9. Phosphate Surface Treatments on Steel.

    Science.gov (United States)

    ALKALI METAL COMPOUNDS, BATHS, CHEMICAL COMPOSITION, COATINGS, DOCUMENTS, IONS, IRON, MATERIALS, METALS, PATENTS, PHOSPHATE COATINGS, PHOSPHATES ...RESPONSE, SPRAYS, STEEL, SURFACE FINISHING, SURFACES, TIME, WEIGHT, ZINC , ZINC COATINGS, ZINC COMPOUNDS

  10. A Tale of Wootz Steel

    Indian Academy of Sciences (India)

    /fulltext/reso/011/06/0067-0077. Keywords. Wootz steel; Damascus swords; Cyril Stanley Smith. Author Affiliations. S Ranganathan1 Sharada Srinivasan1. School of Humanities National Institute of Advanced Studies Bangalore 560 012, India ...

  11. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, M.; de la Fuente, D.; Díaz, I.; Cano, H.

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morphology of steel c...

  12. MICROALLOYED STEELS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Debanshu Bhattacharya

    2014-12-01

    Full Text Available Two major drivers for the use of newer steels in the automotive industry are fuel efficiency and increased safety performance. Fuel efficiency is mainly a function of weight of steel parts, which in turn, is controlled by gauge and design. Safety is determined by the energy absorbing capacity of the steel used to make the part. All of these factors are incentives for the U.S. automakers to use both Highly Formable and Advanced High Strength Steels (AHSS to replace the conventional steels used to manufacture automotive parts in the past. AHSS is a general term used to describe various families of steels. The most common AHSS is the dual-phase steel that consists of a ferrite-martensite microstructure. These steels are characterized by high strength, good ductility, low tensile to yield strength ratio and high bake hardenability. Another class of AHSS is the complex-phase or multi-phase steel which has a complex microstructure consisting of various phase constituents and a high yield to tensile strength ratio. Transformation Induced Plasticity (TRIP steels is another class of AHSS steels finding interest among the U.S. automakers. These steels consist of a ferrite-bainite microstructure with significant amount of retained austenite phase and show the highest combination of strength and elongation, so far, among the AHSS in use. High level of energy absorbing capacity combined with a sustained level of high n value up to the limit of uniform elongation as well as high bake hardenability make these steels particularly attractive for safety critical parts and parts needing complex forming. A relatively new class of AHSS is the Quenching and Partitioning (Q&P steels. These steels seem to offer higher ductility than the dual-phase steels of similar strengths or similar ductility as the TRIP steels at higher strengths. Finally, martensitic steels with very high strengths are also in use for certain parts. The most recent initiative in the area of AHSS

  13. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  14. Image analysis of corrosion pit initiation on ASTM type A240 stainless steel and ASTM type A 1008 carbon steel

    Science.gov (United States)

    Nine, H. M. Zulker

    The adversity of metallic corrosion is of growing concern to industrial engineers and scientists. Corrosion attacks metal surface and causes structural as well as direct and indirect economic losses. Multiple corrosion monitoring tools are available although those are time-consuming and costly. Due to the availability of image capturing devices in today's world, image based corrosion control technique is a unique innovation. By setting up stainless steel SS 304 and low carbon steel QD 1008 panels in distilled water, half-saturated sodium chloride and saturated sodium chloride solutions and subsequent RGB image analysis in Matlab, in this research, a simple and cost-effective corrosion measurement tool has identified and investigated. Additionally, the open circuit potential and electrochemical impedance spectroscopy results have been compared with RGB analysis to gratify the corrosion. Additionally, to understand the importance of ambiguity in crisis communication, the communication process between Union Carbide and Indian Government regarding the Bhopal incident in 1984 was analyzed.

  15. Tool Wear in Friction Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Scott F [ORNL; Blau, Peter Julian [ORNL; Shih, Albert J. [University of Michigan

    2007-01-01

    This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

  16. Efficient machining of ultra precise steel moulds with freeform surfaces

    Science.gov (United States)

    Bulla, B.; Robertson, D. J.; Dambon, O.; Klocke, F.

    2013-09-01

    Ultra precision diamond turning of hardened steel to produce optical quality surfaces can be realized by applying an ultrasonic assisted process. With this technology optical moulds used typically for injection moulding can be machined directly from steel without the requirement to overcoat the mould with a diamond machinable material such as Nickel Phosphor. This has both the advantage of increasing the mould tool lifetime and also reducing manufacture costs by dispensing with the relatively expensive plating process. This publication will present results we have obtained for generating free form moulds in hardened steel by means of ultrasonic assisted diamond turning with a vibration frequency of 80 kHz. To provide a baseline with which to characterize the system performance we perform plane cutting experiments on different steel alloys with different compositions. The baseline machining results provides us information on the surface roughness and on tool wear caused during machining and we relate these to material composition. Moving on to freeform surfaces, we will present a theoretical background to define the machine program parameters for generating free forms by applying slow slide servo machining techniques. A solution for optimal part generation is introduced which forms the basis for the freeform machining experiments. The entire process chain, from the raw material through to ultra precision machining is presented, with emphasis on maintaining surface alignment when moving a component from CNC pre-machining to final machining using ultrasonic assisted diamond turning. The free form moulds are qualified on the basis of the surface roughness measurements and a form error map comparing the machined surface with the originally defined surface. These experiments demonstrate the feasibility of efficient free form machining applying ultrasonic assisted diamond turning of hardened steel.

  17. Self-propagating high-temperature synthesis of tool steel

    Science.gov (United States)

    Evtushenko, A. T.; Pazare, S.; Torbunov, S. S.

    2007-03-01

    The process of fabrication of a high-hardness alloy with the help of self-propagating high-temperature synthesis due to combustion of thermit from powdered cinder, aluminum, and titanium carbide is studied. The effect of the mass fraction of the titanium carbide powder and of additives of powdered titanium diboride, molybdenum, and alloy cast iron and the effect of the fineness of the blend and the heat treatment mode on the combustion process, the chemical composition, the structure, and the hardness of the alloy obtained are estimated.

  18. Micromilling experiments on hardened tool steel and Titanium

    DEFF Research Database (Denmark)

    Bissacco, Giuliano

    This document is an organized collection of the final settings, decisions, variations and relevant notes regarding the experimental work carried on at Pinol A/S by Giuliano Bissacco within the Ph.D. project Surface Generation and Optimization in Micromilling. The document is divided into sections...

  19. Laser surface treatment prolongs tool life

    Science.gov (United States)

    Koenig, Wilfried; Kirner, Peter K.

    1994-09-01

    The technique of laser beam alloying combines the benefits offered by high levels of laser beam energy and spot-on positional accuracy to treat the areas of forming tools most prone to wear. All compression molding and hammering tools stand to benefit from this application. Tools made of any of the hot forming tool steels currently in standard industrial use are suitable candidates for this treatment. The advantages of die forging, i.e. optimum material utilization, high productivity and low unit labor costs are offset to a certain extent by relatively high tool costs. The potential of alloying in the manufacture of wear-resistant tool steels has been largely exhausted. Increasingly, attention is focusing on surface treatment techniques. The scope for improving the efficiency of forging tools using conventional hot treatment and hard facing processes is, however, marginal. Due to insufficient thickness and adhesive strength of the coating, thin film technologies are generally unsuitable for coating tools which are subjected to high levels of thermal and mechanical strain. In contrast, the application of various laser surface techniques to forging tools in order to prolong tool life is highly promising.

  20. Application of computational modeling to the kinetics of precipitation of aluminum nitride in steels

    Directory of Open Access Journals (Sweden)

    e Silva Costa A.

    2012-01-01

    Full Text Available In previous works the possibilities and limitations of the application of calculations in the Al-Fe-N system to describe the precipitation of AlN in steel, both in the solid state and during the solidification were discussed and some difficulties related to the extension of these calculations to more complex steel systems, due to limitations in the thermodynamic data were also presented. Presently, the precipitation kinetics of AlN in ferrite (BCC and austenite (FCC is discussed. The correct description of the precipitation of AlN in both phases is relevant to: (a the precipitation at higher temperatures, in the austenite field, that occurs in some steels, (b the concurrent precipitation of this nitride with the annealing treatment, when the steel is mostly ferritic, used in the processing of some types of deep drawing steels (c the precipitation of this nitride in some silicon alloyed electric steels at relatively high temperatures, when these steels can have significant fractions of BCC and FCC in their microstructure. The precise knowledge of the precipitation-dissolution behavior of AlN in special in these two latter classes of steels is of great importance to their correct processing. In this work, a computational tool for simulating multiparticle precipitation kinetics of diffusion-controlled processes in multi-component and multi-phase alloy systems is employed in an attempt to describe these precipitation processes. The results are compared with experimental data on precipitation. The assumptions necessary for the application of the multi-particle modeling tool are discussed, agreements and discrepancies are identified and some possible reasons for these are indicated. Furthermore, the impact of the use of different sources of data on steel processing development is discussed and the need for further studies highlighted.

  1. THE STRUCTURAL ANALYSIS OF STEEL SILOS WITH CYLINDRICAL-WALL BEARING AND PROFILE-STEEL BEARING

    Directory of Open Access Journals (Sweden)

    Zhengjun Tang

    2015-04-01

    Full Text Available The silos are widely used in bulk material in many fields such as agriculture, mining, chemical, electric power storage, etc. Thin metal cylindrical silo shells are vulnerable to buckling failure caused by the compressive wall friction force. In this paper, the structural analysis of two types of steel silo with cylindrical-wall bearing and profile-steel bearing is implemented by Abaqus finite element analysis. The results indicate that under the same loading conditions, steel silos with profile-steel bearing and cylindrical-Wall bearing have similar values in Mises stress, but the steel silo with profile-steel bearing has a smaller radial displacement and a better capability of buckling resistance. Meanwhile, the total steel volumes reduced 8.0% comparing to the steel silo with cylindrical-wall bearing. Therefore, steel soil with profile-steel bearing not only has a less steel volumes but also a good stability.

  2. Some peculiarities of corrosion of wheel steel

    Directory of Open Access Journals (Sweden)

    Alexander SHRAMKO

    2009-01-01

    Full Text Available Corrosion mechanism and rate of different chemical composition and structural condition of wheel steel were investigated. It was shown that “white layers”, variation in grain size and banding of wheel steel structure results in corrosion rate. Microstructure of steel from different elements of railway wheels after operation with corrosion was investigated. Wheel steel with addition of vanadium corroded more quickly than steel without vanadium. Non-metallic inclusions are the centre of corrosion nucleation and their influence on corrosion depends on type of inclusion. Mechanism of corrosion of wheel steel corrosion was discussed.

  3. Review on Cold-Formed Steel Connections

    Science.gov (United States)

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  4. Review on cold-formed steel connections.

    Science.gov (United States)

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.

  5. Review on Cold-Formed Steel Connections

    Directory of Open Access Journals (Sweden)

    Yeong Huei Lee

    2014-01-01

    Full Text Available The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.

  6. Large Format Additively Manufactured Tooling for Out of Autoclave Aerospace Composites (Preprint)

    Science.gov (United States)

    2017-02-23

    loading an additively manufactured tool. The tool was covered in breather material and vacuum bagged to a rigid steel plate so that autoclave pressure...back out against the steel plate. The minute localized deformations seen across the bulk of the tool surface indicate that very little, if any...composite fabrication when used in conjunction with NONA epoxy resin. As indicated by the surface roughness measurements, no pitting or 13

  7. Steel mill products analysis using qualities methods

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2016-10-01

    Full Text Available The article presents the subject matter of steel mill product analysis using quality tools. The subject of quality control were bolts and a ball bushing. The Pareto chart and fault mode and effect analysis (FMEA were used to assess faultiness of the products. The faultiness analysis in case of the bolt enabled us to detect the following defects: failure to keep the dimensional tolerance, dents and imprints, improper roughness, lack of pre-machining, non-compatibility of the electroplating and faults on the surface. Analysis of the ball bushing has also revealed defects such as: failure to keep the dimensional tolerance, dents and imprints, improper surface roughness, lack of surface premachining as well as sharp edges and splitting of the material.

  8. Brazing diamond grits onto a steel substrate using copper alloys as the filler metals

    Science.gov (United States)

    Chen, S.-M.; Lin, S.-T.

    1996-12-01

    Surface-set diamond tools were fabricated by an active metal brazing process, using bronze (Cu-8.9Sn) powder and 316L stainless steel powder mixed to various ratios as the braze filler metals. The diamond grits were brazed onto a steel substrate at 1050 °C for 30 min in a dry hydrogen atmosphere. After brazing practice, an intermediate layer rich in chromium formed between the braze filler metal and diamond. A braze filler metal composed of 70 wt % bronze powder and 30 wt % stainless steel powder was found to be optimum in that the diamond grits were strongly impregnated in the filler metal by both mechanical and chemical types of holding. The diamond tools thus fabricated performed better than conventional nickel-plated diamond tools. In service, the braze filler metal wore at almost the same rate as the diamond grits, and no pullout of diamond grits or peeling of the filler metal layer took place.

  9. Muon Tomography as a Tool to Detect Radioactive Source Shielding in Scrap Metal Containers

    Science.gov (United States)

    Bonomi, G.; Cambiaghi, D.; Dassa, L.; Donzella, A.; Subieta, M.; Villa, V.; Zenoni, A.; Furlan, M.; Rigoni, A.; Vanini, S.; Viesti, G.; Zumerle, G.; Benettoni, M.; Checchia, P.; Gonella, F.; Pegoraro, M.; Zanuttigh, P.; Calvagno, G.; Calvini, P.; Squarcia, S.

    2014-02-01

    Muon tomography was recently proposed as a tool to inspect large volumes with the purpose of recognizing high density materials immersed in lower density matrices. The MU-STEEL European project (RFCS-CT-2010-000033) studied the application of such a technique to detect radioactive source shielding in truck containers filled with scrap metals entering steel mill foundries. A description of the muon tomography technique, of the MU-STEEL project and of the obtained results will be presented.

  10. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...... characterization parameters were tested. None of the height, spacing, material volume, void or segmentation parameters showed good correlations. Developed area, rms surface gradient, relative area and complexity showed strong correlations (R2 > 0.7). For area-scale fractal complexity the correlation increases...

  11. Optimization and testing results of Zr-bearing ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tyburska-Puschel, Beata [Univ. of Wisconsin, Madison, WI (United States); Sridharan, K. [Univ. of Wisconsin, Madison, WI (United States)

    2014-09-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools) is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional

  12. Alternatives to steel grid decks - phase II.

    Science.gov (United States)

    2012-09-01

    The primary objective of this research project was to investigate alternatives to open grid steel decks for movable bridges. Three alternative deck systems, including aluminum deck, ultra-high performance concrete (UHPC)-high-strength steel (HSS) dec...

  13. Steel erected at A-3 Test Stand

    Science.gov (United States)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  14. Optimum design of steel structures

    CERN Document Server

    Farkas, József

    2013-01-01

    This book helps designers and manufacturers to select and develop the most suitable and competitive steel structures, which are safe, fit for production and economic. An optimum design system is used to find the best characteristics of structural models, which guarantee the fulfilment of design and fabrication requirements and minimize the cost function. Realistic numerical models are used as main components of industrial steel structures. Chapter 1 containts some experiences with the optimum design of steel structures Chapter 2 treats some newer mathematical optimization methods. Chapter 3 gives formulae for fabrication times and costs. Chapters 4 deals with beams and columns. Summarizes the Eurocode rules for design. Chapter 5 deals with the design of tubular trusses. Chapter 6 gives the design of frame structures and fire-resistant design rules for a frame. In Chapters 7 some minimum cost design problems of stiffened and cellular plates and shells are worked out for cases of different stiffenings and loads...

  15. Functionally Graded Mo sintered steels

    Directory of Open Access Journals (Sweden)

    Manuel Cisneros-Belmonte

    2016-12-01

    Full Text Available Functionally graded materials (FGM, the multi-materials, strive to satisfy the numerous requirements demanded of parts in a given combination of compositions and microstructures. The required material compatibility lead the manufacturing process and the achieving of an interface, not always diffuse. Powder metallurgy is one of the techniques used in manufacturing functionally graded materials, in particular the compaction matrix of the possible techniques for forming these materials. In this paper, a process of forming a functionally graded steel based on the use of a high molybdenum steel with cooper and other steel with copper, without molybdenum, is proposed with the aim of concentrating this element to the surface of the workpiece, increasing the mechanical strength. The study is completed with the evaluation of physical properties (density and porosity distribution, mechanical properties (hardness, tensile strength and elongation and microstructural analysis by optical and scanning electron microscopy.

  16. Simulation tools

    CERN Document Server

    Jenni, F

    2006-01-01

    In the last two decades, simulation tools made a significant contribution to the great progress in development of power electronics. Time to market was shortened and development costs were reduced drastically. Falling costs, as well as improved speed and precision, opened new fields of application. Today, continuous and switched circuits can be mixed. A comfortable number of powerful simulation tools is available. The users have to choose the best suitable for their application. Here a simple rule applies: The best available simulation tool is the tool the user is already used to (provided, it can solve the task). Abilities, speed, user friendliness and other features are continuously being improved—even though they are already powerful and comfortable. This paper aims at giving the reader an insight into the simulation of power electronics. Starting with a short description of the fundamentals of a simulation tool as well as properties of tools, several tools are presented. Starting with simplified models ...

  17. Boron Steel: An Alternative for Costlier Nickel and Molybdenum Alloyed Steel for Transmission Gears

    Directory of Open Access Journals (Sweden)

    A. Verma

    2010-06-01

    Full Text Available Case Carburized (CC low carbon steels containing Ni, Cr and Mo alloying elements are widely used for transmission gears in automobile, as it possesses desired mechanical properties. In order to cut cost and save scarce materials like Ni and Mo for strategic applications, steel alloyed with Boron has been developed, which gives properties comparable to Ni-Cr-Mo alloyed steel. In the process of steel development, care was taken to ensure precipitation of boron which results in precipitation hardening. The characterization of the developed boron steel had exhibited properties comparable to Ni-Cr-Mo alloyed steel and superior to conventional boron steel.

  18. Analysis of acoustic emission signals at austempering of steels using neural networks

    Science.gov (United States)

    Łazarska, Malgorzata; Wozniak, Tadeusz Z.; Ranachowski, Zbigniew; Trafarski, Andrzej; Domek, Grzegorz

    2017-05-01

    Bearing steel 100CrMnSi6-4 and tool steel C105U were used to carry out this research with the steels being austempered to obtain a martensitic-bainitic structure. During the process quite a large number of acoustic emissions (AE) were observed. These signals were then analysed using neural networks resulting in the identification of three groups of events of: high, medium and low energy and in addition their spectral characteristics were plotted. The results were presented in the form of diagrams of AE incidence as a function of time. It was demonstrated that complex transformations of austenite into martensite and bainite occurred when austempering bearing steel at 160 °C and tool steel at 130 °C respectively. The selected temperatures of isothermal quenching of the tested steels were within the area near to MS temperature, which affected the complex course of phase transition. The high activity of AE is a typical occurrence for martensitic transformation and this is the transformation mechanism that induces the generation of AE signals of higher energy in the first stage of transition. In the second stage of transformation, the initially nucleated martensite accelerates the occurrence of the next bainitic transformation.

  19. Formation of Composite Surface during Friction Surfacing of Steel with Aluminium

    Directory of Open Access Journals (Sweden)

    S. Janakiraman

    2012-01-01

    Full Text Available Commercial pure aluminium was deposited on medium carbon steel using friction surfacing route. An aluminium rod was used as the consumable tool. Normal load and tool rotation speed were the variables. Under certain combinations of load and speed the deposition was continuous and uniform. The deposit consisted of Al embedded with fine particles of iron. The interface between substrate material and deposited material was smooth and relatively small. A mechanism is discussed for formation of a composite surface on the steel substrate.

  20. HEAT RESISTANCE OF GRAPHITIZED STEEL

    Directory of Open Access Journals (Sweden)

    V. O. Savchenko

    2014-06-01

    Full Text Available Purpose. The investigation of temperature dependences of steels' mechanical properties and heat resistance under conditions of thermal cyclic loads. It's necessary to determine the mechanical properties and heat resistance indices of graphitized steels and cast iron VCh400 within the temperature range of 20…800°С. Methodology. Graphitized steels of the following chemical composition (mass %: 0.61…1.04C; 1.19…1.59%Si; 0.32…0.37%Mn; 0.12…0.17%Al; 0.008…0.014%S and 0.016…0.025%Р have been heat-treated according to the mode: heating up to 810°С – holding for 2 hours; cooling down to 680°С – holding for 2 hours with further cooling using the furnace in order to provide the ferrite-pearlite metallic base with graphite inclusions. In order to determine heat resistance indices (heat stresses index K and the material's resistance criterion at thermal cyclic load C the indices of graphitized steels' and cast irons' mechanical properties in the temperature range of 20…800°С have been investigated. Findings. It has been established that as a result of lower carbon content and smaller quantity of graphite inclusions, graphitized steel exceeds such indices of nodular cast iron VCh400 as: tensile strength and plasticity at room and high temperatures, and also heat resistance criteria K and C. This steel can be used to manufacture articles operating under conditions of thermal cyclic loads. Originality. Tensile strength and percent elongation of graphitized steels within the temperature range of 20…800°С have been determined. Calculations of heat resistance criteria to the heat stresses index K and the material's resistance criterion at thermal cyclic loads C within the temperature range 20…800°С in comparison with nodular cast iron of VCh400 grade have been carried out. Practical value. The expediency of using graphitized steel for manufacturing of articles operating under conditions of thermal cyclic loads has been shown.

  1. Erosion behaviour of hydro turbine steels

    Indian Academy of Sciences (India)

    The martensitic stainless steel (termed as 13/4) is currently being used for fabrication of underwater parts in hydroelectric projects. There are, however, several maintenance problems associated with the use of this steel. A nitronic steel (termed as 21–4–N) has been developed as an alternative with the specific aim of ...

  2. Steeling and Resilience in Art Education

    Science.gov (United States)

    Heise, Donalyn

    2014-01-01

    Steel is an incredibly strong alloy of iron and carbon. Due to its incredible strength and durability, this resilient material is commonly used for constructing buildings. The transitive verb "steeling" is defined in Miriam-Webster dictionary as "to fill with resolution or determination, as in, she 'steeled herself to face the…

  3. A model for TRIP steel constitutive behaviour

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Menari, G

    2011-01-01

    A constitutive model is developed for TRIP steel. This is a steel which contains three or four different phases in its microstructure. One of the phases in TRIP steels is metastable austenite (Retained Austenite) which transforms to martensite upon deformation. The accompanying transformation strain

  4. Understanding Solidification Based Grain Refinement in Steels

    Science.gov (United States)

    2014-12-18

    can be modified to improve properties for grain refined steels. Tec finical Approach Grain size reduction is regularly practiced in steel mills...determine how small rare earth oxides are distributed in the steel. Since no examination of nano sized particles in the matrix was conducted in the

  5. performance of steel slag performance of steel slag as fine

    African Journals Online (AJOL)

    eobe

    50% of weight of sand could be replaced with slag to produce structural concrete. Keywords: Keywords: structural concrete, steel slag, fine aggregate, compressive strength and flexural strength. 1. INTRODUCTION. INTRODUCTION. INTRODUCTION. Environmental sustainability has been subject of discourse virtually in all ...

  6. Teaching Steel Connections Using an Interactive Virtual Steel Sculpture

    Science.gov (United States)

    Moaveni, Saeed; Chou, Karen C.

    2015-01-01

    Steel connections play important roles in the integrity of a structure, and many structural failures are attributed to connection failures. Connections are the glue that holds a structure together. The failures of the Hartford Coliseum in 1977, the Hyatt Regency Hotel in Kansas City in 1980, and the I-35W Bridge in Minneapolis in 2007 are all…

  7. Friction stir scribe welding technique for dissimilar joining of aluminium and galvanised steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianhao [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA; Sidhar, Harpreet [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA; Mishra, Rajiv S. [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA; Hovanski, Yuri [Pacific Northwest National Laboratory, Energy Materials and Manufacturing, Richland, WA, USA; Upadhyay, Piyush [Pacific Northwest National Laboratory, Energy Materials and Manufacturing, Richland, WA, USA; Carlson, Blair [General Motors Technical Center, Warren, MI, USA

    2017-10-04

    Friction stir scribe technology, a derivative of friction stir welding, was applied for the dissimilar lap welding of an aluminum alloy and galvanized mild steel sheets. During the process, the rotating tool with a cobalt steel scribe first penetrated the top material — aluminum — and then the scribe cut the bottom material — steel. The steel was displaced into the upper material to produce a characteristic hook feature. Lap welds were shear tested, and their fracture paths were studied. Welding parameters affected the welding features including hook height, which turned out to be highly related to fracture position. Therefore, in this paper, the relationships among welding parameters, hook height, joint strength and fracture position are presented. In addition, influence of zinc coating on joint strength was also studied. Keywords: friction stir scribe technology; dissimilar material welding; zinc coating; hook height; joint strength; fracture position

  8. EXPERIMENTAL RESEARCH REGARDING THE INFLUENCE OF CUTTING REGIME ON THE WEAR OF DRILLS AT STEEL PROCESSING

    Directory of Open Access Journals (Sweden)

    Leonard Marius CIUREZU GHERGHE

    2015-05-01

    Full Text Available This paper aims to highlight the influence of cutting regime on the wear drills at steel processing , in particular the processing of stainless steel X17CrNi16-2 SR EN 10088-4 DIN 17440. We are interested in wear of the drill at processing of this type of stainless steel , which has applicability in energy industry given the special characteristics of its. We want a maximum value of 0.2 mm for the wear of the drill, measurement and taking pictures are made using a microscope DigiMicro 2.0 and the software used is MicroCapture. Processing was done on machining center YMC YOUNG TECH 1050, and the tool used was 8 mm drill bit high speed steel.

  9. Electroslag remelting of high-speed steel using a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Murgas, M.

    2000-10-01

    The electroslag remelting process was studied when the consumable electrode made from the powder of M2 type high-speed steel was used and the effect of outside magnetic field was applied. The electromagnetic forces that arise from the interaction between the outside direct magnetic field and the one-phase electric current of the electroslag remelting process by a monofilar scheme alter the mechanism of the electrode remelting and thus, affect the solidification of a high-speed steel and its structure. The cast cutting tips made from ingots produced by this technology had tool life to be comparable to that of standard ones made from the wrought steel of the identical chemical composition and heat treatment. It has been shown that a magnetic field also affects both the temperature ranges and the kinetics of phase transformation in a high-speed steel. This suggestion is proved by DTA measurements. (author)

  10. 76 FR 25668 - Stainless Steel Sheet and Strip in Coils From Mexico: Final Results of the Five-Year (“Sunset...

    Science.gov (United States)

    2011-05-05

    ... magnetic remanence between 9,000 and 12,000 gauss, and a coercivity of between 50 and 300 oersteds. This... product is defined as a non-magnetic stainless steel manufactured to American Society of Testing and... stainless steel strip in coils used in the production of textile cutting tools (e.g., carpet knives).\\5...

  11. 76 FR 25670 - Stainless Steel Sheet and Strip in Coils From Italy: Final Results of the Full Five-Year (“Sunset...

    Science.gov (United States)

    2011-05-05

    ... between 0.127 and 1.270 mm. It exhibits magnetic remanence between 9,000 and 12,000 gauss, and a... the scope of the order. This product is defined as a non-magnetic stainless steel manufactured to... order. These include stainless steel strip in coils used in the production of textile cutting tools (e.g...

  12. Measurement of absolute concentrations of individual compounds in metabolite mixtures by gradient-selective time-zero 1H-13C HSQC with two concentration references and fast maximum likelihood reconstruction analysis.

    Science.gov (United States)

    Hu, Kaifeng; Ellinger, James J; Chylla, Roger A; Markley, John L

    2011-12-15

    Time-zero 2D (13)C HSQC (HSQC(0)) spectroscopy offers advantages over traditional 2D NMR for quantitative analysis of solutions containing a mixture of compounds because the signal intensities are directly proportional to the concentrations of the constituents. The HSQC(0) spectrum is derived from a series of spectra collected with increasing repetition times within the basic HSQC block by extrapolating the repetition time to zero. Here we present an alternative approach to data collection, gradient-selective time-zero (1)H-(13)C HSQC(0) in combination with fast maximum likelihood reconstruction (FMLR) data analysis and the use of two concentration references for absolute concentration determination. Gradient-selective data acquisition results in cleaner spectra, and NMR data can be acquired in both constant-time and non-constant-time mode. Semiautomatic data analysis is supported by the FMLR approach, which is used to deconvolute the spectra and extract peak volumes. The peak volumes obtained from this analysis are converted to absolute concentrations by reference to the peak volumes of two internal reference compounds of known concentration: DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) at the low concentration limit (which also serves as chemical shift reference) and MES (2-(N-morpholino)ethanesulfonic acid) at the high concentration limit. The linear relationship between peak volumes and concentration is better defined with two references than with one, and the measured absolute concentrations of individual compounds in the mixture are more accurate. We compare results from semiautomated gsHSQC(0) with those obtained by the original manual phase-cycled HSQC(0) approach. The new approach is suitable for automatic metabolite profiling by simultaneous quantification of multiple metabolites in a complex mixture.

  13. Measurement of Absolute Concentrations of Individual Compounds in Metabolite Mixtures by Gradient-Selective Time-Zero 1H-13C HSQC (gsHSQC0) with Two Concentration References and Fast Maximum Likelihood Reconstruction Analysis

    Science.gov (United States)

    Hu, Kaifeng; Ellinger, James J.; Chylla, Roger A.; Markley, John L.

    2011-01-01

    Time-zero 2D 13C HSQC (HSQC0) spectroscopy offers advantages over traditional 2D NMR for quantitative analysis of solutions containing a mixture of compounds because the signal intensities are directly proportional to the concentrations of the constituents. The HSQC0 spectrum is derived from a series of spectra collected with increasing repetition times within the basic HSQC block by extrapolating the repetition time to zero. Here we present an alternative approach to data collection, gradient-selective time-zero 1H-13C HSQC0 in combination with fast maximum likelihood reconstruction (FMLR) data analysis and the use of two concentration references for absolute concentration determination. Gradient-selective data acquisition results in cleaner spectra, and NMR data can be acquired in both constant-time and non-constant time mode. Semi-automatic data analysis is supported by the FMLR approach, which is used to deconvolute the spectra and extract peak volumes. The peak volumes obtained from this analysis are converted to absolute concentrations by reference to the peak volumes of two internal reference compounds of known concentration: DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) at the low concentration limit (which also serves as chemical shift reference) and MES (2-(N-morpholino)ethanesulfonic acid) at the high concentration limit. The linear relationship between peak volumes and concentration is better defined with two references than with one, and the measured absolute concentrations of individual compounds in the mixture are more accurate. We compare results from semi-automated gsHSQC0 with those obtained by the original manual phase-cycled HSQC0 approach. The new approach is suitable for automatic metabolite profiling by simultaneous quantification of multiple metabolites in a complex mixture. PMID:22029275

  14. Probing the contacts of a low-affinity substrate with a membrane-embedded transport protein using 1H-13C cross-polarisation magic-angle spinning solid-state NMR.

    Science.gov (United States)

    Patching, Simon G; Henderson, Peter J F; Sharples, David J; Middleton, David A

    2013-03-01

    Solid-state NMR combined with sample deuteration was used to probe the proximity of the low-affinity substrate D-glucose to its binding site within the Escherichia coli sugar transport protein GalP. Samples of E. coli inner membranes with amplified expression of GalP were incubated in D(2)O with D-[(13)C(6)]glucose and (13)C NMR signals from the substrate were assigned in two-dimensional dipolar-assisted rotational resonance (DARR) spectra. The signals were confirmed as representing D-glucose bound to GalP as the peaks were abolished after the substrate was displaced from the specific site with the inhibitor forskolin. The (13)C chemical shift values for D-[(13)C(6)]glucose in solution revealed some differences compared to those for ligand bound to GalP, the differences being most pronounced for positions C1 and C2, and especially for C1 in the α-anomer. (13)C cross-polarization build-up was measured for C1 and C2 of D-[(13)C(6)]glucose and D-[(2)H(7), (13)C(6)]glucose in GalP membranes suspended in D(2)O. The build-up curves for the deuterated substrate reflect intermolecular (1)H-(13)C interactions between the protein and the fully deuterated substrate; the signal build-up suggests that the α-anomer is situated closer to the protein binding site than is the β-anomer, consistent with its relatively high signal intensities and more pronounced chemical shift changes in the 2D-correlation spectra. These results demonstrate the utility of solid-state NMR combined with sample deuteration for mapping the binding interface of low affinity ligands with membrane proteins.

  15. Pulmonary fibrosis and exposure to steel welding fume.

    Science.gov (United States)

    Cosgrove, M P

    2015-12-01

    Arc welders who have been exposed to high concentrations of steel welding fume for prolonged periods of time may develop pulmonary fibrosis but the nature of the fibrotic changes has been debated over the last 80 years without any clear international consensus. To characterize the nature of the pulmonary fibrosis that develops in response to steel welding fume exposure and to provide a working hypothesis that would explain the findings of the existing research, to provide a platform for future research and to inform future occupational and clinical management of welders with pulmonary effects from welding fume. Review of the world literature on pulmonary fibrosis and welding of steel in all languages using PubMed, with further secondary search of references in the articles found in the primary search. Google and Reference Manager were used as further confirmatory search tools. Only case series and case reports were found but these provided consistent evidence that the consequence of exposure to steel welding fume at high levels for a prolonged period of time is a type of pulmonary fibrosis similar to, and possibly the same as, respiratory bronchiolitis which eventually develops into desquamative interstitial pneumonia with ongoing exposure. Steel welding fume may cause an occupational respiratory bronchiolitis which may develop into de squamative interstitial pneumonia with ongoing exposure. This concept may explain the difficulties in interpreting the wider literature on welding fume and lung function at lower exposures and may also explain the increased risk of lung cancer in welders. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Feasibility study of fluxless brazing cemented carbides to steel

    Science.gov (United States)

    Tillmann, W.; Sievers, N.

    2017-03-01

    One of the most important brazing processes is the joints between cemented carbides and steel for the tool industry such as in rotary drill hammers or saw blades. Even though this technique has already been used for several decades, defects in the joint can still occur and lead to quality loss. Mostly, the joining process is facilitated by induction heating and the use of a flux to enhance the wetting of the filler alloy on the surface of the steel and cemented carbide in an ambient atmosphere. However, although the use of flux enables successful joining, it also generates voids within the joint, which reduces the strength of the connection while the chemicals within the flux are toxic and polluting. In this feasibility study, a fluxless brazing process is used to examine the joint between cemented carbides and steel for the first time. For this, ultrasound is applied during induction heating to enable the wetting between the liquid filler metal and the surfaces of the cemented carbide and steel. The ultrasound generates cavitations within the liquid filler metal, which remove the oxides from the surface. Several filler metals such as a silver based alloy Ag449, pure Zn, and an AlSi-alloy were used to reduce the brazing temperature and to lower the thermal residual stresses within the joint. As a result, every filler metal successfully wetted both materials and led to a dense connection. The ultrasound has to be applied carefully to prevent a damage of the cemented carbide. In this regard, it was observed that single grains of the cemented carbide broke out and remained in the joint. This positive result of brazing cemented carbides to steel without a flux but using ultrasound, allows future studies to focus on the shear strength of these joints as well as the behavior of the thermally induced residual stresses.

  17. Kinetics of borided gear steels

    Indian Academy of Sciences (India)

    The boride layer was characterized by optical microscopy, X-ray diffraction technique and microVickers hardness tester. X-ray diffraction analysis of boride layers on the surface of the steels revealed the existence of FeB, Fe2B, CrB and Cr2B compounds. The thickness of the boride layer increases by increasing boriding ...

  18. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.

    2004-01-01

    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding. Th...

  19. Steel-board composite floors

    NARCIS (Netherlands)

    Couchman, G.H.; Tomà, A.W.; Brekelmans, J.W.P.M.; Brande, E.L.M.G. van den

    1999-01-01

    Work currently underway in Holland aDd the UK aims to increase the already considerable potential for light steel framing in buildings by developing rules for so-called "dry composites". This paper discusses both theoretical and experimental work to develop validated design mies for floor systems

  20. Steel-soil composite bridge

    DEFF Research Database (Denmark)

    Du, Guangli; Pettersson, Lars; Karoumi, Raid

    2017-01-01

    viability, while their environmental performance is overlooked. Today’s designers are urged to seek new design options to reduce the environmental burdens. Sweden owns more than 24574 bridges and most of them are short spans. Among them, the slab frame bridge (CFB) is a common solution. Soil steel composite...

  1. Metadynamic recrystallization in C steels

    Indian Academy of Sciences (India)

    Unknown

    eds) C M Sellars and G J Davies. (London: The Metals Society) pp 3–15. Tamura I, Ouchi C, Tanaka T and Sekine H 1988 Thermo- mechanical processing of high strength low alloy steels. (London: Butterworths Publications) pp 49–53.

  2. Precision machining of steel decahedrons

    Science.gov (United States)

    Abernathy, W. J.; Sealy, J. R.

    1972-01-01

    Production of highly accurate decahedron prisms from hardened stainless steel is discussed. Prism is used to check angular alignment of mounting pads of strapdown inertial guidance system. Accuracies obtainable using recommended process and details of operation are described. Photographic illustration of production device is included.

  3. Argon solubility in liquid steel

    NARCIS (Netherlands)

    Boom, R; Dankert, O; Van Veen, A; Kamperman, AA

    2000-01-01

    Experiments have been performed to establish the solubility of argon in liquid interstitial-free steel. The solubility appears to be lower than 0.1 at ppb, The results are in line with argon solubilities reported in the literature on liquid iron. Semiempirical theories and calculations based on the

  4. Metadynamic recrystallization in C steels

    Indian Academy of Sciences (India)

    Metadynamic recrystallization has been investigated in three plain carbon steels (ENIA, EN2 and EN24) through the use of hot interrupted compression tests on a wedge plastometer. Holding time was 0.5 s between passes. Strain rates of 0.05 and 0.12/s and small strain increments of 3, 5 and 7% were employed.

  5. Preformed posterior stainless steel crowns: an update.

    Science.gov (United States)

    Croll, T P

    1999-02-01

    For almost 50 years, dentists have used stainless steel crowns for primary and permanent posterior teeth. No other type of restoration offers the convenience, low cost, durability, and reliability of such crowns when interim full-coronal coverage is required. Preformed stainless steel crowns have improved over the years. Better luting cements have been developed and different methods of crown manipulation have evolved. This article reviews stainless steel crown procedures for primary and permanent posterior teeth. Step-by-step placement of a primary molar stainless steel crown is documented and permanent molar stainless steel crown restoration is described. A method for repairing a worn-through crown also is reviewed.

  6. Hot rolling simulation for non-oriented electrical steel

    Science.gov (United States)

    Stöcker, Anett; Schmidtchen, Matthias; Kawalla, Rudolf

    2017-10-01

    For improving material properties, a fundamental knowledge of all processing steps is necessary. Non-oriented electrical steels are characterized by low losses and a high permeability in the final application. To achieve high grades, every processing step needs to be coordinated with the previous and subsequent one. Simulation tools are useful to harmonize these steps. Experimental investigation had shown, that a heterogeneous material flow and microstructure evolution is a key feature for bcc Iron-Silicon alloys. Therefor hot rolling of non-oriented electrical steel with a silicon content of 2.4 wt.% is simulated by the software LaySimS that allows a fast investigation of heterogeneous deformation stated during rolling. In comparison to experimental rolling trials on a semi-continuous rolling mill the area of validity is predicted and shown. The focus of a comparison between experiment and simulations is put to the microstructure after hot rolling.

  7. Study on cementitious properties of steel slag

    Directory of Open Access Journals (Sweden)

    Zhu G.

    2013-01-01

    Full Text Available The converter steel slag chemical and mineral components in China’s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum analysis, X-ray diffraction analysis confirmed the main mineral compositions in the converter slag. Converter slag of different components were grounded to obtain a powder with specific surface area over 400m2/kg, making them to take place some part of the cement in the concrete as the admixture and carry out the standard tests. The results indicate that the converter slag can be used as cementitious materials for construction. Furthermore, physical mechanic and durability tests on the concrete that certain amount of cement be substituted by converter steel slag powder from different steel plants are carried out, the results show that the concrete with partial substitution of steel slag powder has the advantages of higher later period strength, better frost resistance, good wear resistance and lower hydration heat, etc. This study can be used as the technical basis for “Steel Slag Powder Used For Cement And Concrete”, “Steel Slag Portland Cement”, “Low Heat Portland Steel Slag Cement”, “Steel Slag Road Cement” in China, as well as a driving force to the works of steel slag utilization with high-value addition, circular economy, energy conservation and discharge reduction in the iron and steel industry.

  8. Friction Melt Bonding: An innovative process for aluminium-steel lap joints

    Directory of Open Access Journals (Sweden)

    Simar Aude

    2013-11-01

    Full Text Available A new process based on Friction Stir Welding has been developed to weld dissimilar metals, particularly steel and aluminum, in a lap-joint configuration. In this Friction Melt Bonding process, frictional heat generated by the rotating and translating tool brings about local and transient melting (Figure 1. Welding then occurs owing to controlled reactivity and solidification at the interface between the two plates. With an adequate choice of the welding parameters, low alloy steel and aluminium alloys have been successfully welded. Characterisation of the microstructure was systematically performed to highlight the influence of the process parameters, particularly the temperature cycle, on the steel-Al interface. The thickness of the intermetallic layer varies from a couple of micrometers to tens of micrometers depending on the advancing speed of the tool (Fig. 2. The lap shear properties of the joints were also investigated and analysed based on the morphology of the intermetallic layer.

  9. Numerical model to predict microstructure of the heat treated of steel elements

    Directory of Open Access Journals (Sweden)

    T. Domański

    2011-04-01

    Full Text Available In work the presented numerical models of tool steel hardening processes take into account thermal phenomena and phase transformations. Numerical algorithm of thermal phenomena was based on the Finite Elements Methods of the heat transfer equations. In the model of phase transformations, in simulations heating process continuous heating (CHT was applied, whereas in cooling process continuous cooling (CCT of the steel at issue. The phase fraction transformed (austenite during heating and fractions during cooling of ferrite, pearlite or bainite are determined by Johnson-Mehl-Avrami formulas. The nescent fraction of martensite is determined by Koistinen and Marburger formula or modified Koistinen and Marburger formula. In the simulations of hardening was subject the fang lathe of cone (axisymmetrical object made of tool steel.

  10. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    OpenAIRE

    Khalid, Syed Altaf; Kumar, Vadivel; Jayaram, Prithviraj

    2012-01-01

    Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets - titanium, self-ligating stainless steel, and conventional stainless steel - using stainless steel archwires and TMA archwires. An in vitro study of simulated ca...

  11. EXPERIMENTAL RESEARCH REGARDING FORCES AND MOMENTS WICH APPEAR AT PROCESSING X17CRNI16-2 MARTENSITIC STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Leonard Marius CIUREZU GHERGHE

    2015-05-01

    Full Text Available This paper main goal is to measure axial forces (thrust and moments at stainless steel drill process, in particular the processing of stainless steel X17CrNi16-2 SR EN 10088- 4 DIN 17440. Experimental program uses the full factorial program with two influential factors and simulation and modeling of the processing is performed with the program called TOP SOLID. Processing was done on machining center YMC YOUNG TECH 1050, the tool used was 8 mm high speed steel drill bit. Thrust and moment measurements are done with a dynamometer design and made in the TCM laboratories of the Faculty of Mechanics from Craiova.

  12. Expert judgment in life-cycle degradation and maintenance modelling for steel bridges

    NARCIS (Netherlands)

    Kosgodagan, A; Morales Napoles, O.; Maljaars, J; Courage, W; Bakker, Jaap; Frangopol, Dan M.; van Breugel, Klaas

    2016-01-01

    Markov-based models for predicting deterioration for civil infrastructures are widely recognized as suitable tools addressing this mechanism. The objective of this paper is to provide insights regarding a network of orthotropic steel bridges in terms of degradation. Consequently, a model combining a

  13. Tribological study in roll forming of lean duplex stainless steel sheets

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Nielsen, Morten Strogaard; Bay, Niels

    2012-01-01

    focus on tribological issues are galling and pick-up formation as well as tool life in roll forming of stainless duplex steel sheets. The roll forming process is exemplified by production of an s-shaped profile used in interlock carcass production for flexible pipes used in off-shore oil extraction...

  14. Investigation of Selected Surface Integrity Features of Duplex Stainless Steel (DSS) after Turning

    Czech Academy of Sciences Publication Activity Database

    Krolczyk, G.; Nieslony, P.; Legutko, S.; Hloch, Sergej; Samardžić, I.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 91-94 ISSN 0543-5846 Institutional support: RVO:68145535 Keywords : duplex stainless steel * machining * turning * surface integrity * surface roughness Subject RIV: JQ - Machines ; Tools Impact factor: 0.959, year: 2014 http://hrcak.srce.hr/126702

  15. Testing and modelling of new tribo-systems for industrial sheet forming of stainless steels

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Friis, Kasper Storgaard; Bay, Niels

    2011-01-01

    Sheet metal forming of stainless steels is known to be tribologically demanding. To ensure satisfactory production without pick-up and galling, lubrication with environmentally hazardous chlorinated paraffin oil is normally required and in the most severe cases combined with ceramic tool coatings...

  16. Existing Steel Railway Bridges Evaluation

    Directory of Open Access Journals (Sweden)

    Vičan Josef

    2016-12-01

    Full Text Available The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  17. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have...

  18. 29 CFR 1926.757 - Open web steel joists.

    Science.gov (United States)

    2010-07-01

    ... and columns are not framed in at least two directions with solid web structural steel members, a steel... 29 Labor 8 2010-07-01 2010-07-01 false Open web steel joists. 1926.757 Section 1926.757 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.757 Open web steel joists...

  19. Nano-composite stainless steel

    Science.gov (United States)

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  20. Atmospheric corrosion of mild steel

    OpenAIRE

    Morcillo, Manuel; Fuente, Daniel de la; Díaz, Iván; Cano, H.

    2011-01-01

    The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a) the morpholog...

  1. Formation of Composite Surface during Friction Surfacing of Steel with Aluminium

    OpenAIRE

    Janakiraman, S.; Bhat, K. Udaya

    2012-01-01

    Commercial pure aluminium was deposited on medium carbon steel using friction surfacing route. An aluminium rod was used as the consumable tool. Normal load and tool rotation speed were the variables. Under certain combinations of load and speed the deposition was continuous and uniform. The deposit consisted of Al embedded with fine particles of iron. The interface between substrate material and deposited material was smooth and relatively small. A mechanism is discussed for formation of a ...

  2. Corrosion of mild steel and stainless steel by marine Vibrio sp.

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wagh, A.B.

    Microbially induced corrosion (MIC) of stainless steel and mild steel coupons exposed to media with and without a bacterial culture Vibrio sp. was studied using Scanning Electron Microscope (SEM). Pitting type of corrosion was noticed which was more...

  3. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J. [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu [Brazilian Nanotechnology National Laboratory (LNNano), P.O. Box 6192, Campinas, SP (Brazil); University of Campinas (UNICAMP), Campinas, SP (Brazil); Department of Materials Science and Engineering, The Ohio State University — OSU, Columbus, OH 43221 (United States)

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showed a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.

  4. Steel-cased wells in 3-D controlled source EM modelling

    Science.gov (United States)

    Patzer, Cedric; Tietze, Kristina; Ritter, Oliver

    2017-05-01

    Over the last decades, electromagnetic methods have become an accepted tool for a wide range of geophysical exploration purposes and nowadays even for monitoring. Application to hydrocarbon monitoring, for example for enhanced oil recovery, is hampered by steel-cased wells, which typically exist in large numbers in producing oil fields and which distort electromagnetic fields in the subsurface. Steel casings have complex geometries as they are very thin but vertically extended; moreover, the conductivity contrast of steel to natural materials is in the range of six orders of magnitude. It is therefore computationally prohibitively costly to include such structures directly into the modelling grid, even for finite element methods. To tackle the problem we developed a method to describe steel-cased wells as series of substitute dipole sources, which effectively interact with the primary field. The new approach cannot only handle a single steel-cased well, but also an arbitrary number, and their interaction with each other. We illustrate the metal casing effect with synthetic 3-D modelling of land-based controlled source electromagnetic data. Steel casings distort electromagnetic fields even for large borehole-transmitter distances above 2 km. The effect depends not only on the distance between casing and transmitter, but also on the orientation of the transmitter to the borehole. Finally, we demonstrate how the presence of steel-cased wells can be exploited to increase the sensitivity and enhance resolution in the target region. Our results show that it is at least advisable to consider the distribution of steel-cased wells already at the planning phase of a controlled source electromagnetic field campaign.

  5. Research on the mechanical, thermal, induction heating and healing properties of steel slag/steel fibers composite asphalt mixture

    NARCIS (Netherlands)

    Liu, Quantao; Li, Bin; Schlangen, H.E.J.G.; Sun, Yihan; Wu, Shaopeng

    2017-01-01

    In this paper, steel slag/steel fiber composite asphalt mixture were prepared. The effects of the addition of steel slag and/or steel fibers on the mechanical, thermal, induction heating and healing properties of asphalt mixture were investigated. The results showed that adding steel slag and/or

  6. Simulation of Friction Stir Processing in 304L Stainless Steel

    Directory of Open Access Journals (Sweden)

    Miles M.P.

    2016-01-01

    Full Text Available A major dilemma facing the nuclear industry is repair or replacement of stainless steel reactor components that have been exposed to neutron irradiation. When conventional fusion welding is used for weld repair, the high temperatures and thermal stresses inherent in the process enhance the growth of helium bubbles, causing intergranular cracking in the heat-affected zone (HAZ. Friction stir processing (FSP has potential as a weld repair technique for irradiated stainless steel, because it operates at much lower temperatures than fusion welding, and is therefore less likely to cause cracking in the HAZ. Numerical simulation of the FSP process in 304L stainless steel was performed using an Eulerian finite element approach. Model input required flow stresses for the large range of strain rates and temperatures inherent in the FSP process. Temperature predictions in three locations adjacent to the stir zone were accurate to within 4% of experimentally measure values. Prediction of recrystallized grain size at a location about 6mm behind the tool center was less accurate, because the empirical model employed for the prediction did not account for grain growth that occurred after deformation in the experiment was halted.

  7. Microstructure Evolution during Friction Stir Spot Welding of TRIP Steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    In this study, the feasibility of friction stir spot welding of TRIP steel is investigated. In addition to manufacturing successful welds, the present study aims at a fundamental understanding of the mechanisms occurring at the (sub)micron scale during friction stir spot welding. As one of the main...... parameters to control friction stir welding, the influence of the rotational speed of the tool was investigated. Three different rotational speeds (500 rpm, 1000 rpm and 1500 rpm, respectively) were applied. The microstructure of the welded samples was investigated with reflected light microscopy, scanning...

  8. Experimental studies of Steel Corrugated Constructions

    Directory of Open Access Journals (Sweden)

    Lazarev Yuriy

    2016-01-01

    Full Text Available The purpose of this particular article is to assess existing calculations of steel corrugated constructions. Steel Corrugated Construction is a perspective type of constructions, which is exhibiting numerous advantages in comparison with one that currently applied in automobile and railroad networks (reinforced concrete water-throughput pipes, reinforced concrete frame bridges. The evaluation of experimental data on models of constructions of this particular type has been carried out in order to improve calculations of Steel Corrugated Constructions.

  9. Characteristics of vacuum sintered stainless steels

    OpenAIRE

    Z. Brytan; L.A. Dobrzański; M. Actis Grande; M. Rosso

    2009-01-01

    Purpose: In the present study duplex stainless steels were sintered in vacuum. using rapid cooling form the mixture of prealloyed and alloying element powders The purpose of this paper was to describe the obtained microstructures after sintering as well as the main mechanical properties of sintered stainless steels.Design/methodology/approach: In presented work duplex stainless steels were obtained through powder metallurgy starting from austenitic 316L or ferritic 410L prealloyed stainless s...

  10. DP 600 steel research of dynamic testing

    Directory of Open Access Journals (Sweden)

    M. Mihaliková

    2015-01-01

    Full Text Available Dynamic tensile testing of sheet steels is becoming more important due to the need for more optimized vehicle crashworthiness analysis in the automotive industry. For generating data in dynamic conditions, was using different assay techniques. DP (dual phase steel is suitable for large complicated shape such as fenders, doors, bumpers and roofs. For experiments was used two testing method servo hydraulic and single bar method. Experiments were realized on steel grade DP 600. Steel were performed and evaluated static and dynamic tests. Microstructure and substructure in static and dynamic loading conditions was investigated.

  11. Creep rupture strength of microalloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Foldyna, V.; Kubon, Z.; Schellong, T.

    2001-07-01

    The superior creep resistance of the microalloyed steels compared to the carbon steels originates in the presence of very fine particles of minor phases based on vanadium or niobium. These steels are delivered either after controlled rolling or in the normalized state. The creep strength of these microalloyed steels reaches nearly that of low alloy 0.15C-0.3Mo steel type. The best creep properties are detected in steels after controlled rolling, while after normalizing creep rupture strength slightly decreases, especially in heats alloyed with niobium. This is the result of the microstructure of the steel when in steel with niobium originally fine particles of niobium carbonitride coarsen during normalizing with corresponding changes in their interparticle spacing. When compared the creep rupture strength attained experimentally with the data stated in the standard CSN 41 2025, it is clear that the data stated in the standard corresponds the creep properties of this steel after normalizing but do not take into account creep properties attained after controlled rolling (normalizing forming). (orig.)

  12. EXPERIMENTAL INVESTIGATION OF THE TOOL-CHIP INTERFACE TMPERATURES ON UNCOATED CEMENTIDE CARBIDE CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Kasım HABALI

    2005-01-01

    Full Text Available It is known that the temperature as the result of the heat developed during machining at the tool-chip interface has an influence on the tool life and workpiece surface guality and the methods for measuring this temperature are constantly under investigation. In this study, the measurement of tool-chip interface temperature using toolworkpiece termocouple method was investigated. The test were carried out on a AISI 1040 steel and the toolchip interface temperature variation was examined depending on the cutting speed and feed rate. The obtained groups show that cutting speed has more influence on the temperature than feedrate has.

  13. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Nitrogen-Alloyed High-Mn Austenitic Hot Work Die Steel

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-03-01

    Full Text Available In view of the requirements for mechanical properties and service life above 650 °C, a high-Mn austenitic hot work die steel, instead of traditional martensitic hot work die steel such as H13, was developed in the present study. The effect of heat treatment on the microstructure and mechanical properties of the newly developed work die steel was studied. The results show that the microstructure of the high-Mn as-cast electroslag remelting (ESR ingot is composed of γ-Fe, V(C,N, and Mo2C. V(C,N is an irregular multilateral strip or slice shape with severe angles. Most eutectic Mo2C carbides are lamellar fish-skeleton-like, except for a few that are rod-shaped. With increasing solid solution time and temperature, the increased hardness caused by solid solution strengthening exceeds the effect of decreased hardness caused by grain size growth, but this trend is reversed later. As a result, the hardness of specimens after various solid solution heat treatments increases first and then decreases. The optimal combination of hardness and austenitic grain size can be obtained by soaking for 2 h at 1170 °C. The maximum Rockwell hardness (HRC is 47.24 HRC, and the corresponding austenite average grain size is 58.4 μm. When the solid solution time is 3 h at 1230 °C, bimodality presented in the histogram of the austenite grain size as a result of further progress in secondary recrystallization. Compared with the single-stage aging, the maximum impact energy of the specimen after two-stage aging heat treatment was reached at 16.2 J and increased by 29.6%, while the hardness decreased by 1–2 HRC. After two-stage aging heat treatment, the hardness of steel reached the requirements of superior grade H13, and the maximum impact energy was 19.6% higher than that of superior grade H13, as specified in NADCA#207-2003.

  14. CORROSION AND CHEMICAL WASTE IN SAWBLADES STEEL USED IN WOOD

    Directory of Open Access Journals (Sweden)

    Paulo Fernando Trugilho

    2002-01-01

    Full Text Available The objective this work was to evaluate the chemical waste provoked by the wood on the sheets of steel used in the making of the mountains and cut tools. It was certain the correlationbetween the chemical waste and the extractive soluble in cold water, hot water and in the sequencetoluene and ethanol content. Two types of steel and twenty-seven species different from wood wereused. The corrosive agent, constituted of 50 g of fresh sawdust (moist mixed to 50 ml of distilledwater, it was prepared and placed inside of the plastic box, hermetically closed, on the samples ofsteel, which were totally immersed. The box was placed in a water bath pre-heated to 75°C, that themedium temperature of reaction is considered, that affects the sheet of the sawblade in operation. Thisgroup was operated to 80 rotations per minute (rpm. The time of reaction was of four hours. Afterthat time the corrosive agent was discarded and the samples were washed, dried and weighed. At theend, each sample was processed by a total period of forty hours. The chemical waste was evaluated by the weight difference suffered from beginning at the end of the experiment. For theresults it was observed that the Eucalyptus tradryphloia and the Eucalyptus phaeotricha the speciesthat provoked were, respectively, the largest and smaller chemical waste for the two types of steelappraised. Great variation exists in the chemical waste due to the effect of the species. The corrosionand chemical waste are especially related with the quality of the material solved in ethanol. The 1070steel were more attached than the 6170 steel.

  15. Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mehanna, Maha [Laboratoire de Genie Chimique, CNRS - Universite de Toulouse, 5 rue Paulin Talabot, BP1301, 31029 Toulouse (France)], E-mail: mum34@psu.edu; Basseguy, Regine; Delia, Marie-Line; Bergel, Alain [Laboratoire de Genie Chimique, CNRS - Universite de Toulouse, 5 rue Paulin Talabot, BP1301, 31029 Toulouse (France)

    2009-11-15

    The influence of Geobacter sulfurreducens was tested on the anaerobic corrosion of four different steels: mild steel 1145, ferritic steel 403 and austenitic steels 304L and 316L. Within a few hours, the presence of cells induced a free potential (E{sub oc}) ennoblement around +0.3 V on 1145 mild steel, 403 ferritic steel and 304L austenitic steels and slightly less on 316L. The kinetics of E{sub oc} ennoblement depended on the amount of bacteria in the inoculum, but the final potential value depended essentially on the nature of the material. This effect was due to the capacity of G. sulfurreducens to create a direct cathodic reaction on steel surfaces, extracting the electrons directly from material. The presence of bacterial cells modified the corrosion features of mild steel and ferritic steel, so that corrosion attacks were gathered in determined zones of the surface. Local corrosion was significantly enhanced on ferritic steel. Potential ennoblement was not sufficient to induce corrosion on austenitic steels. In contrast G. sulfurreducens delayed the occurrence of pitting on 304L steel because of its capability to oxidize acetate at high potential values. The electrochemical behaviour of 304L steel was not affected by the concentration of soluble electron donor (acetate, 1-10 mM) or the amount of planktonic cells; it was directly linked to the biofilm coverage. After polarization pitting curves had been recorded, microscopic observations showed that pits propagated only in the surface zones where cell settlement was the densest. The study evidenced that Geobacter sulfurreducens can control the electrochemical behaviour of steels in complex ways that can lead to severe corrosion. As Geobacteraceae are ubiquitous species in sediments and soils they should now be considered as possible crucial actors in the microbial corrosion of buried equipment.

  16. Minimizing Energy Cost in Electric Arc Furnace Steel Making by Optimal Control Designs

    Directory of Open Access Journals (Sweden)

    Er-wei Bai

    2014-01-01

    Full Text Available Production cost in steel industry is a challenge issue and energy optimization is an important part. This paper proposes an optimal control design aiming at minimizing the production cost of the electric arc furnace steel making. In particular, it is shown that with the structure of an electric arc furnace, the production cost which is a linear programming problem can be solved by the tools of linear quadratic regulation control design that not only provides an optimal solution but also is in a feedback form. Modeling and control designs are validated by the actual production data sets.

  17. Short-term hot hardness characteristics of rolling-element steels

    Science.gov (United States)

    Chevalier, J. L.; Dietrich, M. W.; Zaretsky, E. V.

    1972-01-01

    Short-term hot hardness studies were performed with five vacuum-melted steels at temperatures from 294 to 887 K (70 to 1140 F). Based upon a minimum Rockwell C hardness of 58, the temperature limitation on all materials studied was dependent on the initial room temperature hardness and the tempering temperature of each material. For the same room temperature hardness, the short-term hot hardness characteristics were identical and independent of material composition. An equation was developed to predict the short-term hardness at temperature as a function of initial room temperature hardness for AISI 52100, as well as the high-speed tool steels.

  18. SIMULATION TOOL OF VELOCITY AND TEMPERATURE PROFILES IN THE ACCELERATED COOLING PROCESS OF HEAVY PLATES

    Directory of Open Access Journals (Sweden)

    Antônio Adel dos Santos

    2014-10-01

    Full Text Available The aim of this paper was to develop and apply mathematical models for determining the velocity and temperature profiles of heavy plates processed by accelerated cooling at Usiminas’ Plate Mill in Ipatinga. The development was based on the mathematical/numerical representation of physical phenomena occurring in the processing line. Production data from 3334 plates processed in the Plate Mill were used for validating the models. A user-friendly simulation tool was developed within the Visual Basic framework, taking into account all steel grades produced, the configuration parameters of the production line and these models. With the aid of this tool the thermal profile through the plate thickness for any steel grade and dimensions can be generated, which allows the tuning of online process control models. The simulation tool has been very useful for the development of new steel grades, since the process variables can be related to the thermal profile, which affects the mechanical properties of the steels.

  19. Design tools

    Science.gov (United States)

    Anton TenWolde; Mark T. Bomberg

    2009-01-01

    Overall, despite the lack of exact input data, the use of design tools, including models, is much superior to the simple following of rules of thumbs, and a moisture analysis should be standard procedure for any building envelope design. Exceptions can only be made for buildings in the same climate, similar occupancy, and similar envelope construction. This chapter...

  20. Long-term hot-hardness characteristics of five through-hardened bearing steels

    Science.gov (United States)

    Anderson, N. E.

    1978-01-01

    Five vacuum-melted bearing steels tempered to various room temperature hardnesses: AISI 52100 and the tool steels AISI M-1, AISI M-50, Halmo, and WB-49 were studied. Hardness measurements were taken on AISI 52100 at room temperature and at elevated temperatures after soaking it at temperatures to 478 K (400 F) for as long as 1000 hours. Hardness measurements were also taken on the tool steels after soaking them at temperatures to 700 K (800 F) for as long at 1000 hours. None of the tool steel tempered during soaking and AISI 52100 did not temper when soaked at 366 K (200 F) for 1000 hours. However, AISI 52100 that was initially hardened to room temperature hardness of 62.5 or 64.5 lost hardness during the first 500 hours of the 1000-hour soak tests at temperatures greater than 394 K (250 F), but it maintained its hardness during the final 500 hours of soaking. Similarly, AISI 52100 initially hardened to room temperature hardness of 60.5 lost hardness during the first 500 hours of the 1000-hour soaking at temperatures greater than 422 K (300 F), but it maintained its hardness during the final 500 hours of soaking.

  1. NEW METHOD OF IMPROVING THE MACHINABILITY OF CAST STEEL

    Science.gov (United States)

    The possibility of increasing cast steel machinability by introducing sodium sulfur compounds into the ladle containing melted steel immediately before casting the metal into an ingot is investigated.

  2. [Initial stages of steel biocorrosion].

    Science.gov (United States)

    Zhigletsova, S K; Rodin, V B; Kobelev, V S; Aleksandrova, N V; Rasulova, G E; Kholodenko, V P

    2000-01-01

    Initial stages of corrosion of mild steel induced by Klebsiela rhinoscleromatis BO2 were studied in various media. The effect of the microorganism was detected 8-10 h after inoculation. The number of viable cells were virtually unchanged within one month in all media, but the corrosive activity of the strain decreased. The corrosive activity of microorganisms can be determined by spectrophotometry even only after incubation for 24 h. At a low level of organic substrate, even strong colonization with microorganisms does not inevitably result in a significant damage to metals.

  3. Is stainless steel really "stainless"?

    Science.gov (United States)

    Porteous, Joan

    2011-06-01

    Initial purchase and replacement costs for surgical instrumentation are significant components in today's operating room budgets. OR staff and medical device reprocessing personnel work together as a team to ensure effective management of this valuable commodity. The purpose of this article is to discuss the composition of stainless steel surgical instruments, to identify processes to minimize damage to instruments caused by staining, corrosion, and pitting, and to utilize that information to describe effective measures to manage instrumentation in both the OR and reprocessing areas.

  4. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    Science.gov (United States)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  5. Influence of the ferritic-pearlitic steel microstructure on surface roughness in broaching of automotive steels

    Science.gov (United States)

    Arrieta, I.; Courbon, C.; Cabanettes, F.; Arrazola, P.-J.; Rech, J.

    2017-10-01

    The aim of this work is to characterize the effect of microstructural parameters on surface roughness in dry broaching with a special emphasis on the ferrite-pearlite (FP) ratio. An experimental approach combining cutting and tribological tests has been developed on three grades 27MnCr5, C45, C60 covering a wide range of FP ratio. Fundamental broaching tests have been performed with a single tooth to analyse the resulting surface quality with uncoated M35 HSS tools. A specially designed open tribometer has been used to characterize the friction coefficient at the tool-chip-workpiece interface under appropriate conditions. Specific phenomena have been observed depending on the FP ratio and an interesting correlation with the tribological tests has been found. This clearly shows that friction has an important contribution in broaching and that phase distribution has to be highly considered when cutting a FP steel at a microscopic scale. This work also provides quantitative data of the friction coefficient depending on the sliding velocity and FP content which can be implemented in any analytical or numerical model of a broaching operation.

  6. Aspects of the tribological behaviour of powders recycled from rapid steel treated sub-zero

    Science.gov (United States)

    Radu, S.; Ciobanu, M.

    2017-02-01

    The recycling of high-alloyed steels represents a significant opportunity in Powder Metallurgy as it permits the use of raw materials with relatively low prices compared to the conventional methods. Recycling can be achieved by two methods: from spraying debris resulted from worn cutting tools and processes obtained from processing chip drilling and re-sharpening of tools. The research aims to confirm that wastes from rapid steels can become, by the successive processing, metal powders that can thereafter be used for cutting tools of lathe type removable plate. After pressing and sintering the recycling powder, cylindrical samples were obtained that were subsequently applied a subcritical annealing. Wear tests conducted on a tribometer type TRB-01-02541 confirmed that their wear resistance is superior to the same samples that were sintered, hardened and tempered in oil. This paper was accepted for publication in Proceedings after double peer reviewing process but was not presented at the Conference ROTRIB’16.

  7. Plastic collapse load of corroded steel plates

    Indian Academy of Sciences (India)

    ple, Bruneau & Zahrai (1997) and Zuraski & Johnson (1990) have studied fatigue strength of corroded steel specimens taken from aged bridges. Chen et al (2005) have studied mechani- cal properties of low alloy steels in chloride solution. Some research works were also done on structural integrity of aged structures.

  8. Purification of post-consumer steel crap

    NARCIS (Netherlands)

    Rem, P.C.; Van den Broeck, F.; Bakker, M.C.M.

    2012-01-01

    Post-consumer steel scrap is often hand picked for contaminants such as copper to meet specifications of steelmakers. If the hand sorting capacity exceeds 20 tons scrap/h the efficiency generally becomes problematic, leaving 50% of the copper contaminants in the steel product. In response, new

  9. Microstructure and transformation kinetics in bainitic steels

    NARCIS (Netherlands)

    Luzginova, N.V.

    2008-01-01

    With the aim of reaching a better understanding of the microstructure evolution and the overall phase transformation kinetics in hyper-eutectoid steels a commercial SAE 52100 bearing steel and 7 model alloys with different concentrations of chromium, cobalt and aluminum have been studied in this

  10. Erosion behaviour of hydro turbine steels

    Indian Academy of Sciences (India)

    WINTEC

    The martensitic stainless steel (termed as 13/4) is currently being used for fabrication of underwater parts in hydroelectric projects. There are ... applications in many hydro turbine and other industrial applications facing damages due to ... the strength of austenitic stainless steel, N alloying has been gaining much attention; ...

  11. Steel Sheet Pile Walls in Soft Soil

    NARCIS (Netherlands)

    Kort, D.A.

    2002-01-01

    For almost a century, steel sheet pile walls are applied worldwide as earth retaining structures for excavations and quay walls. Within the framework of the development of European structural codes for Civil Engineering works, the Eurocodes, Eurocode 3 Part 5 for design of steel sheet pile walls was

  12. Plastic collapse load of corroded steel plates

    Indian Academy of Sciences (India)

    Keywords. Corroded steel plate; plastic collapse; FEM; rough surface. ... The main aim of present work is to study plastic collapse load of corroded steel plates with irregular surfaces under tension. Non-linear finite element method ... Department of Ocean Engineering, AmirKabir University of Technology, 15914 Tehran, Iran ...

  13. Steel plate reinforcement of orthotropic bridge decks

    NARCIS (Netherlands)

    Teixeira de Freitas, S.

    2012-01-01

    The PhD research is focused on the reinforcement of fatigue cracked orthotropic steel bridge decks (OBD) by adding a second steel plate to the existing deck. The main idea is to stiffen the existing deck plate, which will reduce the stresses at the fatigue sensitive details and extend the fatigue

  14. Elevated temperature properties of weathering steel.

    Science.gov (United States)

    2014-01-01

    In recent decades, bridge fires have become a major concern in the U.S. Fire hazard in bridges can result in significant economic and public losses. New construction of bridges often use Weathering Steel (also known as Corten Steel), whic...

  15. Hydrogen embrittlement in power plant steels

    Indian Academy of Sciences (India)

    In power plants, several major components such as steam generator tubes, boilers, steam/water pipe lines, water box of condensers and the other auxiliary components like bolts, nuts, screws fasteners and supporting assemblies are commonly fabricated from plain carbon steels, as well as low and high alloy steels.

  16. Diffusion brazing nickel-plated stainless steel

    Science.gov (United States)

    Beuyukian, C. S.; Mitchell, M. J.

    1976-01-01

    To bond parts, sandwich assembly is made up of aluminum core, aluminum face sheet with brazing alloy interface, and nickel plated stainless steel part. Sandwich is placed between bottom and top glide sheet that is placed in stainless steel retort where assembly is bonded at 580 C.

  17. Low Mn alloy steel for cryogenic service

    Science.gov (United States)

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  18. Hydrogen embrittlement in power plant steels

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    By pre or post-weld heat treatment and by using non-cellulosic electrodes with proper baking, HIC can be minimized. In addition to the above mentioned components, there are many other vital metallic parts made of steels in ... used in the structural steel frames in the buildings failed in re-torquing test due to the hydrogen ...

  19. Behaviour of high strength steel moment joints

    NARCIS (Netherlands)

    Girão Coelho, A.M.; Bijlaard, F.S.K.

    2010-01-01

    The design of joints to European standard EN 1993 within the semi-continuous/partially restrained philosophy is restricted to steel grades up to S460. With the recent development of high performance steels, the need for these restrictions should be revisited. The semicontinuous joint modelling can

  20. Technological properties of steels of martensitic class

    Science.gov (United States)

    Kleiner, L. M.; Greben'kov, S. K.; Zakirova, M. G.; Tolchina, I. V.; Ryaposov, I. V.

    2011-03-01

    Process, design, and ecological advantages of low-carbon martensitic steels (LCMS) are presented as compared to medium-carbon heat-treatable structural steels with a structure of tempered sorbite. The factors ensuring high manufacture adaptability in all stages of the production cycle are considered. Technological properties of widely used commercial weldable LCMS are analyzed.

  1. Development of structural steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs.

  2. Induction surface hardening of hard coated steels

    DEFF Research Database (Denmark)

    Pantleon, Karen; Kessler, Olaf; Hoffmann, Franz

    1999-01-01

    -process is the high deposition temperature, consequently the properties of steel substrates are negatively influenced. Therefore, a subsequent heat treatment of the coated steels is necessary to restore the properties of steels ready for operation. Induction surface hardening is used as a method of heat treatment......, the scratch test is used to estimate critical loads for cohesive and adhesive failure of the coatings. Additionally, distortion measurements are carried out. The results emphasize the advantage of induction surface hardening as a method of subsequent heat treatment of CVD-coated steels....... after the deposition of TiN hard coatings on steel substrates. Influences of both the coating properties and the substrate properties are discussed in dependence on the parameters of induction heating. Thereby the heating time, heating atmosphere and the power input into the specimen are changed...

  3. Effects of cutting parameters during turning 100C6 steel

    Directory of Open Access Journals (Sweden)

    Chibane H.

    2010-06-01

    Full Text Available The objective of the paper is to evaluate the effects of cutting parameters in terms of cutting speed, depth of cut and feed rate on the influence of the surface roughness, consumed power, cutting time and tool vibrations during turning process. The material chosen in this case was 100C6 steel in dry conditions. The effects of the selected process parameters have been investigated using full factorial design of experiments (33 and the multiple linear regression (MLR. Thus, first-order empirical models were established. Analysis of variance (ANOVA was employed to check the validity of the developed models within the limits of the factors that were being investigated and to test the significance of the above parameters. Results indicate that the feed rate is the only significant factor affecting the surface roughness. The cutting speed and feed rate are the most influential factors on cutting time. Estimated tool vibrations are functions of cutting speed, feed rate and depth of cut in decreasing order. Finally, the models obtained can be used for determination of optimal settings of cuttings parameters and this methodology should help us to obtain the best process parameters for dry turning of 100C6 steel.

  4. Study of the carbon distribution in multi-phase steels using the NanoSIMS 50

    Science.gov (United States)

    Valle, N.; Drillet, J.; Bouaziz, O.; Migeon, H.-N.

    2006-07-01

    An advanced understanding of phase transformation mechanisms and of microstructure/properties relationships in steels requires to investigate the distribution of carbon. The improvement of mechanical properties of these materials led to develop finer microstructures. Thus, the mean size of the constituents (austenite/austenite islands and bainite laths) of the high strength steels is under the micron. The small size combined in some case with low concentration of carbon renders the analysis of these materials difficult. The NanoSIMS 50, which associates high spatial resolution and high sensitivity, seems to be a tool of choice to answer to this new analytical challenge. In this objective, we have explored the potentialities of such an instrument for the qualitative and quantitative study of carbon in multi-phase steels. In particular, a calibration curve was established from reference samples containing martensite and ferrite with a known carbon content.

  5. In Search of the Attributes Responsible for Sliver Formation in Cold Rolled Steel Sheets

    Science.gov (United States)

    Mohanty, Itishree; Das, Prasun; Bhattacharjee, Debashish; Datta, Shubhabrata

    2017-04-01

    Surface quality is one of the most important characteristics of cold rolled (CR) steel sheets for its application in consumer goods industries. The actual cause of sliver formation is very difficult to determine, as it is revealed only after the final cold rolling of the steel. A thorough investigation on searching the root cause of sliver formation in CR steel is done here using several statistical tools towards mining the industrial data for extraction of knowledge. As the complex interactions between the variables make it difficult to identify the cause, it is seen that findings from different techniques differed to a certain extent. Still it is revealed that 21 variables could be short listed as major contributor for sliver formation, but those are found to be from all the areas of the processing. This leads to the conclusion that no particular process variable or particular processing could be held responsible for sliver formation.

  6. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    Science.gov (United States)

    Mändl, S.; Rauschenbach, B.

    2003-08-01

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 °C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry).

  7. Investigation on burrs in micro milling of stainless steel 310S

    Science.gov (United States)

    Meixia, Yuan; Shaonan, Liu; Hongxin, Xue; Boyan, Tang; Linlin, Zhao

    2017-09-01

    In the process of micro milling stainless steel 310S, the influence of milling parameters (cutting depth, a p , feed per tooth f z , cutting speed v),and down and up milling method were revealed, which provides reference for controlling burrs of stainless steel 310S, improving surface quality and optimizing cutting process. Based on the orthogonal test method, the coated carbide micro diameter cutter was used and milling experiments were carried out on stainless steel 310S.Top burr size data information was collected and analyzed. Up milling is better than down milling because the shape and size of burr are relatively small. With the increase of cutting depth, the shape of burrs appears long fibrous and tearing and wavy serrated, which means the burr getting large and worse. In order to minimize burrs, it is the good way to choose the sharp cutting tools and up milling, control the cutting depth and select feed rate.

  8. Numerical Modelling of Micro-Stresses in Carbonised Austenitic Cast Steel under Rapid Cooling Conditions

    Directory of Open Access Journals (Sweden)

    Tuleja J.

    2017-06-01

    Full Text Available The paper presents a method of the numerical modelling of micro-stresses in carbonised austenitic cast steel being developed during rapid cooling due to differences in the values of thermal expansion coefficients for this material phases – carbides and austenitic matrix. Micro-stresses are indicated as the main cause of crack initiation in the tooling elements of carburising furnaces being mainly made of austenitic cast steel. A calculation model of carbonised and thermally fatigued austenitic cast steel was developed based on the microstructure images obtained using light microscopy techniques and the phase composition evaluated with the X-ray diffraction method. The values of the stress tensor components and the reduced stress in the complex models of test material structure were determined numerically by the finite element method. The effort analysis was performed and the areas where development of cracks is to be expected were identified, which was experimentally confirmed.

  9. The Use of Fuzzy Systems for Forecasting the Hardenability of Steel

    Directory of Open Access Journals (Sweden)

    Sitek W.

    2016-06-01

    Full Text Available The goal of the research carried out was to develop the fuzzy systems, allowing the determination of the Jominy hardenability curve based on the chemical composition of structural steels for quenching and tempering. Fuzzy system was created to calculate hardness of the steel, based on the alloying elements concentrations, and to forecast the hardenability curves. This was done based on information from the PN-EN 10083-3: 2008. Examples of hardenability curves calculated for exemplar steels were presented. Results of the research confirmed that fuzzy systems are a useful tool in evaluation the effect of alloying elements on the properties of materials compared to conventional methods. It has been demonstrated the practical usefulness of the developed models which allows forecasting the steels’ Jominy hardenability curve.

  10. U-drawing of Fortiform 1050 third generation steels. Numerical and experimental results

    Science.gov (United States)

    Saenz de Argandoña, E.; Galdos, L.; Mendiguren, J.; Otero, I.; Mugarra, E.

    2017-09-01

    Elasto-plastic behavior of the third generation Fortiform 1050 steel has been analysed using cyclic tension-compression tests. At the same time, the pseudo elastic modulus evolution with plastic strain was analysed using cyclic loading and unloading tests. From the experiments, it was found that the cyclic behavior of the steel is strongly kinematic and elastic modulus decrease with plastic strain is relevant for numerical modelling. In order to numerically analyse a U-Drawing process, strip drawing tests have been carried out at different contact pressures and Filzek model has been used to fit the experimental data and implement a pressure dependent friction law in Autoform software. Finally, numerical predictions of springback have been compared with the experimentally ones obtained using a sensorized U-Drawing tooling. Different material and contact models have been examined and most influencing parameters have been identified to model the forming of these new steels.

  11. Development of strategic surface topographies for lubrication in sheet forming of stainless steel

    DEFF Research Database (Denmark)

    Nilsson, Morten; Olsson, David Dam; Petrushina, Irina

    2004-01-01

    Strategic stainless steel surfaces have been developed by which the tribological properties are significantly improved for sheet metal forming compared to as received surfaces. The improvements have been achieved by modification of the surface in order to promote micro-plasto hydrodynamic...... lubrication by increasing the ratio of closed lubricant pockets and modifying the pocket geometry. These factors influence the retention and subsequently escape of lubricant during forming thus enhancing lubricant permeability to the contact between flattened work piece asperities and contacting tool....... The technique, which has been developed, is based on an electrochemical treatment changing the topography of the stainless steel surface. Comparative testing of the new surface topographies in ironing and deep drawing of stainless steel sheet shows significant improvements and possibilities of replacing...

  12. Atmospheric corrosion of mild steel

    Directory of Open Access Journals (Sweden)

    Morcillo, M.

    2011-10-01

    Full Text Available The atmospheric corrosion of mild steel is an extensive topic that has been studied by many authors in different regions throughout the world. This compilation paper incorporates relevant publications on the subject, in particular about the nature of atmospheric corrosion products, mechanisms of atmospheric corrosion and kinetics of the atmospheric corrosion process, paying special attention to two matters upon which relatively less information has been published: a the morphology of steel corrosion products and corrosion product layers; and b long-term atmospheric corrosion ( > 10 years.

    La corrosión atmosférica del acero suave es un tema de gran amplitud que ha sido tratado por muchos autores en numerosas regiones del mundo. Este artículo de compilación incorpora publicaciones relevantes sobre esta temática, en particular sobre la naturaleza de los productos de corrosión atmosférica, mecanismos y cinética de los procesos de corrosión atmosférica, prestando una atención especial a dos aspectos sobre los que la información publicada ha sido menos abundante: a morfología de los productos de corrosión del acero y capas de productos de corrosión, y b corrosión atmosférica a larga duración (> 10 años.

  13. Comparative assessment of coated and uncoated ceramic tools on ...

    Indian Academy of Sciences (India)

    This study investigated the cutting performance of coated CC6050 and uncoated CC650 mixed ceramics in hard turning of hardened steel. The cutting performance was mainly evaluated by cutting force components and tool wear. The planning of experiments was based on Taguchi's L36 orthogonal array. Theresponse ...

  14. An experimental study of flank wear in the end milling of AISI 316 stainless steel with coated carbide inserts

    Science.gov (United States)

    Odedeyi, P. B.; Abou-El-Hossein, K.; Liman, M.

    2017-05-01

    Stainless steel 316 is a difficult-to-machine iron-based alloys that contain minimum of about 12% of chromium commonly used in marine and aerospace industry. This paper presents an experimental study of the tool wear propagation variations in the end milling of stainless steel 316 with coated carbide inserts. The milling tests were conducted at three different cutting speeds while feed rate and depth of cut were at (0.02, 0.06 and 01) mm/rev and (1, 2 and 3) mm, respectively. The cutting tool used was TiAlN-PVD-multi-layered coated carbides. The effects of cutting speed, cutting tool coating top layer and workpiece material were investigated on the tool life. The results showed that cutting speed significantly affected the machined flank wears values. With increasing cutting speed, the flank wear values decreased. The experimental results showed that significant flank wear was the major and predominant failure mode affecting the tool life.

  15. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  16. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-10-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  17. Superstrength of nanograined steel with nanoscale intermetallic precipitates transformed from shock-compressed martensitic steel.

    Science.gov (United States)

    Yu, Hailiang; Yan, Ming; Lu, Cheng; Tieu, Anh Kiet; Li, Huijun; Zhu, Qiang; Godbole, Ajit; Li, Jintao; Su, Lihong; Kong, Charlie

    2016-11-28

    An increasing number of industrial applications need superstrength steels. It is known that refined grains and nanoscale precipitates can increase strength. The hardest martensitic steel reported to date is C0.8 steel, whose nanohardness can reach 11.9 GPa through incremental interstitial solid solution strengthening. Here we report a nanograined (NG) steel dispersed with nanoscale precipitates which has an extraordinarily high hardness of 19.1 GPa. The NG steel (shock-compressed Armox 500T steel) was obtained under these conditions: high strain rate of 1.2 μs(-1), high temperature rise rate of 600 Kμs(-1) and high pressure of 17 GPa. The mean grain size achieved was 39 nm and reinforcing precipitates were indexed in the NG steel. The strength of the NG steel is expected to be ~3950 MPa. The discovery of the NG steel offers a general pathway for designing new advanced steel materials with exceptional hardness and excellent strength.

  18. Friction Stir Processing of ODS and FM Steels

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Chun, Young Bum; Noh, Sang Hoon; Jang, Jin Sung; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In ODS steels, it is well known that uniform nano-oxide dispersoids act as pinning points to obstruct dislocation and grain boundary motion, however, those advantages will be disappeared while the material is subjected to the high temperature of conventional fusion welding. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for welding traditionally difficult to weld materials such as aluminum alloys. This relatively new technology has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. Friction stir processing (FSP) is a method of changing the properties of a metal through intense, localized plastic deformation. FSW is the precursor of the FSP technique. When ideally implemented, this process mixes the material without changing the phase and creates a microstructure with fine, equiaxed grains. This homogeneous grain structure, separated by high-angle boundaries, allows some alloys to take on superplastic properties. In this study, FSW is used as a substitutive welding process between FMS tube and ODS parts. The dimension of tube is 7.0 OD, 0.5 T. During the FSW, dynamic-recrystallized grains are developed; the uniform oxides dispersion is preserved in the metal matrix. The microstructure and microtexture of the material near the stir zone is found to be influenced by the rotational behavior of the tool. The additive effect from FSP on sample surface is considered. Since the mechanical alloying (MA) and FSP commonly apply extreme shear deformation on materials, the dispersion of oxide particle in ODS steels is very active during both processes. Friction stir welding appears to be a very promising technique for the welding of FMS and ODS steels in the form of sheet and tube. FSW could successfully produce defect-free welds on FMS tubes and ODS ring assembly. FSW produces a fine grain structure consisting of ferrite and martensite, and the oxide

  19. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y., E-mail: yangying@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Busby, J.T. [Fusion and Materials for Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-05-01

    This work aims at utilizing modern computational microstructural modeling tools to accelerate the understanding of phase stability in austenitic steels under extended thermal aging. Using the CALPHAD approach, a thermodynamic database OCTANT (ORNL Computational Thermodynamics for Applied Nuclear Technology), including elements of Fe, C, Cr, Ni, Mn, Mo, Si, and Ti, has been developed with a focus on reliable thermodynamic modeling of precipitate phases in AISI 316 austenitic stainless steels. The thermodynamic database was validated by comparing the calculated results with experimental data from commercial 316 austenitic steels. The developed computational thermodynamics was then coupled with precipitation kinetics simulation to understand the temporal evolution of precipitates in austenitic steels under long-term thermal aging (up to 600,000 h) at a temperature regime from 300 to 900 °C. This study discusses the effect of dislocation density and difusion coefficients on the precipitation kinetics at low temperatures, which shed a light on investigating the phase stability and transformation in austenitic steels used in light water reactors.

  20. Differential permeability behaviour of P9 and T22 power station Steels

    Energy Technology Data Exchange (ETDEWEB)

    Karimian, N., E-mail: Noushin.Karimian@Manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, M60 1QD (United Kingdom); Wilson, J.W.; Peyton, A.J.; Yin, W. [School of Electrical and Electronic Engineering, University of Manchester, M60 1QD (United Kingdom); Liu, J.; Davis, C.L. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2014-02-15

    Analysis of the electromagnetic (EM) properties of power station steels, measured using a non-contact magnetic sensor, is of significance as such properties are indicative of the microstructure of the material and can be potentially exploited for non-destructive testing. In this paper, we present EM measurements of cylindrical power station steel samples (P9 and T22 grades) with different microstructures: normalised and tempered (representative of the initial condition), as normalised and after service exposure. In order to obtain the magnetic properties the B–H curves of these samples were measured. Cylindrical air-cored and printed circuit board (PCB) coil integrated sensors were used to measure the incremental permeability. Analytical and numerical methods (Finite Elements Methods) were employed to calculate the sensor response of these samples. The electromagnetic properties of the different steels were inferred by fitting the finite element models to the measured results. In addition, sensitivity and error analysis were carried out to evaluate the accuracy of the method. - Highlights: • We analysed the electromagnetic (EM) properties of power station steels. • The B–H curves, differential and incremental permeability were measured. • We established correlations between EM properties and microstructure changes. • This technique will be used to develop a tool for in-situ inspection of steels.

  1. Plasma assisted nitriding for micro-texturing onto martensitic stainless steels*

    Directory of Open Access Journals (Sweden)

    Katoh Takahisa

    2015-01-01

    Full Text Available Micro-texturing method has grown up to be one of the most promising procedures to form micro-lines, micro-dots and micro-grooves onto the mold-die materials and to duplicate these micro-patterns onto metallic or polymer sheets via stamping or injection molding. This related application requires for large-area, fine micro-texturing onto the martensitic stainless steel mold-die materials. A new method other than laser-machining, micro-milling or micro-EDM is awaited for further advancement of this micro-texturing. In the present paper, a new micro-texturing method is developed on the basis of the plasma assisted nitriding to transform the two-dimensionally designed micro-patterns to the three dimensional micro-textures in the martensitic stainless steels. First, original patterns are printed onto the surface of stainless steel molds by using the dispenser or the ink-jet printer. Then, the masked mold is subjected to high density plasma nitriding; the un-masked surfaces are nitrided to have higher hardness, 1400 Hv than the matrix hardness, 200 Hv of stainless steels. This nitrided mold is further treated by sand-blasting to selectively remove the soft, masked surfaces. Finally, the micro-patterned martensitic stainless steel mold is fabricated as a tool to duplicate these micro-patterns onto the plastic materials by the injection molding.

  2. [Factors influencing electrocardiogram results in workers exposed to noise in steel-making and steel-rolling workshops of an iron and steel plant].

    Science.gov (United States)

    Li, Y H; Yu, S F; Gu, G Z; Chen, G S; Zhou, W H; Wu, H; Jiao, J

    2016-02-20

    To investigate the factors influencing the electrocardiogram results in the workers exposed to noise in steel-making and steel rolling workshops of an iron and steel plant. From September to December, 2013, cluster sampling was used to select 3 150 workers exposed to noise in the steel-making and steel-rolling workshops of an iron and steel plant, and a questionnaire survey and physical examinations were performed. The number of valid workers was 2 915, consisting of 1 606 workers in the steel-rolling workshop and 1 309 in the steel-making workshop. The electrocardiogram results of the workers in steel-making and steel-rolling workshops were analyzed. The overall abnormal rate of electrocardiogram was 26.35%, and the workers in the steel-making workshop had a significantly higher abnormal rate of electrocardiogram than those in the steel-rolling workshop(32.24% vs 21.54%, Pelectrocardiogram than female workers(27.59% vs 18.61%, Pelectrocardiogram than those who did not drink(28.17% vs 23.75%, Pelectrocardiogram than those who were not exposed to high temperature(29.43% vs 20.14%, Pelectrocardiogram in the workers with cumulative noise exposure levels of electrocardiogram results. High cumulative noise exposure, alcohol consumption, and high temperature may affect the abnormal rate of electrocardiogram in the workers exposed to noise in steel-making and steel-rolling workshops.

  3. 49 CFR 178.504 - Standards for steel drums.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for steel drums. 178.504 Section 178.504...-bulk Performance-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for...

  4. 49 CFR 192.105 - Design formula for steel pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design formula for steel pipe. 192.105 Section 192... for steel pipe. (a) The design pressure for steel pipe is determined in accordance with the following... § 192.113. T=Temperature derating factor determined in accordance with § 192.115. (b) If steel pipe that...

  5. 46 CFR 154.172 - Contiguous steel hull structure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for the...

  6. Heavy steel casting components for power plants 'mega-components' made of high Cr-steels

    Energy Technology Data Exchange (ETDEWEB)

    Hanus, Reinhold [voestalpine Giesserei Linz GmbH, Linz (Austria)

    2010-07-01

    solutions to process related problems such as deoxidation, solidification behavior, heat treatment with long hold times, welding on the casting, stresses, etc. Cast components for power plants, made of high Cr-steels and Ni-base alloys are becoming bigger. Development work and investments in new processes and technologies are necessary, process-modelling is an indispensable tool for the ability to produce also these 'mega-components'. (orig.)

  7. Springback Prediction and Compensation for a High Strength Steel Side Impact Beam

    Science.gov (United States)

    Dutton, Trevor; Edwards, Richard; Blowey, Andrew

    2005-08-01

    Prediction of formability for sheet metal pressings has advanced to a high state of confidence in recent years. The major challenge is now to predict springback and, moreover, to assist in the design of tooling to correctly compensate for springback. This is particularly the case for materials now being routinely considered for automotive production, such as aluminium and ultra high strength steels, which are prone to greater degrees of springback than traditional mild steels. This paper presents a case study based on the tool design for an ultra high strength steel side impact beam. The forming and springback simulations, carried out using eta/DYNAFORM (based on the LS-DYNA solver), are reported and compared to measurements from the prototype panels. The analysis parameters used in the simulation are presented, and the sensitivity of the results to variation in physical properties is also reviewed. The process of compensating the tools based on the analysis prediction is described; finally, an automated springback compensation method is also applied and the results compared with the final tool design.

  8. Tritiated Water Interaction with Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Glen R. Longhurst

    2007-05-01

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

  9. Dynamic characteristics of automotive steel sheets

    Directory of Open Access Journals (Sweden)

    M. Mihaliková

    2016-10-01

    Full Text Available The aim of this experimental research was to perform an analysis of deformation characteristics on two different types of steel: IF steel, and micro-alloyed steel were used automotive industry. For that purpose changes of properties of these materials were carried out by static 10-3 · s-1 and dynamic 103 · s-1 strain rate assess its plastic properties. Vickers micro hardness test was carried out by the static and dynamic loading condition and describes different hardness distribution. The higher strain hardening of materials was obtained too that was confirmed by distribution of dislocations.

  10. Tribocorrosion wear of austenitic and martensitic steels

    Directory of Open Access Journals (Sweden)

    G. Rozing

    2016-07-01

    Full Text Available This paper explores the impact of tribocorrosion wear caused by an aggressive acidic media. Tests were conducted on samples made of stainless steel AISI 316L, 304L and 440C. Austenitic steels were tested in their nitrided state and martensitic in quenched and tempered and then induction hardened state. Electrochemical corrosion resistance testing and analysis of the microstructure and hardness in the cross section was carried out on samples of selected steels. To test the possibility of applying surface modification of selected materials in conditions of use, tests were conducted on samples/parts in a worm press for final pressing.

  11. Business Intelligence for Strategic Steel Constructions Sourcing

    DEFF Research Database (Denmark)

    Adeyemi, Oluseyi

    2010-01-01

    markets, government support for industry and stability of government}, to source steel constructions strategically. I undertook this project as a consultation for JB Contractors A/S {JBC} now referred to as Strongstaal A/S. JBC builds on its core competences in steel constructions, forgings, pressure...... vessels, welding, machining, heat treatment, corrosive treatment and quality control. It uses these core competencies to manufacture heavy duty, labour-intensive welded and machine processed steel structures in Eastern Europe. It has many years of sound project management experience and has enjoyed great...

  12. Quenching simulation of steel grinding balls

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Hernandez, O.; Reyes, L. A.; Camurri, C.; Carrasco, C.; Garza-Monte-de-Oca, F.; Colas, R.

    2015-07-01

    The phase transformations of high carbon steel during quenching and equalizing were modelled using commercial computer packages based on the finite element method and the kinetic transformation of steel. The model was used to predict the temperature and microstructural changes taking place within balls of two different sizes that are used for grinding mineral ores. A good correlation between the temperatures measured by inserted thermocouples and those predicted by the model was obtained after modifying the thermal conductivity of the steel within the temperature domain at which mixed phases are present. The phase transformations predicted were confirmed by metallographic analyses. (Author)

  13. Short-term hot-hardness characteristics of five case hardened steels

    Science.gov (United States)

    Anderson, N. E.; Zaretsky, E. V.

    1975-01-01

    Short-term hot-hardness studies were performed with carburized and hardened AISI 8620, CBS 1000, CBS 1000M, CBS 600, and Vasco X-2 steels. Case and core hardness measurements were made at temperatures from 294 to 811 K (70 to 1000 F). The data were compared with data for high-speed tool steels and AISI 52100. The materials tested can be ranked as follows in order of decreasing hot-hardness retention: (1) Vasco X-2; equivalent to through-hardened tool steels up to 644 K (700 F) above which Vasco X-2 is inferior; (2) CBS 1000, (3) CBS 1000M; (4) CBS 6000; better hardness retention at elevated temperatures than through-hardened AISI 52100; and (5) AISI 8620. For the carburized steels, the change in hardness with temperature of the case and core are similar for a given material. The short-term hot hardness of these materials can be predicted with + or - 1 point Rockwell C.

  14. Simulation the flow of semi-solid steel alloy using an enhanced model

    Science.gov (United States)

    Hosseini Yekta, F.; Sadough Vanini, S. A.

    2015-09-01

    Simulating steel semi-solid metal forming close to a real industrial forming is necessary to reduce potential run-time errors and costs. Simulating requires modeling of semi-solid behaviour. In this work a model based on micromechanical analysis with consideration the viscoplastic response along with an enhanced Herschel-Bulkley model has been proposed to predict the flow behaviour of semi-solid M2 high speed steel. This model is introduced to overcome the limitations of the previously used models. The extracted model parameters from the steady state flow stress and step-change of shear rate experiments were then calculated and fitted to the experimental rheology results of continuous cooling. The model was then implemented linking into the computational fluid dynamics software (FLOW 3D Ver.9.3). A T-Shape die used to investigate the flow front of semisolid alloy. Also the extracted parameters at low shear rate in the step change experiments used for simulation of the compression process of M2 tool steel at high solid fraction by the proposed model and in the ABAQUS 6.9 software. The experimental results of compression test shows a well agreement with simulations results indicative of the performance of the proposed model to predict rheological properties and flow behaviour of semi-solid states especially for the tool steel systems in the wide range of liquid fraction.

  15. Transformation on steel products distribution in Poland and Slovakia

    Directory of Open Access Journals (Sweden)

    R. Stefko

    2012-01-01

    Full Text Available Steel industry is one of the most globalized branch, globalization has had the influence on iron ore supply, steel production and distribution as well. In last years, steel products distribution process has changed significantly, because of rising competitiveness due to common world market influence and main global players actions. The paper presents changes in steel products distribution in Poland and Slovakia focusing on main steel producers activity in distribution as well as distributors response on new market situation.

  16. Computer simulation of quenched and tempered steel properties

    OpenAIRE

    B. Smoljan; D. Iljkić; Novak, H.

    2011-01-01

    Purpose: The algorithm of estimation of mechanical properties based on steel hardness has been established.Design/methodology/approach: Numerical modelling of hardness distribution in as-quenched steel specimen was performed by involving the results of simple experimental test, i.e., Jominy-test. Hardness of quenched and tempered steel has been expressed as function of maximal hardness of actual steel and hardness of actual steel with 50% of martensite in microstructure, according to the time...

  17. The Effect of Tool Dimension, Tool Overhang and Cutting Parameters Towards Tool Vibration and Surface Roughness on Turning Process

    Directory of Open Access Journals (Sweden)

    Zuingli Santo Bandaso

    2017-03-01

    Full Text Available Turning process is the removal of metal from the outer diameter of a rotating cylindrical workpiece. Turning is used to reduce the diameter of the workpiece, usually to a specified dimension, and to produce a smooth finish on the metal. This research investigates the effect of feed rate, spindle speed, tool overhang and tool dimensions toward vibration amplitude and surface roughness on turning process. This study uses both statistical and graphical analysis of the data collected. The experimentation was carried out on conventional lathe machine with straight turning operation. Material used as workpiece was St.60 carbon steel which was turned with HSS tool bit with the dimension of 3/8 Inches and ½ Inches. Cutting parameters varied by spindle speed, feed rate, and tool overhang, while the depth of cut is maintained at a depth of 0.5 mm. The vibration data of cutting tool obtained from a transducer (vibrometer mounted at a distance of 10 mm from the tip of the cutting tool during the cutting process takes place, whereas the surface roughness data obtained from measurements of surface roughness apparatus after turning process. The results showed that, The effect of feed rate, spindle speed, tool overhang, and tool dimension simultaneously towards vibration amplitude and surface roughness has a grater effects on the use of 3/8 inches cutting tool than ½ inches cutting tool. With the use of the same tool dimensions obtained that, The most influential parameters on the vibration amplitude is tool overhang while the most influential parameter on surface roughness value is feed rate.

  18. Technology programme SULA 2. Energy in steel and base metal production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    SULA 2 is the energy research programme of the steel and metal producing industry. Central steel and metal producing companies are Outokumpu, Rautaruukki, Imatra Steel and Fundia Wire which is a subsidiary of Rautaruukki. The priorities of the SULA 2 programme are in process development. Worthwhile areas of concentration in energy research by Finland include the following: Iron and steel production; Zinc production; The production of ferrochromium and stainless steel; The pyrometallurgical production of copper and nickel and Rolling and heat treatment of steel In addition to the steel and metal producers the following companies participate in some projects: Kuusakoski, Kumera, Fiskars Tools and BETKER. Research work is performed in the following universities and research centers: Helsinki University of Technology, Oulu University, Aabo Akademi University, Tampere University of Technology, VTT Energy and VTT Building Technology. The total number of projects in SULA 2 programme is 51. Of these 20 are research institute projects, 21 are company R and D projects and 10 are energy conservation projects funded by Ministry of Trade and Industry. The total research costs are ca. 130 million FIM. The major part of costs is carried by the participating companies, 62 % and by public funding (Ministry of Trade and Industry, TEKES, The Academy of Finland) 36 %. In six projects the objective of research was studying and inventing new production processes or equipment. Results so far are a new production process for the Tornio stainless steel plant and a new design of ore concentrate rotary dryer, which has been commercialized. The electric energy consumption of the melting shop in Tornio has decreased by 25 %, and the production capacity has increased accordingly. Considerable savings in production process energy consumption, estimable from production reports have been achieved in several projects. The total amount of estimable saving in specific energy consumption is about 900

  19. Numerical Analysis of Composite Steel Concrete Structural Shear Walls with Steel Encased Profiles

    Directory of Open Access Journals (Sweden)

    Daniel Dan

    2009-01-01

    Full Text Available The use of common reinforced concrete shear walls in high rise buildings is sometimes limited because of the large amount of reinforcement localized at the end of the element. A good alternative in avoiding this disadvantage is to use composite steel concrete structural shear walls with steel encased profiles. This solution used for high rise buildings, offers to designers lateral stiffness, shear capacity and high bending resisting moment of structural walls. The encasement of the steel shapes in concrete is applied also for the following purposes: flexural stiffening and strengthening of compression elements; fire protection; potentially easier repairs after moderate damage; economy with respect both to material and construction. Until now in the national and international literature poor information about nonlinear behaviour of composite steel concrete structural shear walls with steel encased profiles is available. A theoretical and experimental program related to the behaviour of steel concrete structural shear walls with steel encased profiles is developed at “Politehnica” University of Timişoara. The program refers to six different elements, which differ by the shape of the steel encased profile and also by the arrangement of steel shapes on the cross section of the element. In order to calibrate the elements for experimental study some numerical analysis were made. The paper presents the results of numerical analysis with details of stress distribution, crack distribution, structural stiffness at various loads, and load bearing capacity of the elements.

  20. Applications of vertical steel pipe dampers for seismic response reduction of steel moment frames

    Directory of Open Access Journals (Sweden)

    Utomo Junaedi

    2017-01-01

    Full Text Available A newly developed vertical steel pipe damper is introduced to improve the seismic performance of steel moment frames. The damper exhibits large lateral stiffness and excellent capability to dissipate energy due to earthquakes. It provides a reliable, compact, inexpensive, and replaceable damper. Improved performance of the structure is verified analitically using a four-story steel moment frame equipped with steel pipe dampers. Vertical steel pipe dampers are placed between any two points where large relative motion exists during earthquake excitation. A nonlinear dynamic analysis of the structure using PERFORM-3D software demonstrated the significant benefit of equipping the structure with steel pipe dampers. All structural components, except the steel pipe dampers, remain elastic during earthquake excitation. Structures properly designed with vertical steel pipe dampers will only require minimum post-earthquake inspection and limited damage. Some practical issues associated with the application of vertical steel pipe dampers to building structure for seismic response reduction are presented in this paper.

  1. Semen quality and sex hormones among mild steel and stainless steel welders: a cross sectional study.

    OpenAIRE

    Bonde, J P

    1990-01-01

    Welding may be detrimental to the male reproductive system. To test this hypothesis, semen quality was examined in 35 stainless steel welders, 46 mild steel welders, and 54 non-welding metal workers and electricians. These figures represent a participation rate of 37.1% in welders and 36.7% in non-welding subjects. The mean exposure to welding fume particulates was 1.3 mg/m3 (SD 0.8) in stainless steel welders using tungsten inert gas, 3.2 mg/m3 (SD 1.0) in low exposed mild steel welders usin...

  2. Effect of turning parameters on metal removal and tool wear rates of ...

    African Journals Online (AJOL)

    Therefore, optimum machining parameters suitable for turning operations must be selected in other to obtain the desired quality of the finished product at reduced machining time and cost. The present study was carried out on AISI 1018 low carbon steel during turning operation to reduce tooling costs as a result of tool wear ...

  3. Reliable tool life measurements in turning - an application to cutting fluid efficiency evaluation

    DEFF Research Database (Denmark)

    Axinte, Dragos A.; Belluco, Walter; De Chiffre, Leonardo

    2001-01-01

    ) provides efficiency evaluation. Six cutting oils, five of which formulated from vegetable basestock, were evaluated in turning. Experiments were run in a range of cutting parameters. according to a 2, 3-1 factorial design, machining AISI 316L stainless steel with coated carbide tools. Tool life...

  4. ATENA–A tool for engineering analysis of fracture in concrete

    Indian Academy of Sciences (India)

    ATENA – A tool for engineering analysis of fracture in concrete. Vladimir Cervenka ... Advanced constitutive models implemented in the finite element system ATENA serve as rational tools to explain the behaviour of connection between steel and concrete. Three nonlinear ... Cervenka Consulting, Prague, Czech Republic ...

  5. Materials Comparison of Cutting Tools Functional Parts for Cutting of Electrical Engineering Sheets

    Directory of Open Access Journals (Sweden)

    Jan ZLÁMALÍK

    2012-06-01

    Full Text Available Paper concerns the comparison of functional materials parts of cutting tools used for the production of stator and rotor sheets in the electrical industry from point of view of their life. Alternatives and the properties of metal used for the production of stator and rotor components in electrical rotating machines are analysed. The main factors affecting the life of cutting tools of functional parts are analysed, one of the most important is the cutting tool functional parts material itself. Comparison of three variants of the cuttong tool funkcional parts material – 19 436 tool steel (chrome steel according to the Czech State Standard 41 9436, 19 830 high speed steel according to the Czech State Standard 41 9830 and a special powder metallurgy product – ledeburite tool steel Vanadis 10. Useful lifes of the functional components of individual cutting tools performances can be calculated from the theoretical lifes by their multiplying the coefficients of the tool design and the cutting edges shape complexity.

  6. Factors Affecting the Wear Resistance of Forging Tools

    Directory of Open Access Journals (Sweden)

    Zwierzchowski M.

    2017-09-01

    Full Text Available The durability of forging tools is a function of many variables: tool heat treatment, surface quality, temperature, pressure, number of forgings, diffusion layers (nitriding and many others. The objective of study was to analyze and compare the working conditions of forging tools. For the analysis of selected flat surfaces of tools. Analyzed forging dies subjected to normal use. Presented results of laboratory tests . The effect of temperature and time on the properties of the surface layer of forging tools. The results were compared with the literature data. This article shows the results of microhardness tests for forging dies which have forged the corresponding number of forgings. The results of laboratory studies on microhardness of hot working steel 1.2344 in the furnace at various temperatures and time are also presented. The working conditions of the forging tools are very complex. The most often described in the literature are: thermal fatigue, abrasive wear, mechanical fatigue and cracks. The article discusses the effects of increased temperature on the surface properties of forging tools. Forging dies were made of hot work tool steel 1.2344. FEM modeling of changes in the surface layer should take into account changes in tool hardness as a function of time (number of forgings.

  7. Transformation behavior of steels. ; Transformation and properties of commercial steels. Tekko no hentai kyodo. ; Jitsuyo zairyo no hentai to seishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Kunitake, T. (Sumikin Techno Research, Ltd., Hyogo (Japan))

    1990-08-01

    Recently, large revolution has occurred in the manufacturing processes and composition designs of steels. By considering such tendency, Materials Research Committee of Japan Steel Association carried out a co-operative research on the transformation behavior of steels. Objected steels are mainly high tensile strength steels and tempered steels, and steels for machinery structures. The research was performed on the items, such as the transformation from processed austenite and its properties, transformation and properties of steels with accelerated heating and cooling, and transformation and properties of reheated medium carbon steels. The author discusses the comparison with the transformation from unprocessed austenite, the effects of microalloying elements of Nb, Ti, V,B, etc., the effects of pre-existing textures on the transformation from in-equilibrium state austenite, and the transformation behavior of vainite and martensite in low temperatures. The research was carried out under considering the actual processes of practical use steels. 15 refs., 24 figs., 1 tab.

  8. COMPARATIVE ANALYSIS OF MECHANICAL CHARACTERISTICS OF THE STEELS, APPLIED FOR PRODUCTION OF CHIPPING KNIVES, RECEIVED BY METHODS OF THERMAL AND THERMOMECHANICAL PROCESSINGS

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2014-01-01

    Full Text Available Results of researches of chemical composition of chipping knives of foreign and domestic producers are given in the article. Results of mechanical tests of samples with determination of temporary resistance, percentage elongation, ultimate strength at cross bending, bend from the various tool steels, subjected to heat treatment (tempering and thermomechanical processing with low tempering, are given. Recommendations on use of TO and TMO for investigated steels are given.

  9. Consitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Perdahcioglu, Emin Semih

    2008-01-01

    Metastable austenitic stainless steels combine high formability and high strength, which are generally opposing properties in materials. This property is a consequence of the martensitic phase transformation that takes place during deformation. This transformation is purely mechanically induced

  10. Wear and repair of stainless steel crowns

    National Research Council Canada - National Science Library

    Yilmaz, Y; Kara, N Belduz; Yilmaz, A; Sahin, H

    2011-01-01

    The purpose of this study was to determine the wear of stainless steel crowns (SSCs) in children, and compare the extent of microleakage in SSCs that had been repaired using either a cermet glass-ionomer cement...

  11. Aesthetic coatings for steel bridge components.

    Science.gov (United States)

    2013-11-01

    The effectiveness of aesthetic coating systems for steel bridges was studied. Twelve 2-coat, 3-coat, and duplex : coating systems were selected and subjected to a series of accelerated weathering and mechanical tests to : determine their performance....

  12. Localized Corrosion of Chromium Coated Steel

    NARCIS (Netherlands)

    Zhang, X.; Beentjes, P.; Mol, A.; Terryn, H.

    2006-01-01

    In this paper, we report on the studies of the local corrosion behaviour of chromium-coated ultra low carbon steel in NaCl solution using polarization, electrochemical impedance spectroscopy (EIS) and SVET.

  13. Overview of Steel Slag Application and Utilization

    Directory of Open Access Journals (Sweden)

    Lim J.W.

    2016-01-01

    Full Text Available Significant quantities of steel slag are generated as waste material or byproduct every day from steel industries. Slag is produced from different types of furnaces with different operating conditions. Slag contains Ferrous Oxide, Calcium Oxide, Silica etc. Physical and chemical properties of slag are affected by different methods of slag solidification such as air cooled, steam, and injection of additives. Several material characterization methods, such as X-ray Diffraction (XRD, Scanned Electron Microscopy (SEM and Inductive Coupled Plasma (ICP-OES are used to determine elemental composition in the steel slag. Therefore, slags can become one of the promising materials in various applications such as in transportation industry, construction, cement production, waste water and water treatment. The various applications of steel slag indicate that it can be reused and utilized rather than being disposed to the landfill. This paper presents a review of its applications and utilization.

  14. Universal breakaway steel post for other applications.

    Science.gov (United States)

    2014-04-01

    The Universal Breakaway Steel Post (UBSP) was developed and evaluated to replace the existing Controlled Release : Terminal (CRT) wood posts which were used in the original bullnose guardrail system. Previously, three full-scale crash : tests were pe...

  15. Fatigue in Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    1999-01-01

    Fatigue damage accumulation in steel structures under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series have been carried through on various...... types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel with a yield stress of ~ 360-410 MPa or high-strength steel with a yield stress of ~ 810-1010 MPa. The fatigue tests and the fracture mechanics analyses...... test results. Both the fracture mechanics analysis and the fatigue test results indicate that Miner's rule, which is normally used in the design against fatigue in steel structures, may give results, which are unconservative, and that the validity of the results obtained from Miner's rule will depend...

  16. Strengthening steel bridge girders using CFRP.

    Science.gov (United States)

    2010-06-01

    While traditional retrofitting methods for steel bridge girders could be time consuming and uneconomical, an alternative repair method is suggested using Carbon Fiber Reinforced Polymers (CFRP) laminate strips, providing engineers with a competitive ...

  17. Constitutive modeling of metastable austenitic stainless steel

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Huetink, Han; Khan, A.

    2010-01-01

    A physically based, macroscale constitutive model has been developed that can describe the complex mechanical behavior of metastable austenitic stainless steels. In the developed model a generalized model for the mechanically induced martensitic transformation is introduced. Mechanical tests have

  18. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures.

  19. Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application

    Science.gov (United States)

    2010-03-01

    AFRL-RX-WP-TP-2010-4149 EVALUATION OF DIRECT DIODE LASER DEPOSITED STAINLESS STEEL 316L ON 4340 STEEL SUBSTRATE FOR AIRCRAFT LANDING GEAR...March 2010 – 01 March 2010 4. TITLE AND SUBTITLE EVALUATION OF DIRECT DIODE LASER DEPOSITED STAINLESS STEEL 316L ON 4340 STEEL SUBSTRATE FOR...Code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on

  20. A novel hybrid joining methodology for composite to steel joints

    Science.gov (United States)

    Sarh, Bastian

    This research has established a novel approach for designing, analyzing, and fabricating load bearing structural connections between resin infused composite materials and components made of steel or other metals or alloys. A design philosophy is proposed wherein overlapping joint sections comprised of fiber reinforced plastics (FRP's) and steel members are connected via a combination of adhesive bonding and integrally placed composite pins. A film adhesive is utilized, placed into the dry stack prior to resin infusion and is cured after infusion through either local heat elements or by placing the structure into an oven. The novel manner in which the composite pins are introduced consists of perforating the steel member with holes and placing pre-formed composite pins through them, also prior to resin infusion of the composite section. In this manner joints are co-molded structures such that secondary processing is eliminated. It is shown that such joints blend the structural benefits of adhesive and mechanically connected joints, and that the fabrication process is feasible for low-cost, large-scale production as applicable to the shipbuilding industry. Analysis procedures used for designing such joints are presented consisting of an adhesive joint design theory and a pin placement theory. These analysis tools are used in the design of specimens, specific designs are fabricated, and these evaluated through structural tests. Structural tests include quasi-static loading and low cycle fatigue evaluation. This research has thereby invented a novel philosophy on joints, created the manufacturing technique for fabricating such joints, established simple to apply analysis procedures used in the design of such joints (consisting of both an adhesive and a pin placement analysis), and has validated the methodology through specimen fabrication and testing.