WorldWideScience

Sample records for h13 steel tooling

  1. Thermomechanical modelling of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.

    2018-03-01

    A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.

  2. Laser Cladding of CPM Tool Steels on Hardened H13 Hot-Work Steel for Low-Cost High-Performance Automotive Tooling

    Science.gov (United States)

    Chen, J.; Xue, L.

    2012-06-01

    This paper summarizes our research on laser cladding of high-vanadium CPM® tool steels (3V, 9V, and 15V) onto the surfaces of low-cost hardened H13 hot-work tool steel to substantially enhance resistance against abrasive wear. The results provide great potential for fabricating high-performance automotive tooling (including molds and dies) at affordable cost. The microstructure and hardness development of the laser-clad tool steels so obtained are presented as well.

  3. Effect of the Ultrasonic Nanocrystalline Surface Modification (UNSM on Bulk and 3D-Printed AISI H13 Tool Steels

    Directory of Open Access Journals (Sweden)

    In-Sik Cho

    2017-11-01

    Full Text Available A comparative study of the microstructure, hardness, and tribological properties of two different AISI H13 tool steels—classified as the bulk with no heat treatment steel or the 3D-printed steel—was undertaken. Both samples were subjected to ultrasonic nanocrystalline surface modification (UNSM to further enhance their mechanical properties and improve their tribological behavior. The objective of this study was to compare the mechanical properties and tribological behavior of these tool steels since steel can exhibit a wide variety of mechanical properties depending on different manufacturing processes. The surface hardness of the samples was measured using a micro-Vickers hardness tester. The hardness of the 3D-printed AISI H13 tool steel was found to be much higher than that of the bulk one. The surface morphology of the samples was characterized by electron backscattered diffraction (EBSD in order to analyze the grain size and number of fractions with respect to the misorientation angle. The results revealed that the grain size of the 3D-printed AISI H13 tool steel was less than 0.5 μm, whereas that of the bulk tool steel was greater than 4 μm. The number of fractions of the bulk tool steel was about 0.5 μm at a low misorientation angle, and it decreased gradually with increasing misorientation angle. The low-angle grain boundary (LAGB and high-angle grain boundary (HAGB of the bulk sample were about 21% and 79%, respectively, and those of the 3D-printed sample were about 8% and 92%, respectively. Moreover, the friction and wear behavior of the UNSM-treated AISI H13 tool steel specimen was better than those of the untreated one. This study demonstrated the capability of 3D-printed AISI H13 tool steel to exhibit excellent mechanical and tribological properties for industrial applications.

  4. Hardness of H13 Tool Steel After Non-isothermal Tempering

    Science.gov (United States)

    Nelson, E.; Kohli, A.; Poirier, D. R.

    2018-04-01

    A direct method to calculate the tempering response of a tool steel (H13) that exhibits secondary hardening is presented. Based on the traditional method of presenting tempering response in terms of isothermal tempering, we show that the tempering response for a steel undergoing a non-isothermal tempering schedule can be predicted. Experiments comprised (1) isothermal tempering, (2) non-isothermal tempering pertaining to a relatively slow heating to process-temperature and (3) fast-heating cycles that are relevant to tempering by induction heating. After establishing the tempering response of the steel under simple isothermal conditions, the tempering response can be applied to non-isothermal tempering by using a numerical method to calculate the tempering parameter. Calculated results are verified by the experiments.

  5. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    Science.gov (United States)

    Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania

    2007-05-01

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  6. Evaluation of the mechanical properties of Niobium modified cast AISI H 13 hot work tool steel

    International Nuclear Information System (INIS)

    Noorian, A.; Kheirandish, Sh.; Saghafian, H.

    2010-01-01

    In this research, the effects of partially replacing of vanadium and molybdenum with niobium on the mechanical properties of AISIH 13 hot-work tool steel have been studied. Cast samples made of the modified new steel were homogenized and austenitized at different conditions, followed by tempering at the specified temperature ranges. Hardness, red hardness, three point bending test and Charpy impact test were carried out to evaluate the mechanical properties together with characterizing the microstructure of the modified steel using scanning electron microscope. The results show that niobium addition modifies the cast structure of Nb-alloyed steel, and increases its maximum hardness. It was found that bending strength; bending strain, impact strength, and red hardness of the modified cast steel are also higher than those of the cast H13 steel, and lower than those of the wrought H13 steel.

  7. Thermally-Induced Crack Evaluation in H13 Tool Steel

    Directory of Open Access Journals (Sweden)

    Hassan Abdulrssoul Abdulhadi

    2017-11-01

    Full Text Available This study reported the effect of thermal wear on cylindrical tool steel (AISI H13 under aluminum die-casting conditions. The AISIH13 steels were immersed in the molten aluminum alloy at 700 °C before water-quenching at room temperature. The process involved an alternating heating and cooling of each sample for a period of 24 s. The design of the immersion test apparatus stylistically simulated aluminum alloy dies casting conditions. The testing phase was performed at 1850, 3000, and 5000 cycles. The samples were subjected to visual inspection after each phase of testing, before being examined for metallographic studies, surface crack measurement, and hardness characteristics. Furthermore, the samples were segmented and examined under optical and Scanning Electron Microscopy (SEM. The areas around the crack zones were additionally examined under Energy Dispersive X-ray Spectroscopy (EDXS. The crack’s maximum length and Vickers hardness profiles were obtained; and from the metallographic study, an increase in the number of cycles during the testing phase resulted in an increase in the surface crack formation; suggesting an increase in the thermal stress at higher cycle numbers. The crack length of Region I (spherically shaped was about 47 to 127 µm, with a high oxygen content that was analyzed within 140 µm from the surface of the sample. At 700 °C, there is a formation of aluminum oxides, which was in contact with the surface of the H13 sample. These stresses propagate the thermal wear crack length into the tool material of spherically shaped Region I and cylindrically shape Region II, while hardness parameters presented a different observation. The crack length of Region I was about 32% higher than the crack length of Region II.

  8. Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel

    Science.gov (United States)

    Adesta, E. Y. T.; Avicenna; hilmy, I.; Daud, M. R. H. C.

    2018-01-01

    Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3^4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ae ), and chip load (fz ). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining.

  9. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    Science.gov (United States)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  10. Modeling the Spray Forming of H13 Steel Tooling

    Science.gov (United States)

    Lin, Yaojun; McHugh, Kevin M.; Zhou, Yizhang; Lavernia, Enrique J.

    2007-07-01

    On the basis of a numerical model, the temperature and liquid fraction of spray-formed H13 tool steel are calculated as a function of time. Results show that a preheated substrate at the appropriate temperature can lead to very low porosity by increasing the liquid fraction in the deposited steel. The calculated cooling rate can lead to a microstructure consisting of martensite, lower bainite, retained austenite, and proeutectoid carbides in as-spray-formed material. In the temperature range between the solidus and liquidus temperatures, the calculated temperature of the spray-formed material increases with increasing substrate preheat temperature, resulting in a very low porosity by increasing the liquid fraction of the deposited steel. In the temperature region where austenite decomposition occurs, the substrate preheat temperature has a negligible influence on the cooling rate of the spray-formed material. On the basis of the calculated results, it is possible to generate sufficient liquid fraction during spray forming by using a high growth rate of the deposit without preheating the substrate, and the growth rate of the deposit has almost no influence on the cooling rate in the temperature region of austenite decomposition.

  11. Effects of advanced laser processing on the microstructure and residual stresses of H13 tool steel

    NARCIS (Netherlands)

    Trojan, Karel; Ocelík, Václav; Ganev, Nikolaj; Němeček, Stanislav; Čapek, Jiří

    2017-01-01

    The aim of this paper is to describe the effects of laser processing on the microstructure and residual stresses of laser cladded H13 tool steel on the classical construct steel S355 substrate. This research paper concludes that in this case of laser cladding, phase transformation and not shrinkage

  12. Parametric Investigation of Diode and CO2 Laser in Direct Metal Deposition of H13 Tool Steel on Copper Substrate

    OpenAIRE

    M. Khalid Imran; Syed Masood; Milan Brandt; Sudip Bhattacharya; Jyotirmoy Mazumder

    2011-01-01

    In the present investigation, H13 tool steel has been deposited on copper alloy substrate using both CO2 and diode laser. A detailed parametric analysis has been carried out in order to find out optimum processing zone for coating defect free H13 tool steel on copper alloy substrate. Followed by parametric optimization, the microstructure and microhardness of the deposited clads have been evaluated. SEM micrographs revealed dendritic microstructure in both clads. However,...

  13. Influence of the ion nitriding temperature in the wear resistance of AISI H13 tool steel

    International Nuclear Information System (INIS)

    Heck, Stenio Cristaldo; Fernandes, Frederico Augusto Pires; Pereira, Ricardo Gomes; Casteletti, Luiz Carlos; Totten, George Edward

    2010-01-01

    The AISI H13 tool steel for hot work is the most used in its category. This steel was developed for injection molds and extrusion of hot metals as well as for conformation in hot presses and hammers. Plasma nitriding can improve significantly the surface properties of these steels, but the treatments conditions, such as temperature, must be optimized. In this work the influence of nitriding treatment temperature on the wear behavior of this steel is investigated. Samples of AISI H13 steel were quenched and tempered and then ion nitrided in the temperatures of 450, 550 and 650 deg C, at 4mbar pressure, during 5 hours. Samples of the treated material were characterized by optical microscopy, Vickers microhardness, x-ray analysis and wear tests. Plasma nitriding formed hard diffusion zones in all the treated samples. White layers were formed in samples treated at 550 deg C and 650 deg C. The treatment temperature of 450 deg C produced the highest hardness. Treatment temperature showed great influence in the diffusion layer thickness. X-ray analysis indicated the formation of the Fe_3N, Fe_4N and CrN phases for all temperatures, but with different concentrations. Nitriding increased significantly the AISI H13 wear resistance. (author)

  14. Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts

    Science.gov (United States)

    Mertens, R.; Vrancken, B.; Holmstock, N.; Kinds, Y.; Kruth, J.-P.; Van Humbeeck, J.

    Powder bed preheating is a promising development in selective laser melting (SLM), mainly applied to avoid large thermal stresses in the material. This study analyses the effect of in-process preheating on microstructure, mechanical properties and residual stresses during SLM of H13 tool steel. Sample parts are produced without any preheating and are compared to the corresponding parts made with preheating at 100°, 200°, 300°, and 400°C. Interestingly, internal stresses at the top surface of the parts evolve from compressive (-324MPa) without preheating to tensile stresses (371MPa) with preheating at 400°C. Nevertheless, application of powder bed preheating results in a more homogeneous microstructure with better mechanical properties compared to H13 SLM parts produced without preheating. The fine bainitic microstructure leads to hardness values of 650-700Hv and ultimate tensile strength of 1965MPa, which are comparable to or even better than those of conventionally made and heat treated H13 tool steel.

  15. Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel

    Science.gov (United States)

    Koneshlou, Mahdi; Meshinchi Asl, Kaveh; Khomamizadeh, Farzad

    2011-01-01

    This paper focuses on the effects of low temperature (subzero) treatments on microstructure and mechanical properties of H13 hot work tool steel. Cryogenic treatment at -72 °C and deep cryogenic treatment at -196 °C were applied and it was found that by applying the subzero treatments, the retained austenite was transformed to martensite. As the temperature was decreased more retained austenite was transformed to martensite and it also led to smaller and more uniform martensite laths distributed in the microstructure. The deep cryogenic treatment also resulted in precipitation of more uniform and very fine carbide particles. The microstructural modification resulted in a significant improvement on the mechanical properties of the H13 tool steel.

  16. Effects of advanced laser processing on the microstructure and residual stresses of H13 tool steel

    OpenAIRE

    Trojan, Karel; Ocelík, Václav; Ganev, Nikolaj; Němeček, Stanislav; Čapek, Jiří

    2017-01-01

    The aim of this paper is to describe the effects of laser processing on the microstructure and residual stresses of laser cladded H13 tool steel on the classical construct steel S355 substrate. This research paper concludes that in this case of laser cladding, phase transformation and not shrinkage is likely to be a dominant effect on the formation of compressive residual stresses along the clad. Furthermore, martensitic structure and unequal concentration of alloying elements was observed on...

  17. Influence of cooling rate on phase formation in spray-formed H13 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, K.M. [Industrial Technology Department, Idaho National Laboratory, Idaho Falls, ID 83415-2050 (United States)], E-mail: kevin.mchugh@inl.gov; Lin, Y.; Zhou, Y.; Lavernia, E.J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2008-03-25

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies, and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern's features. The pattern is removed and the die insert is mounted in a standard mold base or holding block. This approach results in significant cost and lead-time savings compared to conventional machining. Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life compared to conventional dies of the same material and design. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die's properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate during spray processing and heat treatment of H13 tool steel influences phase formation. Porosity and hardness were evaluated over a range of deposit cooling rates and residual stresses were evaluated for a die in the as-deposited condition. Finally, the performance of spray-formed dies during production runs in forging, extrusion, and die casting is described.

  18. Influence of cooling rate on phase formation in spray-formed H13 tool steel

    International Nuclear Information System (INIS)

    McHugh, K.M.; Lin, Y.; Zhou, Y.; Lavernia, E.J.

    2008-01-01

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies, and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern's features. The pattern is removed and the die insert is mounted in a standard mold base or holding block. This approach results in significant cost and lead-time savings compared to conventional machining. Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life compared to conventional dies of the same material and design. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die's properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate during spray processing and heat treatment of H13 tool steel influences phase formation. Porosity and hardness were evaluated over a range of deposit cooling rates and residual stresses were evaluated for a die in the as-deposited condition. Finally, the performance of spray-formed dies during production runs in forging, extrusion, and die casting is described

  19. Two dimensional finite element thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2016-10-01

    A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.

  20. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.

    2016-04-01

    This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.

  1. Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steel

    International Nuclear Information System (INIS)

    Basso, Rodrigo L.O.; Pastore, Heloise O.; Schmidt, Vanessa; Baumvol, Israel J.R.; Abarca, Silvia A.C.; Souza, Fernando S. de; Spinelli, Almir; Figueroa, Carlos A.; Giacomelli, Cristiano

    2010-01-01

    The effect of pulsed plasma nitriding temperature and time on the pitting corrosion behaviour of AISI H13 tool steel in 0.9% NaCl solutions was investigated by cyclic polarization. The pitting potential (E pit ) was found to be dependent on the composition, microstructure and morphology of the surface layers, whose properties were determined by X-ray diffraction and scanning electron microscopy techniques. The best corrosion protection was observed for samples nitrided at 480 o C and 520 o C. Under such experimental conditions the E pit -values shifted up to 1.25 V in the positive direction.

  2. Conversion electron Moessbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    International Nuclear Information System (INIS)

    Terwagne, G.; Hutchings, R.

    1994-01-01

    Conversion electron Moessbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI 3 ) at 350 C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ε-Fe 2 N through ε-Fe 3 N to γ'-Fe 4 N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone. (orig.)

  3. Some mechanical properties of borided AISI H13 and 304 steels

    International Nuclear Information System (INIS)

    Taktak, Sukru

    2007-01-01

    In the present study, mechanical properties of borides formed on AISI H13 hot work tool and AISI 304 stainless steels have been investigated. Both steels have high chromium content and have a widespread use in the engineering application. Boriding treatment was carried out in slurry salt bath consisting of borax, boric acid, and ferrosilicon at temperature range of 800-950 deg. C for 3, 5, and 7 h. X-ray diffraction analysis of boride layers on the surface of steels revealed various peaks of FeB, Fe 2 B, CrB, and Ni 3 B. Metallographic studies showed that the boride layer has a flat and smooth morphology in the 304 steel while H13 steel was a ragged morphology. The characterization of the boride layer is also carried out by means of the micro-hardness, surface roughness, adhesion, and fracture toughness studies

  4. Conversion electron Mössbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    Science.gov (United States)

    Terwagne, G.; Collins, G. A.; Hutchings, R.

    1994-12-01

    Conversion electron Mössbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI3) at 350 °C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ɛ-Fe2N through ɛ-Fe3N to γ'-Fe4N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone.

  5. Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet

    OpenAIRE

    Wang, Dan; Li, Heng; Yang, He; Ma, Jun; Li, Guangjun

    2014-01-01

    The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 tools and Ti–6Al–4V titanium alloy sheet would cause difficulty in guaranteeing forming quality. Surface modification may be used to control the level of friction force, reduce the friction wear and extend the service life of dies. In this paper, four surface modification methods (c...

  6. Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel

    Science.gov (United States)

    Çiçek, Adem; Kara, Fuat; Kıvak, Turgay; Ekici, Ergün; Uygur, İlyas

    2015-11-01

    In this study, a number of wear and tensile tests were performed to elucidate the effects of deep cryogenic treatment on the wear behavior and mechanical properties (hardness and tensile strength) of AISI H13 tool steel. In accordance with this purpose, three different heat treatments (conventional heat treatment (CHT), deep cryogenic treatment (DCT), and deep cryogenic treatment and tempering (DCTT)) were applied to tool steel samples. DCT and DCTT samples were held in nitrogen gas at -145 °C for 24 h. Wear tests were conducted on a dry pin-on-disk device using two loads of 60 and 80 N, two sliding velocities of 0.8 and 1 m/s, and a wear distance of 1000 m. All test results showed that DCT improved the adhesive wear resistance and mechanical properties of AISI H13 steel. The formation of small-sized and uniformly distributed carbide particles and the transformation of retained austenite to martensite played an important role in the improvements in the wear resistance and mechanical properties. After cleavage fracture, the surfaces of all samples were characterized by the cracking of primary carbides, while the DCT and DCTT samples displayed microvoid formation by decohesion of the fine carbides precipitated during the cryo-tempering process.

  7. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    Science.gov (United States)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  8. Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet

    Directory of Open Access Journals (Sweden)

    Wang Dan

    2014-08-01

    Full Text Available The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 tools and Ti–6Al–4V titanium alloy sheet would cause difficulty in guaranteeing forming quality. Surface modification may be used to control the level of friction force, reduce the friction wear and extend the service life of dies. In this paper, four surface modification methods (chromium plating, TiAlN coating, surface polishing and nitriding treatment were applied to the H13 surfaces. Taking the coefficient of friction (CoF and the wear degree as evaluation indicators, the high-temperature tribological behavior of the surface modified H13 steel was experimentally investigated under different tribological conditions. The results of this study indicate that the tribological properties of the TiAlN coating under dry friction condition are better than the others for a wide range of temperature (from room temperature to 500 °C, while there is little difference of tribological properties between different surface modifications under graphite lubricated condition, and the variation law of CoF with temperature under graphite lubricated is opposite to that under the dry friction.

  9. Effects of heat treatment on mechanical properties of h13 steel

    Science.gov (United States)

    Guanghua, Yan; Xinmin, Huang; Yanqing, Wang; Xingguo, Qin; Ming, Yang; Zuoming, Chu; Kang, Jin

    2010-12-01

    Heat treatment on the mechanical properties of H13 hot working die steel for die casting is discussed. The H13 steel for die casting was treated by different temperatures of vacuum quenching, tempering, and secondary tempering to investigate its mechanical properties. Strength, plasticity, hardness, and impact toughness of the H13 hot working die steel for die casting were measured. Microstructure, grain size, and carbide particle size after heat treatment have a great impact on the mechanical properties of H13 hot working die steel for die casting. The microstructure of the H13 was analyzed by scanning electron microscopy (SEM) and by a metallographic microscope. It is found that H13 exhibits excellent mechanical properties after vacuum quenching at 1050°C and twice tempering at 600°C.

  10. Optimization and Simulation of SLM Process for High Density H13 Tool Steel Parts

    Science.gov (United States)

    Laakso, Petri; Riipinen, Tuomas; Laukkanen, Anssi; Andersson, Tom; Jokinen, Antero; Revuelta, Alejandro; Ruusuvuori, Kimmo

    This paper demonstrates the successful printing and optimization of processing parameters of high-strength H13 tool steel by Selective Laser Melting (SLM). D-Optimal Design of Experiments (DOE) approach is used for parameter optimization of laser power, scanning speed and hatch width. With 50 test samples (1×1×1cm) we establish parameter windows for these three parameters in relation to part density. The calculated numerical model is found to be in good agreement with the density data obtained from the samples using image analysis. A thermomechanical finite element simulation model is constructed of the SLM process and validated by comparing the calculated densities retrieved from the model with the experimentally determined densities. With the simulation tool one can explore the effect of different parameters on density before making any printed samples. Establishing a parameter window provides the user with freedom for parameter selection such as choosing parameters that result in fastest print speed.

  11. Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes

    Science.gov (United States)

    Aqida, S. N.; Naher, S.; Brabazon, D.

    2011-05-01

    This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.

  12. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    Science.gov (United States)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv

    2007-04-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  13. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    International Nuclear Information System (INIS)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, Jose C.; Shivpuri, Rajiv

    2007-01-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change

  14. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Maziar Ramezani

    2015-04-01

    Full Text Available Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric control, heat treatment with stainless steel foil wrapping, pack carburization heat treatment and vacuum heat treatment. The results showed that stainless steel foil wrapping could restrict decarburization process, resulting in a constant hardness profile as vacuum heat treatment does. However, the tempering characteristic between these two heat treatment methods is different. Results from the gas nitrided samples showed that the thickness and the hardness of the nitrided layer is independent of the carbon content in H13 steel.

  15. Effect of biomimetic non-smooth unit morphology on thermal fatigue behavior of H13 hot-work tool steel

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Cong, Dalong; Wang, Chuanwei; Zhang, Peng; Zhang, Zhihui; Ren, Luquan

    2012-06-01

    The thermal fatigue behavior of hot-work tool steel processed by a biomimetic coupled laser remelting process gets a remarkable improvement compared to untreated sample. The 'dowel pin effect', the 'dam effect' and the 'fence effect' of non-smooth units are the main reason of the conspicuous improvement of the thermal fatigue behavior. In order to get a further enhancement of the 'dowel pin effect', the 'dam effect' and the 'fence effect', this study investigated the effect of different unit morphologies (including 'prolate', 'U' and 'V' morphology) and the same unit morphology in different sizes on the thermal fatigue behavior of H13 hot-work tool steel. The results showed that the 'U' morphology unit had the optimum thermal fatigue behavior, then the 'V' morphology which was better than the 'prolate' morphology unit; when the unit morphology was identical, the thermal fatigue behavior of the sample with large unit sizes was better than that of the small sizes.

  16. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  17. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    International Nuclear Information System (INIS)

    Šafka, J; Ackermann, M; Voleský, L

    2016-01-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample. (paper)

  18. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    Science.gov (United States)

    Šafka, J.; Ackermann, M.; Voleský, L.

    2016-04-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.

  19. High Power Picosecond Laser Surface Micro-texturing of H13 Tool Steel and Pattern Replication onto ABS Plastics via Injection Moulding

    Science.gov (United States)

    Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu

    2016-03-01

    H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.

  20. Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate: Parametric Investigation

    Science.gov (United States)

    Imran, M. Khalid; Masood, S. H.; Brandt, Milan

    2015-12-01

    Over the past decade, researchers have demonstrated interest in tribology and prototyping by the laser aided material deposition process. Laser aided direct metal deposition (DMD) enables the formation of a uniform clad by melting the powder to form desired component from metal powder materials. In this research H13 tool steel has been used to clad on a copper alloy substrate using DMD. The effects of laser parameters on the quality of DMD deposited clad have been investigated and acceptable processing parameters have been determined largely through trial-and-error approaches. The relationships between DMD process parameters and the product characteristics such as porosity, micro-cracks and microhardness have been analysed using scanning electron microscope (SEM), image analysis software (ImageJ) and microhardness tester. It has been found that DMD parameters such as laser power, powder mass flow rate, feed rate and focus size have an important role in clad quality and crack formation.

  1. Atomic diffusion in laser surface modified AISI H13 steel

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-07-01

    This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.

  2. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    Science.gov (United States)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  3. Electrochemical and wear behavior of niobium-vanadium carbide coatings produced on AISI H13 tool steel through thermo-reactive deposition/diffusion

    International Nuclear Information System (INIS)

    Castillejo Nieto, Fabio Enrique; Olaya Flores, Jhon Jairo; Alfonso Orjuela, Jose Edgar

    2016-01-01

    We deposited of niobium-vanadium carbide coatings on tool steel AISI H13 using the thermo-reactive substrates deposition/diffusion (TRD) technique. The carbides were obtained using salt baths composed of molten borax, ferroniobium, vanadium and aluminum, by heating this mixture at 1020°C for 4 hours. The coatings were characterized morphologically via electron microscopy scanning (SEM), the chemical surface composition was determined through X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX); the crystal structure was analyzed using x-ray diffraction (XRD), the mechanical properties of the coatings were evaluated using nano-indentation, The tribological properties of the coatings obtained were determined using a Pin-on-disk tribometer and the electrochemical behavior was studied through potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that the hardness of the coated steel increased four times with respect to uncoated steel, and the electrochemical test established that the corrosion current is lower by one order of magnitude for coated steel

  4. The effect of deep cryogenic treatments on the mechanical properties of an AISI H13 steel

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Marcos, E-mail: marcosperezrd@gmail.com; Belzunce, Francisco Javier

    2015-01-29

    Cryogenic treatments are considered a good way to reduce the retained austenite content and improve the performance of tool steels. Four different heat treatments, two of which included a deep cryogenic stage, were applied in this study to an H13 tool steel, subsequently determining its mechanical properties by means of tensile, hardness and fracture toughness tests. Furthermore, scanning electron microscopy and X-ray diffraction analysis were performed to gain an insight into the microstructural evolution of these heat treatments during all the stages. It was concluded that the application of a deep cryogenic treatment to H13 steel induces higher thermal stresses and structural defects, producing a dispersed network of fine carbides after the subsequent tempering stages, which were responsible for a significant improvement in the fracture toughness of this steel without modifying other mechanical properties. Although the application of a deep cryogenic treatment reduces the retained austenite content, there is a minimum innate content which cannot be transformed by heat treatment. Nevertheless, this austenite is hence believed to be stable enough and should not transform during the normal service life of forging dies.

  5. The effect of deep cryogenic treatments on the mechanical properties of an AISI H13 steel

    International Nuclear Information System (INIS)

    Pérez, Marcos; Belzunce, Francisco Javier

    2015-01-01

    Cryogenic treatments are considered a good way to reduce the retained austenite content and improve the performance of tool steels. Four different heat treatments, two of which included a deep cryogenic stage, were applied in this study to an H13 tool steel, subsequently determining its mechanical properties by means of tensile, hardness and fracture toughness tests. Furthermore, scanning electron microscopy and X-ray diffraction analysis were performed to gain an insight into the microstructural evolution of these heat treatments during all the stages. It was concluded that the application of a deep cryogenic treatment to H13 steel induces higher thermal stresses and structural defects, producing a dispersed network of fine carbides after the subsequent tempering stages, which were responsible for a significant improvement in the fracture toughness of this steel without modifying other mechanical properties. Although the application of a deep cryogenic treatment reduces the retained austenite content, there is a minimum innate content which cannot be transformed by heat treatment. Nevertheless, this austenite is hence believed to be stable enough and should not transform during the normal service life of forging dies

  6. Temperature and composition profile during double-track laser cladding of H13 tool steel

    Science.gov (United States)

    He, X.; Yu, G.; Mazumder, J.

    2010-01-01

    Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.

  7. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    Science.gov (United States)

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  8. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    Directory of Open Access Journals (Sweden)

    Massimo Pellizzari

    2016-06-01

    Full Text Available Hot work tool steel (AISI H13 and high speed steel (AISI M3:2 powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM. Near full density samples (>99.5% showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS. The density of the blends (20, 40, 60, 80 wt % H13 was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  9. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  10. Tool Wear and Formation Mechanism of White Layer When Hard Milling H13 Steel under Different Cooling/Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Song Zhang

    2014-04-01

    Full Text Available The present work aims at revealing the formation mechanism of white layer and understanding the effects of tool wear and cooling/lubrication condition on white layer when hard milling H13 steel with coated cutting tools. Hard milling experiments were carried out, and tool wear and its effect on formation of white layer were investigated. Compared to dry cutting condition, CMQL (cryogenic minimum quantity lubrication technique can obviously reduce tool wear and prolong tool life owing to its good cooling and lubrication properties. The optical images of the subsurface materials indicate that the formation of white layer is related to tool wear; moreover, the thickness of white layer increases with the increase of tool wear. SEM (scanning electron microscope images and XRD (X-ray diffraction analysis confirm that the formation of white layer is mainly due to the mechanical effect rather than the thermal effect. It also proves that white layer is partly decreased or can be totally eliminated by optimizing process parameters under CMQL cutting condition. CMQL technique has the potential to be used for achieving prolonged tool life and enhanced surface integrity.

  11. Partial substitution of vanadium by niobium in AISI H13 steel

    International Nuclear Information System (INIS)

    Itman Filho, A.; Balancin, O.

    1987-01-01

    The aim of this work was to study the tempering resistence in conditions of use of the AISI H13 steel, after partial substitution of vanadium by niobium. Four alloys of this steel were elaborated and in three of them the niobim was added in the contents of 0,2; 0,5 and 1,0%. Metallographic techniques were performed to compare qualitatively the niobium effect in several processing and thermal analisys of the steels. Grain size measurements were made after austenitization of the steels, hardness measurements in prepared samples were made after quenching and tempering, tensile testing at elevated temperature was investigated and yield strength, reduction of area after steel breaking and elongation were calculated. After these studies it was possible to certify that the partial substitution of vanadium by niobium did not alter significantly the basic mechanical properties of the AISI H13. (Author) [pt

  12. A Method Based on Semi-Solid Forming for Eliminating Coarse Dendrites and Shrinkage Porosity of H13 Tool Steel

    Directory of Open Access Journals (Sweden)

    Yifeng Guo

    2018-04-01

    Full Text Available A method called forging solidifying metal (FSM, which is applied for eliminating coarse dendrites and shrinkage porosity defects of ferrous alloys was proposed based on semi-solid forming technology (SSF. To verify its feasibility, the effects of liquid fraction (FL on the microstructure of the deformed H13 steel were investigated experimentally. The coarse dendrites structure still existed and cracks appeared when the 0.1/s 50% FSM method was carried out at ~20% FL. What is significantly different from that is, the elimination of the coarse dendrites structure and shrinkage porosity defects became more significant, when this method was conducted at the end of solidification (FL < 10%. The microstructure of H13 steel was significantly refined and also became dense in such condition.

  13. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  14. Mechanism of improvement on strength and toughness of H13 die steel by nitrogen

    International Nuclear Information System (INIS)

    Li, Jing-Yuan; Chen, Yu-Lai; Huo, Jian-Hua

    2015-01-01

    The mechanism of nitrogen addition to AISI H13 die steel is proposed and supported using thermodynamic calculations in addition to observed changes in precipitate, microstructure, crystal structure, and macroproperties. The results indicate that the average impact toughness ak of the novel nitrogen H13 steel is maximally 17.6 J cm −2 and minimally 13.4 J cm −2 . These values result in die steel that reaches premium grade and approximate the superior grade as specified in NADCA#207-2003, additionally the hardness is improved 3–5HRC. Experimental findings indicate that the residual V(C,N) particles undissolved during nitrogen H13 steel austenitizing by quenching helps to suppress growth of original austenitic crystal grains, this in turn results in finer martensitic structures after quenching. In the subsequent tempering process all N atoms are dissolved in the solid state matrix a result of C atoms displacing N atoms in V(C,N). Solid dissolution of N atoms produces a distorted lattice of Fe matrix which results in an increase in the hardness of the steel. Additionally this displacement reaction is important for slow growth of secondary particles in nitrogen H13 steel during the tempering process which helps to increase impact toughness compared to its nitrogen-free counterpart given the same condition of heat-treatment

  15. Determination of type, magnitude and direction of residual stresses generated in the welding of AISI H-13 steel with the hole drilling method

    International Nuclear Information System (INIS)

    Mejia; I; Maldonado, C; Bedolla, A; Velez, M; Medina, A; Bejar, L

    2006-01-01

    AISI H-13 steel is considered to be a highly ultra resistant steel because its resistance to stress surpasses 1380 MPa. This steel is widely used in tools that heavily used, especially under high temperatures, such as: awls, molds for pressing, extrusion dies, extrusion tools from heat impact, tools for producing screws, bolts, rivets and taps, molds for centrifugal smelting, tools for presses with shaped pieces, knives for hot cutting, among others. The weldability of AISI H-13 steel is generally poor, but it is possible if the proper precautions are taken. Cracking is perhaps the factor that most limits the weldability of AISI H-13 steel. The tendency to crack during welding for this type of steel occurs in the base metal and the zone close to the supporting material (cold cracking). The interlayer covering technique is used in the repair, welding and recovery of pieces of high alloy steels in order to avoid cracking and to lower the residual stresses generated by obstructed contraction and martensitic transformation. This work defined the type, magnitude and direction of residual stresses at different distances starting from the center of the welded union on the 25.4 mm thick AISI H-13 steel sheet. The welding was carried out in a test piece with Y-Groove geometry following JIS Z 3158 standard, using the SMAW process and an AISI 312 stainless steel interlayer between the base metal and the supporting metal. The hole-drilling method was used to measure the type, magnitude and direction of residual stresses using extensometric gauge rosette CEA-06-062UM-120 and CEA-06-062RE-120 following the guidelines established by ASTM E 837 standard. Based on the relaxed deformations that were measured, the type, magnitude and direction of residual stresses were determined with the H-DRILL residual stress program for biaxial condition. The results indicate that under these welding conditions the residual strains at different distances from the welded union are from stress and

  16. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    OpenAIRE

    Ramezani, Maziar; Pasang, Timotius; Chen, Zhan; Neitzert, Thomas; Au, Dominique

    2015-01-01

    Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric contro...

  17. An investigation of phase transformation and crystallinity in laser surface modified H13 steel

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-03-01

    This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.

  18. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    Science.gov (United States)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  19. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    OpenAIRE

    José Britti Bacalhau; Fernanda Moreno Rodrigues; Rafael Agnelli Mesquita

    2014-01-01

    Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition ...

  20. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    Directory of Open Access Journals (Sweden)

    José Britti Bacalhau

    2014-06-01

    Full Text Available Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition on the nitriding response have been evaluated. From forged steel bars, Charpy impact test and characterization via EPMA have been conducted. The proposed contents of Cr, Mo, and Al have attributed to the new VEX grade a much better tempering resistance than H13, as well as a deeper and harder nitrided layer. Due to the unique characteristics, this new steel provides an interesting alternative to the aluminum extrusion companies to increase their competitiveness.

  1. Effects of Rare Earth on the Microstructure and Impact Toughness of H13 Steel

    OpenAIRE

    Gao, Jinzhu; Fu, Paixian; Liu, Hongwei; Li, Dianzhong

    2015-01-01

    Studies of H13 steel suggest that under appropriate conditions, additions of rare-earth metals (REM) can significantly enhance mechanical properties, such as impact toughness. This improvement is apparently due to the formation of finer and more dispersive RE inclusions and grain refinement after REM additions. In this present work, the microstructure evolution and mechanical properties of H13 steel with rare earth additions (0, 0.015, 0.025 and 0.1 wt.%) were investigated. The grain size, ...

  2. The Characteristics and Generating Mechanism of Large Precipitates in Ti-Containing H13 Tool Steel

    Science.gov (United States)

    Xie, You; Cheng, Guoguang; Chen, Lie; Zhang, Yandong; Yan, Qingzhong

    2017-02-01

    The characteristics of large precipitates in H13 tool steel with 0.015wt% Ti were studied. The result shows that three types of phases larger than 1 μm exist in the as-cast ingot, that is, (Ti, V) (C, N) type phase, (V, Mo, Cr)C type phase and sulfide. (Ti, V) (C, N) type phase could be further classified as the homogeneous Ti-rich one and the Ti-V-rich one in which Ti/V ratio gradually changes. (V, Mo, Cr)C type phase contains the V-rich one and the Mo-Cr-rich one. The compositional characteristics in all of them have little relation with the cutting position or cooling rate. The precipitating process could be well described through calculation by Thermo-Calc software. During solidification, the primary phase (Ti, V)(C, N) first starts to precipitate in the form of Ti-rich carbonitride. With the development of solidification, the ratio of Ti decreases and that of V increases. Then the primary phase Ti-V-rich (Ti, V)(C, N) and V-rich (V, Mo, Cr)C appears successively. Mo-Cr-rich (V, Mo, Cr)C phase does not precipitate until the solidification process reaches to the end. Sulfide precipitates before (V, Mo, Cr)C type phase and it could act as the nucleus of (V, Mo, Cr)C.

  3. Process Optimization of EDM Cutting Process on Tool Steel using Zinc Coated Electrode

    Directory of Open Access Journals (Sweden)

    Hanizam H.

    2017-01-01

    Full Text Available In WEDM machining process, surface finish quality depends on intensity and duration of spark plasma. Electrode wire diameter has significant effect on the spark intensity and yet the studies on this matter still less. Therefore, the main objectives of this studies are to compare the different diameters of zinc coated and uncoated brass electrode on H13 tool steel surface roughness. The experiments were conducted on Sodick VZ300L WEDM and work piece material of tool steel AISI H13 block. Electrode of zinc coated brass with diameters of 0.1 mm, 0.2 mm, 0.25 mm and uncoated brass 0.2 mm were used. The surface roughness of cutting was measured using the SUR-FTEST SJ-410 Mitutoyo, surface roughness tester. The results suggest that better surface roughness quality can be achieved through smaller electrode wire diameter. The zinc coated improves flushing ability and sparks intensity resulting in better surface finish of H13 tool steel. New alloys and coating materials shall be experimented to optimized the process further.

  4. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    Science.gov (United States)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  5. Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Additively Manufactured AISI H13 Tool Steel

    Science.gov (United States)

    Chen, ChangJun; Yan, Kai; Qin, Lanlan; Zhang, Min; Wang, Xiaonan; Zou, Tao; Hu, Zengrong

    2017-11-01

    The effect of heat treatment on microstructure and mechanical properties (microhardness, wear resistance and impact toughness) of laser additively manufactured AISI H13 tool steel was systemically investigated. To understand the variation of microstructure and mechanical properties under different heat treatments, the as-deposited samples were treated at 350, 450, 550, 600 and 650 °C/2 h, respectively. Microstructure and phase transformation were investigated through optical microscopy, scanning electron microscope and transmission electron microscope. The mechanical properties were characterized by nanoindentation tests, Charpy tests and high-temperature wear tests. The microstructure of as-deposited samples consisted of martensite, ultrafine carbides and retained austenite. After the tempering treatment, the martensite was converted into tempered martensite and some fine alloy carbides which precipitated in the matrix. When treated at 550 °C, the greatest hardness and nanohardness were 600 HV0.3 and 6119.4 MPa due to many needle-like carbides precipitation. The value of hardness increased firstly and then decreased when increasing the temperature. When tempered temperatures exceeded 550 °C, the carbides became coarse, and martensitic matrix recrystallized at the temperature of 650 °C. The least impact energy was 6.0 J at a temperature of 550 °C. Samples tempered at 550 °C had larger wear volume loss than that of others. Wear resistances of all samples under atmospheric condition at 400 °C showed an oxidation mechanism.

  6. The effects of annealing temperature and cooling rate on carbide precipitation behavior in H13 hot-work tool steel

    International Nuclear Information System (INIS)

    Kang, Minwoo; Park, Gyujin; Jung, Jae-Gil; Kim, Byung-Hoon; Lee, Young-Kook

    2015-01-01

    Highlights: • Unexpected Mo carbides formed during slow cooling from low annealing temperatures. • Mo carbides formed during the migration of Mo for a transition of Cr-rich carbide. • Mo carbides were precipitated at the boundaries of M 7 C 3 carbides and ferrite grains. • Annealing conditions for the precipitation of Mo carbides were discussed. - Abstract: The precipitation behavior of H13 hot-work tool steel was investigated as a function of both annealing temperature and cooling rate through thermodynamic calculations and microstructural analyses using transmission and scanning electron microscope and a dilatometer. The V-rich MC carbide and Cr-rich M 7 C 3 and M 23 C 6 carbides were observed in all annealed specimens regardless of annealing and cooling conditions, as expected from an equilibrium phase diagram of the steel used. However, Mo-rich M 2 C and M 6 C carbides were unexpectedly precipitated at a temperature between 675 °C and 700 °C during slow cooling at a rate of below 0.01 °C/s from the annealing temperatures of 830 °C and below. The solubility of Mo in both M 7 C 3 and ferrite reduces with decreasing temperature during cooling. Mo atoms diffuse out of both M 7 C 3 and ferrite, and accumulate locally at the interface between M 7 C 3 and ferrite. Mo carbides were form at the interface of M 7 C 3 carbides during the transition of Cr-rich M 7 C 3 to stable M 23 C 6

  7. Heat Treatment Optimization and Properties Correlation for H11-Type Hot-Work Tool Steel

    Science.gov (United States)

    Podgornik, B.; Puš, G.; Žužek, B.; Leskovšek, V.; Godec, M.

    2018-02-01

    The aim of this research was to determine the effect of vacuum-heat-treatment process parameters on the material properties and their correlations for low-Si-content AISI H11-type hot-work tool steel using a single Circumferentially Notched and fatigue Pre-cracked Tensile Bar (CNPTB) test specimen. The work was also focused on the potential of the proposed approach for designing advanced tempering diagrams and optimizing the vacuum heat treatment and design of forming tools. The results show that the CNPTB specimen allows a simultaneous determination and correlation of multiple properties for hot-work tool steels, with the compression and bending strength both increasing with hardness, and the strain-hardening exponent and bending strain increasing with the fracture toughness. On the other hand, the best machinability and surface quality of the hardened hot-work tool steel are obtained for hardness values between 46 and 50 HRC and a fracture toughness below 60 MPa√m.

  8. Tool steel ion beam assisted nitrocarburization

    International Nuclear Information System (INIS)

    Zagonel, L.F.; Alvarez, F.

    2007-01-01

    The nitrocarburization of the AISI-H13 tool steel by ion beam assisted deposition is reported. In this technique, a carbon film is continuously deposited over the sample by the ion beam sputtering of a carbon target while a second ion source is used to bombard the sample with low energy nitrogen ions. The results show that the presence of carbon has an important impact on the crystalline and microstructural properties of the material without modification of the case depth

  9. Comparison of surface roughness and chip characteristics obtained under different modes of lubrication during hard turning of AISI H13 tool work steel.

    Science.gov (United States)

    Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.

    2016-09-01

    Surface roughness is one of the important parameters, which not only affects the service life of a component but also serves as a good index of machinability. Near Dry Machining, methods (NDM) are considered as sustainable alternative for workshops trying to bring down their dependence on cutting fluids and the hazards associated with their indiscriminate usage. The present work presents a comparison of the surface roughness and chip characteristics during hard turning of AISI H13 tool work steel using hard metal inserts under two popular NDM techniques namely the minimal fluid application and the Minimum Quantity Lubrication technique(MQL) using an experiment designed based on Taguchi's techniques. The statistical method of analysis of variance (ANOVA) was used to determine the relative significance of input parameters consisting of cutting speed, feed and depth of cut on the attainable surface finish and the chip characteristics. It was observed that the performance during minimal fluid application was better than that during MQL application.

  10. Effect of laser absorption on picosecond laser ablation of Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide

    Science.gov (United States)

    Wu, Baoye; Liu, Peng; Wang, Xizhao; Zhang, Fei; Deng, Leimin; Duan, Jun; Zeng, Xiaoyan

    2018-05-01

    Due to excellent properties, Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide are widely used in industry. In this paper, the effect of absorption of laser light on ablation efficiency and roughness have been studied using a picosecond pulse Nd:YVO4 laser. The experimental results reveal that laser wavelength, original surface roughness and chemical composition play an important role in controlling ablation efficiency and roughness. Firstly, higher ablation efficiency with lower surface roughness is achieved on the ablation of 9Cr18 at 532, comparing with 1064 nm. Secondly, the ablation efficiency increases while the Ra of the ablated region decreases with the decrease of original surface roughness on ablation of Cr12MoV mold steel at 532 nm. Thirdly, the ablation efficiency of H13A cemented carbide is much higher than 9Cr18 stainless steel and Cr12MoV mold steel at 1064 nm. Scanning electron microscopy images reveals the formation of pores on the surface of 9Cr18 stainless steel and Cr12MoV mold steel at 532 nm while no pores are formed at 1064 nm. As to H13A cemented carbide, worm-like structure is formed at 1064 nm. The synergetic effects of the heat accumulation, plasma shielding and ablation threshold on laser ablation efficiency and machining quality were analyzed and discussed systematically in this paper.

  11. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    Science.gov (United States)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  12. The relationship of cutting force with hole quality in drilling process of AISI H13 steel

    Directory of Open Access Journals (Sweden)

    Tekaüt İsmail

    2017-01-01

    Full Text Available The harmony of the drilling machine-cutting tool-work piece is very important for producing the machine part with the ideal dimensions. For this purpose in this study, the effect of cutting forces on hole quality (surface roughness, diameter deviation and circular deviation was investigated by 14 mm diameter uncoated and (AlCrN monolayer coated carbide drills for drilling AISI H13 hot work tool steel on vertical machining center. Four different cutting speeds (60, 75, 90 and 108 m / min and three different feed rates (0.15, 0.20 and 0.25 mm / rev were used in the experiments. Cutting forces have been found to be effective in improving hole quality. Better hole quality has obtained with coated drills than uncoated drills in experiments. It has been observed that coated drills have the effect of improving the hole quality due to the operation with less cutting force and better chip evacuation.

  13. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...... serves primarily two purpose (i) to improve the hardenabillity and (ii) to provide harder and thermally more stable carbides than cementite. Assuming proper heattreatment, the properties of a tool steel depends on the which alloying elements are added and their respective concentrations....

  14. 激光熔覆TiC-H13涂层的微结构及耐腐蚀性能的研究%Study on Microstructure and Electrochemical Corrosion Resistance of Laser Cladding TiC-H13 Steel Composite Coating

    Institute of Scientific and Technical Information of China (English)

    杨倩; 黄宛真; 孔凡志

    2016-01-01

    TiC-H 13 cladding layer was produced by laser cladding on H 13 steel substrate.The effects of TiC on microstructure and electrochemical corrosion behavior of TiC-H13 layer were studied by SEM,EDS,TEM and anodic polarization curve.The results show that good metallurgical bonding is formed between the TiC-H 13 cladding layer and H 13 steel substrate.The new phase of TiC is formed in the laser cladding layer.Compared with H13 steel,the TiC-H13 cladding layer demonstrates much higher corrosion potential and the lower corrosion current,which exhibites significantly higher corrosion resistant.%以H13钢为基体,通过激光熔覆TiC-H13混合粉末获得熔覆层,考察TiC的加入对TiC-H13熔覆层的微观结构以及耐腐蚀性能的影响.采用SEM、EDS和TEM对熔覆层内的微观组成和物相进行表征,利用电化学阳极极化曲线研究熔覆层的耐腐蚀性能.结果表明:TiC-H13粉末和H13钢基体可以形成良好的熔覆层,熔覆层与基体紧密结合,熔覆层中形成新物相TiC.与H13钢相比,TiC-H 13熔覆层的腐蚀电位明显升高,腐蚀电流明显降低,耐腐蚀性能得到显著提高.

  15. Effects of Rare Earth on the Microstructure and Impact Toughness of H13 Steel

    Directory of Open Access Journals (Sweden)

    Jinzhu Gao

    2015-03-01

    Full Text Available Studies of H13 steel suggest that under appropriate conditions, additions of rare-earth metals (REM can significantly enhance mechanical properties, such as impact toughness. This improvement is apparently due to the formation of finer and more dispersive RE inclusions and grain refinement after REM additions. In this present work, the microstructure evolution and mechanical properties of H13 steel with rare earth additions (0, 0.015, 0.025 and 0.1 wt.% were investigated. The grain size, inclusions and fracture morphology were systematically studied by means of optical microscopy (OM, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The results indicate that REM addition of 0.015 wt.% can result in good improvement of performance compared to the REM additions of 0.025 wt.% and 0.1 wt.%. It is found that the impact toughness is significantly enhanced with the addition of 0.015% REM, which can be improved 90% from 10 J to 19 J. Such an addition of REM can result in a huge volume fraction of finer and more dispersive inclusions which are extremely good to toughness.

  16. A low temperature aluminizing treatment of hot work tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Matijevic, B., E-mail: bozidar.matijevic@fsb.hr [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb (Croatia)

    2010-07-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to hot tool steel H13. The aluminizing treating temperature was from 550 to 620°C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the aluminized layer thickness and the oxide layer were studied. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), glow discharge optical spectroscopy (GDOS) were applied to observe the cross-sections and the distribution of elements. (author)

  17. A low temperature aluminizing treatment of hot work tool steel

    International Nuclear Information System (INIS)

    Matijevic, B.

    2010-01-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to hot tool steel H13. The aluminizing treating temperature was from 550 to 620°C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the aluminized layer thickness and the oxide layer were studied. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), glow discharge optical spectroscopy (GDOS) were applied to observe the cross-sections and the distribution of elements. (author)

  18. The thermal fatigue resistance of vermicular cast iron coupling with H13 steel units by cast-in process

    International Nuclear Information System (INIS)

    Wang, Chengtao; Zhou, Hong; Lin, Peng Yu; Sun, Na; Guo, Qingchun; Zhang, Peng; Yu, Jiaxiang; Liu, Yan; Wang, Mingxing; Ren, Luquan

    2010-01-01

    This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix.

  19. An investigation of improved strength and toughness of ausformed H13 steel

    International Nuclear Information System (INIS)

    Cha, Yong Chul; Yoon, Han Sang

    1986-01-01

    The effect of ausforming for AISI H13 steel was studied. Plastic deformation of metastable austenite increased the hardness and strength of the subsequently formed martensite. The increases in yield and tensile strength were proportional to the degree of austenite deformation without sacrifice of toughness, and large deformation (60%) resulted in significant increase in impact value. Furthermore, temper resistance up to 500 deg C, that is, consequent improvement in elevated-temperature strength property was demonstrated. These results can be interpreted as being attributed to the formation of cellular substructures which were fixed by alloy carbides. (Author)

  20. Analysis of the Forces in Micromilling of Hardened AISI H13 Steel with Different Grain Sizes Using the Taguchi Methodology

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Lauro

    2014-05-01

    Full Text Available The micromachining process has been applied to the free form and micromolds markets. This has occurred due to the growth in demand for microcomponents. However, micromachining of hardened steels is a challenge due to the reduction in tool life and the increase of the surface roughness when compared with the macromachining process. This paper focused on the analysis of micromilling forces on hardened AISI H13 steel with different grain sizes. Experimental tests were carried out on workpieces with different austenitic grain sizes and a hardness of 46 HRC. Micro-end-mill cutters with a diameter of 0.5 mm and (TiAlN coatings were applied in the milling of workpieces of 11 × 11 mm. The input parameters were two radial depths of cut, two cutting speeds, and two feed rates. The influence of the input parameters on the response cutting force was analyzed using the Taguchi method. Finally, considering the large grain size, the cutting forces in the x-, y-, and z-axes direction were small.

  1. Improvement of Tribological Performance of AISI H13 Steel by Means of a Self-Lubricated Oxide-Containing Tribo-layer

    Science.gov (United States)

    Cui, Xianghong; Jin, Yunxue; Chen, Wei; Zhang, Qiuyang; Wang, Shuqi

    2018-03-01

    A self-lubricated oxide-containing tribo-layer was induced to form by continuously adding particles of MoS2, Fe2O3 or their mixtures onto sliding interfaces of AISI H13 and 52100 steels. The artificial tribo-layer was always noticed to form continuously and cover the worn surface (termed as cover-type), whereas the original tribo-layer spontaneously formed with no additive was usually discontinuous and inserted into the substrate (termed as insert-type). Clearly, the cover-type and insert-type tribo-layers exactly corresponded to low and high wear rates, respectively. For the mixed additives of Fe2O3 + MoS2, the protective tribo-layers presented a load-carrying capability and lubricative function, which are attributed to the existence of Fe2O3 and MoS2. Hence, the wear rates and friction coefficients of H13 steel were markedly reduced.

  2. Investigation of plume dynamics during picosecond laser ablation of H13 steel using high-speed digital holography

    Science.gov (United States)

    Pangovski, Krste; Otanocha, Omonigho B.; Zhong, Shan; Sparkes, Martin; Liu, Zhu; O'Neill, William; Li, Lin

    2017-02-01

    Ablation of H13 tool steel using pulse packets with repetition rates of 400 and 1000 kHz and pulse energies of 75 and 44 μ {J}, respectively, is investigated. A drop in ablation efficiency (defined here as the depth per pulse or μ {m}{/}μ {J}) is shown to occur when using pulse energies of E_{{pulse}} > 44 μ {J}, accompanied by a marked difference in crater morphology. A pulsed digital holographic system is applied to image the resulting plumes, showing a persistent plume in both cases. Holographic data are used to calculate the plume absorption and subsequently the fraction of pulse energy arriving at the surface after traversing the plume for different pulse arrival times. A significant proportion of the pulse energy is shown to be absorbed in the plume for E_{{pulse}} > 44 μ {J} for pulse arrival times corresponding to {>}1 MHz pulse repetition rate, shifting the interaction to a vapour-dominated ablation regime, an energetically costlier ablation mechanism.

  3. H2S cracking resistance of type 420 stainless steel tubulars

    International Nuclear Information System (INIS)

    Klein, L.J.

    1984-01-01

    Type 420 stainless steel (13Cr) production tubing is being used successfully in deep sour gas wells in the Tuscaloosa Trend. Despite their reputation for poor H 2 S cracking resistance in laboratory tests, 12-13% Cr steels continue to perform well in sour environments. NACE Tensile Test and Shell bent beam test results indicate Type 420 is more resistant to H 2 S cracking than Type 410, but is not as resistant as carbon steel, at to 586-690 MPa (85-100 ksi) yield strength level. In addition to evaluating Type 420 stainless steel in the standard NACE Tensile and Shell bent beam tests, the effects on cracking tendency of chloride concentration, pH, and H 2 S gas concentration in the NACE Test solution were also examined. Type 420 appears to be more resistant to H 2 S cracking than is indicated by standard laboratory tests, at least in low H 2 S level sour environments

  4. Micro-Bulges Investigation on Laser Modified Tool Steel Surface

    Directory of Open Access Journals (Sweden)

    Fauzun Fazliana

    2017-01-01

    Full Text Available This paper presents micro-bulges investigation on laser modified tool steel. The aim of this study is to understand the effect of laser irradiance and interaction time on surface morphology configuration. An Nd:YAG laser system with TEM00 pulse processing mode was used to modify the samples. Metallographic study shows samples were analyzed for focal position effect on melted pool size, angle of peaks geometry and laser modified layer depth. Surface morphology were analyzed for surface roughness. Laser modified layer shows depth ranged between 42.22 and 420.12 μm. Angle of peak bulge was found to be increase with increasing peak power. The maximum roughness, Ra, achieved in modified H13 was 21.10 μm. These findings are significant to enhance surface properties of laser modified steel and cast iron for dies and high wear resistance applications.

  5. Use of niobium to substitute vanadium in the steel for hot work AISI H3

    International Nuclear Information System (INIS)

    Branco, J.R.T.; Jesus, B.G. de

    1984-01-01

    Experimental results on austenitic grain size, quenching hardness and response to tempering measured on a H13 tool steel modified by niobium additions are described. It is shown that the replacement of 25 and 50% percent of the total vanadium by 0,05% of niobium does not change the response to quenching and tempering. (Author) [pt

  6. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    Science.gov (United States)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  7. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13

    Science.gov (United States)

    Zeng, Yan; Zuo, Peng-peng; Wu, Xiao-chun; Xia, Shu-wen

    2017-09-01

    Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microstructure of the steel samples. The samples' extent of damage after IF tests was compared by observation of their cracks and calculation of their damage parameters. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the microstructure of the samples. Cracks were observed to initiate at the surface because the strains and stresses there were the largest during thermal cycling. Mechanical strain accelerated the damage and softening of the steel. A larger mechanical strain caused greater deformation of the steel, which made the precipitated carbides easier to gather and grow along the deformation direction, possibly resulting in softening of the material or the initiation of cracks.

  8. An experimental analysis of process parameters to manufacture micro-channels in AISI H13 tempered steel by laser micro-milling

    Science.gov (United States)

    Teixidor, D.; Ferrer, I.; Ciurana, J.

    2012-04-01

    This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying parameters such as scanning speed (SS), pulse intensity (PI) and pulse frequency (PF). Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.

  9. Mechanism of generation of large (Ti,Nb,V)(C,N)-type precipitates in H13 + Nb tool steel

    Science.gov (United States)

    Xie, You; Cheng, Guo-guang; Chen, Lie; Zhang, Yan-dong; Yan, Qing-zhong

    2016-11-01

    The characteristics and generation mechanism of (Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of (Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich (Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2-5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of (Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is (Ti0.511V0.356Nb0.133)(C x N y ), whereas that for the single Nb-rich phase is (Ti0.061V0.263Nb0.676)(C x N y ). The calculation results based on the Scheil-Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.

  10. Cavitation resistance of 45 and 2H13 steels laser enriched with silicon carbides and hafnium

    International Nuclear Information System (INIS)

    Skodo, M.; Giren, B.; Cenian, A.

    1999-01-01

    Cavitation resistance of 45 and H13 steels with surface layers enriched with Hf and SiC compounds was investigated. All contamination elements were spread over the samples surfaces and subsequently alloyed with core material by CO 2 laser beam. Cavitation tests carried out at the rotating disk facility revealed multiple - 5 to 10 times - increase of erosion resistance of the processed materials during the incubation period of the destruction. This effect was found not to be decisively linked to obtained microhardness changes. (author)

  11. High - speed steel for precise cased tools

    International Nuclear Information System (INIS)

    Karwiarz, J.; Mazur, A.

    2001-01-01

    The test results of high-vanadium high - speed steel (SWV9) for precise casted tools are presented. The face -milling cutters of NFCa80A type have been tested in industrial operating conditions. An average life - time of SWV9 steel tools was 3-10 times longer compare to the conventional high - speed milling cutters. Metallography of SWB9 precise casted steel revealed beneficial for tool properties distribution of primary vanadium carbides in the steel matrix. Presented results should be a good argument for wide application of high - vanadium high - speed steel for precise casted tools. (author)

  12. Electrochemical Corrosion Behavior of Carbon Steel and Hot Dip Galvanized Steel in Simulated Concrete Solution with Different pH Values

    Directory of Open Access Journals (Sweden)

    Wanchen XIE

    2017-08-01

    Full Text Available Hot dip galvanizing technology is now widely used as a method of protection for steel rebars. The corrosion behaviors of Q235 carbon steel and hot galvanized steel in a Ca(OH2 solution with a pH from 10 to 13 was investigated by electrode potential and polarization curves testing. The results indicated that carbon steel and hot galvanized steel were all passivated in a strong alkaline solution. The electrode potential of hot dip galvanized steel was lower than that of carbon steel; thus, hot dip galvanized steel can provide very good anodic protection for carbon steel. However, when the pH value reached 12.5, a polarity reversal occurred under the condition of a certain potential. Hot dip galvanized coating became a cathode, and the corrosion of carbon steel accelerated. The electrochemical behaviors and passivation abilities of hot dip galvanized steel and carbon steel were affected by pH. The higher the pH value was, the more easily they were passivated.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16675

  13. Effect of laser parameters on surface roughness of laser modified tool steel after thermal cyclic loading

    Science.gov (United States)

    Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah

    2018-03-01

    This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.

  14. Effect of coatings obtanied by sputtering of chromium catode on the corrosion resistance of AISI H13 steel

    International Nuclear Information System (INIS)

    Sandoval, A; Peña, D; Piratoba, U

    2013-01-01

    Corrosion resistance of coatings obtained by sputtering a chromium target were evaluated. The films were deposited on substrates of disk-shaped AISI H13 steel. By means of potentiodynamic polarization curves were able to determine the current density vs. potential for the coated and uncoated substrate and the difference in the corrosion potential Ecorr. All samples with coating showed an increase in Ecorr respect to substrate. The electrochemical tests were conducted in an electrolytic solution of 3% NaCl

  15. Precipitation Behavior of Carbides in H13 Hot Work Die Steel and Its Strengthening during Tempering

    Directory of Open Access Journals (Sweden)

    Angang Ning

    2017-02-01

    Full Text Available The properties of carbides, such as morphology, size, and type, in H13 hot work die steel were studied with optical microscopy, transmission electron microscopy, electron diffraction, and energy dispersive X-ray analysis; their size distribution and quantity after tempering, at different positions within the ingot, were analyzed using Image-Pro Plus software. Thermodynamic calculations were also performed for these carbides. The microstructures near the ingot surface were homogeneous and had slender martensite laths. Two kinds of carbide precipitates have been detected in H13: (1 MC and M6C, generally smaller than 200 nm; and (2 M23C6, usually larger than 200 nm. MC and M6C play the key role in precipitation hardening. These are the most frequent carbides precipitating at the halfway point from the center of the ingot, and the least frequent at the surface. From the center of the ingot to its surface, the size and volume fraction of the carbides decrease, and the toughness improves, while the contribution of the carbides to the yield strength increases.

  16. Effect of micro alloying elements on the interfacial reactions between molten aluminum alloy and tool steel

    International Nuclear Information System (INIS)

    Nazari, K.A.; Shabestari, S.G.

    2009-01-01

    The morphology and growth kinetics of intermetallic compounds that are formed in the interface of H13 tool steel and A380 molten aluminum has been investigated through immersion experiments. The effect of addition of micro alloying elements to the melt on the formation and thickness of intermetallic layer was also studied. Microstructural investigation showed that three intermetallic layers formed through the liquid-solid reaction during immersion of steel samples in the liquid aluminum at a temperature of 680 deg. C for the duration time of 2 min to 2.5 h. These intermetallic compounds are Al 8 Fe 2 Si, Al 5 FeSi and Al 12 Fe 5 Si. The effect of nitride coating of the surface of H13 steel on the growth of intermetallic phases has also been studied. Micro alloying elements such as strontium and titanium have been used in the melt and their effects on the morphology of intermetallic compound and their growth rate have been investigated by the immersion experiments at the temperature of 680 deg. C for the time of 0.5-2.5 h. The results showed that two layers of Al 8 Fe 2 Si and Al 5 FeSi formed at the interface and Al 12 Fe 5 Si layer was not observed. Nitride coating decreased the overall thickness of the intermetallic layer about 50% after immersion time of 0.5 h. Addition of micro alloying elements such as Sr (0.05 wt%) and Ti (0.2 wt%) to the melt decreased the total thickness of the intermetallic layer about 31% after immersion of steel for 0.5 h in the melt. Both nitride coating and addition of strontium (0.05 wt%) and titanium (0.2 wt%) micro alloying elements to the melt had the most influence on decreasing the overall thickness of the intermetallic layer. The thickness of the intermetallic layer decreased about 60% after immersion of steel for 2.5 h in the aluminum melt. The experimental results clearly indicate the beneficial effect of strontium on the kinetics of the formation and growth of the intermetallic layers.

  17. Synchrotron micro-diffraction analysis of the microstructure of cryogenically treated high performance tool steels prior to and after tempering

    Energy Technology Data Exchange (ETDEWEB)

    Xu, N.; Cavallaro, G.P. [Applied Centre for Structural and Synchrotron Studies, Mawson Lakes Blvd, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Gerson, A.R., E-mail: Andrea.Gerson@unisa.edu.au [Applied Centre for Structural and Synchrotron Studies, Mawson Lakes Blvd, University of South Australia, Mawson Lakes, South Australia 5095 (Australia)

    2010-10-15

    The phase transformation and strain changes within cryogenically (-196 deg. C) treated high performance tool steels (AISI H13) before and after tempering have been examined using both laboratory XRD and synchrotron micro-diffraction. The martensitic unit cell was found to have very low tetragonality as expected for low carbon steel. Tempering resulted in the diffusion of excess carbon out of the martensite phase and consequent unit cell shrinkage. In addition on tempering the martensite became more homogeneous as compared to the same samples prior to tempering. For cryogenically treated samples, the effect was most pronounced for the rapidly cooled sample which was the least homogenous sample prior to tempering but was the most homogenous sample after tempering. This suggests that the considerable degree of disorder resulting from rapid cryogenic cooling results in the beneficial release of micro-stresses on tempering thus possibly resulting in the improved wear resistance and durability observed for cryogenically treated tool steels.

  18. Synchrotron micro-diffraction analysis of the microstructure of cryogenically treated high performance tool steels prior to and after tempering

    International Nuclear Information System (INIS)

    Xu, N.; Cavallaro, G.P.; Gerson, A.R.

    2010-01-01

    The phase transformation and strain changes within cryogenically (-196 deg. C) treated high performance tool steels (AISI H13) before and after tempering have been examined using both laboratory XRD and synchrotron micro-diffraction. The martensitic unit cell was found to have very low tetragonality as expected for low carbon steel. Tempering resulted in the diffusion of excess carbon out of the martensite phase and consequent unit cell shrinkage. In addition on tempering the martensite became more homogeneous as compared to the same samples prior to tempering. For cryogenically treated samples, the effect was most pronounced for the rapidly cooled sample which was the least homogenous sample prior to tempering but was the most homogenous sample after tempering. This suggests that the considerable degree of disorder resulting from rapid cryogenic cooling results in the beneficial release of micro-stresses on tempering thus possibly resulting in the improved wear resistance and durability observed for cryogenically treated tool steels.

  19. 30 CFR 57.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 57.7050 Section 57... Rotary Jet Piercing Drilling-Surface and Underground § 57.7050 Tool and drill steel racks. Receptacles or racks shall be provided for drill steel and tools stored or carried on drills. ...

  20. Microstructural evolution and some mechanical properties of nanosized yttrium oxide dispersion strengthened 13Cr steel

    International Nuclear Information System (INIS)

    Nguyen, Van Tich; Doan, Dinh Phuong; Tran, Tran BaoTrung; Luong, Van Duong; Nguyen, Van An; Phan, Anh Tu

    2010-01-01

    Oxide dispersion strengthened (ODS) steels, manufactured by a mechanical alloying method, during the past few years, appear to be promising candidates for structural applications in nuclear power plants. The purpose of this work is to elaborate the manufacturing processes of ODS 13Cr steel with the addition of 1.0 wt% yttrium oxide through the powder metallurgy route using the high energy ball mill. Microstructural analysis by scanning electron microscopy (SEM), x-ray diffraction (XRD) and hardness testing have been used to optimize the technological parameters of milling, hot isostatic pressing and heat-treatment processes. The steel hardness increases with decreasing particle size of 13Cr ODS steel. The best hardness was obtained from more than 70 h of milling in the two tanks planetary ball mill or 30 h of milling in the one tank planetary ball mill and hot isostatic pressing at 1150 °C . The particle size of the steel is less than 100 nm, and the density and hardness are about 7.3 g cm −3 and 490 HB, respectively

  1. Automated Steel Cleanliness Analysis Tool (ASCAT)

    Energy Technology Data Exchange (ETDEWEB)

    Gary Casuccio (RJ Lee Group); Michael Potter (RJ Lee Group); Fred Schwerer (RJ Lee Group); Dr. Richard J. Fruehan (Carnegie Mellon University); Dr. Scott Story (US Steel)

    2005-12-30

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel

  2. Automated Steel Cleanliness Analysis Tool (ASCAT)

    International Nuclear Information System (INIS)

    Gary Casuccio; Michael Potter; Fred Schwerer; Richard J. Fruehan; Dr. Scott Story

    2005-01-01

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet

  3. Characterization of D2 tool steel friction surfaced coatings over low carbon steel

    International Nuclear Information System (INIS)

    Sekharbabu, R.; Rafi, H. Khalid; Rao, K. Prasad

    2013-01-01

    Highlights: • Solid state coating by friction surfacing method. • D2 tool steel is coated over relatively softer low carbon steel. • Defect free interface between tool steel coating and low carbon steel substrate. • D2 coatings exhibited higher hardness and good wear resistance. • Highly refined martensitic microstructure in the coating. - Abstract: In this work D2 tool steel coating is produced over a low carbon steel substrate using friction surfacing process. The process parameters are optimized to get a defect free coating. Microstructural characterization is carried out using optical microscopy, scanning electron microscopy and X-ray diffraction. Infrared thermography is used to measure the thermal profile during friction surfacing of D2 steel. Wear performance of the coating is studied using Pin-on-Disk wear tests. A lower rotational speed of the consumable rod and higher translational speed of the substrate is found to result in thinner coatings. Friction surfaced D2 steel coating showed fine-grained martensitic microstructure compared to the as-received consumable rod which showed predominantly ferrite microstructure. Refinement of carbides in the coating is observed due to the stirring action of the process. The infrared thermography studies showed the peak temperature attained by the D2 coating to be about 1200 °C. The combined effect of martensitic microstructure and refined carbides resulted in higher hardness and wear resistance of the coating

  4. Dimensional and material characteristics of direct deposited tool steel by CO II laser

    Science.gov (United States)

    Choi, J.

    2006-01-01

    Laser aided direct metalimaterial deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metaUmaterials fed into a melt pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO II laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.

  5. Comparison between microfabrication technologies for metal tooling

    DEFF Research Database (Denmark)

    Uriarte, L.; Herrero, A.; Ivanov, A.

    2006-01-01

    microtechnologies for processing tooling inserts made of metal. The following technologies have been analysed: micromilling, micro-electrodischarge machining (EDM, including wire-EDM, sinking-EDM, and EDM-milling), laser micromachining, electroforming, and electrochemical milling (ECF) (an electrochemical machining...... innovative process proposed by HSG-IMAT). Considered tool-insert materials are nickel for electroforming, stainless steel for ECF, and tool steel (AISI H13) for all other processes. Typical features (ribs, channels, pins, and holes) required by micro-optics, microfluidics, and sensor and actuator...

  6. Tool degradation during sheet metal forming of three stainless steel alloys

    DEFF Research Database (Denmark)

    Wadman, Boel; Nielsen, Peter Søe; Wiklund, Daniel

    2010-01-01

    To evaluate if changes in tool design and tool surface preparation are needed when low-Ni stainless steels are used instead of austenitic stainless steels, the effect on tool degradation in the form of galling was investigated with three different types of stainless steel. The resistance to tool ...

  7. An investigation into the effects of conventional heat treatments on mechanical characteristics of new hot working tool steel

    Science.gov (United States)

    Fares, M. L.; Athmani, M.; Khelfaoui, Y.; Khettache, A.

    2012-02-01

    The effects of conventional heat treatments, i.e. quenching and tempering, on the mechanical characteristics of non standard hot work tool steel, close to either AISI-H11/H13 are investigated. The major elemental composition differences are in carbon, silicon and vanadium. The objective of the carried heat treatments is to obtain an efficient tool performance in terms of hardness, wear resistance and mechanical strength. Experimental results allow an explanation of the surface properties depending mainly on both chemical composition and optimised preheating parameters. After austenitizing at 1050 °C for 15 min, the as-quenched steel in oil bath exhibited the fully martensitic structure (without bainite) connected to a small fraction of retained austenite and complex carbides mainly of M23C6 type. Twice tempering at 500 °C and 600 °C resulted in initiating the precipitation processes and the secondary hardness effect. As a result, carbide content amounted to 3% while the retained austenite content decreased to 0%. Accordingly, the required mechanical properties in terms of hardness and wear are fulfilled and are adequately favourable in handling both shocks and pressures for the expected tool life. Induced microstructures are revealed using optical and scanning electron microscopes. Phase compositions are assessed by means of X-ray diffraction technique while mechanical characteristics are investigated based on hardness and abrasive wear standard tests.

  8. Comparative Investigation on Tool Wear during End Milling of AISI H13 Steel with Different Tool Path Strategies

    Science.gov (United States)

    Adesta, Erry Yulian T.; Riza, Muhammad; Avicena

    2018-03-01

    Tool wear prediction plays a significant role in machining industry for proper planning and control machining parameters and optimization of cutting conditions. This paper aims to investigate the effect of tool path strategies that are contour-in and zigzag tool path strategies applied on tool wear during pocket milling process. The experiments were carried out on CNC vertical machining centre by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. In an experiment with three factors at three levels, Response Surface Method (RSM) design of experiment with a standard called Central Composite Design (CCD) was employed. Results obtained indicate that tool wear increases significantly at higher range of feed per tooth compared to cutting speed and depth of cut. This result of this experimental work is then proven statistically by developing empirical model. The prediction model for the response variable of tool wear for contour-in strategy developed in this research shows a good agreement with experimental work.

  9. A comprehensive review on cold work of AISI D2 tool steel

    Science.gov (United States)

    Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin

    2017-11-01

    As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.

  10. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  11. Electrochemical boriding and characterization of AISI D2 tool steel

    International Nuclear Information System (INIS)

    Sista, V.; Kahvecioglu, O.; Eryilmaz, O.L.; Erdemir, A.; Timur, S.

    2011-01-01

    D2 is an air-hardening tool steel and due to its high chromium content provides very good protection against wear and oxidation, especially at elevated temperatures. Boriding of D2 steel can further enhance its surface mechanical and tribological properties. Unfortunately, it has been very difficult to achieve a very dense and uniformly thick boride layers on D2 steel using traditional boriding processes. In an attempt to overcome such a deficiency, we explored the suitability and potential usefulness of electrochemical boriding for achieving thick and hard boride layers on this tool steel in a molten borax electrolyte at 850, 900, 950 and 1000 °C for durations ranging from 15 min to 1 h. The microstructural characterization and phase analysis of the resultant boride layers were performed using optical, scanning electron microscopy and X-ray diffraction methods. Our studies have confirmed that a single phase Fe 2 B layer or a composite layer consisting of FeB + Fe 2 B is feasible on the surface of D2 steel depending on the length of boriding time. The boride layers formed after shorter durations (i.e., 15 min) mainly consisted of Fe 2 B phase and was about 30 μm thick. The thickness of the layer formed in 60 min was about 60 μm and composed mainly of FeB and Fe 2 B. The cross sectional micro-hardness values of the boride layers varied between 14 and 22 GPa, depending on the phase composition.

  12. Improved Life of Die Casting Dies of H13 Steel by Attaining Improved Mechanical Properties and Distortion Control During Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    J. F. Wallace; D. Schwam

    1998-10-01

    The ultimate goal of this project is to increase die casting die life by using fast enough quenching rates to obtain good toughness and fatigue resistance in premium grade H-13 steel dies. The main tasks of the project were to compile a database on physical and mechanical properties of H-13; conduct gas quenching experiments to determine cooling rates of dies in difference vacuum furnaces; measure the as-quenched distortion of dies and the residual stresses; generate finite element analysis models to predict cooling rates, distortion, and residual stress of gas quenched dies; and establish rules and create PC-based expert system for prediction of cooling rates, distortion, and residual stress in vacuum/gas quenched H-13 dies. Cooling curves during gas quenching of H-13 blocks and die shapes have been measured under a variety of gas pressure. Dimensional changes caused by the gas quenching processes have been determined by accurate mapping of all surfaces with coordinate measuring machines before and after the quench. Residual stresses were determined by the ASTM E837 hole-drilling strain gage method. To facilitate the computer modeling work, a comprehensive database of H-13 mechanical and physical properties has been compiled. Finite element analysis of the heat treated shapes has been conducted using the TRAST/ABAQUS codes. There is a good fit between the predicted and measured distortion contours. However, the magnitude of the predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required before it can be used to predict distortion and residual stress in a quantitative manner. This last step is a prerequisite to generating rules for a reliable expert system.

  13. Wear behavior of tempered and borided tool steels under various conditions

    International Nuclear Information System (INIS)

    Al-Haidary, T. J.; Faleh, M. N.

    2000-01-01

    . Tool steel 61CrV5, 50 NiCr13 and X1000Cr MoV51 were used in the first stage of this investigation. They have been treated as follows: boriding, boriding and tempering and hardening and tempering. The wear tests were conducted under fixed conditions (150 N/mm 2 , 0.48m/sec) with and without lubricant. The wear rate and coefficient of friction of 61Cr Si V5 steel have been studied in the second stage hoping to find the influence of working conditions on these parameters and then to compare these results with the case of hardening and tempering which is the usual case in the actual working field. The study gives a good indication about the improvement achieved in boriding and tempering cases (∼ 30%) as compared with hardening tempering cases in dry sliding conditions -∼5% with lubricating ones. (authors). 13 refs., 19 figs., 1 table

  14. A Comparison between Microfabrication Technologies for Metal Tooling

    DEFF Research Database (Denmark)

    Uriarte, L.; Ivanov, A.; Oosterling, H

    2005-01-01

    , stainless steel for ECF, and tool steel (AISI H13) for the other processes. Typical features (ribs, channels, pins and holes) required by microoptics, microfluidics and sensors and actuators applications have been selected to carry out this analysis The task results provide a global comparison between......The current paper is based on the information gathered within 4M Network activities, specifically in the "Processing of Metals" Division (Task 7.2 "Tooling"). The aim of the task involves a systematic analysis of the partners' expertise in different technologies for processing tooling inserts made...

  15. Wear characterization of a tool steel surface modified by melting and gaseous alloying

    International Nuclear Information System (INIS)

    Rizvi, S.A.

    1999-01-01

    Hot forging dies are subjected to laborious service conditions and so there is a need to explore means of improving die life to increase productivity and quality of forgings. Surface modification in order to produce wear resistant surface is an attractive method as it precludes the need to use expensive and highly alloyed steels. In this study, a novel, inexpensive surface modification technique is used to improve the tri biological properties of an H13 tool steel. Surface melting was achieved using a tungsten heat source and gaseous alloying produced under a shield of argon, carbon dioxide, carbon dioxide-argon mixture and nitrogen gases. The change in wear behaviour was compared through micro-hardness indentation measurements and using a dry sliding pin-on-plate wear testing machine. This study shows superior wear behaviour of the modified surfaces when compared to the untreated surfaces. The increase in wear resistance is attributed to the formation of carbides when surfaces are melted under a carbon dioxide shield. However, in the case of nitrogen and argon gaseous alloying, an increase in wear resistance can be attributed to an increase in surface hardness which in turn effects surface deformation behaviour. (author)

  16. 30 CFR 56.7050 - Tool and drill steel racks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tool and drill steel racks. 56.7050 Section 56.7050 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Jet Piercing Drilling § 56.7050 Tool and drill steel racks. Receptacles or racks shall be provided for...

  17. Microstructure and properties of powder metallurgy (PM) high alloy tool steels

    International Nuclear Information System (INIS)

    Wojcieszynski, A.L.; Eisen, W.B.; Dixon, R.B.

    1998-01-01

    Particle metallurgy (PM) processing is currently the primary manufacturing method used to produce advanced high alloy tool steel compositions for use in industrial tooling applications. This process involves gas atomization of the pre-alloyed melt to form spherical powders and consolidation by HIP to full density. The HIP product may be used directly in select applications, but is usually subjected to additional forging to improve properties and produce a wide range of bar and plate sizes. Compared to ingot-cast tool steels, PM tool steels have very homogeneous microstructures with very fine carbide and sulfide size distributions, free from carbide banding, which results in improved machinability, grindability, and mechanical properties. In addition, this technology enables the development of advanced tool steel compositions which could not be economically produced by conventional steelmaking. (author)

  18. Tool life and surface roughness of ceramic cutting tool when turning AISI D2 tool steel

    International Nuclear Information System (INIS)

    Wan Emri Wan Abdul Rahaman

    2007-01-01

    The tool life of physical vapor deposition (PVD) titanium nitride (TiN) coated ceramic when turning AISI D2 tool steel of hardness 54-55 HRC was investigated. The experiments were conducted at various cutting speed and feed rate combinations with constant depth of cut and under dry cutting condition. The tool life of the cutting tool for all cutting conditions was obtained. The tool failure mode and wear mechanism were also investigated. The wear mechanism that is responsible for the wear form is abrasion and diffusion. Flank wear and crater wear are the main wear form found when turning AISI D2 grade hardened steel with 54-55 HRC using KY 4400 ceramic cutting tool. Additionally catastrophic failure is observed at cutting speed of 183 m/min and feed rate of 0.16 mm/ rev. (author)

  19. Tool steel for cold worck niobium carbides

    International Nuclear Information System (INIS)

    Goldenstein, H.

    1984-01-01

    A tool steel was designed so as to have a microstructure with the matrix similar a cold work tool steel of D series, containing a dispersion of Niobium carbides, with no intention of putting Niobium in solution on the matrix. The alloy was cast, forged and heat treated. The alloy was easily forged; the primary carbide morfology, after forging, was faceted, tending to equiaxed. The hardness obtained was equivalent to the maximum hardness of a D-3 sttel when quenched from any temperature between 950 0 C, and 1200 0 , showing a very small sensitivy to the quenching temperature. (Author) [pt

  20. Improved life of die casting dies of H13 steel by attaining improved mechanical properties and distortion control during heat treatment. Year 1 report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.F.; Schwam, D. [Case Western Reserve Univ., Cleveland, OH (United States)

    1995-03-01

    Optimum heat treatment of dies (quenching) is critical in ensuring satisfactory service performance: rapid cooling rates increase the thermal fatigue/heat checking resistance of the steel, although very fast cooling rates can also lead to distortion and lower fracture toughness, increasing the danger of catastrophic fracture. Goal of this project is to increase die life by using fast enough quenching rates (> 30 F/min ave cooling rate from 1750 to 550 F, 1/2 in. below working surfaces) to obtain good toughness and fatigue resistance in Premium grade H-13 steel dies. An iterative approach of computer modeling validated by experiment was taken. Cooling curves during gas quenching of H-13 blocks and die shapes were measured under 2, 5, and 7.5 bar N2 and 4 bar Ar. Resulting dimensional changes and residual stresses were determined. To facilitate the computer modeling work, a database of H-13 mechanical and physical properties was compiled. Finite element analysis of the heat treated shapes was conducted. Good fit of modeled vs measured quenched rates was demonstrated for simple die shapes. The models predict well the phase transformation products from the quench. There is good fit between predicted and measured distortion contours; however magnitude of predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required.

  1. Effect of Low Nickel Dopant on Torque Transducer Response Function in High-Chromium Content ESR Stainless Tool Steels

    Science.gov (United States)

    Wiewel, Joseph L.; Hecox, Bryan G.; Orris, Jason T.; Boley, Mark S.

    2007-03-01

    The change in magnetoelastic torque transducer response was investigated as a low nickel content (up to 0.2%) is alloyed into an ESR (Electro-Slag-Refining) stainless tool steel with a chromium content of around 13%, which our previous studies have proven to be the ideal level of chromium content for optimal transducer performance. Two separate hollow steel 3/4-inch diameter shafts were prepared from ESR 416 and ESR 420 steel, respectively, the first having no nickel content and the second having 0.2% nickel content. The heat treatment of these steels consisted of a hardening process conducted in a helium atmosphere at 1038^oC, followed by an annealing at 871^oC for 5h and a 15^oC cool down rate. Prior and subsequent to the heat treatment processes, the circumferential and axial magnetic hysteresis properties of the samples were measured and their external field signals were mapped over the magnetically polarized regions both with and without applied shear stress up to 2500 psi on the samples. It was found that the effect of the low nickel dopant was to improve torque transducer sensitivity and linearity, but heat treatment worsened the performance of both samples.

  2. Tensile properties of the modified 13Cr martensitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mabruri, Efendi, E-mail: effe004@lipi.go.id; Anwar, Moch Syaiful, E-mail: moch.syaiful.anwar@lipi.go.id; Prifiharni, Siska, E-mail: siska.prifiharni@lipi.go.id; Romijarso, Toni B.; Adjiantoro, Bintang [Research Center for Metallurgy and Materials, Indonesian Institute of Sciences (LIPI) Kawasan Puspiptek Gd. 470 Serpong, Tangerang Selatan 15314 (Indonesia)

    2016-04-19

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  3. Tensile properties of the modified 13Cr martensitic stainless steels

    International Nuclear Information System (INIS)

    Mabruri, Efendi; Anwar, Moch Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-01-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  4. Predicting the Abrasion Resistance of Tool Steels by Means of Neurofuzzy Model

    Directory of Open Access Journals (Sweden)

    Dragutin Lisjak

    2013-07-01

    Full Text Available This work considers use neurofuzzy set theory for estimate abrasion wear resistance of steels based on chemical composition, heat treatment (austenitising temperature, quenchant and tempering temperature, hardness after hardening and different tempering temperature and volume loss of materials according to ASTM G 65-94. Testing of volume loss for the following group of materials as fuzzy data set was taken: carbon tool steels, cold work tool steels, hot work tools steels, high-speed steels. Modelled adaptive neuro fuzzy inference system (ANFIS is compared to statistical model of multivariable non-linear regression (MNLR. From the results it could be concluded that it is possible well estimate abrasion wear resistance for steel whose volume loss is unknown and thus eliminate unnecessary testing.

  5. Surface enhancement of cold work tool steels by friction stir processing with a pinless tool

    Science.gov (United States)

    Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.

    2014-03-01

    The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.

  6. Microstructural characterization of cermet-steel interface in rock drilling tool

    International Nuclear Information System (INIS)

    Ybarra, L.A.C.; Molisani, A.L.; Yoshimura, H.N.

    2010-01-01

    Rock drilling tools basically present a WC cermet bonded to a steel shank. The interface cermet-steel plays fundamental role during drilling operation, since the fracture of this interface is the main failure mode of the tools. In this work, the microstructure of this interface in crown samples (type A), prepared in an industrial like process, was evaluated. In this process, a WC-containing powder was infiltrated with a copper alloy at 1100 deg C in a graphite mold previously mounted with a 1020 steel tube. The powder was characterized by XRD analysis and the cross-section microstructure of cermet-steel was analyzed using SEM-EDS. It was observed that Ni and small amount of Cu from cermet matrix diffused into the superficial region of the steel, and the Cu alloy dissolved and penetrated along the steel grain boundaries, resulting in good metallurgical bonding of the interface.(author)

  7. Characterisation of Wear Resistant Boride Layers on a Tool Steel by Activity Controlled Pack Boronising

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work addresses the production and characterisation of iron boride layers by pack boronising of a Vanadis 6 tool steel. The boride layers were produced at 900°C for 2h using different pack compositions in order to obtain a single-phase boride layer. The layers were characterized...... by electron microscopy, glow discharge optical emission spectroscopy, X-ray diffraction, Vickers hardness tests and wear testing with a pin-on-disc tribometer. It was found that the type of boride phases (FeB and/or Fe2B) present in the treated layer can be controlled by changing the boron activity...... by pack boronising for all conditions as compared to the heat treated tool steel....

  8. Micromilling of hardened tool steel for mould making applications

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    geometries as those characterizing injection moulding moulds. The realization of the micromilling process in connection with hardened tool steel as workpiece material is particularly challenging. The low strength of the miniaturized end mills implies reduction and accurate control of the chip load which...... wear. This paper presents the micromilling process applied to the manufacturing of micro injection moulding moulds in hardened tool steel, presenting experimental evidence and possible solutions to the above-mentioned issues....

  9. Aging between 300 and 450 deg C of wrought martensitic 13-17 wt-%Cr stainless steels

    International Nuclear Information System (INIS)

    Yrieix, B.; Guttmann, M.

    1993-06-01

    Martensitic stainless steels containing 13-17 wt-% Cr, some also containing nickel and some having precipitation hardening additions, have been aged between 300 and 450 deg C for times up to 30 000 h. For all the steels examined, the aging response takes the form of an increase of strength and hardness, correlated with embrittlement. The rate and intensity of aging increase with increasing chromium and molybdenum concentrations. In addition, two steels exhibit some temper embrittlement on long term aging at 400 deg C; such embrittlement of these materials is not expected in service at temperatures up to 300 deg C. A general method of prediction of the mechanical properties of these steels as a function of aging conditions is proposed. (authors). 11 refs., 17 figs., 7 tabs

  10. Recent developments in turning hardened steels - A review

    Science.gov (United States)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  11. Properties of 13HMF steel welded joints after long-lasting service

    International Nuclear Information System (INIS)

    Zeman, M.

    2002-01-01

    Results are presented of research conducted on the 13HMF steel in the as-received condition after long-lasting service over 100000 hours. Simulation tests have been performed by means of modern research methods. The influence of thermal cycles on the microstructure (continuous cooling TTT diagrams), plastic properties (notch toughness and hardness) of simulated heat affected zones and reheat cracking resistance has been evaluated by using the thermal and strain cycle simulator. Susceptibility to thermal fatigue has been determined, the creep strength estimated and welding heat input was given, as well as the post weld heat treatment conditions of the 13HMF steel after service. properties of the welded joints made of 13HMF steel after long-lasting service are given. (author)

  12. Improvement of strength and toughness of SKD11 type cold work tool steel; SKD 11 gata reikan koguko no kyojinsei no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Fukaura, K.; Sunada, H.; Yokoyama, Y. [Himeji Inst. of Technology, Hyogo (Japan); Teramoto, K. [Himeji Inst. of Technology, Hyogo (Japan). Graduate School| Sanyo Special Steel Co. Ltd., Hyogo (Japan)

    1998-03-01

    Toughness and wear resistance are the factors which affect on the lifetime of cold work tool steels importantly. Generally, both properties show the contrary characteristics. The evaluation of tool steel materials has been carried out focusing on the strength and wear resistance mainly. However, owing to the rapid progress of recent plastic working techniques, usage environments are under the severe conditions more and more. Therefore, it is expected to develop the high reliable cold work tool steels which balanced with toughness including wear resistance. In this study, the strength and toughness of a newly developed 0.8C-8Cr cold work tool steel whose composition was controlled to suppress the precipitation of massive eutectic M7C3 carbides were investigated with reference to microstructure and were compared with conventional SKD11. The toughness was evaluated by the area under the stress-strain curve. As a result, it was clarified that the tensile strength of the newly developed steel designated as Mod. SKD 11 was about 400 MPa higher and the toughness was 1.8 times larger than that of SKD 11 throughout a wide range of tempering temperatures and so forth. 17 refs., 13 figs., 1 tab.

  13. Comparison between Microfabrication Technologies for Metal Tooling

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    2005-01-01

    of metal. The following technologies have been analysed: micromilling, microEDM (microelectro discharge machining, including wire-EDM, sinking-EDM and EDM-milling), laser micromachining, electroforming and ECF (an innovative process proposed by HSG-IMAT). Considered materials are nickel for electroforming......, stainless steel for ECF, and tool steel (AISI H13) for the other processes. Typical features (ribs, channels, pins and holes) required by microoptics, microfluidics and sensors and actuators applications have been selected to carry out this analysis The task results provide a global comparison between...

  14. Microstructure and phase transformations in laser clad CrxSy/Ni coating on H13 steel

    Science.gov (United States)

    Lei, Yiwen; Sun, Ronglu; Tang, Ying; Niu, Wei

    2015-03-01

    Laser cladding was carried out onto H13 steel with preplaced NiCrBSi+Ni/MoS2 powders using CO2 laser under the optimized experimental parameters of laser power 2 kW, scanning velocity 6 mm/s and laser beam diameter 3 mm. An X-ray diffractometer and scanning electron microscope with energy dispersive spectroscopy were applied to analyze the microstructure and phase compositions of the coating. Thermodynamic calculation was performed with Thermo-Calc software on the basis of a commercially available Ni-based Alloys' database. The experimental results show that MoS2 decomposed and S reacted with Cr to form nonstoichiometric CrxSy during the laser cladding process. The coating consists of spherical CrxSy particles, primary γ-Ni dendrite, interdendritic eutectic (γ-Ni+NiMo) and precipitated NiMo. The precipitated NiMo was fine and uniformly distributed in primary γ-Ni dendrite. The calculated results and experimental data indicate that the solidification process in the coating during laser cladding process was liquid→liquid+CrxSy→ liquid+CrxSy+γ-Ni→liquid+CrxSy+γ-Ni+ eutectic (γ-Ni+NiMo). A solid state phase transformation (fine and uniformly distributed NiMo precipitated from γ-Ni) occurred after the solidification process. The calculations agree well with the experimental data and it is helpful to understand the phase transformation and microstructure evolution in the coating.

  15. Anti-Corrosion Performance of 1,3-BENZOTHIAZOLE on 410 Martensitic Stainless Steel in H2SO4

    Science.gov (United States)

    Loto, Roland Tolulope

    The corrosion inhibition effect of synthesized 1,3-benzothiazole at very low concentrations on 410 martensitic stainless steel in 3MH2SO4 solution was studied through potentiodynamic polarization and weight loss measurements. The observation showed that the organic compound performed effectively with average inhibition efficiencies of 94% and 98% at the concentrations studied from both electrochemical methods due to the inhibition action of protonated inhibitor molecules in the acid solution. The amine and aromatics functional groups of the molecules active in the corrosion inhibition reaction were exposed from Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopic analysis. Thermodynamic calculations showed cationic adsorption to be chemisorption adsorption, obeying the Langmuir adsorption isotherm. Images from optical microscopy showed an improved morphology in comparison to images from corroded stainless steel. Severe surface deterioration and macro-pits were observed in the uninhibited samples.

  16. Structure, mechanical and corrosion properties of powdered stainless steel Kh13

    International Nuclear Information System (INIS)

    Radomysel'skij, I.D.; Napara-Volgina, S.G.; Orlova, L.N.; Apininskaya, L.M.

    1982-01-01

    Structure, mechanical and corrosion properties are studied for compact powdered stainless steel, Grade Kh13, produced from prealloyed powder and a mixture of chromium and iron powders by hot vacuum pressing (HVP) following four schemes: HVP of unsintered billets; HVP of presintered billets; HVP of unsintered billets followed by diffusion annealing; HVP of sintered billets followed by diffusion annealing. Analysis of the structure, mechanical and corrosion properties of Kh13 steel produced according to the four schemes confirmed that production of this steel by the HVP method without presintering of porous billets and diffusion annealing of compact stampings is possible only when prealloyed powder of particular composition is used as a starting material

  17. Heat Treatment of Cr- and Cr-V ledeburitic tool steels

    Directory of Open Access Journals (Sweden)

    Peter Jurči

    2014-11-01

    Full Text Available Cr- and Cr-V ledeburitic cold work tool steels belong to the most important tool materials for large series manufacturing. To enable high production stability, the tools must be heat treated before use. This overview paper brings a comprehensive study on the heat treatment of these materials, starting from the soft annealing and finishing with the tempering. Also, it describes the impact of any step of the heat treatment on the most important structural and mechanical characteristics, like the hardness, the toughness and the wear resistance. The widely used AIS D2- steel (conventionally manufactured and Vanadis 6 (PM are used as examples in most cases.

  18. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    International Nuclear Information System (INIS)

    Ai, Zhiyong; Jiang, Jinyang; Sun, Wei; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-01-01

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  19. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Zhiyong, E-mail: 230139452@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Jiang, Jinyang, E-mail: jiangjinyang16@163.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Sun, Wei, E-mail: sunwei@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Song, Dan, E-mail: songdancharls@hhu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); College of Mechanics and Materials, Hohai University, Nanjing 210098, Jiangsu (China); Ma, Han, E-mail: mahan-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Zhang, Jianchun, E-mail: Zhangjc-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Wang, Danqian, E-mail: wonderbaba@126.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China)

    2016-12-15

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  20. Changing in tool steels wear resistance under electron irradiation

    International Nuclear Information System (INIS)

    Braginskaya, A.E.; Manin, V.N.; Makedonskij, A.V.; Mel'nikova, N.A.; Pakchanin, L.M.; Petrenko, P.V.

    1983-01-01

    The tool steels and alloys wear resistance under dry friction after electron irradiation has been studied. Electron irradiation of a wide variety of steels is shown to increase wear resistance. In this case phase composition and lattice parameters changes are observed both in matrix and carbides. The conclusion is drawn that an appreciable increase of steel wear resistance under electron irradiation can be explained both by carbide phase volume gain and changes in it's composition and the formation of carbide phase submicroscopic heterogeneities and, possibly, complexes of defects

  1. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride.

    Science.gov (United States)

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-09-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte.

  2. Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel

    Science.gov (United States)

    Anwar, M. S.; Prifiharni, S.; Mabruri, E.

    2017-05-01

    The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.

  3. Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels

    Science.gov (United States)

    Park, Seung Hwan C.; Sato, Yutaka S.; Kokawa, Hiroyuki; Okamoto, Kazutaka; Hirano, Satoshi; Inagaki, Masahisa

    2009-03-01

    The wear of polycrystalline cubic boron nitride (pcBN) tool and its effect on second phase formation were investigated in stainless steel friction-stir (FS) welds. The nitrogen content and the flow stress were analyzed in these welds to examine pcBN tool wear. The nitrogen content in stir zone (SZ) was found to be higher in the austenitic stainless steel FS welds than in the ferritic and duplex stainless steel welds. The flow stress of austenitic stainless steels was almost 1.5 times larger than that of ferritic and duplex stainless steels. These results suggest that the higher flow stress causes the severe tool wear in austenitic stainless steels, which results in greater nitrogen pickup in austenitic stainless steel FS welds. From the microstructural observation, a possibility was suggested that Cr-rich borides with a crystallographic structure of Cr2B and Cr5B3 formed through the reaction between the increased boron and nitrogen and the matrix during FS welding (FSW).

  4. Tribological behaviour of line hardening of steel U13A with Nd: TAG laser

    International Nuclear Information System (INIS)

    Sagaro, R.; Ceballos, J. S.; Mascarell, J.; Blanco, A.

    1999-01-01

    To diminish wear in tribological systems is frequently to harden locally the load carrying areas, which are subjected to wear. A Nd: YAG laser was for the improvement of hardness and wear resistance of steel U13A. The friction and wear characteristics of steel U13A in sliding contact against steel 65MN4 under unlubricated conditions were evaluated for conventional treatments and after laser irradiation. In addition the transformations occurring during laser treatments and the influence of laser parameters for quenching on tribological characteristics are presented. The experimental work indicates that wear resistance of steel U13A (AISI W 112) is several times higher then that for conventional heat treatments

  5. Rapid Prototyping: State of the Art Review

    Science.gov (United States)

    2003-10-23

    Steel H13 Tool Steel CP Ti, Ti-6Al-4V Titanium Tungsten Copper Aluminum Nickel...The company’s LENS 750 and LENS 850 machines (both $440,000 to $640,000) are capable of producing parts in 16 stainless steel , H13 tool steel ...machining. 20 The Arcam EBM S12 model sells for $500,000 and is capable of processing two materials. One is H13 tool steel , while the other

  6. Comparison of tool life and surface roughness with MQL, flood cooling, and dry cutting conditions with P20 and D2 steel

    Science.gov (United States)

    Senevirathne, S. W. M. A. I.; Punchihewa, H. K. G.

    2017-09-01

    Minimum quantity lubrication (MQL) is a cutting fluid (CF) application method that has given promising results in improving machining performances. It has shown that, the performance of cutting systems, depends on the work and tool materials used. AISI P20, and D2 are popular in tool making industry. However, the applicability of MQL in machining these two steels has not been studied previously. This experimental study is focused on evaluating performances of MQL compared to dry cutting, and conventional flood cooling method. Trials were carried out with P20, and D2 steels, using coated carbides as tool material, emulsion cutting oil as the CF. Tool nose wear, and arithmetic average surface roughness (Ra) were taken as response variables. Results were statistically analysed for differences in response variables. Although many past literature has suggested that MQL causes improvements in tool wear, and surface finish, this study has found contradicting results. MQL has caused nearly 200% increase in tool nose wear, and nearly 11-13% increase in surface roughness compared flood cooling method with both P20 and D2. Therefore, this study concludes that MQL affects adversely in machining P20, and D2 steels.

  7. Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior

    Science.gov (United States)

    Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping

    2016-02-01

    0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.

  8. Effect of tempering temperature on microstructure and sliding wear property of laser quenched 4Cr13 steel

    NARCIS (Netherlands)

    Ouyang, J.H.; Pei, Y.T.; Li, X.D.; Lei, T.C.

    1994-01-01

    4Cr13 martensite stainless steel was quenched by a CO2 laser and tempered for 2 h at different temperatures in the range 200 °C to 550 °C. The microstructure of treated layer was observed by SEM, XRD and TEM. Tempering leads to the decomposition of a large number of retained austenites in laser

  9. The study of adhesion and nanomechanical properties of DLC films deposited on tool steels

    International Nuclear Information System (INIS)

    Chen, Kuan-Wei; Lin, Jen-Fin

    2009-01-01

    In this study, thin diamond-like carbon (DLC) films were deposited onto a steel substrate. By using the plasma immersion ion implantation (PIII) technique, a nitrogen layer was formed on the steel surface before depositing the DLC films. This PIII formed nitrogen layer, which acts as the buffer layer, has apparently increased the adhesion between the DLC film and the steel substrate. The microstructures, the nanomechanical properties, and the adhesion of the DLC were investigated by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), nanoindentation, and nanoscratch. Results show that the hardness and Young's modulus were significantly improved, up to 2 to 9 times; while the implantation depth and the microstructure of the nitrogen layers vary with nitrogen/hydrogen ratio (N:H = 1:0, 1:1, 1:3). Raman analyses indicate that the I(D)/I(G) ratio increases with the thickness of DLC film. By using the PIII technique in the steel substrate, the adhesion of the DLC film onto the substrate is greatly enhanced, and wear resistance is elevated if the DLC film is sufficiently thick.

  10. Effect of vacuum oxy-nitrocarburizing on the microstructure of tool steels: an experimental and modeling study

    Directory of Open Access Journals (Sweden)

    Nikolova Maria

    2017-01-01

    Full Text Available The thermochemical treatments of tool steels improve the performance of the components with respect to surface hardness, wear and tribological performance as well as corrosion resistance. Compared to the conventional gas ferritic nitrocarburizing process, the original vacuum oxy-nitrocarburizing is a time-, cost-effective and environmentally-friendly gas process. Because of the oxidizing nature of the gas atmosphere, there is no need to perform subsequent post-oxidation.In this study, a vacuum oxynitrocarburizing process was carried out onto four tool steels (AISI H10, H11, H21 and D2 at 570 °C, after hardening and single tempering. The structural analysis of the compound and diffusion layers was performed by optical and electron microscopy, X-ray diffraction and glow discharge optical emission spectrometry (GDOES methods. A largely monophase ε- layer is formed with a carbon accumulation at the substrate adjacent area. The overlaying oxides adjacent to the ε-carbonitride phase contained Fe3O4 (magnetite as a main constituent. A thermodynamic modelling approach was also performed to understand and optimize the process. The “Equilib module” of FactSage software which uses Gibbs energy minimization method, was used to estimate the possible products during vacuum oxynitrocarburising process.

  11. Tribological properties of ion-implanted steels

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1987-01-01

    The tribological properties such as surface hardness, friction and wear have been studied for low carbon steels and tool steels implanted with many types of ion including metallic elements. The hardness measured by Vickers or Knoop hardness testers as a function of normal load is dependent on the implanted species, fluence and substrate. The friction coefficients measured by Bowden-Leben type of friction tests or detected during wear tests also depend on the implantation conditions. The improvement in the wear resistance, which is most important for industrial use of implanted materials, has been investigated for AISI H13 prehardened and tool steels implanted with nitrogen and boron ions. The relationship between hardness, friction and wear is discussed in comparison with the microcharacteristics such as composition and chemical bonding states measured by means of secondary ion mass spectrometry and X-ray photoelectron spectroscopy. It is concluded that the increase in hardness and/or the decrease in friction coefficient play(s) an important role in improving the wear resistance, and the relationship between relative wear volume and relative hardness is correlated for boron and nitrogen implantation. (orig.)

  12. Post-irradiation characterization of PH13-8Mo martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M.; Schmalz, F.; Rensman, J.W. [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands); Luzginova, N.V., E-mail: luzginova@nrg.eu [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands); Wouters, O.; Hegeman, J.B.J.; Laan, J.G. van der [Nuclear Research and consultancy Group, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2011-10-01

    The irradiation response of PH13-8Mo stainless steel was measured up to 2.5 dpa at 200 and 300 deg. C irradiation temperatures. The PH13-8Mo, a martensitic precipitation-hardened steel, was produced by Hot Isostatic Pressing at 1030 deg. C. The fatigue tests (high cycle fatigue and fatigue crack propagation) showed a test temperature dependency but no irradiation effects. Tensile tests showed irradiation hardening (yield stress increase) of approximately 37% for 200 deg. C irradiated material tested at 60 deg. C and approximately 32% for 300 deg. C irradiated material tested at 60 deg. C. This contradicts the shift in reference temperature (T{sub 0}) measured in toughness tests (Master Curve approach), where the {Delta}T{sub 0} for 300 deg. C irradiated is approximately 170 deg. C and the {Delta}T{sub 0} for the 200 deg. C irradiated is approximately 160 deg. C. This means that the irradiation hardening of PH13-8Mo steel is not suitable to predict the shift in the reference temperature for the Master Curve approach.

  13. Characterization of Tool Wear in High-Speed Milling of Hardened Powder Metallurgical Steels

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2011-01-01

    Full Text Available In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC. The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill (0 = 6, TiAlN coating. It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.

  14. Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt.% NaCl solution

    International Nuclear Information System (INIS)

    Yoo, Yun Ha; Le, Diem Phuong; Kim, Jung Gu; Kim, Sun Kyu; Vinh, Pham Van

    2008-01-01

    TiN, TiAlN and TiAlSiN hard coatings were deposited onto AISI H13 tool steel by cathodic arc plasma method. X-ray diffraction (XRD) analysis confirmed that incorporation of Al and Si into TiN led to refinement of microstructure. From the results of potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) test conducted in an aerated 3.5% NaCl solution, the TiAlSiN film showed the best corrosion resistance with the lowest corrosion current density and porosity, the highest protective efficiency and total resistance (pore resistance plus charge transfer resistance)

  15. Studies on Stress Corrosion Cracking of Super 304H Austenitic Stainless Steel

    Science.gov (United States)

    Prabha, B.; Sundaramoorthy, P.; Suresh, S.; Manimozhi, S.; Ravishankar, B.

    2009-12-01

    Stress corrosion cracking (SCC) is a common mode of failure encountered in boiler components especially in austenitic stainless steel tubes at high temperature and in chloride-rich water environment. Recently, a new type of austenitic stainless steels called Super304H stainless steel, containing 3% copper is being adopted for super critical boiler applications. The SCC behavior of this Super 304H stainless steel has not been widely reported in the literature. Many researchers have studied the SCC behavior of steels as per various standards. Among them, the ASTM standard G36 has been widely used for evaluation of SCC behavior of stainless steels. In this present work, the SCC behavior of austenitic Fe-Cr-Mn-Cu-N stainless steel, subjected to chloride environments at varying strain conditions as per ASTM standard G36 has been studied. The environments employed boiling solution of 45 wt.% of MgCl2 at 155 °C, for various strain conditions. The study reveals that the crack width increases with increase in strain level in Super 304H stainless steels.

  16. Problems in repair-welding of duplex-treated tool steels

    OpenAIRE

    T. Muhič; J. Tušek; M. Pleterski; D. Bombač

    2009-01-01

    The present paper addresses problems in laser welding of die-cast tools used for aluminum pressure die-castings and plastic moulds. To extend life cycle of tools various surface improvements are used. These surface improvements significantly reduce weldability of the material. This paper presents development of defects in repair welding of duplex-treated tool steel. The procedure is aimed at reduction of defects by the newly developed repair laser welding techniques. Effects of different repa...

  17. Effect of Al Hot-Dipping on High-Temperature Corrosion of Carbon Steel in N2/0.1% H2S Gas

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Abro

    2016-02-01

    Full Text Available High-temperature corrosion of carbon steel in N2/0.1% H2S mixed gas at 600–800 °C for 50–100 h was studied after hot-dipping in the aluminum molten bath. Hot-dipping resulted in the formation of the Al topcoat and the Al-Fe alloy layer firmly adhered on the substrate. The Al-Fe alloy layer consisted primarily of a wide, tongue-like Al5Fe2 layer and narrow Al3Fe layer. When corroded at 800 °C for 100 h, the Al topcoat partially oxidized to the protective but non-adherent α-Al2O3 layer, and the interdiffusion converted the Al-Fe alloy layer to an (Al13Fe4, AlFe3-mixed layer. The interdiffusion also lowered the microhardness of the hot-dipped steel. The α-Al2O3 layer formed on the hot-dipped steel protected the carbon steel against corrosion. Without the Al hot-dipping, the carbon steel failed by forming a thick, fragile, and non-protective FeS scale.

  18. High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools

    Science.gov (United States)

    Valls, I.; Hamasaiid, A.; Padré, A.

    2017-09-01

    In hot stamping/press hardening, in addition to its shaping function, the tool controls the cycle time, the quality of the stamped components through determining the cooling rate of the stamped blank, the production costs and the feasibility frontier for stamping a given component. During the stamping, heat is extracted from the stamped blank and transported through the tool to the cooling medium in the cooling lines. Hence, the tools’ thermal properties determine the cooling rate of the blank, the heat transport mechanism, stamping times and temperature distribution. The tool’s surface resistance to adhesive and abrasive wear is also an important cost factor, as it determines the tool durability and maintenance costs. Wear is influenced by many tool material parameters, such as the microstructure, composition, hardness level and distribution of strengthening phases, as well as the tool’s working temperature. A decade ago, Rovalma developed a hot work tool steel for hot stamping that features a thermal conductivity of more than double that of any conventional hot work tool steel. Since that time, many complimentary grades have been developed in order to provide tailored material solutions as a function of the production volume, degree of blank cooling and wear resistance requirements, tool geometries, tool manufacturing method, type and thickness of the blank material, etc. Recently, Rovalma has developed a new generation of high thermal conductivity, high wear resistance tool steel grades that enable the manufacture of cost effective tools for hot stamping to increase process productivity and reduce tool manufacturing costs and lead times. Both of these novel grades feature high wear resistance and high thermal conductivity to enhance tool durability and cut cycle times in the production process of hot stamped components. Furthermore, one of these new grades reduces tool manufacturing costs through low tool material cost and hardening through readily

  19. Microstructural investigation of D2 tool steel during rapid solidification

    Science.gov (United States)

    Delshad Khatibi, Pooya

    Solidification is considered as a key processing step in developing the microstructure of most metallic materials. It is, therefore, important that the solidification process can be designed and controlled in such a way so as to obtain the desirable properties in the final product. Rapid solidification refers to the system's high undercooling and high cooling rate, which can yield a microstructure with unique chemical composition and mechanical properties. An area of interest in rapid solidification application is high-chromium, high-carbon tool steels which experience considerable segregation of alloying elements during their solidification in a casting process. In this dissertation, the effect of rapid solidification (undercooling and cooling rate) of D2 tool steel on the microstructure and carbide precipitation during annealing was explored. A methodology is described to estimate the eutectic and primary phase undercooling of solidifying droplets. The estimate of primary phase undercooling was confirmed using an online measurement device that measured the radiation energy of the droplets. The results showed that with increasing primary phase and eutectic undercooling and higher cooling rate, the amount of supersaturation of alloying element in metastable retained austenite phase also increases. In the case of powders, the optimum hardness after heat treatment is achieved at different temperatures for constant periods of time. Higher supersaturation of austenite results in obtaining secondary hardness at higher annealing temperature. D2 steel ingots generated using spray deposition have high eutectic undercooling and, as a result, high supersaturation of alloying elements. This can yield near net shape D2 tool steel components with good mechanical properties (specifically hardness). The data developed in this work would assist in better understanding and development of near net shape D2 steel spray deposit products with good mechanical properties.

  20. Microstructural evolution of HFIR-irradiated low activation F82H and F82H-10B steels

    International Nuclear Information System (INIS)

    Wakai, E.; Shiba, K.; Sawai, T.; Hashimoto, N.; Robertson, J.P.; Klueh, R.L.

    1998-01-01

    Microstructures of reduced-activation F82H (8Cr-2W-0.2V-0.04Ta) and the F82H steels doped with 10 B, irradiated at 250 and 300 C to 3 and 57 dpa in the High Flux Isotope Reactor (HFIR), were examined by TEM. In the F82H irradiated at 250 C to 3 dpa, dislocation loops, small unidentified defect clusters with a high number density, and a few MC precipitates were observed in the matrix. The defect microstructure after 300 C irradiation to 57 dpa is dominated by the loops, and the number density of loops was lower than that of the F82H- 10 B steel. Cavities were observed in the F82H- 10 B steels, but the swelling value is insignificant. Small particles of M 6 C formed on the M 23 C 6 carbides that were present in both steels before the irradiation at 300 C to 57 dpa. A low number density of MC precipitate particles formed in the matrix during irradiation at 300 C to 57 dpa

  1. Flank wears Simulation by using back propagation neural network when cutting hardened H-13 steel in CNC End Milling

    Science.gov (United States)

    Hazza, Muataz Hazza F. Al; Adesta, Erry Y. T.; Riza, Muhammad

    2013-12-01

    High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models.

  2. Flank wears Simulation by using back propagation neural network when cutting hardened H-13 steel in CNC End Milling

    International Nuclear Information System (INIS)

    Al Hazza, Muataz Hazza F; Adesta, Erry Y T; Riza, Muhammad

    2013-01-01

    High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models

  3. Temperature Effects on Stainless Steel 316L Corrosion in the Environment of Sulphuric Acid (H2SO4)

    Science.gov (United States)

    Ayu Arwati, I. G.; Herianto Majlan, Edy; Daud, Wan Ramli Wan; Shyuan, Loh Kee; Arifin, Khuzaimah Binti; Husaini, Teuku; Alfa, Sagir; Ashidiq, Fakhruddien

    2018-03-01

    In its application, metal is always in contact with its environment whether air, vapor, water, and other chemicals. During contact, chemical interactions emerge between metals and their respective environments such that the metal surface corrodes. This study aims to determine the corrosion rate of 316L stainless steel sulphuric acid environment (H2SO4) with weight loss and electrochemical methods. The corrosion rate (CR) is value of 316L stainless steel by weight loss method with sulfuric acid (H2SO4) with concentration of 0.5 M. The result obtained in conjunction with the increase of temperature the rate of erosion obtained appears to be larger, with a consecutive 3 hour the temperature of 50°C is 0.27 mg/cm2h, temperature 70°C 0.38 mg/cm2h, and temperature 90 °C 0.52 mg/cm2h. With the electrochemical method, the current value increases by using a C350 potentiostal tool. The higher the current, the longer the time the corrosion rate increases, where the current is at 90 °C with a 10-minute treatment time of 0.0014736 A. The 316L stainless steel in surface metal morphology is shown by using a Scanning Electron Microscope (SEM).

  4. Microstructural evolution of a cold work tool steel after pulsed laser remelting

    Directory of Open Access Journals (Sweden)

    L. Kosec

    2012-01-01

    Full Text Available The aim of this study is the investigation of micro-structural behaviour of a Mat. No. 1.2379 (EN-X160CrMoV121; AISI D2 cold work tool steel after remelting with a precise pulsed Nd:YAG laser. The investigated steel is one of the most hard to weld tool steels, due to large amount of alloying elements. The analysis was done on single spots remelted with specific laser pulse shape and parameters, assuring crack-less solidification. Re-solidifi ed areas were investigated with microscopy, hardness measurements, X-ray spectroscopy and diffraction method. Laser treatment causes rapid solidifi cation leading into a formation of a fine dendritic microstructures containing high amount of retained austenite causing a significant decrease of hardness.

  5. Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel

    Science.gov (United States)

    Yasavol, Noushin; Jafari, Hassan

    2015-05-01

    In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.

  6. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    International Nuclear Information System (INIS)

    Song, Taek Hoh; Kim, In Sub; Noh, Sung Kee

    1995-01-01

    In connection with the safe storage of high level nuclear waste, effect of H 2 O 2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H 2 O 2 . The experimental results show that H 2 O 2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H 2 O 2 concentration increased, indicating that pitting resistance was decreased by the existence of H 2 O 2 in the electrolyte. These effects of H 2 O 2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H 2 O 2 with those of O 2 , cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H 2 O 2 on the corrosion behavior were very similar to those of O 2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. In acid and alkaline media, the corrosion potential shifts by H 2 O 2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively. 13 figs., 1 tabs., 17 refs. (Author)

  7. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    Science.gov (United States)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  8. A LOW TEMPERATURE ALUMINIZING TREATMENT OF HOT WORK TOOL STEEL

    OpenAIRE

    Matijević, Božidar

    2013-01-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to the X40CrMoV5-1 hot tool steel. The aluminizing temperature was from 550 °C to 620 °C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the alumini...

  9. Corrosion fatigue investigation of a high nitrogen 12% Cr-steel and of a high strength martensitic PH 13-8 Mo steel under simulated steam turbine conditions. Final report

    International Nuclear Information System (INIS)

    Schmitt-Thomas, K.G.; Schweigart, H.

    1992-01-01

    This report summarizes the results of the corrosion fatigue investigations of two martensitic stainless steels (PH 13-8 Mo, X20 CrMoV 12 1; corrosion medium: 0,01 m NaCl or 22 wt% NaCl; pH value 3 or 7). The working programm includes electrochemical and corrosion fatigue tests. Also chemical analysis, mechanical-technological and metallographical as SEM investigations were performed. (orig.)

  10. Comprehensive surface treatment of high-speed steel tool

    Science.gov (United States)

    Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.

    2018-03-01

    One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.

  11. Tribological performances of new steel grades for hot stamping tools

    Science.gov (United States)

    Medea, F.; Venturato, G.; Ghiotti, A.; Bruschi, S.

    2017-09-01

    In the last years, the use of High Strength Steels (HSS) as structural parts in car body-in-white manufacturing has rapidly increased thanks to their favourable strength-to-weight ratio and stiffness, which allow a reduction of the fuel consumption to accommodate the new restricted regulations for CO2 emissions control. The survey of the technical and scientific literature shows a large interest in the development of different coatings for the blanks from the traditional Al-Si up to new Zn-based coatings and on the analysis of hard PVD, CVD coatings and plasma nitriding applied on the tools. By contrast, fewer investigations have been focused on the development and test of new tools steels grades capable to improve the wear resistance and the thermal properties that are required for the in-die quenching during forming. On this base, the paper deals with the analysis and comparison the tribological performances in terms of wear, friction and heat transfer of new tool steel grades for high-temperature applications, characterized by a higher thermal conductivity than the commonly used tools. Testing equipment, procedures as well as measurements analyses to evaluate the friction coefficient, the wear and heat transfer phenomena are presented. Emphasis is given on the physical simulation techniques that were specifically developed to reproduce the thermal and mechanical cycles on the metal sheets and dies as in the industrial practice. The reference industrial process is the direct hot stamping of the 22MnB5 HSS coated with the common Al-Si coating for automotive applications.

  12. Composition and B-H curve analysis of low carbon steel from Krakatau Steel company using VSM And EDX for magnet design of 13 MeV cyclotron

    International Nuclear Information System (INIS)

    Taufik; Emy Mulyani; Kusminarto; Slamet Santosa

    2012-01-01

    Cyclotron is one type of particle accelerator that accelerate particle in circular trajectory, in order to obtain high kinetic energy. One of the main components is the cyclotron magnet system that serves to form a cyclic particle trajectories and made of forged low carbon steel. In the magnet design, the selection of magnetic materials is very important in determining whether cyclotron magnet can operate properly or not and even can be optimal. That is why we need to test samples of magnetic materials from local production in this case two samples of material produced by PT Krakatau Steel (KS). Tests performed include testing of BH curve using VSM (Vibrating Sample Magnetometer) and material composition using EDX (Energy-dispersive X-ray spectroscopy). Obtained BH curve is used as material data in three-dimensional simulation using the Opera 3D with referee to magnetic model of Kirams 13. From this study it can be concluded that the position of the test object to the direction of the magnetic field induction gives different BH curve and the samples obtained from KS has a carbon content which is still high. The lower the carbon content in the iron will produce a better magnetic properties. Material samples analyzed will produce a field that is not optimal when it is used in a 13 MeV cyclotron magnet. (author)

  13. Problems in repair-welding of duplex-treated tool steels

    Directory of Open Access Journals (Sweden)

    T. Muhič

    2009-01-01

    Full Text Available The present paper addresses problems in laser welding of die-cast tools used for aluminum pressure die-castings and plastic moulds. To extend life cycle of tools various surface improvements are used. These surface improvements significantly reduce weldability of the material. This paper presents development of defects in repair welding of duplex-treated tool steel. The procedure is aimed at reduction of defects by the newly developed repair laser welding techniques. Effects of different repair welding process parameters and techniques are considered. A microstructural analysis is conducted to detect defect formation and reveal the best laser welding method for duplex-treated tools.

  14. Modeling the influence of the parameters the diffusion of chromium plating on operational and physical and mechanical properties of steels for stamping tool

    Directory of Open Access Journals (Sweden)

    Олександр Петрович Чейлях

    2015-03-01

    Full Text Available The diffusion hardening steel can be produced in any plant having a thermal equipment, besides, it is more economical than obtaining an alloy steel with similar properties. The influence of the parameters of the diffusion of chromium plating (the composition of the steel, powder mixture on the structure and mechanical properties of structural and tool steels was investigated. Results of X-ray analysis showed that the diffusion zone in the samples consists of two layers. First layer is predominantly carbides Cr7C3, Cr23C6, Fe3C. An intermediate layer composed of carbon-free solid solution of chromium in the iron. The maximum total thickness of the diffusion zone is observed in the steel 130Cr12V1 and 130Cr12Mo1 (~80 µm, minimum – in carbon steels 45, U10 (~10-30 µm. The thickness of carbide layer is approximately the same – 1-3 µm. Analyzing of data micro-hardness measurement across the thickness of the diffusion zone it must be noted that the diffusion layers of the samples of the tool steels have a high micro-hardness 6000-10000. The maximum HV=10200 was in steel 30Cr2W8V1. Chromium saturation of steel surface significantly increases its wear resistance. A much greater effect of increase of coefficient of relative wear resistance (3 fold increase was observed in steels 30Cr2W8V1, 130Cr12V1 and 130Cr12Mo1. The mathematical models relating the micro-hardness, wear resistance, the thickness of the diffusion layer were obtained. In view of the analytical relationships ascertained that the wear resistance of hardened steels substantially depend on the thickness of the diffusion coating, the micro-hardness of the layer and the core of steel and alloy steels has increased more than two times. For hardening steel punching tool 30Cr2W8V1 can be recommended composition of the powder mixture: 50% FeCr + 48% Al2O3 + 2% NaF, and for steel 130Cr12V1 preferably used as activator NH4F

  15. Hydrogen degradation of the 26H2MF alloy steel in H2SO4 and hydrocarbon environments

    International Nuclear Information System (INIS)

    Zielinski, A.; Swieczko-Zurek, B.; Michaliak, P.

    2004-01-01

    The Polish 26H2M alloy steel has been subjected to different heat treatment resulting in different microstructure and fracture appearance. The slow strain rate tests have been made on smooth round specimens in diluted sulphuric acid, boiler fuel and used mineral machine oil. The 26H2MF steel has become relatively immune in neutral boiler fuel and mineral oil and been heavily suffered from hydrogen degradation in acidic environment. The results demonstrate that the 26H2MF steel is highly susceptible to hydrogen degradation but in absence of stress raisers the increased hydrogen absorption in hydrocarbons can cause only small loss of its plasticity. (author) >>>

  16. A temperature dependent cyclic plasticity model for hot work tool steel including particle coarsening

    Science.gov (United States)

    Jilg, Andreas; Seifert, Thomas

    2018-05-01

    Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material's yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.

  17. Materials Processing Research and Development

    Science.gov (United States)

    2001-11-01

    interface between a Ti-6Al-4V workpiece and H13 tool steel die for various combinations of lubricants and workpiece-die temperatures. The ring test was...attaching a type-K thermocouple to the sample. The samples at 400 °C were heated using band heaters attached to H13 tool steel dies, with the...Ring Tests The ring tests were performed on a 200 kip servo-hydraulic press between H13 tool steel dies heated to the prescribed die temperatures of

  18. Friction stir welding of F82H steel for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Fusion Structural Materials Division, Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Ando, Masami; Tanigawa, Hiroyasu [Fusion Structural Materials Division, Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan)

    2016-09-15

    In the present study, friction stir welding was employed to join F82H steels and develop a potential joining technique for a reduced activation ferritic/martensitic steel. The microstructures and mechanical properties on the joint region were investigated to evaluate the applicability of friction stir welding. F82H steel sheets were successfully butt-joined with various welding parameters. In welding conditions, 100 rpm and 100 mm/min, the stirred zone represented a comparable hardness distribution with a base metal. Stirred zone induced by 100 rpm reserved uniformly distributed precipitates and very fine ferritic grains, whereas the base metal showed a typical tempered martensite with precipitates on the prior austenite grain boundary and lath boundary. Although the tensile strength was decreased at 550 °C, the stirred zone treated at 100 rpm showed comparable tensile behavior with base metal up to 500 °C. Therefore, friction stir welding is considered a potential welding method to preserve the precipitates of F82H steel.

  19. Friction stir welding of F82H steel for fusion applications

    International Nuclear Information System (INIS)

    Noh, Sanghoon; Ando, Masami; Tanigawa, Hiroyasu; Fujii, Hidetoshi; Kimura, Akihiko

    2016-01-01

    In the present study, friction stir welding was employed to join F82H steels and develop a potential joining technique for a reduced activation ferritic/martensitic steel. The microstructures and mechanical properties on the joint region were investigated to evaluate the applicability of friction stir welding. F82H steel sheets were successfully butt-joined with various welding parameters. In welding conditions, 100 rpm and 100 mm/min, the stirred zone represented a comparable hardness distribution with a base metal. Stirred zone induced by 100 rpm reserved uniformly distributed precipitates and very fine ferritic grains, whereas the base metal showed a typical tempered martensite with precipitates on the prior austenite grain boundary and lath boundary. Although the tensile strength was decreased at 550 °C, the stirred zone treated at 100 rpm showed comparable tensile behavior with base metal up to 500 °C. Therefore, friction stir welding is considered a potential welding method to preserve the precipitates of F82H steel.

  20. Spectral Analysis of CO2 Corrosion Product Scales on 13Cr Tubing Steel

    International Nuclear Information System (INIS)

    Guan-fa, Lin; Zhen-quan, Bai; Yao-rong, Feng; Xun-yuan, Xu

    2008-01-01

    CO 2 corrosion product scales formed on 13 Cr tubing steel in autoclave and in the simulated corrosion environment of oil field are investigated in the paper. The surface and cross-section profiles of the scales were observed by scanning electron microscopy (SEM), the chemical compositions of the scales were analyzed using energy dispersion analyzer of X-ray (EDAX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to confirm the corrosion mechanism of the 13 Cr steel in the simulated CO 2 corrosion environment. The results show that the corrosion scales are formed by the way of fashion corrosion, consist mainly of four elements, i.e. Fe, Cr, C and O, and with a double-layer structure, in which the surface layer is constituted of bulky and incompact crystals of FeCO 3 , and the inner layer is composed of compact fine FeCO 3 crystals and amorphous Cr(OH) 3 . Because of the characteristics of compactness and ionic permeating selectivity of the inner layer of the corrosion product scales, 13 Cr steel is more resistant in CO 2 corrosion environment

  1. Effects of initial microstructure and helium production on radiation hardening in F82H Steels

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, N.; Wakai, E.; Takada, F.; Jitsukawa, S. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Katoh, Y. [Oak Ridge Noational Laboratory, TN (United States)

    2007-07-01

    Full text of publication follows: Fission neutron irradiation to steels doped with isotope boron-10 is frequently conducted to study effects of the helium production on mechanical properties. The intrinsic mechanical properties of F82H steels could have been changed due to the boron doping. Recently, we reported that co-doping with boron and nitrogen to F82H (F82H+B+N) improved the mechanical properties of F82H doped only with boron. The mechanical properties of F82H+B+N are successfully comparable with the non-doped F82H before irradiation. In order to evaluate the effects of initial microstructure and helium production on radiation hardening, F82H and F82H+B+N were irradiate d Specimens used in this study were standard F82H martensitic steels, F82H steels doped with 60 mass ppm {sup 10}B and 200 ppm N (F82H+10B+N) and F82H steels doped with 60 mass ppm {sup 11}B and 200 ppm N (F82H+11B+N). Initial microstructures were changed by tempering conditions, and the tempering temperatures were at 700, 750 and 780 deg. C. Irradiation was performed at nominally 250 deg. C to 2 dpa in JMTR. Tensile properties were measured for the specimens before and after irradiation. Change of yield stress due to the irradiation in the F82H+11B+N steels depended strongly on the initial microstructure and hardness before irradiation. The radiation hardening due to helium production in the F82H+10B+N steels was less than 60 MPa in these experiments. Size of dimple in the fracture surface of specimen with helium production was larger than that with non-helium production. (authors)

  2. Study of wettability and cell viability of H implanted stainless steel

    Science.gov (United States)

    Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur

    2018-03-01

    In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.

  3. Tool steel quality and surface finishing of plastic molds

    Directory of Open Access Journals (Sweden)

    Rafael Agnelli Mesquita

    2010-01-01

    Full Text Available Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grinding, polishing and texturing, and also related to the tool steel quality, in relation to microstructure homogeneity and non-metallic inclusions (cleanliness. The present paper is then focused on this interrelationship between steel quality and manufacturing process, which are both related to the final quality of plastic mold surfaces. Examples are discussed in terms of surface finishing of plastic molds and the properties or the microstructure of mold steels.

  4. Adhesion Strength of TiN Coatings at Various Ion Etching Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    Science.gov (United States)

    Ali, Mubarak; Hamzah, Esah; Ali, Nouman

    Titanium nitride (TiN) widely used as hard coating material was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The goal of this study was to examine the effect of ion etching with and without titanium (Ti) and chromium (Cr) on the adhesion strength of TiN coatings deposited on tool steels. From the scratch tester, it was observed that by increasing Ti ion etching showed an increase in adhesion strength of the deposited coatings. The coatings deposited with Cr ion etching showed poor adhesion compared with the coatings deposited with Ti ion etching. Scratch test measurements showed that the coating deposited with titanium ion etching for 16 min is the most stable coating and maintained even at the critical load of 66 N. The curve obtained via penetration depth along the scratch trace is linear in the case of HSS, whereas is slightly flexible in the case of D2 tool steel. The coatings deposited on HSS exhibit better adhesion compared with those on D2 tool steel.

  5. Tool wear analysis during duplex stainless steel trochoidal milling

    Science.gov (United States)

    Amaro, Paulo; Ferreira, Pedro; Simões, Fernando

    2018-05-01

    In this study a tool with interchangeable inserts of sintered carbides coated with AlTiN were used to mill a duplex stainless steel with trochoidal strategies. Cutting speed range from 120 to 300 m/min were used and t he evaluation of tool deterioration and tool life was made according international standard ISO 8688-1. It was observed a progressive development of a flank wear and a cumulative cyclic process of localized adhesion of the chip to the cutting edge, followed by chipping, loss of the coating and substrate exposure. The tool life reached a maximum of 35 min. for cutting speed of 120 m/min. However, it was possible to maintain a tool life of 20-25 minutes when the cutting speed was increased up to 240 m/min.

  6. Investigation of Microstructure and Mechanical Properties in Hot-work Tool Steels

    OpenAIRE

    Rey, Tomas

    2017-01-01

    Hot-work tool steels make up an important group of steels that are able to perform with good strength and toughness properties at elevated temperatures and stresses. They are able to gain this behavior through their alloy composition and heat treatment, which relies on the precipitation of alloy carbides to counter the loss in strength as the tempered material becomes more ductile. As demand grows for materials that are suitable for even harsher applications and that show improved mechanical ...

  7. Effect of TiC addition on surface oxidation behavior of SKD11 tool steel composites

    Science.gov (United States)

    Cho, Seungchan; Jo, Ilguk; Kim, Heebong; Kwon, Hyuk-Tae; Lee, Sang-Kwan; Lee, Sang-Bok

    2017-09-01

    Titanium carbide (TiC) reinforced tool steel matrix composites were successfully fabricated by a liquid pressing infiltration process and research was subsequently conducted to investigate the composites' oxidation resistance. The mass gain of the tested TiC-SKD11 composite held at 700 °C for 50 h in an air environment decreased by about 60%, versus that of the SKD11, which indicates improved oxidation resistance. Improved oxidation resistance of the TiC-SKD11 composite originates from uniformly reinforced TiC, with a phase transition to thermodynamically stable, volume-expanded TiO2.

  8. Metallurgical Characterization of Reduced Activation Martensitic Steel F-82H Modified

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Lancha, A.M.; Gomez-Briceno, D.; Schirra, M.

    1999-12-01

    During 1995-1998 within of research and development programs on reduced ferritic/martensitic steels for fusion, metallurgical characterization of 8Cr-2WVTa steel, denominated F-28H modified, have been carried out. The work has focused on studying the microstructural and mechanical (tensile, creep, low cycle fatigue and charpy) characteristics of as-received state and aged material in the temperature range 300 degree centigrade to 600 degree centigrade for periods up to 5000 h. (Author) 45 refs

  9. Characterization of an AISI H-13 steel for work in hot

    International Nuclear Information System (INIS)

    Godinez, J.; Robles, E.

    1998-01-01

    Two materials were acquired which elaborated through secondary refining processes known as electroslag refusing (ESR) and electric arc in vacuum refusing (VAR) were acquired. These materials were thermically treated, for subsequently to determine their mechanical properties in longitudinal and transversal directions with respect to rolling direction, moreover they were characterized through scanning electron microscopy and X-ray diffraction determining microstructure, carbides and non-metallic inclusions. The results of the mechanical essays allowed to evaluate the fracture toughness to this steel by the Barsom and Rolfe method. (Author)

  10. Behaviour of carbon steel and chromium steels in CO2 environments

    International Nuclear Information System (INIS)

    Lefebvre, B.; Bounie, P.; Guntz, G.; Prouheze, J.C.; Renault, J.J.

    1984-01-01

    The behavior in aqueous CO 2 environments of steel with chromium content between 0 and 22% has been studied by autoclave tests. The influence of chromium and molybdenum contents has been investigated particularly on 13 Cr steel. Conventional electrochemical test results are related to the CO 2 autoclave test results. The influence of the environment: temperature, chloride concentration, partial pressure of CO 2 and some amount of H 2 S on the corrosion resistance are discussed

  11. Inverse Processing of Undefined Complex Shape Parts from Structural High Alloyed Tool Steel

    Czech Academy of Sciences Publication Activity Database

    Monková, K.; Monka, P.; Hloch, Sergej

    -, č. 1 (2014), s. 1-11 ISSN 1687-8132 Institutional support: RVO:68145535 Keywords : 3D digitization * complex shape parts * high alloyed tool steel Subject RIV: JQ - Machines ; Tools Impact factor: 0.575, year: 2014 http://www.hindawi.com/journals/ame/aip/478748/

  12. Effect of temperature and aluminium additions on the mechanical properties of the 13% chromium ferrite stainless steels

    International Nuclear Information System (INIS)

    Martins, S.

    1975-01-01

    The potential interest of the ferritic stainless steels as component materials for nuclear power reactors led to investigate how aluminium influences the mechanical properties of 13% chromium ferritic stainless steels between room temperature and about 700 0 C. Nominal 13% chromium and 0.04 to 0.08% carbon ferritic stainless steels containing 0, 0.13, 2.19 and 4.15% aluminium, respectively, were obtained by vacuum remelting of a commercial martensitic-ferritic stainless steel and suitable additions of aluminium. After successive rolling operations and recrystallizations performed in order to obtain final 0.5 mm thick sheets with similar average grain sizes the specimens of the above mentioned steels were tested in a tensile test Instron machine, with a constant strain rate (approximately equal to 1.6 x 10 -3 min -1 ), at room temperature, 140, 265, 415, 565 and 715 0 C. The results obtained show that strengthening by aluminium is strongly temperature dependent. At 265 0 C all the steels presentes serrated plastic deformation (Portevin-Le Chatelier effect), which is attributed to interactions of the interstitial and substitutional solute atoms with dislocations in the body centered cubic structure. Flow stress drops were still observed at 465 0 C, although the tests performed at 565 and 715 0 C showed work-softening of the materials and total absence of serrations. Stress relaxation tests at room temperature yielded values of the apparent activation volumes, which are scattered between about 100 and 130 b 3 (b-Burgers vector), being almost constant with stress, strain and aluminium content. Therefore, although aluminium appreciably strengthens the 13% chromium steel, the behaviour summarized suggests that the mechanism controlling plastic deformation at room temperature is the same for all the tested steels, the values of the apparent activitation volumes being probably determined by the interstitial content. Stress relaxation tests at 20, 75, 140 and 265 0 C for

  13. Influence of the nitriding and TiAlN/TiN coating thickness in the mechanical properties of a duplex treated H13 steel

    International Nuclear Information System (INIS)

    Torres, Ricardo D.; Soares, Paulo; Suzuki, Luciane Y.; Lepienski, Carlos M.

    2010-01-01

    AISI H13 die steel substrates were low pressure gas nitrided in three different nitriding cases. In the nitriding case A, the surface hardness was around 12 GPa and the nitriding thickness was around 40 μm. In the nitriding case B, the hardness was the same as in case A, but the nitriding thickness was around 70 μm. Finally, in the nitriding case C, the nitriding thickness was the same as in case B, but hardness profile showed a different behavior. In case C, the surface hardness was the same as case A and B. But the hardness increases as one move away from the surface showing the highest hardness at 15 "m from the sample surface. The XRD results showed that the nitriding cases microstructure is composed mainly by the diffusion layer with small amount of Cr_2N precipitates. These nitrided samples were subsequently coated with TiAlN using cathodic arc evaporation in two thicknesses of 3 and 7 μm. These samples were characterized with respect to phase chemistry, adhesion, hardness, elastic modulus and scratch tests. The phase chemistry determined through XRD revealed that coating was mostly Ti_0_._7Al_0_._3N with some peaks of TiN which comes from the adhesion layer that was deposited prior to the deposition of TiAlN. The instrumented hardness performed in the coated samples showed that the coating system hardness changes with the nitriding cases when the coating thickness is 3 μm. On the other hand, the nitriding characteristics do not influence the coating hardness with thickness of 7 μm. In addition, the 7 μm thick coating is harder than the 3 μm thick coating. In the last part of this work, TiAlN was deposited in the AISI H13 substrate without nitriding; it was found that the hardness in this condition is higher than the nitrided/coated samples. The worn area, probed by the scratch test, was smaller for the TiAlN deposited over AISI H13 without the nitriding layer. (author)

  14. Welding procedure for 06Kh13N7D2 steel

    International Nuclear Information System (INIS)

    Muromtsev, B.I.; Turkov, I.I.

    1990-01-01

    Based on the results of investigations into the process strength, mechanical and corrosion properties of 08Kh13N7D2 steel welded joints, the optimal method of its welding and a possibility of applying it for high-strength mounting in nuclear power plants are determined

  15. Experimental investigation into effect of cutting parameters on surface integrity of hardened tool steel

    Science.gov (United States)

    Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.

    2018-04-01

    Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min

  16. Mechanical and fatigue properties of martensitic Fe-13Cr steel in contact with lead and lead-bismuth melts

    Energy Technology Data Exchange (ETDEWEB)

    Yaskiv, O.I., E-mail: oleh.yaskiv@ipm.lviv.ua; Fedirko, V.M.

    2014-01-15

    Highlights: •We investigated the influence of Pb and Pb-Bi melts on mechanical properties of Fe-13Cr steel at high temperatures. •We revealed the temperature interval of liquid metal embrittlement of Fe-13Cr steel. •Pb-Bi has more negative impact as compared with Pb for both plasticity and fatigue. -- Abstract: The influence of stagnant liquid-metal environments (Pb and Pb-Bi) on mechanical (strength and plasticity) and fatigue properties (low cycle fatigue) of martensitic Fe-13Cr steel in temperature interval of 250–600 °S have been investigated. Heavy liquid metals facilitate decreasing in ultimate strength by 10–20% against that in vacuum. The increase of temperature enhances this effect. Fe-13Cr steel is susceptible to liquid-metal embrittlement in the temperature interval of 350–450 °S, which manifests itself more substantially in lead-bismuth eutectic. The decrease of plasticity in Pb is 11% at 450 °S and in Pb-Bi is 30% in temperature interval 350–400 °S. Liquid metal environments significantly reduce fatigue life of Fe-13Cr steel. Pb-Bi has a more negative impact. In particular, with increasing total strain amplitude (up to 1.0%), the decrease in the cycle number to fracture by more than two orders of magnitude occurs.

  17. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt

    International Nuclear Information System (INIS)

    Liu, Yan; Xu, Lining; Lu, Minxu; Meng, Yao; Zhu, Jinyang; Zhang, Lei

    2014-01-01

    Highlights: • The corrosion behavior of 13Cr steel exposed to bromine salt completion fluid containing high concentration bromine ions was investigated. • There are passive circles around pits on the 13Cr steel surface after 7 d of exposure. • Macroscopic galvanic corrosion formed between the passive halo and the pit. • The mechanism of pitting corrosion on 13Cr stainless steel exposed to heavy bromine brine was established. - Abstract: A series of corrosion tests of 13Cr stainless steel were conducted in a simulated completion fluid environment of high temperature and high concentration bromine salt. Corrosion behavior of specimens and the component of corrosion products were investigated by means of scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). The results indicate that 13Cr steel suffers from severe local corrosion and there is always a passive halo around every pit. The formation mechanism of the passive halo is established. OH − ligand generates and adsorbs in a certain scale because of abundant OH − on the surface around the pits. Passive film forms around each pit, which leads to the occurrence of passivation in a certain region. Finally, the dissimilarities in properties and morphologies of regions, namely the pit and its corresponding passive halo, can result in different corrosion sensitivities and may promote the formation of macroscopic galvanic pairs

  18. Sliding Wear Behaviour and Corosion Resistance to Ringer’s Solution of Uncoated and DLC Coated X46Cr13 Steel

    Directory of Open Access Journals (Sweden)

    Scendo M.

    2016-12-01

    Full Text Available Sliding wear properties and corrosion resistance in Ringer’s solution of uncoated and diamond-like carbon (DLC coated X46Cr13 steel was tested. The Raman spectra showed that the DLC film was successfully coated by plasma assisted CVD method onto the steel surface. The wear test, carried out using a ball-on disk tribometer, revealed that the DLC coating show better resistance to sliding wear and lower friction coefficient against a 100Cr6 steel ball than five times softer X46Cr13 steel. The oxidation kinetic parameters were determined by means of both the gravimetric and electrochemical method. It was found that the DLC coating markedly decreased the rate of corrosion of the X46Cr13 steel, irrespective of the corrosion mechanism involved.

  19. Effect of H{sub 2}O{sub 2} on the corrosion behavior of 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Taek Hoh; Kim, In Sub [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Noh, Sung Kee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-08-01

    In connection with the safe storage of high level nuclear waste, effect of H{sub 2}O{sub 2} on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H{sub 2}O{sub 2}. The experimental results show that H{sub 2}O{sub 2} increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H{sub 2}O{sub 2} concentration increased, indicating that pitting resistance was decreased by the existence of H{sub 2}O{sub 2} in the electrolyte. These effects of H{sub 2}O{sub 2} on corrosion of 304L stainless steel are considered to be similar to those of {gamma}-irradiation. To compare the effects of H{sub 2}O{sub 2} with those of O{sub 2}, cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H{sub 2}O{sub 2} on the corrosion behavior were very similar to those of O{sub 2} such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. In acid and alkaline media, the corrosion potential shifts by H{sub 2}O{sub 2} were restricted by the large current density of proton reduction and by the le Chatelier`s principle respectively. 13 figs., 1 tabs., 17 refs. (Author).

  20. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Fedrizzi, A., E-mail: anna.fedrizzi@ing.unitn.it [Department of Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Pellizzari, M. [Department of Industrial Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Zadra, M. [K4Sint, Start-up of the University of Trento, Viale Dante 300, 38057 Pergine Valsugana (Italy); Marin, E. [Department of Chemistry, Physics and Environment, University of Udine, Via Cotonificio 108, 33100 Udine (Italy)

    2013-12-15

    Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles. X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calc® software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: • TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. • TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. • Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. • The new phases were investigated by means of AFM, Volta potential and XRD analyses.

  1. Influence of hard particle addition and chemical interdiffusion on the properties of hot extruded tool steel compounds

    International Nuclear Information System (INIS)

    Silva, P.A.; Weber, S.; Inden, G.; Pyzalla, A.R.

    2009-01-01

    Low alloyed steel bars were co-extruded with pre-sintered tool steel powders with the addition of tungsten carbides (W 2 C/WC) as hard particles. During the hot extrusion process of these massive and powdery materials, an extrudate is formed consisting of a completely densified wear resistant coating layer and a bulk steel bar as the tough substrate core. This work combines experimental measurements (EPMA) and diffusion calculations (DICTRA TM ) to investigate the effect of hard particle addition and its dissolution, as well as the formation of M 6 C carbides on the properties of two different PM tool steel coatings hot extruded with a 1.2714 steel bar. A carburization effect resulting from the W 2 C hard particles is responsible for an increase of the 1.2344 steel matrix hardness. The mechanical properties of the interface region between coating matrix and substrate are influenced by chemical interdiffusion of carbon and other alloying elements occurring during heat treatment.

  2. Method of treating tool steel die materials

    International Nuclear Information System (INIS)

    Cook, C.S.; Damon, S.

    1981-01-01

    In a method of hardening pilger dies to provide a hard case containing residual compressive stresses and tough body, the tool steel die is heated to the austenitizing temperature range, followed by selectively removing heat from the die at a predetermined faster rate in the direction of the desired case than the rate of heat removal from the balance of the die, and thereafter tempering the die. The invention provides a fully hardened and tempered case on the working surface of the die and a tough body in the balance of the die, usually of lower hardness. (author)

  3. Prediction Of Tensile And Shear Strength Of Friction Surfaced Tool Steel Deposit By Using Artificial Neural Networks

    Science.gov (United States)

    Manzoor Hussain, M.; Pitchi Raju, V.; Kandasamy, J.; Govardhan, D.

    2018-04-01

    Friction surface treatment is well-established solid technology and is used for deposition, abrasion and corrosion protection coatings on rigid materials. This novel process has wide range of industrial applications, particularly in the field of reclamation and repair of damaged and worn engineering components. In this paper, we present the prediction of tensile and shear strength of friction surface treated tool steel using ANN for simulated results of friction surface treatment. This experiment was carried out to obtain tool steel coatings of low carbon steel parts by changing contribution process parameters essentially friction pressure, rotational speed and welding speed. The simulation is performed by a 33-factor design that takes into account the maximum and least limits of the experimental work performed with the 23-factor design. Neural network structures, such as the Feed Forward Neural Network (FFNN), were used to predict tensile and shear strength of tool steel sediments caused by friction.

  4. Fracture toughness of a nanoscale WC-Co tool steel

    International Nuclear Information System (INIS)

    Densley, J.M.; Hirth, J.P.

    1997-01-01

    Tungsten carbide tool steels, comprising WC particles with 6.7--25wt% Co distributed in the interparticle regions as a quasi-continuous binder phase, can be considered as WC-Co composites. The fracture toughness of such WC-Co composites is dependent on the volume fraction, contiguity and thickness of the cobalt binder, and the size of the tungsten carbide grains. Research has shown that the ductile binder undergoes nearly all the plastic deformation during fracture, which provides the primary energy consuming process that enhances fracture resistance. Recent manufacturing developments have given rise to the production of a WC-6.7wt% Co cermet having an average WC grain size of 70 nm, with a corresponding binder mean thickness, h, of 9 nm calculated from d = h(1-V f )/V f where d = 70 nm and V f = 0.114. This composite has shown a higher wear resistance than that of conventional cermets in proportion to their hardness. Such improvement has been attributed to the difficulty in forming dislocations in the very small grains. There are also indications that the Co binder in the nanoscale cermet contains higher contents of dissolved W and C than for conventional scale cermets. Because plastic deformation is initially confined to the binder phase, it was of interest to perform mode 1 and mixed mode toughness tests on the nanoscale cermet to determine whether flow localization influenced mixed mode toughness as in bulk materials. Two generations of this cermet were provided by Rogers Tool Works. The first generation, A, had lower binder contiguity, with occasional agglomerations of WC grains. The second generation, B, was cleaner, with the cobalt binder more uniformly separating the WC grains

  5. Experimental study of residual stresses in laser clad AISI P20 tool steel on pre-hardened wrought P20 substrate

    International Nuclear Information System (INIS)

    Chen, J.-Y.; Conlon, K.; Xue, L.; Rogge, R.

    2010-01-01

    Research highlights: → Laser cladding of P20 tool steel. → Residual stress analysis of laser clad P20 tool steel. → Microstructure of laser clad P20 tool steel. → Tooling Repair using laser cladding. → Stress reliving treatment of laser clad P20 tool steel. - Abstract: Laser cladding is to deposit desired material onto the surface of a base material (or substrate) with a relatively low heat input to form a metallurgically sound and dense clad. This process has been successfully applied for repairing damaged high-value tooling to reduce their through-life cost. However, laser cladding, which needs to melt a small amount of a substrate along with cladding material, inevitably introduces residual stresses in both clad and substrate. The tensile residual stresses in the clad could adversely affect mechanical performance of the substrate being deposited. This paper presents an experimental study on process-induced residual stresses in laser clad AISI P20 tool steel onto pre-hardened wrought P20 base material and the correlation with microstructures using hole-drilling and neutron diffraction methods. Combined with X-ray diffraction and scanning electron microscopic analyses, the roles of solid-state phase transformations in the clad and heat-affected zone (HAZ) of the substrate during cladding and post-cladding heat treatments on the development and controllability of residual stresses in the P20 clad have been investigated, and the results could be beneficial to more effective repair of damaged plastic injection molds made by P20 tool steel.

  6. Prediction of ttt curves of cold working tool steels using support vector machine model

    Science.gov (United States)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    The cold working tool steels are of high carbon steels with metallic alloy additions which impart higher hardenability, abrasion resistance and less distortion in quenching. The microstructure changes occurring in tool steel during heat treatment is of very much importance as the final properties of the steel depends upon these changes occurred during the process. In order to obtain the desired performance the alloy constituents and its ratio plays a vital role as the steel transformation itself is complex in nature and depends very much upon the time and temperature. The proper treatment can deliver satisfactory results, at the same time process deviation can completely spoil the results. So knowing time temperature transformation (TTT) of phases is very critical which varies for each type depending upon its constituents and proportion range. To obtain adequate post heat treatment properties the percentage of retained austenite should be lower and metallic carbides obtained should be fine in nature. Support vector machine is a computational model which can learn from the observed data and use these to predict or solve using mathematical model. Back propagation feedback network will be created and trained for further solutions. The points on the TTT curve for the known transformations curves are used to plot the curves for different materials. These data will be trained to predict TTT curves for other steels having similar alloying constituents but with different proportion range. The proposed methodology can be used for prediction of TTT curves for cold working steels and can be used for prediction of phases for different heat treatment methods.

  7. Characterization of an AISI H-13 steel for work in hot; Caracterizacion del acero H-13 AISI para trabajado en caliente

    Energy Technology Data Exchange (ETDEWEB)

    Godinez, J.; Robles, E. [Instituto Nacional de Investigaciones Nucleares, Departamento de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    Two materials were acquired which elaborated through secondary refining processes known as electroslag refusing (ESR) and electric arc in vacuum refusing (VAR) were acquired. These materials were thermically treated, for subsequently to determine their mechanical properties in longitudinal and transversal directions with respect to rolling direction, moreover they were characterized through scanning electron microscopy and X-ray diffraction determining microstructure, carbides and non-metallic inclusions. The results of the mechanical essays allowed to evaluate the fracture toughness to this steel by the Barsom and Rolfe method. (Author)

  8. Machining Data Handbook. 3rd Edition. Volume 2

    Science.gov (United States)

    1980-01-01

    HY230 50 ORC age 250 Grade 7 ASTM A538: Grades A, B. C I 8. TOOL STEELS , WROUGHT r~n 5 05.05 1-. Group I 00 t oBOT5 A2 H13 L6 P20 8000 125 Finish: (Max...max 50 R ~ Maraged 0 Rough 112 8. TOOL STEELS , WROUGH4T Rough0 60/2 Group I to40 to 0 P2 H13 L6 P20 6500 !00 Finish- A3 H14 L7 P21 50 R Annealed 0005max...Over .0002 max. 50 Rc Maraged - s- . .__.. _ GroupRough: 8. TOOL STEELS , WROUGHT 1 5000 75 o.00 1/3 to to A60MV A2 H13 L6 P20 6500 200 Finish: A3 H14

  9. Research and Development of the Solidification of Slab Ingots from Special Tool Steels

    Directory of Open Access Journals (Sweden)

    Tkadlečková M.

    2017-09-01

    Full Text Available The paper describes the research and development of casting and solidification of slab ingots from special tool steels by means of numerical modelling using the finite element method. The pre-processing, processing and post-processing phases of numerical modelling are outlined. Also, problems with determining the thermophysical properties of materials and heat transfer between the individual parts of the casting system are discussed. Based on the type of grade of tool steel, the risk of final porosity is predicted. The results allowed to improve the production technology of slab ingots, and also to verify the ratio, the chamfer and the external/ internal shape of the wall of the new designed slab ingots.

  10. Carbon and metal-carbon implantations into tool steels for improved tribological performance

    Science.gov (United States)

    Hirvonen, J.-P.; Harskamp, F.; Torri, P.; Willers, H.; Fusari, A.; Gibson, N.; Haupt, J.

    1997-05-01

    The high-fluence implantation of carbon and dual implantations of metal-metalloid pairs into steels with different microstructures are briefly reviewed. A previously unexamined system, the implantation of Si and C into two kinds of tool steels, M3 and D2, have been studied in terms of microstructure and tribological performance. In both cases ion implantation transfers a surface into an amorphous layer. However, the tribological behavior of these two materials differs remarkably: in the case of ion-implanted M3 a reduction of wear in a steel pin is observed even at high pin loads, whereas in the case of ion-implanted D2 the beneficial effects of ion implantation were limited to the lowest pin load. The importance of an initial phase at the onset of sliding is emphasized and a number of peculiarities observed in ion-implanted M3 steel are discussed.

  11. Heating temperature effect on ferritic grain size of rotor steel

    International Nuclear Information System (INIS)

    Cheremnykh, V.G.; Derevyankin, E.V.; Sakulin, A.A.

    1983-01-01

    The heating temperature effect on ferritic grain size of two steels 13Kh1M1FA and 25Kh1M1FA is evaluated. It is shown that exposure time increase at heating temperatures below 1000 deg C up to 10h changes but slightly the size of the Cr-Mo-V ferritic grain of rotor steel cooled with 25 deg C/h rate. Heating up to 1000 deg C and above leads to substantial ferritic grain growth. The kinetics of ferritic grain growth is determined by the behaviour of phases controlling the austenitic grain growth, such as carbonitrides VCsub(0.14)Nsub(0.78) in 13Kh1M1FA steel and VCsub(0.18)Nsub(0.72) in 25Kh1M1FA steel. Reduction of carbon and alloying elements content in steel composition observed at the liquation over rotor length leads to a certain decrease of ferritic grain resistance to super heating

  12. Shear Behavior of Corrugated Steel Webs in H Shape Bridge Girders

    Directory of Open Access Journals (Sweden)

    Qi Cao

    2015-01-01

    Full Text Available In bridge engineering, girders with corrugated steel webs have shown good mechanical properties. With the promotion of composite bridge with corrugated steel webs, in particular steel-concrete composite girder bridge with corrugated steel webs, it is necessary to study the shear performance and buckling of the corrugated webs. In this research, by conducting experiment incorporated with finite element analysis, the stability of H shape beam welded with corrugated webs was tested and three failure modes were observed. Structural data including load-deflection, load-strain, and shear capacity of tested beam specimens were collected and compared with FEM analytical results by ANSYS software. The effects of web thickness, corrugation, and stiffening on shear capacity of corrugated webs were further discussed.

  13. Factors influencing the surface quality of polished tool steels

    International Nuclear Information System (INIS)

    Rebeggiani, S; Rosén, B-G

    2014-01-01

    Today’s demands on surface quality of moulds for injection moulding of plastic components involve no/low defect contents and roughness levels in the nm-range for high gloss applications. Material properties as well as operating conditions influence the mould finish, and thus the final surface of moulded products. This paper focuses on how particle content and different polishing strategies influence final surface qualities of moulds. Visual estimations of polished tool steel samples were combined with non-contact 3D-surface texture analysis in order to correlate traditional assessments to more quantitative methods, and to be able to analyse the surfaces at nanometre-level. It was found that steels with a lower proportion of particles, like carbides and oxides, gave rise to smoother polished surfaces. In a comparative study of polishers from different polishing shops, it was found that while different surface preparation strategies can lead to similar final roughness, similar preparation techniques can produce high-quality surfaces from different steel grades. However, the non-contact 3D-surface texture analysis showed that not all smooth polished surfaces have desirable functional topographies for injection moulding of glossy plastic components. (paper)

  14. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    Energy Technology Data Exchange (ETDEWEB)

    Awazu, Kaoru; Yoshida, Hiroyuki [Industrial Research Inst. of Ishikawa (Japan); Watanabe, Hiroshi [Gakushuin Univ., Tokyo (Japan); Iwaki, Masaya; Guzman, L [RIKEN, Saitama (Japan)

    1992-04-15

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C{sub 6}H{sub 6} gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10{sup 16} ions cm{sup -2}. The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.).

  15. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    International Nuclear Information System (INIS)

    Awazu, Kaoru; Yoshida, Hiroyuki; Watanabe, Hiroshi; Iwaki, Masaya; Guzman, L.

    1992-01-01

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C 6 H 6 gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10 16 ions cm -2 . The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.)

  16. Theoretical-Experimental study on the electroslag remelting technology of high quality steels

    International Nuclear Information System (INIS)

    Robles P, E.F.

    1993-01-01

    This is a theoretical-experimental laboratory study on the Electroslag Remelting Technology (ESRT) of high quality steels. The objective of this study was to analyze the problems that this technology entails and thus facilitate its industrial application in Mexico. The study was carried out using a 1 Kg. capacity furnace, the behavior of different fluxes on the remelting of 1018 AISI carbon steel was established and a slag 70F/15/15 was selected for the remelting of H-13 AISI hot work tool steel. From the experimental results it was possible to establish a flux manufacture route, the electrode conditioning necessary for the experiments, and the critical points of the process. It was demonstrated that the crucible and electrode advance system are the more critical points in the furnace manufacture, that the start up is fundamental for the remelting continuity and that the CaF 2 base slags are more recommendable for special steels refining. It has been proven that it is possible to experiment with little laboratory electroslag furnaces. (Author)

  17. Microstructural investigations of interfaces in PVD TiN coated tool steels

    NARCIS (Netherlands)

    Carvalho, NJM; in't Veld, AJH; De Hosson, JTM; Lejcek, P; Paidar,

    1999-01-01

    The microstructure of PVD TiN coated tools steels composites has been investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the microstructure of the coatings consists of a dense fibrous structure typical of a zone T structure. When the

  18. Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures

    Science.gov (United States)

    Bagautdinov, Ruslan; Monastireva, Daria; Bodak, Irina; Potapova, Irina

    2018-03-01

    There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.

  19. Hydrogen behaviour in the aged low activation martensitic steel F82H for fusion reactor applications

    International Nuclear Information System (INIS)

    Benamati, G.

    1997-10-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of hydrogen in the low activation martensitic steel F82H aged for 2000 h under vacuum at 773 K. The measurements cover the temperature range from 373 to 723 K which includes the onset of hydrogen trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for hydrogen in the aged F82H steel are determined. These data are compared with those obtained for deuterium in F82H steel

  20. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    Science.gov (United States)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  1. Nanostructure and Properties of Corrosion Resistance in C+Ti Multi-Ion-Implanted Steel

    Institute of Scientific and Technical Information of China (English)

    张通和; 吴瑜光; 刘安东; 张旭; 王晓妍

    2003-01-01

    The corrosion and pitting corrosion resistance of C+ Ti dual and C+Ti+C ternary implanted H13 steel were studied by using a multi-sweep cyclic voltammetry and a scanning electron microscope. The effects of phase formation on corrosion and pitting corrosion resistance were explored. The x-ray diffraction analysis shows that the nanometer-sized precipitate phases consist of compounds of Fe2 Ti, TiC, Fe2C and Fe3 C in dual implanted layer and even in ternary implanted layer. The passivation layer consists of these nanometer phases. It has been found that the corrosion and pitting corrosion resistance of dual and ternary implanted H13 steel are improved extremely. The corrosion resistance of ternary implanted layer is better than that of dual implantations and is enhanced with the increasing ion dose. When the ion dose of Ti is 6 × 1017/cm2 in the ternary implantation sample, the anodic peak current density is 95 times less than that of the H13 steel. The pitting corrosion potential of dual and ternary implantation samples is in the range from 55mV to 160mV which is much higher than that of the H13 steel. The phases against the corrosion and pitting corrosion are nanometer silkiness phases.

  2. Enhanced wear resistance of production tools and steel samples by implantation of nitrogen and carbon ions

    International Nuclear Information System (INIS)

    Mikkelsen, N.J.; Straede, C.A.

    1992-01-01

    In recent years ion implantation has become a feasible technique for obtaining improved wear resistance of production tools. However, basic knowledge of how and in which cases ion implantation is working at its best is still needed. The present paper discusses structural and tribological investigations of carbon and nitrogen implanted steels. The nitrogen data were obtained mainly from field tests and the investigation of carbon implantations took place mainly in the laboratory. A study was made of how the tribological behaviour of implanted steels changes with different implantation parameters. The tribological laboratory investigations were carried out using pin-on-disc equipment under controlled test conditions, and deal with high dose carbon implantation (approximately (1-2)x10 18 ions cm -2 ). The wear resistance of steels was enhanced dramatically, by up to several orders of magnitude. The field test results cover a broad range of ion implanted production tools, which showed a marked improvement in wear resistance. Nitrogen implanted tools are also compared with carbon and titanium implanted tools. (orig.)

  3. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  4. The structure and properties of ZrN-Ni-Co-coatings on the edges steel knives of wood-cutting tools

    International Nuclear Information System (INIS)

    Chaevskij, V.V.; Grishkevich, A.A.; Zhilinskij, V.V.; Kuleshov, A.K.

    2015-01-01

    Modes were selected and formed electroplated Ni-Co-coatings, ion-plasma Zr N-coatings as well as combined Zr N-Ni-Co-coating on the edges steel (type R6M5) knives of wood-cutting milling tools. Formed electroplated Ni-Co-layers are not mixed with the steel substrate and the Zr N-coating. Microhardness of combined Zr N-Ni-Co-coatings is to 1,2-1,5 times more than microhardness of steel base and bare steel. When cutting laminated chipboard by steel knives of milling tool with a Ni-Co- and Zr N-Ni-Co-coatings under laboratory conditions, abrasive surface wear type of edges knives is observed. Calculating bulk wear of edges knives with Zr N-Ni-Co-coatings showed reduction of more than 3 times value in comparison with knives with Ni-Co-coatings. Pilot testing of tool modified with combined Zr N-Ni-Co-coatings at OJSC 'Minskdrev' when cutting pine confirmed relevance of the tests carried out, as well as showed an increase in durability period of cutters to 30% compared with bare tool. (authors)

  5. Role of Nb in low interstitial 13Cr super martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.P.; Wang, L.J. [Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110004 (China); Liu, C.M., E-mail: cmliu@mail.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110004 (China); Subramanian, S.V. [Department of Materials Science and Engineering, McMaster University, Hamilton, L8S-4L7 (Canada)

    2011-08-25

    Highlights: {yields} Nb retards the kinetics of reversed austenite formation. {yields} Nb suppresses the occurrence of Cr rich precipitates. {yields} Nano-scale precipitates contribute to the significant increase in strength. - Abstract: The effect of adding 0.1 wt% Nb to low interstitial (N 0.01 wt%, C 0.01 wt%) 13Cr super martensitic stainless steel (SMSS) on solid phase transformation and microstructures achieved by normalizing and tempering was investigated using dilatometer, electron backscattered diffraction (EBSD), transmission electron microscope (TEM), X-ray diffraction (XRD), and its consequence on mechanical properties was examined to clarify the role of Nb in low interstitial martensitic stainless steel. Nb was found to retard kinetics of reversed austenite formation during tempering and to suppress the occurrence of Cr rich precipitates. The measurement of mechanical properties shows that while the strength properties were significantly increased by nano-scale precipitates enriched in Nb in the steel with 0.10 wt% Nb, the ductility and toughness properties were restored by optimum volume fraction of retained austenite. Excellent strength and adequate toughness properties were obtained by tempering the steel with 0.10 wt% Nb and low interstitial (N 0.01 wt%, C 0.01 wt%) steel at 600 deg. C.

  6. Effect of cutting edge preparation on tool performance in hard-turning of DF-3 tool steel with ceramic tools

    Energy Technology Data Exchange (ETDEWEB)

    Davoudinejad, A.; Noordin, M. Y. [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2014-11-15

    This study presents an experimental investigation on turning hardened DF-3 tool steel (∼ 58HRC) with PVD-TiN coated mixed ceramic. We focused on the effect of chamfer and honed edge geometry on tool wear, tool life, cutting forces and surface finish of the machined work piece. The effects of the process parameters on performance characteristics were investigated using ANOVA. It was found that longer tool life was recorded with chamfered edge geometry at various cutting conditions. The typical damage observed as flank and crater wear for ceramic tools and abrasive wear was found as the main mechanism.The optimal cutting speed was 155 m/min, with which a tolerable tool life and volume of material removal was obtained for both edges geometry. Finer machined surface was left by chamfered tool with feeds and speeds in the range of 0.125-0.05 mm/rev and 155-210 m/min, respectively; also, cutting forces decrease with increased cutting speed. The obtained consequence of cutting forces shows that tool wear has a considerable effect on cutting forces and greater forces values recorded with honed tools.

  7. Effect of cutting edge preparation on tool performance in hard-turning of DF-3 tool steel with ceramic tools

    International Nuclear Information System (INIS)

    Davoudinejad, A.; Noordin, M. Y.

    2014-01-01

    This study presents an experimental investigation on turning hardened DF-3 tool steel (∼ 58HRC) with PVD-TiN coated mixed ceramic. We focused on the effect of chamfer and honed edge geometry on tool wear, tool life, cutting forces and surface finish of the machined work piece. The effects of the process parameters on performance characteristics were investigated using ANOVA. It was found that longer tool life was recorded with chamfered edge geometry at various cutting conditions. The typical damage observed as flank and crater wear for ceramic tools and abrasive wear was found as the main mechanism.The optimal cutting speed was 155 m/min, with which a tolerable tool life and volume of material removal was obtained for both edges geometry. Finer machined surface was left by chamfered tool with feeds and speeds in the range of 0.125-0.05 mm/rev and 155-210 m/min, respectively; also, cutting forces decrease with increased cutting speed. The obtained consequence of cutting forces shows that tool wear has a considerable effect on cutting forces and greater forces values recorded with honed tools.

  8. Tooling solutions for sheet metal forming and punching of lean duplex stainless steel

    DEFF Research Database (Denmark)

    Wadman, Boel; Madsen, Erik; Bay, Niels

    2012-01-01

    .4509 and lean duplex EN1.4162 in a production designed for austenitic stainless steels, such as EN1.4301 and 1.4401. The result is a guideline that summarizes how stainless material properties may affect tool degradation, and suggests tool solutions for reduced production disturbances and tool maintenance cost.......For producers of advanced stainless components the choice of stainless material influences not only the product properties, but also the tooling solution for sheet metal stamping. This work describes how forming and punching tools will be affected when introducing the stainless alloys ferritic EN1...

  9. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    Science.gov (United States)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-05-01

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ɛ carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes.

  10. XPS study of the ultrathin a-C:H films deposited onto ion beam nitrided AISI 316 steel

    International Nuclear Information System (INIS)

    Meskinis, S.; Andrulevicius, M.; Kopustinskas, V.; Tamulevicius, S.

    2005-01-01

    Effects of the steel surface treatment by nitrogen ion beam and subsequent deposition of the diamond-like carbon (hydrogenated amorphous carbon (a-C:H) and nitrogen doped hydrogenated amorphous carbon (a-CN x :H)) films were investigated by means of the X-ray photoelectron spectroscopy (XPS). Experimental results show that nitrogen ion beam treatment of the AISI 316 steel surface even at room temperature results in the formation of the Cr and Fe nitrides. Replacement of the respective metal oxides by the nitrides takes place. Formation of the C-N bonds was observed for both ultrathin a-C:H and ultrathin a-CN x :H layers deposited onto the nitrided steel. Some Fe and/or Cr nitrides still were presented at the interface after the film deposition, too. Increased adhesion between the steel substrate and hydrogenated amorphous carbon layer after the ion beam nitridation was explained by three main factors. The first two is steel surface deoxidisation/passivation by nitrogen as a result of the ion beam treatment. The third one is carbon nitride formation at the nitrided steel-hydrogenated amorphous carbon (or a-CN x :H) film interface

  11. European Scientific Notes. Volume 36, Number 3,

    Science.gov (United States)

    1982-03-31

    lectures), applications on metal-forminig tools where the engineering applications (18 lectures), high substrate is typically H13 steel hardened to power...gas flow is inter- mittent. layered metal and compound coatings can be produced. This not only gives materials H13 steel was severely scored after...usually applied to Medicine, the Czechoslovak Biological Society, high-speed tool steels . Brno, and the House of Technology, Prague. For the most

  12. Implementation of straight and curved steel girder erection design tools construction : summary.

    Science.gov (United States)

    2010-11-05

    Project 0-5574 Curved Plate Girder Design for Safe and Economical Construction, resulted in the : development of two design tools, UT Lift and UT Bridge. UT Lift is a spreadsheet-based program for analyzing : steel girders during lifting while ...

  13. Microanalysis of tool steel and glass with laser-induced breakdown spectroscopy

    Science.gov (United States)

    Loebe, Klaus; Uhl, Arnold; Lucht, Hartmut

    2003-10-01

    A laser microscope system for the microanalytical characterization of complex materials is described. The universal measuring principle of laser-induced breakdown spectroscopy (LIBS) in combination with echelle optics permits a fast simultaneous multielement analysis with a possible spatial resolution below 10 pm. The developed system features completely UV-transparent optics for the laser-microscope coupling and the emission beam path and enables parallel signal detection within the wavelength range of 200-800 nm with a spectral resolution of a few picometers. Investigations of glass defects and tool steels were performed. The characterization of a glass defect in a tumbler by a micro-LIBS line scan, with use of a 266-nm diode-pumped Nd:YAG laser for excitation, is possible by simple comparison of plasma spectra of the defect and the surrounding area. Variations in the main elemental composition as well as impurities by trace elements are detected at the same time. Through measurement of the calibration samples with the known concentration of the corresponding element, a correlation between the intensity of spectral lines and the element concentration was also achieved. The change of elemental composition at the transient stellite solder of tool steels has been determined by an area scan. The two-dimensional pictures show abrupt changes of the element distribution along the solder edge and allow fundamental researches of dynamic modifications (e.g., diffusion) in steel.

  14. Tool wear of (Ti, Al) N-coated polycrystalline cubic boron nitride compact in cutting of hardened steel

    Science.gov (United States)

    Wada, Tadahiro; Hanyu, Hiroyuki

    2017-11-01

    Polycrystalline cubic boron nitride compact (cBN) is effective tool material for cutting hardened steel. In addition to coated high speed steel and coated cemented carbide that has long been used for cutting materials, more recently, coated cBN has also been used. In this study, to verify the effectiveness of the (Ti,Al)N-coated cBN, which is formed on the substrate of cBN by the physical vapor deposition method, the hardened steel was turned with the (Ti,Al)N-coated cBN tool at a cutting speed of 3.33, 5.00 m/s, a feed rate of 0.3 mm/rev and a depth of cut of 0.1 mm. Furthermore, the uncoated cBN, which was the substrate of the (Ti,Al)N-coated, was also used. The tool wear of the cBN tools was experimentally investigated. The following results were obtained: (1) The contact area between the rake face and the chip of the (Ti,.Al)N-coated cBN tool was smaller than that of the uncoated cBN tool. (2) The tool wear of the (Ti,Al)N-coated cBN was smaller than that of uncoated cBN. (3) The wear progress of the (Ti,Al)N-coated cBN with the main element phase of the TiCN-Al, was slower than that of the (Ti,Al)N-coated cBN with the main element phase of the TiN-Al. (4) In the case of the high cutting speed of 5.00 m/s, the tool wear of the (Ti,Al)N-coated cBN was also smaller than that of uncoated cBN. The above results clarify that the (Ti,Al)N-coated cBN can be used as a tool material in high feed cutting of hardened steel.

  15. Intergranular corrosion of 13Cr and 17Cr martensitic stainless steels in accelerated corrosive solution and high-temperature, high-purity water

    International Nuclear Information System (INIS)

    Ozaki, Toshinori; Ishikawa, Yuichi

    1988-01-01

    Intergranular corrosion behavior of 13Cr and 17Cr martensitic stainless steels was studied by electrochemical and immersing corrosion tests. Effects of the mEtallurgical and environmental conditions on the intergranular corrosion of various tempered steels were examined by the following tests and discussed. (a) Anodic polarization measurement and electrolytical etching test in 0.5 kmol/m 3 H 2 SO 4 solution at 293 K. (b) Immersion corrosion test in 0.88 kmol/m 3 HNO 3 solution at 293 K. (c) Long-time immersion test for specimens with a crevice in a high purity water at 473 K∼561 K. It was found from the anodic polarization curves in 0.5 kmol/m 3 H 2 SO 4 solution-at 293 K that the steels tempered at 773∼873 K had susceptibility to intergranular corrosion in the potential region indicating a second current maximum (around-0.1 V. vs. SCE). But the steel became passive in the more noble potential region than the second current peak potential, while in the less noble potential region general corrosion occurred independent of its microstructure. The intergranular corrosion occurred due to the localized dissolution along the pre-austenitic grain boundary and the martensitic lath boundary. It could be explained by the same dissolution model of the chromium depleted zone as proposed for the intergranular corrosion of austenitic and ferritic stainless steels. The intergranular corrosion occurred entirely at the free surface in 0.88 kmol/m 3 HNO 3 solution, while in the high temperature and high purity water only the entrance of the crevice corroded. It was also suggested that this intergranular corrosion might serve as the initiation site for stress corrosion cracking of the martensitic stainless steel. (author)

  16. Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures

    Directory of Open Access Journals (Sweden)

    Bagautdinov Ruslan

    2018-01-01

    Full Text Available There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.

  17. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel

    International Nuclear Information System (INIS)

    He, P.; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H.J.

    2014-01-01

    Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal–mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi–ODS steel exhibits a remarkable lifetime extension with a factor of 10–20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 10 14 m −2 , independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y–Ti–O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti–ODS steel

  18. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel

    Energy Technology Data Exchange (ETDEWEB)

    He, P., E-mail: pei.he@kit.edu; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H.J.

    2014-12-15

    Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal–mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi–ODS steel exhibits a remarkable lifetime extension with a factor of 10–20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 10{sup 14} m{sup −2}, independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y–Ti–O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti–ODS steel.

  19. Influence of deposition rate on the properties of tin coatings deposited on tool steels using arc method

    International Nuclear Information System (INIS)

    Akhtar, P.; Abbas, M.

    2007-01-01

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapour deposition method. The study concentrated on cathodic arc physical vapour deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MD's) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester and pin-on-disc machine, were used to analyze and quantify the following properties and parameters, surface morphology, thickness, hardness, adhesion and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MD's produced during the etching stage, protruded through the thin film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 macro m showed the most stable trend of COF versus sliding distance. (author)

  20. Influence of coatings on the corrosion fatigue behaviour on 13% chromium steel

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Thomas, K G; Meisel, H; Sessler, W

    1986-01-01

    The influence of coatings on the corrosion fatigue behaviour of 13% chromium steel has been studied. There have been selected different coating systems: Barrier coating (enamel), diffusion coatings, (aluminizing, chromizing) and anodic coating, (aluminium, zinc, tin, cadmium). The corrosion fatigue limits of coated with uncoated specimens in neutral NaCl-solution are compared. Salt-concentrations were 0,01 and 22% (=0,38 M) NaCl at 80/sup 0/C and 150/sup 0/C. The tests were carried out with alternating tensions and a constant frequency of 50 Hz. Only the use of anodic coatings improved the corrosion fatigue behaviour of the chromium steel.

  1. Creep of ex-service AISI-316H steel at very low strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Kloc, Lubos; Sklenicka, Vaclav [Academy of Sciences of the Czech Republic, Brno (Czech Republic). Inst. of Physics of Materials; Spindler, Michael [British Energy Generation, Barbwood, Gloucester (United Kingdom)

    2010-07-01

    The creep response of ex-service Type 316H austenitic steel was investigated at temperatures from 470 to 550 C and stresses from 80 to 120 MPa. These conditions lead to very low strain rates. Both helicoid spring specimen tests and conventional uniaxial creep tests were used to measure these very low creep strains. An internal stress model was used to analyse the creep curves and the results were compared to creep curves obtained on a Type 316H in the as-received condition, which for austenitic steels is after solution heat treatment. The creep behavior of the ex-service steel was very similar to that of the as-received steel. Thus, no creep damage or significant change of microstructure was detected during the service period of 65,000 hours at {proportional_to} 520 C. It was found that the helicoid spring specimen technique provides results compatible with that of conventional creep tests, but with superior accuracy with very low creep strains. (orig.)

  2. Analysis of the non-isothermal austenite-martensite transformation in 13% Cr-type martensitic stainless steels

    International Nuclear Information System (INIS)

    Garcia-De-Andris, C.; Alvarez, L.F.

    1996-01-01

    In martensitic stainless steels, as in other alloyed containing carbide-forming elements, the carbide dissolution and precipitation processes that take place during heat treatment can cause modifications to the chemical composition of the austenite phase of these steels. The chemical composition of this phase is a fundamental factor for the evolution of the martensitic transformation. As a result of their influence on the dissolution and precipitation processes, the parameters of the quenching heat treatment exert a strong influence on the behavior of the martensitic transformation in these steels. In the present study, the effect of the heating temperature and the cooling rate on the martensitic transformation in two 13% Cr-type martensitic stainless steels with different carbon contents were properly evaluated. (author)

  3. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    International Nuclear Information System (INIS)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-01-01

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ε carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes. - Highlights: • D2 steel parts were tempered at 200-650 °C to produce various microstructures. • Precipitation of ε and Fe 3 C carbides and spheroidization of carbides were detected. • Retained austenite decomposition and secondary hardening effect were determined. • Variations of electrical resistivity (ρ) and magnetic saturation (Bs) were studied. • Combined effects of ρ and Bs on the EC outputs were evaluated

  4. Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Kahrobaee, Saeed, E-mail: saeed.kahrobaee@yahoo.com; Kashefi, Mehrdad, E-mail: m-kashefi@um.ac.ir

    2015-05-15

    The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ε carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes. - Highlights: • D2 steel parts were tempered at 200-650 °C to produce various microstructures. • Precipitation of ε and Fe{sub 3}C carbides and spheroidization of carbides were detected. • Retained austenite decomposition and secondary hardening effect were determined. • Variations of electrical resistivity (ρ) and magnetic saturation (Bs) were studied. • Combined effects of ρ and Bs on the EC outputs were evaluated.

  5. Experimental research on the durability cutting tools for cutting-off steel profiles

    Directory of Open Access Journals (Sweden)

    Cristea Alexandru

    2017-01-01

    Full Text Available The production lines used for manufacturing U-shaped profiles are very complex and they must have high productivity. One of the most important stages of the fabrication process is the cutting-off. This paper presents the experimental research and analysis of the durability of the cutting tools used for cutting-off U-shaped metal steel profiles. The results of this work can be used to predict the durability of the cutting tools.

  6. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    International Nuclear Information System (INIS)

    Guu, Y.H.

    2005-01-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM

  7. AFM surface imaging of AISI D2 tool steel machined by the EDM process

    Science.gov (United States)

    Guu, Y. H.

    2005-04-01

    The surface morphology, surface roughness and micro-crack of AISI D2 tool steel machined by the electrical discharge machining (EDM) process were analyzed by means of the atomic force microscopy (AFM) technique. Experimental results indicate that the surface texture after EDM is determined by the discharge energy during processing. An excellent machined finish can be obtained by setting the machine parameters at a low pulse energy. The surface roughness and the depth of the micro-cracks were proportional to the power input. Furthermore, the AFM application yielded information about the depth of the micro-cracks is particularly important in the post treatment of AISI D2 tool steel machined by EDM.

  8. Experimental evaluation of tool wear throughout a continuous stroke blanking process of quenched 22MnB5 ultra-high-strength steel

    Science.gov (United States)

    Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.

    2017-09-01

    Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.

  9. Initiation and developmental stages of steel corrosion in wet H2S environments

    International Nuclear Information System (INIS)

    Bai, Pengpeng; Zhao, Hui; Zheng, Shuqi; Chen, Changfeng

    2015-01-01

    Highlights: • The initiation and development stages of steel corrosion in wet H 2 S environment were investigated. • Preferential dissolution at the grain boundaries of steel allowed corrosion products to form and accumulate. • The shapes and crystal types of corrosion products at various steel layers differed. • With increasing duration time, the S 2− peak with a binding energy of 161.2 eV gradually decreased. • A model of the formation process of corrosion product films was proposed. - Abstract: The initiation and various developmental stages of steel corrosion in H 2 S environments were investigated using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Results revealed that grain boundaries corrode at the initiation stage and that corrosion products initially form on both sides of the grain boundary and then accumulate. Corrosion products grew at the interface between the steel and corrosion product layer at the developmental stage. XPS analyses showed the composition and valence states of the corrosion products, and a model of the formation process of corrosion product films was proposed

  10. Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime; FINAL

    International Nuclear Information System (INIS)

    David Schwam; John F, Wallace; Quanyou Zhou

    2002-01-01

    An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can cost well over one million dollars. These costs provide a strong incentive for extension of die life. While vacuum quenched Premium Grade H13 dies have become the most widely used in the United States, tool makers and die casters are constantly searching for new steels and heat treating procedures to extend die life. This project was undertaken to investigate the effects of composition and heat treating on die life and optimize these parameters

  11. Slurry Erosion Studies on Surface Modified 13Cr-4Ni Steels: Effect of Angle of Impingement and Particle Size

    Science.gov (United States)

    Manisekaran, T.; Kamaraj, M.; Sharrif, S. M.; Joshi, S. V.

    2007-10-01

    Hydroturbine steels, such as 13Cr-4Ni martensitic steels, are generally subjected to heavy-erosive wear and loss of efficiency due to solid particulate entrainment in the water. Surface-modified steels have proven to give better performance in terms of erosive wear resistance. In the present study, an attempt is made to investigate the effect of angle of impingement and particle size on slurry-jet erosion behavior of pulsed plasma nitrided and laser hardened 13Cr-4Ni steels. Laser hardening process has shown good performance at all angles of impingement due to martensitic transformation of retained austenite. Plastic deformation mode of material removal was also an evident feature of all laser-hardened surface damage locations. However, pulsed-plasma nitrided steels have exhibited chip formation and micro-cutting mode of erosive wear. Erosion with 150-300 μm size was twice compared to 150 μm size slurry particulates.

  12. Effect of coatings on long term behaviour of a commercial stainless steel for solid oxide electrolyser cell interconnect application in H2/H2O atmosphere

    International Nuclear Information System (INIS)

    Ardigo, M.R.; Popa, I.; Chevalier, S.; Girardon, P.; Perry, F.; Laucournet, R.; Brevet, A.; Desgranges, C.

    2014-01-01

    K41X (AISI 441) stainless steel evidenced a high electrical conductivity after 3000 h ageing in H 2 /H 2 O side when used as interconnect for solid oxide electrolyser cells (SOEC) working at 800 C. Perovskite (La 1-x Sr x MnO 3-δ ) and spinel (Co 3 O 4 ) oxides coatings were applied on the surface of the ferritic steel for ageing at 800 C for 3000 h. Both coatings improved the behaviour of the steel and give interesting opportunities to use the K41X steel as interconnect for hydrogen production via high temperature steam electrolysis. Co 3 O 4 reduced into Co leading to a very good Area Specific Resistance (ASR) parameter, 0.038 Ωcm 2 . Despite a good ASR (0.06 Ωcm 2 ), La 1-x Sr x MnO 3-δ was less promising because it partially decomposed into MnO and La 2 O 3 during ageing in H 2 /H 2 O atmosphere. (authors)

  13. Experimental investigation and optimization of welding process parameters for various steel grades using NN tool and Taguchi method

    Science.gov (United States)

    Soni, Sourabh Kumar; Thomas, Benedict

    2018-04-01

    The term "weldability" has been used to describe a wide variety of characteristics when a material is subjected to welding. In our analysis we perform experimental investigation to estimate the tensile strength of welded joint strength and then optimization of welding process parameters by using taguchi method and Artificial Neural Network (ANN) tool in MINITAB and MATLAB software respectively. The study reveals the influence on weldability of steel by varying composition of steel by mechanical characterization. At first we prepare the samples of different grades of steel (EN8, EN 19, EN 24). The samples were welded together by metal inert gas welding process and then tensile testing on Universal testing machine (UTM) was conducted for the same to evaluate the tensile strength of the welded steel specimens. Further comparative study was performed to find the effects of welding parameter on quality of weld strength by employing Taguchi method and Neural Network tool. Finally we concluded that taguchi method and Neural Network Tool is much efficient technique for optimization.

  14. Investigation of fatigue strength of tool steels in sheet-bulk metal forming

    Science.gov (United States)

    Pilz, F.; Gröbel, D.; Merklein, M.

    2018-05-01

    To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.

  15. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NARCIS (Netherlands)

    Bojack, A.; Zhao, L.; Morris, P.F.; Sietsma, J.

    2016-01-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two

  16. Ductility of high chromium stainless steels

    International Nuclear Information System (INIS)

    Peretyat'ko, V.N.; Kazantsev, A.A.

    1997-01-01

    Aimed to optimize the hot working conditions for high chromium stainless steels the experiments were carried in the temperature range of 800-1300 deg C using hot torsion tests and cylindrical specimens of ferritic and ferritic-martensitic steels 08Kh13, 12Kh13, 20Kh13, 30Kh13 and 40Kh13. Testing results showed that steel plasticity varies in a wide range depending on carbon content. Steels of lesser carbon concentration (08Kh13 and 12Kh13) exhibit a sharp increase in plasticity with a temperature rise, especially in the interval of 1200-1250 deg C. Steels 20Kh13 and 30Kh13 display insignificant plasticity increasing, whereas plastic properties of steel 40Kh13 increase noticeably in the range of 1000-1300 deg C. It is shown that optimal hot working conditions for specific steel must be selected with account of steel phase composition at high temperatures

  17. Characterization and wear performance of boride phases over tool steel substrates

    Directory of Open Access Journals (Sweden)

    Edgar E Vera Cárdenas

    2016-02-01

    Full Text Available This research work was conducted to characterize boride phases, obtained from the powder-pack process, on AISI H13 and D2 steel substrates, and investigate their tribological behavior. The boriding was developed at a temperature of 1273 K with an exposure time of 8 h. X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were conducted on the borided material to characterize the presence of the FeB, Fe2B, and CrB phases and the distribution of heavy elements on the surface of the substrates. The adherence of the boride layers was evaluated, in a qualitative form, through the Daimler-Benz Rockwell-C indentation technique. Sliding wear tests were then performed using a reciprocating wear test machine. All tests were conducted in dry conditions at room temperature. A frequency of 10 Hz and 15-mm sliding distance were used. The applied Hertzian pressure was 2.01 GPa. Scanning electron microscopy was used to observe and analyze the wear mechanisms. Additionally, the variation of the friction coefficient versus the number of cycles was obtained. Experimental results showed that the characteristic wear mechanism for the borided surface was plastic deformation and mild abrasive wear; for unborided substrates, cracking and spalling were observed.

  18. Laser grooving of surface cracks on hot work tool steel

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2011-10-01

    Full Text Available The paper presents the analysis of laser grooving of 1.2343 tool steel hardened to 46 HRC. The effect of laser power and grooving speed on groove shape (i.e. depth and width, the material removal rate and the purity of produced groove as a measure of groove quality was investigated and analyzed using response surface methodology. Optimal parameters of laser grooving were found, which enables pure grooves suitable for laser welding.

  19. Substrate pH and butterfly bush response to dolomitic lime or steel slag amendment

    Science.gov (United States)

    Steel slag is a fertilizer amendment with a high concentration of calcium oxide, and thus capable of raising substrate pH similar to dolomitic lime. Steel slag, however, contains higher concentrations of some nutrients, such as iron, manganese, and silicon, compared to dolomitic lime. The objectiv...

  20. Outgassing characteristics of F82H ferritic steel as a low activation material for fusion reactor

    International Nuclear Information System (INIS)

    Odaka, Kenji; Satou, Osamu; Ootsuka, Michio; Abe, Tetsuya; Hara, Shigemitsu; Takatsu, Hideyuki; Enoeda, Mikio.

    1997-01-01

    Outgassing characteristics of F82H ferritic steel as a low activation material for the blanket of fusion device were investigated. A test chamber was constructed by welding F82H ferritic steel plates. The inner surface of the chamber was buffed and electropolished. The test chamber was degassed by the prebaking at temperature of 350degC for 20 h in vacuum. Then outgassing rates of the test chamber were measured by the throughput method as a function of pumping time for the cases that the test chamber was baked and not baked. The typical outgassing rate after baking at 250degC for 24 h was 3 x 10 -9 Pa·ms -1 and it seems that this value is sufficiently small to produce pressures at least as low as 10 -9 Pa in the vacuum chamber made of F82H ferritic steel. In the pump-down of the test chamber without baking after exposure to air, the outgassing rate decreases with pumping time and reached 1 x 10 -7 Pa·ms -1 at t = 10 5 s. The activation energy of hydrogen in bulk diffusion in the F82H ferritic steel was measured and found to be 7 kcal/mol. (author)

  1. Microstructural evolution in Fe-0.13P-0.05C steel during compression at elevated temperatures

    Science.gov (United States)

    Mehta, Y.; K, Rajput S.; P, Chaudhari G.; V, Dabhade V.

    2018-03-01

    The microstructural evolution was studied in order to adjust the processing parameters for hot forming. Fe-0.13P-0.05C steel was subjected to hot compression tests using a thermo-mechanical simulator. The tests were performed at the temperatures ranging from 800°C-950°C. The strain rates chosen at all these temperatures were 0.01, 0.1 and 1 s‑1. The effects of the strain rates and hot compression temperatures on the microstructural aspects of the steel were examined using optical microscopy. The outcomes indicate that the mean grain dimension of the hot compressed Fe-0.13P-0.05C steel escalates with increases in the deformation temperature and also with decreases in strain rate. Dynamic recrystallization was observed to be the instrument of grain refinement. The minimum grain dimension of 5.6 μm was attained at 800°C and 0.1s‑1.

  2. Effects of Mo Content on Microstructure and Mechanical Property of PH13-8Mo Martensitic Precipitation-Hardened Stainless Steel

    Science.gov (United States)

    Yubing, Pei; Tianjian, Wang; Zhenhuan, Gao; Hua, Fan; Gongxian, Yang

    This paper introduces the effects of Mo content on microstructure and mechanical property of PH13-8Mo martensitic precipitation-hardened stainless steel which is used for LP last stage blade in steam turbine. Thermodynamic software Thermo-Calc has been used to calculate precipitation temperature and the mass fraction of precipitated phases in PH13-8Mo steel with different Mo content. The result shows that when the mass of Mo is below 0.6wt.%, chi-phase mu-phase and sigma-phase could disappear. The microstructure and mechanical property of high Mo PH13-8Mo (Mo=0.57wt.%) and low Mo PH13-8Mo (Mo=2.15wt.%)have been investigated in different heat treatments. The investigations reveal that austenitizing temperature decrease with the reduce of Mo content, so the optimum solution temperature for low Mo PH13-8Mo is lower than that for high Mo PH13-8Mo.The influence of solution temperature on grain size is weakened with the increase of Mo content, Mo rich carbides could retard coarsening of grain. An enormous amount of nano-size uniformly distributed β-NiAl particles are found in both kinds of steels using transmission electron microscopy, they are the most important strengthening phase in PH13-8Mo.

  3. Preliminary study on the forgeability and heat treatment response of niobium - containing tool steels materials

    International Nuclear Information System (INIS)

    Cescon, T.; Papaleo, R.

    1981-01-01

    The forgeability and microstructure of tool steels materials based on the M-2 composition, where W and V were partially replaced by Nb, were examined. The optimum heat-treating conditions were established. The poor response to heat treatment of some of the alloys studied indicated the need of increasing the C content of the steels when Nb is used as a substitute for W and V. (Author) [pt

  4. Investigation of Eh, pH and corrosion potential of steel in anoxic groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Peat, R.; Brabon, S.; Fennell, P.A.H.; Rance, A.P.; Smart, N.R. [AEA Technology (United Kingdom)

    2001-01-01

    SKB intend to dispose of the spent nuclear fuel produced by Sweden's eleven nuclear reactors by encapsulating it in corrosion-resistant copper canisters containing a cast iron or carbon steel insert. After encapsulation, the fuel will be transported to a geological repository, where the containers will be deposited at a depth of 500 to 700 m in granitic rock and surrounded by a bentonite clay backfill material. If, or when the copper corrosion shield fails, the iron insert will be in contact with oxygen-free water and hydrogen-producing, anaerobic corrosion will start. SKB have carried out modelling calculations of the oxidising power (Eh) of groundwater and wished to confirm the results by carrying out experimental measurements. The objective of the work described in this report was to demonstrate the feasibility of monitoring Eh, pH and corrosion potential in a cell where anaerobic corrosion of steel in artificial groundwater was occurring. To this end, gas cells similar to those used previously for anaerobic corrosion rate measurements were used as the basis for the design of an electrochemical cell. The cell incorporated electrodes to provide an in situ measurement of the redox potential, Eh, the pH and the corrosion potential of carbon steel. The main stages of the work were: Design of the electrochemical cell; Preparation of silver-silver chloride and calomel reference electrodes; Calibration of the reference electrodes and commercial glass pH electrodes against a standard hydrogen electrode; Assembly of the test cell under anoxic conditions; Monitoring the cell before and after the addition of steel wires to the test solution. Details of the design of the test cell and the experimental procedures used are described. Two cells were set up. The first employed a silver-silver chloride reference electrode, which was failed after approximately 400 hours, and the second cell therefore used a calomel reference electrode. The results of the electrode

  5. Static Recrystallization Behavior of Z12CN13 Martensite Stainless Steel

    Science.gov (United States)

    Luo, Min; Zhou, Bing; Li, Rong-bin; Xu, Chun; Guo, Yan-hui

    2017-09-01

    In order to increase the hot workability and provide proper hot forming parameters of forging Z12CN13 martensite stainless steel for the simulation and production, the static recrystallization behavior has been studied by double-pass hot compression tests. The effects of deformation temperature, strain rate and inter-pass time on the static recrystallization fraction by the 2% offset method are extensively studied. The results indicate that increasing the inter-pass time and the deformation temperature as well as strain rate appropriately can increase the fraction of static recrystallization. At the temperature of 1050-1150 °C, inter-pass time of 30-100 s and strain rate of 0.1-5 s-1, the static recrystallization behavior is obvious. In addition, the kinetics of static recrystallization behavior of Z12CN13 steel has been established and the activation energy of static recrystallization is 173.030 kJ/mol. The substructure and precipitates have been studied by TEM. The results reveal that the nucleation mode is bulging at grain boundary. Undissolved precipitates such as MoNi3 and Fe3C have a retarding effect on the recrystallization kinetics. The effect is weaker than the accelerating effect of deformation temperature.

  6. Phase equilibria and thermodynamic properties of high-alloy tool steels : theoretical and experimental approach

    OpenAIRE

    Bratberg, Johan

    2005-01-01

    The recent development of tool steels and high-speed steels has led to a significant increase in alloy additions, such as Co, Cr, Mo, N, V, and W. Knowledge about the phase relations in these multicomponent alloys, that is, the relative stability between different carbides or the solubility of different elements in the carbides and in the matrix phase, is essential for understanding the behaviour of these alloys in heat treatments. This information is also the basis for improving the properti...

  7. Influence of Thermal Homogenization Treatment on Structure and Impact Toughness of H13 ESR Steel

    Institute of Scientific and Technical Information of China (English)

    MA Dang-shen; ZHOU Jian; CHEN Zai-zhi; ZHANG Zhong-kan; CHEN Qi-an; LI De-hui

    2009-01-01

    The as-cast microstrueture of H13 ESR ingot and the influence of high temperature diffusion treatment on the structure and impact toughness have been investigated. The results show that the dendrite arm spacing gradually becomes wide from the surface to the center of ingot, and the large primary carbide particles always exist in interdendritic segregation areas; by means of high temperature diffusion treatment of ingot prior to hot forging, the banded segregation is nearly eliminated, the annealed structure is more uniform and the isotropic properties have been improved remarkably.

  8. The Effect of Grinding and Polishing Procedure of Tool Steels in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Lindvall, F.; Bergström, J.; Krakhmalev, P.

    2010-01-01

    The surface finish of tools in sheet metal forming has a large influence on the performance of the forming tool. Galling, concern of wear in sheet metal forming, is a severe form of adhesive wear where sheet material is transferred on to the tool surface. By polishing the tools to a fine surface ...... 40 and Vanadis 6 and up to ten different grinding and polishing treatments were tested against AISI 316 stainless steel. The tests showed that an optimum surface preparation might be found at the transition between abrasive and adhesive wear....

  9. Study of peculiarities of hydrogen isotopes mixture permeation through low activated steel F82H

    International Nuclear Information System (INIS)

    Kenzhin, Ye.A.; Tazhibayeva, I.L; Kulsartov, T.V.; Shestakov, V.P.; Chikhray, Ye.V.; Afanasev, S.E.; Zheldak, Yu.L.

    2003-01-01

    Full text: The problem of diffusion tritium leakage through blanket materials of future fusion device makes some constructive difficulties concerned with protection of personnel and environment and also with losses of tritium, which is planned to be used in the same device. One of the little-studied problems in the tritium leakage process in Fusion Power Plant is that in fact tritium will penetrate through materials while other hydrogen isotopes are present. These are deuterium and hydrogen which always are present in metals. Therefore, for evaluation of tritium leakage in future Fusion Power Plant under such conditions it is necessary to have experimental data about permeation of these hydrogen isotopes through the structure materials.One of proposed structure materials of fusion reactor blanket is low activated steel F82H. The experiment results on evaluation of .hydrogen, deuterium and its mixture interaction parameters with steel F82H are shown in this work. The tests were carried out within temperature range 273-973 K under inlet hydrogen pressure of 100-2000 Pa. Diffusivity, deuterium and hydrogen permeation constants for low activated steel F82H was determined from experiment results. Those experimental results were used for created phenomenology model which describes hydrogen isotope penetration through tube sample from hydrogen isotopes mixture. That model was used so determining the ratios of desorption rates (D-D, D-H, H-H) on outlet side of sample. Using of so obtained results, we can correctly evaluate, the titanium leakage from blanket of fusion machine which will be constructed using low activated steel F82H

  10. Nanostructuring steel for injection molding tools

    International Nuclear Information System (INIS)

    Al-Azawi, A; Smistrup, K; Kristensen, A

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro- and nanostructuring the surface of the steel molds. We investigate the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are produced. (paper)

  11. Microstructure of steel X 20 Cr 13 in the electron microscopical picture

    International Nuclear Information System (INIS)

    Gesatzke, W.

    1982-01-01

    The tempered microstructure of the steel X 20 Cr 13 is described by an electron microscopical overall picture and additional information is gained which would not be possible with the optical microscope. The large transmission area permits one to quantitatively evaluate a microstructure component which due to its small size can only be measured with electron microscope pictures. (orig.) [de

  12. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography...... and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica...

  13. Behavior of steels in flowing liquid PbBi eutectic alloy at 420-600 deg. C after 4000-7200 h

    International Nuclear Information System (INIS)

    Mueller, G.; Heinzel, A.; Konys, J.; Schumacher, G.; Weisenburger, A.; Zimmermann, F.; Engelko, V.; Rusanov, A.; Markov, V.

    2004-01-01

    This paper presents the results of steel exposure up to 7200 h in flowing LBE at elevated temperatures and is a follow-up paper of that with results of an exposure of up to 2000 h. The examined AISI 316 L, 1.4970 austenitic and MANET 10Cr martensitic steels are suitable as a structural material in LBE (liquid eutectic Pb 45 Bi 55 ) up to 550 deg. C, if 10 -6 wt% of oxygen is dissolved in the LBE. The martensitic steel develops a thick magnetite and spinel layer while the austenites have thin spinel surface layers at 420 deg. C and thick oxide scales like the martensitic steel at 550 deg. C. The oxide scales protect the steels from dissolution attack by LBE during the whole test period of 7200 h. Oxide scales that spall off are replaced by new protective ones. At 600 deg. C severe attack occurs already after 2000 and 4000 h of exposure. Steels with 8-15 wt% Al alloyed into the surface suffer no corrosion attack at all experimental temperatures and exposure times

  14. Experimental and theoretical studies on stainless steel transfer onto a TiN-coated cutting tool

    Energy Technology Data Exchange (ETDEWEB)

    Wiklund, U., E-mail: urban.wiklund@angstrom.uu.se [Applied Materials Science, Department of Engineering Sciences, Box 534, 751 21, Uppsala University (Sweden); Rubino, S. [Electron Microscopy and Nanoengineering, Department of Engineering Sciences, Box 534, 751 21, Uppsala University (Sweden); Kadas, K. [Materials Theory, Department of Physics and Astronomy, Box 516, 751 20, Uppsala University (Sweden); Research Institute for Solid State Physics and Optics, H-1525 Budapest, PO Box 49 (Hungary); Skorodumova, N.V.; Eriksson, O. [Materials Theory, Department of Physics and Astronomy, Box 516, 751 20, Uppsala University (Sweden); Hedberg, S. [Outokumpu Stainless AB, Box 74, 774 22 Avesta (Sweden); Collin, M. [AB Sandvik Tooling R and D, SE-126 80 Stockholm (Sweden); Olsson, A. [Angstroem Materials Academy, Box 534, 751 21, Uppsala University (Sweden); Leifer, K. [Electron Microscopy and Nanoengineering, Department of Engineering Sciences, Box 534, 751 21, Uppsala University (Sweden)

    2011-01-15

    Stainless steel is a good example of a metal that is not easily machined. To explain such behavior an understanding of the fundamental adhesion between the workpiece and the tool is invaluable. It is a well-known fact that build-up layers form in the interface, but little attention has been given to the very first layer that adheres to the tool surface. Although this layer rapidly becomes covered by successive material transfer, this layer and its ability to stick to the tool surface control the successive material transfer and influence the cutting properties. In this work, a quick stop test is employed to interrupt the cutting of a 316L stainless steel using a TiN-coated cemented carbide cutting insert. Different analytical techniques, such as transmission electron microscopy, X-ray photoelectron spectroscopy and scanning electron microscopy, as well as theoretical atomistic modeling, were used to study the early adhesion.

  15. Experimental and theoretical studies on stainless steel transfer onto a TiN-coated cutting tool

    International Nuclear Information System (INIS)

    Wiklund, U.; Rubino, S.; Kadas, K.; Skorodumova, N.V.; Eriksson, O.; Hedberg, S.; Collin, M.; Olsson, A.; Leifer, K.

    2011-01-01

    Stainless steel is a good example of a metal that is not easily machined. To explain such behavior an understanding of the fundamental adhesion between the workpiece and the tool is invaluable. It is a well-known fact that build-up layers form in the interface, but little attention has been given to the very first layer that adheres to the tool surface. Although this layer rapidly becomes covered by successive material transfer, this layer and its ability to stick to the tool surface control the successive material transfer and influence the cutting properties. In this work, a quick stop test is employed to interrupt the cutting of a 316L stainless steel using a TiN-coated cemented carbide cutting insert. Different analytical techniques, such as transmission electron microscopy, X-ray photoelectron spectroscopy and scanning electron microscopy, as well as theoretical atomistic modeling, were used to study the early adhesion.

  16. Molecular Structure, Spectroscopic and DFT Computational Studies of Arylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H-trione

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2016-09-01

    Full Text Available Reaction of barbituric acid derivatives and di-substituted benzaldehyde in water afforded arylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H-trione derivatives (1 and 2. The one step reaction proceeded efficiently, smoothly, and in excellent yield. The arylidene compounds were characterized by spectrophotometric tools plus X-ray single crystal diffraction technique. Quantum chemical calculations were performed using the DFT/B3LYP method to optimize the structure of the two isomers (1 and 2 in the gas phase. The optimized structures were found to agree well with the experimental X-ray structure data. The highest occupied (HOMO and lowest unoccupied (LUMO frontier molecular orbitals analyses were performed and the atomic charges were calculated using natural populationanalysis.

  17. Influencia del tiempo de nitruración en baño de sales en el comportamiento tribológico de un acero de herramientas AISI H13

    Directory of Open Access Journals (Sweden)

    Castro, G.

    2007-12-01

    Full Text Available Tribological high temperature characteristics of a H13 tool steel treated by salt bath have been studied. AISI H13 steel samples were nitrided by a sursulf bath, varying nitriding time from 1 to 24 h. Optical microscopy and micro-hardness deep profile through the nitrided layer were performed for each nitriding time. Standard pin-on-disk wear tests were conducted at high temperature. Sliding distance was varied from 150 m to 900 m. It has been observed that friction coefficient does not change with nitriding time and wear rate varies as a function of the sliding distance due to the presence of different wear mechanisms. For short sliding distances, the wear mechanisms that contribute to the total wear were plastic deformation and abrasion, whereas for greater sliding distances the mechanisms that control wear behaviour were oxidation and abrasion.

    Se han investigado las características tribológicas a alta temperatura de un acero de herramientas para trabajo en caliente nitrurado en baño de sales sursulf. Se ha variado el tiempo de nitruración desde 1 hasta 24 h, para analizar su influencia en la microestructura obtenida y en el comportamiento frente al desgaste. Se han realizado ensayos de desgaste a alta temperatura y se ha evaluado la ratio de desgaste y el coeficiente de fricción. Se ha observado que el coeficiente de fricción no varía con el tiempo de nitruración y que la ratio de desgaste varía con la distancia de deslizamiento debido a la presencia de distintos mecanismos de desgaste, pero es independiente del tiempo de nitruración. Así, para distancias de ensayo cortas, los mecanismos de desgaste que contribuyen al desgaste total son deformación plástica y abrasión, mientras que para mayores distancias de deslizamiento los mecanismos observados son oxidación y abrasión.

  18. The analysis of ion nitriding and nitrogen ion implantation on tribological properties of steels 33H3MF and 36H3M

    International Nuclear Information System (INIS)

    Zandecki, R.

    1993-01-01

    Surface properties of two kinds of steel 33H3MF and 36H3M have been investigated. Three different methods of steel surface treatment have been used: ion nitriding, nitrogen ion implantation and mixing method being the sum of the first and second ones. The microstructure, microhardness distribution, fatigue strength, friction coefficient and other tribological properties have been measured and compared. 60 refs, 74 figs, 19 tabs

  19. Numerical modelling of tools steel hardening. A thermal phenomena and phase transformations

    Directory of Open Access Journals (Sweden)

    T. Domański

    2010-01-01

    Full Text Available This paper the model hardening of tool steel takes into considerations of thermal phenomena and phase transformations in the solid state are presented. In the modelling of thermal phenomena the heat equations transfer has been solved by Finite Elements Method. The graph of continuous heating (CHT and continuous cooling (CCT considered steel are used in the model of phase transformations. Phase altered fractions during the continuous heating austenite and continuous cooling pearlite or bainite are marked in the model by formula Johnson-Mehl and Avrami. For rate of heating >100 K/s the modified equation Koistinen and Marburger is used. Modified equation Koistinen and Marburger identify the forming fraction of martensite.

  20. Influence of pre-heating on the surface modification of powder-metallurgy processed cold-work tool steel during laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Šturm, Roman, E-mail: roman.sturm@fs.uni-lj.si [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Štefanikova, Maria [University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana (Slovenia); Steiner Petrovič, Darja [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia)

    2015-01-15

    Graphical abstract: - Highlights: • Heat-treatment protocol for laser surface melting of cold-work tool steel is proposed. • The laser melted steel surface is hardened, and morphologically modified. • The pre-heating of substrate creates a crack-and pore-free steel surface. • The optimum pre-heating temperature is determined to be 350 °C. • Using pre-heating the quantity of retained austenite is reduced. - Abstract: In this study we determine the optimal parameters for surface modification using the laser surface melting of powder-metallurgy processed, vanadium-rich, cold-work tool steel. A combination of steel pre-heating, laser surface melting and a subsequent heat treatment creates a hardened and morphologically modified surface of the selected high-alloy tool steel. The pre-heating of the steel prior to the laser surface melting ensures a crack- and pore-free modified surface. Using a pre-heating temperature of 350 °C, the extremely fine microstructure, which typically evolves during the laser-melting, became slightly coarser and the volume fraction of retained austenite was reduced. In the laser-melted layer the highest values of microhardness were achieved in the specimens where a subsequent heat treatment at 550 °C was applied. The performed thermodynamic calculations were able to provide a very valuable assessment of the liquidus temperature and, especially, a prediction of the chemical composition as well as the precipitation and dissolution sequence for the carbides.

  1. Starting of H9ANFNb(P91) steel tubing production for energetics in domestic steel-works; Uruchomienie w krajowych hutach produkcji rur ze stali H9AMFNb(P91) przeznaczonych dla energetyki

    Energy Technology Data Exchange (ETDEWEB)

    Wiedermann, J. [Instytut Metalurgii Zelaza, Gliwice (Poland); Bieniek, K. [Huta Jednosc, Siemianowice Slaskie (Poland); Pogoda, K. [Huta Batory, Chorzow (Poland)

    1996-12-31

    The results of primary investigations and attempt of ferritic steel H9AMFNb production in domestic steel-works have been reported. The prototype series of tubes for energetic boilers have been tested and their mechanical properties determined. It has been found the applicability of the material for use in energetics. 9 refs, 4 figs, 3 tabs.

  2. Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel

    Science.gov (United States)

    Cubillos, G. I.; Olaya, J. J.; Bethencourt, M.; Cifredo, G.; Blanco, G.

    2013-10-01

    Coatings of zirconium oxide were deposited onto three types of stainless steel, AISI 316L, 2205, and tool steel AISI D2, using the ultrasonic spray pyrolysis method. The effect of the flux ratio on the process and its influence on the structure and morphology of the coatings were investigated. The coatings obtained, 600 nm thick, were characterized using x-ray diffraction, scanning electron microscopy, confocal microscopy, and atomic force microscopy. The resistance to corrosion of the coatings deposited over steel (not nitrided) and stainless steel nitrided (for 2 h at 823 K) in an ammonia atmosphere was evaluated. The zirconia coating enhances the stainless steel's resistance to corrosion, with the greatest increase in corrosion resistance being observed for tool steel. When the deposition is performed on previously nitrided stainless steel, the morphology of the surface improves and the coating is more homogeneous, which leads to an improved corrosion resistance.

  3. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel

    International Nuclear Information System (INIS)

    Hamidzadeh, Mohammad Ali; Meratian, Mahmood; Saatchi, Ahmad

    2013-01-01

    AISI D2 tool steel has excellent wear resistance with high dimensional stability. This type of steel is suitable for making molds. This paper describes investigations into the effect of adding Ce/La on microstructure of AISI D2 type cold work tool steels obtained by means of optical microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectrometry (EDS) and image analyzer. The results showed that after modification with Ce/La, the morphology, size and distribution of M 7 C 3 carbides change greatly. The carbide network tends to break, and all carbides are refined and distributed homogeneously in the matrix, and also reduce the size of chromium carbides and increase the dissolution of carbides during heat treatment. The results of mechanical tests show that the toughness of the alloy increased about 75% without reducing the hardness of the alloy

  4. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, G.; Sikka, V.K.; Pankiw, R.I.

    2006-04-15

    Mechanical and Corrosion Properties (ORNL/TM-2005/81/R1). The final report on another related project at the University of Tennessee by George Pharr, Easo George, and Michael Santella has been published as Development of Combinatorial Methods for Alloy Design and Optimization (ORNL/TM-2005-133). The goal of the project was to increase the high-temperature strength by 50% and upper use temperature by 86 to 140 F (30 to 60 C) of H-Series of cast austenitic stainless steels. Meeting such a goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The goal of the project was achieved by using the alloy design methods developed at ORNL, based on precise microcharacterization and identification of critical microstructure/properties relationships and combining them with the modern computational science-based tools that calculate phases, phase fractions, and phase compositions based on alloy compositions. The combined approach of microcharacterization of phases and computational phase prediction would permit rapid improvement of the current alloy composition of an alloy and provide the long-term benefit of customizing alloys within grades for specific applications. The project was appropriate for the domestic industry because the current H-Series alloys have reached their limits both in high-temperature-strength properties and in upper use temperature. The desire of Duraloy's industrial customers to improve process efficiency, while reducing cost, requires that the current alloys be taken to the next level of strength and that the upper use temperature limit be increased. This project addressed a specific topic from the subject call: to develop materials for manufacturing processes that will increase high-temperature strength, fatigue resistance, corrosion, and wear resistance. The outcome of the project would benefit manufacturing processes in the chemical, steel, and heat-treating industries.

  5. Machinability of Stainless Tool Steel using Nitrogen Oil-Mist coalant

    Directory of Open Access Journals (Sweden)

    Amad E. Elshwain

    2017-01-01

    Full Text Available For all dry machining process, temperature generated in the cutting zone is the major challenge. It causes tool failure and results in unsatisfactory surface finish. Application of flood coolant method during machining processes can significantly reduce the temperature and consequently extend the cutting tool life. However, it has serious concerns regarding environmental pollution, operator health and manufacturing cost. These issues are usually attempts to be overcame by using minimum quantity lubrication (MQL technique. This method merges the advantages of both dry cutting and flood cooling by spraying a small amount of lubricant to the cutting zone using vegetable oil. In this paper, another technique is proposed in order to further enhance the machineability of the stainless tool steel (STAVAX ESR 48 HRC. This involves using of nitrogen gas (N2 and air as cooling medium in combination with oil mist lubricant (MQL. The results show that the combination between nitrogen and oil-mist lubricant much more prolonged the tool life and improved the surface finish than the air-oil mist lubricant medium.

  6. Corrosion fatigue crack growth in clad low-alloy steels: Part 1, medium-sulfur forging steel

    International Nuclear Information System (INIS)

    James, L.A.; Poskie, T.J.; Auten, T.A.; Cullen, W.H.

    1996-01-01

    Corrosion fatigue crack propagation tests were conducted on a medium- sulfur ASTM A508-2 forging steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 30.3--38.3 mm, and depths of 13.1--16.8 mm. The experiments were conducted in a quasi-stagnant low-oxygen (O 2 < 10 ppb) aqueous environment at 243 degrees C, under loading conditions (ΔK, R, and cyclic frequency) conductive to environmentally-assisted cracking (EAC) in higher-sulfur steels under quasi-stagnant conditions. Earlier experiments on unclad compact tension specimens of this heat of steel did not exhibit EAC, and the present experiments on semi-elliptical surface cracks penetrating cladding also did not exhibit EAC

  7. High-Temperature Corrosion of T92 Steel in N{sub 2}/H{sub 2}O/H{sub 2}S-Mixed Gas

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yuke; Kim, Min Jung; Park, Soon Yong; Abro, M. Ali; Yadav, Poonam; Lee, Dong Bok [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-06-15

    The ASTM T92 steel was corroded at 600 ℃ and 800 ℃ at 1 atm of N{sub 2}/3.1%H{sub 2}O/2.42%H{sub 2}S-mixed gas. The formed scales were thick and fragile. They consisted primarily of the outer FeS scale and the inner (FeS, FeCr{sub 2}S{sub 4})-mixed scale containing a small amount of the Cr{sub 2}O{sub 3} scale. This indicated that corrosion occurred mainly via sulfidation rather than oxidation due to the H{sub 2}S gas. Since FeS was present throughout the whole scale, T92 steel was non-protective, displaying high corrosion rates.

  8. Study on Surface Integrity of AISI 1045 Carbon Steel when machined by Carbide Cutting Tool under wet conditions

    Directory of Open Access Journals (Sweden)

    Tamin N. Fauzi

    2017-01-01

    Full Text Available This paper presents the evaluation of surface roughness and roughness profiles when machining carbon steel under wet conditions with low and high cutting speeds. The workpiece materials and cutting tools selected in this research were AISI 1045 carbon steel and canela carbide inserts graded PM25, respectively. The cutting tools undergo machining tests by CNC turning operations and their performances were evaluated by their surface roughness value and observation of the surface roughness profile. The machining tests were held at varied cutting speeds of 35 to 53 m/min, feed rate of 0.15 to 0.50 mm/rev and a constant depth of cut of 1 mm. From the analysis, it was found that surface roughness increased as the feed rate increased. Varian of surface roughness was suspected due to interaction between cutting speeds and feed rates as well as nose radius conditions; whether from tool wear or the formation of a built-up edge. This study helps us understand the effect of cutting speed and feed rate on surface integrity, when machining AISI 1045 carbon steel using carbide cutting tools, under wet cutting conditions.

  9. An updated pH calculation tool for new challenges

    Energy Technology Data Exchange (ETDEWEB)

    Crolet, J.L. [Consultant, 36 Chemin Mirassou, 64140 Lons (France)

    2004-07-01

    free HAc), or the solubility limits of Fe{sup ++} and Ca{sup ++} at the respective solubility equilibria of CaCO{sub 3}, FeCO{sub 3} or FeS (as 1/Fe{sub s} and 1/Ca{sub s}). The determination of the in-situ pH is then illustrated by the graphical resolution of the electro-neutrality equation at the cross point of two curves: e.g. the curves 'H{sup ++} Alkalinity - Acidity' and 'Sum of variable anions' in the absence of any precipitation, or '1/Fe{sub s}' and 'HCO{sub 3}{sup -}' in case of FeCO{sub 3} precipitation, '1/Ca{sub s}' and 'HCO{sub 3}{sup -}' for CaCO{sub 3}, etc; 2. a 'pH - P' nomogram illustrates the saturation pressure of the three precipitable salts, and the intricate decompression pattern of waters containing free HAc; 3. a 'potential corrosiveness' nomogram displays the various electrochemical components of the anodic and cathodic currents, and the respective contributions of pH, dissolved CO{sub 2} and free HAc at the corrosion potential of bare steel. This helps to better understand this criterion of the CO{sub 2} corrosion prediction tool, and its relationship with free HAc. Possible applications in cracking issues and CO{sub 2} corrosion prediction. (authors)

  10. Preliminary tension effect on low-cycle fatigue of 40Kh13 steel in gaseous hydrogen

    International Nuclear Information System (INIS)

    Romaniv, A.N.

    1984-01-01

    Comparative bending tests of specimens deformed by tension at 65, 18 and 30% in hydrogen and vacuum were accomplished to reveal the effect of preliminary tension on low-cycle fatigue strength of 40Kh13 martensitic steel. It was found that small amounts of preliminary strains induced a considerable decrease in low-cycle durability in vacuum and hydrogen which was connected with developing defects arising at the early stages of plastic deformation. A rather high degree of preliminary tension promoted steel homogenization, hydrogen embrittlement decrease and service behaviour improvement

  11. Passivation condition of carbon steel in bentonite/sand mixture

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kawakami, Susumu

    2002-03-01

    It is essential to understand the corrosion type of carbon steel under the repository conditions for the lifetime assessment of carbon steel overpack used for geological isolation of high-level radioactive waste. According to the previous study, carbon steel is hard to passivate in buffer material assuming a chemical condition range of groundwater in Japan. However, concrete support will be constructed around the overpack in the case of repository in the soft rock system and groundwater having a higher pH may infiltrate to buffer material. There is a possibility that the corrosion type of carbon steel will be influenced by the rise of the pH in groundwater. In this study, anodic polarization experiments were performed to understand the passivation condition of carbon steel in buffer material saturated with water contacted with concrete. An ordinary concrete an a low-alkalinity concrete were used in the experiment. The results of the experiments showed that the carbon steel can passivate under the condition that water having pH > 13 infiltrate to the buffer material assuming present property of buffer material. If the low-alkalinity concrete is selected as the support material, passivation can not occur on carbon steel overpack. The effect of the factors of buffer material such as dry density and mixing ratio of sand on the passivation of carbon steel was also studied. The results of the study showed that the present property of buffer material is enough to prevent passivation of carbon steel. (author)

  12. Failures of tool steels after heat treatments

    International Nuclear Information System (INIS)

    Nunez-Gonzalez, G.

    1990-01-01

    The main objective of the work was to determine the most common defects occuring in tool steels of the AISI D-2, S-1, 0-1 and W-2 series during thermal treatment. Defects were evaluated by metallographic analyses, a method used to determine and recognize micro structural defects and their origin in order to be able to eliminate and correct some of the stages that are caused by heat treatment. Results show a large number of defects due to irregularities during thermal heating such as excess or lack of temperature, heating time, and atmosphere, rectifying and handling in service and, to a lesser extent, poor design. In conclusion, with the results obtained for each of the thermal treatments it is necessary to define, particularly the values each of these variables should have since they affect the material properties. (Author)

  13. 13C, 1H spin-spin coupling constants. Pt. 4

    International Nuclear Information System (INIS)

    Aydin, R.; Guenther, H.

    1979-01-01

    One-bond, geminal, and vicinal 13 C, 1 H coupling constants have been determined for adamantane using α-and β-[D]adamantane and the relation sup(n)J( 13 C, 1 H)=6,5144sup(n)J( 13 C, 2 H) for the conversion of the measured sup(n)J( 13 C, 2 H) values. It is shown that the magnitude of 3 Jsub(trans) is strongly influenced by the substitution pattern. Relative H,D isotope effects for 13 C chemical shifts are given. (orig.) [de

  14. Effect of cerium and lanthanum on the microstructure and mechanical properties of AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Hamidzadeh, Mohammad Ali, E-mail: mahamidzadeh@yahoo.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Meratian, Mahmood; Saatchi, Ahmad [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2013-06-01

    AISI D2 tool steel has excellent wear resistance with high dimensional stability. This type of steel is suitable for making molds. This paper describes investigations into the effect of adding Ce/La on microstructure of AISI D2 type cold work tool steels obtained by means of optical microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectrometry (EDS) and image analyzer. The results showed that after modification with Ce/La, the morphology, size and distribution of M{sub 7}C{sub 3} carbides change greatly. The carbide network tends to break, and all carbides are refined and distributed homogeneously in the matrix, and also reduce the size of chromium carbides and increase the dissolution of carbides during heat treatment. The results of mechanical tests show that the toughness of the alloy increased about 75% without reducing the hardness of the alloy.

  15. Inhibition of Escherichia coli O157:H7 on stainless steel using Pseudomonas veronii biofilms.

    Science.gov (United States)

    Kim, Y; Kim, H; Beuchat, L R; Ryu, J-H

    2018-05-01

    We produced a Pseudomonas veronii biofilm on the surface of a stainless steel that is inhibitory to Escherichia coli O157:H7. Pseudomonas veronii strain KACC 81051BP, isolated from lettuce, readily formed biofilm on the surface of stainless steel coupons (SSCs) immersed in tryptic soy broth at 25°C. Cells showed significantly (P ≤ 0·05) enhanced tolerance to desiccation stress (43% relative humidity (RH)) and retained antimicrobial activity against E. coli O157:H7. The number of E. coli O157:H7 (control; 4·1 ± 0·1 log CFU per coupon) on sterile SSCs decreased to 2·7 ± 0·2 log CFU per coupon after exposure to 43% RH at 25°C for 48 h, while the population of E. coli O157:H7 (4·1 ± 0·0 log CFU per coupon) on SSCs containing P. veronii biofilm decreased to below the theoretical detection limit (1·5 log CFU per coupon) within 24 h. The antimicrobial biofilm produced on stainless steel may have application in preventing cross-contamination by E. coli O157:H7 on other abiotic surfaces in food-contact environments. The presence of Escherichia coli O157:H7 on environmental surfaces of food manufacturing, transportation and storage facilities is a significant food safety concern because it can result in cross-contamination of food products. In this study, we developed a Pseudomonas veronii biofilm on the surface of a stainless steel that inhibits the growth of E. coli O157:H7. Since P. veronii in biofilm resists desiccation, it provides persistent antimicrobial activity. Information presented here provides novel and practical insights to developing biological strategies to inactivate E. coli O157:H7 on diverse surfaces in food processing and handling environments. © 2018 The Society for Applied Microbiology.

  16. Extraction residue analysis on F82H-BA07 heat and other reduced activation ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Nagasaka, Takuya; Hishinuma, Yoshimitsu; Muroga, Takeo; Li, Yanfen; Watanabe, Hideo; Tanigawa, Hiroyasu; Sakasegawa, Hideo; Ando, Masami

    2011-01-01

    Extraction residue analysis was conducted on reduced activation ferritic/martensitic steels, such as F82H-BA07 heat, F82H-IEA heat, JLF-1 JOYO heat and CLAM steel. M 23 C 6 type precipitates, TaC precipitates and Fe 2 W Laves phase were identified in the present analyses. M 23 C 6 precipitates were coarsened in F82H-BA07 compared with the other steels at as-normalized and tempered (NT) condition. TaC precipitate formation was enhanced in JLF-1 and CLAM compared with F82H-BA07 and F82H-IEA at as-NT condition. Laves phase were detected in F82H-IEA after aging above 550 o C, where solid solution W was significantly decreased. F82H-IEA exhibited hardening after aging at 400 and 500 o C for 100 khr, whereas softening at 600 and 650 o C. This behavior is similar to JLF-1 and CLAM, and can be understood by precipitation of TaC and Laves phase.

  17. Effect of Coating Thickness on the Properties of TiN Coatings Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    Science.gov (United States)

    Mubarak, A.; Akhter, Parvez; Hamzah, Esah; Mohd Toff, Mohd Radzi Hj.; Qazi, Ishtiaq A.

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.

  18. Tool Wear Analysis due to Machining In Super Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Polishetty Ashwin

    2017-01-01

    Full Text Available This paper presents tool wear study when a machinability test was applied using milling on Super Austenitic Stainless Steel AL6XN alloy. Eight milling trials were performed under two cutting speeds, 100 m/min and 150 m/min, combined with two feed rates at 0.1mm/tooth and 0.15 mm/tooth and two depth of cuts at 2 mm and 3 mm. An Alicona 3D optical surface profilometer was used to scan cutting inserts flank and rake face areas for wear. Readings such as maximum and minimum deviations were extracted and used to analyse the outcomes. Results showed various types of wear were generated on the tool rake and flank faces. The common formed wear was the crater wear. The formation of the build-up edge was observed on the rake face of the cutting tool.

  19. Hydrogen Diffusion and H{sub 2}S Corrosion in Steel

    Energy Technology Data Exchange (ETDEWEB)

    Haugstveit, Bjarte Erlend

    2001-01-01

    The electrochemical permeation technique introduced by Devanathan and Stachurski has been used to measure the effective diffusivity of hydrogen in steel in a H{sub 2}S-saturated aqueous environment. The linear polarization resistance (LPR) method has been used to measure the corrosion rate. The effective diffusion coefficient of hydrogen has been found to be in the range of 1*10-12 to 7*10-11, depending on the environmental conditions. The corrosion film was identified as mackinawite, and it affected the permeation process of hydrogen. The results supported the assumption that the diffusion process can be described by a three layer model and indicated that the model could be reduced to a two layer model in the cases of iron and steel. A model aimed to describe the reaction pathway of hydrogen through the surface film and into the steel is proposed. The corrosion film influenced the corrosion rate, and it was least protective against corrosion at pH 6.5. Corrosion rates were in the range of 0.2-1 mm/year. The corrosion rate was increased significantly at pH 3.5, but the effect of the surface film was stronger and overshadowed the pH effect at the higher pH values. Increased flow velocity also lead to increased corrosion rate, but this effect was less significant compared to the effect of pH and the surface film. DEG decreased the corrosion rate. The uncertainty in the diffusion measurements was mainly due to the assumption of a constant sub-surface concentration of atomic hydrogen, which was not fulfilled. A method less dependent on constant surface conditions would probably yield better estimates of the effective diffusivity. The uncertainty in the corrosion measurements was mainly due to the uncertainty in the value of the Stern-Geary constant. The qualitative assumptions based on the results in this thesis are assumed to be valid. A test section designed for this thesis was tested and was found successful in corrosion rate measurements, but proved to be

  20. A Study on DLC Tool Coating for Deep Drawing and Ironing of Stainless Steel

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Hafis Sulaiman, Mohd; Christiansen, Peter

    2018-01-01

    ) to replicate industrial ironing of deep drawn, stainless steel parts. Non-hazardous tribo-systems in form of a double layer Diamond-like coated tool applied under dry condition or with an environmentally friendly lubricant were investigated via emulating industrial process conditions in laboratory tests...

  1. Influence of cryogenic treatment on microstructure and mechanical properties of high strength AISI D2 tool steel =

    Science.gov (United States)

    Ghasemi Nanesa, Hadi

    Cryogenic treatment, known as treating materials at sub-zero temperatures, has been added to conventional heat treatment cycle of high alloyed steels where martensitic transformation is incomplete after quenching to room temperature. Incomplete martensitic transformation occurs due to the effect of high content of alloying elements on pushing down martensite start and finish temperatures to very low values, specifically, on tool steels. In spite of obtaining significant improvements in mechanical and wear properties after cryogenic treatment, there is no cohesive picture about what exactly modifies the microstructure of tool steels during cryogenic treatment and therefore divergent opinions on the influence of process parameters are still reported. For example, the suggested time length for cryogenic treatment starts from few seconds to several days indicating the lack of understanding about micromechanisms responsible for microstructural evolution while holding at cryogenic temperatures. In this regard, the main objective of this project is to develop a better understanding on the fundamental micromechanisms operating during cryogenic treatment. To attain this objective, the following milestones are pursued. - To study the conventional cryogenic treatment and finding challenges. - To identify and characterize the optimum starting microstructure before cryogenic treatment. - To determine the important processing parameters those control the evolution of microstructure and hardness. - To investigate the interaction between carbide precipitation and martensitic transformation in the AISI D2 steel. - To propose an optimal cryogenic treatment for AISI D2 steel.

  2. Study of Carbide Evolution During Thermo-Mechanical Processing of AISI D2 Tool Steel

    Science.gov (United States)

    Bombac, D.; Fazarinc, M.; Podder, A. Saha; Kugler, G.

    2013-03-01

    The microstructure of a cold-worked tool steel (AISI D2) with various thermo-mechanical treatments was examined in the current study to identify the effects of these treatments on phases. X-ray diffraction was used to identify phases. Microstructural changes such as spheroidization and coarsening of carbides were studied. Thermodynamic calculations were used to verify the results of the differential thermal analysis. It was found that soaking temperature and time have a large influence on dissolution, precipitation, spheroidization, and coalescence of carbides present in the steel. This consequently influences the hot workability and final properties.

  3. Irradiation and inhomogeneity effects on ductility and toughness of (ODS)-7 -13Cr steels

    International Nuclear Information System (INIS)

    Preininger, D.

    2007-01-01

    Full text of publication follows: The superimposed effect of irradiation defect and structural inhomogeneity formation on tensile ductility and dynamic toughness of ferritic-martensitic 7-13CrW(Mo)VTa(Nb) and oxide dispersion-strengthened (ODS)-7-13CrWVTa(Ti)- RAFM steels has been examined by work hardening and local stress/strain-induced ductile fracture models. Structural inhomogeneities which strongly promoting plastic instability and localized flow might be formed by the applied fabrication process, high dose irradiation and additionally further during deformation by enhanced local dislocation generation around fine particles or due to slip band formation with localized heating at high impact strain rates ε'. The work hardening model takes into account superimposed dislocation multiplication from stored dislocations, dispersions and also grain boundaries as well as annihilation by cross-slip. Analytical relations have been deduced from the model describing uniform ductility and ductile upper shelf energy (USE) observed from Charpy-impact testes. Especially, the influence of different irradiation defects like atomic clusters, dislocation loops and coherent chromium-rich α'- precipitates have been considered together with effects from strain rate as well as irradiation (TI) and test temperature TT. Strengthening by clusters and more pronounced by dislocation loops formed at higher TI>250 deg. C reduces uniform ductility and also distinctly stronger dynamic toughness USE. A superimposed hardening by the α'- formation in higher Cr containing 9-13Cr steels strongly reduces toughness assisted by a combined grain-boundary embrittlement with reduction of the ductile fracture stress. But that improves work hardening and uniform ductility as observed particularly due to nano-scale Y 2 O 3 - dispersions in ODS-RAFM steels. For ODS- steels additionally the strength-induced reduction of toughness is diminished by a combined microstructural-induced increase of the ductile

  4. Effect of Tooling Material on the Internal Surface Quality of Ti6Al4V Parts Fabricated by Hot Isostatic Pressing

    Science.gov (United States)

    Cai, Chao; Song, Bo; Wei, Qingsong; Yan, Wu; Xue, Pengju; Shi, Yusheng

    2017-01-01

    For the net-shape hot isostatic pressing (HIP) process, control of the internal surface roughness of as-HIPped parts remains a challenge for practical engineering. To reveal the evolution mechanism of the internal surface of the parts during the HIP process, the effect of different tooling materials (H13, T8, Cr12 steel, and graphite) as internal cores on the interfacial diffusion and surface roughness was systematically studied.

  5. An analytical method on the surface residual stress for the cutting tool orientation

    Science.gov (United States)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2010-03-01

    The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.

  6. Effects of H2O and H2O2 on thermal desorption of tritium from stainless steel

    International Nuclear Information System (INIS)

    Quinlan, M. J.; Shmayda, W. T.; Lim, S.; Salnikov, S.; Chambers, Z.; Pollock, E.; Schroeder, W. U.

    2008-01-01

    Tritiated stainless steel was subjected to thermal desorption at various temperatures, different temperature profiles, and in the presence of different helium carrier gas additives. In all cases the identities of the desorbing tritiated species were characterized as either water-soluble or insoluble. The samples were found to contain 1.1 mCi±0.4 mCi. Approximately ninety-five percent of this activity was released in molecular water-soluble form. Additives of H 2 O or H 2 O 2 to dry helium carrier gas increase the desorption rate and lower the maximum temperature to which the sample must be heated, in order to remove the bulk of the tritium. The measurements validate a method of decontamination of tritiated steel and suggest a technique that can be used to further explore the mechanisms of desorption from tritiated metals. (authors)

  7. The Effects of The Industrial Cryogenic Process on The Wear Behaviours of AISI D2 Cold Work Tool Steels

    OpenAIRE

    Ersöz, Enes; Ovalı, İsmail

    2018-01-01

    In this study, industrial cryogenic process afterconventional heat treatment process for various holding time was applied toAISI D2 (DIN 1.2379) cold work tool steel. The effects of the industrialcryogenic process on the wear behavior was investigated. In the wear test 5,10and 15 N forces were carried out to all group specimens at a constant shearrate (3,16 m/s) and three different wear distances. Experimental results showthat cryogenic processing of AISI D2 cold work tool steels have a signi...

  8. Oxide formation and precipitation behaviors on interface of F82H steel joints during HIPing and hot pressing

    International Nuclear Information System (INIS)

    Kishimoto, H.; Ono, T.; Sakasegawa, H.; Tanigawa, H.; Ando, M.; Shibayama, T.; Kohno, Y.; Kohyama, A.

    2013-01-01

    Joining technologies for F82H steels are important issues for the development of fusion energy. The hot isostatic pressing (HIP) method is appropriate for consolidating the first wall of the blanket because of the flexibility of the shape of HIPed products. The HIP method is planned for fabricating a complex-shaped first wall component with built-in cooling channels; thus, accumulation of studies of microstructural and mechanical property changes, especially lower toughness of the HIPed joints, is essential. Present research aims to reveal the microstructural evolution of F82H joints fabricated by the HIP method compared with joints fabricated by hot pressing, focusing on the formation of oxides on the interface. F82H joints were characterized using 1/3-scale Charpy V-notch impact test, transmission electron microscope, scanning electron microscope, and electron probe analysis to survey the microstructural characteristics of the interface

  9. A study on the microstructure and mechanical properties of AISI D2 tool steel modified by niobium

    Energy Technology Data Exchange (ETDEWEB)

    Hamidzadeh, M.A.; Meratian, M. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Mohammadi Zahrani, M., E-mail: iut.mohammadi@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2012-10-30

    The microstructure and mechanical properties of AISI D2 tool steel with up to 1.5 wt% niobium additions were investigated. The microstructural evolutions were characterized by means of optical microscopy and scanning electron microscopy techniques. Mechanical properties of the samples were measured using tensile testing, hardness measurements and Charpy impact test. The results indicated that modification of the microstructure was effectively achieved through the addition of 1.5 wt% of niobium, which refined the prior-austenite grains and decreased the volume fraction of eutectic carbides. Also, the eutectic carbide network tended to break thereby forming blocky and ribbon-like morphologies in the eutectic structures. The ductility and impact toughness of the niobium-contained steels were increased considerably and reached to about 5.8% and 15 J/cm{sup 2}, respectively. Generally, the results of this study suggest that niobium can be used as an alloying element to significantly enhance the ductility and impact toughness of D2 tool steel without affecting the hardness.

  10. A study on the microstructure and mechanical properties of AISI D2 tool steel modified by niobium

    International Nuclear Information System (INIS)

    Hamidzadeh, M.A.; Meratian, M.; Mohammadi Zahrani, M.

    2012-01-01

    The microstructure and mechanical properties of AISI D2 tool steel with up to 1.5 wt% niobium additions were investigated. The microstructural evolutions were characterized by means of optical microscopy and scanning electron microscopy techniques. Mechanical properties of the samples were measured using tensile testing, hardness measurements and Charpy impact test. The results indicated that modification of the microstructure was effectively achieved through the addition of 1.5 wt% of niobium, which refined the prior-austenite grains and decreased the volume fraction of eutectic carbides. Also, the eutectic carbide network tended to break thereby forming blocky and ribbon-like morphologies in the eutectic structures. The ductility and impact toughness of the niobium-contained steels were increased considerably and reached to about 5.8% and 15 J/cm 2 , respectively. Generally, the results of this study suggest that niobium can be used as an alloying element to significantly enhance the ductility and impact toughness of D2 tool steel without affecting the hardness.

  11. Influence of minimum quantity of lubricant (MQL on tool life of carbide cutting tools during milling process of steel AISI 1018

    Directory of Open Access Journals (Sweden)

    Diego Núñez

    2017-03-01

    Full Text Available Nowadays, high productivity of machining is an important issue to obtain economic benefits in the industry. This purpose could be reached with high cutting velocity and feed rate. However, the inherently behavior produce high temperatures in the interface of couple cutting tool/workpiece. Many cutting fluids have been developed to control temperature in process and increase tool life. The objective of this paper is to compare the carbide milling tool wear using different systems cutting fluids: flood and minimum quantity of lubrication (MQL. The values of carbide milling cutting tool wear was evaluate according with the standard ISO 8688-1 1989. The experimental results showed that using MQL reduces significantly (about 40% tool wear in milling AISI 1018 steel at industrial cutting conditions.

  12. Mechanical properties of friction stir welded butt joint of steel/aluminium alloys: effect of tool geometry

    Science.gov (United States)

    Syafiq, W. M.; Afendi, M.; Daud, R.; Mazlee, M. N.; Majid, M. S. Abdul; Lee, Y. S.

    2017-10-01

    This paper described the mechanical properties from hardness testing and tensile testing of Friction Stir Welded (FSW) materials. In this project, two materials of aluminium and steel are welded using conventional milling machine and tool designed with different profile and shoulder size. During welding the temperature along the weld line is collected using thermocouples. Threaded pins was found to produce stronger joints than cylindrical pins. 20 mm diameter shoulder tool welded a slightly stronger joint than 18 mm diameter one, as well as softer nugget zone due to higher heat input. Threaded pins also contributed to higher weld temperature than cylindrical pins due to increase in pin contact surface. Generally, higher temperatures were recorded in aluminium side due to pin offset away from steel.

  13. On the inhibition of mild steel corrosion by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol

    International Nuclear Information System (INIS)

    Musa, Ahmed Y.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Takriff, Mohd Sobri; Daud, Abdul Razak; Kamarudin, Siti Kartom

    2010-01-01

    The corrosion inhibition of mild steel in a 2.5 M H 2 SO 4 solution by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT) was studied at different temperatures, utilising open circuit potential, potentiodynamic and impedance measurements. The results indicate that APTT performed as an excellent mixed-type inhibitor for mild steel corrosion in a 2.5 M H 2 SO 4 solution and that the inhibition efficiencies increased with the inhibitor concentration but decreased proportionally with temperature. The kinetic and thermodynamic parameters for adsorption of APTT on the mild steel surface were calculated. A chemisorption mechanism of APTT molecules on the mild steel surface was proposed based on the thermodynamic adsorption parameters.

  14. Small specimen test technology of fracture toughness in structural material F82H steel for fusion nuclear reactors

    International Nuclear Information System (INIS)

    Wakai, Eiichi; Ohtsuka, Hideo; Jitsukawa, Shiro; Matsukawa, Shingo; Ando, Masami

    2006-03-01

    Small specimen test technology (SSTT) has been developed to investigate mechanical properties of nuclear materials. SSTT has been driven by limited availability of effective irradiation volumes in test reactors and accelerator-based neutron and charged particle sources, and it is very useful for the reduction of waste materials produced in nuclear engineering. In this study new bend test machines have been developed to obtain fracture behaviors of F82H steel for very small bend specimens of pre-cracked t/2-1/3CVN (Charpy V-notch) with 20 mm-length and DFMB (deformation and fracture mini bend specimen) with 9 mm-length and disk compact tension of 0.18DCT type, and fracture behaviors were examined to evaluate DBTT (ductile-brittle transition temperature) at temperature from -180 to 25degC. The effect of specimen size on DBTT of F82H steel was also examined by using Charpy type specimens such as 1/2t-CVN, 1/3CVN and t/2-1/3CVN. In this paper, it also provides the information of the specimens irradiated at 250degC and 350degC to about 2 dpa in the capsule of 04M-67A and 04M-68A of JMTR experiments. (author)

  15. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Sayiram, G., E-mail: sayiram.g@vit.ac.in; Arivazhagan, N.

    2015-04-15

    In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone near the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.

  16. Forward impact extrusion of surface textured steel blanks using coated tooling

    Science.gov (United States)

    Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz

    2017-10-01

    A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.

  17. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    Science.gov (United States)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  18. Notch aspects of RSP steel microstructure

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2012-01-01

    Full Text Available For a rather long time, basic research projects have been focused on examinations of mechanical properties for Rapid Solidification Powder (RSP steels. These state-of-art steels are commonly known as “powdered steels“. In fact, they combine distinctive attributes of conventional steel alloys with unusual resistance of construction material manufactured by so called “pseudo-powdered” metallurgy.Choice of suitable materials for experimental verification was carried out based on characteristic application of so called “modern steel”. First, groups of stainless and tool steel types (steel grades ČSN 17 and 19 were selected. These provided representative specimens for the actual comparison experiment. For stainless steel type, two steel types were chosen: hardenable X47Cr14 (ČSN 17 029 stainless steel and non-hardenable X2CrNiMo18-14-3 (ČSN 17 350 steel. They are suitable e.g. for surgical tools and replacements (respectively. For tooling materials, C80U (ČSN 19 152 carbon steel and American D2 highly-alloyed steel (ČSN “equivalent” being 19 572 steel were chosen for the project. Finally, the M390 Böhler steel was chosen as representative of powdered (atomized steels. The goal of this paper is to discuss structural aspects of modern stainless and tool steel types and to compare them against the steel made by the RSP method. Based on the paper's results, impact of powdered steel structural characteristics on the resistance to crack initiation shall be evaluated.

  19. Microstructure Charaterization of a Hardened and Tempered Tool Steel: from Macro to Nano Scale

    DEFF Research Database (Denmark)

    Højerslev, Christian; Somers, Marcel A. J.; Carstensen, Jesper V.

    2002-01-01

    The microstructure of a conventionally heat treated PM AISI M3:2 tool steel, was characterised by a combination of light optical and electron microscopy, covering the range from micro to nano scale. Dilatometry and X-ray diffractometry were used for an overall macro characterisation of the phases...

  20. Tool life and cutting speed for the maximum productivity at the drilling of the stainless steel X22CrMoV12-1

    Science.gov (United States)

    Vlase, A.; Blăjină, O.; Iacob, M.; Darie, V.

    2015-11-01

    Two addressed issues in the research regarding the cutting machinability, establishing of the optimum cutting processing conditions and the optimum cutting regime, do not yet have sufficient data for solving. For this reason, in the paper it is proposed the optimization of the tool life and the cutting speed at the drilling of a certain stainless steel in terms of the maximum productivity. For this purpose, a nonlinear programming mathematical model to maximize the productivity at the drilling of the steel is developed in the paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the numerical mathematical model. Using this proposed model allows increasing the accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The results presented in this paper can be used in the production activity, in order to increase the productivity of the stainless steels machining. Also new research directions for the specialists in this interested field may come off from this paper.

  1. Material pre-conditioning effects on the creep behaviour of 316H stainless steel

    International Nuclear Information System (INIS)

    Mehmanparast, A.; Davies, C.M.; Dean, D.W.; Nikbin, K.

    2013-01-01

    Material pre-conditioning by, for example, pre-strain through component bending and welding is known to alter the creep deformation and creep crack growth (CCG) behaviour of 316H stainless steel. Experimental test data on the creep deformation and crack growth behaviour of 316H weldment compact tension specimens at 550 °C, where the starter defect was introduced into the heat affected zone (HAZ), have been compared to those of obtained from similar specimens manufactured from parent material, which had been subjected to 8% compressive plastic pre-strain at room temperature. Similar degrees of accelerated cracking behaviour compared to parent material, for given values of C*, were exhibited in both 316H HAZ and pre-compressed parent materials. This acceleration has been attributed to the influence of material hardening effects and the reduction of creep ductility in the pre-conditioned materials. These results are discussed in terms of the potential for using material pre-conditioning to assist in predicting the long term cracking behaviour of high temperature 316H stainless steel plant components from shorter term laboratory CCG tests

  2. H12CN and H13CN excitation analysis in the circumstellar outflow of R Sculptoris

    Science.gov (United States)

    Saberi, M.; Maercker, M.; De Beck, E.; Vlemmings, W. H. T.; Olofsson, H.; Danilovich, T.

    2017-03-01

    Context. The 12CO/13CO isotopologue ratio in the circumstellar envelope (CSE) of asymptotic giant branch (AGB) stars has been extensively used as the tracer of the photospheric 12C/13C ratio. However, spatially-resolved ALMA observations of R Scl, a carbon rich AGB star, have shown that the 12CO/13CO ratio is not consistent over the entire CSE. Hence, it can not necessarily be used as a tracer of the 12C/13C ratio. The most likely hypothesis to explain the observed discrepancy between the 12CO/13CO and 12C/13C ratios is CO isotopologue selective photodissociation by UV radiation. Unlike the CO isotopologue ratio, the HCN isotopologue ratio is not affected by UV radiation. Therefore, HCN isotopologue ratios can be used as the tracer of the atomic C ratio in UV irradiated regions. Aims: We aim to present ALMA observations of H13CN(4-3) and APEX observations of H12CN(2-1), H13CN(2-1, 3-2) towards R Scl. These new data, combined with previously published observations, are used to determine abundances, ratio, and the sizes of line-emitting regions of the aforementioned HCN isotopologues. Methods: We have performed a detailed non-LTE excitation analysis of circumstellar H12CN(J = 1-0, 2-1, 3-2, 4-3) and H13CN(J = 2-1, 3-2, 4-3) line emission around R Scl using a radiative transfer code based on the accelerated lambda iteration (ALI) method. The spatial extent of the molecular distribution for both isotopologues is constrained based on the spatially resolved H13CN(4-3) ALMA observations. Results: We find fractional abundances of H12CN/H2 = (5.0 ± 2.0) × 10-5 and H13CN/H2 = (1.9 ± 0.4) × 10-6 in the inner wind (r ≤ (2.0 ± 0.25) ×1015 cm) of R Scl. The derived circumstellar isotopologue ratio of H12CN/H13CN = 26.3 ± 11.9 is consistent with the photospheric ratio of 12C/13C 19 ± 6. Conclusions: We show that the circumstellar H12CN/H13CN ratio traces the photospheric 12C/13C ratio. Hence, contrary to the 12CO/13CO ratio, the H12CN/H13CN ratio is not affected by UV

  3. Hardness in high temperature of steels ABNT H11 and ABNT H11 modified with niobium

    International Nuclear Information System (INIS)

    Goncalves, R.A.

    1984-01-01

    A method to measure the hardness of metallic materials was developed. The heating was done by the Joule effect heat dissipation in the sample, that is like an electrical resistor. A diamond penetrator with a revolution paraboloid format was used, that assure a linear relation between the load applyed and the penetration deep. Hardness tests were make in the range of 25 - 600 0 C, in the steels ABNT H11 and ABNT H11 modified with niobium, with the simultaneous register of the applied force, penetration deep and temperature. (E.G.) [pt

  4. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part II. Isothermal aging kinetics

    Science.gov (United States)

    Robino, C. V.; Cieslak, M. J.; Hochanadel, P. W.; Edwards, G. R.

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 °C to 593 °C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 °C, 538 °C, 566 °C, and 593 °C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that Β-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the Β-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels. Although the Avrami analysis was found not to provide a tenable description of the precipitation kinetics, it does provide a reasonable methodology for portrayal of the hardening response

  5. Corrosive effect of oil's accompanying water polluted with H2S over steel (API 5L X-52)

    International Nuclear Information System (INIS)

    Cueli Corugedo, Alexander; Adames Montero, Yosmari; Rivera Beltran, Yischy; Davis Harriet, Juan

    2013-01-01

    The corrosion from the steel to the carbon in the sale oil pipage conduction, is a serious problem, due to the material and economical looses they cause, damaging even in some cases the productive field. The purpose of this study is to determine the aggressiveness of the oil's water layer, polluted with H 2 S ( g) , over the steel of pipelines' construction (API 5L X-52), taking into account the temperature variations which take place during the transportation of the oil, using the electrochemical techniques of polarisation resistance (LPR) and electrochemical noise. It is pretended to determine the velocity of steel corrosion in the oil's water layer polluted with H 2 S through electrochemical techniques. It was shown that the temperature increases and the concentration of H 2 S to 500 ppm in the oil's accompanying water emphasizes the corrosion phenomenon experienced by the steel (9, 188 0 mm/year to 70℃).The results of the electrochemical noise spectrums and the values of the localisation ?s index calculated, shown the presence of corrosion on the steel surface (API 5L X-52).This result was complemented through optic Microscopy which permits to corroborate the poor adherence of the sulphur layers deposited on the metal that increase the appearance of events found with the temperature increase and the concentration of H 2 S in the environment studied

  6. Influence of surface mechanical activation of the X40Cr13 steel on roughness after ion and gas nitriding

    International Nuclear Information System (INIS)

    Jasinski, J.; Wojtal, A.; Jeziorski, L.; Radecki, A.; Ucieklak, S.

    2003-01-01

    The article describes the problem of the thermal and mechanical activation of the surface of the X40Cr13 steel on the state of the ion and gas nitriding. in order to determine the nitriding influence and make the analysis of results, the steel was subjected to: soft annealing, hardening with subsequent tempering at T = 550 o C and also mechanical activation of the surface consisting in peripheral grinding with abrasive papers of the grain size 60, 360, 1000 and mechanical polishing. The main aim of this work was to establish the influence of different surface geometrical structure, depending on X40Cr13 steel structure, on the roughness profile after ion and gas nitriding. With regard to the above, the examinations of basic roughness parameters prior to and after thermochemical processes and the analysis of utilitarian usefulness of activations applied were carried out. (author)

  7. Oxidation Behavior of Carbon Steel: Effect of Formation Temperature and pH of the Environment

    Science.gov (United States)

    Dubey, Vivekanand; Kain, Vivekanand

    2017-11-01

    The nature of surface oxide formed on carbon steel piping used in nuclear power plants affects flow-accelerated corrosion. In this investigation, carbon steel specimens were oxidized in an autoclave using demineralized water at various temperatures (150-300 °C) and at pH levels (neutral, 9.5). At low temperatures ( 240 °C) as confirmed by scanning electron microscopy. Electrochemical impedance measurement followed by Mott-Schottky analysis indicated an increase in defect density with exposure duration at 150 °C at neutral pH but a low and stable defect density in alkaline environment. The defect density of the oxide formed at neutral pH at 150-300 °C was always higher than that formed in alkaline environment as reported in the literature.

  8. Optimization of Minimum Quantity Lubricant Conditions and Cutting Parameters in Hard Milling of AISI H13 Steel

    OpenAIRE

    The-Vinh Do; Quang-Cherng Hsu

    2016-01-01

    As a successful solution applied to hard machining, the minimum quantity lubricant (MQL) has already been established as an alternative to flood coolant processing. The optimization of MQL parameters and cutting parameters under MQL condition are essential and pressing. The study was divided into two parts. In the first part of this study, the Taguchi method was applied to find the optimal values of MQL condition in the hard milling of AISI H13 with consideration of reduced surface roughness....

  9. Tool life equation for blanking 18-8 stainless steel strips

    International Nuclear Information System (INIS)

    Faura, F.; Lopez, J.; Sanes, J.; Garcia, A.

    1998-01-01

    Hereinafter it is presented a model for the behaviour and life of circular blanking tool used in sheet forming processes of 18-8 stainless steel (sheet thickness: 1 mm). Frostily it has analyzed the different studies that have previously dealt with this problem. Secondly taking into account recently made experiments, it is proposed a simple formulation to predict tool life with enough reliability. to this purpose it has examined different parameters in the wear process, inferring from these the fundamental parameters that regulate them and about which the different equations have been configurated. Blanking tests were performed using a 20 t press at a speed of 150 strokes/min. Punch materials used in these test were AISI A2 and AISI D2 with diameters between 1.5 and 10 mm. The blanking tests were performed at a clearance between 5 and 20% of the work material thickness. (Author) 8 refs

  10. Corrosion Inhibition and Adsorption Characteristics of Tarivid on Mild Steel in H2SO4

    Directory of Open Access Journals (Sweden)

    N. O. Eddy

    2010-01-01

    Full Text Available The corrosion inhibition and adsorption characteristics of (+/--9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid (Tarivid on the corrosion of mild steel has been studied using thermometric and gasometric methods. The study reveals that tarivid inhibits the corrosion of mild steel in H2SO4. The values of inhibition efficiency of tarivid were found to increase as its concentration increased but decreased with increase in temperature. Activation energies of the inhibited corrosion of mild steel ranged from 39.05 to 50.61 kJ/mol. Values of enthalpy change and free energy of adsorption were negative which indicated exothermic and spontaneous adsorption process. Physical adsorption mechanism is proposed from the obtained kinetic and thermodynamic parameters. Langmuir adsorption isotherm model is obeyed from the fit of the experimental data.

  11. An ALMA Survey of DCN/H{sup 13}CN and DCO{sup +}/H{sup 13}CO{sup +} in Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jane; Öberg, Karin I.; Qi, Chunhua; Andrews, Sean M.; Guzmán, Viviana V.; Loomis, Ryan A.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aikawa, Yuri; Furuya, Kenji [Center for Computational Sciences, The University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Van Dishoeck, Ewine F., E-mail: jane.huang@cfa.harvard.edu [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands)

    2017-02-01

    The deuterium enrichment of molecules is sensitive to their formation environment. Constraining patterns of deuterium chemistry in protoplanetary disks is therefore useful for probing how material is inherited or reprocessed throughout the stages of star and planet formation. We present ALMA observations at ∼0.″6 resolution of DCO{sup +}, H{sup 13}CO{sup +}, DCN, and H{sup 13}CN in the full disks around T Tauri stars AS 209 and IM Lup, in the transition disks around T Tauri stars V4046 Sgr and LkCa 15, and in the full disks around Herbig Ae stars MWC 480 and HD 163296. We also present ALMA observations of HCN in the IM Lup disk. DCN, DCO{sup +}, and H{sup 13}CO{sup +} are detected in all disks, and H{sup 13}CN in all but the IM Lup disk. We find efficient deuterium fractionation for the sample, with estimates of disk-averaged DCO{sup +}/HCO{sup +} and DCN/HCN abundance ratios ranging from ∼0.02–0.06 and ∼0.005–0.08, respectively, which is comparable to values reported for other interstellar environments. The relative distributions of DCN and DCO{sup +} vary between disks, suggesting that multiple formation pathways may be needed to explain the diverse emission morphologies. In addition, gaps and rings observed in both H{sup 13}CO{sup +} and DCO{sup +} emission provide new evidence that DCO{sup +} bears a complex relationship with the location of the midplane CO snowline.

  12. Inelastic Cyclic Deformation Behaviors of Type 316H Stainless Steel for Reactor Pressure Vessel of Sodium-Cooled Fast Reactor at Elevated Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji-Hyun; Hong, Seokmin; Koo, Gyeong-Hoi; Lee, Bong-Sang; Kim, Young-Chun

    2015-01-01

    Type 316H stainless steel is a primary candidate material for a reactor pressure vessel of a sodium-cooled fast (SFR) reactor which is under development in Korea. The reactor pressure vessel for a SFR is subjected to inelastic deformation induced by cyclic thermal stress. Fully reversed cyclic testing and ratcheting testing at elevated temperatures were performed to characterize the inelastic cyclic deformation behaviors of Type 316H stainless steel at the SFR operating temperature. It was found that cyclic hardening of Type 316H stainless steel was enhanced, and the accumulation of ratcheting deformation of Type 316H stainless steel was retarded at around the SFR operating temperature. The results of the tensile testing and the microstructural investigation for dislocated structures after the inelastic deformation testing showed that dynamic strain aging affected the inelastic cyclic deformation behavior of Type 316 stainless steel at around the SFR operating temperature.

  13. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin

    Directory of Open Access Journals (Sweden)

    Abdul Amir H. Kadhum

    2014-06-01

    Full Text Available A new coumarin derivative, N,N′-((2E,2′E-2,2′-(1,4-phenylenebis (methanylylidenebis(hydrazinecarbonothioylbis(2-oxo-2H-chromene-3-carboxamide PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear  magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR. The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.

  14. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin

    Science.gov (United States)

    Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Hammed, Leiqaa A.; Al-Amiery, Ahmed A.; San, Ng Hooi; Musa, Ahmed Y.

    2014-01-01

    A new coumarin derivative, N,N′-((2E,2′E)-2,2′-(1,4-phenylenebis(methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH. PMID:28788680

  15. Influence of Mo addition on the tempered properties of 13Cr martensitic stainless steel

    International Nuclear Information System (INIS)

    Jung, Byong Ho; Ahn, Yong Sik

    1998-01-01

    In order to investigate the effect of Mo addition on the mechanical properties of 13Cr-0.2C martensitic stainless steel, tensile test and Charpy V-notch test were performed after tempering at the temperature range of 200∼700 .deg. C following austenitizing at 1100 .deg. C. The yield strength and hardness of the steel were increased with the increase of Mo content at all tempering conditions, because Mo causes retardation of precipitation and coarsening of carbides and solid solution strengthening of matrix. Except 500 .deg. C of tempering temperature, the Charpy impact energy was significantly increased with Mo content and showed the highest value at 1.5 wt% addition. The increase of impact energy of the steel containing Mo is thought to be caused by δ-ferrite formed in the tempered martensitic matrix. At 500 .deg. C tempering, Charpy impact energy was decreased drastically due to temper embrittlement and it was not possible to prevent it even though Mo was added up to 1.5 wt%

  16. Influence of corrosion environment composition on crack propagation in high-strength martensitic steel

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Tsirul'nik, A.T.

    1984-01-01

    The 40 Kh steel is taken as an example to investigate the dependence of electrochemical parameters in the crack tip and characteristics of corrosion static cracking resistance of martensitic steel on the composition of environment. The tests are performed in acidic and alkaline solutions prepared by adding HC or NaOH in distilled water. It is established that growth of pH value of initial solutions trom 0 to 13 brings about linear increase of a threshold stress intensity factor. It is found that acidic medium in the crack tip preserves up to pH 13 of initial medium. The possibility of corrosion crack propagation in alkaline solutions according to the mechanism of hydrogen embrittlement is proved

  17. Susceptibility to stress corrosion in stainless steels type AISI 321 and 12X18H10T used in PWR type reactors (WWER)

    International Nuclear Information System (INIS)

    Matadamas C, N.

    1995-01-01

    Titanium stabilized stainless steels have been utilized in sovietic pressurized water reactors (VVER) for avoid the susceptibility to Intergranular Corrosion (IGC) present in other austenitic stainless steels. However the Intergranular Corrosion resistance of this kind of materials has been questioned because of Intergranular Stress Corrosion Cracking failures (IGSCC) have been reported. This paper study the electrochemical behavior of the AISI 321 stainless steel in a H 3 BO 3 Solution contaminated with chlorides and its susceptibility to Intergranular Corrosion.Electrochemical prediction diagrams of the stainless steels AISI 321 and 12X18H10T (sovietic) sensitized (600 Centigrade, 3 h.) were compared. Cylindrical and conical samples were used in Slow Strain Rate Tests (SSRT), to determine the susceptibility to Stress Corrosion Cracking (SCC) in AISI 321 and 12X18H10T stainless steels. The results obtained showed that the temperature of the solution is a very important factor to detect this susceptibility. Fractography studies on the fracture surfaces of the samples obtained in the SSRT at high temperature were realized. Corrosion velocities of both AISI 321 and 12X18H10T stainless steels were determined using conical samples in the CERT system at high temperature. E.D.A.X. analysis was employed in both AISI 321 and 12X18H10T stainless steels in order to explain the degree of sensitization. (Author)

  18. Evaluation on machined surface of hardened stainless steel generated by hard turning using coated carbide tools with wiper geometry

    International Nuclear Information System (INIS)

    Noordin, M.Y.; Kurniawan, D.; Sharif, S.

    2007-01-01

    Hard turning has been explored to be the finish machining operation for parts made of hardened steel. Its feasibility is determined partially by the quality of the resulting machined surface. This study evaluates the surface integrity of martensitic stainless steel (48 HRC) resulting from hard turning using coated carbide tool with wiper geometry at various cutting speed and feed and compares to that obtained using coated carbide tool with conventional geometry. The wiper coated carbide tool is able to produce machined surface which is of finer finish (Ra is finer than 0.4 μm at most cutting parameters) and yet is similarly inducing only minor microstructural alteration compared to its conventional counterpart. From the view of the chip morphology where continuous type of chip is desired rather than sawtooth chip type, the wiper tool generates continuous chip at almost similar range of cutting parameters compared to the case when using conventional tool. Additionally, the use of wiper tool also induces the preferred compressive residual stress at the machined surface. (author)

  19. Hydrothermal Valorization of Steel Slags—Part I: Coupled H2 Production and CO2 Mineral Sequestration

    Directory of Open Access Journals (Sweden)

    Camille Crouzet

    2017-10-01

    Full Text Available A new process route for the valorization of BOF steel slags combining H2 production and CO2 mineral sequestration is investigated at 300°C (HT under hydrothermal conditions. A BOF steel slag stored several weeks outdoor on the production site was used as starting material. To serve as a reference, room temperature (RT carbonation of the same BOF steel slag has been monitored with in situ Raman spectroscopy and by measuring pH and PCO2 on a time-resolved basis. CO2 uptake under RT and HT are, respectively, 243 and 327 kg CO2/t of fresh steel slag, which add up with the 63 kg of atmospheric CO2 per ton already uptaken by the starting steel slag on the storage site. The CO2 gained by the sample at HT is bounded to the carbonation of brownmillerite. H2 yield decreased by about 30% in comparison to the same experiment performed without added CO2, due to sequestration of ferrous iron in a Mg-rich siderite phase. Ferric iron, initially present in brownmillerite, is partitioned between an Fe-rich clay mineral of saponite type and metastable hematite. Saponite is likely stabilized by the presence of Al, whereas hematite may represent a metastable product of brownmillerite carbonation. Mg-rich wüstite is involved in at least two competing reactions, i.e., oxidation into magnetite and carbonation into siderite. Results of both water-slag and water-CO2-slag experiments after 72 h are consistent with a kinetics enhancement of the former reaction when a CO2 partial pressure imposes a pH between 5 and 6. Three possible valorization routes, (1 RT carbonation prior to hydrothermal oxidation, (2 RT carbonation after hydrothermal treatment, and (3 combined HT carbonation and oxidation are discussed in light of the present results and literature data.

  20. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    Science.gov (United States)

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  1. Structure and properties of the tool steel after electron beam treatment and following tempering

    International Nuclear Information System (INIS)

    Kozyr', I.G.; Borodin, R.V.; Voropaev, A.V.; Potapov, V.G.

    1998-01-01

    The possibility of changing the surface structure of chromium tool steel has been considered. The given properties were reached through the surface remelting by electron beam with following tempering of strengthened layer. The found distinguished zones with different structure and properties are formed as the result of this treatment. It is shown that for hipereutectoid steel the thermal furnace annealing at 300 deg C is necessary for strengthened surface layer forming after electron beam remelting. The same result can be had by means of short-term heating with electronic beam up to higher temperatures, but is not higher A 1 . The evaluation of temperature fields was carried out by numerical solution of nonstationary heat conductivity equation

  2. Characterization of rapidly solidified powder of high-speed steel

    Czech Academy of Sciences Publication Activity Database

    Miglierini, M.; Lančok, Adriana; Kusý, M.

    2009-01-01

    Roč. 190, 1-3 (2009), s. 51-57 ISSN 0304-3843 R&D Projects: GA ČR GP203/07/P011 Grant - others:GA(SK) VEGA1/3190/06 Institutional research plan: CEZ:AV0Z40320502 Keywords : Rapidly solidified powder * Tool steel * Mössbauer spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 0.209, year: 2007

  3. The effect of boriding on wear resistance of cold work tool steel

    International Nuclear Information System (INIS)

    Anzawa, Y; Koyama, S; Shohji, I

    2017-01-01

    Recently, boriding has attracted extensive attention as surface stiffening processing of plain steel. In this research, the influence of processing time on the formation layer of cold work tool steel (KD11MAX) by Al added fused salt bath was examined. In addition, in order to improve the abrasion resistance of KD11MAX, the effect of the treatment of boronization on the formation layer has been investigated. Boriding were performed in molten borax which contained about 10 mass% Al at processing time of 1.8 ∼ 7.2 ks (processing temperature of 1303 K). As a result of the examination, the hardness of the boriding layer becomes about 1900 HV when the processing time of 3.6 ks. Also the abrasion resistance has improved remarkably. Furthermore, it was revealed that the formation layer was boronized iron from the Vickers hardness and analysis of the X-ray diffraction measurement. (paper)

  4. Compresibility and sinterability of HCx PM steel diluted with stainless steels

    Directory of Open Access Journals (Sweden)

    Elena Gordo

    2003-12-01

    Full Text Available HCx powder metallurgy steel contains in its composition high contents of Cr and C, and significant quantities of alloy elements typical of tool steels (Mo, V, W, to provide the corrosion resistance of stainless steel with wear resistance of tool steels. HCx appears to be a suitable material for applications in aggressive environments, as valve seat inserts in automotive engines. However, this steel presents a low compressibility leading to high production costs. In this work, some results carried out to improve the compressibility of HCx are presented. The way to attempt this improvement is the dilution of base material with two stainless steels, the ferritic 430LHC and the austenitic 316L. The powder mixes prepared were uniaxially pressed to study the compressibility. The sinterability was study by determining of density, hardness, transverse rupture strength (TRS and microstructural evolution after vacuum sintering at different temperatures. As a result, better compressibility is observed in the mixes although not all of them present the properties required.

  5. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450 0 C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the α' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450 0 C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450 0 C. 18 refs., 13 figs

  6. Effect of milling time and annealing temperature on nanoparticles evolution for 13.5% Cr ODS ferritic steel powders by joint application of XAFS and TEM

    Science.gov (United States)

    He, P.; Hoffmann, J.; Möslang, A.

    2018-04-01

    The characteristics of strengthening nanoparticles have a major influence on the mechanical property and irradiation resistance of oxide dispersion strengthened (ODS) steels. To determine how to control nanoparticles evolution, 0.3% Ti with 0.3% Y2O3 were added in 13.5%Cr pre-alloyed steel powders via different milling and consolidation conditions, then characterized by transmission electron microscopy (TEM) and X-ray absorption fine structure (XAFS) at synchrotron irradiation facility. The dissolution of Y2O3 is greatly dependent on the milling time at fixed milling speeds. After 24 h of milling, only minor amounts of the initially added Y2O3 dissolve into the steel matrix whereas TEM results reveal nearly complete dissolution of Y2O3 in 80-h-milled powder. The annealed powder FT-A800 (at 800 °C for 1 h) exhibits a structure near to the initially added Y2O3. The slightly deviation may be accounted for considerable lattice distortion related to the presence of atomic vacancies or formation of Y-Ti-O nucleus. The annealed powders FT-A1000 and FT-A1100 contain complex mixtures of Y-O/Y-Ti-O oxides, which cannot be fitted by any single thermally stable compounds. The coordination numbers of these first two shells in the annealed powders significantly raise as a function of the annealing temperature, indicating the formation of more ordered Y-O or Y-Ti-O particles. The extended X-ray absorption fine structure (EXAFS) spectrum could not necessarily distinguish the dominant oxide species.

  7. Microstructural Evolution during DPRM Process of Semisolid Ledeburitic D2 Tool Steel

    OpenAIRE

    M. N. Mohammed; M. Z. Omar; J. Syarif; Z. Sajuri; M. S. Salleh; K. S. Alhawari

    2013-01-01

    Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct pa...

  8. Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific and Design Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Pankiw, Roman I; Muralidharan, G. (Murali); Sikka, Vinod K.

    2006-06-30

    The goal of this project was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and the upper use temperature by 86 to 140 degrees fahrenheit (30 to 60 degrees celsius). Meeting this goal is expected to result in energy savings of 35 trillion Btu/year by 2020 and energy cost savings of approximately $230 million/year. The higher-strength H-Series cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat treating industry, including radiant burner tubes. The project was led by Duraloy Technologies, Inc., with research participation by Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies.

  9. Improvement of the surface finish obtained by laser ablation with a Nd: YAG laser on pre-ablated tool steel

    CSIR Research Space (South Africa)

    Steyn, J

    2007-01-01

    Full Text Available . In recent years, these lasers have been used in other fields, such as laser ablation of small tools for plastics injection moulding. Laser ablation is a technology that is investigated as a method to improve the surface finish in tool steel. Different...

  10. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in 't Veld, A.J.; Hosson, J.T. de

    1998-01-01

    Titanium-nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test

  11. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    NARCIS (Netherlands)

    Carvalho, N.J.M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test

  12. Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel

    International Nuclear Information System (INIS)

    Guu, Y.H.; Hocheng, H.; Chou, C.Y.; Deng, C.S.

    2003-01-01

    In this work the electrical discharge machining (EDM) of AISI D2 tool steel was investigated. The surface characteristics and machining damage caused by EDM were studied in terms of machining parameters. Based on the experimental data, an empirical model of the tool steel was also proposed. A new damage variable was used to study the EDM damage. The workpiece surface and re-solidified layers were examined by a scanning electron microscopy. Surface roughness was determined with a surface profilometer. The residual stress acting on the EDM specimen was measured by the X-ray diffraction technique. Experimental results indicate that the thickness of the recast layer, and surface roughness are proportional to the power input. The EDM process introduces tensile residual stress on the machined surface. The EDM damage leads to strength degradation

  13. Properties of 13HMF steel for steam pipelines as a result of impact and cracking resistance investigations; Wlasnosci stali 13HMF na rurociagi pary swiezej w swietle badan udarnosci i odpornosci na pekanie

    Energy Technology Data Exchange (ETDEWEB)

    Bilous, W.; Wasiak, J.; Hajewska, E.; Szteke, W.; Wagner, T. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1996-12-31

    Long lasting and safe exploitation of steam pipelines in energetics depends strongly on mechanical properties of material used for tubing production. Most of pipelines installed in polish energetics is made of Cr-Mo-V type steel. The investigation results of such steel (13MHF) concerning the influence of exploitation time on impact and cracking resistance have been presented, discussed and compared with the imported steel P91. 3 refs, 7 figs, 3 tabs.

  14. 3D thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2017-10-01

    In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.

  15. Software engineering techniques and CASE tools in RD13

    Science.gov (United States)

    Buono, S.; Gaponenko, I.; Jones, R.; Khodabandeh, A.; Mapelli, L.; Mornacchi, G.; Prigent, D.; Sanchez-Corral, E.; Skiadelli, M.; Toppers, A.; Duval, P. Y.; Ferrato, D.; Le Van Suu, A.; Qian, Z.; Rondot, C.; Ambrosini, G.; Fumagalli, G.; Polesello, G.; Aguer, M.; Huet, M.

    1994-12-01

    The RD13 project was approved in April 1991 for the development of a scalable data-taking system suitable for hosting various LHC studies. One of its goals is the exploitation of software engineering techniques, in order to indicate their overall suitability for data acquisition (DAQ), software design and implementation. This paper describes how such techniques have been applied to the development of components of the RD13 DAQ used in test-beam runs at CERN. We describe our experience with the Artifex CASE tool and its associated methodology. The issues raised when code generated by a CASE tool has to be integrated into an existing environment are also discussed.

  16. Simultaneous visualization of pH and Cl"− distributions inside the crevice of stainless steel

    International Nuclear Information System (INIS)

    Nishimoto, Masashi; Ogawa, Junichiro; Muto, Izumi; Sugawara, Yu; Hara, Nobuyoshi

    2016-01-01

    Highlights: • A pH and Cl"− sensing plate was fabricated. • The pH and Cl"− distributions inside the crevice of stainless steel was visualized. • The initial morphology of crevice corrosion of stainless steel was pitting. • Gradual acidification and Cl"− accumulation occurred before pit initiation. • The generation of pit caused a sharp decrease in pH and an increase in Cl"− concentration. - Abstract: A sensing plate for the simultaneous measurements of pH and Cl"− concentration was fabricated. Terbium–dipicolinic acid complex (Tb–DPA) and quinine sulphate were used to measure the pH and Cl"− concentration, respectively. In the incubation period of the crevice corrosion, the pH inside the crevice gradually decreased from 3.0 to ca. 2.0, and the Cl"− concentration increases from 0.01 to ca. 0.18 M. The generation of the micro-pit led to a sharp decrease in pH to below 0.5 and an increase in the Cl"− concentration to above 4 M. This situation allowed the crevice corrosion to proceed without spontaneously stopping.

  17. Surface modification of hydroturbine steel using friction stir processing

    Science.gov (United States)

    Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A.

    2013-03-01

    Friction stir processing (FSP) has proved to be a viable tool for enhancing the mechanical properties of materials, however, the major focus has been upon improving the bulk properties of light metals and their alloys. Hydroturbines are susceptible to damage owing to slurry and cavitation erosion. In this study, FSP of a commonly employed hydroturbine steel, 13Cr4Ni was undertaken. Microstructural characterization of the processed steel was conducted using optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) techniques. Mechanical characterization of the steel was undertaken in terms of microhardness and resistance to cavitation erosion (CE). FSP resulted in the refinement of the microstructure with reduction in grain size by a factor of 10. EBSD results confirmed the existence of submicron and ultrafine grained microstructure. The microhardness of the steel was found to enhance by 2.6 times after processing. The processed steel also showed 2.4 times higher resistance against cavitation erosion in comparison to unprocessed steel. The primary erosion mechanism for both the steels was identical in nature, with plastic deformation responsible for the loss of material.

  18. Determining Ms temperature on a AISI D2 cold work tool steel using magnetic Barkhausen noise

    Energy Technology Data Exchange (ETDEWEB)

    Huallpa, Edgar Apaza, E-mail: gared1@gmail.com [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Sánchez, J. Capó, E-mail: jcapo@usp.br [Departamento de Física, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n 90500, Santiago de Cuba (Cuba); Padovese, L.R., E-mail: lrpadove@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil); Goldenstein, Hélio, E-mail: hgoldens@usp.br [Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes 2463, 05508-030 SP (Brazil)

    2013-11-15

    Highlights: ► MBN was used to follow the martensite transformation in a tool steel. ► The results were compared with resistivity experiments. ► The Ms was estimated with Andrews equation coupled to ThermoCalc calculations. The experimental results showed good agreement. -- Abstract: The use of Magnetic Barkhausen Noise (MBN) as a experimental method for measuring the martensite start (Ms) temperature was explored, using as model system a cold-work tool steel (AISI D2) austenitized at a very high temperature (1473 K), so as to transform in sub-zero temperatures. The progress of the transformation was also followed with electrical resistance measurements, optical microscopy and scanning electron microscopy. Both MBN and resistivity measurements showed a change near 230 K during cooling, corresponding to the Ms temperature, as compared with 245 K, estimated with Andrews empirical equation applied to the austenite composition calculated using ThermoCalc.

  19. CRISPR/Cas13 as a Tool for RNA Interference

    KAUST Repository

    Ali, Zahir

    2018-03-28

    Almost all biological processes involve RNA, making it crucial to develop tools for manipulation of the transcriptome. The bacterial CRISPR/Cas13 system was recently rewired to facilitate RNA manipulation in eukaryotes, including plants. We discuss here the opportunities and limitations of using CRISPR/Cas13 in plants for various types of RNA manipulation.

  20. Influence of different temperatures on the thermal fatigue behavior and thermal stability of hot-work tool steel processed by a biomimetic couple laser technique

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan

    2014-04-01

    Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.

  1. Phyllanthus muellerianus and C6H15NO3 synergistic effects on 0.5 M H2SO4-immersed steel-reinforced concrete: Implication for clean corrosion-protection of wind energy structures in industrial environment

    Science.gov (United States)

    Okeniyi, Joshua Olusegun; Omotosho, Olugbenga Adeshola; Popoola, Abimbola Patricia Idowu; Loto, Cleophas Akintoye

    2016-07-01

    This paper investigates Phyllanthus muellerianus leaf-extract and C6H15NO3 (triethanolamine: TEA) synergistic effects on reinforcing-steel corrosion-inhibition and the compressive-strength of steel-reinforced concrete immersed in 0.5 M H2SO4. This is to assess suitability of the synergistic admixture usage for wind-energy steel-reinforced concrete structures designed for industrial environments. Steel-reinforced concrete specimens were admixed with individual and synergistic designs of Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures and immersed in the 0.5 M H2SO4. Electrochemical monitoring of corrosion potential, as per ASTM C876-91 R99, and corrosion current were obtained and statistically analysed, as per ASTM G16-95 R04, for modelling noise resistance. Post-immersion compressive-strength testing then followed, as per ASTM C39/C39M-03, for detailing the admixture effect on load-bearing strength of the steel-reinforced concrete specimens. Results showed that while individual Phyllanthus muellerianus leaf-extract concentrations exhibited better inhibition-efficiency performance than C6H15NO3, synergistic additions of C6H15NO3 to Phyllanthus muellerianus leaf-extract improved steel-rebar corrosion-inhibition. Thus, 6 g Phyllanthus muellerianus + 2 g C6H15NO3 synergistically improved inhibition-efficiency to η = 84.17%, from η = 55.28% by the optimal chemical or from η = 74.72% by the optimal plant-extract admixtures. The study also established that improved compressive strength of steel-reinforced concrete with acceptable inhibition of the steel-rebar corrosion could be attained through optimal combination of the Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures.

  2. Quantified pH imaging with hyperpolarized (13) C-bicarbonate.

    Science.gov (United States)

    Scholz, David Johannes; Janich, Martin A; Köllisch, Ulrich; Schulte, Rolf F; Ardenkjaer-Larsen, Jan H; Frank, Annette; Haase, Axel; Schwaiger, Markus; Menzel, Marion I

    2015-06-01

    Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method-based errors, and applied in vivo. In vitro and in vivo (13) C mapping were performed for various flip angles for bicarbonate (BiC) and CO2 with spectral-spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction. After optimizing the signal to noise ratio of the hyperpolarized (13) C-bicarbonate, error estimation of the spectral-spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (< 0.2). Quantification of pH maps shows negligible impact of the residual bicarbonate signal. pH maps reflect the induction of acute metabolic alkalosis. Inflamed, infected regions exhibit lower pH. Hyperpolarized (13) C-bicarbonate pH mapping was shown to be sensitive in the biologically relevant pH range. The mapping of pH was applied to healthy in vivo organs and interpreted within inflammation and acute metabolic alkalosis models. © 2014 Wiley Periodicals, Inc.

  3. Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman

    International Nuclear Information System (INIS)

    Serra, E.

    1997-01-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of deuterium in the low activation martensitic steels F82H and Batman. The measurements cover the temperature range from 373 to 743 K which includes the onset of deuterium trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for deuterium in F82H and Batman steels are determined. (orig.)

  4. Influence of traps on the deuterium behaviour in the low activation martensitic steels F82H and Batman

    Science.gov (United States)

    Serra, E.; Perujo, A.; Benamati, G.

    1997-06-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of deuterium in the low activation martensitic steels F82H and Batman. The measurements cover the temperature range from 373 to 743 K which includes the onset of deuterium trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for deuterium in F82H and Batman steels are determined.

  5. The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides

    International Nuclear Information System (INIS)

    Freire, L.; Carmezim, M.J.; Ferreira, M.G.S.; Montemor, M.F.

    2011-01-01

    Highlights: → The passivation and passivation breakdown of AISI 304 in alkaline solutions with different pH was studied. → The electrochemical behaviour and the corrosion resistance in chloride environments were evaluated using d.c. potentiodynamic polarization and electrochemical impedance spectroscopy. → The results were modelled using a hierarchically distributed circuit and revealed a more susceptible surface at pH 9. → The passive film characterization was carried out by SEM and EDS analysis, revealing the existence of MnS inclusions and the increase of Cr/Fe ratio in the attacked areas, preferably the vicinity of those inclusions. - Abstract: Nowadays, stainless steel reinforcements appear as an effective solution to increase the durability of reinforced concrete structures exposed to very aggressive environments. AISI 304 is widely used for this purpose. Although the improved durability of reinforcing AISI 304, when compared to carbon steel, there is a high probability of pitting susceptibility in the presence of chlorides. Thus, the present work aims at studying the passivation and passivation breakdown of AISI 304 in alkaline solutions of different pH (pH from 13 to 9), simulating the interstitial concrete electrolyte. These solutions were contaminated with different concentrations of chloride ions (3% and 10%, as NaCl). The electrochemical behaviour was evaluated by d.c. potentiodynamic polarization and by electrochemical impedance spectroscopy (EIS). The morphological features and the changes observed in the surface composition were evaluated by Scanning Electron Microscopy (SEM) together with EDS chemical analysis. The results evidence that pH plays an important role in the evolution of the film resistance and charge transfer processes. Moreover, the effect is highly dependent upon the chloride content and immersion time.

  6. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Hattel, Jesper Henri

    2015-01-01

    To analyze the heating phase of an induction heated injection molding tool precisely, the temperature-dependent magnetic properties, B–H curves, and the hysteresis loss are necessary for the molding tool materials. Hence, injection molding tool steels, core materials among other materials have...

  7. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  8. Corrosion of carbon steel and low-alloy steel in diluted seawater containing hydrazine under gamma-rays irradiation

    International Nuclear Information System (INIS)

    Nakano, Junichi; Yamamoto, Masahiro; Tsukada, Takashi

    2014-01-01

    Seawater was injected into reactor cores of Units 1, 2, and 3 in the Fukushima Daiichi nuclear power station as an urgent coolant. It is considered that the injected seawater causes corrosion of steels of the reactor pressure vessel and primary containment vessel. To investigate the effects of gamma-rays irradiation on weight loss in carbon steel and low-alloy steel, corrosion tests were performed in diluted seawater at 50°C under gamma-rays irradiation. Specimens were irradiated with dose rates of 4.4 kGy/h and 0.2 kGy/h. To evaluate the effects of hydrazine (N 2 H 4 ) on the reduction of oxygen and hydrogen peroxide, N 2 H 4 was added to the diluted seawater. In the diluted seawater without N 2 H 4 , weight loss in the steels irradiated with 0.2 kGy/h was similar to that in the unirradiated steels, and weight loss in the steels irradiated with 4.4 kGy/h increased to approximate 1.7 times of those in the unirradiated steels. Weight loss in the steels irradiated in the diluted seawater containing N 2 H 4 was similar to that in the diluted seawater without N 2 H 4 . When N 2 was introduced into the gas phase in the flasks during gamma-rays irradiation, weight loss in the steels decreased. (author)

  9. Machining of AISI D2 Tool Steel with Multiple Hole Electrodes by EDM Process

    Science.gov (United States)

    Prasad Prathipati, R.; Devuri, Venkateswarlu; Cheepu, Muralimohan; Gudimetla, Kondaiah; Uzwal Kiran, R.

    2018-03-01

    In recent years, with the increasing of technology the demand for machining processes is increasing for the newly developed materials. The conventional machining processes are not adequate to meet the accuracy of the machining of these materials. The non-conventional machining processes of electrical discharge machining is one of the most efficient machining processes is being widely used to machining of high accuracy products of various industries. The optimum selection of process parameters is very important in machining processes as that of an electrical discharge machining as they determine surface quality and dimensional precision of the obtained parts, even though time consumption rate is higher for machining of large dimension features. In this work, D2 high carbon and chromium tool steel has been machined using electrical discharge machining with the multiple hole electrode technique. The D2 steel has several applications such as forming dies, extrusion dies and thread rolling. But the machining of this tool steel is very hard because of it shard alloyed elements of V, Cr and Mo which enhance its strength and wear properties. However, the machining is possible by using electrical discharge machining process and the present study implemented a new technique to reduce the machining time using a multiple hole copper electrode. In this technique, while machining with multiple holes electrode, fin like projections are obtained, which can be removed easily by chipping. Then the finishing is done by using solid electrode. The machining time is reduced to around 50% while using multiple hole electrode technique for electrical discharge machining.

  10. Effect of 0.2 and 0.5% Ti on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel

    Science.gov (United States)

    Lian, Yong; Huang, Jinfeng; Zhang, Jin; Zhang, Cheng; Gao, Wen; Zhao, Chao

    2015-11-01

    The effect that a 0, 0.2, and 0.5 wt.% titanium content has on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel was investigated using an optical microscope, transmission electron microscope, and X-ray diffraction. The resultant microstructures of the three steels were tempered martensite with a reversed austenite dispersed throughout the matrix. Additionally, the formation of Cr-rich carbides was suppressed by stable Ti(C, N), which improved the strength without severely decreasing in the Ti-microalloyed steel toughness. Nano-precipitation of Ni3Ti was found for the 0.5 wt.% Ti steel during tempering, which significantly increased the strength, but decreased the toughness. The reversed austenite volume fraction also significantly influenced the mechanical properties.

  11. Tool life of the edges coated with the c-BN+h-BN coatings with different structures during hard machinable steel machining

    Directory of Open Access Journals (Sweden)

    Kupczyk, M.

    2005-12-01

    Full Text Available In the presented paper the experimental results concerning the functional quality (durability during steel machining of thin, superhard coatings produced on the cutting edges are described. Differences among mentioned properties of coatings mainly result from a coating structure. But the structure of coatings results from deposition parameters Superhard boron nitride coatings were deposited on insert cutting edges made of cemented carbides by the pulse-plasma method applying different values of the discharge voltage. The comparative investigations of mentioned coatings have been concerned of tool life of edges during hard machinable material machining (nitriding steel hardened in oil. In these investigations for the purpose of additional increase of coatings adhesion to substrates an interfacial layers were applied.

    En este trabajo se describen los resultados experimentales referentes a la calidad funcional (durabilidad durante el mecanizado del acero de recubrimientos delgados, de elevada dureza del filo de corte. Las diferencias en las propiedades de los recubrimientos se deben, principalmente, a la estructura del recubrimiento. No obstante, la estructura del recubrimiento está relacionada con los parámetros de la deposición. Recubrimientos de nitruro de boro de elevada dureza se depositaron sobre filos de corte insertados, fabricados con carburos cementados mediante el método de pulsos de plasma aplicando diferentes valores de voltaje de descarga. Las investigaciones comparativas de los mencionados recubrimientos han relacionado la vida del filo de la herramienta durante el mecanizado del material (acero nitrurado endurecido en aceite. En estas investigaciones se aplicaron capas interfaciales para aumentar la adherencia del recubrimiento.

  12. Synthesis of electric discharge alloyed nickel–tungsten coating on tool steel and its tribological studies

    International Nuclear Information System (INIS)

    Arun, Ilangovan; Duraiselvam, Muthukannan; Senthilkumar, V.; Narayanasamy, R.; Anandakrishnan, V.

    2014-01-01

    Highlights: • Electrical discharge alloying/coating made on AISI D2 tool steel. • The hardness of EDA layer is three to four time higher than the base material. • The dry sliding wear tests performed on EDA layer at different temperatures. • The alloyed layer acts as a self-lubricant at higher temperature. - Abstract: The present study examines the method of depositing nickel and tungsten on die steel surface by means of dispersing these elements in dielectric fluid in an electrical discharge alloying (EDA) process. The modified surface was mechanically and metallurgically characterized using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX), microhardness tester and Pin-on-disc tribometer. The phase transformations that occurred during EDA process were evaluated by XRD. The deposition of Ni and W on die steel surfaces yielded minimal cracks with excellent metallurgical bonding. Higher hardness (∼1059 HV 0.3 ) with little brittleness resulted in superior wear resistance properties, a property which was retained even at elevated temperature

  13. Wear of Cutting Tool with Excel Geometry in Turning Process of Hardened Steel

    Science.gov (United States)

    Samardžiová, Michaela

    2016-09-01

    This paper deals with hard turning using a cutting tool with Xcel geometry. This is one of the new geometries, and there is not any information about Xcel wear in comparison to the conventional geometry. It is already known from cutting tools producers that using the Xcel geometry leads to higher quality of machined surface, perticularly surface roughness. It is possible to achieve more than 4 times lower Ra and Rz values after turning than after using conventional geometry with radius. The workpiece material was 100Cr6 hardened steel with hardness of 60 ± 1 HRC. The machine used for the experiment was a lathe with counter spindle DMG CTX alpha 500, which is located in the Centre of Excellence of 5-axis Machining at the Faculty of Materials Science and Technology in Trnava. The cutting tools made by CBN were obtained from Sandvik COROMANT Company. The aim of this paper is to investigate the cutting tool wear in hard turning process by the Xcel cutting tool geometry.

  14. Study of corrosion resistance properties of nitrided carbon steel using radiofrequency N{sub 2}/H{sub 2} cold plasma process

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, F.Z. [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Jama, C., E-mail: charafeddine.jama@ensc-lille.f [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, M. [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)

    2010-10-15

    C38 carbon steel have been plasma-nitrided using a radiofrequency cold plasma discharge treatment in order to investigate the influence of gas composition on corrosion behaviour of nitrided substrates. The investigated C38 steel was nitrided by a RF plasma discharge treatment using two different gas mixtures (75% N{sub 2}/25% H{sub 2} and 25% N{sub 2}/75% H{sub 2}) at different times of plasma-treatment on non-heated substrates. Electron Probe Microanalysis (EPMA) showed that the nitrided layer formed using 75% N{sub 2}/25% H{sub 2} gas mixture was thicker compared to those formed in the case of 25% N{sub 2}/75% H{sub 2} or pure N{sub 2}. The modifications of the corrosion resistance characteristics of plasma-nitrided C38 steel in 1 M HCl solution were investigated by weight loss measurements and ac impedance technique. The results obtained from these two evaluation methods were in good agreement. It was shown that the nitriding treatment in both cases (75% N{sub 2}/25% H{sub 2} and 25% N{sub 2}/75% H{sub 2}) improves the corrosion resistance of investigated carbon steel, while the better performance is obtained for the 75% N{sub 2}/25% H{sub 2} gas mixture. X-ray photoelectron spectroscopy (XPS) was carried out before and after immersion in corrosive medium in order to establish the mechanism of corrosion inhibition using N{sub 2}/H{sub 2} cold plasma nitriding process.

  15. Investigations of Surface Topography of Hot Working Tool Steel Manufactured with the Use of 3D Print

    Directory of Open Access Journals (Sweden)

    Grobelny Pawel

    2017-01-01

    Full Text Available The paper presents the possibilities of 3D printing of chosen hot working tool steel for manufacturing ready made parts. Results of examination of the surface topography of material manufactured by the technology Laser CUSING®B (Laser melting with metals on the machine, Concept Laser M1 3D printing of metal parts has the potential to revolutionize the market of manufacturing and supplying parts. It makes it possible to dissipate manufacturing and to produce parts on request at lower cost and less energy consumption. The parameters of the surface topography of the hot working tool steel directly after printing can differ depending on the distance from the base plate. The differences of surface roughness values can amount from 32% to 85% for Ra and from 59% to 85% for Rz in comparison of the sample bottom to its top.

  16. pH effect on pit potential and protection potential of stainless steels AISI-304, 310 and 316 in NaCl solution

    International Nuclear Information System (INIS)

    Cabral, U.Q.; Sathler, L.; Mariano Neto, F.

    1973-06-01

    For three austenitic stainless steels, AISI 304, 310 and 316, the pH influence on the rupture, protection and corrosion potentials was studied in a 0,5N NACl solution. The pit potentials determined by the chronogalvonometric method, are pH independent within the acid range. They showed a rough linear variation within the basic range having a maximum corresponding to the pH value of 8.8. The electrochemical hysteresis method, employed for determining the protection potential, presented a total pH independence for the AISI 316. The other steels showed a small dependence within the basic range but with a tendency for the protection potential to become slightly more active with increasing pH, within the acid range. It was also noted for the three steels studied that the corrosion potental became more active with increasing pH, within the basic range [pt

  17. A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium

    Science.gov (United States)

    Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng

    2018-04-01

    NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness (R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.

  18. A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium

    Science.gov (United States)

    Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng

    2018-05-01

    NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness ( R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.

  19. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    Science.gov (United States)

    Bellanger, G.; Rameau, J. J.

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive -transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique.

  20. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Bellanger, G. [CEA Centre d`Etudes de Valduc, 21 - Is-sur-Tille (France); Rameau, J.J. [Ecole Nationale Superieure d`Electrochimie et d`Electrometallurgie, 38 - Saint-Martin-d`Heres (France)

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive-transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique. (orig.).

  1. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    International Nuclear Information System (INIS)

    Bellanger, G.; Rameau, J.J.

    1996-01-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive-transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique. (orig.)

  2. Cutting Temperature Investigation of AISI H13 in High Speed End Milling

    Directory of Open Access Journals (Sweden)

    Muhammad Riza

    2016-10-01

    Full Text Available Heat produced at the tool-chip interface during high speed milling operations have been known as a significant factor that affect to tool life and workpiece geometry or properties. This paper aims to investigate cutting temperature behaviours of AISI H13 (48 HRC under high speed machining circumstances during pocketing. The experiments were conducted on CNC vertical machining centre by using PVD coated carbide insert. Milling processes were done at cutting speeds 150, 200 and 250 m/min and feed rate were 0.05, 0.1 and 0.15 mm/tooth. Depths of cut applied were 0.1, 0.15 and 0.2 mm. Tool path method applied in this experiment was contour in. Results presented in this paper indicate that by increasing cutting speed the cutting temperature is lower than low cutting speed. However, by decreasing feed rate leads to cutting temperature low. Cutting temperature phenomena at the corner of pocket milling were also investigated. The phenomena showed that cutting temperature tends to decrease a moment when cutter comes to the corner of pocket and turning point of tool path and increase extremely a moment before leaving the corner and turning point.

  3. Reformed austenite transformation during fatigue crack propagation of 13%Cr-4%Ni stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, Denis, E-mail: thibault.denis@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Bocher, Philippe, E-mail: philippe.bocher@etsmtl.ca [Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, Quebec, H3C 1K3 (Canada); Thomas, Marc, E-mail: marc.thomas@etsmtl.ca [Ecole de technologie superieure, 1100, rue Notre-Dame Ouest, Montreal, Quebec, H3C 1K3 (Canada); Lanteigne, Jacques, E-mail: lanteigne.jacques@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Hovington, Pierre, E-mail: hovington.pierre@ireq.ca [Institut de recherche d' Hydro-Quebec (IREQ), 1800, boul. Lionel-Boulet, Varennes, Quebec, J3X 1S1 (Canada); Robichaud, Patrice, E-mail: patrice.robichaud@riotinto.com [Centre de recherche et de developpement Arvida (CRDA), 1955, boul. Mellon, Jonquiere, Quebec, G7S 4K8 (Canada)

    2011-08-15

    Highlights: {yields} Reformed austenite in 13%Cr-4%Ni stainless steel transforms during fatigue crack growth. {yields} Low cycle fatigue tests showed that this transformation to martensite is gradual. {yields} XRD spectrums obtained on the fracture surface and have been correlated to LCF results. - Abstract: In the as-quenched state, 13%Cr-4%Ni martensitic stainless steels are essentially 100% martensitic. However, a certain amount of austenite is formed during the tempering of this alloy. This reformed austenite is thermally stable at room temperature but can transform to martensite under stress. This transformation is known to happen during impact testing but it has never been established if it occurs during fatigue crack propagation. This study presents the results of X-ray diffraction measurements of reformed austenite before and after crack growth testing. It has been found that reformed austenite does transform to martensite at the crack tip and that this transformation occurs even at a low stress intensity factor. Low-cycle fatigue tests were conducted to verify austenite transformation under cyclic straining. It was found that reformed austenite transforms only partially during the first strain reversal but that essentially all austenite has disappeared after 100 cycles. The relation between austenite transformation under low-cycle fatigue and its transformation during crack growth is also discussed.

  4. Reformed austenite transformation during fatigue crack propagation of 13%Cr-4%Ni stainless steel

    International Nuclear Information System (INIS)

    Thibault, Denis; Bocher, Philippe; Thomas, Marc; Lanteigne, Jacques; Hovington, Pierre; Robichaud, Patrice

    2011-01-01

    Highlights: → Reformed austenite in 13%Cr-4%Ni stainless steel transforms during fatigue crack growth. → Low cycle fatigue tests showed that this transformation to martensite is gradual. → XRD spectrums obtained on the fracture surface and have been correlated to LCF results. - Abstract: In the as-quenched state, 13%Cr-4%Ni martensitic stainless steels are essentially 100% martensitic. However, a certain amount of austenite is formed during the tempering of this alloy. This reformed austenite is thermally stable at room temperature but can transform to martensite under stress. This transformation is known to happen during impact testing but it has never been established if it occurs during fatigue crack propagation. This study presents the results of X-ray diffraction measurements of reformed austenite before and after crack growth testing. It has been found that reformed austenite does transform to martensite at the crack tip and that this transformation occurs even at a low stress intensity factor. Low-cycle fatigue tests were conducted to verify austenite transformation under cyclic straining. It was found that reformed austenite transforms only partially during the first strain reversal but that essentially all austenite has disappeared after 100 cycles. The relation between austenite transformation under low-cycle fatigue and its transformation during crack growth is also discussed.

  5. Reinforcement steel corrosion in passive state and by carbonation: Consideration of galvanic currents and interface steel - concrete defaults

    International Nuclear Information System (INIS)

    Nasser, A.

    2010-01-01

    This thesis aims to study the durability of nuclear waste deep storage structures. The work carried out is essentially an experimental study, and focuses on the corrosion of steel in the passive state with aerated or non-aerated conditions on the one hand, and the corrosion of steel in carbonated concrete during the propagation phase on the other hand. Indeed, the pore solution of concrete in contact with the metal is alkaline (pH between 12 and 13). Under these conditions, steel reinforced concrete remains passive by forming a stable and protective oxide layer (corrosion of steel in the passive state). This passive layer limits the steel corrosion rate at very low values (negligible on a short life time) but not null. For the nuclear waste storage structures due to a very long life time (up to several hundred years), this low corrosion rate can become a risk. Therefore, it is necessary to study the evolution of the oxide layer growth over time. The objectives of the thesis are to study the influence of the steel-concrete interface quality on reinforcement corrosion in passive and active state, and the possible occurrence of galvanic corrosion currents between different reinforcement steel areas. (author)

  6. Effect of H2O2 on the corrosion behavior of 304L stainless steel

    International Nuclear Information System (INIS)

    Song, Taek Ho

    1994-02-01

    In connection with the safe storage of high level nuclear waste, effect of H 2 O 2 on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H 2 O 2 . The experimental results show that H 2 O 2 increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H 2 O 2 concentration increased, indicating that pitting resistance was decreased by the existence of H 2 O 2 in the electrolyte. These effects of H 2 O 2 on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H 2 O 2 with those of O 2 , cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H 2 O 2 on the corrosion behavior were very similar to those of O 2 such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. Further, H 2 O 2 played much greater role in controlling cathodic reaction rate in neutral water environment. In acid and alkaline media, potential shifts by H 2 O 2 were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively

  7. Microstructure and mechanical properties of annealed SUS 304H austenitic stainless steel with copper

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Indrani [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Amankwah, E. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Department of Materials Science, African University of Science and Technology, Abuja (Nigeria); Kumar, N.S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Fleury, E. [Center for High Temperature Energy Materials, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Oh-ishi, K.; Hono, K. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Ramamurty, U., E-mail: ramu@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2011-05-25

    Research highlights: {yields} SUS 304H austenitic stainless steel containing 3 wt.% Cu was annealed at 700 deg. C for up to 100 h. {yields} Microstructure and mechanical properties of annealed alloys are examined. {yields} Nano-sized Cu-rich precipitation upon annealing. {yields} Strength of the alloy remains invariant with annealing whereas ductility improves. {yields} Fatigue crack growth threshold of 3 wt.% Cu added alloy increases with annealing. - Abstract: An experimental investigation into the effect of Cu on the mechanical properties of 0 and 3 wt.% Cu added SUS 304H austenitic stainless steel upon annealing at 700 deg. C for up to 100 h was conducted. Optical microscopy reveals grain coarsening in both the alloys upon annealing. Observations by transmission electron microscopy revealed the precipitation of nanometer-sized spherical Cu particles distributed within the austenitic grains and the presence of carbides at the dislocations. Both the yield and ultimate tensile strengths of the alloys were found to remain invariant with annealing. Tensile ductility and the threshold stress intensity factor range for fatigue crack growth for 3 wt.% Cu added alloy increase with annealing. These are attributed to the grain coarsening with annealing. In all, the addition of Cu to SUS 304H does not affect the mechanical performance adversely while improving creep resistance.

  8. Wear-Induced Changes in FSW Tool Pin Profile: Effect of Process Parameters

    Science.gov (United States)

    Sahlot, Pankaj; Jha, Kaushal; Dey, G. K.; Arora, Amit

    2018-06-01

    Friction stir welding (FSW) of high melting point metallic (HMPM) materials has limited application due to tool wear and relatively short tool life. Tool wear changes the profile of the tool pin and adversely affects weld properties. A quantitative understanding of tool wear and tool pin profile is crucial to develop the process for joining of HMPM materials. Here we present a quantitative wear study of H13 steel tool pin profile for FSW of CuCrZr alloy. The tool pin profile is analyzed at multiple traverse distances for welding with various tool rotational and traverse speeds. The results indicate that measured wear depth is small near the pin root and significantly increases towards the tip. Near the pin tip, wear depth increases with increase in tool rotational speed. However, change in wear depth near the pin root is minimal. Wear depth also increases with decrease in tool traverse speeds. Tool pin wear from the bottom results in pin length reduction, which is greater for higher tool rotational speeds, and longer traverse distances. The pin profile changes due to wear and result in root defect for long traverse distance. This quantitative understanding of tool wear would be helpful to estimate tool wear, optimize process parameters, and tool pin shape during FSW of HMPM materials.

  9. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    Directory of Open Access Journals (Sweden)

    Aleš Hančič

    2013-05-01

    Full Text Available This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals’ peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.

  10. Thixoforming of Steel: New Tools Conception to Analyse Thermal Exchanges and Strain Rate Effects

    International Nuclear Information System (INIS)

    Cezard, P.; Bigot, R.; Becker, E.; Mathieu, S.; Pierret, J. C.; Rassili, A.

    2007-01-01

    Through different papers, authors shown that the influence of thermal exchanges was a first order parameter on the semi-solid steel behaviour, and certainly for every semi-solid metallic materials. These thermal exchanges hide other parameters effect like, for example, the strain rate influence. This paper tries to determine the influence of these two parameters by using a new extrusion device on a hydraulic press. This new tools conception annihilated the influence of the decrease of the punch speed before stopping and permitted to have a constant speed during the experiment. This work also deals with the homogeneous flow during thixoforming of steel and shows the importance to couple initial temperature of the slug with punch speed. This paper presents different conditions which permitted to have a homogeneous flow by keeping a low load

  11. Scale structure of aluminised F82H-mod. steel after HIP treatment

    International Nuclear Information System (INIS)

    Glasbrenner, H.; Stein-Fechner, K.; Konys, J.

    2000-01-01

    Coatings on low activation steels are required in fusion technology in order to reduce the tritium permeation rate through the steel into the cooling water system by a factor of at least 100. Alumina seems to be a promising coating material. However, an appropriate coating system must also have the potential for self-healing since the ceramic alumina scale tends to fail if mechanical stress is applied. A technology is introduced to form a ductile Al enriched surface scale on F82H-mod steel (Fe-7.7% Cr) and on top of it alumina. This technology consists of two main process steps. Hot dip aluminising has been performed at 700 deg. C for 30 s to the steel in order to introduce Al to the surface near zone by an easy way. The very hard intermetallic scale Fe 2 Al 5 which forms during the immersion process gets completely transformed into FeAl 2 , FeAl and α-Fe(Al) phases during a subsequent HIP process step at high pressure at 1040 deg. C and 30 min. The pressure chosen for the HIP experiment was 3000 bar. Compared to a heat treatment without superimposed high pressure pores formation due to the Kirkendall effect could be suppressed successfully. The influence of the high pressure on the heat treatment (1040 deg. C, 30 min) will be discussed in this paper

  12. A study of enhanced diffusion during high dose high flux pulsed metal ion implantation into steel and aluminium

    International Nuclear Information System (INIS)

    Zhang Tonghe; Ji Chengzhou; Shen Jinghua; Chen Jun

    1992-01-01

    The depth profiles of metal ions implanted into steel and aluminium were measured by Rutherford backscattering (RBS). The ions of Mo, W and Y, produced by a metal vapour vacuum are ion source (MEVVA) were implanted at an energy range from 25 to 50 keV for doses of (2-5)x10 17 cm -2 into H13 steel and aluminium. Beam currents were from 0.5 to 1.0 A. The beam flux is in the range of 25 to 75 μAcm -2 . In order to simulate the profiles, a formula which includes the sputtering yield, diffusion coefficients and reaction rate was obtained. The results demonstrate that the penetration depth and retained dose increase with increasing beam flux for Mo implanted into aluminium. The peak concentration of Mo implanted H13 steel increases with increasing ion flux. In contrast to this for Y implantation into steel, the peak concentration of Y decreases with increasing ion flux. For an ion flux of 25 μAcm -2 for Mo, Y and W implantation into steel, the penetration depth and retained dose are 3-5 times greater than the theoretical values. The diffusion coefficients are about 10 -16 to 10 -15 s -1 . If the ion flux is greater than 47 μAcm -2 , the penetration depth and retained dose are 5 to 10 times greater than the theoretical values for Mo implanted aluminium. The diffusion coefficients increase with increasing ion flux for Mo implanted aluminium. The diffusion coefficients hardly change with increasing ion flux for Y and Mo implanted H13 steel. The retained dose increases 0.43 to 1.16 times for Y implanted steel for an ion flux of 25 μAcm -2 . Finally, the influence of phases precipitates, reaction rate and diffusion on retained dose, diffusion coefficient and penetration depth are discussed. (orig.)

  13. Effect of post-weld heat treatment and neutron irradiation on a dissimilar-metal joint between F82H steel and 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Haiying, E-mail: haigirl1983@gmail.com [SOKENDAI - The Graduated University for Advanced Studies, Toki (Japan); Nagasaka, Takuya [SOKENDAI - The Graduated University for Advanced Studies, Toki (Japan); National Institute for Fusion Science, Toki (Japan); Kometani, Nobuyuki [Nagoya University, Nagoya (Japan); Muroga, Takeo [SOKENDAI - The Graduated University for Advanced Studies, Toki (Japan); National Institute for Fusion Science, Toki (Japan); Guan, Wenhai; Nogami, Shuhei; Yabuuchi, Kiyohiro; Iwata, Takuya; Hasegawa, Akira [Tohoku University, Sendai (Japan); Yamazaki, Masanori [International Research Center for Nuclear Materials Science, Institute for Materials Research, Tohoku University (Japan); Kano, Sho; Satoh, Yuhki; Abe, Hiroaki [Institute for Materials Research, Tohoku University, Sendai (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho (Japan)

    2015-10-15

    Highlights: • Significant hardening after neutron irradiation at 300 °C for 0.1 dpa was found in the fine-grain HAZ of F82H for the dissimilar-metal joint between F82H and 316L. • The possible hardening mechanism was explained from the viewpoint of carbon behavior. • However, the significant hardening did not degrade the impact property significantly. - Abstract: A dissimilar-metal joint between F82H steel and 316L stainless steel was fabricated by using electron beam welding (EBW). By microstructural analysis and hardness test, the heat-affected zone (HAZ) of F82H was classified into interlayer area, fine-grain area, and coarse-carbide area. Post-weld heat treatment (PWHT) was applied to control the hardness of HAZ. After PWHT at 680 °C for 1 h, neutron irradiation at 300 °C with a dose of 0.1 dpa was carried out for the joint in Belgian Reactor II (BR-II). Compared to the base metals (BMs) and weld metal (WM), significant irradiation hardening up to 450HV was found in the fine-grain HAZ of F82H. However, the impact property of F82H-HAZ specimens, which was machined with the root of the V-notch at HAZ of F82H, was not deteriorated obviously in spite of the significant irradiation hardening.

  14. The rapid spectrophotometric determination of vanadium in tool steel with 9(6-methyl-2-pyridyl)azo5

    International Nuclear Information System (INIS)

    Beaupre, P.W.; Holland, W.J.

    1980-01-01

    An extractive-spectrophotometric method for the determination of vanadium in tool steel is described. The only sample pretreatment required is dissolution. An average vanadium of 2.06% was obtained on a standard sample compared to the recommended value of 2.06%. (author)

  15. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    Directory of Open Access Journals (Sweden)

    Jianbo Sun

    2016-03-01

    Full Text Available The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels.

  16. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    Science.gov (United States)

    Sun, Jianbo; Sun, Chong; Lin, Xueqiang; Cheng, Xiangkun; Liu, Huifeng

    2016-01-01

    The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH)3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels. PMID:28773328

  17. Absence of External Electric-Field Effects on Transformations in Steels

    Science.gov (United States)

    1991-10-01

    12 2. Approximate CCT diagram for the high nickel composition used in the present measurements ...................................... 13 3...Main features of CCT diagram for 02 tool steel ........................ 14 4. DTA and THA data for the 3569C isothermal bainite transformation with...on the continuous-cooling-transformation ( CCT ) diagram obtained by examining transfor- mations in a 3.0 weight percent (wt.%) nickel specimen at

  18. Wear of Cutting Tool with Excel Geometry in Turning Process of Hardened Steel

    Directory of Open Access Journals (Sweden)

    Samardžiová Michaela

    2016-09-01

    Full Text Available This paper deals with hard turning using a cutting tool with Xcel geometry. This is one of the new geometries, and there is not any information about Xcel wear in comparison to the conventional geometry. It is already known from cutting tools producers that using the Xcel geometry leads to higher quality of machined surface, perticularly surface roughness. It is possible to achieve more than 4 times lower Ra and Rz values after turning than after using conventional geometry with radius. The workpiece material was 100Cr6 hardened steel with hardness of 60 ± 1 HRC. The machine used for the experiment was a lathe with counter spindle DMG CTX alpha 500, which is located in the Centre of Excellence of 5–axis Machining at the Faculty of Materials Science and Technology in Trnava. The cutting tools made by CBN were obtained from Sandvik COROMANT Company.

  19. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    Energy Technology Data Exchange (ETDEWEB)

    Pragadish, N.; Kumar, M. Pradeep [Anna University, Chennai (China)

    2015-04-15

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T{sub ON}), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  20. Surface characteristics analysis of dry EDMed AISI D2 steel using modified tool design

    International Nuclear Information System (INIS)

    Pragadish, N.; Kumar, M. Pradeep

    2015-01-01

    A modified tool design is proposed which helps in drilling holes without any central core, and also enables the effective removal of the debris particles. Experiments were conducted on AISI D2 Steel using copper electrode as tool in both conventional EDM and dry EDM processes and the performance of both processes is compared. Experiments were designed using Taguchi's L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (T ON ), gas pressure (P) and tool rotational speed (N) were chosen as the various input parameters, and their effect on the material removal rate (MRR), surface roughness (SR), surface morphology, microstructure and elemental composition of the machined surface is analyzed. The experimental results show better surface characteristics in the surface machined under dry EDM process.

  1. Mechanical and fatigue properties of martensitic 20X13 and austenitic 12X18H10T at interaction with lead nad lead-bismuth melts

    International Nuclear Information System (INIS)

    Yas'kiv, O.I.; Fedirko, V.M.

    2013-01-01

    The effect of Pb and Pb-Bi melts on mechanical properties and fatigue of Fe-13Cr and Fe-18Cr-10Ni-Ti steels in temperature interval 250...750 deg C has been investigated. It was shown that metal melts lead to increasing of strength of Fe-13Cr steel on 10...20 % as compared with vacuum and this effect increases with temperature rising. Fe-13Cr steel is prone to liquid metal embrittlement in temperature interval 350...450 deg C, particularly in Pb-Bi melt. Mechanical properties of Fe-18Cr-10Ni-Ti are not affected by metal melts. Both Pb and Pb-Bi assist in reducing of fatigue life of steels and this effect is more significant in Pb-Bi

  2. Performance of Ti-multilayer coated tool during machining of MDN431 alloyed steel

    Science.gov (United States)

    Badiger, Pradeep V.; Desai, Vijay; Ramesh, M. R.

    2018-04-01

    Turbine forgings and other components are required to be high resistance to corrosion and oxidation because which they are highly alloyed with Ni and Cr. Midhani manufactures one of such material MDN431. It's a hard-to-machine steel with high hardness and strength. PVD coated insert provide an answer to problem with its state of art technique on the WC tool. Machinability studies is carried out on MDN431 steel using uncoated and Ti-multilayer coated WC tool insert using Taguchi optimisation technique. During the present investigation, speed (398-625rpm), feed (0.093-0.175mm/rev), and depth of cut (0.2-0.4mm) varied according to Taguchi L9 orthogonal array, subsequently cutting forces and surface roughness (Ra) were measured. Optimizations of the obtained results are done using Taguchi technique for cutting forces and surface roughness. Using Taguchi technique linear fit model regression analysis carried out for the combination of each input variable. Experimented results are compared and found the developed model is adequate which supported by proof trials. Speed, feed and depth of cut are linearly dependent on the cutting force and surface roughness for uncoated insert whereas Speed and depth of cut feed is inversely dependent in coated insert for both cutting force and surface roughness. Machined surface for coated and uncoated inserts during machining of MDN431 is studied using optical profilometer.

  3. Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel

    International Nuclear Information System (INIS)

    Ping, D.H.; Ohnuma, M.; Hirakawa, Y.; Kadoya, Y.; Hono, K.

    2005-01-01

    The microstructure of 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened (PH) stainless steel has been investigated using transmission electron microscopy, three-dimensional atom probe and small-angle X-ray scattering. A high number density (∼10 23-25 m -3 ) of ultra-fine (1-6 nm) β-NiAl precipitates are formed during aging at 450-620 deg. C, which are spherical in shape and dispersed uniformly with perfect coherency with the matrix. As the annealing temperature increases, the size and concentration of the precipitates increase concurrently while the number density decreases. The Mo and Cr segregation to the precipitate-matrix interface has been detected and is suggested to suppress precipitate coarsening. In the sample aged for 500 h at 450 deg. C, the matrix decomposes into Cr-rich (α') and Cr-poor (α) regions. The decrease in the strength at higher temperature (above 550 deg. C) is attributed to the formation of larger carbides and reverted austenite

  4. Evaluation of rolling contact fatigue of induction heated 13Cr-2Ni-2Mo Stainless steel bar with Si3N4-ball

    Science.gov (United States)

    Yadoiwa, Ariyasu; Mizobe, Koshiro; Kida, Katsuyuki

    2018-03-01

    13Cr % martensitic stainless steels were used in various industry, because they have excellent corrosion resistance and high hardness among other stainless steels. They are also expected as a bearing material, however, the research on rolling contact fatigue (RCF) is not enough. In this study, 13Cr-2Ni-2Mo stainless steels were quenched by induction heating and their RCF lives were evaluated. A Si3N4-ball was used in order to apply higher stress (Pmax = 5.6 GPa) than our previous tests (Pmax=5.3 GPa), in a single-ball RCF testing machine. It was found that the basic life (L10) was 2.20×106 cycles and Median life (L50) was 6.04×106 cycles. In addition, Weibull modulus became higher than the previous tests.

  5. Hydrogen Financial Analysis Scenario Tool (H2FAST). Web Tool User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Bush, B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zuboy, J. [Independent Consultant, Golden, CO (United States)

    2015-05-11

    The Hydrogen Financial Analysis Scenario Tool (H2FAST) provides a quick and convenient indepth financial analysis for hydrogen fueling stations. This manual describes how to use the H2FAST web tool, which is one of three H2FAST formats developed by the National Renewable Energy Laboratory (NREL). Although all of the formats are based on the same financial computations and conform to generally accepted accounting principles (FASAB 2014, Investopedia 2014), each format provides a different level of complexity and user interactivity.

  6. Wear mechanism of CBN cutting tool during high-speed machining of mold steel

    International Nuclear Information System (INIS)

    Farhat, Z.N.

    2003-01-01

    Wear behavior of cubic boron nitride (CBN) cutting tool when cutting P20 tool steel was investigated. Oblique cutting tests were performed on a CNC lathe using five speeds, namely, 240, 600 and 1000 m min -1 . The CBN cutting tools were found to be superior to tungsten carbide (WC) tools. Fourfold increase in productivity and significant reduction in chipping and cratering was achieved for CBN as compared to WC. Wear, as the width of the wear land (VB), was monitored at selected time intervals; furthermore, topography of worn surfaces was performed, using a profilometer. Wear characterization of the rake and the flank surfaces as well as of the collected chips was conducted using a scanning electron microscopy (SEM), backscattered electron imaging and energy depressive X-ray (EDX). It was found that deformation in the chips occurs by localized shear deformation and the dominant wear mechanism at all speeds used was identified to be diffusive wear. At a 1000 m min -1 cutting speed, a secondary wear mechanism was identified, which is melt wear, i.e., formation of low melting point Cr and Mn compounds with the tool material and the subsequent ejection from the cutting zone

  7. Hydrothermal Valorization of Steel Slags—Part I: Coupled H{sub 2} Production and CO{sub 2} Mineral Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Crouzet, Camille [University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble (France); LRCS and RS2E, CNRS-UMR7314, University Picardie Jules Verne, Amiens (France); Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille (France); Brunet, Fabrice, E-mail: fabrice.brunet@univ-grenoble-alpes.fr; Montes-Hernandez, German [University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble (France); Recham, Nadir [LRCS and RS2E, CNRS-UMR7314, University Picardie Jules Verne, Amiens (France); Findling, Nathaniel [University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble (France); Ferrasse, Jean-Henry [Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille (France); Goffé, Bruno [Aix-Marseille University, CNRS, IRD, Coll. de France, CEREGE, Aix-en-Provence (France)

    2017-10-30

    A new process route for the valorization of BOF steel slags combining H{sub 2} production and CO{sub 2} mineral sequestration is investigated at 300°C (HT) under hydrothermal conditions. A BOF steel slag stored several weeks outdoor on the production site was used as starting material. To serve as a reference, room temperature (RT) carbonation of the same BOF steel slag has been monitored with in situ Raman spectroscopy and by measuring pH and P{sub CO2} on a time-resolved basis. CO{sub 2} uptake under RT and HT are, respectively, 243 and 327 kg CO{sub 2}/t of fresh steel slag, which add up with the 63 kg of atmospheric CO{sub 2} per ton already uptaken by the starting steel slag on the storage site. The CO{sub 2} gained by the sample at HT is bounded to the carbonation of brownmillerite. H{sub 2} yield decreased by about 30% in comparison to the same experiment performed without added CO{sub 2}, due to sequestration of ferrous iron in a Mg-rich siderite phase. Ferric iron, initially present in brownmillerite, is partitioned between an Fe-rich clay mineral of saponite type and metastable hematite. Saponite is likely stabilized by the presence of Al, whereas hematite may represent a metastable product of brownmillerite carbonation. Mg-rich wüstite is involved in at least two competing reactions, i.e., oxidation into magnetite and carbonation into siderite. Results of both water-slag and water-CO{sub 2}-slag experiments after 72 h are consistent with a kinetics enhancement of the former reaction when a CO{sub 2} partial pressure imposes a pH between 5 and 6. Three possible valorization routes, (1) RT carbonation prior to hydrothermal oxidation, (2) RT carbonation after hydrothermal treatment, and (3) combined HT carbonation and oxidation are discussed in light of the present results and literature data.

  8. Performance evaluation of Titanium nitride coated tool in turning of mild steel

    Science.gov (United States)

    Srinivas, B.; Pramod Kumar, G.; Cheepu, Muralimohan; Jagadeesh, N.; kumar, K. Ravi; Haribabu, S.

    2018-03-01

    The growth in demand for bio-gradable materials is opened as a venue for using vegetable oils, coconut oils etc., as alternate to the conventional coolants for machining operations. At present in manufacturing industries the demand for surface quality is increasing rapidly along with dimensional accuracy and geometric tolerances. The present study is influence of cutting parameters on the surface roughness during the turning of mild steel with TiN coated carbide tool using groundnut oil and soluble oil as coolants. The results showed vegetable gave closer surface finish compares with soluble oil. Cutting parameters has been optimized with Taguchi technique. In this paper, the main objective is to optimize the cutting parameters and reduce surface roughness analogous to increase the tool life by apply the coating on the carbide inserts. The cost of the coating is more, but economically efficient than changing the tools frequently. The plots were generated and analysed to find the relationship between them which are confirmed by performing a comparison study between the predicted results and theoretical results.

  9. Effect of Substrate Bias on Friction Coefficient, Adhesion Strength and Hardness of TiN-COATED Tool Steel

    Science.gov (United States)

    Hamzah, Esah; Ali, Mubarak; Toff, Mohd Radzi Hj. Mohd

    In the present study, TiN coatings have been deposited on D2 tool steel substrates by using cathodic arc physical vapor deposition technique. The objective of this research work is to determine the usefulness of TiN coatings in order to improve the micro-Vickers hardness and friction coefficient of TiN coating deposited on D2 tool steel, which is widely used in tooling applications. A Pin-on-Disc test was carried out to study the coefficient of friction versus sliding distance of TiN coating deposited at various substrate biases. The standard deviation parameter during tribo-test result showed that the coating deposited at substrate bias of -75 V was the most stable coating. A significant increase in micro-Vickers hardness was recorded, when substrate bias was reduced from -150 V to zero. Scratch tester was used to compare the critical loads for coatings deposited at different bias voltages and the adhesion achievable was demonstrated with relevance to the various modes, scratch macroscopic analysis, critical load, acoustic emission and penetration depth. A considerable improvement in TiN coatings was observed as a function of various substrate bias voltages.

  10. Heat Treatment and Properties of Iron and Steel

    National Research Council Canada - National Science Library

    Digges, Thomas

    1966-01-01

    .... Chemical compositions, heat treatments, and some properties and uses are presented for structural steels, tool steels, stainless and heat-resisting steels, precipitation-hardenable stainless steels...

  11. Improvement of impact toughness by modified hot working and heat treatment in 13%Cr martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Srivatsa, Kulkarni, E-mail: srivatsa.kulkarni@kcssl.com; Srinivas, Perla; Balachandran, G.; Balasubramanian, V.

    2016-11-20

    Improvement of the general mechanical properties and in particular sub-zero impact toughness in a 0.2%C-13%Cr martensitic stainless steel has been explored by varying the hot deformation and heat treatment conditions. The deformation conditions include hot rolling an ingot in one case and cogging the ingot to a semis followed by hot rolling in another case. The bars made from both routes were subjected to a single hardening heat treatment at 980 °C and 1040 °C oil quenched and a double hardening heat treatment at 1040 °C followed by 980 °C oil quenched. The hardened steels were subjected to a standard two stage tempering at 710 °C followed by 680 °C. The impact toughness was found to be doubled in the cogged and rolled steel in double hardened condition. Other processing conditions show varying impact toughness levels. The toughness observed was correlated to the grain size and the carbide distribution in the matrix and the fractography features.

  12. CRISPR/Cas13 as a Tool for RNA Interference

    KAUST Repository

    Ali, Zahir; Mahas, Ahmed; Mahfouz, Magdy M.

    2018-01-01

    Almost all biological processes involve RNA, making it crucial to develop tools for manipulation of the transcriptome. The bacterial CRISPR/Cas13 system was recently rewired to facilitate RNA manipulation in eukaryotes, including plants. We discuss

  13. Structural features and properties of the laser-deposited nickel alloy layer on a KhV4F tool steel after heat treatment

    Science.gov (United States)

    Shcherbakov, V. S.; Dikova, Ts. D.; Stavrev, D. S.

    2017-07-01

    The study and application of the materials that are stable in the temperature range up to 1000°C are necessary to repair forming dies operating in this range. Nickel-based alloys can be used for this purpose. The structural state of a nickel alloy layer deposited onto a KhV4F tool steel and then heat treated is investigated. KhV4F tool steel (RF GOST) samples are subjected to laser deposition using a pulsed Nd:YAG laser. A nickel-based material (0.02C-73.8Ni-2.5Nb-19.5Cr-1.9Fe-2.8Mn) is employed for laser deposition. After laser deposition, the samples are subjected to heat treatment at 400°C for 5 h, 600°C for 1 h, 800°C for 1 h, and 1000°C for 1 h. The microstructure, the phase composition, and the microhardness of the deposited layer are studied. The structure of the initial deposited layer has relatively large grains (20-40 μm in size). The morphology is characterized by a cellular-dendritic structure in the transition zone. The following two structural constituents with a characteristic dendritic structure are revealed: a supersaturated nickel-based γ solid solution and a chromium-based bcc α solid solution. In the initial state and after heat treatment, the hardness of the deposited material (210-240 HV 0.1) is lower than the hardness of the base material (400-440 HV 0.1). Only after heat treatment at 600°C for 1 h, the hardness increases to 240-250 HV0.1. Structure heredity in the form of a dendritic morphology is observed at temperatures of 400, 600, and 800°C. The following sharp change in the structural state is detected upon heat treatment at 1000°C for 1 h: the dendritic morphology changes into a typical α + γ crystalline structure. The hardness of the base material decreases significantly to 160-180 HV 0.1. The low hardness of the deposited layer implies the use of the layer material in limited volume to repair the forming surfaces of dies and molds for die casting. However, the high ductility of the deposited layer of the nickel

  14. Spatial Control of Crystal Texture by Laser DMD Process

    Science.gov (United States)

    2009-02-01

    Parallel to rolling direction 1120 827 31 205 24 Matweb In718 filler material 1140 414 Charpy Impact Energy (J) Hardness (HRC) Tensile strength (Mpa...J. Choi, K. Nagarathnam, J. Koch, and D. Hetzner, “The direct metal deposition of H13 tool steel for 3-D components,” JOM, 49(5), 1997, 55-60. 4. M...Transactions A, 36A, 2005, 3397-3406. 6. Y. Hua and J. Choi, “Feedback control effects on dimensions and defects of H13 tool steel by DMD process,” J. of Laser Applications, 17(2), 2005, 117-125. 412

  15. Evaluation of the Effect of Different Plasma-Nitriding Parameters on the Properties of Low-Alloy Steel

    Science.gov (United States)

    Zdravecká, Eva; Slota, Ján; Solfronk, Pavel; Kolnerová, Michaela

    2017-07-01

    This work is concerned with the surface treatment (ion nitriding) of different plasma-nitriding parameters on the characteristics of DIN 1.8519 low-alloy steel. The samples were nitrided from 500 to 570 °C for 5-40 h using a constant 25% N2-75% H2 gaseous mixture. Lower temperature (500-520 °C) favors the formation of compound layers of γ' and ɛ iron nitrides in the surface layers, whereas a monophase γ'-Fe4 N layer can be obtained at a higher temperature. The hardness of this layer can be obtained when nitriding is performed at a higher temperature, and the hardness decreases when the temperature increases to 570 °C. These results indicate that pulsed plasma nitriding is highly efficient at 550 °C and can form thick and hard nitrided layers with satisfactory mechanical properties. The results show the optimized nitriding process at 540 °C for 20 h. This process can be an interesting means of enhancing the surface hardness of tool steels to forge dies compared to stamped steels with zinc coating with a reduced coefficient of friction and improving the anti-sticking properties of the tool surface.

  16. Long-term behaviour of heat-resistant steels and high-temperature materials

    International Nuclear Information System (INIS)

    1987-01-01

    This book contains 10 lectures with the following subjects: On the effect of thermal pretreatment on the structure and creep behaviour of the alloy 800 H (V. Guttmann, J. Timm); Material properties of heat resistant ferritic and austenitic steels after cold forming (W. Bendick, H. Weber); Investigations for judging the working behaviour of components made of alloy 800 and alloy 617 under creep stress (H.J. Penkalla, F. Schubert); Creep behaviour of gas turbine materials in hot gas (K.H. Kloos et al.); Effect of small cold forming on the creep beahviour of gas turbine blades made of Nimonic 90 (K.H. Keienburg et al.); Investigations on creep fatigue alternating load strength of nickel alloys (G. Raule); Change of structure, creep fatigue behaviour and life of X20 Cr Mo V 12 1 (by G. Eggeler et al.); Investigations on thermal fatigue behaviour (K.H. Mayer et al.); Creep behaviour of similar welds of the steels 13 Cr Mo 4 4, 14 MoV 6 3, 10 Cr Mo 910 and GS-17 Cr Mo V 5 11 (K. Niel et al.); Determining the creep crack behaviour of heat resistant steels with samples of different geometry (K. Maile, R. Tscheuschner). (orig.,/MM) [de

  17. Microstructure and Mechanical Properties of Thixowelded AISI D2 Tool Steel

    Directory of Open Access Journals (Sweden)

    M. N. Mohammed

    2018-05-01

    Full Text Available Rigid perpetual joining of materials is one of the main demands in most of the manufacturing and assembling industries. AISI D2 cold work tool steels is commonly known as non-weldable metal that a high quality joint of this kind of material can be hardly achieved and almost impossible by conventional welding. In this study, a novel thixowelding technology was proposed for joining of AISI D2 tool steel. The effect of joining temperature, holding time and post-weld heat treatment on microstructural features and mechanical properties were also investigated. Acceptable joints without defect were achieved through the welding temperature of 1300 °C, while the welding at lower temperature resulted in a series of cracks across the entire joint that led to spontaneous fracture after joining. Tensile test results showed that maximum joint tensile strength of 271 MPa was achieved at 1300 °C and 10 min holding time, which was 35% of that of D2 base metal. Meanwhile, tensile strength of the joined parts after heat treatment showed a significant improvement over the non-heat treated condition with 560 MPa, i.e., about 70% of that of the strength value of the D2 base metal. This improvement in the tensile strength attributed to the dissolution of some amounts of eutectic chromium carbides and changes in the microstructure of the matrix. The joints are fractured at the diffusion zone, and the fracture exhibits a typical brittle characteristic. The present study successfully confirmed that by avoiding dendritic microstructure, as often resulted from the fusion welding, high joining quality components obtained in the semi-solid state. These results can be obtained without complex or additional apparatuses that are used in traditional joining process.

  18. Synergistic effect of wire bending and salivary pH on surface properties and mechanical properties of orthodontic stainless steel archwires.

    Science.gov (United States)

    Hobbelink, Marieke G; He, Yan; Xu, Jia; Xie, Huixu; Stoll, Richard; Ye, Qingsong

    2015-01-01

    The aim of this study was to investigate the corrosive behaviour of stainless steel archwires in a more clinically relevant way by bending and exposing to various pH. One hundred and twenty pieces of rectangular stainless steel wires (0.43 × 0.64 mm) were randomly assigned into four groups. In each group, there were 15 pieces of bent wires and 15 straight ones. Prior to measurements of the wires, as individual experimental groups (group 1, 2, and 3), the wires were exposed to artificial saliva for 4 weeks at pH 5.6, 6.6, and 7.6, respectively. A control group of wires (group 4) remained in air for the same period of time before sent for measurements. Surface roughness (Ra-value) was measured by a profilometer. Young's modulus and maximum force were determined by a four-point flexural test apparatus. Scanning electron microscopy was used to observe the surface morphology of straight wire. Differences between groups were examined using a two-way analysis of variance (ANOVA). Mean surface roughness values, flexural Young's moduli, and maximum force values of bent wires are significantly different from those of the straight wires, which was the main effect of wire bending, ignoring the influence of pH. A significant effect was found between Ra-values regarding the main effect of pH, ignoring the influence of shape. There was a significant interaction effect of bending and pH on flexural Young's moduli of stainless steel archwires, while pH did not show much impact on the maximum force values of those stainless steel wires. Bigger surface irregularities were seen on SEM images of straight wires immersed in artificial saliva at pH 5.6 compared to artificial saliva at other pH values. Surface depth (Rz) was more sensitive than Ra in revealing surface roughness, both measured from 3D reconstructed SEM images. Ra showed a comparable result of surface roughness to Ra-value measured by the profilometer. Bending has a significant influence on surface roughness and mechanical

  19. Effect of Titanium on the Microstructure and Mechanical Properties of High-Carbon Martensitic Stainless Steel 8Cr13MoV

    Directory of Open Access Journals (Sweden)

    Wen-Tao Yu

    2016-08-01

    Full Text Available The effect of titanium on the carbides and mechanical properties of martensitic stainless steel 8Cr13MoV was studied. The results showed that TiCs not only acted as nucleation sites for δ-Fe and eutectic carbides, leading to the refinement of the microstructure, but also inhibited the formation of eutectic carbides M7C3. The addition of titanium in steel also promoted the transformation of M7C3-type to M23C6-type carbides, and consequently more carbides could be dissolved into the matrix during hot processing as demonstrated by the determination of extracted carbides from the steel matrix. Meanwhile, titanium suppressed the precipitation of secondary carbides during annealing. The appropriate amount of titanium addition decreased the size and fraction of primary carbides in the as-cast ingot, and improved the mechanical properties of the annealed steel.

  20. Effect of Deep Cryogenic treatment on AISI A8 Tool steel & Development of Wear Mechanism maps using Fuzzy Clustering

    Science.gov (United States)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    Tool steels are widely classified according to their constituents and type of thermal treatments carried out to obtain its properties. Viking a special purpose tool steel coming under AISI A8 cold working steel classification is widely used for heavy duty blanking and forming operations. The optimum combination of wear resistance and toughness as well as ease of machinability in pre-treated condition makes this material accepted in heavy cutting and non cutting tool manufacture. Air or vacuum hardening is recommended as the normal treatment procedure to obtain the desired mechanical and tribological properties for steels under this category. In this study, we are incorporating a deep cryogenic phase within the conventional treatment cycle both before and after tempering. The thermal treatments at sub zero temperatures up to -195°C using cryogenic chamber with liquid nitrogen as medium was conducted. Micro structural changes in its microstructure and the corresponding improvement in the tribological and physical properties are analyzed. The cryogenic treatment leads to more conversion of retained austenite to martensite and also formation of fine secondary carbides. The microstructure is studied using the micrographs taken using optical microscopy. The wear tests are conducted on DUCOM tribometer for different combinations of speed and load under normal temperature. The wear rates and coefficient of friction obtained from these experiments are used to developed wear mechanism maps with the help of fuzzy c means clustering and probabilistic neural network models. Fuzzy C means clustering is an effective algorithm to group data of similar patterns. The wear mechanisms obtained from the computationally developed maps are then compared with the SEM photographs taken and the improvement in properties due to this additional cryogenic treatment is validated.

  1. 5-[(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H-dione

    Directory of Open Access Journals (Sweden)

    Salman A. Khan

    2010-03-01

    Full Text Available The title compound, 5-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-ylmethylene]-1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H-dione, has been synthesized by condensation of 1,3-diethyl-2-thiobarbituric acid and 3,5-dimethyl-1-phenylpyrazole-4-carbaldehyde in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR and EI-MS spectral analysis.

  2. Improvement of Strength-Toughness-Hardness Balance in Large Cross-Section 718H Pre-Hardened Mold Steel

    Science.gov (United States)

    Liu, Hanghang; Fu, Paixian; Liu, Hongwei; Li, Dianzhong

    2018-01-01

    The strength-toughness combination and hardness uniformity in large cross-section 718H pre-hardened mold steel from a 20 ton ingot were investigated with three different heat treatments for industrial applications. The different microstructures, including tempered martensite, lower bainite, and retained austenite, were obtained at equivalent hardness. The microstructures were characterized by using metallographic observations, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and electron back-scattered diffraction (EBSD). The mechanical properties were compared by tensile, Charpy U-notch impact and hardness uniformity tests at room temperature. The results showed that the test steels after normalizing-quenching-tempering (N-QT) possessed the best strength-toughness combination and hardness uniformity compared with the conventional quenched-tempered (QT) steel. In addition, the test steel after austempering-tempering (A-T) demonstrated the worse hardness uniformity and lower yield strength while possessing relatively higher elongation (17%) compared with the samples after N-QT (14.5%) treatments. The better ductility of A-T steel mainly depended on the amount and morphology of retained austenite and thermal/deformation-induced twined martensite. This work elucidates the mechanisms of microstructure evolution during heat treatments and will highly improve the strength-toughness-hardness trade-off in large cross-section steels. PMID:29642642

  3. Improvement of Strength-Toughness-Hardness Balance in Large Cross-Section 718H Pre-Hardened Mold Steel

    Directory of Open Access Journals (Sweden)

    Hanghang Liu

    2018-04-01

    Full Text Available The strength-toughness combination and hardness uniformity in large cross-section 718H pre-hardened mold steel from a 20 ton ingot were investigated with three different heat treatments for industrial applications. The different microstructures, including tempered martensite, lower bainite, and retained austenite, were obtained at equivalent hardness. The microstructures were characterized by using metallographic observations, scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and electron back-scattered diffraction (EBSD. The mechanical properties were compared by tensile, Charpy U-notch impact and hardness uniformity tests at room temperature. The results showed that the test steels after normalizing-quenching-tempering (N-QT possessed the best strength-toughness combination and hardness uniformity compared with the conventional quenched-tempered (QT steel. In addition, the test steel after austempering-tempering (A-T demonstrated the worse hardness uniformity and lower yield strength while possessing relatively higher elongation (17% compared with the samples after N-QT (14.5% treatments. The better ductility of A-T steel mainly depended on the amount and morphology of retained austenite and thermal/deformation-induced twined martensite. This work elucidates the mechanisms of microstructure evolution during heat treatments and will highly improve the strength-toughness-hardness trade-off in large cross-section steels.

  4. Damping capacity of unstable steels on chromium-nickel-manganese base

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, L.I.; Rudakov, A.A. (Kirovskij Politekhnicheskij Inst. (USSR))

    1982-02-01

    The paper deals with results of a study on the energy scattering in OKh13N3G8, 20Kh13N3G4 and 30Kh13N3G4 unstable steels. It is shown that the development of microplastic strains most easily occurs in low-carbon steel having a two-phase structure in the initial state. The proceeding of microplastic deformations in carbon unstable steels is limited by the interstitial atom effect on the dislocation movement. It is established that in OKh13N3G8 steel the martensite ..cap alpha --> gamma..- transformation begins under the cyclic stress amplitudes below the yield point of this steel. The steels studied possess a high vibrostrength.

  5. Compound effect of CaCO3 and CaSO4·2H2O on the strength of steel slag: cement binding materials

    International Nuclear Information System (INIS)

    Qi, Liqian; Liu, Jiaxiang; Liu, Qian

    2016-01-01

    In this study, we replaced 30% of the cement with steel slag to prepare binding material; additionally, small amounts of CaCO 3 and CaSO 4 ·2H 2 O were added. This was done to study the compound effect of CaCO 3 and CaSO 4 ·2H 2 O on the strength of steel slag-cement binding materials. The hydration degree of the steel slag cementitious material was analyzed by XRD, TG and SEM. The results showed that the optimum proportions of CaCO 3 and CaSO 4 ·2H 2 O were 3% and 2%, respectively. Compared with the steel slag-cement binders without adding CaCO 3 and CaSO 4 ·2H 2 O, the compressive strength increased by 59.9% at 3 days and by 17.8% at 28 days. Acting as the nucleation matrix, CaCO 3 could accelerate the hydration of C 3 S. In addition, CaCO 3 was involved in the hydration reaction, generating a new hydration product, which could stably exist in a slurry. Meanwhile, CaSO 4 ·2H 2 O could increase the number of AFt. The compound effect of CaCO 3 and CaSO 4 ·2H 2 O enhanced the intensity of steel slag-cement binding materials and improved the whole hydration behavior. (author)

  6. Adsorption study of CO and H2O on carbon materials, Ni and stainless steel

    International Nuclear Information System (INIS)

    Kato, S.

    1991-01-01

    Adsorption of CO and water vapor on single crystalline graphite, diamond and an amorphous carbon film at room temperature was investigated by low energy ion scattering (ISS) and compared with stainless steel and nickel surfaces. Even for a CO exposure up to 10 4 L, the C intensity stayed constant and no O peak appeared in the ISS spectra from graphite while Ni and O intensities from Ni surface changed strikingly. Intensities of FE and O signals from stainless steel seriously decrease and increase with increasing exposure of H 2 O, respectively, but did not reach saturation even at an exposure of 10 3 L. On the other hand, C and O intensities from carbon surfaces changed moderately to reach saturation at an exposure of some 100 L. These results indicate that CO and H 2 O do not adsorb significantly on carbon surfaces in contrast to nickel and stainless steel surfaces. As a by-product survival probabilities of scattered He + ions from graphite for the primary energy of 0.6-2 keV were measured to be in a range of 10 -4 to 10 -2 and the survival parameter was deduced to be 5.0 x 10 7 cm s -1 . (author)

  7. Multi-Parameter Analysis of Surface Finish in Electro-Discharge Machining of Tool Steels

    Directory of Open Access Journals (Sweden)

    Cornelia Victoria Anghel

    2006-10-01

    Full Text Available The paper presents a multi- parameter analysis of surface finish imparted to tool-steel plates by electro-discharge machining (EDM is presented. The interrelationship between surface texture parameters and process parameters is emphasized. An increased number of parameters is studied including amplitude, spacing, hybrid and fractal parameters,, as well. The correlation of these parameters with the machining conditions is investigated. Observed characteristics become more pronounced, when intensifying machining conditions. Close correlation exists between certain surface finish parameters and EDM input variables and single and multiple statistical regression models are developed.

  8. Stahlschüssel key to steel

    CERN Document Server

    Wegst, W S

    2016-01-01

    The Key to Steel (Stahlschlüssel/Stahlschluessel) cross reference book will help you to decode / decipher steel designations and find equivalent materials worldwide. The 2016 edition includes more than 70,000 standard designations and trade names from approximately 300 steelmakers and suppliers. Presentation is trilingual: English, French, and German. Materials covered include structural steels, tool steels, valve steels, high temperature steels and alloys, stainless and heat-resisting steels, and more. Standards and designations from 25 countries are cross-referenced.

  9. Corrosion inhibition of carbon steel XC70 in H 2 SO 4 solution by ...

    African Journals Online (AJOL)

    In this work, we studied the efficiency of corrosion inhibition of carbon steel XC70 in H2SO4 0.5 M aqueous solution using ferrocenyl derivatives synthesized in our laboratory, this compound is: 3-(ferrocenylmethylamine)benzonitrile. The inhibitory potential of this compound was determined by electrochemical techniques ...

  10. Inhibitor for the Corrosion of Mild Steel in H 2 SO 4 | Patel | South ...

    African Journals Online (AJOL)

    An extract of Terminalia chebula fruits was investigated as a corrosion inhibitor of mild steel in 0.5 M H2SO4 by means of conventional mass loss, electrochemical polarization, electrochemical impedance spectroscopy and scanning electron microscopy. The mass loss results showed that the extract of Terminalia chebula is ...

  11. Inhibition by Ginkgo leaves extract of the corrosion of steel in HCl and H{sub 2}SO{sub 4} solutions

    Energy Technology Data Exchange (ETDEWEB)

    Deng Shuduan, E-mail: dengshuduan@163.com [Faculty of Materials Engineering, Southwest Forestry University, Kunming 650224 (China); Li Xianghong [Faculty of Science, Southwest Forestry University, Kunming 650224 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Ginkgo leaves extract (GLE) acts as a good inhibitor for steel in HCl and H{sub 2}SO{sub 4} media. Black-Right-Pointing-Pointer The inhibition efficiency follows the order: HCl > H{sub 2}SO{sub 4}. Black-Right-Pointing-Pointer The adsorption of GLE on steel surface obeys Langmuir adsorption isotherm. Black-Right-Pointing-Pointer GLE behaves as a mixed-type inhibitor in 1.0 M HCl, while cathodic inhibitor in 0.5 M H{sub 2}SO{sub 4}. - Abstract: The inhibition effect of Ginkgo leaves extract (GLE) on the corrosion of cold rolled steel (CRS) in 1.0-5.0 M HCl and 0.5-2.5 M H{sub 2}SO{sub 4} solutions was investigated for the first time by weight loss, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) methods. The results show that GLE is a good inhibitor, and exhibits more efficient in 1.0 M HCl than 0.5 M H{sub 2}SO{sub 4}. The adsorption of GLE on CRS surface obeys Langmuir adsorption isotherm. GLE acts as a mixed-type inhibitor in 1.0 M HCl, while a cathodic inhibitor in 0.5 M H{sub 2}SO{sub 4}.

  12. Mechanistic model of stress corrosion cracking (scc) of carbon steel in acidic solution with the presence of H2s

    International Nuclear Information System (INIS)

    Asmara, Y P; Juliawati, A; Sulaiman, A; Jamiluddin

    2013-01-01

    In oil and gas industrial environments, H 2 S gas is one of the corrosive species which should be a main concern in designing infrastructure made of carbon steel. Combination between the corrosive environment and stress condition will cause degradation of carbon steel increase unpredictably due to their simultaneous effects. This paper will design a model that involves electrochemical and mechanical theories to study crack growth rate under presence of H 2 S gas. Combination crack and corrosion propagation of carbon steel, with different hydrogen concentration has been investigated. The results indicated that high concentration of hydrogen ions showed a higher crack propagation rate. The comparison between corrosion prediction models and corrosion model developed by researchers used to verify the model accuracy showed a good agreement

  13. Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient

    Science.gov (United States)

    Gómez Briceño, D.; Martín Muñoz, F. J.; Soler Crespo, L.; Esteban, F.; Torres, C.

    2001-07-01

    Austenitic steels can be used in a hybrid system in contact with liquid lead-bismuth eutectic if the region of operating temperatures is not beyond 400°C. For higher temperatures, martensitic steels are recommended. However, at long times, the interaction between the structural material and the eutectic leads to the dissolution of some elements of the steel (Ni, Cr and Fe, mainly) in the liquid metal. In a non-isothermal lead-bismuth loop, the material dissolution takes place at the hot leg of the circuit and, due to the mass transfer, deposition occurs at the cold leg. One of the possible ways to improve the performance of structural materials in lead-bismuth is the creation of an oxide layer. Tests have been performed in a small natural convection loop built of austenitic steel (316L) that has been operating for 3000 h. This loop contains a test area in which several samples of F82Hmod. martensitic steel have been tested at different times. A gas with an oxygen content of 10 ppm was bubbled in the hot area of the circuit during the operation time. The obtained results show that an oxide layer is formed on the samples introduced in the loop at the beginning of the operation and this layer increases with time. However, the samples introduced at different times during the loop operation, are not protected by oxide layers and present material dissolution in some cases.

  14. Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Martin Munoz, F.J.; Soler Crespo, L.; Esteban, F.; Torres, C.

    2001-01-01

    Austenitic steels can be used in a hybrid system in contact with liquid lead-bismuth eutectic if the region of operating temperatures is not beyond 400 deg. C. For higher temperatures, martensitic steels are recommended. However, at long times, the interaction between the structural material and the eutectic leads to the dissolution of some elements of the steel (Ni, Cr and Fe, mainly) in the liquid metal. In a non-isothermal lead-bismuth loop, the material dissolution takes place at the hot leg of the circuit and, due to the mass transfer, deposition occurs at the cold leg. One of the possible ways to improve the performance of structural materials in lead-bismuth is the creation of an oxide layer. Tests have been performed in a small natural convection loop built of austenitic steel (316L) that has been operating for 3000 h. This loop contains a test area in which several samples of F82Hmod. martensitic steel have been tested at different times. A gas with an oxygen content of 10 ppm was bubbled in the hot area of the circuit during the operation time. The obtained results show that an oxide layer is formed on the samples introduced in the loop at the beginning of the operation and this layer increases with time. However, the samples introduced at different times during the loop operation, are not protected by oxide layers and present material dissolution in some cases

  15. İKİ FARKLI SIVI ORTAMDA NİTRÜRLENMİŞ H13 ÇELİĞİNİN AŞINMA DAVRANIŞI

    Directory of Open Access Journals (Sweden)

    HATEM AKBULUT

    2005-01-01

    Full Text Available Bu çalışmada, H13 sıcak iş takım çeliği ve bu çelikierin yüzey lerinin sertleştirilmesi amacıyla kullanılan prosesler hakkında bilgi verilmiş; ekonomik, yararlı ve basit bir termokimyasal yöntenı olan sıvı tuz ortamında nitrürleme prosesi üzerinde durulmuştur. Sanayide kullanılan sıvı nitrürleme proseslerinden Su rsuJf Prosesi ve Tufftride Prosesi ile 570 oc ve 550 °C'de 2 ve 2,5 saat nitrürlenen H13 (DlN 1.2344 çelik numuneler üzerinde metalografik incelemeler., sertlik testleri, aşınma testleri ve XRD faz analizleri yapılm•ş ve hangi prosesin ne şekilde uygulandığında çelik yüzeyinin maksimum aşınma direnci gösterdiği belirlenmeye çalışılmıştır. Sonuç olarak Tufftride Prosesi ile 570 °C'de 2,5 saat b o y unca nitrürlenen numuneden maksimum yüzey sertliği (1086 HVN ve maksimum beyaz tabaka (15 JJ.m ve difüzyon tabakası (195 JJ.. m kalınlıkları elde edilmiştir. Anahtar Kelime/er- Sursulf, Tufftride, nitrürleme. Abstract - In this study, s ome info rmation is given about Hl3 hot working tool steel and processes used for surface hardening of these steels; salt batb nitriding process which is an econo mical and effective thermochemical nitriding process is studied. H13 (DI N 1.2344 saınples are nitrided for 2 and 2,5 hours at 550 oc and 570 oc by Tufftride and Sursulf Process which are salt bath nitriding proc esses and used in indu � try. Hardness tests, XRD phase analyses, wearıng tests and metallographic examination are applied on nitrided samples. As a result, maximum surface hardness (1086 HVN and maximum white layer thickness (15 J.Lm and diffusion zone thickness (195 ıım are obtained from the sample whicb is nitrided by Tufftride for 2,5 hours at 570 oc. Keywords - Sursulf, Tufftride, nitriding. H. AKBULUT, E. BENGÜ, Sakarya Üniv. Fen Bil. Enst. Met. ve Malz. Müh. Bölümü, SAKARYA I. GİRİŞ Günümüzde demir esaslı malzemelerin yüzeylere: korozyon, darbe, a

  16. Development of Next Generation Heating System for Scale Free Steel Reheating

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  17. Damping capacity of unstable steels on chromium-nickel-manganese base

    International Nuclear Information System (INIS)

    Kochkin, L.I.; Rudakov, A.A.

    1982-01-01

    The paper deals with results of a study on the energy scattering in OKh13N3G8, 20Kh13N3G4 and 30Kh13N3G4 unstable steels. It is shown that the development of microplastic strains most easily occurs in low-carbon steel having a two-phase structure in the initial state. The proceeding of microplastic deformations in carbon unstable steels is limited by the interstitial atom effect on the dislocation movement. It is established that in OKh13N3G8 steel the martensite α→γ- transformation begins under the cyclic stress amplitudes below the yield point of this steel. The steels studied possess a high vibrostrength [ru

  18. Part Repairing Using A Hybrid Manufacturing System (Preprint)

    Science.gov (United States)

    2007-03-01

    laser. The laser processing parameters for cladding steel H13 powder were 600W with a stand-off distance from the nozzle to the top of the clad of 0.5...the laser cladding tool steel specimen is compared to the tool steel weld specimen of the exact same dimensions. The results show that the bond...in ship steel are caused by fatigue. If the width and length of the damage are large compared with the depth, then the damage is defined as a worn

  19. Effect of Titanium on the Microstructure and Mechanical Properties of High-Carbon Martensitic Stainless Steel 8Cr13MoV

    OpenAIRE

    Wen-Tao Yu; Jing Li; Cheng-Bin Shi; Qin-Tian Zhu

    2016-01-01

    The effect of titanium on the carbides and mechanical properties of martensitic stainless steel 8Cr13MoV was studied. The results showed that TiCs not only acted as nucleation sites for δ-Fe and eutectic carbides, leading to the refinement of the microstructure, but also inhibited the formation of eutectic carbides M7C3. The addition of titanium in steel also promoted the transformation of M7C3-type to M23C6-type carbides, and consequently more carbides could be dissolved into the matrix duri...

  20. Finite Element Modelling of the effect of tool rake angle on tool temperature and cutting force during high speed machining of AISI 4340 steel

    International Nuclear Information System (INIS)

    Sulaiman, S; Roshan, A; Ariffin, M K A

    2013-01-01

    In this paper, a Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material model was used to simulate cutting force and tool temperature during high speed machining (HSM) of AISI 4340 steel. In this simulation work, a tool rake angle ranging from 0° to 20° and a range of cutting speeds between 300 to 550 m/min was investigated. The purpose of this simulation analysis was to find optimum tool rake angle where cutting force is smallest as well as tool temperature is lowest during high speed machining. It was found that cutting forces to have a decreasing trend as rake angle increased to positive direction. The optimum rake angle observed between 10° and 18° due to decrease of cutting force as 20% for all simulated cutting speeds. In addition, increasing cutting tool rake angle over its optimum value had negative influence on tool's performance and led to an increase in cutting temperature. The results give a better understanding and recognition of the cutting tool design for high speed machining processes

  1. Microstructure in HIP-bonded F82H steel and its mechanical properties after irradiation

    International Nuclear Information System (INIS)

    Furuya, K.; Wakai, E.

    2006-01-01

    A first primary blanket structure is composed of the low-activation steel, e.g. F82H, and is fabricated by using a solid hot isostatic pressing (HIP) bonding method. A partial mock-up of such a blanket structure was successfully fabricated. The tensile specimen including HIP-bonded region possessed a sufficient strength and elongation under a non-irradiated condition as reported in our previous studies. In this study, the microstructures of HIP interface before irradiation were observed by a TEM, and the effects of irradiation on mechanical properties of the HIP-bonded region were also examined. TEM observation and elemental analysis of the HIP-bonded region before the irradiation were performed by using a FE-TEM of HF-2000 equipped with EDX spectroscopy. Tensile specimens (type SS-3) were prepared from a HIP-bonded region and a plate region of the mock-up block. Neutron irradiation was performed up to about 1.9 dpa at about 523 K in JMTR. After the irradiation, tensile test was performed at temperatures of 295 and 523 K. After the tensile test, OM observation at the rupture region and SEM observation at the fracture surface were conducted, respectively. TEM observation and analytical results revealed that the HIP interface possessed many precipitates, and enriched peak spectrum of chromium was detected from the precipitates. In addition, aspect of the spectrum was qualitatively equivalent to that of M23C6 in grain boundaries of F82H steel. In result, the HIP boundary has many M23C6 which were generally seen in grain boundaries of F82H steel, and it can be mentioned that the HIP interface is, in this sense, a new grain boundary. Obvious HIP boundary was seen at rupture region of tensile specimens sampled from the HIP-bonded region, by the macroscopic observation. It means that rupture do not occur in the HIP interface. In result, it can be mentioned that bondability of the HIP interfaces is kept under the irradiation and testing conditions. The strength and

  2. Assessment of Retained Austenite in AISI D2 Tool Steel Using Magnetic Hysteresis and Barkhausen Noise Parameters

    Science.gov (United States)

    Kahrobaee, Saeed; Kashefi, Mehrdad

    2015-03-01

    Inaccurate heat treatment process could result in excessive amount of retained austenite, which degrades the mechanical properties, like strength, wear resistance, and hardness of cold work tool steel parts. Thus, to control the mechanical properties, quantitative measurement of the retained austenite is a critical step in optimizing the heat-treating parameters. X-ray diffraction method is the most frequently used technique for this purpose. This technique is, however, destructive and time consuming. Furthermore, it is not applicable to 100% quality inspection of industrial parts. In the present paper, the influence of austenitizing temperature on the retained austenite content and hardness of AISI D2 tool steel has been studied. Additionally, nondestructive magnetic hysteresis parameters of the samples including coercivity, magnetic saturation, and maximum differential permeability as well as their magnetic Barkhausen noise features (RMS peak voltage and peak position) have been investigated. The results revealed direct relations between magnetic saturation, differential permeability, and MBN peak amplitude with increasing austenitizing temperature due to the retained austenite formation. Besides, both parameters of coercivity and peak position had an inverse correlation with the retained austenite fraction.

  3. New 1H-pyrrole-2,5-dione derivatives as efficient organic inhibitors of carbon steel corrosion in hydrochloric acid medium: Electrochemical, XPS and DFT studies

    International Nuclear Information System (INIS)

    Zarrouk, A.; Hammouti, B.; Lakhlifi, T.; Traisnel, M.; Vezin, H.; Bentiss, F.

    2015-01-01

    Highlights: • 1H-pyrrole derivatives act as good corrosion inhibitors for carbon steel in 1 M HCl. • Adsorption of the inhibitors on carbon steel surface obeys Langmuir’s isotherm. • XPS showed that the inhibitors are chemisorbed on the metal surface. • Quantum chemical parameters were correlated with experimental results. - Abstract: New 1H-pyrrole-2,5-dione derivatives, namely 1-phenyl-1H-pyrrole-2,5-dione (PPD) and 1-(4-methylphenyl)-1H-pyrrole-2,5-dione (MPPD) were synthesised and their inhibitive action against the corrosion of carbon steel in 1 M HCl solution were investigated at 308 K by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results showed that the investigated 1H-pyrrole-2,5-dione derivatives are good corrosion inhibitors for carbon steel in 1 M HCl medium, their inhibition efficiency increased with inhibitor concentration, and MPPD is slightly more effective than PPD. Potentiostatic polarization study showed that PPD and MPPD are mixed-type inhibitors in 1 M HCl. Impedance experimental data revealed a frequency distribution of the capacitance, simulated as constant phase element. The results obtained from electrochemical and weight loss studies were in reasonable agreement. The adsorption of MPPD and PPD on steel surface obeyed Langmuir’s adsorption isotherm. Thermodynamic data and XPS analysis clearly indicated that the adsorption mechanism of 1H-pyrrole-2,5-dione derivatives on carbon steel surface in 1 M HCl solution is mainly controlled by a chemisorption process. Quantum chemical calculations using the Density Functional Theory (DFT) were performed on 1H-pyrrole-2,5-dione derivatives to determine the relationship between molecular structures and their inhibition efficiencies

  4. Hydrogen Financial Analysis Scenario Tool (H2FAST); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc

    2015-04-21

    This presentation describes the Hydrogen Financial Analysis Scenario Tool, H2FAST, and provides an overview of each of the three H2FAST formats: the H2FAST web tool, the H2FAST Excel spreadsheet, and the H2FAST Business Case Scenario (BCS) tool. Examples are presented to illustrate the types of questions that H2FAST can help answer.

  5. Effects of Cryogenic Treatment on the Strength Properties of Heat Resistant Stainless Steel (07X16H6)

    Science.gov (United States)

    Nadig, D. S.; Bhat, M. R.; Pavan, V. K.; Mahishi, Chandan

    2017-09-01

    Cryogenic treatment on metals is a well known technology where the materials are exposed to cryogenic temperature for prolonged time duration. The process involves three stages viz. slow cooling, holding at cryogenic temperature and warming to room temperature. During this process, hard and micro sized carbide particles are released within the steel material. In addition, soft and unconverted austenite of steel changes to strong martensite structure. These combined effects increase the strength and hardness of the cryotreated steel. In this experimental study, the effects of cryogenic treatment, austenitising and tempering on the mechanical properties of stainless steel (07X16H6) have been carried. After determining the strength properties of the original material, the specimens were cryotreated at 98K for 24 hours in a specially developed cryotreatment system. The effects of austenitising prior to cryogenic treatment and tempering post cryotreatment on the mechanical properties of steel samples have been experimentally determined and analysed.

  6. Effect of boron control of environment on corrosion and resistance to low-cycle corrosion fatigue in structural steels

    International Nuclear Information System (INIS)

    Babej, Yu.I.; Zhitkov, V.V.; Zvezdin, Yu.I.; Liskevich, I.Yu.; Nazarov, A.A.

    1982-01-01

    Tests of the specimens on total, contact and crevice corrosion, corrosion cracking and low-cycle fatigue are conducted for determination of corrosion and corrosion-fatigue characteristics in the 15Kh3NMFA, 10N3MFA, 10Kh16N4B, 05Kh13N6M2 structural steels, used in energetics. The environment is subjected to boron control and contacting with atmosphere for simulation of stop and operation modes of the facility. The experiments are carried out in the distilled water with 12g/l H 3 BO 3 and 10 mg/l Cl' at 25, 60, 100 deg C under contacting with atmosphere. It is established, that the pearlitic steels 15Kh3NMFA, 10N3MFA, as well as transition and martensitic 05Kh13N6M2 and 10Kh16N4B steels are highly stable to total, crevice and contact corrosion at the high parameters of aqueous boron-containing medium. Steel resistance to low-cycle fracture decreases slightly under the conditions similar to the operation ones, in the water with 12 g/l H 3 BO 3 . Durability of the pearlitic steels at the simulation of stop conditions decreases more noticeably, crack formation as a rule, initiating from corrosion spots

  7. Iridium Oxide pH Sensor Based on Stainless Steel Wire for pH Mapping on Metal Surface

    Science.gov (United States)

    Shahrestani, S.; Ismail, M. C.; Kakooei, S.; Beheshti, M.; Zabihiazadboni, M.; Zavareh, M. A.

    2018-03-01

    A simple technique to fabricate the iridium oxide pH sensor is useful in several applications such as medical, food processing and engineering material where it is able to detect the changes of pH. Generally, the fabrication technique can be classified into three types: electro-deposition iridium oxide film (EIrOF), activated iridium oxide film (AIROF) and sputtering iridium oxide film (SIROF). This study focuses on fabricating electrode, calibration and test. Electro-deposition iridium oxide film is a simple and effective method of fabricating this kind of sensor via cyclic voltammetry process. The iridium oxide thick film was successfully electrodeposited on the surface of stainless steel wire with 500 cycles of sweep potential. A further analysis under FESEM shows detailed image of iridium oxide film which has cauliflower-liked microstructure. EDX analysis shows the highest element present are iridium and oxygen which concluded that the process is successful. The iridium oxide based pH sensor has shown a good performance in comparison to conventional glass pH sensor when it is being calibrated in buffer solutions with 2, 4, 7 and 9 pH values. The iridium oxide pH sensor is specifically designed to measure the pH on the surface of metal plate.

  8. Fatigue damage evolution of cold-worked austenitic nickel-free high-nitrogen steel X13CrMnMoN18-14-3 (1.4452)

    Energy Technology Data Exchange (ETDEWEB)

    Tikhovskiy, I.; Weiss, S.; Fischer, A. [Univ. of Duisburg-Essen, Materials Science and Engineering II, Duisburg (Germany)

    2004-07-01

    Due to the fact that the risk of Ni-allergies becomes more and more important for modern therapies, the necessity of Ni-free implant materials becomes increasingly important. Beside Co- and Ti-base alloys Ni-free high-nitrogen steels may offer an attractive alternative. The present work presents the austenitic high-nitrogen and nickel-free steel X13CrMnMoN18-14-3, (Material No.: 1.4452) after 20% cold-working. In addition this material was deformed under axial cyclic total strain controlled fatigue tests at room temperature. The development of dislocation structure due to different loading amplitudes was compared to none cyclically deformed material. The good mechanical und fatigue properties of these austenitic high-nitrogen steels as well as the better tribological, chemical and biological properties compared to CrNiMo-steels qualify these steels as a promising alternative in medical applications. (orig.)

  9. Microstructural evolutions of friction stir welded F82H steel for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sang Hoon; Shim, Jae Won; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Tani Gawa, Hiro Yasu [JAEA, Rokasho (Japan); Fujii, Hideto Shi [Osaka Univ., Osaka (Japan); Kim Ura, Aki Hiko [Kyoto Univ., Kyoto (Japan)

    2012-10-15

    A blanket is the most important component functionalized as plasma confining, tritium breeding, heat exchanging, and irradiation shielding from severe thermo neutron loads in a fusion reactor. Its structure consists of first walls, side walls, a back board, and coolant channels mainly made of reduced activation ferritic/martensitic (RAFM) steel, which is the most promising candidate as a structural material for fusion reactors. To fabricate this blanket structure, some welding and joining methods have being carefully applied. However, when fusion welding, such as tungsten inert gas (TIG) welding, electron beam, and laser welding was performed between F82H and itself, the strength of welds significantly deteriorated due to the development of {delta} ferrite and precipitate dissolution. Post welding heat treatment (PWHT) should be followed to restore the initial microstructure. Nevertheless, microstructural discontinuity inevitably occurs between the weld metal, heat affected zone and base metal and this seriously degrades the entire structural stability under pulsed operation at high temperature in test blanket module (TBM). A phase transformation can also be an issue to be solved, which leads to a difficult replacement of the blanket module. Therefore, a reliable and field applicable joining technique should be developed not to accompany with PWHT after the joining process. Friction stir welding (FSW) is one of the solid state processes that does not create a molten zone at the joining area, so the degradation of the featured microstructures may be avoided or minimized. In this study, FSW was employed to join F82H steels to develop a potential joining technique for RAFM steel. The microstructural features on the joint region were investigated to evaluate the applicability of the FSW.

  10. The Influence of Temperature on the Frictional Behavior of Duplex-Coated Die Steel Rubbing Against Forging Brass

    Science.gov (United States)

    Ebrahimzadeh, I.; Ashrafizadeh, F.

    2015-01-01

    Improvement of die life under hot forging of brass alloys is considered vital from both economical and technical points of view. One of the best methods for improving die life is duplex coatings. In this research, the influence of temperature on the tribological behavior of duplex-coated die steel rubbing against forging brass was investigated. The wear tests were performed on a pin-on-disk machine from room temperature to 700 °C; the pins were made in H13 hot work tool steel treated by plasma nitriding and by PVD coatings of TiN-TiAlN-CrAlN. The disks were machined from a two-phase brass alloy too. The results revealed that the friction coefficient of this tribosystem went through a maximum at 550 °C and decreased largely at 700 °C. Furthermore, the formation of Cr2O3 caused the reduction of friction coefficient at 700 °C. PVD coatings proved their wear resistance up to 550 °C, well above the working temperature of the brass forging dies.

  11. Characterization Of Oxide Layers Formed On 13CrMo4-5 Steel Operated For A Long Time At An Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Gwoździk M.

    2015-09-01

    Full Text Available The paper contains results of studies into the formation of oxide layers on 13CrMo4-5 (15HM steel long-term operated at an elevated temperature. The oxide layer was studied on a surface and a cross-section at the inner and outer surface of the tube wall. The 13CrMo4-5 steel operated at the temperature of 470°C during 190,000 hours was investigated. X-ray structural examinations (XRD were carried out, microscope observation s using an optical, scanning microscope were performed. The native material chemical composition was analysed by means of emission spark spectroscopy, while that of oxide layers on a scanning microscope (EDS. The studies on the topography of the oxide layers comprised studies on the roughness plane, which were carried out using a AFM microscope designed for 2D and 3D studies on the surface. Mechanical properties of the oxide layer – steel (substrate were characterised on the basis of scratch test. The adhesion of oxide layers, friction force, friction coefficient, scratching depth were determined as well as the force at which the layer was delaminated.

  12. The Mechanical and Tribology Properties of Sputtered Titanium Aluminum Nitride Coating on the Tungsten Carbide Insert Tool in the Dry Turning of Tool Steel

    Directory of Open Access Journals (Sweden)

    Esmar Budi

    2015-02-01

    Full Text Available The effect of the sputtering parameters on the mechanical tribology properties of Titanium Aluminum Nitride coating on the tungsten cabide insert tool in the dry turning of tool steel has been investigated. The coating was deposited using a Direct Current magnetron sputtering system with various substrate biases (-79 to -221 V and nitrogen flow rates (30 to 72 sccm. The dry turning test was carried out on a Computer Numeric Code machine using an optimum cutting parameter setting. The results show that the lowest flank wear (~0.4 mm was achieved using a Titanium Aluminum Nitride-coated tool that was deposited at a high substrate bias (-200 V and a high nitrogen flow rate (70 sccm. The lowest flank wear was attributed to high coating hardness.

  13. The role of duplex stainless steels for downhole tubulars

    International Nuclear Information System (INIS)

    Francis, R.

    1993-01-01

    In sour conditions there is an increasing trend to turn to corrosion resistant alloys for downhole tubulars. The most commonly used CRA tubular is 13Cr, and there are thousands of feet in service. However, there are limits to the use of 13Cr, ie., the risk of sulphide stress corrosion cracking at high H 2 S levels, and the possibility of pitting or high corrosion rates in waters with high chloride contents. Where the service conditions are felt to be too severe for 13Cr alloys it has been traditional to switch to nickel base alloys such as alloys 825 and C-276 (UNS N08825 and N10276). The alloys are much more expensive than 13Cr, and in recent years the duplex stainless steels have been selected as alloys with superior corrosion and SSCC resistance compared with 13Cr, and having lower cost than nickel alloys. Originally the 22Cr duplex alloy (UNS 31803) was used, but more recently the 25Cr super duplex alloys (UNS S32760 and S32750) have become more available. The present paper reviews the data available for 13Cr and the limits of applicability. Data is also presented for laboratory tests for both the 22Cr and 25Cr super duplex alloys. There is extensive service experience with both 22Cr and 25Cr super duplex in the North Sea, covering both downhole tubulars, manifold and post wellhead equipment. Data is presented showing some of the sour condition being experienced in the North Sea by super duplex alloys. These results show that there is a substantial gap between the limits of use for 13Cr and the 25Cr super duplex stainless steel alloys. This means that in many sour environments super duplex stainless steel provides a cost effective alternative to nickel-base alloys

  14. Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance

    Science.gov (United States)

    Doetz, M.; Dambon, O.; Klocke, F.; Bulla, B.; Schottka, K.; Robertson, D. J.

    2017-10-01

    Ultra-precision diamond turning enables the manufacturing of parts with mirror-like surfaces and highest form accuracies out of non-ferrous, a few crystalline and plastic materials. Furthermore, an ultrasonic assistance has the ability to push these boundaries and enables the machining of materials like steel, which is not possible in a conventional way due to the excessive tool wear caused by the affinity of carbon to iron. Usually monocrystalline diamonds tools are applied due to their unsurpassed cutting edge properties. New cutting tool material developments have shown that it is possible to produce tools made of nano-polycrystalline diamonds with cutting edges equivalent to monocrystalline diamonds. In nano-polycrystalline diamonds ultra-fine grains of a few tens of nanometers are firmly and directly bonded together creating an unisotropic structure. The properties of this material are described to be isotropic, harder and tougher than those of the monocrystalline diamonds, which are unisotropic. This publication will present machining results from the newest investigations of the process potential of this new polycrystalline cutting material. In order to provide a baseline with which to characterize the cutting material cutting experiments on different conventional machinable materials like Cooper or Aluminum are performed. The results provide information on the roughness and the topography of the surface focusing on the comparison to the results while machining with monocrystalline diamond. Furthermore, the cutting material is tested in machining steel with ultrasonic assistance with a focus on tool life time and surface roughness. An outlook on the machinability of other materials will be given.

  15. Evaluation of Fire Resistance for H-Section Columns Made of Rolled Steels for General Structures and for Welded Structures by Analytic Method

    International Nuclear Information System (INIS)

    Kwon, In-Kyu

    2014-01-01

    Fire resistance is an important factor in sustaining the structural stability of steel framed buildings on fire. However, evaluation of the fire resistance of steel columns has been conducted using rolled steels for general structures, SS 400. Recently, rolled steels for welded structures, such as SM 400 and SM 490, have been used frequently because they have better performance of welding than the SS 400. However, there has been doubt about how much fire resistance SM 400 and SM 490 have. To evaluate by calculation the fire resistance of an H-section column made of SS 400 its mechanical and thermal properties were derived and suggested respectively in the form of regressive equations and the analysis was done based on heat transfer and thermal stress analysis. In this study, the results of the evaluation of H-section columns made of SS 400 with loaded fire tests turned out to be conservative. As a result, a new guideline is required to get the exact fire resistance of another structural steel.

  16. The Sensitivity Of Carbon Steels' Susceptibility To Localized Corrosion To The pH Of Nitrate Based Nuclear Wastes

    International Nuclear Information System (INIS)

    Boomer, K.D.

    2010-01-01

    The Hanford tank reservation contains approximately 50 million gallons of liquid legacy radioactive waste from cold war weapons production, which is stored in 177 underground storage tanks. The tanks will be in use until waste processing operations are completed. The wastes tend to be high pH (over 10) and nitrate based. Under these alkaline conditions carbon steels tend to be passive and undergo relatively slow uniform corrosion. However, the presence of nitrate and other aggressive species, can lead to pitting and stress corrosion cracking. This work is a continuation of previous work that investigated the propensity of steels to suffer pitting and stress corrosion cracking in various waste simulants. The focus of this work is an investigation of the sensitivity of the steels' pitting and stress corrosion cracking susceptibility tosimulant pH. Previous work demonstrated that wastes that are high in aggressive nitrate and low in inhibitory nitrite are susceptible to localized corrosion. However, the previous work involved wastes with pH 12 or higher. The current work involves wastes with lower pH of 10 or 11. It is expected that at these lower pHs that a higher nitrite-to-nitrate ratio will be necessary to ensure tank integrity. This experimental work involved both electrochemical testing, and slow strain rate testing at either the free corrosion potential or under anodic polarization. The results of the current work will be discussed, and compared to work previously presented.

  17. The resistance of austenitic stainless steels to pitting corrosion in simulated BFS/OPC pore waters containing thiosulphate ions

    International Nuclear Information System (INIS)

    Betts, A.J.; Newman, R.C.

    1989-06-01

    Current plans for the disposal of intermediate-level nuclear waste involve the use of austenitic stainless steel drums. The immediate environment seen by both the inner and outer surfaces of these drums will be alkaline, as a consequence of the encasement of both the drum and its contents in concrete. Normally there would be no risk of localized corrosion of the steel in this situation, but a possible complication is introduced by the use of blast-furnace slag (BFS) to decrease the permeability of the concrete. Metal sulphides in the BFS react with air and water to yield thiosulphate ions, which are known to be corrosive towards stainless steels in environments of near-neutral pH. This research was carried out to study the effects of thiosulphate at alkaline pH, simulating the concrete environment. Types 304L and 316L stainless steel have been tested for pitting corrosion resistance in simulated BFS/Ordinary Portland Cement pore waters of pH 10-13, at 20 o C and 50 o C. The results show that the 316L steel is essentially immune to pitting. The 304L steel shows some pitting at the higher temperature, especially at the higher chloride concentrations, but only at pH values of less than 12, which would require serious deterioration of the cement matrix. (author)

  18. Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H

    International Nuclear Information System (INIS)

    Jitsukawa, S.; Tamura, M.; Schaaf, B. van der; Klueh, R.L.; Alamo, A.; Petersen, C.; Schirra, M.; Spaetig, P.; Odette, G.R.; Tavassoli, A.A.; Shiba, K.; Kohyama, A.; Kimura, A.

    2002-01-01

    Tensile, fracture toughness, creep and fatigue properties and microstructural studies of the reduced-activation martensitic steel F82H (8Cr-2W-0.04Ta-0.1C) before and after irradiation are reported. The design concept used for the development of this alloy is also introduced. A large number of collaborative test results including those generated under the International Energy Agency (IEA) implementing agreements are collected and are used to evaluate the feasibility of using reduced-activation martensitic steels for fusion reactor structural materials, with F82H as one of the reference alloys. All the specimens used in these tests were prepared from plates obtained from 5-ton heats of F82H supplied to all participating laboratories by JAERI. Many of the results have been entered into relational databases with emphasis on traceability of records on how the specimens were prepared from plates and ingots

  19. Development of an extensive database of mechanical and physical properties for reduced-activation martensitic steel F82H

    Energy Technology Data Exchange (ETDEWEB)

    Jitsukawa, S. E-mail: jitsukawa@ifmif.tokai.jaeri.go.jp; Tamura, M.; Schaaf, B. van der; Klueh, R.L.; Alamo, A.; Petersen, C.; Schirra, M.; Spaetig, P.; Odette, G.R.; Tavassoli, A.A.; Shiba, K.; Kohyama, A.; Kimura, A

    2002-12-01

    Tensile, fracture toughness, creep and fatigue properties and microstructural studies of the reduced-activation martensitic steel F82H (8Cr-2W-0.04Ta-0.1C) before and after irradiation are reported. The design concept used for the development of this alloy is also introduced. A large number of collaborative test results including those generated under the International Energy Agency (IEA) implementing agreements are collected and are used to evaluate the feasibility of using reduced-activation martensitic steels for fusion reactor structural materials, with F82H as one of the reference alloys. All the specimens used in these tests were prepared from plates obtained from 5-ton heats of F82H supplied to all participating laboratories by JAERI. Many of the results have been entered into relational databases with emphasis on traceability of records on how the specimens were prepared from plates and ingots.

  20. Interfacial fatigue stress in PVD TiN coated tool steels under rolling contact fatigue conditions

    OpenAIRE

    Carvalho, N.J.M.; Huis in ’t Veld, A.J.; Hosson, J.Th. De

    1998-01-01

    Titanium–nitrogen (TiN) films were Physical Vapour Deposited (PVD) on tool steel substrates with different hardness and surface roughness, in a Bai 640R unit using a triode ion plating (e-gun) with a high plasma density. The coated substrates were submitted to a rolling contact fatigue test technique (modified pin-on-ring test) to obtain some clarifications of the mechanism of interfacial failure. Tests were run using PVD-coated rings finished by polishing or grinding to produce different sur...

  1. File list: Pol.Emb.20.AllAg.5-13h_embryos [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.AllAg.5-13h_embryos dm3 RNA polymerase Embryo 5-13h embryos SRX671944,SR...X671945 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.20.AllAg.5-13h_embryos.bed ...

  2. Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels

    International Nuclear Information System (INIS)

    Yang, Y.; Busby, J.T.

    2014-01-01

    This work aims at utilizing modern computational microstructural modeling tools to accelerate the understanding of phase stability in austenitic steels under extended thermal aging. Using the CALPHAD approach, a thermodynamic database OCTANT (ORNL Computational Thermodynamics for Applied Nuclear Technology), including elements of Fe, C, Cr, Ni, Mn, Mo, Si, and Ti, has been developed with a focus on reliable thermodynamic modeling of precipitate phases in AISI 316 austenitic stainless steels. The thermodynamic database was validated by comparing the calculated results with experimental data from commercial 316 austenitic steels. The developed computational thermodynamics was then coupled with precipitation kinetics simulation to understand the temporal evolution of precipitates in austenitic steels under long-term thermal aging (up to 600,000 h) at a temperature regime from 300 to 900 °C. This study discusses the effect of dislocation density and difusion coefficients on the precipitation kinetics at low temperatures, which shed a light on investigating the phase stability and transformation in austenitic steels used in light water reactors

  3. Nucleonic gauging: a tool for process and quality control at Tata Steel

    International Nuclear Information System (INIS)

    Pandey, J.C.; Manish Raj; Panda, B.N.

    1998-01-01

    In recent years, there has been much progress in utilizing nuclear sources for process and quality control in Integrated Steel Plants. Tata Steel has also taken interest in implementing these gauging techniques and at present 92 such gauges are in use for measuring level, thickness, density, moisture and ash content at various locations of Tata Steel. These gauges function on line and non contact with the material to be inspected and are designed to withstand the hostile Steel Plant Environment. The paper highlights use of different gauges at Tata Steel. (author)

  4. The structure of the alphinizing coat on alloy steels

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper results of the structure of the coat alphinizing in AlSi5 silumin on alloy steels: acid-proof 1H18N9T (X6CrNiTi18-10 and high speed SW18 (HS18-0-1 were presented. The temperature of the alphinizing bath was amounts to750±5°C, and immersion time of the element τ = 180s. It was shown, that there is the different “g” coat thickness on testing steels. On the 1H18N9T steel it amounts to g = 52μm, and on the SW18 steel – g = 203μm. Regardless of a grade of testing alloy steels the coat consist of three layers with diversified phasic structure. There is different chemical composition of coat layers on testing steels. The first layer from the base consist of AlFe phase containing alloy addictions of steels: Cr and Ni (1H18N9T and W, V and Cr (SW18. On this layer crystallize the second layer of intermetallic phases. It is the phase containing the main alloy addiction of steels: AlFeCr (1H18N9T and AlFeW (SW18. The last, outside layer consist of silumin containing AlFeNi intermetallic phases on the 1H18N9T steel and AlFeW on the SW18 steel. Regardless of the grade of testing steels there is Si element in all layers of the coat. There are morphological differences in tested layers. The second layer (AlFeW phase inside the coat on the SW18 steel consist of faced crystals growing into in outside silumin layer. On the 1H18N9T steel a boundary between transient and outside layer is more uniform. Free separations of intermetallic phases inside silumin layer on the 1H18N9T steel have lamellar and on the SW18 steel – faced form.

  5. File list: His.Emb.10.AllAg.5-13h_embryos [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Emb.10.AllAg.5-13h_embryos dm3 Histone Embryo 5-13h embryos SRX474566,SRX474584...,SRX474583,SRX474579 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Emb.10.AllAg.5-13h_embryos.bed ...

  6. File list: Unc.Emb.05.AllAg.7-13h_embryos [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.05.AllAg.7-13h_embryos dm3 Unclassified Embryo 7-13h embryos SRX1308480,SRX...1308482,SRX1308481,SRX1308483 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Emb.05.AllAg.7-13h_embryos.bed ...

  7. File list: Unc.Emb.20.AllAg.7-13h_embryos [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Emb.20.AllAg.7-13h_embryos dm3 Unclassified Embryo 7-13h embryos SRX1308480,SRX...1308482,SRX1308481,SRX1308483 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Unc.Emb.20.AllAg.7-13h_embryos.bed ...

  8. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    International Nuclear Information System (INIS)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-01-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  9. Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets

    Science.gov (United States)

    Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.

    2011-05-01

    Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.

  10. Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel

    Science.gov (United States)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The effect of electroslag remelting (ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis (OPA), and the carbides were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process.

  11. Benefits Analysis of Past Projects. Volume 2. Individual Project Assessments.

    Science.gov (United States)

    1984-11-01

    010 inch. Chemical milling was found to be an effective method for removing the surface enrichment. Also 4140 and H13 steel dies were found to result... tooling surface due to the reaction r,* it;nium and t . 22-4-9 steel toolin,. Oxidation and leveling .I ,.. Jevelope in this project yielded tool life...dimensions without expensive tool rework. The process has a potential for reducing mold inclusions since the mold surfaces in contact with the metal can

  12. Effect of H{sub 2}O{sub 2} on the corrosion behavior of 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Song, Taek Ho

    1994-02-15

    In connection with the safe storage of high level nuclear waste, effect of H{sub 2}O{sub 2} on the corrosion behavior of 304L stainless steel was examined. Open circuit potentials and polarization curves were measured with and without H{sub 2}O{sub 2}. The experimental results show that H{sub 2}O{sub 2} increased corrosion potential and decreased pitting potential. The passive range, therefore, decreased as H{sub 2}O{sub 2} concentration increased, indicating that pitting resistance was decreased by the existence of H{sub 2}O{sub 2} in the electrolyte. These effects of H{sub 2}O{sub 2} on corrosion of 304L stainless steel are considered to be similar to those of γ-irradiation. To compare the effects of H{sub 2}O{sub 2} with those of O{sub 2}, cathodic and anodic polarization curves were made in three types of electrolyte such as aerated, deaerated, and stirred electrolyte. The experimental results show that the effects of H{sub 2}O{sub 2} on the corrosion behavior were very similar to those of O{sub 2} such as increase of corrosion potential, decrease of pitting resistance, and increase of repassivation potential. Further, H{sub 2}O{sub 2} played much greater role in controlling cathodic reaction rate in neutral water environment. In acid and alkaline media, potential shifts by H{sub 2}O{sub 2} were restricted by the large current density of proton reduction and by the le Chatelier's principle respectively.

  13. File list: ALL.Emb.05.AllAg.5-13h_embryos [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.05.AllAg.5-13h_embryos dm3 All antigens Embryo 5-13h embryos SRX671948,SRX6...RX671960,SRX671949 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.05.AllAg.5-13h_embryos.bed ...

  14. File list: Oth.Emb.10.AllAg.5-13h_embryos [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.10.AllAg.5-13h_embryos dm3 TFs and others Embryo 5-13h embryos SRX683494,SR...SRX671952,SRX671949 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.10.AllAg.5-13h_embryos.bed ...

  15. Radiation induced microstructural evolution in ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Kohno, Y.; Kohyama, A.; Asakura, K.; Gelles, D.S.

    1993-01-01

    R and D of ferritic/martensitic steels as structural materials for fusion reactor is one of the most important issues of fusion technology. The efforts to characterize microstructural evolution under irradiation in the conventional Fe-Cr-Mo steels as well as newly developed Fe-Cr-Mn or Fe-Cr-W low activation ferritic/ martensitic steels have been continued. This paper provides some of the recent results of heavy irradiation effects on the microstructural evolution of ferritic/martensitic steels neutron irradiated in the FFTF/MOTA (Fast Flux Test Facility/Materials Open Test Assembly). Materials examined are Fe-10Cr-2Mo dual phase steel (JFMS: Japanese Ferritic/Martensitic Steel), Fe-12Cr-XMn-1Mo manganese stabilized martensitic steels and Fe-8Cr-2W Tungsten stabilized low activation martensitic steel (F82H). JFMS showed excellent void swelling resistance similar to 12Cr martensitic steel such as HT-9, while the manganese stabilized steels and F82H showed less void swelling resistance with small amount of void swelling at 640-700 K (F82H: 0.14% at 678 K). As for irradiation response of precipitate behavior, significant formation of intermetallic χ phase was observed in the manganese stabilized steels along grain boundaries which is though to cause mechanical property degradation. On the other hand, precipitates identified were the same type as those in unirradiated condition in F82H with no recognition of irradiation induced precipitates, which suggested satisfactory mechanical properties of F82H after the irradiation. (author)

  16. Microstructure and Mechanical Properties of Dissimilar Friction Stir Spot Welding Between St37 Steel and 304 Stainless Steel

    Science.gov (United States)

    Khodadadi, Ali; Shamanian, Morteza; Karimzadeh, Fathallah

    2017-05-01

    In the present study, St37 low-carbon steel and 304 stainless steel were welded successfully, with the thickness of 2 mm, by a friction stir spot welding process carried out at the tool dwell time of 6 s and two different tool rotational speeds of 630 and 1250 rpm. Metallographic examinations revealed four different zones including SZ and HAZ areas of St37 steel and SZ and TMAZ regions of 304 stainless steel in the weld nugget, except the base metals. X-ray diffraction and energy-dispersive x-ray spectroscopy experiments were used to investigate the possible formation of such phases as chromium carbide. Based on these experiments, no chromium carbide precipitation was found. The recrystallization of the weld nugget in the 304 steel and the phase transformations of the weld regions in the St37 steel enhanced the hardness of the weld joint. Hardness changes of joint were acceptable and approximately uniform, as compared to the resistance spot weld. In this research, it was also observed that the tensile/shear strength, as a crucial factor, was increased with the rise in the tool rotational speed. The bond length along the interface between metals, as an effective parameter to increase the tensile/shear strength, was also determined. At higher tool rotational speeds, the bond length was found to be improved, resulting in the tensile/shear strength of 6682 N. Finally, two fracture modes were specified through the fracture mode analysis of samples obtained from the tensile/shear test consisting of the shear fracture mode and the mixed shear/tensile fracture mode.

  17. File list: Oth.Emb.50.AllAg.1-3h_embryos [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Emb.50.AllAg.1-3h_embryos dm3 TFs and others Embryo 1-3h embryos SRX474520,SRX4...74521,SRX474524,SRX474525 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Oth.Emb.50.AllAg.1-3h_embryos.bed ...

  18. Lubricating coating prepared by PIIID on a forming tool

    International Nuclear Information System (INIS)

    Martinatti, J F; Durrant, S F; Cruz, N C; Rangel, E C; Santos, L V

    2012-01-01

    In this work, the performance of a-C:H films produced by the hybrid Plasma Immersion Ion Implantation and Deposition technique as lubricating layers for a steel forming tool has been investigated. Hardened steel (AISI M2, 64 HRC) plates coated with a commercial TiN layer were used as substrates and the films were deposited in a vacuum chamber fitted with two parallel-plate electrodes. The discharges were generated in atmospheres composed of 91% C 2 H 2 and 9% Ar by the application of radiofrequency power (13.56 MHz, 100 W) to the upper electrode while the lower one, also used as the sample holder, was biased with high voltage negative pulses (3.6 kV, 30 μs, 300 Hz). A deposition time of 840 s was used. The effects of the gas pressure, p, on thickness, molecular structure, wettability, surface morphology and topography, hardness and friction coefficient of the films were investigated. Film thickness increased from 0.3 to 0.5 μm when p was increased from 2.7 to 16.5 Pa. Generally, the films were slightly hydrophilic, with contact angles of around 84°, and the deposition decreased the roughness of the steel. A polymer-like structure was detected in high pressure depositions and an amorphous carbon structure derived from the low pressure procedures. Hardness decreased from 8.2 to 7.0 GPa with increasing p. Improvement in tribological performance was indicated by the fall in the friction coefficient from 0.5 to 0.2 as the deposition pressure was reduced. Operating at the latter value (of μ) would lead to a significant reduction in wear and hence to significant economy in diverse industrial applications.

  19. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Directory of Open Access Journals (Sweden)

    Wenning Shen

    Full Text Available The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel. Keywords: Stainless steel, Carbon steel, Anti-corrosion, Conductivity, Electrochemical, EIS

  20. Electro-Chemical Behavior of Low Carbon Steel Under H2S Influence

    Science.gov (United States)

    Zaharia, M. G.; Stanciu, S.; Cimpoesu, R.; Nejneru, C.; Savin, C.; Manole, V.; Cimpoeșu, N.

    2017-06-01

    Abstract A commercial low carbon steel material (P265GH) with application at industrial scale for natural gas delivery and transportation systems was analyzed in H2S atmosphere. The article proposed a new experimental cell in order to establish the behavior of the material in sulfur contaminated environment. In most of the industrial processes for gas purification the corrosion rate is speed up by the presence of S (sulfur) especially as ions or species like H2S. The H2S (hydrogen sulfide) is, beside a very toxic compound, a very active element in the acceleration of metallic materials deterioration especially in complex solicitations like pressure and temperature in the same time. For experiments we used a three electrodes cell with Na2SO4 + Na2S solution at pH 3 at room temperature (∼ 25 °C) to realize EIS (electrochemical impedance spectroscopy) and potentio-dynamic polarization experiments. Scanning electron microscopy and X-ray dispersive energy spectroscopy were used to characterize the metallic material surface exposed to experimental environment.

  1. Imaging the water snowline in a protostellar envelope with H13CO+

    Science.gov (United States)

    van 't Hoff, Merel L. R.; Persson, Magnus V.; Harsono, Daniel; Taquet, Vianney; Jørgensen, Jes K.; Visser, Ruud; Bergin, Edwin A.; van Dishoeck, Ewine F.

    2018-05-01

    Context. Snowlines are key ingredients for planet formation. Providing observational constraints on the locations of the major snowlines is therefore crucial for fully connecting planet compositions to their formation mechanism. Unfortunately, the most important snowline, that of water, is very difficult to observe directly in protoplanetary disks because of the close proximity of this snowline to the central star. Aims: Based on chemical considerations, HCO+ is predicted to be a good chemical tracer of the water snowline because it is particularly abundant in dense clouds when water is frozen out. This work aims to map the optically thin isotopolog H13CO+ toward the envelope of the low-mass protostar NGC 1333-IRAS2A, where the snowline is at a greater distance from the star than in disks. Comparison with previous observations of H218O show whether H13CO+ is indeed a good tracer of the water snowline. Methods: NGC 1333-IRAS2A was observed using the NOrthern Extended Millimeter Array (NOEMA) at 0.''9 resolution, targeting the H13CO+ J = 3 - 2 transition at 260.255 GHz. The integrated emission profile was analyzed using 1D radiative transfer modeling of a spherical envelope with a parametrized abundance profile for H13CO+. This profile was validated with a full chemical model. Results: The H13CO+ emission peaks 2'' northeast of the continuum peak, whereas H218O shows compact emission on source. Quantitative modeling shows that a decrease in H13CO+ abundance by at least a factor of six is needed in the inner 360 AU to reproduce the observed emission profile. Chemical modeling indeed predicts a steep increase in HCO+ just outside the water snowline; the 50% decrease in gaseous H2O at the snowline is not enough to allow HCO+ to be abundant. This places the water snowline at 225 AU, further away from the star than expected based on the 1D envelope temperature structure for NGC 1333-IRAS2A. In contrast, DCO+ observations show that the CO snowline is at the expected

  2. File list: ALL.Emb.50.AllAg.1-3h_embryos [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Emb.50.AllAg.1-3h_embryos dm3 All antigens Embryo 1-3h embryos SRX474520,SRX474...521,SRX474527,SRX474524,SRX474523,SRX474525 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Emb.50.AllAg.1-3h_embryos.bed ...

  3. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Science.gov (United States)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  4. Degradation of superheater tubes made of austenitic T321H steel after long term service

    Energy Technology Data Exchange (ETDEWEB)

    Hernas, Adam [Silesian Technical Univ., Katowice (Poland). Faculty of Material Science; Augustyniak, Boleslaw; Chmielewski, Marek [Gdansk Univ. of Technology (Poland). Mechanical Dept.; Sablik, M.J. [Applied Magnetic and Physical Modeling, LLC, San Antonio, TX (United States)

    2010-07-01

    There are presented results of complementary tests performed for the evaluation of creep damage in austenitic steel grade T321H exploited over 200,000 hours in the secondary superheater part of a power plant boiler. The following techniques have been applied: SEM microscopy, X-ray diffraction, tensile tests, hardness measurements and novel eddy current inspection. The novel eddy current inspection is proposed as a non-destructive method of estimating the creep damage stage of austenite steel boiler tubes after long-term service in power plants. We compare the results provided by the different techniques and discuss the correlations and also point out the problems which need to be addressed in order to elaborate the remaining life assessment of austenitic boiler tubes. (orig.)

  5. Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution

    Science.gov (United States)

    Zhu, Min; Du, Cuiwei; Li, Xiaogang; Liu, Zhiyong; Wang, Shengrong; Zhao, Tianliang; Jia, Jinghuan

    2014-04-01

    The stress corrosion cracking (SCC) behaviors and mechanisms of X80 pipeline steels with different strength and microstructure in high pH carbonate/bicarbonate solution were investigated by slow strain rate testing and electrochemical test. The results showed that the cracking mode of low strength X80 steel composed of bulky polygonal ferrite and granular bainite in high pH solution was intergranular (IGSCC), and the SCC mechanism was anodic dissolution (AD). While the mixed cracking mode of high strength X80 steel consisted of fine acicular ferrite and granular bainite was intergranular (IGSCC) in the early stage, and transgranular (TGSCC) in the later stage. The decrease of pH value of crack tip was probably the key reason for the occurrence of TGSCC. The SCC mechanism may be a mixed mode of AD and hydrogen embrittlement (HE), and the HE mechanism may play a significant role in the deep crack propagation at the later stage. The cracking modes and SCC mechanisms of the two X80 steels were associated with its microstructure and strength.

  6. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders

    DEFF Research Database (Denmark)

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni

    2015-01-01

    PURPOSE: The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. METHODS: A Danish national company-based historical cohort of 5,303 male ever...... was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95 % confidence intervals (CIs) were...... nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95 % CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95 % CI 1...

  7. Development of rock bolt grout and shotcrete for rock support and corrosion of steel in low-pH cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Anders (Vattenfall Power Consultant AB, Vaellingby (Sweden)); Pettersson, Stig (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2011-04-15

    It is foreseen that cementitious products will be utilized in the construction of the final repository. The use of conventional cementitious material creates pulses in the magnitude of pH 12.13 in the leachates and release alkalis. Such a high pH is detrimental mainly to impairment of bentonite functioning, but also to possibly enhanced dissolution of spent fuel and alteration of fracture filling materials. It also complicates the safety analysis of the repository, as the effect of a high pH-plume should be considered in the evaluation. As no reliable pH-plume models exist, the use of products giving a pH below 11 in the leachates facilitates the safety analysis, although limiting the amount of low-pH cement is recommended. In earlier studies it was found that shotcreting, standard casting and rock bolting with low-pH cement (pH . 11 in the leachate) should be possible without any major development work. This report summarizes the results of development work done during 2008 and 2009 in the fields of low-pH rock bolt grout, low-pH shotcrete and steel corrosion in low-pH concrete. Development of low-pH rock bolt grout mixes and laboratory testing of the selected grout was followed by installation of twenty rock bolts for rock support at Aspo HRL using the chosen low-pH grout. The operation was successful and the bolts and grout are subject to follow up the next ten years. Low-pH shotcrete for rock support was initially developed within the ESDRED project, which was an Integrated Project within the European Commission sixth framework for research and technological development. ESDRED is an abbreviation for Engineering Studies and Demonstrations of Repository Designs. ESDRED was executed from 1st February 2004 to 31st January 2009. The development of the mix design described in this report was based on the results from ESDRED. After laboratory testing of the chosen mix, it was field tested in niche NASA 0408A at Aspo HRL. Further, some areas in the TASS-tunnel were

  8. Development of rock bolt grout and shotcrete for rock support and corrosion of steel in low-pH cementitious materials

    International Nuclear Information System (INIS)

    Boden, Anders; Pettersson, Stig

    2011-04-01

    It is foreseen that cementitious products will be utilized in the construction of the final repository. The use of conventional cementitious material creates pulses in the magnitude of pH 12.13 in the leachates and release alkalis. Such a high pH is detrimental mainly to impairment of bentonite functioning, but also to possibly enhanced dissolution of spent fuel and alteration of fracture filling materials. It also complicates the safety analysis of the repository, as the effect of a high pH-plume should be considered in the evaluation. As no reliable pH-plume models exist, the use of products giving a pH below 11 in the leachates facilitates the safety analysis, although limiting the amount of low-pH cement is recommended. In earlier studies it was found that shotcreting, standard casting and rock bolting with low-pH cement (pH . 11 in the leachate) should be possible without any major development work. This report summarizes the results of development work done during 2008 and 2009 in the fields of low-pH rock bolt grout, low-pH shotcrete and steel corrosion in low-pH concrete. Development of low-pH rock bolt grout mixes and laboratory testing of the selected grout was followed by installation of twenty rock bolts for rock support at Aspo HRL using the chosen low-pH grout. The operation was successful and the bolts and grout are subject to follow up the next ten years. Low-pH shotcrete for rock support was initially developed within the ESDRED project, which was an Integrated Project within the European Commission sixth framework for research and technological development. ESDRED is an abbreviation for Engineering Studies and Demonstrations of Repository Designs. ESDRED was executed from 1st February 2004 to 31st January 2009. The development of the mix design described in this report was based on the results from ESDRED. After laboratory testing of the chosen mix, it was field tested in niche NASA 0408A at Aspo HRL. Further, some areas in the TASS-tunnel were

  9. Effect of pH Value on the Electrochemical and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in the Dilute Bicarbonate Solutions

    Science.gov (United States)

    Cui, Z. Y.; Liu, Z. Y.; Wang, L. W.; Ma, H. C.; Du, C. W.; Li, X. G.; Wang, X.

    2015-11-01

    In this work, effects of pH value on the electrochemical and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the dilute bicarbonate solutions were investigated using electrochemical measurements, slow strain rate tensile tests and surface analysis techniques. Decrease of the solution pH from 6.8 to 6.0 promotes the anodic dissolution and cathodic reduction simultaneously. Further decrease of the pH value mainly accelerates the cathodic reduction of X70 pipeline steel. As a result, when the solution pH decreases form 6.8 to 5.5, SCC susceptibility decreases because of the enhancement of the anodic dissolution. When the solution pH decreases from 5.5 to 4.0, SCC susceptibility increases gradually because of the acceleration of cathodic reactions.

  10. Age-hardening susceptibility of high-Cr ODS ferritic steels and SUS430 ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongsheng, E-mail: chen.dongsheng85@gmail.com [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko; Han, Wentuo; Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2015-10-15

    Highlights: • The role of oxide particles in α/α′ phase decomposition behavior; microstructure of phase decomposition observed by TEM. • The characteristics of ductility loss caused by age-hardening. • Correlation of phase decomposition and age-hardening explained by dispersion strengthened models. • Age-hardening susceptibility of ODS steels and SUS430 steel. - Abstract: The effect of aging on high-Cr ferritic steels was investigated with focusing on the role of oxide particles in α/α′ phase decomposition behavior. 12Cr-oxide dispersion strengthened (ODS) steel, 15Cr-ODS steel and commercial SUS430 steel were isothermally aged at 475 °C for up to 10,000 h. Thermal aging caused a larger hardening in SUS430 than 15Cr-ODS, while 12Cr-ODS showed almost no hardening. A characteristic of the ODS steels is that the hardening was not accompanied by the significant loss of ductility that was observed in SUS430 steel. After aging for 2000 h, SUS430 steel shows a larger ductile–brittle transition temperature (DBTT) shift than 15Cr-ODS steel, which suggests that the age-hardening susceptibility is lower in 15Cr-ODS steel than in conventional SUS430 steel. Thermal aging leaded to a large number of Cr-rich α′ precipitates, which were confirmed by transmission electron microscopy (TEM). Correlation of age-hardening and phase decomposition was interpreted by Orowan type strengthening model. Results indicate that oxide particles cannot only suppress ductility loss, but also may influence α/α′ phase decomposition kinetics.

  11. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    during forming resulting in seizure of the tool/steel sheet contact and extensive scratching of the steel sheet surface. As a result, a number of concepts have been developed in order to reduce the tendency to galling in metal forming, including the development of new dry lubricants, new forming tool...... steel grades and improved surface engineering treatments such as the deposition of low friction CVD and PVD coatings. In the present study the performance of a hot-melt dry lubricant in the forming of hot and cold rolled and hot-dip galvanized high strength steel has been evaluated and compared...... with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated...

  12. Tribological Behavior of TiC/a-C : H-Coated and Uncoated Steels Sliding Against Phenol-Formaldehyde Composite Reinforced with PTFE and Glass Fibers

    NARCIS (Netherlands)

    Shen, J.T.; Pei, Y.T.; Hosson, J.Th.M. De

    2013-01-01

    Tribological experiments on phenol-formaldehyde composite reinforced with polytetrafluoroethylene (PTFE) and glass fibers were performed against 100Cr6 steel and TiC/a-C:H thin film-coated 100Cr6 steel. In both cases, the coefficient of friction increases with increasing sliding distance until a

  13. Transdifferentiated rat pancreatic progenitor cells (AR42J-B13/H) respond to phenobarbital in a rat hepatocyte-specific manner.

    Science.gov (United States)

    Osborne, M; Haltalli, M; Currie, R; Wright, J; Gooderham, N J

    2016-07-01

    Phenobarbital (PB) is known to produce species-specific effects in the rat and mouse, being carcinogenic in certain mouse strains, but only in rats if treated after a DNA damaging event. PB treatment in the rat and mouse also produces disparate effects on cell signalling and miRNA expression profiles. These responses are induced by short term and prolonged PB exposure, respectively, with the latter treatments being difficult to examine mechanistically in primary hepatocytes due to rapid loss of the original hepatic phenotype and limited sustainability in culture. Here we explore the rat hepatocyte-like B13/H cell line as a model for hepatic response to PB exposure in both short-term and longer duration treatments. We demonstrate that PB with Egf treatment in the B13/H cells resulted in a significant increase in Erk activation, as determined by the ratio of phospho-Erk to total Erk, compared to Egf alone. We also show that an extended treatment with PB in the B13/H cells produces a miRNA response similar to that seen in the rat in vivo, via the time-dependent induction of miR-182/96. Additionally, we confirm that B13/H cells respond to Car activators in a typical rat-specific manner. These data suggest that the B13/H cells produce temporal responses to PB that are comparable to those reported in short-term primary rat hepatocyte cultures and in the longer term are similar to those in the rat in vivo. Finally, we also show that Car-associated miR-122 expression is decreased by PB treatment in B13/H cells, a PB-induced response that is common to the rat, mouse and human. We conclude that the B13/H cell system produces a qualitative response comparable to the rat, which is different to the response in the mouse, and that this model could be a useful tool for exploring the functional consequences of PB-sensitive miRNA changes and resistance to PB-mediated tumours in the rat. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  15. Laser transformation hardening effect on hardening zone features and surface hardness of tool steel AISI D2

    Directory of Open Access Journals (Sweden)

    D. Lesyk

    2017-06-01

    Full Text Available The relationship of technological input regimes of the laser transformation hardening on change the hardening depth, hardening width, and hardening angle, as well as surface hardness of the tool steel AISI D2 using multifactor experiment with elements of the analysis of variance and regression equations was determined. The laser transformation hardening process implemented by controlling the heating temperature using Nd:YAG fiber laser with scanner, pyrometer and proportional-integral-differential controller. The linear and quadratic regression models are developed, as well as response surface to determine the effect of the heating temperature and feed rate of the treated surface on the energy density of the laser beam, hardening depths, hardening width, hardening angle, and surface hardness are designed. The main effect on the energy density of the laser beam has a velocity laser treatment, on the other hand, the main effect on the geometrical parameters of the laser hardened zone and surface hardness has temperature heating are shown. The optimum magnitudes of the heating temperature (1270 °C and feed rate of the treated surface (90 mm/min for laser transformation hardening of the tool steel AISI D2 using fiber laser with scanner were defined.

  16. Inactivation of Escherichia coli O157:H7 on stainless steel upon exposure to Paenibacillus polymyxa biofilms.

    Science.gov (United States)

    Kim, Seonhwa; Bang, Jihyun; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon

    2013-11-01

    We investigated the potential use of biofilm formed by a competitive-exclusion (CE) microorganism to inactivate Escherichia coli O157:H7 on a stainless steel surface. Five microorganisms showing inhibitory activities against E. coli O157:H7 were isolated from vegetable seeds and sprouts. The microorganism with the greatest antimicrobial activity was identified as Paenibacillus polymyxa (strain T5). In tryptic soy broth (TSB), strain T5 reached a higher population at 25 °C than at 12 or 37 °C without losing inhibitory activity against E. coli O157:H7. When P. polymyxa (6 log CFU/mL) was co-cultured with E. coli O157:H7 (2, 3, 4, or 5 log CFU/mL) in TSB at 25 °C, the number of E. coli O157:H7 decreased significantly within 24h. P. polymyxa formed a biofilm on stainless steel coupons (SSCs) in TSB at 25 °C within 24h, and cells in biofilms, compared to attached cells without biofilm formation, showed significantly increased resistance to a dry environment (43% relative humidity [RH]). With the exception of an inoculum of 4 log CFU/coupon at 100% RH, upon exposure to biofilm formed by P. polymyxa on SSCs, populations of E. coli O157:H7 (2, 4, or 6 log CFU/coupon) were significantly reduced within 48 h. Most notably, when E. coli O157:H7 at 2 log CFU/coupon was applied to SSCs on which P. polymyxa biofilm had formed, it was inactivated within 1h, regardless of RH. These results will be useful when developing strategies using biofilms produced by competitive exclusion microorganisms to inactivate foodborne pathogens in food processing environments. © 2013.

  17. Detailed 1H and 13C NMR spectral data assignment for two dihydrobenzofuran neolignans

    International Nuclear Information System (INIS)

    Medeiros, Talita C.T.; Dias, Herbert J.; Crotti, Antônio E.M.

    2016-01-01

    In this work we present a complete proton ( 1 H) and carbon 13 ( 13 C) nuclear magnetic resonance (NMR) spectral analysis of two synthetic dihydrofuran neolignans (±)-trans-dehydrodicoumarate dimethyl ester and (±)-trans-dehydrodiferulate dimethyl ester. Unequivocal assignments were achieved by 1 H NMR, proton decoupled 13 C ( 13 C{ 1 H}) NMR spectra, gradient-selected correlation spectroscopy (gCOSY), J-resolved, gradient-selected heteronuclear multiple quantum coherence (gHMQC), gradient-selected heteronuclear multiple bond coherence (gHMBC) and nuclear Overhauser effect spectroscopy (NOESY) experiments. All hydrogen coupling constants were measured, clarifying all the hydrogen signals multiplicities. Computational methods were also used to simulate the 1 H and 13 C chemical shifts and showed good agreement with the trans configuration of the substituents at C 7 and C 8 . (author)

  18. Thermal stability of manganese-stabilized stainless steels

    International Nuclear Information System (INIS)

    Klueh, R.L.; Kenik, E.A.

    1993-01-01

    Previous work on a series of experimental high-manganese reduced-activation austenitic stainless steels demonstrated that they have improved tensile properties relative to type 316 stainless steel in both the annealed and 20% cold-worked conditions. Steels were tested with an Fe-20Mn-12Cr-0.25C (in weight percent) base composition, to which various combinations of Ti, W, V, P, and B were added. Tensile tests have now been completed on these steels after thermal aging at 600 degrees C. Thermal stability varied with composition, but the alloys were as stable or more stable than type 316 stainless steel. the strength of the annealed steels increased slightly after aging to 5000 h, while a strength decrease occurred for the cold worked steel. In both conditions, a steel containing a combination of all the alloying elements was most stable and had the best strength after thermal aging 5000 h at 600 degrees C. Despite having much higher strength than 316 stainless steel after aging, the ductility of the strongest experimental alloy was still as good as that of 316 stainless steel

  19. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage.

    Science.gov (United States)

    Mayes, W M; Aumônier, J; Jarvis, A P

    2009-01-01

    High pH (> 12) leachates are an environmental problem associated with drainage from lime (CaO)-rich industrial residues such as steel slags, lime spoil and coal combustion residues. Recent research has highlighted the potential for natural ('volunteer') wetlands to buffer extremely alkaline influent waters. This appears ascribable to high CO(2) partial pressures in the wetland waters from microbial respiration, which accelerates precipitation of calcium carbonate (CaCO(3)), and the high specific surface area for mineral precipitation offered by macrophytes. The research presented here builds on this and provides preliminary evaluation of a constructed wetland built in March 2008 to buffer drainage from steel slag heaps in north-east England. The drainage water from the slag mounds is characterised by a mean pH of 11.9, high concentrations of Ca (up to 700 mg/L), total alkalinity (up to 800 mg/L as CaCO(3)) and are slightly brackish (Na = 300 mg/L; Cl = 400 mg/L) reflecting native groundwaters at this coastal setting. Documented calcite precipitation rates (mean of 5 g CaCO(3)/m(2)/day) from nearby volunteer sites receiving steel slag drainage were used to scale the constructed wetland planted with Phragmites australis; a species found to spontaneously grow in the vicinity of the discharge. Improved performance of the wetland during summer months may at least in part be due to biological activity which enhances rates of calcite precipitation and thus lowering of pH. Secondary Ca-rich precipitates also serve as a sink for some trace elements present at low concentrations in the slag leachate such as Ni and V. The implications for scaling and applying constructed wetlands for highly alkaline drainage are discussed.

  20. Isatin derivatives as a non-toxic corrosion inhibitor for mild steel in 20% H2SO4

    International Nuclear Information System (INIS)

    Ansari, K.R.; Quraishi, M.A.; Singh, Ambrish

    2015-01-01

    Highlights: • Mild steel protection in 20% H 2 SO 4 by TZs. • Potentiodynamic polarization curves reveal that the actions of TZs are mixed type but cathodically predominant. • The adsorption of TZs obeys the Langmuir adsorption isotherm. • Examination of surface morphology by SEM and EDX. • Correlation between experimental and quantum chemical results. - Abstract: The corrosion inhibition action of Isatin-β-thiosemicarbzone derivatives namely 1-Benzylidene-5-(2-oxoindoline-3-ylidene) Thiocarbohydrazone (TZ-1) and 1-(4-Methylbenzylidene)-5-(2-oxoindolin-3-ylidene) Thiocarbohydrazone (TZ-2) was studied on mild steel surface in 20% H 2 SO 4 by gravimetric measurements, Electrochemical measurements (EIS and Tafel), SEM, EDX and quantum chemical methods. Potentiodynamic polarization curves reveal that the TZs act as mixed type inhibitors exhibiting predominantly cathodic behavior. The adsorption of TZs obeys the Langmuir adsorption isotherm. The thermodynamic parameters (E a , K ads , ΔG° ads ) were also computed and discussed