WorldWideScience

Sample records for h-mode coupled cavity

  1. Development of superconducting crossbar-H-mode cavities for proton and ion accelerators

    Directory of Open Access Journals (Sweden)

    F. Dziuba

    2010-04-01

    Full Text Available The crossbar-H-mode (CH structure is the first superconducting multicell drift tube cavity for the low and medium energy range operated in the H_{21} mode. Because of the large energy gain per cavity, which leads to high real estate gradients, it is an excellent candidate for the efficient acceleration in high power proton and ion accelerators with fixed velocity profile. A prototype cavity has been developed and tested successfully with a gradient of 7  MV/m. A few new superconducting CH cavities with improved geometries for different high power applications are under development at present. One cavity (f=325  MHz, β=0.16, seven cells is currently under construction and studied with respect to a possible upgrade option for the GSI UNILAC. Another cavity (f=217  MHz, β=0.059, 15 cells is designed for a cw operated energy variable heavy ion linac application. Furthermore, the EUROTRANS project (European research program for the transmutation of high level nuclear waste in an accelerator driven system, 600 MeV protons, 352 MHz is one of many possible applications for this kind of superconducting rf cavity. In this context a layout of the 17 MeV EUROTRANS injector containing four superconducting CH cavities was proposed by the Institute for Applied Physics (IAP Frankfurt. The status of the cavity development related to the EUROTRANS injector is presented.

  2. The influence of gas pressure on E↔H mode transition in argon inductively coupled plasmas

    Science.gov (United States)

    Zhang, Xiao; Zhang, Zhong-kai; Cao, Jin-xiang; Liu, Yu; Yu, Peng-cheng

    2018-03-01

    Considering the gas pressure and radio frequency power change, the mode transition of E↔H were investigated in inductively coupled plasmas. It can be found that the transition power has almost the same trend decreasing with gas pressure, whether it is in H mode or E mode. However, the transition density increases slowly with gas pressure from E to H mode. The transition points of E to H mode can be understood by the propagation of electromagnetic wave in the plasma, while the H to E should be illustrated by the electric field strength. Moreover, the electron density, increasing with the pressure and power, can be attributed to the multiple ionization, which changes the energy loss per electron-ion pair created. In addition, the optical emission characteristics in E and H mode is also shown. The line ratio of I750.4 and I811.5, taken as a proxy of the density of metastable state atoms, was used to illustrate the hysteresis. The 750.4 nm line intensity, which has almost the same trend with the 811.5 nm line intensity in H mode, both of them increases with power but decreases with gas pressure. The line ratio of 811.5/750.4 has a different change rule in E mode and H mode, and at the transition point of H to E, it can be one significant factor that results in the hysteresis as the gas pressure change. And compared with the 811.5 nm intensity, it seems like a similar change rule with RF power in E mode. Moreover, some emitted lines with lower rate constants don't turn up in E mode, while can be seen in H mode because the excited state atom density increasing with the electron density.

  3. Observation of inverse hysteresis in the E to H mode transitions in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Lee, Min-Hyong; Chung, Chin-Wook

    2010-01-01

    An inverse hysteresis is observed during the E mode to H mode transition in low pressure argon inductively coupled plasmas. The transition is accompanied by an evolution of electron energy distribution from the bi-Maxwellian to the Maxwellian distribution. The mechanism of this inversion is not clear. However, we think that the bi-Maxwellian electron energy distribution in E mode, where the proportion of high energy electron is much higher than the Maxwellian distribution, would be one of the reasons for the observed inverse hysteresis. As the gas pressure increases, the inverse hysteresis disappears and the E to H mode transition follows the scenario of usual hysteresis.

  4. Coupling of an ICRF compact loop antenna to H-mode plasmas in DIII-D

    International Nuclear Information System (INIS)

    Mayberry, M.J.; Baity, F.W.; Hoffman, D.J.; Luxon, J.L.; Owens, T.L.; Prater, R.

    1987-01-01

    Low power coupling tests have been carried out with a prototype ICRF compact loop antenna on the DIII-D tokamak. During neutral-beam-heated L-mode discharges the antenna loading is typically R≅1-2Ω for an rf frequency of 32 MHz (B/sub T/ = 21 kG, ω = 2Ω/sub D/(0)). When a transition into the H-mode regime of improved confinement occurs, the loading drops to R≅0.5-1.0Ω. During ELMs, transient increases in loading up to several Ohms are observed. The apparent sensitivity of ICRF antenna coupling to changes in the edge plasma profiles associated with the H-mode regime could have important implications for the design of future high power systems

  5. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    International Nuclear Information System (INIS)

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-01-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N 2 -Ar and O 2 -Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N 2 -Ar and O 2 -Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N 2 -Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O 2 -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O 2 -Ar discharges, the dissociation fraction of O 2 molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  6. Single and Coupled Nanobeam Cavities

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry M.

    2013-01-01

    for analysis and design of photonic crystal devices, such as 2D ring resonators for filters, single and coupled nanobeam cavities, birefringence in photonic crystal cavities, threshold analysis in photonic crystal lasers, gap solitons in photonic crystals, novel photonic atolls, dynamic characteristics...

  7. Development of Side Coupled Cavities

    International Nuclear Information System (INIS)

    Conto, J.M. de; Carretta, J.M.; Gomez-Martinez, Y.; Micoud, R.

    2008-01-01

    Side coupled Cavities are good candidates for proton accelerations in the 90-180 MeV range, as it has been first proposed for the CERN LINAC4 project. A side coupled Linac is made of a lump chain of resonant cavities, alternatively accelerating and coupling. A side coupled cavity has been designed in a CERN-LPSC collaboration to achieve LINAC4 requirements. After RF studies, a complete thermal study has been done, showing that 10-15% is the absolute maximum duty-cycle achievable by such a cavity. Error studies have been developed. They have shown that a tuning ring is mandatory and that a K equals 3% coupling factor is a good choice. A prototype has been built and each cell has been measured and tuned. A simple and accurate method has been used to get both the resonant frequency and the coupling factor, with a movable tuner and a linear fit. A similar method has been used to get the second order coupling factor. A large dispersion is observed on K. This is mainly due to the shape of the coupling apertures, which are very sensitive to mechanical errors. A future and realistic design must be very careful to guarantee a constant aperture (the important parameter is more the dispersion of k than its exact value). Finally, we analyse how to tune the cavity. This has to checked carefully and probably improved or corrected. Results are expected for mid-2008

  8. Optically coupled cavities for wavelength switching

    Energy Technology Data Exchange (ETDEWEB)

    Costazo-Caso, Pablo A; Granieri, Sergio; Siahmakoun, Azad, E-mail: pcostanzo@ing.unlp.edu.ar, E-mail: granieri@rose-hulman.edu, E-mail: siahmako@rose-hulman.edu [Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Avenue, Terre Haute, IN 47803 (United States)

    2011-01-01

    An optical bistable device which presents hysteresis behavior is proposed and experimentally demonstrated. The system finds applications in wavelength switching, pulse reshaping and optical bistability. It is based on two optically coupled cavities named master and slave. Each cavity includes a semiconductor optical amplifier (SOA), acting as the gain medium of the laser, and two pair of fiber Bragg gratings (FBG) which define the lasing wavelength (being different in each cavity). Finally, a variable optical coupler (VOC) is employed to couple both cavities. Experimental characterization of the system performance is made analyzing the effects of the coupling coefficient between the two cavities and the driving current in each SOA. The properties of the hysteretic bistable curve and switching can be controlled by adjusting these parameters and the loss in the cavities. By selecting the output wavelength ({lambda}{sub 1} or {lambda}{sub 2}) with an external filter it is possible to choose either the invert or non-invert switched signal. Experiments were developed employing both optical discrete components and a photonic integrated circuit. They show that for 8 m-long cavities the maximum switching frequency is about 500 KHz, and for 4 m-long cavities a minimum rise-time about 21 ns was measured. The switching time can be reduced by shortening the cavity lengths and using photonic integrated circuits.

  9. H-mode physics

    International Nuclear Information System (INIS)

    Itoh, Sanae.

    1991-06-01

    After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)

  10. Dispersion of coupled mode-gap cavities

    NARCIS (Netherlands)

    Lian, Jin; Sokolov, Sergei; Yuce, E.; Combrie, S.; de Rossi, A.; Mosk, Allard

    2015-01-01

    The dispersion of a coupled resonator optical waveguide made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the inherent dispersive cavity

  11. Coupling of an overdriven cavity

    International Nuclear Information System (INIS)

    Garbin, H.D.

    1993-01-01

    It is well known that when a nuclear test is conducted in a sufficiently large cavity, the resulting seismic signal is sharply reduced when compared to a normal tamped event. Cavity explosions are of interest in the seismic verification community because of this possibility of reducing the seismic energy generated which can lower signal amplitudes and make detection difficult. Reduced amplitudes would also lower seismic yield estimates which has implications in a Threshold Test Ban Treaty (TTBT). In the past several years, there have been a number of nuclear tests at NTS (Nevada Test Site) inside hemispherical cavities. Two such tests were MILL YARD and MISTY ECHO which had instrumentation at the surface and in the free-field. These two tests differ in one important aspect. MILL YARD was completely decoupled i.e., the cavity wall behaved in an elastic manner. It was estimated that MILL YARD's ground motion was reduced by a factor of at least 70. In contrast, MISTY ECHO was detonated in a hemispherical cavity with the same dimensions as MILL YARD, but with a much larger device yield. This caused an inelastic behavior on the wall and the explosion was not fully decoupled

  12. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    in the quadratic lattice. Processing techniques are developed and optimized in order fabricate photonic crystals membranes in gallium arsenide with quantum dots as gain medium and in indium gallium arsenide phosphide with quantum wells as gain medium. Several key issues in process to ensure good quality....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...... with quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity...

  13. Tunable coupled surface acoustic cavities

    Science.gov (United States)

    de Lima, M. M.; Santos, P. V.; Kosevich, Yu. A.; Cantarero, A.

    2012-06-01

    We demonstrate the electric tuning of the acoustic field in acoustic microcavities (MCs) defined by a periodic arrangement of metal stripes within a surface acoustic delay line on LiNbO3 substrate. Interferometric measurements show the enhancement of the acoustic field distribution within a single MC, the presence of a "bonding" and "anti-bonding" modes for two strongly coupled MCs, as well as the positive dispersion of the "mini-bands" formed by five coupled MCs. The frequency and amplitude of the resonances can be controlled by the potential applied to the metal stripes.

  14. Strategies for waveguide coupling for SRF cavities

    International Nuclear Information System (INIS)

    Doolittle, L.R.

    1998-01-01

    Despite widespread use of coaxial couplers in SRF cavities, a single, simple waveguide coupling can be used both to transmit generator power to a cavity, and to remove a large class of Higher Order Modes (HOMs, produced by the beam). There are balances and tradeoffs to be made, such as the coupling strength of the various frequencies, the transverse component of the coupler fields on the beam axis, and the magnitude of the surface fields and currents. This paper describes those design constraints, categories of solutions, and examples from the CEBAF Energy Upgrade studies

  15. Modeling of Coupled Nano-Cavity Lasers

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr

    -of-states and it is argued that Purcell enhancement should also be included in stimulated recombination term, contrary to the common practice in the literature. It is shown that for quantum well devices, the Purcell enhancement is effectively independent of the cavity quality factor due to the broad electronic density......-of-states relative to the optical density-of-states. The low effective Purcell eect for quantum well devices limits the highest possible modulation bandwidth to a few tens of gigahertz, which is comparable to the performance of conventional diode lasers. Compared to quantum well devices, quantum dot devices have...... is useful for design of coupled systems. A tight-binding description for coupled nanocavity lasers is developed and employed to investigate the phase-locking behavior for the system of two coupled cavities. Phase-locking is found to be critically dependent on exact parameter values and to be dicult...

  16. Orthogonal Coupling in Cavity BPM with Slots

    CERN Document Server

    Lipka, D; Siemens, M; Vilcins, S; Caspers, Friedhelm; Stadler, M; Treyer, DM; Maesaka, H; Shintake, T

    2009-01-01

    XFELs require high precision orbit control in their long undulator sections. Due to the pulsed operation of drive linacs the high precision has to be reached by single bunch measurements. So far only cavity BPMs achieve the required performance and will be used at the European XFEL, one between each of the up to 116 undulators. Coupling between the orthogonal planes limits the performance of beam position measurements. A first prototype build at DESY shows a coupling between orthogonal planes of about -20 dB, but the requirement is lower than -40 dB (1%). The next generation cavity BPM was build with tighter tolerances and mechanical changes, the orthogonal coupling is measured to be lower than -43 dB. This report discusses the various observations, measurements and improvements which were done.

  17. A Many-Atom Cavity QED System with Homogeneous Atom-Cavity Coupling

    OpenAIRE

    Lee, Jongmin; Vrijsen, Geert; Teper, Igor; Hosten, Onur; Kasevich, Mark A.

    2013-01-01

    We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.

  18. RF control studies for moderate beamtime coupling between SRF cavities

    International Nuclear Information System (INIS)

    Doolittle, L.R.; Wang, D.X.

    1998-01-01

    When an SRF accelerator is designed, there is motivation to move the cavities close together on the beamline. Assuming the beamline apertures are not shrunk as well, this compaction (which will increase the overall accelerating gradient and/or lower the dynamic cryogenic heat load) increases the inter-cavity coupling. Within certain limits, the control system can compensate for this coupling by retuning each of the cavities. This paper describes constraints on the RF system, tuners, couplers, and control systems that are required to provide stable operation of cavities in the presence of inter-cavity coupling that exceeds the loaded bandwidth of an individual cavity

  19. Long Josephson Junction Stack Coupled to a Cavity

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Pedersen, Niels Falsig; Groenbech-Jensen, N.

    2007-01-01

    A stack of inductively coupled long Josephson junctions are modeled as a system of coupled sine-Gordon equations. One boundary of the stack is coupled electrically to a resonant cavity. With one fluxon in each Josephson junction, the inter-junction fluxon forces are repulsive. We look at a possible...... transition, induced by the cavity, to a bunched state....

  20. Scheme for quantum state manipulation in coupled cavities

    Science.gov (United States)

    Lin, Jin-Zhong

    By controlling the parameters of the system, the effective interaction between different atoms is achieved in different cavities. Based on the interaction, scheme to generate three-atom Greenberger-Horne-Zeilinger (GHZ) is proposed in coupled cavities. Spontaneous emission of excited states and decay of cavity modes can be suppressed efficiently. In addition, the scheme is robust against the variation of hopping rate between cavities.

  1. Sub-threshold investigation of two coupled photonic crystal cavities

    DEFF Research Database (Denmark)

    Schubert, Martin; Frandsen, Lars Hagedorn; Skovgård, Troels Suhr

    2009-01-01

    The behavior of two coupled photonic crystal membrane cavities with quantum dots separated by different number of holes is investigated. The measured spectral splitting with increased coupling is verified by 3D calculations and discussed.......The behavior of two coupled photonic crystal membrane cavities with quantum dots separated by different number of holes is investigated. The measured spectral splitting with increased coupling is verified by 3D calculations and discussed....

  2. Reflectivity and transmissivity of a cavity coupled to a nanoparticle

    Science.gov (United States)

    Khan, M. A.; Farooq, K.; Hou, S. C.; Niaz, Shanawer; Yi, X. X.

    2014-07-01

    Any dielectric nanoparticle moving inside an optical cavity generates an optomechanical interaction. In this paper, we theoretically analyze the light scattering of an optomechanical cavity which strongly interacts with a dielectric nanoparticle. The cavity is driven by an external laser field. This interaction gives rise to different dynamics that can be used to cool, trap and levitate nanoparticle. We analytically calculate reflection and transmission rate of the cavity field, and study the time evolution of the intracavity field, momentum and position of the nanoparticle. We find the nanoparticle occupies a discrete position inside the cavity. This effect can be exploited to separate nanoparticle and couplings between classical particles and quantized fields.

  3. Controllable coupling of distributed qubits within a microtoroidal cavity network

    Science.gov (United States)

    Hu, C.; Xia, Y.; Song, J.

    2012-05-01

    We propose a scheme to control the coupling between two arbitrary atoms scattered within a quantum network composed of microtoroidal cavities linked by a ring-fibre. The atom-atom effective couplings are induced by pairing of off-resonant Raman transitions. The couplings can be arbitrarily controlled by adjusting classical fields. Compared with the previous scheme [S.B. Zheng, C.P. Yang, F. Nori, Phys. Rev. A 82, 042327 (2010)], the present scheme uses microtoroidal cavities with higher coupling efficiency than Fabry-Perot cavities. Furthermore, the scheme is not only suitable for the short-fibre limit, but also for multiple fibre modes. The added fibre modes can play a positive role, especially when the coupling rate between cavity-mode and fibre-mode is not large. In addition, a wider frequency domain of fibre modes can be used in this scheme.

  4. Reducing the asymmetry in coupled cavity of linear accelerator

    International Nuclear Information System (INIS)

    Wei Xianlin; Wu Congfeng

    2013-01-01

    Background: With the development of high energy physics, high performance of electron linear accelerator is required for large collider, FEL and high brightness synchrotron radiation light source. Structure asymmetry of single coupler destroys the symmetry of field distribution in coupled cavity, which reduces the quality of beam. Purpose: Optimize the asymmetry of field distribution in coupled cavity and improve the quality of beam. Methods: The simulation designs are made for single offset coupler, double symmetry coupler and the new coupler loaded by dielectric rods at X band by using CST microwave studio code. Results: The results show that the distribution of field in coupled cavity is better and all particles almost locate at the center of beam hole after beam passing through the coupler loaded by dielectric rods. The energy spread has also been significantly improved. Conclusions: The coupler loaded by dielectric rods can optimize the asymmetry of field distribution in coupled cavity and improve the quality of beam. (authors)

  5. Momentum diffusion for coupled atom-cavity oscillators

    International Nuclear Information System (INIS)

    Murr, K.; Maunz, P.; Pinkse, P. W. H.; Puppe, T.; Schuster, I.; Rempe, G.; Vitali, D.

    2006-01-01

    It is shown that the momentum diffusion of free-space laser cooling has a natural correspondence in optical cavities when the internal state of the atom is treated as a harmonic oscillator. We derive a general expression for the momentum diffusion, which is valid for most configurations of interest: The atom or the cavity or both can be probed by lasers, with or without the presence of traps inducing local atomic frequency shifts. It is shown that, albeit the (possibly strong) coupling between atom and cavity, it is sufficient for deriving the momentum diffusion to consider that the atom couples to a mean cavity field, which gives a first contribution, and that the cavity mode couples to a mean atomic dipole, giving a second contribution. Both contributions have an intuitive form and present a clear symmetry. The total diffusion is the sum of these two contributions plus the diffusion originating from the fluctuations of the forces due to the coupling to the vacuum modes other than the cavity mode (the so-called spontaneous emission term). Examples are given that help to evaluate the heating rates induced by an optical cavity for experiments operating at low atomic saturation. We also point out intriguing situations where the atom is heated although it cannot scatter light

  6. A novel bridge coupler for SSC coupled cavity linac

    International Nuclear Information System (INIS)

    Yao, C.G.; Chang, C.R.; Funk, W.

    1992-01-01

    A novel magnetically coupled multi-cavity bridge coupler is proposed for SSC Coupled-Cavity-Linac (CCL). The bridge coupler is a five cell disc-loaded waveguide with a small central aperture used for measurement and two large curved coupling slots near the edge on each disc. The two coupling slots on the adjacent disc are rotated 90 degrees in orientation to reduce the direct coupling. This type of structure is capable of producing very large coupling (>10% in our longest bridge coupler). Also because of the small opening on the discs, the high-order-modes are very far (> 300 MHz) above the operating mode. Thus for long bridge couplers, the magnetic coupled structure should provide maximum coupling with minimum mode mixing problems. In this paper both physics and engineering issues of this new bridge coupler are presented. (Author) 5 refs., 2 tabs., 6 figs

  7. Quench dynamics of a disordered array of dissipative coupled cavities.

    Science.gov (United States)

    Creatore, C; Fazio, R; Keeling, J; Türeci, H E

    2014-09-08

    We investigate the mean-field dynamics of a system of interacting photons in an array of coupled cavities in the presence of dissipation and disorder. We follow the evolution of an initially prepared Fock state, and show how the interplay between dissipation and disorder affects the coherence properties of the cavity emission, and show that these properties can be used as signatures of the many-body phase of the whole array.

  8. Tunneling effect in cavity-resonator-coupled arrays

    International Nuclear Information System (INIS)

    Ma Hua; Xu Zhuo; Qu Shao-Bo; Zhang Jie-Qiu; Wang Jia-Fu; Liang Chang-Hong

    2013-01-01

    The quantum tunneling effect (QTE) in a cavity-resonator-coupled (CRC) array was analytically and numerically investigated. The underlying mechanism was interpreted by treating electromagnetic waves as photons, and then was generalized to acoustic waves and matter waves. It is indicated that for the three kinds of waves, the QTE can be excited by cavity resonance in a CRC array, resulting in sub-wavelength transparency through the narrow splits between cavities. This opens up opportunities for designing new types of crystals based on CRC arrays, which may find potential applications such as quantum devices, micro-optic transmission, and acoustic manipulation. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. HFSS Simulation on Cavity Coupling for Axion Detecting Experiment

    CERN Document Server

    Yeo, Beomki

    2015-01-01

    In the resonant cavity experiment, it is vital maximize signal power at detector with the minimized reflection from source. Return loss is minimized when the impedance of source and cavity are matched to each other and this is called impedance matching. Establishing tunable antenna on source is required to get a impedance matching. Geometry and position of antenna is varied depending on the electromagnetic eld of cavity. This research is dedicated to simulation to nd such a proper design of coupling antenna, especially for axion dark matter detecting experiment. HFSS solver was used for the simulation.

  10. Coupled superconducting resonant cavities for a heavy ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W [Argonne National Lab., IL (United States); Roy, A [Nuclear Science Center, New Delhi (India)

    1992-11-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs.

  11. Coupled superconducting resonant cavities for a heavy ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.

    1992-01-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs

  12. Study on characteristics of coupled cavity chain filled with plasma

    International Nuclear Information System (INIS)

    Li Jianqing; Xiao Shu; Mo Yuanlong

    2003-01-01

    In this paper, by using rigorous field analysis, a coupled-cavity (CC) chain filled with plasma has been analyzed. How the hybrid wave between the cavity mode and plasma mode is formed has been studied. The periodical CC chain filled with plasma demonstrates periodical TG modes with a cutoff frequency of zero. When the plasma density increase to a large scale, the cavity mode of the CC chain overlaps the TG mode, these two modes couple with each other and form the hybrid modes. In the case of hybrid modes, the 'cold' bandwidth and the 'warm' bandwidth expand, and the coupled impedance increases about 5 times larger than that of the vacuum. As a whole, the slow wave characteristics are improved substantially due to the formation of the hybrid mode

  13. Slot-coupled CW standing wave accelerating cavity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shaoheng; Rimmer, Robert; Wang, Haipeng

    2017-05-16

    A slot-coupled CW standing wave multi-cell accelerating cavity. To achieve high efficiency graded beta acceleration, each cell in the multi-cell cavity may include different cell lengths. Alternatively, to achieve high efficiency with acceleration for particles with beta equal to 1, each cell in the multi-cell cavity may include the same cell design. Coupling between the cells is achieved with a plurality of axially aligned kidney-shaped slots on the wall between cells. The slot-coupling method makes the design very compact. The shape of the cell, including the slots and the cone, are optimized to maximize the power efficiency and minimize the peak power density on the surface. The slots are non-resonant, thereby enabling shorter slots and less power loss.

  14. Superstrong coupling of thin film magnetostatic waves with microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xufeng; Tang, Hong X., E-mail: hong.tang@yale.edu [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States); Zou, Changling [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States); Jiang, Liang [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2016-01-14

    We experimentally demonstrated the strong coupling between a microwave cavity and standing magnetostatic magnon modes in a yttrium iron garnet film. Such strong coupling can be observed for various spin wave modes under different magnetic field bias configurations, with a coupling strength inversely proportional to the transverse mode number. A comb-like spectrum can be obtained from these high order modes. The collectively enhanced magnon-microwave photon coupling strength is comparable with the magnon free spectral range and therefore leads to the superstrong coupling regime. Our findings pave the road towards designing a new type of strongly hybridized magnon-photon system.

  15. Coupling to fast MHD eigenmodes in a toroidal cavity

    International Nuclear Information System (INIS)

    Paoloni, F.J.

    1975-05-01

    The coupling to fast MHD waves in toroidal-like geometry is calculated when eigenmodes exist in the plasma. The torus is considered to be a resonant cavity into which energy is coupled by a half turn loop. The cavity Q is calculated for the minority heating process, for cyclotron harmonic damping, electron transit-time magnetic pumping, wall loading, and Coulomb collisional damping. The problem of sustaining the eigenmode as the plasma conditions change with time is also discussed. One method that seems to be practical is a feedback scheme that varies the plasma major radius by a small amount as the conditions change. (U.S.)

  16. Analytical solutions in the two-cavity coupling problem

    International Nuclear Information System (INIS)

    Ayzatsky, N.I.

    2000-01-01

    Analytical solutions of precise equations that describe the rf-coupling of two cavities through a co-axial cylindrical hole are given for various limited cases.For their derivation we have used the method of solution of an infinite set of linear algebraic equations,based on its transformation into dual integral equations

  17. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  18. Deflecting modes of the side-coupled cavity structure

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Shigemi.

    1990-11-01

    The deflecting modes of the 805 MHz side-coupled cavity structure with the relativistic factor 0.566 are studied. Our main concern is the dispersion properties among different configurations of side-coupling cells and their interpretations. It is shown that the ninety degree side-coupling cell configuration, so to speak, the Mickey Mouse configuration has a merit in reducing the HEM{sub 1} passband. Another concern is the magnitude of the transverse coupling impedance around the synchronization condition. It is shown that the existence of the coupling cell introduces the nonuniformity of the deflecting mode and gives different impedance relative to the beam axis and that the coupling impedance at {pi}/10 exceeds 50 M{Omega}/m if the quality value of the mode is around 12000.

  19. Deflecting modes of the side-coupled cavity structure

    International Nuclear Information System (INIS)

    Inagaki, Shigemi.

    1990-11-01

    The deflecting modes of the 805 MHz side-coupled cavity structure with the relativistic factor 0.566 are studied. Our main concern is the dispersion properties among different configurations of side-coupling cells and their interpretations. It is shown that the ninety degree side-coupling cell configuration, so to speak, the Mickey Mouse configuration has a merit in reducing the HEM 1 passband. Another concern is the magnitude of the transverse coupling impedance around the synchronization condition. It is shown that the existence of the coupling cell introduces the nonuniformity of the deflecting mode and gives different impedance relative to the beam axis and that the coupling impedance at π/10 exceeds 50 MΩ/m if the quality value of the mode is around 12000

  20. Superconducting Super Collider Laboratory coupled-cavity linac mechanical design

    International Nuclear Information System (INIS)

    Starling, W.J.; Cain, T.

    1992-01-01

    A collaboration between the Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) for the engineering and mechanical design of the SSCL Coupled-Cavity Linac (CCL) has yielded an innovative example of the well known side coupled-cavity type of linear accelerator. The SSCL CCL accelerates an H - beam from 70 MeV to 600 MeV with an rf cavity structure consisting of eight tanks in each of nine modules for a total length of about 112 meters. Magnetically-coupled bridge couplers transfer power from tank to tank within a module. A single rf power input is located at the center bridge coupler of each module. The bridge couplers permit placement along the beam line of combined function focusing/steering electromagnets and diagnostic pods for beam instrumentation. Each tank and bridge coupler is rf frequency stabilized, nominally to 1,283 MHz, by water pumped through integral water passages. Air isolation grooves surround the water passages at each braze joint so that water-to-vacuum interfaces are avoided. Each tank is supported by adjustable spherical bearing rod end struts to permit alignment and accommodate thermal expansion and contraction of the rf structure. Tank struts, electromagnet/diagnostic pod support frames, vacuum manifolds and utilities are all mounted to a girder-and-leg support stand running the full length of the CCL. (Author) tab., fig

  1. Novel Ion Trap Design for Strong Ion-Cavity Coupling

    Directory of Open Access Journals (Sweden)

    Alejandro Márquez Seco

    2016-04-01

    Full Text Available We present a novel ion trap design which facilitates the integration of an optical fiber cavity into the trap structure. The optical fibers are confined inside hollow electrodes in such a way that tight shielding and free movement of the fibers are simultaneously achievable. The latter enables in situ optimization of the overlap between the trapped ions and the cavity field. Through numerical simulations, we systematically analyze the effects of the electrode geometry on the trapping characteristics such as trap depths, secular frequencies and the optical access angle. Additionally, we simulate the effects of the presence of the fibers and confirm the robustness of the trapping potential. Based on these simulations and other technical considerations, we devise a practical trap configuration that isviable to achieve strong coupling of a single ion.

  2. Imaging and tuning of coupled photonic crystal cavities (Conference Presentation)

    Science.gov (United States)

    Gurioli, Massimo

    2016-04-01

    Photonic microcavities (PMC) coupled through their evanescent field are used for a large variety of classical and quantum devices. In such systems, a molecular-like spatial delocalization of the coupled modes is achieved by an evanescent tunnelling. The tunnelling rate depends on the height and depth of the photonic barrier between two adjacent resonators and therefore it is sensitive to the fabrication-induced disorder present in the center of the molecule. In this contribution, we address the problem of developing a post fabrication control of the tunnelling rate in photonic crystal coupled PMCs. The value of the photonic coupling (proportional to the tunnelling rate) is directly measured by the molecular mode splitting at the anticrossing point. By exploiting a combination of tuning techniques such as local infiltration of water, micro-evaporation, and laser induced non thermal micro-oxidation, we are able to either increase or decrease the detuning and the photonic coupling, independently. Near field imaging is also used for mapping the modes and establish delocalization. By water micro-infiltration, we were able to increase the photon coupling by 28%. On the contrary, by laser induced non thermal oxidation, we got a reduction of g by 30%. The combination of the two methods would therefore give a complete control of g with excellent accuracy. This could make possible the realization of array of photonic cavities with on demand tunnelling rate between each pair of coupled resonators. We believe that this peculiar engineering of photonic crystal molecules would open the road to possible progress in the exploitation of coherent interference between coupled optical resonators both for quantum information processing and optical communication.

  3. Observation of Fano-Type Interference in a Coupled Cavity-Atom System

    International Nuclear Information System (INIS)

    Cheng Yong; Tan Zheng; Wang Jin; Zhan Ming-Sheng; Zhu Yi-Fu

    2016-01-01

    We present the experimental observation of the Fano-type interference in a coupled cavity-atom system by confining the laser-cooled "8"5Rb atoms in an optical cavity. The asymmetric Fano profile is obtained through quantum interference in a three-level atomic system coherently coupled to a single mode cavity field. The observed Fano profile can be explained by the interference between the intra-cavity dark state and the polariton state of the coupled cavity-atom system. The possible applications of our observations include all-optical switching, optical sensing and narrow band optical filters. (paper)

  4. Resonator modes and mode dynamics for an external cavity-coupled laser array

    Science.gov (United States)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  5. Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes

    Science.gov (United States)

    Zhu, Yifu

    1992-05-01

    We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.

  6. H-mode study in CHS

    International Nuclear Information System (INIS)

    Toi, K.; Morisaki, T.; Sakakibara, S.

    1995-02-01

    In CHS rapid H-mode transition is observed in NBI heated deuterium and hydrogen plasmas without obvious isotope effect, when a net plasma current is ramped up to increase the external rotational transform. The H-mode of CHS has many similarities with those in tokamaks. Recent measurement with fast response Langmuir probes has revealed that the rapid change in floating potential occurs at the transition, but the change follows the formation of edge transport barrier. The presence of ι/2π = 1 surface near the edge and sawtooth crash triggered by internal modes may play an important role for determining the H-mode transition in CHS. (author)

  7. Calculation, normalization and perturbation of quasinormal modes in coupled cavity-waveguide systems

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2014-01-01

    of divergent series to provide a framework for modeling of optical phenomena in such coupled cavity-waveguide systems. As an example, we apply the framework to study perturbative changes in the resonance frequency and Q value of a photonic crystal cavity coupled to a defect waveguide....

  8. Limiter H-mode experiments on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Bush, C [Oak Ridge National Lab., TN (USA); Bretz, N L; Fredrickson, E D; McGuire, K M; Nazikian, R; Park, H K; Schivell, J; Taylor, G; Bitter, B; Budny, R; Cohen, S A; Kilpatrick, S J; LeBlanc, B; Manos, D M; Meade, D; Paul, S F; Scott, S D; Stratton, B C; Synakowski, E J; Towner, H H; Weiland, R M; Arunasalam, V; Bateman, G; Bell, M G; Bell, R; Boivin, R; Cavallo, A; Cheng, C Z; Chu, T K; Cowl,

    1990-12-15

    Limiter H-modes with centrally peaked density profiles have been obtained in TFTR using a highly conditioned graphite limiter. The transition to these centrally peaked H-modes takes place from the supershot to the H-mode rather than the usual L- to H-mode transition observed on other tokamaks. Bi-directional beam heating is required to induce the transition. Density peaking factors, n{sub e}(0)/{l angle}n{sub e}{r angle}, >2.3 are obtained and at the same time the H-mode characteristics are similar to those of limiter H-modes on other tokamaks and the global confinement, {tau}{sub E}, can be >2.5 times L-mode scaling. The TRANSP analysis shows that transport in these H-modes is similar to that of supershots within the inner 60 cm of the plasma, but the stored electron energy (calculated using measured values of T{sub e} and n{sub e}) is higher for the H-mode at the plasma edge. Microwave scattering near the edge shows broad spectra at k = 5.5 cm{sup {minus}1} which begin at the drop in D{sub {alpha}} radiation and are strongly shifted in the electron diamagnetic drift direction. At the same time beam emission spectroscopy shows a coherent mode near the boundary with m = 15--20 at 20--30 kHz which is propagating in the ion direction. During an ELM event these apparent rotations cease and Mirnov fluctuations in the 50--500 kHz increase in intensity.

  9. The H-mode of ASDEX

    International Nuclear Information System (INIS)

    1989-01-01

    The paper is a review of investigations of the H-mode on ASDEX performed since its discovery in 1982. The topics discussed are: (1) the development of the plasma profiles, with steep gradients in the edge region and flat profiles in the bulk plasma, (2) the MHD properties resulting from the profile changes, including an extensive stability analysis, (3) the impurity development, with special emphasis on the MHD aspects and on neoclassical impurity transport effects in quiescent H-phases, and (4) the properties of the edge plasma, including the evidence of three-dimensional distortions at the edge. The part on confinement includes scaling studies and the results of transport analysis. The power threshold of the H-mode is found to depend weakly on the density, but there is probably no dependence on the toroidal field or the current. For the operational range of the H-mode, new results for the limiter H-mode on ASDEX and the development of the H-mode under beam current drive conditions are included. A number of experiments are described which demonstrate the crucial role of the edge electron temperature in the L-H transition. New results of magnetic and density fluctuation studies at the plasma edge within the edge transport barrier are presented. Finally, the findings on ASDEX are compared with results obtained on other machines and are used to test various H-mode theories. (author). 131 refs, 103 figs, 1 tab

  10. Sensitive detection of individual neutral atoms in a strong coupling cavity QED system

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhang Yuchi; Li Gang; Du Jinjin; Zhang Yanfeng; Guo Yanqiang; Wang Junmin; Zhang Tiancai; Li Weidong

    2011-01-01

    We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz. The average duration of atom-cavity coupling of about 110 μs is obtained according to the probability distribution of the atom transits. (authors)

  11. Far-field coupling in nanobeam photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, Ian, E-mail: ian.rousseau@epfl.ch; Sánchez-Arribas, Irene; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas [Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2016-05-16

    We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out of GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.

  12. Rf transfer in the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator

    International Nuclear Information System (INIS)

    Makowski, M.A.

    1991-01-01

    A significant technical problem associated with the Coupled-Cavity Free-Electron Laser Two-Beam Accelerator is the transfer of RF energy from the drive accelerator to the high-gradient accelerator. Several concepts have been advanced to solve this problem. This paper examines one possible solution in which the drive and high-gradient cavities are directly coupled to one another by means of holes in the cavity walls or coupled indirectly through a third intermediate transfer cavity. Energy cascades through the cavities on a beat frequency time scale which must be made small compared to the cavity skin time but large compared to the FEL pulse length. The transfer is complicated by the fact that each of the cavities in the system can support many resonant modes near the chosen frequency of operation. A generalized set of coupled-cavity equations has been developed to model the energy transfer between the various modes in each of the cavities. For a two cavity case transfer efficiencies in excess of 95% can be achieved. 3 refs., 2 figs

  13. Reducing dephasing in coupled quantum dot-cavity systems by engineering the carrier wavefunctions

    DEFF Research Database (Denmark)

    Nysteen, Anders; Nielsen, Per Kær; Mørk, Jesper

    2012-01-01

    We demonstrate theoretically how photon-assisted dephasing by the electron-phonon interaction in a coupled cavity-quantum dot system can be significantly reduced for specific QD-cavity detunings. Our starting point is a recently published theory,1 which considers longitudinal acoustic phonons......, described by a non-Markovian model, interacting with a coupled quantum dot-cavity system. The reduction of phonon-induced dephasing is obtained by placing the cavity-quantum dot system inside an infinite slab, assuming spherical electronic wavefunctions. Based on our calculations, we expect this to have...

  14. Optimization of High-Q Coupled Nanobeam Cavity for Label-Free Sensing

    OpenAIRE

    Yaseen, Mohammad; Yang, Yi-Chun; Shih, Min-Hsiung; Chang, Yia-Chung

    2015-01-01

    We numerically and experimentally investigated the lateral coupling between photonic crystal (PhC) nanobeam (NB) cavities, pursuing high sensitivity and figure of merit (FOM) label-free biosensor. We numerically carried out 3D finite-difference time-domain (3D-FDTD) and the finite element method (FEM) simulations. We showed that when two PhC NB cavities separated by a small gap are evanescently coupled, the variation in the gap width significantly changes the coupling efficiency between the ...

  15. Decoherence in semiconductor cavity QED systems due to phonon couplings

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Mørk, Jesper

    2014-01-01

    We investigate the effect of electron-phonon interactions on the coherence properties of single photons emitted from a semiconductor cavity QED (quantum electrodynamics) system, i.e., a quantum dot embedded in an optical cavity. The degree of indistinguishability, governing the quantum mechanical...

  16. Dynamical Properties of Two Coupled Dissipative QED Cavities Driven by Coherent Fields

    International Nuclear Information System (INIS)

    Hou Bangpin; Sun Weili; Wang Shunjin; Wang Gang

    2007-01-01

    When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the environment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.

  17. The H-mode operational window as determined from the ITER H-mode database

    International Nuclear Information System (INIS)

    Ryter, F.; Kardaun, O.J.W.F.; Stroth, U.

    1994-01-01

    The H-mode is a promising regime for fusion reactors and it is essential to be able to predict its operational window in future devices. The 'H-Mode Database Working Group' started in 1992 to gather, analyze and compare H-mode threshold data from several divertor tokamaks so that predictions could be made. The database and first results were presented and the threshold database has been improved and extended since. The work has two objectives: 1) to predict the minimum heating power necessary to reach the H-mode in future devices, 2) to contribute to physics studies of the L-H transition. (author) 11 refs., 2 figs

  18. Generation of an N-qubit phase gate via atom—cavity nonidentical coupling

    International Nuclear Information System (INIS)

    Ying-Qiao, Zhang; Shou, Zhang

    2009-01-01

    A scheme for approximate generation of an N-qubit phase gate is proposed in cavity QED based on nonidentical coupling between the atoms and the cavity. The atoms interact with a highly detuned cavity-field mode, but quantum information does not transfer between the atoms and cavity field, and thus the cavity decay is negligible. The gate time does not rise with an increase in the number of qubits. With the choice of a smaller odd number l (related to atom–cavity coupling constants), the phase gate can be generated with a higher fidelity and a higher success probability in a shorter time (the gate time is much shorter than the atomic radiative lifetime and photon lifetime). When the number of qubits N exceeds certain small values, the fidelity and success probability rise slowly with an increase in the number of qubits N. When N → ∞, the fidelity and success probability infinitely approach 1, but never exceed 1. (general)

  19. Physics of the H-mode

    International Nuclear Information System (INIS)

    Hinton, F.L.; Chu, M.S.; Dominguez, R.R.

    1985-01-01

    A theoretical picture of the H-mode is proposed which explains some of the most important features of this good confinement mode in neutral beam heated plasmas with divertors. From consideration of the transport through the separatrix and along the open field lines outside the separatrix, as well as the stability of the plasma inside the separatrix, we show that a bifurcation in the operating parameters is possible. At high edge temperatures, very large particle confinement times are possible because of the Ware pinch. The transport of particles and heat along the open field lines to the divertor region depends on temperature in a non-monotonic way, and the bifurcation of the thermal equilibrium which is implied may correspond to the L- to H-mode transition. The improvement of the interior confinement in the H-mode, when the edge temperature is higher, is shown to follow from the tearing mode stability properties of current profiles with pedestals. (author)

  20. Novel sensing and control schemes for a three-mirror coupled cavity

    International Nuclear Information System (INIS)

    Huttner, S H; Barr, B W; Plissi, M V; Taylor, J R; Sorazu, B; Strain, K A

    2007-01-01

    We present two options for length sensing and control of a three-mirror coupled cavity. The control of the first cavity uses amplitude or single sideband modulation and phase modulation in combination with a beat-frequency demodulation scheme, whereas the control scheme for the second cavity incorporates phase modulation and single demodulation. The theoretical and experimental performance is discussed as well as the relevance to a research programme to develop interferometric techniques for application in future interferometric gravitational wave detectors

  1. Evaluation of a new method of RF power coupling to acceleration cavity of charged particles accelerators

    Directory of Open Access Journals (Sweden)

    A M Poursaleh

    2017-08-01

    Full Text Available In this paper, the feasibility studty of a new method of RF power coupling to acceleration cavity of charged particles accelerator will be evaluated. In this method a slit is created around the accelerator cavity, and RF power amplifier modules is connected directly to the acceleration cavity. In fact, in this design, the cavity in addition to acting as an acceleration cavity, acts as a RF power combiner. The benefits of this method are avoiding the use of RF vacuum tubes, transmission lines, high power combiner and coupler. In this research, cylindrical and coaxial cavities were studied, and a small sample coaxial cavity is build by this method. The results of the resarch showed that compact, economical and safe RF accelerators can be achieved by the proposed method

  2. Bistable output from a coupled-resonator vertical-cavity laser diode

    International Nuclear Information System (INIS)

    Fischer, A. J.; Choquette, K. D.; Chow, W. W.; Allerman, A. A.; Geib, K.

    2000-01-01

    We report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 μW to the electrical power applied to the top cavity. The bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point

  3. Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings

    Science.gov (United States)

    Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng

    2018-01-01

    We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.

  4. 'Snowflake' H Mode in a Tokamak Plasma

    International Nuclear Information System (INIS)

    Piras, F.; Coda, S.; Duval, B. P.; Labit, B.; Marki, J.; Moret, J.-M.; Pitzschke, A.; Sauter, O.; Medvedev, S. Yu.

    2010-01-01

    An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a 'snowflake' (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy (ΔW ELM /W p ) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.

  5. Fermilab linac upgrade side coupled cavity temperature control system

    International Nuclear Information System (INIS)

    Crisp, J.; Satti, J.

    1991-05-01

    Each cavity section has a temperature control system which maintains the resonant frequency by exploiting the 17.8 ppm/degree C frequency sensitivity of the copper cavities. Each accelerating cell has a cooling tube brazed azimuthally to the outside surface. Alternate supply and return connection to the water manifolds reduce temperature gradients and maintain physical alignment of the cavity string. Special tubing with spiral inner fins and large flow rate are used to reduce the film coefficient. Temperature is controlled by mixing chilled water with the water circulating between the cavity and the cooling skid located outside the radiation enclosure. Chilled water flow is regulated with a valve controlled by a local microcomputer. The temperature loop set point will be obtained from a slower loop which corrects the phase error between the cavity section and the rf drive during normal beam loaded conditions. Time constants associated with thermal gradients induced in the cavity with the rf power require programming it to the nominal 7.1 MW level over a 1 minute interval to limit the reverse power. 4 refs., 4 figs

  6. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    International Nuclear Information System (INIS)

    Ghezzehei, T.; Trautz, R.; Finsterle, S.; Cook, P.; Ahlers, C.

    2004-01-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small

  7. On the Theory of Coupled Modes in Optical Cavity-Waveguide Structures

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Heuck, Mikkel

    2017-01-01

    Light propagation in systems of optical cavities coupled to waveguides can be conveniently described by a general rate equation model known as (temporal) coupled mode theory (CMT). We present an alternative derivation of the CMT for optical cavitywaveguide structures, which explicitly relies...... in the coupled systems. Practical application of the theory is illustrated using example calculations in one and two dimensions....

  8. Enhancing optical nonreciprocity by an atomic ensemble in two coupled cavities

    Science.gov (United States)

    Song, L. N.; Wang, Z. H.; Li, Yong

    2018-05-01

    We study the optical nonreciprocal propagation in an optical molecule of two coupled cavities with one of them interacting with a two-level atomic ensemble. The effect of increasing the number of atoms on the optical isolation ratio of the system is studied. We demonstrate that the significant nonlinearity supplied by the coupling of the atomic ensemble with the cavity leads to the realization of greatly-enhanced optical nonreciprocity compared with the case of single atom.

  9. L to H-mode Power Threshold and Confinement Characteristics of H-modes in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Na, Y.S., E-mail: ftwalker.hyuns@gmail.com [Seoul National University, Seoul (Korea, Republic of); Ahn, J. W. [Oak Ridge National Laboratory, Oak Ridge (United States); Jeon, Y. M.; Yoon, S. W.; Lee, K. D.; Ko, W. H.; Bae, Y. S.; Kim, W. C.; Kwak, J. G. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-09-15

    Full text: Since KSTAR has obtained the H-mode in 2010 campaign, H-mode plasmas were routinely obtained with combined heating of NBI with maximum power of 1.5 MW and ECRH with maximum power of {approx} 0.3 MW and {approx} 0.6 MW for 110 GHz and 170 GHz, respectively. The L- to H-mode power threshold and confinement properties of KSTAR H-modes are investigated in this work. Firstly, the L- to H-mode power threshold and the power loss to the seperatrix are calculated by power balance analysis for about collected 400 shots. As a result, a trend of roll-over is observed in the power threshold of KSTAR H-mode compared with the multi-machine power threshold scaling in the low density regime. Dependence of the power threshold on other parameters are also investigated such as the X-point position and shaping parameters like as triangularity and elongation. In addition, the reason of reduction of power threshold in 2011 campaign compared with that in 2010 is addressed. Secondly, the confinement enhancement factors are calculated to evaluate the performance of KSTAR H-modes. The calculated H{sub 89-p} and H{sub 98} (y, 2) represent that the confinement is enhanced in most KSTAR H-mode discharges. Interestingly, even in L-mode phases, confinement is observed to be enhanced against the multi-machine scalings. H{sub exp} factor is newly introduced to evaluate the amount of confinement improvement in the H-mode phase compared with the L-mode phase in a single discharge. H{sub exp} exhibits that the global energy confinement time of the H-mode phase is improved about 1.3 - 2.0 times compared with that of the L-mode phase. Finally, interpretive and predictive numerical simulations are carried out using the ASTRA code for typical KSTAR H-mode discharges. The Weiland model and the GLF23 model are employed for calculating the anomalous contributions of both electron and ion heat transport in predictive simulations. For the H-mode phase, the Weiland model reproduces the experiment

  10. Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations

    International Nuclear Information System (INIS)

    Xiao, Y-F; Gao, J; McMillan, J F; Yang, X; Wong, C W; Zou, X-B; Chen, Y-L; Han, Z-F; Guo, G-C

    2008-01-01

    In this paper, a scalable photonic crystal cavity array, in which single embedded quantum dots (QDs) are coherently interacting, is studied theoretically. Firstly, we examine the spectral character and optical delay brought about by the coupled cavities interacting with single QDs, in an optical analogue to electromagnetically induced transparency. Secondly, we then examine the usability of this coupled QD-cavity system for quantum phase gate operation and our numerical examples suggest that a two-qubit system with fidelity above 0.99 and photon loss below 0.04 is possible.

  11. Recent status of FCI: PIC simulation of coupled-cavity structure

    International Nuclear Information System (INIS)

    Shintake, Tsumoru

    1996-01-01

    New version of FCI (Field Charge Interaction)-code simulates beam dynamics of an electron beam running in a coupled-cavity structure, such as a multi-cell output structure in a klystron amplifier, a coupled cavity TWT amplifier, a bunching structure in an electron injector and also an rf-gun with multi-cell accelerating cavity. The particle-in-cell simulation takes into account the space charge field, the beam loading effect and energy exchange with an external circuit in a self-consistent manner. (author)

  12. Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Daniel, E-mail: daniel.ramos@csic.es; Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-11-03

    We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.

  13. Transfer behavior of quantum states between atoms in photonic crystal coupled cavities

    International Nuclear Information System (INIS)

    Zhang Ke; Li Zhiyuan

    2010-01-01

    In this article, we discuss the one-excitation dynamics of a quantum system consisting of two two-level atoms each interacting with one of two coupled single-mode cavities via spontaneous emission. When the atoms and cavities are tuned into resonance, a wide variety of time-evolution behaviors can be realized by modulating the atom-cavity coupling strength g and the cavity-cavity hopping strength λ. The dynamics is solved rigorously via the eigenproblem of an ordinary coupled linear system and simple analytical solutions are derived at several extreme situations of g and λ. In the large hopping limit where g >λ, the time-evolution behavior of the system is characterized by the usual slowly varying carrier envelope superimposed upon a fast and violent oscillation. At a certain instant, the energy is fully transferred from the one quantum subsystem to the other. When the two interaction strengths are comparable in magnitude, the dynamics acts as a continuous pulse having irregular frequency and line shape of peaks and valleys, and the complicated time-evolution behaviors are ascribed to the violent competition between all the one-excitation quantum states. The coupled quantum system of atoms and cavities makes a good model to study cavity quantum electrodynamics with great freedoms of many-body interaction.

  14. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor

    International Nuclear Information System (INIS)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B.; May A, M.; Shlyagin, M.; Marquez B, I.

    2004-01-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  15. Dynamics of interacting Dicke model in a coupled-cavity array

    Science.gov (United States)

    Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro

    2014-09-01

    We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.

  16. Negative differential resistance in Josephson junctions coupled to a cavity

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Filatrella, G.; Pierro, V.

    2014-01-01

    or external – is often used. A cavity may also induce a negative differential resistance region at the lower side of the resonance frequency. We investigate the dynamics of Josephson junctions with a negative differential resistance in the quasi particle tunnel current, i.e. in the McCumber curve. We find...

  17. Investigation of lower hybrid current drive during H-mode in EAST tokamak

    International Nuclear Information System (INIS)

    Li Miao-Hui; Ding Bo-Jiang; Kong Er-Hua; Zhang Lei; Zhang Xin-Jun; Qian Jin-Ping; Yan Ning; Han Xiao-Feng; Shan Jia-Fang; Liu Fu-Kun; Wang Mao; Xu Han-Dong; Wan Bao-Nian

    2011-01-01

    H-mode discharges with lower hybrid current drive (LHCD) alone are achieved in EAST divertor plasma over a wide parameter range. These H-mode discharges are characterized by a sudden drop in D α emission and a spontaneous rise in main plasma density. Good lower hybrid (LH) coupling during H-mode is obtained by putting the plasma close to the antenna and by injecting D 2 gas from a pipe near the grill mouse. The analysis of lower hybrid current drive properties shows that the LH deposition profile shifts off axis during H-mode, and current drive (CD) efficiency decreases due to the increase in density. Modeling results of H-mode discharges with a general ray tracing code GENRAY are reported. (physics of gases, plasmas, and electric discharges)

  18. Sub-threshold wavelength splitting in coupled photonic crystal cavity arrays

    DEFF Research Database (Denmark)

    Schubert, Martin; Frandsen, Lars Hagedorn; Skovgård, Troels Suhr

    Coupled photonic crystal (PhC) cavity arrays have recently been found to increase the output power of nanocavity lasers by coherent coupling of a large number of cavities [1]. We have measured the sub-threshold behaviour of such structures in order to gain better understanding of the mode structure....... PhC structures defined by circular holes placed in a quadratic lattice with pitch a=280 nm were fabricated in a GaAs membrane and cavity arrays were realized by introducing single missing holes with intracavity hole distances of two, three, five and seven holes. Arrays with different number...... of coupled cavities were fabricated and characterized using photoluminescence measurements of quantum dots embedded in the GaAs PhC membrane. Since the collection spot size was ~2.5 μm and therefore small compared to the arrays, spectra were taken at several positions of each array....

  19. H-modes studies in PDX

    International Nuclear Information System (INIS)

    Fonck, R.J.; Beirsdorfer, P.; Bell, M.

    1984-07-01

    A regime of enhanced energy confinement during neutral beam heating has been obtained routinely in the PDX tokamak after modifications to form a closed divertor geometry. Plasma density profiles were broad and the electron temperature at the plasma edge reached values of approx. 400 eV in the H-mode phase of a discharge. A comparison of closed divertor discharges with moderate and intense gas puffing indicates that a requirement for obtaining high confinement times is the localization of the plasma fueling source in the divertor throat region. While high confinement was attained at moderate injected powers (P/sub INJ/ less than or equal to 3 MW), confinement was degraded at higher powers due to both increased edge instabilities and, especially, the intense gas puffing needed to prevent disruptions. Initial results with a particle scoop limiter indicate high particle confinement times and energy confinement times approaching those of diverted H-mode plasmas

  20. ELM Dynamics in TCV H-modes

    Science.gov (United States)

    Degeling, A. W.; Martin, Y. R.; Lister, J. B.; Llobet, X.; Bak, P. E.

    2003-06-01

    TCV (Tokamak à Configuration Variable, R = 0.88 m, a limited and diverted plasmas, with the primary aim of investigating the effects of plasma shape and current profile on tokamak physics and performance. L-mode to H-mode transitions are regularly obtained in TCV over a wide range of configurations. Under most conditions, the H-mode is ELM-free and terminates in a high density disruption. The conditions required for a transition to an ELMy H-mode were investigated in detail, and a reliable gateway in parameter space for the transition was identified. Once established, the ELMy H-mode is robust to changes in plasma current, elongation, divertor geometry and plasma density over ranges that are much wider than the size of the gateway in these parameters. There exists marked irregularity in the time interval between consecutive ELMs. Transient signatures in the time-series revealing the existence of an underlying chaotic dynamical system are repeatedly observed in a sizable group of discharges [1]. The properties of these signatures (called unstable periodic orbits, or UPOs) are found to vary systematically with parameters such as the plasma current, density and inner plasma — wall gap. A link has also been established between the dynamics of ELMs and sawteeth in TCV: under certain conditions a clear preference is observed in the phase between ELMs and sawtooth crashes, and the ratio of the ELM frequency (felm) to sawtooth frequency (fst) is found to prefer simple rational values (e.g. 1/1, 2/1 or 1/2). An attempt to control the ELM dynamics was made by applying a perturbation signal to the radial field coils used for vertical stabilisation. Phase synchronisation was found with the external perturbation, and felm was found to track limited scans in the driver frequency about the unperturbed value, albeit with intermittent losses in phase lock.

  1. ELM Dynamics in TCV H-modes

    International Nuclear Information System (INIS)

    Degeling, A.W.; Martin, Y.R.; Lister, J.B.; Llobet, X.; Bak, P.E.

    2003-01-01

    TCV (Tokamak a Configuration Variable, R = 0.88 m, a < 0.25 m, BT < 1.54 T) is a highly elongated tokamak, capable of producing limited and diverted plasmas, with the primary aim of investigating the effects of plasma shape and current profile on tokamak physics and performance. L-mode to H-mode transitions are regularly obtained in TCV over a wide range of configurations. Under most conditions, the H-mode is ELM-free and terminates in a high density disruption. The conditions required for a transition to an ELMy H-mode were investigated in detail, and a reliable gateway in parameter space for the transition was identified. Once established, the ELMy H-mode is robust to changes in plasma current, elongation, divertor geometry and plasma density over ranges that are much wider than the size of the gateway in these parameters. There exists marked irregularity in the time interval between consecutive ELMs. Transient signatures in the time-series revealing the existence of an underlying chaotic dynamical system are repeatedly observed in a sizable group of discharges [1]. The properties of these signatures (called unstable periodic orbits, or UPOs) are found to vary systematically with parameters such as the plasma current, density and inner plasma -- wall gap. A link has also been established between the dynamics of ELMs and sawteeth in TCV: under certain conditions a clear preference is observed in the phase between ELMs and sawtooth crashes, and the ratio of the ELM frequency (felm) to sawtooth frequency (fst) is found to prefer simple rational values (e.g. 1/1, 2/1 or 1/2). An attempt to control the ELM dynamics was made by applying a perturbation signal to the radial field coils used for vertical stabilisation. Phase synchronisation was found with the external perturbation, and felm was found to track limited scans in the driver frequency about the unperturbed value, albeit with intermittent losses in phase lock

  2. Effects of Energy Dissipation on the Parametric Excitation of a Coupled Qubit-Cavity System

    Science.gov (United States)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2018-02-01

    We consider a parametrically driven system of a qubit coupled to a cavity taking into account different channels of energy dissipation. We focus on the periodic modulation of a single parameter of this hybrid system, which is the coupling constant between the two subsystems. Such a modulation is possible within the superconducting realization of qubit-cavity coupled systems, characterized by an outstanding degree of tunability and flexibility. Our major result is that energy dissipation in the cavity can enhance population of the excited state of the qubit in the steady state, while energy dissipation in the qubit subsystem can enhance the number of photons generated from vacuum. We find optimal parameters for the realization of such dissipation-induced amplification of quantum effects. Our results might be of importance for the full control of quantum states of coupled systems as well as for the storage and engineering of quantum states.

  3. Synthesis of coupled resonator optical waveguides by cavity aggregation.

    Science.gov (United States)

    Muñoz, Pascual; Doménech, José David; Capmany, José

    2010-01-18

    In this paper, the layer aggregation method is applied to coupled resonator optical waveguides. Starting from the frequency transfer function, the method yields the coupling constants between the resonators. The convergence of the algorithm developed is examined and the related parameters discussed.

  4. Relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons (Conference Presentation)

    Science.gov (United States)

    Simpkins, Blake S.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Spann, Bryan T.; Owrutsky, Jeffrey C.

    2016-09-01

    Coherent coupling between an optical transition and confined optical mode have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we demonstrate both static and dynamic results for vibrational bands strongly coupled to optical cavities. We experimentally and numerically describe strong coupling between a Fabry-Pérot cavity and carbonyl stretch ( 1730 cm 1) in poly-methylmethacrylate and provide evidence that the mixed-states are immune to inhomogeneous broadening. We investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of a urethane monomer. Rabi splittings are in excellent agreement with an analytical description using no fitting parameters. Ultrafast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band, as well as drastically modified relaxation rates. We speculate these modified kinetics are a consequence of the energy proximity between the vibration-cavity polariton modes and excited state transitions and that polaritons offer an alternative relaxation path for vibrational excitations. Varying the polariton energies by angle-tuning yields transient results consistent with this hypothesis. Furthermore, Rabi oscillations, or quantum beats, are observed at early times and we see evidence that these coherent vibration-cavity polariton excitations impact excited state population through cavity losses. Together, these results indicate that cavity coupling may be used to influence both excitation and relaxation rates of vibrations. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied in steady state and dynamically.

  5. Photon-Induced Spin-Orbit Coupling in Ultracold Atoms inside Optical Cavity

    Directory of Open Access Journals (Sweden)

    Lin Dong

    2015-05-01

    Full Text Available We consider an atom inside a ring cavity, where a plane-wave cavity field together with an external coherent laser beam induces a two-photon Raman transition between two hyperfine ground states of the atom. This cavity-assisted Raman transition induces effective coupling between atom’s internal degrees of freedom and its center-of-mass motion. In the meantime, atomic dynamics exerts a back-action to cavity photons. We investigate the properties of this system by adopting a mean-field and a full quantum approach, and show that the interplay between the atomic dynamics and the cavity field gives rise to intriguing nonlinear phenomena.

  6. Cavity mode control in side-coupled periodic waveguides: theory and experiment

    DEFF Research Database (Denmark)

    Ha, Sangwoo; Sukhorukov, A.; Lavrinenko, Andrei

    2010-01-01

    We demonstrate that the modes of coupled cavities created in periodic waveguides can depend critically on the longitudinal shift between the cavities. In the absence of such shift, the modes feature symmetric or antisymmetric profiles, and their frequency splitting generally increases...... as the cavities are brought closer. We show that the longitudinal shift enables flexible control over the fundamental modes, whose frequency detuning can be reduced down to zero. Our coupled-mode theory analysis reveals an intrinsic link between the mode tuning and the transformation of slow-light dispersion...... at the photonic band-edge.We illustrate our approach through numerical modeling of cavities created in arrays of dielectric rods, and confirm our predictions with experimental observations....

  7. Entanglement and bistability in coupled quantum dots inside a driven cavity

    International Nuclear Information System (INIS)

    Mitra, Arnab; Vyas, Reeta

    2010-01-01

    Generation and dissipation of entanglement between two coupled quantum dots (QDs) in a cavity driven by a coherent field is studied. We find that it is possible to generate and sustain a large amount of entanglement between the quantum dots in the steady state, even in the presence of strong decay in both the cavity and the dots. We investigate the effect of different parameters (decay rates, coupling strengths, and detunings) on entanglement. We find that the cavity field shows bistability and study the effect of relevant parameters on the existence of this bistable behavior. We also study the correlation between the cavity field and the entanglement between the dots. The experimental viability of the proposed scheme is discussed.

  8. Spectral tuning of optical coupling between air-mode nanobeam cavities and individual carbon nanotubes

    Science.gov (United States)

    Machiya, Hidenori; Uda, Takushi; Ishii, Akihiro; Kato, Yuichiro K.

    Air-mode nanobeam cavities allow for high efficiency coupling to air-suspended carbon nanotubes due to their unique mode profile that has large electric fields in air. Here we utilize heating-induced energy shift of carbon nanotube emission to investigate the cavity quantum electrodynamics effects. In particular, we use laser-induced heating which causes a large blue-shift of the nanotube photoluminescence as the excitation power is increased. Combined with a slight red-shift of the cavity mode at high powers, detuning of nanotube emission from the cavity can be controlled. We estimate the spontaneous emission coupling factor β at different spectral overlaps and find an increase of β factor at small detunings, which is consistent with Purcell enhancement of nanotube emission. Work supported by JSPS (KAKENHI JP26610080, JP16K13613), Asahi Glass Foundation, Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  9. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica; Laucht, Arne; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Technische Universitaet Muenchen, Garching (Germany). Walter Schottky Inst.

    2011-07-01

    Full text. We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nano cavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nano cavity mode. Photoluminescence measurements show a characteristic triple peak during the double anti crossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced

  10. Fabrication and Measurements on Coupled Photonic Crystal Cavities

    DEFF Research Database (Denmark)

    Schubert, Martin

    Quasi-three dimensional photonic crystals can be realized by fabricating thin membranes of high index material hanging in air patterned with sub-micron holes to create a photonic band gap for optical confinement in plane and total internal reflection for out of plane confinement. Introducing...... defects into the photonic crystal gives rise to defect states in the form of small confined modes. By embedding an active gain medium like quantum dots into the membrane makes it possible to realize lasers with ultra-small mode volumes and low thresholds. Unfortunately single cavity photonic crystal...

  11. Anticipated chaos in a nonsymmetric coupled external-cavity-laser system

    International Nuclear Information System (INIS)

    Rees, Paul; Spencer, Paul S.; Pierce, Iestyn; Sivaprakasam, S.; Shore, K. Alan

    2003-01-01

    We explain how the anticipation of chaos in a coupled external cavity laser system described by Sivaprakasam, Shahverdiev, Spencer, and Shore [Phys. Rev. Lett. 87, 154101 (2001)] is obtained. We show that the external cavity induces the required symmetry breaking necessary for the existence of a time delay between the synchronized output of the two laser diodes. The inclusion of a detuning between the two lasers causes one laser to anticipate the chaotic dynamics of the other

  12. Higher Order Modes HOM___s in Coupled Cavities of the Flash Module ACC39

    Energy Technology Data Exchange (ETDEWEB)

    Shinton, I.R.R.; /Manchester U. /Cockcroft Inst. Accel. Sci. Tech.; Jones, R.M.; /Manchester U. /DESY; Li, Z.; /SLAC; Zhang, P.; /Manchester U. /Cockcroft Inst. Accel. Sci. Tech. /DESY

    2012-09-14

    We analyse the higher order modes (HOM's) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.

  13. Higher Order Modes HOM's in Coupled Cavities of the Flash Module ACC39

    International Nuclear Information System (INIS)

    Shinton, I.R.R.

    2012-01-01

    We analyse the higher order modes (HOM's) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.

  14. Higher order modes HOMs in coupled cavities of the FLASH module ACC39

    CERN Document Server

    Shinton, I R R; Li, Z; Zhang, P

    2011-01-01

    We analyse the higher order modes (HOM’s) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.

  15. Control of ring lasers by means of coupled cavities

    DEFF Research Database (Denmark)

    Buchhave, Preben; Abitan, Haim; Tidemand-Lichtenberg, Peter

    2000-01-01

    Variable phase coupling to an external ring is used to control a unidirectional ring laser. The observed behavior of the coupled rings is explained theoretically. We have found experimentally that by quickly changing the phase of the feedback from the external ring it is possible to Q......-switch the ring laser. Also, at certain values of the phase of the feedback in the external ring, instabilities in the total system occur and oscillations arise in the ring laser....

  16. Lateral shearing optical gradient force in coupled nanobeam photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Du, Han; Zhang, Xingwang; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Zhao, Yunshan [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 (Singapore)

    2016-04-25

    We report the experimental observation of lateral shearing optical gradient forces in nanoelectromechanical systems (NEMS) controlled dual-coupled photonic crystal (PhC) nanobeam cavities. With an on-chip integrated NEMS actuator, the coupled cavities can be mechanically reconfigured in the lateral direction while maintaining a constant coupling gap. Shearing optical gradient forces are generated when the two cavity centers are laterally displaced. In our experiments, positive and negative lateral shearing optical forces of 0.42 nN and 0.29 nN are observed with different pumping modes. This study may broaden the potential applications of the optical gradient force in nanophotonic devices and benefit the future nanooptoelectromechanical systems.

  17. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient

    International Nuclear Information System (INIS)

    Lal, Shankar; Pant, K. K.

    2016-01-01

    Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.

  18. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  19. A study of intergranular cavity growth controlled by the coupling of diffusion and power law creep

    International Nuclear Information System (INIS)

    Wang, J.S.; Martinez, L.; Nix, W.D.

    1983-01-01

    A technique based on pre-creeping and sintering is used to create large, widely spaced cavities at grain boundaries in copper. The size and spacing of the cavities is such that cavity growth is expected to be controlled by the coupling of diffusion and power law creep. The rupture properties of these pre-cavitated samples are studied over a range of stresses and temperatures and the results are compared with the predictions of various theoretical treatments of cavity growth. The stress and temperature dependence of rupture can be described using an analysis of the type suggested by Chen and Argon, provided that the diffusional length is based on the ligament stress rather than the applied stress

  20. Asymmetric light transmission based on coupling between photonic crystal waveguides and L1/L3 cavity

    Science.gov (United States)

    Zhang, Jinqiannan; Chai, Hongyu; Yu, Zhongyuan; Cheng, Xiang; Ye, Han; Liu, Yumin

    2017-09-01

    A compact design of all-optical diode with mode conversion function based on a two-dimensional photonic crystal waveguide and an L1 or L3 cavity is theoretically investigated. The proposed photonic crystal structures comprise a triangular arrangement of air holes embedded in a silicon substrate. Asymmetric light propagation is achieved via the spatial mode match/mismatch in the coupling region. The simulations show that at each cavity's resonance frequency, the transmission efficiency of the structure with the L1 and L3 cavities reach 79% and 73%, while the corresponding unidirectionalities are 46 and 37 dB, respectively. The functional frequency can be controlled by simply adjusting the radii of specific air holes in the L1 and L3 cavities. The proposed structure can be used as a frequency filter, a beam splitter and has potential applications in all-optical integrated circuits.

  1. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output...... frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical conversion...

  2. Calculation of wake field and couple impedance of upgraded and old RF cavity in Hefei electron storage ring

    International Nuclear Information System (INIS)

    Xu Hongliang; Wang Lin; Sun Baogen; Li Weimin; Liu Jinying; He Duohui

    2003-01-01

    The phase II upgrading project of Hefei 800 MeV electron storage ring is being done, and the important component of the project, the RF cavity, will be finished soon. The old RF cavity with many disadvantages will be replaced by the new one. To estimate the effect of RF cavity coupling impedance to storing bunch intensity fully, the wake potential and the broad band couple impedance of RF cavity were calculated with MAFIA program. And the calculation results were compared between new and old cavity, it is found that the impedance of the new is bigger than that of the old

  3. H-mode pedestal characteristics on MAST

    International Nuclear Information System (INIS)

    Kirk, A; Counsell, G F; Arends, E; Meyer, H; Taylor, D; Valovic, M; Walsh, M; Wilson, H

    2004-01-01

    The H-mode pedestal characteristics on the mega ampere spherical tokamak (MAST) are measured in a variety of disconnected double null discharges and the effect of edge localized modes (ELMs) on the pedestal is presented. The edge density pedestal width in spatial co-ordinates is similar on both the inboard and outboard sides. Neutral penetration may be able to explain the density pedestal width but it alone cannot explain the characteristics of the temperature pedestal. The data from MAST can be used to improve temperature pedestal width scalings by extending the ranges in pedestal collisionality, magnetic field, elongation and aspect ratio studied by other machines. Convective transport is found to dominate energy losses during ELMs and the fractional loss of pedestal energy during an ELM on MAST correlates better with SOL ion transit time than with pedestal collisionality

  4. Optical bistability in a single-sided cavity coupled to a quantum channel

    Science.gov (United States)

    Payravi, M.; Solookinejad, Gh; Jabbari, M.; Nafar, M.; Ahmadi Sangachin, E.

    2018-06-01

    In this paper, we discuss the long wavelength optical reflection and bistable behavior of an InGaN/GaN quantum dot nanostructure coupled to a single-sided cavity. It is found that due to the presence of a strong coupling field, the reflection coefficient can be controlled at long wavelength, which is essential for adjusting the threshold of reflected optical bistability. Moreover, the phase shift features of the reflection pulse inside an electromagnetically induced transparency window are also discussed.

  5. Overview of long pulse H-mode operation on EAST

    Science.gov (United States)

    Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.

  6. Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system

    NARCIS (Netherlands)

    Johne, R.; Schutjens, H.A.W.; Fattahpoor, S.; Jin, C.; Fiore, A.

    2015-01-01

    We propose a scheme for the ultrafast control of the emitter-field coupling rate in cavity quantum electrodynamics. This is achieved by the control of the vacuum field seen by the emitter through a modulation of the optical modes in a coupled-cavity structure. The scheme allows the on-off switching

  7. Lasing by driven atoms-cavity system in collective strong coupling regime.

    Science.gov (United States)

    Sawant, Rahul; Rangwala, S A

    2017-09-12

    The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.

  8. Temperature control feedback loops for the linac upgrade side coupled cavities at Fermilab

    International Nuclear Information System (INIS)

    Crisp, J.

    1990-01-01

    The linac upgrade project at Fermilab will replace the last 4 drift-tube linac tanks with seven side coupled cavity strings. This will increase the beam energy from 200 to 400 MeV at injection into the Booster accelerator. The main objective of the temperature loop is to control the resonant frequency of the cavity strings. A cavity string will constant of 4 sections connected with bridge couplers driven with a 12 MW klystron at 805 MHz. Each section is a side coupled cavity chain consisting of 16 accelerating cells and 15 side coupling cells. For the linac upgrade, 7 full cavity strings will be used. A separate temperature control system is planned for each of the 28 accelerating sections, the two transition sections, and the debuncher section. The cavity strings will be tuned to resonance for full power beam loaded conditions. A separate frequency loop is planned that will sample the phase difference between a monitor placed in the end cell of each section and the rf drive. The frequency loop will control the set point for the temperature loop which will be able to maintain the resonant frequency through periods within beam or rf power. The frequency loop will need the intelligence required to determine under what conditions the phase error information is valid and the temperature set point should be adjusted. This paper will discuss some of the reason for temperature control, the implementation, and some of the problems encountered. An appendix contains some useful constants and descriptions of some of the sensor and control elements used. 13 figs

  9. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne; Villas-Boas, Jose M.; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nanocavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nanocavity mode. Photoluminescence measurements show a characteristic triple peak during the double anticrossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced.

  10. Substrate Integrated Waveguide Cross-Coupling Filter with Multilayer Hexagonal Cavity

    Directory of Open Access Journals (Sweden)

    B. Wu

    2013-01-01

    Full Text Available Hexagonal cavities and their applications to multilayer substrate integrated waveguide (SIW filters are presented. The hexagonal SIW cavity which can combine flexibility of rectangular one and performance of circular one is convenient for bandpass filter’s design. Three types of experimental configuration with the same central frequency of 10 GHz and bandwidth of 6%, including three-order and four-order cross-coupling topologies, are constructed and fabricated based on low temperature cofired ceramic (LTCC technology. Both theoretical and experimental results are presented.

  11. Entanglement and quantum state transfer between two atoms trapped in two indirectly coupled cavities

    Science.gov (United States)

    Zheng, Bin; Shen, Li-Tuo; Chen, Ming-Feng

    2016-05-01

    We propose a one-step scheme for implementing entanglement generation and the quantum state transfer between two atomic qubits trapped in two different cavities that are not directly coupled to each other. The process is realized through engineering an effective asymmetric X-Y interaction for the two atoms involved in the gate operation and an auxiliary atom trapped in an intermediate cavity, induced by virtually manipulating the atomic excited states and photons. We study the validity of the scheme as well as the influences of the dissipation by numerical simulation and demonstrate that it is robust against decoherence.

  12. Coupled thermal-fluid analysis with flowpath-cavity interaction in a gas turbine engine

    Science.gov (United States)

    Fitzpatrick, John Nathan

    This study seeks to improve the understanding of inlet conditions of a large rotor-stator cavity in a turbofan engine, often referred to as the drive cone cavity (DCC). The inlet flow is better understood through a higher fidelity computational fluid dynamics (CFD) modeling of the inlet to the cavity, and a coupled finite element (FE) thermal to CFD fluid analysis of the cavity in order to accurately predict engine component temperatures. Accurately predicting temperature distribution in the cavity is important because temperatures directly affect the material properties including Young's modulus, yield strength, fatigue strength, creep properties. All of these properties directly affect the life of critical engine components. In addition, temperatures cause thermal expansion which changes clearances and in turn affects engine efficiency. The DCC is fed from the last stage of the high pressure compressor. One of its primary functions is to purge the air over the rotor wall to prevent it from overheating. Aero-thermal conditions within the DCC cavity are particularly challenging to predict due to the complex air flow and high heat transfer in the rotating component. Thus, in order to accurately predict metal temperatures a two-way coupled CFD-FE analysis is needed. Historically, when the cavity airflow is modeled for engine design purposes, the inlet condition has been over-simplified for the CFD analysis which impacts the results, particularly in the region around the compressor disc rim. The inlet is typically simplified by circumferentially averaging the velocity field at the inlet to the cavity which removes the effect of pressure wakes from the upstream rotor blades. The way in which these non-axisymmetric flow characteristics affect metal temperatures is not well understood. In addition, a constant air temperature scaled from a previous analysis is used as the simplified cavity inlet air temperature. Therefore, the objectives of this study are: (a) model the

  13. Phenomenological model for H-mode

    International Nuclear Information System (INIS)

    Ohyabu, N.

    1985-08-01

    A phenomenological model has been developed to clarify the role of the boundary configuration in the heat transport of the H-mode regime. We assume that the dominant mechanism of heat loss at the edge of the plasma is convection and that the diffusion coefficient (D/sub edge/) at the edge of the plasma increases rapidly with plasma pressure, but drops to a low value when the temperature exceeds a certain threshold value. When particle refueling takes place without time delay, as in the case of a limiter discharge, the unfavorable temperature dependence of the D/sub edge/ prohibits even a modest rise of the edge temperature. In a divertor discharge, the particles lost from the closed surface are kept away from the edge region for a time comparable to or longer than the energy transport time in the edge region. Thus, rapid increase in the heat flux allows an excursion of the edge temperature to a higher value thereby reaching the threshold value of the H-transition

  14. Dynamics of atom-field probability amplitudes in a coupled cavity system with Kerr non-linearity

    Energy Technology Data Exchange (ETDEWEB)

    Priyesh, K. V.; Thayyullathil, Ramesh Babu [Department of Physics, Cochin University of Science and Technology, Cochin (India)

    2014-01-28

    We have investigated the dynamics of two cavities coupled together via photon hopping, filled with Kerr non-linear medium and each containing a two level atom in it. The evolution of various atom (field) state probabilities of the coupled cavity system in two excitation sub space are obtained numerically. Detailed analysis has been done by taking different initial conditions of the system, with various coupling strengths and by varying the susceptibility of the medium. The role of susceptibility factor, on the dynamics atom field probability has been examined. In a coupled cavity system with strong photon hopping it is found that the susceptibility factor modifies the behaviour of probability amplitudes.

  15. Preparation of n-qubit Greenberger-Horne-Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants

    International Nuclear Information System (INIS)

    Yang Chuiping

    2011-01-01

    We propose a way for generating n-qubit Greenberger-Horne-Zeilinger (GHZ) entangled states with a three-level qubit system and (n-1) four-level qubit systems in a cavity. This proposal does not require identical qubit-cavity coupling constants and thus is tolerant to qubit-system parameter nonuniformity and nonexact placement of qubits in a cavity. The proposal does not require adjustment of the qubit-system level spacings during the entire operation. Moreover, it is shown that entanglement can be deterministically generated using this method and the operation time is independent of the number of qubits. The present proposal is quite general, which can be applied to physical systems such as various types of superconducting devices coupled to a resonator or atoms trapped in a cavity.

  16. Resonant atom-field interaction in large-size coupled-cavity arrays

    International Nuclear Information System (INIS)

    Ciccarello, Francesco

    2011-01-01

    We consider an array of coupled cavities with staggered intercavity couplings, where each cavity mode interacts with an atom. In contrast to large-size arrays with uniform hopping rates where the atomic dynamics is known to be frozen in the strong-hopping regime, we show that resonant atom-field dynamics with significant energy exchange can occur in the case of staggered hopping rates even in the thermodynamic limit. This effect arises from the joint emergence of an energy gap in the free photonic dispersion relation and a discrete frequency at the gap's center. The latter corresponds to a bound normal mode stemming solely from the finiteness of the array length. Depending on which cavity is excited, either the atomic dynamics is frozen or a Jaynes-Cummings-like energy exchange is triggered between the bound photonic mode and its atomic analog. As these phenomena are effective with any number of cavities, they are prone to be experimentally observed even in small-size arrays.

  17. Realization of collective strong coupling with ion Coulomb crystals in an optical cavity

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity quantum electrodynamics (CQED) focuses on understanding the interactions between matter and the electromagnetic field in cavities at the quantum level 1, 2 . In the past years, CQED has attracted attention 3, 4, 5, 6, 7, 8, 9 especially owing to its importance for the field of quantum...... information 10 . At present, photons are the best carriers of quantum information between physically separated sites 11, 12 and quantum-information processing using stationary qubits 10 is most promising, with the furthest advances having been made with trapped ions 13, 14, 15 . The implementation of complex...... quantum-information-processing networks 11, 12 hence requires devices to efficiently couple photons and stationary qubits. Here, we present the first CQED experiments demonstrating that the collective strong-coupling regime 2 can be reached in the interaction between a solid in the form of an ion Coulomb...

  18. Phase diagram of a QED-cavity array coupled via a N-type level scheme

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiasen; Rossini, Davide [CNR, NEST, Scuola Normale Superiore and Istituto di Nanoscienze, Pisa (Italy); Fazio, Rosario [CNR, NEST, Scuola Normale Superiore and Istituto di Nanoscienze, Pisa (Italy); National University of Singapore, Center for Quantum Technologies, Singapore (Singapore)

    2015-01-01

    We study the zero-temperature phase diagram of a one-dimensional array of QED cavities where, besides the single-photon hopping, an additional coupling between neighboring cavities is mediated by an N-type four-level system. By varying the relative strength of the various couplings, the array is shown to exhibit a variety of quantum phases including a polaritonic Mott insulator, a density-wave and a superfluid phase. Our results have been obtained by means of numerical density-matrix renormalization group calculations. The phase diagram was obtained by analyzing the energy gaps for the polaritons, as well as through a study of two-point correlation functions. (orig.)

  19. Ultrafast directional beam switching in coupled vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Ning, C. Z.; Goorjian, P.

    2001-01-01

    We propose a strategy to performing ultrafast directional beam switching using two coupled vertical-cavity surface-emitting lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 μm in diameter placed about 1 μm apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degree. [copyright] 2001 American Institute of Physics

  20. Bistable laser device with multiple coupled active vertical-cavity resonators

    Science.gov (United States)

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-08-19

    A new class of bistable coupled-resonator vertical-cavity semiconductor laser devices has been developed. These bistable laser devices can be switched, either electrically or optically, between lasing and non-lasing states. A switching signal with a power of a fraction of a milliwatt can change the laser output of such a device by a factor of a hundred, thereby enabling a range of optical switching and data encoding applications.

  1. Numerical simulation of microwave pulse coupling into the rectangular cavity with aperture arrays

    International Nuclear Information System (INIS)

    Li Rui; Yang Yiming; Qian Baoliang

    2008-01-01

    In this paper, the finite-difference time-domain (FDTD) algorithm is employed to simulate microwave pulse coupling into the rectangular cavity with aperture arrays. In the case in which the long-side of the slot in aperture arrays is perpendicular to the incident electrical field, and the electrical distribution of each center of slot in the aperture arrays in the process of microwave pulse coupling into the rectangular cavity with aperture arrays is analyzed in detail. We find that the effect of field enhancement of the slot in the middle of all the slots which distribute in the direction parallel to the incident electrical field is minimum and increases in turn from the middle to both sides symmetrically. We also find that the effect of field enhancement of the slot in the middle of all the slots which distribute in the direction perpendicular to the incident electrical field is maximum and decreases in turn from the middle to both sides symmetrically. In the same time, we investigate the factors that influence the effect of field enhancement of the center of each slot and the coupling electrical distribution in the cavity, including the number of slots and the spacing between slots. (authors)

  2. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature

    Science.gov (United States)

    Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin

    2018-05-01

    Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.

  3. H-mode and confinement studies in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Suttrop, W.; Ryter, F.; Mertens, V.; Gruber, O.; Murmann, H.; Salzmann, H.; Schweinzer, J.

    2001-01-01

    H-mode operational boundaries and H-mode confinement are investigated on ASDEX Upgrade. The local edge parameter threshold for H-mode holds independent of divertor geometry and changes little with ion mass. The deviation of the H-mode power threshold at densities near the Greenwald limit can be understood as a consequence of a confinement deterioration, caused by 'stiff' temperature profiles and lack of core density gradients in gas puff fuelled discharges. Ion and electron temperature profiles can be described by a lower limit of gradient length L T =T/T'. (author)

  4. Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Hensen, Matthias [Institut; Heilpern, Tal [Center; Gray, Stephen K. [Center; Pfeiffer, Walter [Fakultät

    2017-10-12

    Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance line width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.

  5. Simulation at the SSCL low energy booster and coupled cavity linac

    International Nuclear Information System (INIS)

    Bourianoff, G.

    1991-01-01

    During the past year, the SSC has made significant use of the MFE computer center for simulating the low energy accelerators in the SSC complex. There are two primary supercomputer applications reported here. They are the calculation of emittance growth in the LEB due to space charge effects and simulation of the side coupled cavities used in the linac. The SSC is designed to have a luminosity of 10 33 interactions per second per square centimeter. It directly determines the amount of physics which can be done with the collider and is therefore of critical importance. The luminosity is inversely proportional to the emittance of the two colliding beams. Since emittance increases monotonically through the chain of accelerators, an emittance budget has been set up defining what the allowable emittance increase is in each individual component of the accelerator. The emittance budget for the LEB calls for the emittance to enter the LEB at .4π mm - mrad and leave the LEB at .6π mm -mrad. Therefore, a set of simulations was done to determine the actual emittance growth. The linac is designed to accelerate 25 MA of H - ions from 70 MEV to 600 MEV. There are several possible cavity designs which might be used but the side coupled cavity design operating in the π/2 mode has a number of advantages concerning operating stability and ease of manufacture. It has therefore been chosen for the linac accelerator

  6. The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal surface plasmon polariton waveguide

    International Nuclear Information System (INIS)

    Zhu, Qiong-gan; Wang, Zhi-guo; Tan, Wei

    2014-01-01

    The combined effect of side-coupled gain cavity and lossy cavity on the plasmonic response of metal-dielectric-metal (MDM) surface plasmon polariton (SPP) waveguide is investigated theoretically using Green's function method. Our result suggests that the gain and loss parameters influence the amplitude and phase of the fields localized in the two cavities. For the case of balanced gain and loss, the fields of the two cavities are always of equi-amplitude but out of phase. A plasmon induced transparency (PIT)-like transmission peak can be achieved by the destructive interference of two fields with anti-phase. For the case of unbalanced gain and loss, some unexpected responses of structure are generated. When the gain is more than the loss, the system response is dissipative at around the resonant frequency of the two cavities, where the sum of reflectance and transmittance becomes less than one. This is because the lossy cavity, with a stronger localized field, makes the main contribution to the system response. When the gain is less than the loss, the reverse is true. It is found that the metal loss dissipates the system energy but facilitates the gain cavity to make a dominant effect on the system response. This mechanism may have a potential application for optical amplification and for a plasmonic waveguide switch. (paper)

  7. Spin-dependent heat and thermoelectric currents in a Rashba ring coupled to a photon cavity

    Science.gov (United States)

    Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2018-01-01

    Spin-dependent heat and thermoelectric currents in a quantum ring with Rashba spin-orbit interaction placed in a photon cavity are theoretically calculated. The quantum ring is coupled to two external leads with different temperatures. In a resonant regime, with the ring structure in resonance with the photon field, the heat and the thermoelectric currents can be controlled by the Rashba spin-orbit interaction. The heat current is suppressed in the presence of the photon field due to contribution of the two-electron and photon replica states to the transport while the thermoelectric current is not sensitive to changes in parameters of the photon field. Our study opens a possibility to use the proposed interferometric device as a tunable heat current generator in the cavity photon field.

  8. Plasmonic reflectors and high-Q nano-cavities based on coupled metal-insulator-metal waveguides

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2012-03-01

    Full Text Available Based on the contra-directional coupling, a composite structure consisting of two coupled metal-insulator-metal (MIM waveguides is proposed to act as an attractive plasmonic reflector. By introducing a defect into one of the MIM waveguides, we show that such a composite structure can be operated as a plasmonic nanocavity with a high quality factor. Both symmetric and anti-symmetric cavity modes are supported in the plasmonic cavity, and their resonance frequencies can be tuned by controlling the defect width. The present structures could have a significant impact for potential applications such as surface plasmon mirrors, filters and solid-state cavity quantum electrodynamics.

  9. A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime

    International Nuclear Information System (INIS)

    Rimberg, A J; Blencowe, M P; Armour, A D; Nation, P D

    2014-01-01

    We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a single photon in the cavity causes a shift in the mechanical resonator position on the order of its zero point motion. As a result, the cavity-Cooper pair transistor coupled to a mechanical resonator will be able to access a regime in which single photons can affect single phonons and vice versa. Realizing this ultra-strong coupling regime will facilitate the creation of non-classical states of the mechanical resonator, as well as the means to accurately characterize such states by measuring the cavity photon field. (paper)

  10. Final module tuning of the 805 MHz side-coupled cavities for the Fermilab linac group

    International Nuclear Information System (INIS)

    Qian, Z.; Champion, M.; Miller, H.W.; Moretti, A.; Padilla, R.

    1992-01-01

    As part of the Fermilab Tevatron collider upgrade program the last four linac drift-tube tanks are to be replaced with seven side-coupled cavity modules that will operate at an accelerating gradient of 8 MV/V. Each module is composed of four accelerating sections connected by three bridge couplers and is driven by a 12 MW 805 MHz klystron rf power supply. Sixteen accelerating cells and fifteen coupling cells are brazed into an accelerating section. The modules were tuned such that the π/2 mode of each section and the TM 010 mode of the individual bridge coupler agreed within 2 KHz of the module accelerating mode, the accelerating cell frequency was tuned within ± % KHz and the section stopbands were 50-100 KHz under vacuum. The main cell rms field deviation was in general <1% within any section and the section average rms field deviation was in all but one case <1%. The phase shift from section to section was tuned to <1 degree. The coupling between waveguide and cavity was tuned to match the 30 ma beam loading. 3 tabs., 4 figs., 6 refs

  11. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  12. Comparison of Measured and Calculated Coupling between a Waveguide and an RF Cavity Using CST Microwave Studio

    Energy Technology Data Exchange (ETDEWEB)

    J. Shi; H. Chen; S. Zheng; D. Li; R.A. Rimmer; H. Wang

    2006-06-26

    Accurate predications of RF coupling between an RF cavity and ports attached to it have been an important study subject for years for RF coupler and higher order modes (HOM) damping design. We report recent progress and a method on the RF coupling simulations between waveguide ports and RF cavities using CST Microwave Studio in time domain (Transit Solver). Comparisons of the measured and calculated couplings are presented. The simulated couplings and frequencies agree within {approx} 10% and {approx} 0.1% with the measurements, respectively. We have simulated couplings with external Qs ranging from {approx} 100 to {approx} 100,000, and confirmed with measurements. The method should also work well for higher Qs, and can be easily applied in RF power coupler designs and HOM damping for normal-conducting and superconducting cavities.

  13. Comparison of Measured and Calculated Coupling between a Waveguide and an RF Cavity Using CST Microwave Studio

    International Nuclear Information System (INIS)

    J. Shi; H. Chen; S. Zheng; D. Li; R.A. Rimmer; H. Wang

    2006-01-01

    Accurate predications of RF coupling between an RF cavity and ports attached to it have been an important study subject for years for RF coupler and higher order modes (HOM) damping design. We report recent progress and a method on the RF coupling simulations between waveguide ports and RF cavities using CST Microwave Studio in time domain (Transit Solver). Comparisons of the measured and calculated couplings are presented. The simulated couplings and frequencies agree within ∼ 10% and ∼ 0.1% with the measurements, respectively. We have simulated couplings with external Qs ranging from ∼ 100 to ∼ 100,000, and confirmed with measurements. The method should also work well for higher Qs, and can be easily applied in RF power coupler designs and HOM damping for normal-conducting and superconducting cavities

  14. Models for electromagnetic coupling of lightning onto multiconductor cables in underground cavities

    Science.gov (United States)

    Higgins, Matthew Benjamin

    This dissertation documents the measurements, analytical modeling, and numerical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground lightning strokes (including horizontal arc-channel components) to couple electromagnetic energy onto multiconductor cables in an underground cavity. Measurements were performed at the Sago coal mine located near Buckhannon, WV. These transfer functions, coupled with mathematical representations of lightning strokes, are then used to predict electric fields within the mine and induced voltages on a cable that was left abandoned in the sealed area of the Sago mine. If voltages reached high enough levels, electrical arcing could have occurred from the abandoned cable. Electrical arcing is known to be an effective ignition source for explosive gas mixtures. Two coupling mechanisms were measured: direct and indirect drive. Direct coupling results from the injection or induction of lightning current onto metallic conductors such as the conveyors, rails, trolley communications cable, and AC power shields that connect from the outside of the mine to locations deep within the mine. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground lightning stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and analysis are of great concern. The field measurements, modeling, and analysis indicate that significant energy can be coupled directly into the sealed area of the mine. Due to the relatively low frequency content of lightning (extremely well with analytical and computational models developed for the Sago site which take into account measured soil properties.

  15. A modal approach to light emission and propagation in coupled cavity waveguide systems

    DEFF Research Database (Denmark)

    Gregersen, Niels; Kristensen, P. T.; de Lasson, Jakob Rosenkrantz

    2016-01-01

    We theoretically investigate systems of optical cavities coupled to waveguides,which necessitates the introduction of non-trivial radiation conditions and normalization procedures. In return, the approach provides simple and accurate modeling of Green functions,Purcell factors and perturbation...... corrections, as well as an alternative approach to the so-calledcoupled mode theory. In combination, these results may form part of the foundations for highly efficient, yet physically transparent models of light emission and propagation in both classical and quantum integrated photonic circuits....

  16. A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-07-15

    We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.

  17. Scaling of the H-mode power threshold for ITER

    International Nuclear Information System (INIS)

    1998-01-01

    Analysis of the latest ITER H-mode threshold database is presented. The power necessary for the transition to H-mode is estimated for ITER, with or without the inclusion of radiation losses from the bulk plasma, in terms of the main engineering variables. The main geometrical variables (aspect ratio ε, elongation κ and average triangularity δ) are also included in the analysis. The H-mode transition is also considered from the point of view of the local edge variables, and the electron temperature at 90% of the poloidal flux is expressed in terms of both local and global variables. (author)

  18. Integrated fiber-mirror ion trap for strong ion-cavity coupling

    International Nuclear Information System (INIS)

    Brandstätter, B.; Schüppert, K.; Casabone, B.; Friebe, K.; Stute, A.; Northup, T. E.; McClung, A.; Schmidt, P. O.; Deutsch, C.; Reichel, J.; Blatt, R.

    2013-01-01

    We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvature and ellipticities of the fiber mirrors. From finesse measurements, we infer a single-atom cooperativity of up to 12 for FFPCs longer than 200 μm in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We characterize the birefringence of our fiber mirrors, finding that careful fiber-mirror selection enables us to construct FFPCs with degenerate polarization modes. As FFPCs are novel devices, we describe procedures developed for handling, aligning, and cleaning them. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. X-ray photoelectron spectroscopy measurements indicate that these losses may be attributable to oxygen depletion in the mirror coating. Special design considerations enable us to introduce a FFPC into a trapped ion setup. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to compensate

  19. Temporal coupled mode analysis of one-dimensional magneto-photonic crystals with cavity structures

    Energy Technology Data Exchange (ETDEWEB)

    Saghirzadeh Darki, Behnam, E-mail: b.saghirzadeh@ec.iut.ac.ir; Zeidaabadi Nezhad, Abolghasem; Firouzeh, Zaker Hossein

    2016-12-01

    In this paper, we propose the time-dependent coupled mode analysis of one-dimensional magneto-photonic crystals including one, two or multiple defect layers. The performance of the structures, namely the total transmission, Faraday rotation and ellipticity, is obtained using the proposed method. The results of the developed analytic approach are verified by comparing them to the results of the exact numerical transfer matrix method. Unlike the widely used numerical method, our proposed analytic method seems promising for the synthesis as well as the analysis purposes. Moreover, the proposed method has not the restrictions of the previously examined analytic methods. - Highlights: • A time-dependent coupled mode analysis is proposed for the cavity-type 1D MPCs. • Analytical formalism is presented for the single, double and multiple-defect MPCs. • Transmission, Faraday rotation and ellipticity are gained using the proposed method. • The proposed analytic method has advantages over the previously examined methods.

  20. Tunable Fano resonance in MDM stub waveguide coupled with a U-shaped cavity

    Science.gov (United States)

    Yi, Xingchun; Tian, Jinping; Yang, Rongcao

    2018-04-01

    A new compact metal-dielectric-metal waveguide system consisting of a stub coupled with a U-cavity is proposed to produce sharp and asymmetric Fano resonance. The transmission properties of the proposed structure are numerically studied by the finite element method and verified by the coupled mode theory. Simulation results reveal that the spectral profile can be easily tuned by adjusting the geometric parameters of the structure. One of the potential application of the proposed structure as a highly efficient plasmonic refractive index nanosensor was investigated with its sensitivity of more than 1000 nm/RIU and a figure of merit of up to 5500. Another application is integrated slow-light device whose group index can be greater than 6. In addition, multiple Fano resonances will occur in the broadband transmission spectrum by adding another U-cavity or (and) stub. The characteristics of the proposed structure are very promising for the highly performance filters, on-chip nanosensors, and slow-light devices.

  1. Vibro-acoustic modeling and analysis of a coupled acoustic system comprising a partially opened cavity coupled with a flexible plate

    Science.gov (United States)

    Shi, Shuangxia; Su, Zhu; Jin, Guoyong; Liu, Zhigang

    2018-01-01

    This paper is concerned with the modeling and solution method of a three-dimensional (3D) coupled acoustic system comprising a partially opened cavity coupled with a flexible plate and an exterior field of semi-infinite size, which is ubiquitously encountered in architectural acoustics and is a reasonable representation of many engineering occasions. A general solution method is presented to predict the dynamic behaviors of the three-dimensional (3D) acoustic coupled system, in which the displacement of the plate and the sound pressure in the cavity are respectively constructed in the form of the two-dimensional and three-dimensional modified Fourier series with several auxiliary functions introduced to ensure the uniform convergence of the solution over the entire solution domain. The effect of the opening is taken into account via the work done by the sound pressure acting at the coupling aperture that is contributed from the vibration of particles on the acoustic coupling interface and on the structural-acoustic coupling interface. Both the acoustic coupling between finite cavity and exterior field and the structural-acoustic coupling between flexible plate and interior acoustic field are considered in the vibro-acoustic modeling of the three-dimensional acoustic coupled acoustic system. The dynamic responses of the coupled structural-acoustic system are obtained using the Rayleigh-Ritz procedure based on the energy expressions for the coupled system. The accuracy and effectiveness of the proposed method are validated through numerical examples and comparison with results obtained by the boundary element analysis. Furthermore, the influence of the opening and the cavity volume on the acoustic behaviors of opened cavity system is studied.

  2. Ohmic H-mode studies in TUMAN-3

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andrejko, M.V.; Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Levin, L.S.; Tukachinsky, A.S.; Tendler, M.

    1994-01-01

    The spontaneous transition from Ohmically heated limiter discharges into the regime with improved confinement termed as ''Ohmic H-mode'' has been investigated in ''TUMAN-3''. The typical signatures of H-mode in tokamaks with powerful auxiliary heating have been observed: sharp drop of D α radiation with simultaneous increase in the electron density and stored energy, suppression of the density fluctuations and establishing the steep gradient near the periphery. The crucial role of the radial electric field in the L-H transition was found in the experiments with boundary biasing. The possibility of initiating the H-mode using single pellet injection was demonstrated. In Ohmic H-mode strong dependencies of τ E on plasma current and on input power and weak dependence on density were found. Thermal energy confinement time enhanced by a factor of 10 compared to predictions of Neo-Alcator scaling. Longest energy confinement time (30 ms) was obtained in the small tokamak TUMAN-3. Absolute values of the energy confinement time are in agreement with scaling proposed for description of the ELM-free H-modes in devices with powerful auxiliary heating (''DIII-D/JET H-mode'' scaling). (author)

  3. Research of time-domain equivalent circuit method in solving dispersion of coupled-cavity traveling-wave tube

    International Nuclear Information System (INIS)

    Li Wenjun; China Academy of Engineering Physics, Mianyang; Xu Zhou; Li Ming; Yang Xingfan; Chen Yanan; Liu Jie; Jin Xiao; Lin Yuzheng

    2008-01-01

    In this paper, a time-domain equivalent circuit method is applied to solve dispersion of coupled-cavity travelling-wave tube (CCTWT). First, the time-domain circuit equations of CCTWT coupled-cavity chain are deduced from the equivalent circuit model. Then, the equations are solved numerically by fourth-order Runge-Kutta method and a program CTTDCP is developed using MATLAB. Last, a L-band CCTWT is calculated using CTTDCP and the cavity pass-band of this tube is computed to be 1.08-1.48 GHz, which is consistent with the experimental results and the simulation results of electromagnetic code and demonstrates the validity of the time-domain equivalent circuit method. In addition, a new design method which uses the equivalent circuit method and electromagnetic simulation together to optimize the cold cavity characteristics of CCTWT is proposed. (authors)

  4. Side-coupled cavity model for surface plasmon-polariton transmission across a groove

    International Nuclear Information System (INIS)

    Liu, J.S.Q.

    2010-01-01

    We demonstrate that the transmission properties of surface plasmon-polaritons (SPPs) across a rectangular groove in a metallic film can be described by an analytical model that treats the groove as a side-coupled cavity to propagating SPPs on the metal surface. The coupling efficiency to the groove is quantified by treating it as a truncated metal-dielectric-metal (MDM) waveguide. Finite-difference frequency-domain (FDFD) simulations and mode orthogonality relations are employed to derive the basic scattering coefficients that describe the interaction between the relevant modes in the system. The modeled SPP transmission and reflection intensities show excellent agreement with full-field simulations over a wide range of groove dimensions, validating this intuitive model. The model predicts the sharp transmission minima that occur whenever an incident SPP resonantly couples to the groove. We also for the first time show the importance of evanescent, reactive MDM SPP modes to the transmission behavior. SPPs that couple to this mode are resonantly enhanced upon reflection from the bottom of the groove, leading to high field intensities and sharp transmission minima across the groove. The resonant behavior exhibited by the grooves has a number of important device applications, including SPP mirrors, filters, and modulators.

  5. Development of a coupling code for PWR reactor cavity radiation streaming calculation

    International Nuclear Information System (INIS)

    Zheng, Z.; Wu, H.; Cao, L.; Zheng, Y.; Zhang, H.; Wang, M.

    2012-01-01

    PWR reactor cavity radiation streaming is important for the safe of the personnel and equipment, thus calculation has to be performed to evaluate the neutron flux distribution around the reactor. For this calculation, the deterministic codes have difficulties in fine geometrical modeling and need huge computer resource; and the Monte Carlo codes require very long sampling time to obtain results with acceptable precision. Therefore, a coupling method has been developed to eliminate the two problems mentioned above in each code. In this study, we develop a coupling code named DORT2MCNP to link the Sn code DORT and Monte Carlo code MCNP. DORT2MCNP is used to produce a combined surface source containing top, bottom and side surface simultaneously. Because SDEF card is unsuitable for the combined surface source, we modify the SOURCE subroutine of MCNP and compile MCNP for this application. Numerical results demonstrate the correctness of the coupling code DORT2MCNP and show reasonable agreement between the coupling method and the other two codes (DORT and MCNP). (authors)

  6. Fundamental cavity impedance and longitudinal coupled-bunch instabilities at the High Luminosity Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    P. Baudrenghien

    2017-01-01

    Full Text Available The interaction between beam dynamics and the radio frequency (rf station in circular colliders is complex and can lead to longitudinal coupled-bunch instabilities at high beam currents. The excitation of the cavity higher order modes is traditionally damped using passive devices. But the wakefield developed at the cavity fundamental frequency falls in the frequency range of the rf power system and can, in theory, be compensated by modulating the generator drive. Such a regulation is the responsibility of the low-level rf (llrf system that measures the cavity field (or beam current and generates the rf power drive. The Large Hadron Collider (LHC rf was designed for the nominal LHC parameter of 0.55 A DC beam current. At 7 TeV the synchrotron radiation damping time is 13 hours. Damping of the instability growth rates due to the cavity fundamental (400.789 MHz can only come from the synchrotron tune spread (Landau damping and will be very small (time constant in the order of 0.1 s. In this work, the ability of the present llrf compensation to prevent coupled-bunch instabilities with the planned high luminosity LHC (HiLumi LHC doubling of the beam current to 1.1 A DC is investigated. The paper conclusions are based on the measured performances of the present llrf system. Models of the rf and llrf systems were developed at the LHC start-up. Following comparisons with measurements, the system was parametrized using these models. The parametric model then provides a more realistic estimation of the instability growth rates than an ideal model of the rf blocks. With this modeling approach, the key rf settings can be varied around their set value allowing for a sensitivity analysis (growth rate sensitivity to rf and llrf parameters. Finally, preliminary measurements from the LHC at 0.44 A DC are presented to support the conclusions of this work.

  7. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    Science.gov (United States)

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  8. Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, Janik; Kewes, Guenter; Schell, Andreas W.; Aichele, Thomas; Benson, Oliver [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Nuesse, Nils; Schoengen, Max; Loechel, Bernd [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Hanke, Tobias; Leitenstorfer, Alfred [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Bratschitsch, Rudolf [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Technische Universitaet Chemnitz, Institut fuer Physik, Chemnitz (Germany)

    2012-05-15

    We demonstrate the ability to modify the emission properties and enhance the interaction strength of single-photon emitters coupled to nanophotonic structures based on metals and dielectrics. Assembly of individual diamond nanocrystals, metal nanoparticles, and photonic crystal cavities to meta-structures is introduced. Experiments concerning controlled coupling of single defect centers in nanodiamonds to optical nanoantennas made of gold bowtie structures are reviewed. By placing one and the same emitter at various locations with high precision, a map of decay rate enhancements was obtained. Furthermore, we demonstrate the formation of a hybrid cavity quantum electrodynamics system in which a single defect center is coupled to a single mode of a gallium phosphite photonic crystal cavity. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Improved H-mode access in connected DND in MAST

    International Nuclear Information System (INIS)

    Meyer, H; Carolan, P G; Conway, N J; Counsell, G F; Cunningham, G; Field, A R; Kirk, A; McClements, K G; Price, M; Taylor, D

    2005-01-01

    In the Mega-Amp Spherical Tokamak, MAST, the formation of the edge transport barrier leading to the high-confinement (H-mode) regime is greatly facilitated by operating in a double null diverted (DND) configuration where both X-points are practically on the same flux surface. Ohmic H-modes are presently only obtained in these connected double null diverted (CDND) configurations. The ease of H-mode access is lost if the two flux surfaces passing through the X-points are radially separated by more than one ion Larmor radius (ρ i ∼ 6 mm) at the low-field-side mid-plane. The change of the magnetic configuration from disconnected to CDND is accompanied by a change in the radial electric field of about ΔE ψ ∼ -1 kV m -1 and a reduction of the electron temperature decay length in the high-field-side scrape-off-layer. Other parameters at the plasma edge, in particular those affecting the H-mode access criteria of common L/H transition theories, are not affected by the slight changes to the magnetic configuration. It is believed that the observed change in E ψ , which may result from differences in ion orbit losses, leads to a higher initial E x B flow shear in CDND configurations which could lead to the easier H-mode access

  10. On global H-mode scaling laws for JET

    International Nuclear Information System (INIS)

    Kardaun, O.; Lackner, K.; Thomsen, K.; Christiansen, J.; Cordey, J.; Gottardi, N.; Keilhacker, M.; Smeulders, P.

    1989-01-01

    Investigation of the scaling of the energy confinement time τ E with various plasma parameters has since long been an interesting, albeit not uncontroversial topic in plasma physics. Various global scaling laws have been derived for ohmic as well as (NBI and/or RF heated) L-mode discharges. Due to the scarce availability of computerised, extensive and validated H-mode datasets, systematic statistical analysis of H-mode scaling behaviour has hitherto been limited. A common approach is to fit the available H-mode data by an L-mode scaling law (e.g., Kaye-Goldston, Rebut-Lallia) with one or two adjustable constant terms. In this contribution we will consider the alternative approach of fitting all free parameters of various simple scaling models to two recently compiled datasets consisting of about 140 ELM-free and 40 ELMy H-mode discharges, measured at JET in the period 1986-1988. From this period, approximately all known H-mode shots have been included that satisfy the following criteria: D-injected D + discharges with no RF heating, a sufficiently long (≥300 ms) and regular P NBI flat-top, and validated main diagnostics. (author) 13 refs., 1 tab

  11. Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime

    International Nuclear Information System (INIS)

    Li Chun-Yan; Li Yan-Song

    2011-01-01

    We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding. Hybrid entanglement states of photons and electrons are used to distribute information. We just need to transmit photons without storing them in the scheme. The electron confined in a quantum dot, which is embedded in a microcavity, is held by one of the legitimate users throughout the whole communication process. Only the polarization of a single photon and spin of electron measurements are applied in this protocol, which are easier to perform than collective-Bell state measurements. Linear optical apparatus, such as a special polarizing beam splitter in a circular basis and single photon operations, make it more flexible to realize under current technology. Its efficiency will approach 100% in the ideal case. The security of the scheme is also discussed. (general)

  12. Observation of modulation speed enhancement, frequency modulation suppression, and phase noise reduction by detuned loading in a coupled-cavity semiconductor laser

    OpenAIRE

    Vahala, Kerry; Paslaski, Joel; Yariv, Amnon

    1985-01-01

    Simultaneous direct modulation response enhancement, phase noise (linewidth) reduction, and frequency modulation suppression are produced in a coupled-cavity semiconductor laser by the detuned loading mechanism.

  13. A new approach to sum frequency generation of single-frequency blue light in a coupled ring cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2014-01-01

    We present a generic approach for the generation of tunable single-frequency light and demonstrate generation of more than 300 mW tunable light around 460 nm. One tapered diode laser is operated in a coupled ring cavity containing the nonlinear crystal and another tapered diode laser is sent thro...... through the nonlinear crystal in a single pass. A high conversion efficiency of more than 25 % of the single-pass laser is enabled by the high circulating power in the coupled cavity. The system is entirely self-stabilized with no need for electronic locking....

  14. Quantum correlations of coupled superconducting two-qubit system in various cavity environments

    International Nuclear Information System (INIS)

    Yu, Yanxia; Fu, Guolan; Guo, L.P.; Pan, Hui; Wang, Z.S.

    2013-01-01

    Highlights: •We investigate dynamic evolutions of quantum and classical correlations for coupled superconducting system with various cavity environments. •We show that the quantum discord continues to reflect quantum information. •A transition of quantum discord is founded between classical loss and quantum increasing of correlations for a purely dephasing mode. •We show that the environment-dependent models can delay the loss of quantum discord. •We find that the results depend strongly on the initial angle. -- Abstract: Dynamic evolutions of quantum discord, concurrence, and classical correlation are investigated in coupled superconducting system with various cavity environments, focusing on the two-qubit system at an initially entangling X-state and Y-state. We find that for a smaller photon number, the quantum discord, concurrence and classical correlation show damped oscillations for all different decay modes. Differently from the sudden death or the dark and bright periods emerging in evolving processing of the concurrence and classical correlation, however, the quantum discord decreases gradually to zero. The results reveal that the quantum entanglement and classical correlation are lost, but the quantum discord continues to reflect quantum information in the same evolving period. For a larger photon number, the oscillations disappear. It is surprised that there exists a transition of quantum discord between classical loss and quantum increasing of correlations for a purely dephasing mode. For a larger photon number in the Y-state, the transition disappears. Moreover, we show that the environment-dependent models can delay the loss of quantum discord. The results depend strongly on the initial angle, which provide a clue to control the quantum gate of superconducting circuit

  15. Characteristics of the First H-mode Discharges in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bell, M.G.; Bell, R.E.; Bush, C.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Menard, J.E.; Mueller, D.; Sabbagh, S.A.; Stutman, D.; Taylor, G.; Johnson, D.W.; Kaita, R.; Maqueda, R.J.; Ono, M.; Paoletti, F.; Peng, Y-K.M.; Roquemore, A.L.; Skinner, C.H.; Soukhanovskii, V.A.; Synakowski, E.J.

    2001-01-01

    We report observations of the first low-to-high (L-H) confinement mode transitions in the National Spherical Torus Experiment (NSTX). The H-mode energy confinement time increased over reference L-mode discharges transiently by 100-300%, as high as ∼150 ms. This confinement time is ∼1.8-2.3 times higher than predicted by a multi-machine ELM-free H-mode scaling. This achievement extends the H-mode window of fusion devices down to a record low aspect ratio (R/a) ∼ 1.3, challenging both confinement and L-H power thresholds scalings based on conventional aspect ratio tokamaks

  16. Shielding Effectiveness Analysis and Modification of the Coupling Effect Transmission Line Method on Cavities with Multi-Sided Apertures

    Directory of Open Access Journals (Sweden)

    Tao Hu

    2018-04-01

    Full Text Available Because the traditional transmission line method treats electromagnetic waves as excitation sources and the cavity as a rectangular waveguide whose terminal is shorted, the transmission line method can only calculate shielding effectiveness in the center line of the cavity with apertures on one side. In this paper, the aperture coupling effect of different sides was analyzed based on vector analysis. According to the field intensity distribution of different transport modes in the rectangular waveguide, the calculation model of cavity shielding effectiveness in any position is proposed, which can solve the question of the calculation model of shielding effectiveness in any position in the traditional method of equivalent transmission methods. Further expansion of the equivalent transmission lines model is adopted to study the shielding effectiveness of different aperture cavities, and the coupling effect rule of the incident angle, the number of apertures, and the size of the cavity is obtained, which can provide the technical support for the design of electromagnetic shielding cavities for electronic equipment.

  17. Pellet fuelling and ELMy H-mode physics at JET

    International Nuclear Information System (INIS)

    Horton, L.D.

    2001-01-01

    As the reference operating regime for ITER, investigations of the ELMy H-mode have received high priority in the JET experimental programme. Recent experiments have concentrated in particular on operation simultaneously at high density and high confinement using high field side (HFS) pellet launch. The enhanced fuelling efficiency of HFS pellet fuelling is found to scale favourably to a large machine such as JET. The achievable density of ELMy H-mode plasmas in JET has been significantly increased using HFS fuelling although at the expense of confinement degradation back to L-mode levels. Initial experiments using control of the pellet injection frequency have shown that density and confinement can simultaneously be increased close to the values necessary for ITER. The boundaries of the available ELMy H-mode operational space have also been extensively explored. The power necessary to maintain the high confinement normally associated with ELMy H-mode operation is found to be substantially higher than the H-mode threshold power. The compatibility of ELMy H-modes with divertor operation acceptable for a fusion device has been studied. Narrow energy scrape-off widths are measured which place stringent limits on divertor power handling. Deuterium and tritium codeposition profiles are measured to be strongly in/out asymmetric. Successful modelling of these profiles requires the inclusion of the (measured) scrape-off layer flows and of the production in the divertor of hydrocarbon molecules with sticking coefficients below unity. Helium exhaust and compression are found to be within the limits sufficient for a reactor. (author)

  18. Transition to H-mode by energetic electrons

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae.

    1992-07-01

    Effect of the electron loss due to the toroidal ripple on an H-mode transition is studied. When energetic electrons exist in tokamaks, e.g., in the case of the current drive by lower hybrid (LH) waves, the edge electric field can show the bifurcation to the more positive value. In this state, both the electron loss and ion loss (such as loss cone loss) are reduced. The criterion for the transition is derived. Comparison with H-mode in JT-60 LH plasma shows a qualitative agreement. (author)

  19. Change of transport at L- and H-mode transition

    International Nuclear Information System (INIS)

    Itoh, Sanae-I; Itoh, Kimitaka.

    1990-01-01

    A new refined model of the L-mode and H-mode transition in tokamaks is presented based on the bifurcation of the radial electric field, E r , near edge. The radial gradient of E r is newly introduced to explain the sudden change of fluctuations as well as plasma fluxes at the onset of transition. This model predicts that the L-to H-mode transition is associated with the decrease of dE r /dr causing reduction of particle and energy fluxes at critical gradient. (author)

  20. Collisional drift waves in the H-mode edge

    International Nuclear Information System (INIS)

    Sen, S.

    1994-01-01

    The stability of the collisional drift wave in a sheared slab geometry is found to be severely restricted at the H-mode edge plasma due to the very steep density gradient. However, a radially varying transverse velocity field is found to play the key role in stability. Velocity profiles usually found in the H-mode plasma stabilize drift waves. On the other hand, velocity profiles corresponding to the L-mode render collisional drift waves unstable even though the magnetic shear continues to play its stabilizing role. (author). 24 refs

  1. Two ions coupled to an optical cavity : from an enhanced quantum computer interface towards distributed quantum computing

    International Nuclear Information System (INIS)

    Casabone, B.

    2015-01-01

    Distributed quantum computing, an approach to scale up the computational power of quantum computers, requires entanglement between nodes of a quantum network. In our research group, two building blocks of schemes to entangle two ion-based quantum computers using cavity-based quantum interfaces have recently been demonstrated: ion-photon entanglement and ion-photon state mapping. In this thesis work, we extend the first building block in order to entangle two ions located in the same optical cavity. The entanglement generated by this protocol is efficient and heralded, and as it does not rely on the fact that ions interact with the same cavity, our results are a stepping stone towards the efficient generation of entanglement of remote ion-based quantum computers. In the second part of this thesis, we discuss how collective effects can be used to improve the performance of a cavity-based quantum interface. We show that by using two ions in the so-called superradiant state, the coupling strength between the two ions and the optical cavity is effectively increased compared to the single-ion case. As a complementary result, the creation of a state of two ions that exhibits a reduced coupling strength to the optical cavity, i.e., a subradiant state, is shown. Finally, we demonstrate a direct application of the increased coupling strength that the superradiant state exhibits by showing an enhanced version of the ion-photon state mapping process. By using the current setup and a second one that is being assembled, we intend to build a quantum network. The heralded ion-ion entanglement protocol presented in this thesis work will be used to entangle ions located in both setups, an experiment that requires photons generated in both apparatuses to be indistinguishable. Collective effects then can be used to modify the waveform of photons exiting the cavity in order to effect the desired photon indistinguishability. (author) [de

  2. Effect of transients on the beam in the Superconducting Supercollider Coupled-Cavity Linac

    International Nuclear Information System (INIS)

    Young, L.M.; Nath, S.

    1992-01-01

    Each module of the Superconducting Super Collider (SSC) Coupled-Cavity Linac (CCL) consists of eight tanks (10 accelerating cells each) coupled with bridge couplers. The radio frequency (rf) power drive is in the center of the module at the bridge coupler between the fourth and fifth tanks. In this simulation of the beam dynamics, the rf power is turned on 10 μs before the beam is turned on. This time lapse allows the fields to build up and stabilize before they are required by the beam. When the beam is turned on, the beam loading causes the fields to change. This transient state of the fields together with their effect on the beam is presented. A model has been developed to calculate field distribution throughout the module as a function of time. Beam dynamics simulations were run with the results of this model at several times during the beam pulse. An estimate of the effect of the transients is given by the results of these simulations

  3. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei, E-mail: faraon@caltech.edu [T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125 (United States)

    2016-01-04

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  4. Beam transfer between the coupled cavity linac and the low energy booster synchrotron for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Bhandari, R.K.; Penner, S.

    1990-09-01

    Ion optical design of the transfer line, which will be used to inject H - beam at 600 MeV from the Coupled Cavity Linac (CCL) into the Low Energy Booster (LEB) synchrotron, is described. Space charge effects of up to 50 mA average beam current have been taken into account

  5. Offset linear scaling for H-mode confinement

    International Nuclear Information System (INIS)

    Miura, Yukitoshi; Tamai, Hiroshi; Suzuki, Norio; Mori, Masahiro; Matsuda, Toshiaki; Maeda, Hikosuke; Takizuka, Tomonori; Itoh, Sanae; Itoh, Kimitaka.

    1992-01-01

    An offset linear scaling for the H-mode confinement time is examined based on single parameter scans on the JFT-2M experiment. Regression study is done for various devices with open divertor configuration such as JET, DIII-D, JFT-2M. The scaling law of the thermal energy is given in the MKSA unit as W th =0.0046R 1.9 I P 1.1 B T 0.91 √A+2.9x10 -8 I P 1.0 R 0.87 P√AP, where R is the major radius, I P is the plasma current, B T is the toroidal magnetic field, A is the average mass number of plasma and neutral beam particles, and P is the heating power. This fitting has a similar root mean square error (RMSE) compared to the power law scaling. The result is also compared with the H-mode in other configurations. The W th of closed divertor H-mode on ASDEX shows a little better values than that of open divertor H-mode. (author)

  6. LH transition theories and theory of H-mode

    International Nuclear Information System (INIS)

    Ward, D.J.

    1996-01-01

    Recent developments in H-mode theory are discussed with earlier work described to put new theories in context. Much of the recent work concerns the development of the radial electric field near the plasma edge and its impact on transport driven by fluctuations, and is the main topic discussed. (author)

  7. Analysis of the H-mode density limit in the ASDEX upgrade tokamak using bolometry

    Energy Technology Data Exchange (ETDEWEB)

    Bernert, Matthias

    2013-10-23

    four phases occur due to a coupling of these two mechanisms. These observations are in line with studies made at AUG with carbon walls, although in those discharges the energy loss was most likely caused by the full detachment of the divertor. The density of the HDL depends only weakly on the plasma current, unlike the Greenwald limit, and can be increased by high heating power, again unlike the Greenwald limit. The triangularity of the plasma has no influence on the density of the HDL, though improves the performance of the plasma, since the onset of the degrading H-mode phase occurs at higher densities. It is explicitly shown that the HDL and also the L-mode density limit are determined by edge parameters. Using pellet fueling, centrally elevated density profiles above the Greenwald limit can be achieved in stable H-modes at a moderate confinement. Future tokamaks will have intrinsic density peaking. Consequently, they will most likely operate in H-modes above the Greenwald limit.

  8. Analysis of the H-mode density limit in the ASDEX upgrade tokamak using bolometry

    International Nuclear Information System (INIS)

    Bernert, Matthias

    2013-01-01

    four phases occur due to a coupling of these two mechanisms. These observations are in line with studies made at AUG with carbon walls, although in those discharges the energy loss was most likely caused by the full detachment of the divertor. The density of the HDL depends only weakly on the plasma current, unlike the Greenwald limit, and can be increased by high heating power, again unlike the Greenwald limit. The triangularity of the plasma has no influence on the density of the HDL, though improves the performance of the plasma, since the onset of the degrading H-mode phase occurs at higher densities. It is explicitly shown that the HDL and also the L-mode density limit are determined by edge parameters. Using pellet fueling, centrally elevated density profiles above the Greenwald limit can be achieved in stable H-modes at a moderate confinement. Future tokamaks will have intrinsic density peaking. Consequently, they will most likely operate in H-modes above the Greenwald limit.

  9. Required cavity HOM deQing calculated from probability estimates of coupled bunch instabilities in the APS ring

    International Nuclear Information System (INIS)

    Emery, L.

    1993-01-01

    A method of determining the deQing requirement of individual cavity higher-order modes (HOM) for a multi-cavity RF system is presented and applied to the APS ring. Since HOM resonator frequency values are to some degree uncertain, the HOM frequencies should be regarded as random variables in predicting the stability of the coupled bunch beam modes. A Monte Carlo simulation provides a histogram of the growth rates from which one obtains an estimate of the probability of instability. The damping of each HOM type is determined such that the damping effort is economized, i.e. no single HOM dominates the specified growth rate histogram

  10. Thermal modeling of a greenhouse integrated to an aquifer coupled cavity flow heat exchanger system

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 008, Punjab (India); Sharma, S.K. [Energy Research Centre, Panjab University, Chandigarh 160 017, Punjab (India)

    2007-06-15

    A thermal model is developed for heating and cooling of an agricultural greenhouse integrated with an aquifer coupled cavity flow heat exchanger system (ACCFHES). The ACCFHES works on the principal of utilizing deep aquifer water available at the ground surface through an irrigation tube well already installed in every agricultural field at constant year-round temperature of 24 C. The analysis is based on the energy balance equations for different components of the greenhouse. Using the derived analytical expressions, a computer program is developed in C{sup ++} for computing the hourly greenhouse plant and room air temperature for various design and climatic parameters. Experimental validation of the developed model is carried out using the measured plant and room air temperature data of the greenhouse (in which capsicum is grown) for the winter and summer conditions of the year 2004-2005 at Chandigarh (31 N and 78 E), Punjab, India. It is observed that the predicted and measured values are in close agreement. Greenhouse room air and plant temperature is maintained 6-7 K and 5-6 K below ambient, respectively for an extreme summer day and 7-8 K and 5-6 K above ambient, respectively for an extreme winter night. Finally, parametric studies are conducted to observe the effect of various operating parameters such as mass of the plant, area of the plant, mass flow rate of the circulating air and area of the ACCFHES on the greenhouse room air and plant temperature. (author)

  11. Comparison of H-mode barrier width with a model of neutral penetration length

    International Nuclear Information System (INIS)

    Groebner, R.J.; Mahdavi, M.A.; Leonard, A.W.; Osborne, T.H.; Brooks, N.S.; Wolf, N.S.; Porter, G.D.; Stangeby, P.C.; Colchin, R.J.; Owen, L.W.

    2004-01-01

    Pedestal studies in DIII-D find that the width of the region of steep gradient in the H-mode density is comparable with the neutral penetration length, as computed from a simple analytic model. This model has analytic solutions for the edge plasma and neutral density profiles, which are obtained from the coupled particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40 and 500 eV), the analytic model quantitatively predicts the observed decrease in the width as the pedestal density increases and the observed strong increase in the gradient of the density as the pedestal density increases. The model successfully predicts that L-mode and H-mode profiles with the same pedestal density have gradients that differ by less than a factor of 2. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fuelling is an important part of the physics that determines the structure of the H-mode transport barrier. (author)

  12. Fibre Coupled Photonic Crystal Cavity Arrays on Transparent Substrates for Spatially Resolved Sensing

    Directory of Open Access Journals (Sweden)

    Mark G. Scullion

    2014-11-01

    Full Text Available We introduce a photonic crystal cavity array realised in a silicon thin film and placed on polydimethlysiloxane (PDMS as a new platform for the in-situ sensing of biomedical processes. Using tapered optical fibres, we show that multiple independent cavities within the same waveguide can be excited and their resonance wavelength determined from camera images without the need for a spectrometer. The cavity array platform combines sensing as a function of location with sensing as a function of time.

  13. Statistical study of TCV disruptivity and H-mode accessibility

    International Nuclear Information System (INIS)

    Martin, Y.; Deschenaux, C.; Lister, J.B.; Pochelon, A.

    1997-01-01

    Optimising tokamak operation consists of finding a path, in a multidimensional parameter space, which leads to the desired plasma characteristics and avoids hazards regions. Typically the desirable regions are the domain where an L-mode to H-mode transition can occur, and then, in the H-mode, where ELMs and the required high density< y can be maintained. The regions to avoid are those with a high rate of disruptivity. On TCV, learning the safe and successful paths is achieved empirically. This will no longer be possible in a machine like ITER, since only a small percentage of disrupted discharges will be tolerable. An a priori knowledge of the hazardous regions in ITER is therefore mandatory. This paper presents the results of a statistical analysis of the occurrence of disruptions in TCV. (author) 4 figs

  14. High temperature L- and H-mode confinement in JET

    International Nuclear Information System (INIS)

    Balet, B.; Boyd, D.A.; Campbell, D.J.

    1990-01-01

    The energy confinement properties of low density, high ion temperature L- and H-mode plasmas are investigated. For L-mode plasmas it is shown that, although the global confinement is independent of density, the energy confinement in the central region is significantly better at low densities than at higher densities. The improved confinement appears to be associated with the steepness of the density gradient. For the H-mode phase, although the confinement at the edge is dramatically improved, which is once again associated with the steep density gradient in the edge region, the central confinement properties are essentially the same as for the standard L-mode. The results are compared in a qualitative manner with the predictions of the ion temperature gradient instability theory and appear to be in disagreement with some aspects of this theory. (author). 13 refs, 15 figs

  15. Overview of H-mode studies in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Baker, D.R,; Allen, S.L.

    1994-01-01

    A major portion of the DIII-D program includes studies of the L-H transition, of the VH-mode, of particle transport and control and of the power-handling capability of a diverter. Significant progress has been made in all of these areas and the purpose of this paper is to summarize the major results obtained during the last two years. An increased understanding of the origin of improved confinement in H-mode and in VH-mode discharges has been obtained, good impurity control has been achieved in several operating scenarios, studies of helium transport provide encouraging results from the point of view of reactor design, an actively pumped diverter chamber has controlled the density in H-mode discharges and a radiative diverter is a promising technique for controlling the heat flux from the main plasma

  16. Continued conditioning of the Fermilab 400 MeV linac high-gradient side-coupled cavities

    International Nuclear Information System (INIS)

    Kroc, Thomas; McCrory, Elliott; Moretti, Alfred; Popovic, Milorad

    1996-01-01

    The high-energy portion of the Fermilab 400 MeV Linac is made of high gradient (37 MV/meter surface field) side-coupled cavity sections which were conditioned over a 10 month period before their installation in August of 1993. We have continued to monitor the conditioning of these cavities since that time while the cavities have been in operation, and those results are presented here. The sparking rate and the X-ray production are measured and compared with the 1992/3 pre-operational and 1993/4 early operational measurements. These rates are consistent with a continued diminishing of these phenomena. Predictions and spark management strategies presented in earlier reports are evaluated in light of present experiences. We also have been measuring the sparking rate within this structure with and without our 50 mA peak beam. We find that the sparking rate is 20% higher with beam in the accelerator. (author)

  17. Theory of anomalous transport in H-mode plasmas

    International Nuclear Information System (INIS)

    Itoh, S.; Itoh, K.; Fukuyama, A.; Yagi, M.

    1993-05-01

    Theory of the anomalous transport is developed, and the unified formula for the L- and H-mode plasmas is presented. The self-sustained ballooning-mode turbulence is solved in the presence of the inhomogeneous radial electric field, E r . Reductions in transport coefficients and the amplitude and decorrelation length of fluctuations due to E r ' are quantitatively analyzed. Combined with the E r -bifurcation model, the thickness of the transport barrier is simultaneously determined. (author)

  18. Behaviour of impurities during the H-mode in JET

    International Nuclear Information System (INIS)

    Gianella, R.; Behringer, K.; Denne, B.; Gottardi, N.; Hellermann, M. von; Morgan, P.D.; Pasini, D.; Stamp, M.F.

    1989-01-01

    In additionally-heated tokamak discharges, the H-mode phases are reported to display, together with a better energy confinement, a longer global containment time for particles. In particular, steep gradients of electron density and temperature are sustained in the outer region of the plasma column. This enhanced performance is observed especially in discharges in which the activity of edge localized modes (ELMs) is low or absent. High confinement and accumulation of metallic impurities, which quickly give raise to terminal disruptions have been described under similar conditions. In JET H-modes very long impurity confinement times are also observed. However the experimental condition is somewhat more favourable since quiescent H-modes are obtained lasting much longer than the energy confinement times and the radiation from metals is generally negligible. The dominant impurities are normally carbon and oxygen, the latter generally accounting for half or more of the power radiated from the bulk plasma. During the X-point operation the effective influx of carbon into the discharge, which is normally in close correlation with that of deuterium, is substantially reduced while the influx of oxygen, whose production mechanisms is believed to be of a chemical nature, does not show significant variations. (author) 5 refs., 4 figs

  19. An emerging understanding of H-mode discharges in tokamaks

    International Nuclear Information System (INIS)

    Groebner, R.J.

    1992-12-01

    A remarkable degree of consistency of experimental results from tokamaks throughout the world has developed with regard to the phenomenology of the transition from L-mode to H-mode confinement in tokamaks. The transition is initiated in a narrow layer at the plasma periphery where density fluctuations are suppressed and steep gradients of temperature and density form in a region with large first and second radial derivatives in the υ E → = (E x B)/B 2 flow velocity. These results are qualitatively consistent with theories which predict suppression of fluctuations by shear or curvature in υE. The required υE flow is generated very rapidly when the magnitude of the heating power or of an externally imposed radial current exceed threshold values and several theoretical models have been developed to explain the observed changes in the υE flow. After the transition occurs, the altered boundary conditions enable the development of improved confinement in the plasma interior on a confinement time scale. The resulting H-mode discharge has typically twice the confinement of L-mode discharges and regimes of further improved confinement have been obtained in some H-mode scenarios

  20. Two-dimensional Josephson junction arrays coupled through a high-Q cavity

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2001-01-01

    the cavity. The highly resonant cavity induces synchronized behavior, which is qualitatively different than what is familiar from other studies on nonlinear oscillator arrays, for example the Kuramoto model. We also address the effects of disorder, as well as the role of detuning between the spontaneous...

  1. Quantum Control of a Spin Qubit Coupled to a Photonic Crystal Cavity

    Science.gov (United States)

    2012-12-01

    Cavities in Monocrystalline Diamond. Physical Review Letters 109, 033604 (2012). 14. Kroutvar, M. et al. Optically programmable electron spin...temperatures, varying the detuning of X− from the cavity. The dashed blue lines in panel a are fits to the reflectivity. The spectra are vertically

  2. Optical filter finesses enhancement based on nested coupled cavities and active medium

    Science.gov (United States)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-04-01

    Optical filters with relatively large FSR and narrow linewidth are simultaneously needed for different applications. The ratio between the FSR and the 3-dB linewidth is given by finesse of the filter, which is solely determined by the different energy loss mechanisms limited by the technology advancement. In this work, we present a novel coupled-cavity configuration embedding an optical filter and a gain medium; allowing an overall finesse enhancement and simultaneous FSR and 3-dB linewidth engineering beyond the technological limits of the filter fabrication method. The configuration consists of two resonators. An active ring resonator comprises an optical gain medium and a passive resonator. In one configuration, the optical filter is the passive resonator itself. In a second configuration, the passive resonator is another ring resonator that embeds the optical filter. The presented configurations using a semiconductor optical amplifier are applied one time to a mechanically Fabry-Perot filter in the first presented configuration; and a second time to a fiber ring filter in the second presented configuration. The mechanical filter has an original 3-dB linewidth of 1nm and an FSR that is larger than 100nm while the enhanced linewidth is about 0.3nm. The fiber ring filter length is 4 m and directional coupler ratios of 90/10corresponding to a 3-dBlinewidth of about 4MHz and an FSR of 47 MHz. The enhanced 3- dBlinewidth of the overall filter configuration is 200kHz, demonstrating finesse enhancement up to20 times the original finesse of the filter.

  3. Mode stability analysis in the beam—wave interaction process for a three-gap Hughes-type coupled cavity chain

    International Nuclear Information System (INIS)

    Luo Ji-Run; Zhu Min; Guo Wei; Cui Jian

    2013-01-01

    Based on space-charge wave theory, the formulae of the beam—wave coupling coefficient and the beam-loaded conductance are given for the beam—wave interaction in an N-gap Hughes-type coupled cavity chain. The ratio of the non-beam-loaded quality factor of the coupled cavity chain to the beam quality factor is used to determine the stability of the beam—wave interaction. As an example, the stabilities of the beam—wave interaction in a three-gap Hughes-type coupled cavity chain are discussed with the formulae and the CST code for the operations of the 2π, π, and π/2 modes, respectively. The results show that stable operation of the 2π, π, and π/2 modes may all be realized in an extended-interaction klystron with the three-gap Hughes-type coupled cavity chain

  4. The external Q factor of a dual-feed coupling for superconducting radio frequency cavities: Theoretical and experimental studies

    Science.gov (United States)

    Dai, J.; Belomestnykh, S.; Ben-Zvi, I.; Xu, Wencan

    2013-11-01

    We propose a theoretical model based on network analysis to study the external quality factor (Q factor) of dual-feed coupling for superconducting radio-frequency (SRF) cavities. Specifically, we apply our model to the dual-feed 704 MHz half-cell SRF gun for Brookhaven National Laboratory's prototype Energy Recovery Linac (ERL). The calculations show that the external Q factor of this dual-feed system is adjustable from 104 to 109 provided that the adjustment range of a phase shifter covers 0°-360°. With a period of 360°, the external Q factor of the coupling system changes periodically with the phase difference between the two coupling arms. When the RF phase of both coupling arms is adjusted simultaneously in the same direction, the external Q factor of the system also changes periodically, but with a period of 180°.

  5. Generation of maximally entangled mixed states of two atoms via on-resonance asymmetric atom-cavity couplings

    International Nuclear Information System (INIS)

    Li, Shang-Bin

    2007-01-01

    A scheme for generating the maximally entangled mixed state of two atoms on-resonance asymmetrically coupled to a single mode optical cavity field is presented. The part frontier of both maximally entangled mixed states and maximal Bell violating mixed states can be approximately reached by the evolving reduced density matrix of two atoms if the ratio of coupling strengths of two atoms is appropriately controlled. It is also shown that exchange symmetry of global maximal concurrence is broken if and only if coupling strength ratio lies between (√(3)/3) and √(3) for the case of one-particle excitation and asymmetric coupling, while this partial symmetry breaking cannot be verified by detecting maximal Bell violation

  6. Simulation of electron thermal transport in H-mode discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Halpern, F. D.

    2009-01-01

    Electron thermal transport in DIII-D H-mode tokamak plasmas [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated by comparing predictive simulation results for the evolution of electron temperature profiles with experimental data. The comparison includes the entire profile from the magnetic axis to the bottom of the pedestal. In the simulations, carried out using the automated system for transport analysis (ASTRA) integrated modeling code, different combinations of electron thermal transport models are considered. The combinations include models for electron temperature gradient (ETG) anomalous transport and trapped electron mode (TEM) anomalous transport, as well as a model for paleoclassical transport [J. D. Callen, Nucl. Fusion 45, 1120 (2005)]. It is found that the electromagnetic limit of the Horton ETG model [W. Horton et al., Phys. Fluids 31, 2971 (1988)] provides an important contribution near the magnetic axis, which is a region where the ETG mode in the GLF23 model [R. E. Waltz et al., Phys. Plasmas 4, 2482 (1997)] is below threshold. In simulations of DIII-D discharges, the observed shape of the H-mode edge pedestal is produced when transport associated with the TEM component of the GLF23 model is suppressed and transport given by the paleoclassical model is included. In a study involving 15 DIII-D H-mode discharges, it is found that with a particular combination of electron thermal transport models, the average rms deviation of the predicted electron temperature profile from the experimental profile is reduced to 9% and the offset to -4%.

  7. H-mode edge rotation in W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Ehmler, H.; Grigull, P.; Maassberg, H.; McCormick, K.; Wagner, F.; Wobig, H.

    2005-01-01

    In W7-AS three regimes of improved confinement exist which base on negative radial electric fields at the plasma edge resulting there from ion-root conditions of the ambipolar radial fluxes. Experimental control besides the magnetic configuration is given via the edge density profile i.e. the recycling and fuelling conditions. However, the ordering element seems to be the radial electric field profile (respectively its shear) and its interplay with the gradients of ion temperature and density. At low to medium densities the so called optimum confinement regime occurs with maximum density gradients located well inside the plasma boundary and large negative values of E r extending deep in the bulk plasma. For a large inner fraction of the bulk the ion temperature can be sufficiently high that ion transport conditions already can be explained by neoclassics. This regime delivers maximum values of T i , τ e and n τ e T i . Density gradients located right inside the plasma boundary result in the classical H-mode phenomena reminiscent to other toroidal devices with the capability of an edge layer with nearly complete suppression of turbulence either quasi stationary (in a quiescent H-mode) or intermittently (in between ELMs). At even higher densities and highly collisional plasmas with the maximum of ∇n shifted to or even out of the plasma boundary the High Density H-mode (HDH) opens access to steady state conditions with no measurable impurity accumulation. These improved confinement regimes are accessed and left via significant transitions of the transport properties albeit these transitions occur on rather different timescales. A comprehensive picture of improved edge confinement regimes in W7-AS is drawn based on the assumption that a weak edge bounded transport barrier resulting from the ion root conditions (thus E r <0) is the ground state of the (turbulent) edge plasma and already behaves as a barrier for anomalous transport. On top of that the classical H-mode

  8. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma; Di Fabrizio, Enzo M.

    2017-01-01

    with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity

  9. Ohmic H-mode and confinement in TCV

    International Nuclear Information System (INIS)

    Moret, J.-M.; Anton, M.; Barry, S.

    1995-01-01

    The unique flexibility of TCV for the creation of a wide variety of plasma shapes has been exploited to address some aspects of tokamak physics for which the shape may play an important role. The electron energy confinement time in limited ohmic L-mode plasmas whose elongation and triangularity have been varied (κ = 1.3 - 1.9, δ 0.1 - 0.7) has been observed to improve with elongation as κ 0.5 but to degrade with triangularity as (1 - 0.8 δ), for fixed safety factor. Ohmic H-modes have been obtained in several diverted and limited configurations, with some of the diverted discharges featuring large ELMs whose effects on the global confinement have been quantified. These effects depend on the configuration: in double null (DN) equilibria, a single ELM expels on average 2%, 6% and 2.5% of the particle, impurity and thermal energy content respectively, whilst in single null (SN) configurations, the corresponding numbers are 3.5%, 7% and 9%, indicative of larger ELM effects. The presence of absence of large ELMs in DN discharges has been actively controlled in a single discharge by alternately forcing one or other of the two X-points to lie on the separatrix, permitting stationary density and impurity content (Z eff ∼ 1.6) in long H-modes (1.5 s). (Author)

  10. Ohmic H-mode and confinement in TCV

    International Nuclear Information System (INIS)

    Moret, J.M.; Anton, M.; Barry, S.

    1995-01-01

    The unique flexibility of TCV for the creation of a wide variety of plasma shapes has been exploited to address some aspects of tokamak physics for which the shape may play an important role. The electron energy confinement time in limited ohmic L-mode plasmas whose elongation and triangularity have been varied, has been observed to improve with elongation as κ 0.5 but to degrade with triangularity as (1-0.8 δ), for fixed safety factor. Ohmic H-modes have been obtained in several diverted and limited configurations, with some of the diverted discharges featuring large ELMs whose effects on the global confinement have been quantified. These effects depend on the configuration: in double null (DN) equilibria, a single ELM expels on average 2%, 6% and 2.5% of the particle, impurity and thermal energy content respectively, whilst in single null (SN) configurations, the corresponding numbers are 3.5%, 7% and 9%, indicative of larger ELM effects. The presence or absence of large ELMs in DN discharges has been actively controlled in a single discharge by alternately forcing one or other of the two X-points to lie on the separatrix, permitting stationary density and impurity content (Z eff ≅1.6) in long H-modes (1.5 s). (author) 9 figs., 9 refs

  11. H-mode development in TEXT-U limiter plasmas

    International Nuclear Information System (INIS)

    Roberts, D.R.; Bravenec, R.V.; Bengtson, R.D.

    1996-01-01

    H-mode transitions in TEXT-U limiter plasmas have been observed at q a ∼ 3 and I p ∼ 250 kA (P OH ∼ 300 kW) with at least 300 kW of central electron-cyclotron heating (ECH). These are dithering transitions which are induced by sawtooth crashes and display the typical signatures of H-modes (D α drop, spontaneous density increase, evidence of a transport barrier). However, they show only a slight improvement over L-mode energy confinement. The vessel walls are boronized and conditioned prior to experiments to achieve low-impurity influx and particle recycling. Discharges which undergo transitions are fuelled almost entirely on residual recycling. Transitions are observed when limited on a toroidally localized top or bottom limiter and, more often, when the limiter surface is 'fresh', which is achieved by alternating between top and bottom limiters on successive shots. No strong dependence upon the distance from the low-field-side limiter has been found. Transitions are not yet observed when limited on the high-field-side wall tiles or in the case of TEXT-U diverted configurations. Preliminary measurements with the 2 MeV heavy-ion beam probe (HIBP) (in the core) and Langmuir probes (in the edge) indicate that the plasma potential drops outside the q = 1 radius while only small changes are observed in the density fluctuations level. (author)

  12. JET Radiative Mantle Experiments in ELMy H-Mode

    International Nuclear Information System (INIS)

    Budny, R.; Coffey, I.; Dumortier, P.; Grisolia, C.; Strachan, J.D.

    1999-01-01

    Radiative mantle experiments were performed on JET ELMy H-mode plasmas. The Septum configuration was used where the X-point is embedded into the top of the Septum. Argon radiated 50% of the input power from the bulk plasma while Z eff rose from an intrinsic level of 1.5 to about 1.7 due to the injected Argon. The total energy content and global energy confinement time decreased 15% when the impurities were introduced. In contrast, the effective thermal diffusivity in the core confinement region (r/a = .4--.8) decreased by 30%. Usually, JET ELMy H-mode plasmas have confinement that is correlated to the edge pedestal pressure. The radiation lowered the edge pedestal and consequently lowered the global confinement. Thus the confinement was changed by a competition between the edge pedestal reduction lowering the confinement and the weaker RI effect upon the core transport coefficients raising the confinement. The ELM frequency increased from 10 Hz Type I ELMs, to 200 Hz type III ELMs. The energy lost by each ELM reduced to 0.5% of the plasma energy content

  13. Bifurcation to Enhanced Performance H-mode on NSTX

    Science.gov (United States)

    Battaglia, D. J.; Chang, C. S.; Gerhardt, S. P.; Kaye, S. M.; Maingi, R.; Smith, D. R.

    2015-11-01

    The bifurcation from H-mode (H98 Performance (EP)H-mode (H98 = 1.2 - 2.0) on NSTX is found to occur when the ion thermal (χi) and momentum transport become decoupled from particle transport, such that the ion temperature (Ti) and rotation pedestals increase independent of the density pedestal. The onset of the EPH-mode transition is found to correlate with decreased pedestal collisionality (ν*ped) and an increased broadening of the density fluctuation (dn/n) spectrum in the pedestal as measured with beam emission spectroscopy. The spectrum broadening at decreased ν*ped is consistent with GEM simulations that indicate the toroidal mode number of the most unstable instability increases as ν*ped decreases. The lowest ν*ped, and thus largest spectrum broadening, is achieved with low pedestal density via lithium wall conditioning and when Zeff in the pedestal is significantly reduced via large edge rotation shear from external 3D fields or a large ELM. Kinetic neoclassical transport calculations (XGC0) confirm that Zeff is reduced when edge rotation braking leads to a more negative Er that shifts the impurity density profiles inward relative to the main ion density. These calculations also describe the role kinetic neoclassical and anomalous transport effects play in the decoupling of energy, momentum and particle transport at the bifurcation to EPH-mode. This work was sponsored by the U.S. Department of Energy.

  14. Transport of impurities during H-mode pulses in JET

    International Nuclear Information System (INIS)

    Giannella, R.; Gottardi, N.; Mompean, F.; Mori, H.; Pasini, D.; Stork, D.; Barnsley, R.; Hawkes, N.C.; Lawson, K.

    1990-01-01

    The transport of impurities during the H-mode is very different from that observed in the other regimes. This is clearly evident in the quiescent discharges where the confinement time of impurities τ I are measured in all the quiescent H-mode discharges in spite of the variety of impurity behavior observed corresponding to different plasma parameters and operating scenarios. The condition of the machine has an influence on the role played by the various impurities, but this does not seem to affect the flow patterns of these ions substantially. In particular oxygen, which was often detected as the dominant radiator, can be reduced to a negligible fraction by He conditioning of the carbon X-point tiles or limiters or by evaporating beryllium in the vacuum vessel. Nevertheless the behaviour of the residual impurities in otherwise similar discharges remains substantially unchanged. The transport patterns appear in fact to be affected by the plasma parameters and their profiles. In particular, two extreme transport regimes are presented in the following. These discharges have been modelled with the aid of a recently developed fully time-dependent impurity transport code using heuristic profiles for the impurity diffusion D and the convection velocity v. (author) 4 refs., 5 figs

  15. Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity

    Science.gov (United States)

    Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)

    1999-01-01

    We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.

  16. Plasma Etching of superconducting radio frequency cavity by Ar/Cl2 capacitively coupled Plasma

    Science.gov (United States)

    Upadhyay, Janardan; Popovic, Svetozar; Valente-Feliciano, Anne-Marie; Phillips, Larry; Vuskovic, Lepsha

    2016-09-01

    We are developing plasma processing technology of superconducting radio frequency (SRF) cavities. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the asymmetry was studied by changing the contour of the inner electrode. The optimized contour of the electrode based on these measurements was chosen for SRF cavity processing. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used, which previously mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. Plasma processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  17. Ferruleless coupled-cavity traveling-wave tube cold-test characteristics simulated with micro-SOS

    Science.gov (United States)

    Schroeder, Dana L.; Wilson, Jeffrey D.

    1993-01-01

    The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive and time consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion and beam interaction impedance characteristics of a ferruleless coupled-cavity traveling-wave tube slow-wave circuit were simulated using the code. Computer results agree closely with experimental data. Variations in the cavity geometry dimensions of period length and gap-to-period ratio were modeled. These variations can be used in velocity taper designs to reduce the radiofrequency (RF) phase velocity in synchronism with the decelerating electron beam. Such circuit designs can result in enhanced TWT power and efficiency.

  18. Computation of coupled surface radiation and natural convection in an inclined form cavity

    International Nuclear Information System (INIS)

    Amraqui, Samir; Mezrhab, Ahmed; Abid, Cherifa

    2011-01-01

    The present paper is concerned with computation of the radiation-natural convection interactions in an inclined form cavity. The cavity contains two symmetrically identical isothermal blocks and is vented by two opening located in a vertical median axis at the top and the bottom parts of the cavity. Calculations are made by using a finite volume method and an efficient numerical procedure is introduced for calculating the view factors, with shadow effects included. Effects of Rayleigh number Ra and inclination angle φ are investigated for Pr = 0.71 in presence and in absence of the radiation exchange. Results are reported in terms of isotherms, streamlines, local and average Nusselt numbers and mass flow rate. In light of the obtained results, we can conclude that the heat transfer decreases with increasing φ. In addition, the increase of Ra and the taking into account of the radiation exchange produce a considerable increase in the heat transfer.

  19. Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling

    Science.gov (United States)

    Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong

    2018-04-01

    We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.

  20. Further studies on beam breakup growth reduction by cavity cross-couplings in recirculating accelerators: Effects of long pulse length and multiturn recirculation

    International Nuclear Information System (INIS)

    Colombant, D.; Lau, Y.Y.

    1992-01-01

    Cavity cross-coupling was recently found to reduce beam breakup (BBU) growth in a recirculating accelerator known as the Spiral Line Induction Accelerator (SLIA). Here, we extend the analysis in two prespects: ong beam pulse lengths and a SLIA upgrade geometry which accelerates a 10 kA, 35 ns beam to 25 MeV via a 70 cavity, 7 turn recirculation. We found that when the beam pulse length τ exceeds the beam's transit time τ' between cross-coupled cavities, BBU growth may be worsened as a result of the cross-coupling among cavities. This situation is not unlike other long pulse recirculating accelerators where beam recirculation leads to beam breakup of a regenerative type. Thus, the advantage of BBU reduction by cavity cross-coupling is restricted primarily to beams with τ<τ', a condition envisioned for all SLIA geometries. For the 70 gap, 7 turn SLIA upgrade, we found that cavity cross-coupling may reduce BBU growth up to factors of a thousand when the quality factor Q of the deflecting modes are relatively high (like 100). In these high Q cases, the amount of growth reduction depends on the arrangement and sequence of beam recirculation. For Q < or approx. 20, BBU growth reduction by factors of hundreds is observed, but this reduction is insensitive to the sequence of beam recirculation. The above conclusions were based on simple models of cavity coupling that have been used in conventional microwave literature. Not addressed is the detail design consideration that leads to the desired degree of cavity coupling. (orig.)

  1. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-05-01

    A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe’s coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer’s performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1, ω2) and the individual quality factors (Q1, Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, I/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be

  2. General expressions for the coupling coefficient, quality and filling factors for a cavity with an insert using energy coupled mode theory.

    Science.gov (United States)

    Elnaggar, Sameh Y; Tervo, Richard; Mattar, Saba M

    2014-05-01

    A cavity (CV) with a dielectric resonator (DR) insert forms an excellent probe for the use in electron paramagnetic resonance (EPR) spectrometers. The probe's coupling coefficient, κ, the quality factor, Q, and the filling factor, η are vital in assessing the EPR spectrometer's performance. Coupled mode theory (CMT) is used to derive general expressions for these parameters. For large permittivity the dominating factor in κ is the ratio of the DR and CV cross sectional areas rather than the dielectric constant. Thus in some cases, resonators with low dielectric constant can couple much stronger with the cavity than do resonators with a high dielectric constant. When the DR and CV frequencies are degenerate, the coupled η is the average of the two uncoupled ones. In practical EPR probes the coupled η is approximately half of that of the DR. The Q of the coupled system generally depends on the eigenvectors, uncoupled frequencies (ω1,ω2) and the individual quality factors (Q1,Q2). It is calculated for different probe configurations and found to agree with the corresponding HFSS® simulations. Provided there is a large difference between the Q1, Q2 pair and the frequencies of DR and CV are degenerate, Q is approximately equal to double the minimum of Q1 and Q2. In general, the signal enhancement ratio, Iwithinsert/Iempty, is obtained from Q and η. For low loss DRs it only depends on η1/η2. However, when the DR has a low Q, the uncoupled Qs are also needed. In EPR spectroscopy it is desirable to excite only a single mode. The separation between the modes, Φ, is calculated as a function of κ and Q. It is found to be significantly greater than five times the average bandwidth. Thus for practical probes, it is possible to excite one of the coupled modes without exciting the other. The CMT expressions derived in this article are quite general and are in excellent agreement with the lumped circuit approach and finite numerical simulations. Hence they can also be

  3. Ballooning stability analysis of JET H-mode discharges

    International Nuclear Information System (INIS)

    O'Brien, D.P.; Galvao, R.; Keilhacker, M.; Lazzaro, E.; Watkins, M.L.

    1989-01-01

    Previous studies of the stability of a large aspect ratio model equilibrium to ideal MHD ballooning modes have shown that across the bulk of the plasma there exist two marginally stable values of the pressure gradient parameter α. These define an unstable zone which separates the first (small α) stable region from the second (large α) stable region. Close to the separatrix, however, the first and second regions can coalesce when the surface averaged current density, Λ, exceeds a critical value. The plasma in this region is then stable to ballooning modes at all values of the pressure gradient. In this paper we extend these results to JET H-mode equilibria using a finite aspect ratio ballooning formalism, and assess the relevance of ideal ballooning stability in these discharges. In particular we analyse shot 15894 at time 56 sec. which is 1.3 s into the H-phase. (author) 4 refs., 4 figs

  4. ELMs and the H-mode pedestal in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Sabbagh, S.A.; Bush, C.E.; Fredrickson, E.D.; Menard, J.E.; Stutman, D.; Tritz, K.; Bell, M.G.; Bell, R.E.; Boedo, J.A.; Gates, D.A.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P.; Mueller, D.; Raman, R.; Roquemore, A.L.; Soukhanovskii, V.A.; Stevenson, T.

    2005-01-01

    We report on the behavior of ELMs in NBI-heated H-mode plasmas in NSTX. It is observed that the size of Type I ELMs, characterized by the change in plasma energy, decreases with increasing line-average density, as observed at conventional aspect ratio. It is also observed that the Type I ELM size decreases as the plasma equilibrium is shifted from a symmetric double-null toward a lower single-null configuration. Type II/III ELMs have also been observed in NSTX, as well as a high-performance regime with small ELMs which we designate Type V. The Type V ELMs are characterized by an intermittent n 1 magnetic pre-cursor oscillation rotating counter to the plasma current; the mode vanishes between Type V ELMs crashes. Without active pumping, the density rises continuously through the Type V phase, albeit at a slower rate than ELM-free discharges

  5. H-mode profile parametrization for extrapolation and control

    International Nuclear Information System (INIS)

    Imre, K.; Riedel, K.S.; Schissel, D.P.; Schunke, B.

    1996-01-01

    A steady-state ELMy H-mode profile data set of 68 DIII-D discharges and 74 JET discharges is fitted with an error of 7-8%. The advantages of a parametrization of the plasma profiles in terms of a semi-parametric representation, T(ρ, I p , n-bar, B t , P L , R), are described. The shape of the temperature profile depends almost exclusively upon the size, R and q 95 , with a secondary dependence on the heating power. The density profile depends primarily upon q95 with a secondary dependence on n-bar. The line-average temperature T-bar e scales as n-bar -0.31 instead of T-bar∼''n-bar'' -1.0 . The predicted ITER temperature is T-bar = 17.1 keV. (Author)

  6. Dynamical dispersion engineering in coupled vertical cavities employing a high-contrast grating

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-01-01

    , including a case capable of dynamically controlling the photon’s effective mass to a large extent while keeping the resonance frequency same. We believe that full-control and dynamical-tuning of the photon’s effective mass may enable new possibilities for cavity quantum electrodynamics studies...

  7. The dynamics of a polariton dimer in a disordered coupled array of cavities

    Science.gov (United States)

    Aiyejina, Abuenameh; Andrews, Roger

    2018-03-01

    We investigate the effect of disorder in the laser intensity on the dynamics of dark-state polaritons in an array of 20 cavities, each containing an ensemble of four-level atoms that is described by a Bose-Hubbard Hamiltonian. We examine the evolution of the polariton number in the cavities starting from a state with either one or two polaritons in one of the cavities. For the case of a single polariton without disorder in the laser intensity, we calculate the wavefunction of the polariton and find that it disperses away from the initial cavity with time. The addition of disorder results in minimal suppression of the dispersal of the wavefunction. In the case of two polaritons with an on-site repulsion to hopping strength ratio of 20, we find that the polaritons form a repulsively bound state or dimer. Without disorder the dimer wavefunction disperses similarly to the single polariton wavefunction but over a longer time period. The addition of sufficiently strong disorder results in localization of the polariton dimer. The localization length is found to be described by a power law with exponent - 1.31. We also find that we can localise the dimer at any given time by switching on the disorder.

  8. Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

    Directory of Open Access Journals (Sweden)

    A. Stockklauser

    2017-03-01

    Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238  MHz at a resonator linewidth κ/2π=12  MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40  MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.

  9. The H-mode power threshold in JET

    Energy Technology Data Exchange (ETDEWEB)

    Start, D F.H.; Bhatnagar, V P; Campbell, D J; Cordey, J G; Esch, H P.L. de; Gormezano, C; Hawkes, N; Horton, L; Jones, T T.C.; Lomas, P J; Lowry, C; Righi, E; Rimini, F G; Saibene, G; Sartori, R; Sips, G; Stork, D; Thomas, P; Thomsen, K; Tubbing, B J.D.; Von Hellermann, M; Ward, D J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    New H-mode threshold data over a range of toroidal field and density values have been obtained from the present campaign. The scaling with n{sub e} B{sub t} is almost identical with that of the 91/92 period for the same discharge conditions. The scaling with toroidal field alone gives somewhat higher thresholds than the older data. The 1991/2 database shows a scaling of P{sub th} (power threshold) with n{sub e} B{sub t} which is approximately linear and agrees well with that observed on other tokamaks. For NBI and carbon target tiles the threshold power is a factor of two higher with the ion {Nu}B drift away from the target compared with the value found with the drift towards the target. The combination of ICRH and beryllium tiles appears to be beneficial for reducing P{sub th}. The power threshold is largely insensitive to plasma current, X-point height and distance between the last closed flux surface and the limiter, at least for values greater than 2 cm. (authors). 3 refs., 6 figs.

  10. Scaling studies of the H-mode pedestal

    International Nuclear Information System (INIS)

    Groebner, R.J.; Osborne, T.H.

    1998-01-01

    The structure and scaling of the H-mode pedestal are examined for discharges in the DIII-D tokamak. For typical conditions, the pedestal values of the ion and electron temperatures T i and T e are comparable. Measurements of main ion and C 6+ profiles indicate that the ion pressure gradient in the barrier is 50%--100% of the electron pressure gradient for deuterium plasmas. The magnitude of the pressure gradient in the barrier often exceeds the predictions of infinite-n ballooning mode theory by a factor of two. Moreover, via the bootstrap current, the finite pressure gradient acts to entirely remove ballooning stability limits for typical discharges. For a large dataset, the width of the pressure barrier δ is best described by the dimensionless scaling δ/R ∝ (β pol ped ) 0.4 where (β pol ped ) is the pedestal value of poloidal beta and R is the major radius. Scalings based on the poloidal ion gyroradius or the edge density gradient do not adequately describe overall trends in the data set and the propagation of the pressure barrier observed between edge-localized modes. The width of the T i barrier is quite variable and is not a good measure of the width of the pressure barrier

  11. Transport modeling of L- and H-mode discharges with LHCD on EAST

    Science.gov (United States)

    Li, M. H.; Ding, B. J.; Imbeaux, F.; Decker, J.; Zhang, X. J.; Kong, E. H.; Zhang, L.; Wei, W.; Shan, J. F.; Liu, F. K.; Wang, M.; Xu, H. D.; Yang, Y.; Peysson, Y.; Basiuk, V.; Artaud, J.-F.; Yuynh, P.; Wan, B. N.

    2013-04-01

    High-confinement (H-mode) discharges with lower hybrid current drive (LHCD) as the only heating source are obtained on EAST. In this paper, an empirical transport model of mixed Bohm/gyro-Bohm for electron and ion heat transport was first calibrated against a database of 3 L-mode shots on EAST. The electron and ion temperature profiles are well reproduced in the predictive modeling with the calibrated model coupled to the suite of codes CRONOS. CRONOS calculations with experimental profiles are also performed for electron power balance analysis. In addition, the time evolutions of LHCD are calculated by the C3PO/LUKE code involving current diffusion, and the results are compared with experimental observations.

  12. SOLPS5 modelling of the type III ELMing H-mode on TCV

    International Nuclear Information System (INIS)

    Gulejova, B.; Pitts, R.A.; Wischmeier, M.; Behn, R.; Coster, D.; Horacek, J.; Marki, J.

    2007-01-01

    Although ohmic H-modes have long been produced on TCV and the effects of ELMs at the divertor target studied in some detail, no attempt has yet been made to model the scrape-off layer (SOL) in these plasmas. This paper describes details of the first such efforts in which simulations of the inter-ELM phases using the coupled fluid-Monte Carlo SOLPS5 code (without drifts) are constrained by careful upstream Thomson scattering and Langmuir probe profiles. Simulated divertor profiles are compared with Langmuir probes and fast IR camera measurements at the targets. To account for the very differing transport rates in the edge pedestal and main SOL regions, radial variation of edge transport coefficients has been introduced in the simulations. Similarly, it is found that transport in the main chamber and divertor regions must be separately adjusted to provide an acceptable code-experiment match

  13. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  14. Enhancement of acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities by utilizing surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tian-Xue [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2017-01-30

    A phoxonic crystal is a periodically patterned material that can simultaneously localize optical and acoustic modes. The acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities is investigated numerically. The photons can be well confined in the slot owing to the large electric field discontinuity at the air/dielectric interfaces. Besides, the surface acoustic modes lead to the localization of the phonons near the air-slot. The high overlap of the photonic and phononic cavity modes near the slot results in a significant enhancement of the moving interface effect, and thus strengthens the total acousto-optical interaction. The results of two cavities with different slot widths show that the coupling strength is dependent on the slot width. It is expected to achieve a strong acousto-optical/optomechanical coupling in air-slot phoxonic crystal structures by utilizing surface acoustic modes. - Highlights: • Two-dimensional air-slot phoxonic crystal cavities which can confine simultaneously optical and acoustic waves are proposed. • The acoustic and optical waves are highly confined near/in the air-slot. • The high overlap of the photonic and phononic cavity modes significantly enhances the moving interface effect. • Different factors which affect the acousto-optical coupling are discussed.

  15. Enhanced direct-modulated bandwidth of 37 GHz by a multi-section laser with a coupled-cavity-injection-grating design

    DEFF Research Database (Denmark)

    Bach, L.; Kaiser, W.; Reithmaier, J.P.

    2003-01-01

    Using a new multi-section laser concept based on a coupled-cavity-injection-grating design, the material related intrinsic 3 dB modulation bandwidth can be enhanced up to 37 GHz for a 1.5 mm long device.......Using a new multi-section laser concept based on a coupled-cavity-injection-grating design, the material related intrinsic 3 dB modulation bandwidth can be enhanced up to 37 GHz for a 1.5 mm long device....

  16. Observation of precursor magnetic oscillations to the H-mode transition of ASDEX

    International Nuclear Information System (INIS)

    Toi, K.; Gernhardt, J.; Klueber, O.; Kornherr, M.

    1988-05-01

    Precursor oscillations to the H-mode transition are identified in magnetic fluctuations of the ASDEX H-mode discharges initiated without a sawtooth. This precursor is m=4/n=1 mode, rotating with f ≅ 10 kHz in the opposite direction to co-injected neutral beams. Time behaviour of the amplitude suggests that the H-mode transition is caused, not by the edge electron temperature, but by the edge current density. (orig.)

  17. Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity

    DEFF Research Database (Denmark)

    Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang

    2010-01-01

    We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...

  18. Study of H-mode threshold conditions in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Carlstrom, T.N.; Burrell, K.H.

    1996-10-01

    Studies have been conducted in DIII-D to determine the dependence of the power threshold P lh for the transition to the H-mode regime and the threshold P hl for the transition from H-mode to L-mode as functions of external parameters. There is a value of the line-averaged density n e at which P lh has a minimum and P lh tends to increase for lower and higher values of n e . Experiments conducted to separate the effect of the neutral density n 0 from the plasma density n e give evidence of a strong coupling between n 0 and n e . The separate effect of neutrals on the transition has not been determined. Coordinated experiments with JET made in the ITER shape show that P lh increases approximately as S 0.5 where S is the plasma surface area. For these discharges, the power threshold in DIII-D was high by normal standards, thus suggesting that effects other than plasma size may have affected the experiment. Studies of H-L transitions have been initiated and hysteresis of order 40% has been observed. Studies have also been done of the dependence of the L-H transition on local edge parameters. Characterization of the edge within a few ms prior to the transition shows that the range of edge temperatures at which the transition has been observed is more restrictive than the range of densities at which it occurs. These results suggest that some temperature function is important for controlling the transition

  19. Resolving the stratification discrepancy of turbulent natural convection in differentially heated air-filled cavities. Part III: A full convection–conduction–surface radiation coupling

    International Nuclear Information System (INIS)

    Xin, Shihe; Salat, Jacques; Joubert, Patrice; Sergent, Anne; Penot, François; Quéré, Patrick Le

    2013-01-01

    Highlights: ► Turbulent natural convection is studied numerically and experimentally. ► DNS of full conduction–convection–radiation coupling is performed. ► Spectral methods are combined with domain decomposition. ► Considering surface radiation improves strongly numerical results. ► Surface radiation is responsible for the weak stratification. -- Abstract: The present study concerns an air-filled differentially heated cavity of 1 m × 0.32 m × 1 m (width × depth × height) subject to a temperature difference of 15 K and is motivated by the need to understand the persistent discrepancy observed between numerical and experimental results on thermal stratification in the cavity core. An improved experiment with enhanced metrology was set up and experimental data have been obtained along with the characteristics of the surfaces and materials used. Experimental temperature distributions on the passive walls have been introduced in numerical simulations in order to provide a faithful prediction of experimental data. By means of DNS using spectral methods, heat conduction in the insulating material is first coupled with natural convection in the cavity. As heat conduction influences only the temperature distribution on the top and bottom surfaces and in the near wall regions, surface radiation is added to the coupling of natural convection with heat conduction. The temperature distribution in the cavity is strongly affected by the polycarbonate front and rear walls of the cavity, which are almost black surfaces for low temperature radiation, and also other low emissivity walls. The thermal stratification is considerably weakened by surface radiation. Good agreement between numerical simulations and experiments is observed on both time-averaged fields and turbulent statistics. Treating the full conduction–convection–radiation coupling allowed to confirm that experimental wall temperatures resulted from the coupled phenomena and this is another way to

  20. Semi-analytical quasi-normal mode theory for the local density of states in coupled photonic crystal cavity-waveguide structures

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper

    2015-01-01

    We present and validate a semi-analytical quasi-normal mode (QNM) theory for the local density of states (LDOS) in coupled photonic crystal (PhC) cavity-waveguide structures. By means of an expansion of the Green's function on one or a few QNMs, a closed-form expression for the LDOS is obtained, ......-trivial spectrum with a peak and a dip is found, which is reproduced only when including both the two relevant QNMs in the theory. In both cases, we find relative errors below 1% in the bandwidth of interest.......We present and validate a semi-analytical quasi-normal mode (QNM) theory for the local density of states (LDOS) in coupled photonic crystal (PhC) cavity-waveguide structures. By means of an expansion of the Green's function on one or a few QNMs, a closed-form expression for the LDOS is obtained......, and for two types of two-dimensional PhCs, with one and two cavities side-coupled to an extended waveguide, the theory is validated against numerically exact computations. For the single cavity, a slightly asymmetric spectrum is found, which the QNM theory reproduces, and for two cavities a non...

  1. Quantum Electrodynamics with Semiconductor Quantum Dots Coupled to Anderson‐localized Random Cavities

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2011-01-01

    of the spontaneous emission decay rate by up to a factor 15 and an efficiency of channeling single photons into Anderson-localized modes reaching values as high as 94%. These results prove that disordered photonic media provide an efficient platform for quantum electrodynamics, offering a novel route to quantum......We demonstrate that the spontaneous emission decay rate of semiconductor quantum dots can be strongly modified by the coupling to disorder-induced Anderson-localized photonic modes. We experimentally measure, by means of time-resolved photoluminescence spectroscopy, the enhancement...

  2. High efficiency all-optical plasmonic diode based on a nonlinear side-coupled waveguide-cavity structure with broken symmetry

    Science.gov (United States)

    Liang, Hong-Qin; Liu, Bin; Hu, Jin-Feng; He, Xing-Dao

    2018-05-01

    An all-optical plasmonic diode, comprising a metal-insulator-metal waveguide coupled with a stub cavity, is proposed based on a nonlinear Fano structure. The key technique used is to break structural spatial symmetry by a simple reflector layer in the waveguide. The spatial asymmetry of the structure gives rise to the nonreciprocity of coupling efficiencies between the Fano cavity and waveguides on both sides of the reflector layer, leading to a nonreciprocal nonlinear response. Transmission properties and dynamic responses are numerically simulated and investigated by the nonlinear finite-difference time-domain method. In the proposed structure, high-efficiency nonreciprocal transmission can be achieved with a low power threshold and an ultrafast response time (subpicosecond level). A high maximum transmittance of 89.3% and an ultra-high transmission contrast ratio of 99.6% can also be obtained. The device can be flexibly adjusted for working wavebands by altering the stub cavity length.

  3. Quantum complementarity of cavity photons coupled to a three-level system

    International Nuclear Information System (INIS)

    Vilardi, R.; Savasta, S.; Di Stefano, O.; Ridolfo, A.; Portolan, S.

    2011-01-01

    Recently a device enabling the ultrafast all-optical control of the wave-particle duality of light was proposed [Ridolfo et al., Phys. Rev. Lett. 106, 013601 (2011)]. It is constituted by a three-level quantum emitter strongly coupled to a microcavity and can be realized by exploiting a great variety of systems ranging from atomic physics and semiconductor quantum dots to intersubband polaritons and Cooper pair boxes. Control pulses with specific arrival times, performing which-path and quantum-eraser operations, are able to destroy and recover interference almost instantaneously. Here we show that the coherence sudden death implies the sudden birth of a higher order correlation function storing coherence. Such storing enables coherence rebirth after the arrival of an additional suitable control pulse. We derive analytical calculations describing the all-optical control of the wave-particle duality and the entanglement-induced switch-off of the strong coupling regime. We also present analytical calculations describing a homodynelike method exploiting pairs of phase locked pulses with precise arrival times to probe the optical control of wave-particle duality of this system. Within such a method the optical control of wave-particle duality can be directly probed by just detecting the photons escaping the microcavity.

  4. Narrow Q-switching pulse width and low mode-locking repetition rate Q-switched mode locking with a new coupled laser cavity

    International Nuclear Information System (INIS)

    Peng, J Y; Zheng, Y; Shen, J P; Shi, Y X

    2013-01-01

    An original diode-pumped Q-switched and mode-locked solid state Nd:GdVO 4 laser is demonstrated. The laser operates with double saturable absorbers and a new coupled laser cavity. The Q-switching envelope width is compressed to be about 15 ns and the mode-locking repetition rate is as low as 90 MHz. (paper)

  5. Papers presented at the IAEA technical committee meeting on H-mode physics

    International Nuclear Information System (INIS)

    TCV team

    1995-11-01

    The two papers contained in this report deal with ohmic H-modes and effect on confinement of edge localized modes in the TCV tokamak. They were presented by the TCV team at the 1995 IAEA technical committee meeting on H-mode physics. figs., tabs., refs

  6. Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Frassinetti, L.; Challis, C.; Osborne, T.; Snyder, P. B.; Alper, B.; Angioni, C.; Bourdelle, C.; Buratti, P.; Crisanti, F.; Giovannozzi, E.; Giroud, C.; Groebner, R.; Hobirk, J.; Jenkins, I.; Joffrin, E.; Leyland, M. J.; Lomas, P.; Mantica, P.; McDonald, D.; Nunes, I.; Rimini, F.; Saarelma, S.; Voitsekhovitch, I.; P. de Vries,; Zarzoso, D.

    2013-01-01

    The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have beta(Nu) similar to 1.5-2, H-98 similar to 1, whereas the hybrid

  7. The H-mode Pedestal and Edge Localized Modes in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Fredrickson, E.D.; Menard, J.E.; Nishino, N.; Roquemore, A.L.; Sabbagh, S.A.; Tritz, K.

    2004-01-01

    The research program of the National Spherical Torus Experiment (NSTX) routinely utilizes the H-mode confinement regime to test and extend beta and pulse length limits. As in conventional aspect ratio tokamaks, NSTX observes a variety of edge localized modes (ELMs) in H-mode. Hence a significant part of the research program is dedicated to ELMs studies

  8. Results of the H-mode experiments with JT-60 outer and lower divertors

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Tsuji, Shunji; Nagami, Masayuki

    1989-08-01

    In JT-60, hydrogen H-mode experiments with outer and lower divertors were performed. In the outer divertor, H-mode were obtained, similar to the ones observed in the other lower/upper divertors. Its threshold absorbed power and electron density were 16 MW and 1.8 x 10 19 m -3 . In the two combined heatings with NB+ICRF and NB+LHRF, H-mode discharges are also obtained. Moreover, in new configuration of lower divertor, H-mode phases without and with ELM are obtained. Typical results of the lower divertor are shown to compare the H-mode characteristics between the two configurations. Improvement of the energy confinement time in the two divertors was limited to 10 %. Analyses on ballooning/interchange instabilities were carried out with precise equlibria of JT-60. These results showed that the both modes were enough stable. (author)

  9. Realization and optical characterisation of micro-cavities in strong coupling regime using self-assembled multi-quantum wells structure of 2D perovskites

    International Nuclear Information System (INIS)

    Lanty, Gaetan

    2011-01-01

    The research work which is reported in this manuscript focuses on 2D perovskites and their use to obtain micro-cavities working in the strong coupling regime. Perovskite structure forms a multi-quantum wells in which the excitonic states have a high oscillator strength and a large binding energy (a few 100 MeV) due to quantum and dielectric confinement effects. A first axis of this work was to collect information on the excitonic properties of these materials. On a particular perovskite (PEPI), we performed photoluminescence and pump-probe measurements, which seem to suggest the existence, under high excitation density, a process of Auger recombination of excitons. A second research axis was to put in cavity thin layers of some perovskites. With PEPI and PEPC perovskites, we have shown that the realization of micro-cavities with a quality factor of the order of ten is sufficient to obtain at room temperature, the strong coupling regime in absorption and emission with Rabi splitting up to 220 MeV. A bottleneck effect has been clearly demonstrated for the PEPI microcavity. We have also shown that perovskites could be associated with inorganic semiconductors in 'hybrid' micro-cavities. According Agranovich et al., these micro-cavities could present polariton lasing with lower quality factors. To this end, the ZnO/MFMPB association seems particularly promising. (author)

  10. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiahua [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Yu, Rong, E-mail: yurong321@126.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Jinyong; Wu, Ying, E-mail: yingwu2@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  11. Dynamic control of the asymmetric Fano resonance in side-coupled Fabry–Pérot and photonic crystal nanobeam cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tong; Chau, Fook Siong; Zhou, Guangya, E-mail: mpezgy@nus.edu.sg [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Deng, Jie [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-11-30

    Fano resonance is a prevailing interference phenomenon that stems from the intersection between discrete and continuum states in many fields. We theoretically and experimentally characterize the asymmetric Fano lineshape in side-coupled waveguide Fabry–Pérot and photonic crystal nanobeam cavities. The measured quality-factor of the Fano resonance before tuning is 28 100. A nanoelectromechanical systems bidirectional actuator is integrated seamlessly to control the shape of the Fano resonance through in-plane translations in two directions without sacrificing the quality-factor. The peak intensity level of the Fano resonance can be increased by 8.5 dB from 60 nW to 409 nW while the corresponding dip intensity is increased by 12.8 dB from 1 nW to 18 nW. The maximum recorded quality-factor throughout the tuning procedure is up to 32 500. Potential applications of the proposed structure include enhancing the sensitivity of sensing, reconfigurable nanophotonics devices, and on-chip intensity modulator.

  12. Wavelength modulation spectroscopy coupled with an external-cavity quantum cascade laser operating between 7.5 and 8 µm

    Science.gov (United States)

    Maity, Abhijit; Pal, Mithun; Maithani, Sanchi; Dutta Banik, Gourab; Pradhan, Manik

    2018-04-01

    We demonstrate a mid-infrared detection strategy with 1f-normalized 2f-wavelength modulation spectroscopy (WMS-2f/1f) using a continuous wave (CW) external-cavity quantum cascade laser (EC-QCL) operating between 7.5 and 8 µm. The detailed performance of the WMS-2f/1f detection method was evaluated by making rotationally resolved measurements in the (ν 4  +  ν 5) combination band of acetylene (C2H2) at 1311.7600 cm-1. A noise-limited detection limit of three parts per billion (ppb) with an integration time of 110 s was achieved for C2H2 detection. The present high-resolution CW-EC-QCL system coupled with the WMS-2f/1f strategy was further validated with an extended range of C2H2 concentration of 0.1-1000 ppm, which shows excellent promise for real-life practical sensing applications. Finally, we utilized the WMS-2f/1f technique to measure the C2H2 concentration in the exhaled breath of smokers.

  13. Discriminant analysis to predict the occurrence of ELMs in H-mode discharges

    International Nuclear Information System (INIS)

    Kardaun, O.J.W.F.; Itoh, S.; Itoh, K.; Kardaun, J.W.P.F.

    1993-08-01

    After an exposition of its theoretical background, discriminant analysis is applied to the H-mode confinement database to find the region in plasma parameter space in which H-mode with small ELMs (Edge Localized Modes) is likely to occur. The boundary of this region is determined by the condition that the probability of appearance of such a type of H-mode, as a function of the plasma parameters, should be (1) larger than some threshold value and (2) larger than the corresponding probability for other types of H-mode (i.e., H-mode without ELMs or with giant ELMs). In practice, the discrimination has been performed for the ASDEX, JET and JFT-2M tokamaks (a) using four instantaneous plasma parameters (injected power P inj , magnetic field B t , plasma current I p and line averaged electron density (n-bar e ) and (b) taking also memory effects of the plasma and the distance between the plasma and the wall into account, while using variables that are normalised with respect to machine size. Generally speaking, it is found that there is a substantial overlap between the region of H-mode with small ELMs and the region of the two other types of H-mode. However, the ELM-free and the giant ELM H-modes relatively rarely appear in the region, that, according to the analysis, is allocated to small ELMs. A reliable production of H-mode with only small ELMs seems well possible by choosing this regime in parameter space. In the present study, it was not attempted to arrive at a unified discrimination across the machines. So, projection from one machine to another remains difficult, and a reliable determination of the region where small ELMs occur still requires a training sample from the device under consideration. (author) 53 refs

  14. Application of divertor cryopumping to H-mode density control in DIII-D

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Ferron, J.R.; Hyatt, A.W.

    1993-11-01

    In this paper we describe the method and the results of experiments where a unique in-vessel cryopump-baffle system was used to control density of H-mode plasmas. We were able to independently regulate current and density of ELMing H-mode plasmas, each over a range of factor two, and measure the H-mode confinement scaling with plasma density and current. With a modest pumping speed of ∼40 kl/s, particle exhaust rates as high as 2 x 10 22 atom/s -1 have been observed

  15. Investigation of EBW Thermal Emission and Mode Conversion Physics in H-Mode Plasmas on NSTX

    International Nuclear Information System (INIS)

    Diem, S.J.; Taylor, G.; Efthimion, P.C.; Kugel, H.W.; LeBlanc, B.P.; Phillips, C.K.; Caughman, J.B.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, J.; Urban, J.; Sabbagh, S.A.

    2008-01-01

    High β plasmas in the National Spherical Torus Experiment (NSTX) operate in the overdense regime, allowing the electron Bernstein wave (EBW) to propagate and be strongly absorbed/emitted at the electron cyclotron resonances. As such, EBWs may provide local electron heating and current drive. For these applications, efficient coupling between the EBWs and electromagnetic waves outside the plasma is needed. Thermal EBW emission (EBE) measurements, via oblique B-X-O double mode conversion, have been used to determine the EBW transmission efficiency for a wide range of plasma conditions on NSTX. Initial EBE measurements in H-mode plasmas exhibited strong emission before the L-H transition, but the emission rapidly decayed after the transition. EBE simulations show that collisional damping of the EBW prior to the mode conversion (MC) layer can significantly reduce the measured EBE for T e < 20 eV, explaining the observations. Lithium evaporation was used to reduce EBE collisional damping near the MC layer. As a result, the measured B-X-O transmission efficiency increased from < 10% (no Li) to 60% (with Li), consistent with EBE simulations.

  16. H-mode edge stability of Alcator C-mod plasmas

    International Nuclear Information System (INIS)

    Mossessian, D.A.; Hubbard, A.; Hughes, J.W.; Greenwald, M.; LaBombard, B.; Snipes, J.A.; Wolfe, S.; Snyder, P.; Wilson, H.; Xu, X.; Nevins, W.

    2003-01-01

    For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity content. C-Mod sees two such mechanisms - EDA and grassy ELMs, but not large type I ELMs. In EDA the edge relaxation is provided by an edge localized quasi coherent electromagnetic mode that exists at moderate pedestal temperature T 3.5 and does not limit the build up of the edge pressure gradient. The mode is not observed in the ideal MHD stability analysis, but is recorded in the nonlinear real geometry fluctuations modeling based on fluid equations and is thus tentatively identified as a resistive ballooning mode. At high edge pressure gradients and temperatures the mode is replaced by broadband fluctuations (f< 50 kHz) and small irregular ELMs are observed. Based on ideal MHD calculations that include the effects of edge bootstrap current, these ELMs are identified as medium n (10 < n < 50) coupled peeling/ballooning modes. The stability thresholds, its dependence on the plasma shape and the modes structure are studied experimentally and with the linear MHD stability code ELITE. (author)

  17. Operational range and transport barrier of the H-mode in the stellarator W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Amadeo, P.; Anton, M.; Baldzuhn, J.; Brakel, R.; Bleuel, J.; Fiedler, S.; Geist, T.; Grigull, P.; Hartfuss, H.J.; Jaenicke, R.; Kick, M.; Kisslinger, J.; Koponen, J.; Wagner, F.; Weller, A.; Wobig, H.; Zoletnik, S.; Holzhauer, E.

    1998-01-01

    In W7-AS the H-mode is characterized by an edge transport barrier localized in the first 3-4 cm inside the separatrix. In the ELMy H-mode preceding the quiescent state ELMs appear as a sudden breakdown of the edge transport barrier in coincidence with bursts of fluctuations. Between ELMs fluctuations are identical to those of the quiescent H-mode. The operational range of the quiescent H-mode is determined by narrow windows of the edge rotational transform and a threshold edge electron density. In contrast, ELM-like events are observed for a variety of plasma conditions by far exceeding the narrow operational windows for the quiescent state. (author)

  18. Effect of Gas Fueling Location on H-mode Access in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bell, M.; Bell, R.; Biewer, T.; Bush, C.; Chang, C.S.; Gates, D.; Kaye, S.; Kugel, H.; LeBlanc, B.; Maqueda, R.; Menard, J.; Mueller, D.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2003-01-01

    The dependence of H-mode access on the poloidal location of the gas injection source has been investigated in the National Spherical Torus Experiment (NSTX). We find that gas fueling from the center stack midplane area produces the most reproducible H-mode access with generally the lowest L-H threshold power in lower single-null configuration. The edge toroidal rotation velocity is largest (in direction of the plasma current) just before the L-H transition with center stack midplane fueling, and then reverses direction after the L-H transition. Simulation of these results with a 2-D guiding-center Monte Carlo neoclassical transport code is qualitatively consistent with the trends in the measured velocities. Double-null discharges exhibit H-mode access with gas fueling from either the center stack midplane or center stack top locations, indicating a reduced sensitivity of H-mode access on fueling location in that shape

  19. Ion orbit loss and pedestal width of H-mode tokamak plasmas in limiter geometry

    International Nuclear Information System (INIS)

    Xiao Xiaotao; Liu Lei; Zhang Xiaodong; Wang Shaojie

    2011-01-01

    A simple analytical model is proposed to analyze the effects of ion orbit loss on the edge radial electric field in a tokamak with limiter configuration. The analytically predicted edge radial electric field is consistent with the H-mode experiments, including the width, the magnitude, and the well-like shape. This model provides an explanation to the H-mode pedestal structure. Scaling of the pedestal width based on this model is proposed.

  20. Low-photon-number optical switch and AND/OR logic gates based on quantum dot-bimodal cavity coupling system.

    Science.gov (United States)

    Ma, Shen; Ye, Han; Yu, Zhong-Yuan; Zhang, Wen; Peng, Yi-Wei; Cheng, Xiang; Liu, Yu-Min

    2016-01-11

    We propose a new scheme based on quantum dot-bimodal cavity coupling system to realize all-optical switch and logic gates in low-photon-number regime. Suppression of mode transmission due to the destructive interference effect is theoretically demonstrated by driving the cavity with two orthogonally polarized pulsed lasers at certain pulse delay. The transmitted mode can be selected by designing laser pulse sequence. The optical switch with high on-off ratio emerges when considering one driving laser as the control. Moreover, the AND/OR logic gates based on photon polarization are achieved by cascading the coupling system. Both proposed optical switch and logic gates work well in ultra-low energy magnitude. Our work may enable various applications of all-optical computing and quantum information processing.

  1. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma

    2017-09-05

    We present a theoretical approach to narrow the plasmon linewidth and enhance the near-field intensity at a plasmonic dimer gap (hot spot) through coupling the electric localized surface plasmon (LSP) resonance of a silver hemispherical dimer with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity. Such high field enhancement has potential applications in optics, including sensors and high resolution imaging devices. In addition, the resonance splitting allows for greater flexibility in using the same array at different wavelengths. We then further propose a practical design to realize such a device and include dimers of different shapes and materials.

  2. Progress in quantifying the edge physics of the H mode regime in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Baker, D.R.; Burrell, K.H.

    2001-01-01

    Edge conditions in DIII-D are being quantified in order to provide insight into the physics of the H mode regime. Several studies show that electron temperature is not the key parameter that controls the L-H transition. Gradients of edge temperature and pressure are much more promising candidates for elements of such parameters. They systematically increase during the L phases of discharges which make a transition to H mode, and these increases are typically larger than the increases in the underlying quantities. The quality of H mode confinement is strongly correlated with the height of the H mode pedestal for the pressure. The gradient of the pressure is limited by MHD modes, in particular by ideal kink ballooning modes with finite mode number n. For a wide variety of discharges, the width of the barrier for electron pressure is well described by a relationship that is proportional to (β p ped ) 1/2 . A new regime of confinement, called the quiescent H mode, which provides steady state operation with no ELMs, low radiated power and normal H mode confinement, has been discovered. A coherent edge MHD mode provides adequate particle transport to control the plasma density while permitting the pressure pedestal to remain almost identical to that observed in ELMing discharges. (author)

  3. Pedestal characteristics and MHD stability of H-mode plasmas in TCV

    International Nuclear Information System (INIS)

    Pitzschke, A.

    2011-01-01

    temperature profile during the ELM cycle, the low repetition rate of the lasers used for Thomson scattering is a limiting. Although the system on TCV comprises 3 laser units that may be triggered in sequence with time separations down to 1 ms, time evolution over longer periods can only be reconstructed from repetitive events. In this context, an adjustment of the laser trigger to improve the synchronization with the ELM event is an advantage. A method was developed and implemented to generate a synchronizing trigger sequence, by a real-time monitoring of the D-alpha emission, which provides a marker for the ELM event. Recently, a ‘snowflake’ (SF) divertor configuration, proposed as a possible solution to reduce the plasma-wall interaction by changing the divertor’s poloidal magnetic field topology, was generated, for the first time, in TCV. A numerical code (KINX), based on a magnetohydrodynamic model (ideal MHD), was used to investigate the stability limits of this configuration under H-mode conditions and compare them with a similar standard single-null equilibrium. In a series of experiments, improved energy confinement was found and explained by improved stability of the edge region in the SF configuration. The influence of the pedestal structure in ELMy H-mode plasmas on the energy confinement and on ELM energy losses was investigated. The different ELM regimes found in TCV were analyzed, in particular the transition between type-III to type-I ELMs. The operational boundary of each ELM regime was characterized and verified by ideal MHD stability simulations for the ETB region. Recent studies on the scaling of the pedestal width with normalized poloidal pressure were confirmed. Using the capabilities of TCV, the influence of plasma shaping on pedestal parameters and MHD stability limits was investigated. In the past, models were developed to describe the onset of type-I ELMs, which are associated with modes in the ETB region arising from a coupling of pressure- and

  4. Scheme for generating the singlet state of three atoms trapped in distant cavities coupled by optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong-Yang [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wen, Jing-Ji [College of Foundation Science, Harbin University of Commerce, Harbin, Heilongjiang 150028 (China); Bai, Cheng-Hua; Hu, Shi; Cui, Wen-Xue [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Wang, Hong-Fu, E-mail: hfwang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhu, Ai-Dong [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Zhang, Shou, E-mail: szhang@ybu.edu.cn [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China)

    2015-09-15

    An effective scheme is proposed to generate the singlet state with three four-level atoms trapped in three distant cavities connected with each other by three optical fibers, respectively. After a series of appropriate atom–cavity interactions, which can be arbitrarily controlled via the selective pairing of Raman transitions and corresponding optical switches, a three-atom singlet state can be successfully generated. The influence of atomic spontaneous decay, photon leakage of cavities and optical fibers on the fidelity of the state is numerically simulated showing that the three-atom singlet state can be generated with high fidelity by choosing the experimental parameters appropriately.

  5. Energy confinement in Ohmic H-mode in TUMAN-3M

    International Nuclear Information System (INIS)

    Andrejko, M.V.; Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Lebedev, S.V.; Levin, L.S.; Tukachinsky, A.S.

    1997-01-01

    The spontaneous transition from Ohmically heated limiter discharges into the regime with improved confinement termed as ''Ohmic H-mode'' has been investigated in ''TUMAN-3''. The typical signatures of H-mode in tokamaks with powerful auxiliary heating have been observed: sharp drop of D α radiation with simultaneous increase in the electron density and stored energy, suppression of the density fluctuations and establishing the steep gradient near the periphery. In 1994 new vacuum vessel had been installed in TUMAN-3 tokamak. The vessel has the same sizes as old one (R 0 =0.55 m, a 1 =0.24 m). New vessel was designed to reduce mechanical stresses in the walls during B T ramp phase of a shot. Therefore modified device - TUMAN-3M is able to produce higher B T and I p , up to 2 T and 0.2 MA respectively. During first experimental run device was operated in Ohmic Regime. In these experiments the possibility to achieve Ohmic H-mode was studied. The study of the parametric dependencies of the energy confinement time in both OH and Ohmic H-mode was performed. In Ohmic H-mode strong dependencies of τ E on plasma current and on input power and weak dependence on density were found. Energy confinement time in TUMAN-3/TUMAN-3M Ohmic H-mode has revealed good agreement with JET/DIII-D/ASDEX scaling for ELM-free H-mode, resulting in very long τ E at the high plasma current discharges. (author)

  6. Development of Computer Program TWTVA for Calculation of 3-D Electron Trajectories in Coupled-Cavity TWTs

    Science.gov (United States)

    1976-03-10

    volt- age and phase factors for each cavity. If the cavity period is divided into NQA parts, the matrix numbering will run from -1 to NCA ♦ t. NCA ...magnetic field ten times the Brillouin value. The corresponding cathode immersion is 98.5%, and TRANS assigns the appropriate small transverse velocity...of Selected Rings — the view looking down the tunnel from the cathode end. The plot is unduly angular because a coarse plot Interval was used. -108

  7. Essential elements of the high density H-mode on W7-AS

    International Nuclear Information System (INIS)

    McCormick, K.; Burhenn, R.; Grigull, P.

    2003-01-01

    The High Density H-Mode (HDH), discovered during the run-in phase of W7-AS divertor operation/1-3/, rapidly became the workhorse of the divertor program, combining optimal core behavior along with edge parameters necessary for successful operation of an Island Divertor. Its unique properties of high energy confinement along with low impurity retention and radiation localized at the edge under ELM-free steady-state conditions at high densities (to 4 x 10 20 m -3 ) and heating powers (to 1.7 MWm -3 ) make the HDH H-mode ideal for a reactor scenario, given it can be extended to higher temperatures in a larger machine. Hence, considerable effort has been invested to understand the nature of the HDH-mode in order to be able to extrapolate to next generation devices. To this end the present paper reports on experiments where two globally-similar ELM-free H-modes are compared: the classic quiescent H-mode H* where both impurity and density control are a severe problem and the HDH-mode with its contrasting steady-state behavior. Through modeling of the temporal behavior of laser-ablated aluminum spectral lines, as well as that of background impurities, it is concluded that a principle difference between the two H-modes is that of enhanced impurity diffusion in the edge gradient region of the HDH-mode. However, no direct indicators of enhanced diffusion have yet been identified. (orig.)

  8. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    Science.gov (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  9. Comparison of L- and H-mode plasma edge fluctuations in MAST

    International Nuclear Information System (INIS)

    Dudson, B D; Dendy, R O; Kirk, A; Meyer, H; Counsell, G F

    2005-01-01

    Edge turbulence measurements from a reciprocating Langmuir probe in MAST are presented. A comparison of the range/standard deviation (R/S), growth of range, first moment and differencing and rescaling methods for calculating the Hurst exponent is made. The differencing and rescaling method is found to be the most useful for identifying scaling over long time-periods. A comparison is made between L-mode, dithering H-mode and H-mode plasma edge turbulence and evidence for self-similarity is found. Tests are performed and it is demonstrated that the results are due to properties of the data, and are not artefacts of the methods. A comparison of Hurst exponent methods with the autocorrelation function and power spectrum is used to demonstrate the presence of long-time correlation in L-mode data, and the absence of long-time correlation in the case of dithering H-mode

  10. Expression for the thermal H-mode energy confinement time under ELM-free conditions

    International Nuclear Information System (INIS)

    Ryter, F.; Gruber, O.; Kardaun, O.J.W.F.; Menzler, H.P.; Wagner, F.; Schissel, D.P.; DeBoo, J.C.; Kaye, S.M.

    1992-07-01

    The design of future tokamaks, which are supposed to reach ignition with the H-mode, requires a reliable scaling expression for the H-mode energy confinement time. In the present work, an H-mode scaling expression for the thermal plasma energy confinement time has been developed by combining data from four existing divertor tokamaks, ASDEX, DIII-D, JET and PBX-M. The plasma conditions, which were as similar as possible to ensure a coherent set of data, were ELM-free deuterium discharges heated by deuterium neutral beam injection. By combining four tokamaks, the parametric dependence of the thermal energy confinement on the main plasma parameters, including the three main geometrical variables, was determined. (orig./WL)

  11. Gyrokinetic Calculations of Microturbulence and Transport for NSTX and Alcator-CMOD H-modes

    International Nuclear Information System (INIS)

    Redi, M.H.; Dorland, W.; Bell, R.; Bonoli, P.; Bourdelle, C.; Candy, J.; Ernst, D.; Fiore, C.; Gates, D.; Hammett, G.; Hill, K.; Kaye, S.; LeBlanc, B.; Menard, J.; Mikkelsen, D.; Rewoldt, G.; Rice, J.; Waltz, R.; Wukitch, S.

    2003-01-01

    Recent H-mode experiments on NSTX [National Spherical Torus Experiment] and experiments on Alcator-CMOD, which also exhibit internal transport barriers (ITB), have been examined with gyrokinetic simulations with the GS2 and GYRO codes to identify the underlying key plasma parameters for control of plasma performance and, ultimately, the successful operation of future reactors such as ITER [International Thermonuclear Experimental Reactor]. On NSTX the H-mode is characterized by remarkably good ion confinement and electron temperature profiles highly resilient in time. On CMOD, an ITB with a very steep electron density profile develops following off-axis radio-frequency heating and establishment of H-mode. Both experiments exhibit ion thermal confinement at the neoclassical level. Electron confinement is also good in the CMOD core

  12. Origin of the various beta dependences of ELMy H-mode confinement properties

    International Nuclear Information System (INIS)

    Takizuka, T; Urano, H; Takenaga, H; Oyama, N

    2006-01-01

    Dependence of the energy confinement in ELMy H-mode tokamak on the beta has been investigated for a long time, but a common conclusion has not been obtained so far. Recent non-dimensional transport experiments in JT-60U demonstrated clearly the beta degradation. A database for JT-60U ELMy H-mode confinement was assembled. Analysis of this database is carried out, and the strong beta degradation consistent with the above experiments is confirmed. Two subsets of ASDEX Upgrade and JET data in the ITPA H-mode confinement database are analysed to find the origin of the various beta dependences. The shaping of the plasma cross section, as well as the fuelling condition, affects the confinement performance. The beta dependence is not identical for different devices and conditions. The shaping effect, as well as the fuelling effect, is a possible candidate for causing the variation of beta dependence

  13. Critical edge parameters for H-mode transition in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Carlstrom, T.N.

    1997-11-01

    Measurements in DIII-D of edge ion and electron temperatures (T i and T e ) just prior to the transition to H-mode are presented. A fitting model based on a hyperbolic tangent function is used in the analysis. The edge temperatures are observed to increase during the L-phase with the application of auxiliary heating. The temperature rise is small if the H-mode power threshold is close to the Ohmic power level in the absence of auxiliary heating and is large if the H-mode threshold is well above the Ohmic power level. The edge temperatures just prior to the transition are approximately proportional to the toroidal magnetic field Bt for the field either in the reversed or forward direction. However, for the reversed magnetic field, the temperatures are at least a factor of two higher than for the forward direction

  14. MHD-activity in ohmic, diverted and limited H-mode plasmas in TCV

    International Nuclear Information System (INIS)

    Pochelon, A.; Anton, M.; Buehlmann, F.; Dutch, M.J.; Duval, B.P.; Hirt, A.; Hofmann, F.; Joye, B.; Lister, J.B.; Llobet, X.; Martin, Y.; Moret, J.M.; Nieswand, C.; Pietrzyk, A.Z.; Tonetti, G.; Weisen, H.

    1994-01-01

    During its first year of operation the TCV tokamak has produced a variety of plasma configurations with currents in the range 150 to 800 kA and elongations in the range of 1.0 to 2.05. Ohmic H-modes have been obtained in diverted discharges and discharges limited on the graphite tiles inner wall. After boronisation in May 1994 H-modes with line average densities up to 1.7x10 20 m -3 , corresponding to a Murakami parameter of 10, were obtained. (author) 5 figs., 2 refs

  15. The role of MHD instabilities in the improved H-mode scenario

    International Nuclear Information System (INIS)

    Flaws, Asher

    2009-01-01

    Recently a regime of tokamak operation has been discovered, dubbed the improved H-mode scenario, which simultaneously achieves increased energy confinement and stability with respect to standard H-mode discharges. It has been suggested that magnetohydrodynamic (MHD) instabilities play some role in establishing this regime. In this thesis MHD instabilities were identified, characterised, and catalogued into a database of improved H-mode discharges in order to statistically examine their behaviour. The onset conditions of MHD instabilities were compared to existing models based on previous H-mode studies. Slight differences were found, most notably a reduced β N onset threshold for the frequently interrupted regime for neoclassical tearing modes (NTM). This reduced threshold is due to the relatively low magnetic shear of the improved H-mode regime. This study also provided a first-time estimate for the seed island size of spontaneous onset NTMs, a phenomenon characteristic of the improved H-mode scenario. Energy confinement investigations found that, although the NTM impact on confinement follows the same model applicable to other operating regimes, the improved H-mode regime acts to mitigate the impact of NTMs by limiting the saturated island sizes for NTMs with toroidal mode number n ≥ 2. Surprisingly, although a significant loss in energy confinement is observed during the sawtooth envelope, it has been found that discharges containing fishbones and low frequency sawteeth achieve higher energy confinement than those without. This suggests that fishbone and sawtooth reconnection may indeed play a role in establishing the high confinement regime. It was found that the time evolution of the central magnetic shear consistently locks in the presence of sawtooth and fishbone reconnection. Presumably this is due to the periodic redistribution of the central plasma current, an effect which is believed to help establish and maintain the characteristic current profile

  16. H-mode confinement properties close to the power threshold in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Ryter, F; Fuchs, J; Schneider, W; Sips, A; Staebler, A; Stober, J

    2008-01-01

    Confinement properties close to the H-mode power threshold are studied in the ASDEX Upgrade tokamak. The results show that good confinement can be obtained close to the threshold with Type-I ELMs. The existence of Type-I ELMs does not necessarily require the heating power to be higher than the H-Mode power threshold, but it requires collisionality to be low enough. At higher collisionality Type-III ELMs replace the Type-I ELMs and confinement time is reduced by about 20%

  17. The role of MHD instabilities in the improved H-mode scenario

    Energy Technology Data Exchange (ETDEWEB)

    Flaws, Asher

    2009-02-16

    Recently a regime of tokamak operation has been discovered, dubbed the improved H-mode scenario, which simultaneously achieves increased energy confinement and stability with respect to standard H-mode discharges. It has been suggested that magnetohydrodynamic (MHD) instabilities play some role in establishing this regime. In this thesis MHD instabilities were identified, characterised, and catalogued into a database of improved H-mode discharges in order to statistically examine their behaviour. The onset conditions of MHD instabilities were compared to existing models based on previous H-mode studies. Slight differences were found, most notably a reduced {beta}{sub N} onset threshold for the frequently interrupted regime for neoclassical tearing modes (NTM). This reduced threshold is due to the relatively low magnetic shear of the improved H-mode regime. This study also provided a first-time estimate for the seed island size of spontaneous onset NTMs, a phenomenon characteristic of the improved H-mode scenario. Energy confinement investigations found that, although the NTM impact on confinement follows the same model applicable to other operating regimes, the improved H-mode regime acts to mitigate the impact of NTMs by limiting the saturated island sizes for NTMs with toroidal mode number n {>=} 2. Surprisingly, although a significant loss in energy confinement is observed during the sawtooth envelope, it has been found that discharges containing fishbones and low frequency sawteeth achieve higher energy confinement than those without. This suggests that fishbone and sawtooth reconnection may indeed play a role in establishing the high confinement regime. It was found that the time evolution of the central magnetic shear consistently locks in the presence of sawtooth and fishbone reconnection. Presumably this is due to the periodic redistribution of the central plasma current, an effect which is believed to help establish and maintain the characteristic current

  18. High performance H-mode plasmas at densities above the Greenwald limit

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Osborne, T.H.; Leonard, A.W.

    2001-01-01

    Densities up to 40 percent above the Greenwald limit are reproducibly achieved in high confinement (H ITER89p =2) ELMing H-mode discharges. Simultaneous gas fueling and divertor pumping were used to obtain these results. Confinement of these discharges, similar to moderate density H-mode, is characterized by a stiff temperature profile, and therefore sensitive to the density profile. A particle transport model is presented that explains the roles of divertor pumping and geometry for access to high densities. Energy loss per ELM at high density is a factor of five lower than predictions of an earlier scaling, based on data from lower density discharges. (author)

  19. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor; Laser de fibra optica compuesto por dos cavidades acopladas: aplicacion como sensor de fibra optica

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), A.P. 51 y 216, 72000 Puebla (Mexico); May A, M. [Universidad Autonoma del Carmen (UNACAR) Av. 56 No. 4 por Av. Concordia, Campeche (Mexico); Shlyagin, M.; Marquez B, I. [Centro de Investigacion Cientifica y de Ensenanza Superior de Ensenada (CICESE), 22860 Ensenada, Baja California (Mexico)]. e-mail: ravsa100@hotmail.com

    2004-07-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  20. Flat sources for active acoustic shielding based on distributed control of a vibrating plate coupled with a thin cavity

    NARCIS (Netherlands)

    Berkhoff, A.P.; Ho, J.H.

    2013-01-01

    Air cavities between plates are often used to improve noise insulation by passive means, especially at high frequencies. Such configurations may suffer from resonances, such as due to the mass-air-mass resonance. Lightweight structures, which tend to be undamped, may suffer from structural

  1. Optimal control of non-Markovian dynamics in a single-mode cavity strongly coupled to an inhomogeneously broadened spin ensemble

    Science.gov (United States)

    Krimer, Dmitry O.; Hartl, Benedikt; Mintert, Florian; Rotter, Stefan

    2017-10-01

    Ensembles of quantum-mechanical spins offer a promising platform for quantum memories, but proper functionality requires accurate control of unavoidable system imperfections. We present an efficient control scheme for a spin ensemble strongly coupled to a single-mode cavity based on a set of Volterra equations relying solely on weak classical control pulses. The viability of our approach is demonstrated in terms of explicit storage and readout sequences that will serve as a starting point towards the realization of more demanding full quantum-mechanical optimal control schemes.

  2. Poloidal rotation and the evolution of H-mode and VH-mode profiles

    International Nuclear Information System (INIS)

    Hinton, F.L.; Staebler, G.M.; Kim, Y.B.

    1993-12-01

    The physics which determines poloidal rotation, and its role in the development of profiles during H- and VH-modes, is discussed. A simple phenomenological transport model, which incorporates the rvec E x rvec B flow shear suppression of turbulence, is shown to predict profile evolution similar to that observed experimentally during H-mode and VH-mode

  3. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.F.F; Lomas, P.; Gowers, C.; Guo, H.; Hawkes, N.; Huysmans, G.T.A.; Jones, T.; Parail, V.V.; Rimini, F.; Schunke, B.

    2000-01-01

    Some models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the thermal or the fast-ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in (Guo H Y et al 2000 Edge transport barrier in JET hot-ion H-modes Nucl. Fusion 40 69) using a large database containing both deuterium-only and deuterium-tritium plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing one to study the dependence of the pedestal height on the edge shear. In addition, the range of plasma currents was extended up to 6 MA. It is shown that the edge data are best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to conclusively eliminate the thermal ion model. (author)

  4. Ubiquity of non-diffusive momentum transport in JET H-modes

    NARCIS (Netherlands)

    Weisen, H.; Camenen, Y.; Salmi, A.; Versloot, T. W.; de Vries, P. C.; Maslov, M.; Tala, T.; Beurskens, M.; Giroud, C.; JET-EFDA Contributors,

    2012-01-01

    A broad survey of the experimental database of neutral beam heated baseline H-modes and hybrid scenarios in the JET tokamak has established the ubiquity of non-diffusive momentum transport mechanisms in rotating plasmas. As a result of their presence, the normalized angular frequency gradient R

  5. New Edge Coherent Mode Providing Continuous Transport in Long Pulse H-mode Plasmas

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Wan, B.N.

    2014-01-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciproc...

  6. Comparison of fusion alpha performance in JET advanced scenario and H-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Asunta, O; Kurki-Suonio, T; Tala, T; Sipilae, S; Salomaa, R [JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom)], E-mail: Otto.Asunta@tkk.fi

    2008-12-15

    Currently, plasmas with internal transport barriers (ITBs) appear the most likely candidates for steady-state scenarios for future fusion reactors. In such plasmas, the broad hot and dense region in the plasma core leads to high fusion gain, while the cool edge protects the integrity of the first wall. Economically desirable large bootstrap current fraction and low inductive current drive may, however, lead to degraded fast ion confinement. In this work the confinement and heating profile of fusion alphas were compared between H-mode and ITB plasmas in realistic JET geometry. The work was carried out using the Monte Carlo-based guiding-center-following code ASCOT. For the same plasma current, the ITB discharges were found to produce four to eight times more fusion power than a comparable ELMy H-mode discharge. Unfortunately, also the alpha particle losses were larger ({approx}16%) compared with the H-mode discharge (7%). In the H-mode discharges, alpha power was deposited to the plasma symmetrically around the magnetic axis, whereas in the current-hole discharge, the power was spread out to a larger volume in the plasma center. This was due to wider particle orbits, and the magnetic structure allowing for a broader hot region in the centre.

  7. The Effect of Plasma Shape on H-Mode Pedestal Characteristics on DIII-D

    International Nuclear Information System (INIS)

    T.H. Osborne; J.R. Ferron; R.J. Groebner; L.L. Lao; A.W. Leonard; R. Maingi; R.L. Miller; A.D. Turnbull; M.R. Wade; J.G. Watkins

    1999-01-01

    The characteristics of the H-mode are studied in discharges with varying triangularity and squareness. The pressure at the top of the H-mode pedestal increases strongly with triangularity primarily due to an increase in the margin by which the edge pressure gradient exceeds the ideal ballooning mode first stability limit. Two models are considered for how the edge may exceed the ballooning mode limit. In one model [1], access to the ballooning mode second stable regime allows the edge pressure gradient and associated bootstrap current to continue to increase until an edge localized, low toroidal mode number, ideal kink mode is destabilized. In the second model [2], the finite width of the H-mode transport barrier, and diamagnetic effects raise the pressure gradient limit above the ballooning mode limit. We observe a weak inverse dependence of the width of the H-mode transport barrier, Δ, on triangularity relative to the previously obtained [3] scaling Δ ∞ (β P PED ) 1/2 . The energy loss for Type I ELMs increases with triangularity in proportion to the pedestal energy increase. The temperature profile is found to respond stiffly to changes in T PED at low temperature, while at high temperature the response is additive. The response of the density profile is also found to play a role in the response of the total stored energy to changes in the W PED

  8. Comparison between dominant NB and dominant IC heated ELMy H-mode discharges in JET

    NARCIS (Netherlands)

    Versloot, T.W.; Sartori, R.; de Vries, P.C.; et al, [No Value

    2011-01-01

    Abstract The experiment described in this paper is aimed at characterization of ELMy H-mode discharges with varying momentum input, rotation, power deposition profiles and ion to electron heating ratio obtained by varying the proportion between ion cyclotron (IC) and neutral beam (NB) heating. The

  9. Comparison between dominant NB and dominant IC heated ELMy H-mode discharges in JET

    NARCIS (Netherlands)

    Versloot, T. W.; Sartori, R.; Rimini, F.; de Vries, P. C.; Saibene, G.; Parail, V.; Beurskens, M. N. A.; Boboc, A.; Budny, R.; Crombe, K.; de la Luna, E.; Durodie, F.; Eich, T.; Giroud, C.; Kiptily, V.; Johnson, T.; Mantica, P.; Mayoral, M. L.; McDonald, D. C.; Monakhov, I.; Nave, M. F. F.; Voitsekhovitch, I.; Zastrow, K. D.

    2011-01-01

    The experiment described in this paper is aimed at characterization of ELMy H-mode discharges with varying momentum input, rotation, power deposition profiles and ion to electron heating ratio obtained by varying the proportion between ion cyclotron (IC) and neutral beam (NB) heating. The motivation

  10. CORRELATION OF H-MODE BARRIER WIDTH AND NEUTRAL PENETRATION LENGTH

    International Nuclear Information System (INIS)

    GROEBNER, R.J.; MAHDAVI, M.A.; LEONARD, A.W.; OSBORNE, T.H.; WOLF, N.S.; PORTER, G.D.; STANGEBY, P.C.; BROOKS, N.H.; COLCHIN, R.J.; HEIDBRINK, W.W.; LUCE, T.C.; MCKEE, G.R.; OWEN, L.W.; WANG, G.; WHYTE, D.G.

    2002-01-01

    OAK A271 CORRELATION OF H-MODE BARRIER WIDTH AND NEUTRAL PENETRATION LENGTH. Pedestal studies in DIII-D find a good correlation between the width of the H-mode density barrier and the neutral penetration length. These results are obtained by comparing experimental density profiles to the predictions of an analytic model for the profile, obtained from the particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40-500 eV), the analytic model quantitatively predicts the observed decrease of the width as the pedestal density increases, the observed strong increase of the gradient of the density as the pedestal density increases and the observation that L-mode and H-mode profiles with the same pedestal density have very similar shapes. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fueling provides the dominant control for the size of the H-mode transport barrier

  11. CORRELATION OF H-MODE BARRIER WIDTH AND NEUTRAL PENTRATION LENGTH

    International Nuclear Information System (INIS)

    GROEBNER, R.J.; MAHDAVI, M.A.; LEONARD, A.W.; OSBORNE, T.H.; WOLF, N.S.; PORTER, G.D.; STANGEBY, P.C.; BROOKS, N.H.; COLCHIN, R.J.; HEIDBRINK, W.W.; LUCE, T.C.; MCKEE, G.R.; OWEN, L.W.; WANG, G.; WHYTE, D.G.

    2002-01-01

    OAK A271 CORRELATION OF H-MODE BARRIER WIDTH AND NEUTRAL PENTRATION LENGTH. Pedestal studies in DIII-D find a good correlation between the width of the region of steep gradient in the H-mode density and the neutral penetration length. These results are obtained by comparing experimental density profiles to the predictions of an analytic model for the profile, obtained from the particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40-500 eV), the analytic model quantitatively predicts the observed decrease of the width as the pedestal density increases, the observed strong increase of the gradient of the density as the pedestal density increases and the observation that L-mode and H-mode profiles with the same pedestal density have very similar shapes. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fueling provides a dominant control for the size of the H-mode transport barrier

  12. Progress in qualifying the edge physics of the H-mode regime in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Baker, D.R.; Boedo, J.A.

    2001-01-01

    Edge conditions in DIII-D are being quantified in order to provide insight into the physics of the H-mode regime. Electron temperature is not the key parameter that controls the L-H transition. Gradients of edge temperature and pressure are much more promising candidates for such parameters. The quality of H-mode confinement is strongly correlated with the height of the H-mode pedestal for the pressure. The gradient of the pressure appears to be controlled by MHD modes, in particular by kink-ballooning modes with finite mode number n. For a wide variety of discharges, the width of the barrier is well described with a relationship that is proportional to (β p ped ) 1/2 . An attractive regime of confinement has been discovered which provides steady-state operation with no ELMs, low impurity content and normal H-mode confinement. A coherent edge MHD-mode evidently provides adequate particle transport to control the plasma density and impurity content while permitting the pressure pedestal to remain almost identical to that observed in ELMing discharges. (author)

  13. Radiative type-III ELMy H-mode in all-tungsten ASDEX Upgrade

    NARCIS (Netherlands)

    Rapp, J.; Kallenbach, A.; Neu, R.; Eich, T.; Fischer, R.; Herrmann, A.; Potzel, S.; van Rooij, G. J.; Zielinski, J. J.; ASDEX Upgrade team,

    2012-01-01

    The type-III ELMy H-mode might be the solution for an integrated ITER operation scenario fulfilling the fusion power amplification factor (output fusion power to input heating power) of Q = 10 with simultaneous acceptable steady-state and transient power loads to the plasma-facing components. This

  14. L to H mode transitions and associated phenomena in divertor tokamaks

    International Nuclear Information System (INIS)

    Punjabi, A.

    1990-09-01

    This is the final report for the research project titled ''L to H Mode Transitions and Associated Phenomena in Divertor Tokamaks.'' The period covered by this project is the fiscal year 1990. This report covers the development of Advanced Two Chamber Model

  15. Cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Walther, Herbert; Varcoe, Benjamin T H; Englert, Berthold-Georg; Becker, Thomas

    2006-01-01

    This paper reviews the work on cavity quantum electrodynamics of free atoms. In recent years, cavity experiments have also been conducted on a variety of solid-state systems resulting in many interesting applications, of which microlasers, photon bandgap structures and quantum dot structures in cavities are outstanding examples. Although these phenomena and systems are very interesting, discussion is limited here to free atoms and mostly single atoms because these systems exhibit clean quantum phenomena and are not disturbed by a variety of other effects. At the centre of our review is the work on the one-atom maser, but we also give a survey of the entire field, using free atoms in order to show the large variety of problems dealt with. The cavity interaction can be separated into two main regimes: the weak coupling in cavity or cavity-like structures with low quality factors Q and the strong coupling when high-Q cavities are involved. The weak coupling leads to modification of spontaneous transitions and level shifts, whereas the strong coupling enables one to observe a periodic exchange of photons between atoms and the radiation field. In this case, atoms and photons are entangled, this being the basis for a variety of phenomena observed, some of them leading to interesting applications in quantum information processing. The cavity experiments with free atoms reached a new domain with the advent of experiments in the visible spectral region. A review on recent achievements in this area is also given

  16. H-Mode Turbulence, Power Threshold, ELM, and Pedestal Studies in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bush, C.E.; Fredrickson, E.D.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Menard, J.E.; Meyer, H.; Mueller, D.; Nishino, N.; Roquemore, A.L.; Sabbagh, S.A.; Tritz, K.; Zweben, S.J.; Bell, M.G.; Bell, R.E.; Biewer, T.; Boedo, J.A.; Johnson, D.W.; Kaita, R.; Kugel, H.W.; Maqueda, R.J.; Munsat, T.; Raman, R.; Soukhanovskii, V.A.; Stevenson, T.; Stutman, D.

    2004-01-01

    High-confinement mode (H-mode) operation plays a crucial role in NSTX [National Spherical Torus Experiment] research, allowing higher beta limits due to reduced plasma pressure peaking, and long-pulse operation due to high bootstrap current fraction. Here, new results are presented in the areas of edge localized modes (ELMs), H-mode pedestal physics, L-H turbulence, and power threshold studies. ELMs of several other types (as observed in conventional aspect ratio tokamaks) are often observed: (1) large, Type I ELMs, (2) ''medium'' Type II/III ELMs, and (3) giant ELMs which can reduce stored energy by up to 30% in certain conditions. In addition, many high-performance discharges in NSTX have tiny ELMs (newly termed Type V), which have some differences as compared with ELM types in the published literature. The H-mode pedestal typically contains between 25-33% of the total stored energy, and the NSTX pedestal energy agrees reasonably well with a recent international multi-machine scaling. We find that the L-H transition occurs on a ∼100 (micro)sec timescale as viewed by a gas puff imaging diagnostic, and that intermittent quiescent periods precede the final transition. A power threshold identity experiment between NSTX and MAST shows comparable loss power at the L-H transition in balanced double-null discharges. Both machines require more power for the L-H transition as the balance is shifted toward lower single null. High field side gas fueling enables more reliable H-mode access, but does not always lead to a lower power threshold e.g., with a reduction of the duration of early heating. Finally the edge plasma parameters just before the L-H transition were compared with theories of the transition. It was found that while some theories can separate well-developed L- and H-mode data, they have little predictive value

  17. ELM triggering conditions for the integrated modeling of H-mode plasmas

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Schnack, D.D.; Bateman, G.; Kritz, A.H.; Brennan, D.P.; Snyder, P.B.; Voitsekhovitch, I.; Kruger, S.; Janeschitz, G.; Onjun, T.; Pacher, G.W.; Pacher, H.D.

    2005-01-01

    Recent advances in the integrated modeling of ELMy H-mode plasmas are presented. A new model for the H-mode pedestal and for the triggering of ELMs predicts the height, width, and shape of the H-mode pedestal and the frequency and width of ELMs. The model for the pedestal and ELMs is used in the ASTRA integrated transport code to follow the time evolution of tokamak discharges from L-mode through the transition from L-mode to H-mode, with the formation of the H-mode pedestal, and, subsequently, to the triggering of ELMs. Turbulence driven by the ion temperature gradient mode, resistive ballooning mode, trapped electron mode, and electron temperature gradient mode contributes to the anomalous thermal transport at the plasma edge in this model. Formation of the pedestal and the L-H transition is the direct result of E(vector) r x B(vector) flow shear suppression of anomalous transport. The periodic ELM crashes are triggered by MHD instabilities. Two mechanisms for triggering ELMs are considered: ELMs are triggered by ballooning modes if the pressure gradient exceeds the ballooning threshold or by peeling modes if the edge current density exceeds the peeling mode threshold. The BALOO, DCON, and ELITE ideal MHD stability codes are used to derive a new parametric expression for the peeling-ballooning threshold. The new dependence for the peeling-ballooning threshold is implemented in the ASTRA transport code. Results of integrated modeling of DIII-D like discharges are presented and compared with experimental observations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD. (author)

  18. Strong Exciton–Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr3 Micro/Nanowire Fabry-Pérot Cavity

    KAUST Repository

    Du, Wenna

    2018-03-14

    All-inorganic perovskite micro/nanowire materials hold great promises as nanoscale coherent light source due to their superior optical and electronic properties. The coupling strength between exciton and photon in this system is important for their optical application, however, is rarely studied. In this work, we demonstrated the strong coupling of exciton-photon and polariton lasing in high quality CsPbBr micro/nanowires synthesized by a CVD method. By exploring spatial resolved PL spectra of CsPbBr cavity, we observed mode volume dependent coupling strength with a vacuum Rabi splitting up to 656 meV, as well as significant increase in group index. Moreover, low threshold polariton lasing was achieved at room temperature within strong coupling regime; the polariton characteristic is confirmed by comparing lasing spectra with waveguided output spectra and the dramatically reduced lasing threshold. Our present results provide new avenues to achieve high coupling strengths potentially enabling application of exciting phenomena such as Bose-Einstein condensation of polaritons, efficient light-emitting diodes, and lasers.

  19. Preparation of Schrödinger cat states of a cavity field via coupling to a superconducting charge qubit

    Science.gov (United States)

    Freitas, Dagoberto S.; Nemes, M. C.

    2014-05-01

    We extend the approach in Ref. 5 [Y.-X. Liu, L. F. Wei and F. Nori, Phys. Rev. A 71 (2005) 063820] for preparing superposition states of a cavity field interacting with a superconducting charge qubit. We study effects of the nonlinearity on the creation of such states. We show that the main contribution of nonlinear effects is to shorten the time necessary to build the superposition.

  20. Precise single-qubit control of the reflection phase of a photon mediated by a strongly-coupled ancilla–cavity system

    Science.gov (United States)

    Motzoi, F.; Mølmer, K.

    2018-05-01

    We propose to use the interaction between a single qubit atom and a surrounding ensemble of three level atoms to control the phase of light reflected by an optical cavity. Our scheme employs an ensemble dark resonance that is perturbed by the qubit atom to yield a single-atom single photon gate. We show here that off-resonant excitation towards Rydberg states with strong dipolar interactions offers experimentally-viable regimes of operations with low errors (in the 10‑3 range) as required for fault-tolerant optical-photon, gate-based quantum computation. We also propose and analyze an implementation within microwave circuit-QED, where a strongly-coupled ancilla superconducting qubit can be used in the place of the atomic ensemble to provide high-fidelity coupling to microwave photons.

  1. Discharge dynamics of self-oriented microplasma coupling between cross adjacent cavities in micro-structure device driven by a bipolar pulse waveform

    Science.gov (United States)

    Wang, Yaogong; Zhang, Xiaoning; Liu, Lingguang; Zhou, Xuan; Liu, Chunliang; Zhang, Qiaogen

    2018-04-01

    The excitation dynamics and self-oriented plasma coupling of a micro-structure plasma device with a rectangular cross-section are investigated. The device consists of 7 × 7 microcavity arrays, which are blended into a unity by a 50 μm-thick bulk area above them. The device is operated in argon with a pressure of 200 Torr, driven by a bipolar pulse waveform of 20 kHz. The discharge evolution is characterized by means of electrical measurements and optical emission profiles. It has been found that different emission patterns are observed within microcavities. The formation of these patterns induced by the combined action between the applied electric field and surface deactivation is discussed. The microplasma distribution in some specific regions along the diagonal direction of cavities in the bulk area is observed, and self-oriented microplasma coupling is explored, while the plasma interaction occurred between cross adjacent cavities, contributed by the ionization wave propagation. The velocity of ionization wave propagation is measured to be 1.2 km/s to 3.5 km/s. The exploration of this plasma interaction in the bulk area is of value to applications in electromagnetics and signal processing.

  2. H-mode transition physics close to DN on MAST and its applications to other tokamaks

    International Nuclear Information System (INIS)

    Meyer, H.

    2004-01-01

    Full text: ELMy H-mode is the base-line operating scenario for the next step fusion device ITER. To improve active and passive pedestal control a deeper understanding of H- mode physics is desirable. MAST contributes towards this understanding with good edge diagnostics, and by accessing extreme parameter regimes. The first inter-machine comparisons with respect to the influence of the magnetic topology on the power threshold with ASDEX-Upgrade and NSTX reveal a reduction of the power threshold in true double null (C-DN) configuration opening new operation regimes in both devices. The 30% reduction in threshold power close to C-DN observed on ASDEX-Upgrade, though significant, is less than the factor of two or more observed in both large spherical tokamaks, MAST and NSTX. This points towards the importance of field line curvature for this effect. The power thresholds measured in C-DN on MAST and NSTX are very similar. Despite this strong effect on the power threshold, changes in most edge parameters in L-mode due to the different magnetic configurations are small. However, significant changes are seen in the toroidal impurity flow velocity, related to the radial electric field, and in the scrape-off-layer temperature decay length at the high field side. The statistical comparison of MAST data with various H-mode theories suggests that different instabilities need to be stabilised at different spatial positions in the region where the pedestal forms to access H-mode. Pedestal temperatures observed on MAST are two to five times lower than in MAST equivalent discharges at ASDEX-Upgrade. However, the pedestal densities are similar. The differences in L-mode are less significant. The usual DN operating regime with co current NBI in MAST has been extended to include single null (SN) configurations, to provide more direct comparisons with conventional tokamaks. The plasma edge in SN on MAST is more stable to ELMs and the typical type-III ELMs, often observed in C-DN, are

  3. Energy confinement and transport of H-mode plasmas in tokamak

    International Nuclear Information System (INIS)

    Urano, Hajime

    2005-02-01

    A characteristic feature of the high-confinement (H-mode) regime is the formation of a transport barrier near the plasma edge, where steepening of the density and temperature gradients is observed. The H-mode is expected to be a standard operation mode in a next-step fusion experimental reactor, called ITER-the International Thermonuclear Experimental Reactor. However, energy confinement in the H-mode has been observed to degrade with increasing density. This is a critical constraint for the operation domain in the ITER. Investigation of the main cause of confinement degradation is an urgent issue in the ITER Physics Research and Development Activity. A key element for solving this problem is investigation of the energy confinement and transport properties of H-mode plasmas. However, the influence of the plasma boundary characterized by the transport barrier in H-modes on the energy transport of the plasma core has not been examined sufficiently in tokamak research. The aim of this study is therefore to investigate the energy confinement properties of H-modes in a variety of density, plasma shape, seed impurity concentration, and conductive heat flux in the plasma core using the experimental results obtained in the JT-60U tokamak of Japan Atomic Energy Research Institute. Comparison of the H-mode confinement properties with those of other tokamaks using an international multi-machine database for extrapolation to the next step device was also one of the main subjects in this study. Density dependence of the energy confinement properties has been examined systematically by separating the thermal stored energy into the H-mode pedestal component determined by MHD stability called the Edge Localized Modes (ELMs) and the core component governed by gyro-Bohm-like transport. It has been found that the pedestal pressure imposed by the destabilization of ELM activities led to a reduction in the pedestal temperature with increasing density. The core temperature for each

  4. Scaling of H-mode pedestal characteristics in DIII-D and C-Mod

    International Nuclear Information System (INIS)

    Granetz, R.S.; Boivin, R.L.; Osborne, T.H.

    1999-01-01

    Since the H-mode edge pedestal effectively sets the boundary conditions for energy transport throughout the core, a better understanding of the pedestal region is necessary in order to fully predict H-mode performance. Pedestal characteristics in the DIII-D and Alcator C-Mod tokamaks are described, and scalings of the pedestal width with various plasma parameters are shown. The pedestal width in both tokamaks varies in an inverse sense with plasma current, and is independent of toroidal field. Other similarities, as well as differences, are discussed. It is also found that the pedestal widths of the various physical quantities involved (T e , T i , n e , n i ) may be different. (author)

  5. New fluctuation phenomena in the H-mode regime of PDX tokamak plasmas

    International Nuclear Information System (INIS)

    Slusher, R.E.; Surko, C.M.; Valley, J.F.; Crowley, T.; Mazzucato, E.; McGuire, K.

    1984-05-01

    A new kind of quasi-coherent fluctuation is observed near the edge of plasmas in the PDX tokamak during H-mode operation. (The H-mode occurs in neutral beam heated divertor plasmas and is characterized by improved energy containment as well as large density and temperature gradients near the plasma edge.) These fluctuations are evidenced as VUV and density fluctuation bursts at well-defined frequencies (Δω/ω less than or equal to 0.1) in the frequency range between 50 and 180 kHz. They affect the edge temperature-density product, and therefore they may be important for understanding the relationship between the large edge density and temperature gradients and the improved energy confinement

  6. Parameter dependences of the separatrix density in nitrogen seeded ASDEX Upgrade H-mode discharges

    Science.gov (United States)

    Kallenbach, A.; Sun, H. J.; Eich, T.; Carralero, D.; Hobirk, J.; Scarabosio, A.; Siccinio, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2018-04-01

    The upstream separatrix electron density is an important interface parameter for core performance and divertor power exhaust. It has been measured in ASDEX Upgrade H-mode discharges by means of Thomson scattering using a self-consistent estimate of the upstream electron temperature under the assumption of Spitzer-Härm electron conduction. Its dependence on various plasma parameters has been tested for different plasma conditions in H-mode. The leading parameter determining n e,sep was found to be the neutral divertor pressure, which can be considered as an engineering parameter since it is determined mainly by the gas puff rate and the pumping speed. The experimentally found parameter dependence of n e,sep, which is dominated by the divertor neutral pressure, could be approximately reconciled by 2-point modelling.

  7. Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix

    Science.gov (United States)

    Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET

    2018-03-01

    We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.

  8. Effect of low density H-mode operation on edge and divertor plasma parameters

    International Nuclear Information System (INIS)

    Maingi, R.; Mioduszewski, P.K.; Cuthbertson, J.W.

    1994-07-01

    We present a study of the impact of H-mode operation at low density on divertor plasma parameters on the DIII-D tokamak. The line-average density in H-mode was scanned by variation of the particle exhaust rate, using the recently installed divertor cryo-condensation pump. The maximum decrease (50%) in line-average electron density was accompanied by a factor of 2 increase in the edge electron temperature, and 10% and 20% reductions in the measured core and divertor radiated power, respectively. The measured total power to the inboard divertor target increased by a factor of 3, with the major contribution coming from a factor of 5 increase in the peak heat flux very close to the inner strike point. The measured increase in power at the inboard divertor target was approximately equal to the measured decrease in core and divertor radiation

  9. Chapter 7: High-Density H-Mode Operation in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Stober, Joerg Karl; Lang, Peter Thomas; Mertens, Vitus

    2003-01-01

    Recent results are reported on the maximum achievable H-mode density and the behavior of pedestal density and central density peaking as this limit is approached. The maximum achievable H-mode density roughly scales as the Greenwald density, though a dependence on B t is clearly observed. In contrast to the stiff temperature profiles, the density profiles seem to allow more shape variation and especially with high-field-side pellet-injection, strongly peaked profiles with good confinement have been achieved. Also, spontaneous density peaking at high densities is observed in ASDEX Upgrade, which is related to the generally observed large time constants for the density profile equilibration. The equilibrated density profile shapes depend strongly on the heat-flux profile in the sense that central heating leads to significantly flatter profiles

  10. The physics of transport barrier formation in the PBX-M H-mode

    International Nuclear Information System (INIS)

    Tynan, G.R.; Schmitz, L.; Blush, L.

    1994-01-01

    Measurements of edge profiles, turbulence, and turbulent-driven transport were made inside the last-closed flux surface (LCFS) and in the scrape-off layer (SOL) of PBX-M L-mode and H-mode plasmas using a fast reciprocating Langmuir probe diagnostic. Direct measurements of the potential profile confirm the generation of a strong inward radial electric field (E r ∼ -100 V/cm) just inside the LCFS in H-mode. Density and potential fluctuations levels are reduced at the L-H transition, resulting in significantly lower turbulent transport. The reduction in turbulent transport occurs across the LCFS and SOL regions and is not localized to the region of strong radial electric field. (author)

  11. Influence of the wall material on the H-mode performance

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.

    1994-06-01

    Theory on the influence of the wall material on the level of the enhanced confinement in H-mode is discussed. When the high-Z material is employed as the wall, the reflection of the neutral particles causes the higher neutral particle density in the plasma. The increased neutral particles lead to the loss of the ion momentum, decrease the radial electric field and degrade the confinement improvement. (author)

  12. Coherent edge fluctuation measurements in H-mode discharges on JFT-2M

    International Nuclear Information System (INIS)

    Nagashima, Y; Shinohara, K; Hoshino, K; Ejiri, A; Tsuzuki, K; Ido, T; Uehara, K; Kawashima, H; Kamiya, K; Ogawa, H; Yamada, T; Shiraiwa, S; Ohara, S; Takase, Y; Asakura, N; Oyama, N; Fujita, T; Ide, S; Takenaga, H; Kusama, Y; Miura, Y

    2004-01-01

    Results of coherent edge fluctuation measurements using three diagnostics (a reciprocating Langmuir probe, a two channel O-mode reflectometer, and fast magnetic probes) in H-mode discharges on JFT-2M are presented. In discharges in which a high recycling steady (HRS) H-mode phase is obtained through a transient phase with slightly enhanced D α intensity, two types of coherent fluctuations are observed. The higher frequency mode (around 300 kHz) is the high frequency mode (HFM) observed in the HRS H-mode (Kamiya K et al 2003 9th IAEA Tech. Meeting H-mode Workshop Topic B-14). The lower frequency mode has a frequency of around 80 kHz. The HFM is detected by a Langmuir probe over a wide region in the SOL, as well as by the reflectometer and magnetic probes. However, the HFM is not detected by the higher frequency (38 GHz) channel of the reflectometer after the HRS transition, suggesting that the HFM is not located deeply inside the plasma. The 80 kHz mode is detected by both channels of the reflectometer and by a Langmuir probe, but not by magnetic probes, suggesting that it is an electrostatic mode. In contrast to the HFM, the 80 kHz mode is detected by the Langmuir probe only near the separatrix during the transient phase, which leads to either the HRS phase or the ELMy phase, and is similar to the fluctuations reported in Shinohara K et al (1998 J. Plasma Fusion Res. 74 607)

  13. Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling

    Czech Academy of Sciences Publication Activity Database

    Angioni, C.; Mantica, P.; Pütterich, T.; Valisa, M.; Baruzzo, M.; Belli, A.E.; Belo, P.; Casson, F.J.; Challis, C.; Drewelow, P.; Giroud, C.; Hawkes, N.; Hender, T.C.; Hobirk, J.; Koskela, T.; Lauro Taroni, L.; Maggi, C.F.; Mlynář, Jan; Odstrčil, T.; Reinke, M.L.; Romanelli, M.

    2014-01-01

    Roč. 54, č. 8 (2014), 083028-083028 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : heavy impurity transport * H-mode hybrid scenario * neoclassical and turbulent transport Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/8/083028/pdf/0029-5515_54_8_083028.pdf

  14. Observation of internal transport barrier in ELMy H-mode plasmas on the EAST tokamak

    Science.gov (United States)

    Yang, Y.; Gao, X.; Liu, H. Q.; Li, G. Q.; Zhang, T.; Zeng, L.; Liu, Y. K.; Wu, M. Q.; Kong, D. F.; Ming, T. F.; Han, X.; Wang, Y. M.; Zang, Q.; Lyu, B.; Li, Y. Y.; Duan, Y. M.; Zhong, F. B.; Li, K.; Xu, L. Q.; Gong, X. Z.; Sun, Y. W.; Qian, J. P.; Ding, B. J.; Liu, Z. X.; Liu, F. K.; Hu, C. D.; Xiang, N.; Liang, Y. F.; Zhang, X. D.; Wan, B. N.; Li, J. G.; Wan, Y. X.; EAST Team

    2017-08-01

    The internal transport barrier (ITB) has been obtained in ELMy H-mode plasmas by neutron beam injection and lower hybrid wave heating on the Experimental Advanced Superconducting Tokamak (EAST). The ITB structure has been observed in profiles of ion temperature, electron temperature, and electron density within ρ safety factor q(0) ˜ 1. Transport coefficients are calculated by particle balance and power balance analysis, showing an obvious reduction after the ITB formation.

  15. Single photon emission and quantum ring-cavity coupling in InAs/GaAs quantum rings

    International Nuclear Information System (INIS)

    Gallardo, E; Nowak, A K; Sanvitto, D; Meulen, H P van der; Calleja, J M; MartInez, L J; Prieto, I; Alija, A R; Granados, D; Taboada, A G; GarcIa, J M; Postigo, P A; Sarkar, D

    2010-01-01

    Different InAs/GaAs quantum rings embedded in a photonic crystal microcavity are studied by quantum correlation measurements. Single photon emission, with g (2) (0) values around 0.3, is demonstrated for a quantum ring not coupled to the microcavity. Characteristic rise-times are found to be longer for excitons than for biexcitons, resulting in the time asymmetry of the exciton-biexciton cross-correlation. No antibunching is observed in another quantum ring weakly coupled to the microcavity.

  16. ELM triggering conditions for the integrated modeling of H-mode plasmas

    International Nuclear Information System (INIS)

    Pankin, A.Y.; Schnack, D.D.; Bateman, G.; Kritz, A.H.; Brennan, D.P.; Snyder, P.B.; Voitsekhovitch, I.; Kruger, S.; Janeschitz, G.; Onjun, T.; Pacher, G.W.; Pacher, H.D.

    2004-01-01

    Recent advances in the integrated modeling of ELMy (edge localized mode) H-mode plasmas are presented. A model for the H-mode pedestal and for the triggering of ELMs predicts the height, width, and shape of the H-mode pedestal and the frequency and width of ELMs. Formation of the pedestal and the L-H transition is the direct result of E r x B flow shear suppression of anomalous transport. The periodic ELM crashes are triggered by either the ballooning or peeling MHD instabilities. The BALOO, DCON, and ELITE ideal MHD stability codes are used to derive a new parametric expression for the peeling-ballooning threshold. The new dependence for the peeling-ballooning threshold is implemented in the ASTRA transport code. Results of integrated modeling of DIII-D like discharges are presented and compared with experimental observations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD. (authors)

  17. Edge ion dynamics in H-mode discharges in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Burrell, K.H.; Gohil, P.; Kim, J.; Seraydarian, R.P.

    1992-05-01

    The goal of this paper is to present detailed measurements of T i and E r at the plasma edge in L- and H-mode with high spatial resolution in order the study the edge ion dynamics. Of primary interest is the relationship between T i and E r and the behavior of the edge T i profile in H-mode. The principle findings are: there appears to be a threshold temperature for T i required for the transition to occur with T i at the LCFS in the range of 0.2--0.3 keV at the transition; a correlation between the edge E r profile and the edge T i profile has been observed; and values of T i of 2--3 keV within a few cm of the LCFS and of dT i /dr of up to 1 keV/cm are observed in the transport barrier in H-mode, with the scale length for T i being of the order of a poloidal gyroradius

  18. Correlation of H-mode barrier width and neutral penetration length

    International Nuclear Information System (INIS)

    Groebner, R.J.; Mahdavi, M.A.; Leonard, A.W.

    2003-01-01

    Pedestal studies in DIII-D find a good correlation between the width of the H-mode density barrier and the neutral penetration length. These results are obtained by comparing experimental density profiles to the predictions of an analytic model for the profile, obtained from the particle continuity equations for electrons and deuterium atoms. In its range of validity (edge temperature between 40-500 eV), the analytic model quantitatively predicts the observed decrease of the width as the pedestal density increases, the observed strong increase of the gradient of the density as the pedestal density increases and the observation that L-mode and H-mode profiles with the same pedestal density have very similar shapes. The width of the density barrier, measured from the edge of the electron temperature barrier, is the lower limit for the observed width of the temperature barrier. These results support the hypothesis that particle fueling provides the dominant control for the size of the H-mode transport barrier. (author)

  19. Operational limits of high density H-modes in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Mertens, V.; Borrass, K.; Kaufmann, M.; Lang, P.T.; Lang, R.; Mueller, H.W.; Neuhauser, J.; Schneider, R.; Schweinzer, J.; Suttrop, W.

    2001-01-01

    Systematic investigations of H-mode density limit (H→L-mode back transition) plasmas with gas fuelling and alternatively with additional pellet injection from the magnetic high-field-side HFS are being performed in the new closed divertor configuration DV-II. The resulting database covering a wide range of the externally controllable plasma parameters I p , B t and P heat confirms that the H-mode threshold power exceeds the generally accepted prediction P L→H heat ∝B-bar t dramatically when one approaches Greenwald densities. Additionally, in contrast to the Greenwald scaling a moderate B t -dependence of the H-mode density limit is found. The limit is observed to coincide with divertor detachment and a strong increase of the edge thermal transport, which has, however, no detrimental effect on global τ E . The pellet injection scheme from the magnetic high-field-side HFS, developed recently on ASDEX Upgrade, leads to fast particle drifts which are, contrary to the standard injection from the low-field-side, directed into the plasma core. This improves markedly the pellet particle fuelling efficiency. The responsible physical mechanism, the diamagnetic particle drift of the pellet ablatant was successfully verified recently. Other increased particle losses on respectively different time scales after the ablation process, however, still persist. Generally, a clear gain in achievable density and plasma stored energy is achieved with stationary HFS pellet injection compared to gas-puffing. (author)

  20. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.; Lomas, P.; Gowers, C.

    2000-01-01

    Models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in using a large database containing both Deuterium-only (DD) and Deuterium-Tritium (DT) plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing to study the dependence of the pedestal height on the edge shear. In addition the range of plasma currents was extended up to 6 MA. It is shown that the edge data is best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to eliminate conclusively the thermal ion model. (author)

  1. Density fluctuation measurements via reflectometry on DIII-D during L- and H-mode operation

    International Nuclear Information System (INIS)

    Doyle, E.J.; Lehecka, T.; Luhmann, N.C. Jr.; Peebles, W.A.; Philipona, R.

    1990-01-01

    The unique ability of reflectometers to provide radial density fluctuation measurements with high spatial resolution (of the order of ≤ centimeters, is ideally suited to the study of the edge plasma modifications associated with H-mode operation. Consequently, attention has been focused on the study of these phenomena since an improved understanding of the physics of H-mode plasmas is essential if a predictive capability for machine performance is to be developed. In addition, DIII-D is ideally suited for such studies since it is a major device noted for its robust H-mode operation and excellent basic plasma profile diagnostic information. The reflectometer system normally used for fluctuation studies is an O-mode, homodyne, system utilizing 7 discrete channels spanning 15-75 GHz, with corresponding critical densities of 2.8x10 18 to 7x10 19 m -3 . The Gunn diode sources in this system are only narrowly tunable in frequency, so the critical densities are essentially fixed. An X-mode system, utilizing a frequency tunable BWO source, has also been used to obtain fluctuation data, and in particular, to 'fill in the gaps' between the discrete O-mode channels. (author) 12 refs., 5 figs

  2. A two term model of the confinement in Elmy H-modes using the global confinement and pedestal databases

    International Nuclear Information System (INIS)

    2003-01-01

    Two different physical models of the H-mode pedestal are tested against the joint pedestal-core database. These models are then combined with models for the core and shown to give a good fit to the ELMy H-mode database. Predictions are made for the next step tokamaks ITER and FIRE. (author)

  3. The design and performance of a water cooling system for a prototype coupled cavity linear particle accelerator for the spallation neutron source

    International Nuclear Information System (INIS)

    Bernardin, John D.; Ammerman, Curtt N.; Hopkins, Steve M.

    2002-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. The SNS will generate and employ neutrons as a research tool in a variety of disciplines including biology, material science, superconductivity, chemistry, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of, in part, a multi-cell copper structure termed a coupled cavity linac (CCL). The CCL is responsible for accelerating the protons from an energy of 87 MeV, to 185 MeV. Acceleration of the charged protons is achieved by the use of large electrical field gradients established within specially designed contoured cavities of the CCL. While a large amount of the electrical energy is used to accelerate the protons, approximately 60-80% of this electrical energy is dissipated in the CCL's copper structure. To maintain an acceptable operating temperature, as well as minimize thermal stresses and maintain desired contours of the accelerator cavities, the electrical waste heat must be removed from the CCL structure. This is done using specially designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by a complex water cooling and temperature control system. This paper discusses the design, analysis, and testing of a water cooling system for a prototype CCL. First, the design concept and method of water temperature control is discussed. Second, the layout of the prototype water cooling system, including the selection of plumbing components, instrumentation, as well as controller hardware and software is presented. Next, the development of a numerical network model used to size the pump, heat exchanger, and plumbing equipment, is discussed. Finally, empirical pressure, flow rate, and temperature data from the prototype CCL

  4. RESONANCE CONTROL FOR THE COUPLED CAVITY LINAC AND DRIFT TUBE LINAC STRUCTURES OF THE SPALLATION NEUTRON SOURCE LINAC USING A CLOSED-LOOP WATER COOLING SYSTEM

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Brown, R.L.

    2001-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the protons to an energy of 185 MeV. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems

  5. Finite element analysis and frequency shift studies for the bridge coupler of the coupled cavity linear accelerator of the spallation neutron source.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z. (Zukun)

    2001-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based neutron scattering research facility. The linear accelerator (linac) is the principal accelerating structure and divided into a room-temperature linac and a superconducting linac. The normal conducting linac system that consists of a Drift Tube Linac (DTL) and a Coupled Cavity Linac (CCL) is to be built by Los Alamos National Laboratory. The CCL structure is 55.36-meters long. It accelerates H- beam from 86.8 Mev to 185.6 Mev at operating frequency of 805 MHz. This side coupled cavity structure has 8 cells per segment, 12 segments and 11 bridge couplers per module, and 4 modules total. A 5-MW klystron powers each module. The number 3 and number 9 bridge coupler of each module are connected to the 5-MW RF power supply. The bridge coupler with length of 2.5 {beta}{gamma} is a three-cell structure and located between the segments and allows power flow through the module. The center cell of each bridge coupler is excited during normal operation. To obtain a uniform electromagnetic filed and meet the resonant frequency shift, the RF induced heat must be removed. Thus, the thermal deformation and frequency shift studies are performed via numerical simulations in order to have an appropriate cooling design and predict the frequency shift under operation. The center cell of the bridge coupler also contains a large 4-inch slug tuner and a tuning post that used to provide bulk frequency adjustment and field intensity adjustment, so that produce the proper total field distribution in the module assembly.

  6. Nanoscale Imaging of Light-Matter Coupling Inside Metal-Coated Cavities with a Pulsed Electron Beam.

    Science.gov (United States)

    Moerland, Robert J; Weppelman, I Gerward C; Scotuzzi, Marijke; Hoogenboom, Jacob P

    2018-05-02

    Many applications in (quantum) nanophotonics rely on controlling light-matter interaction through strong, nanoscale modification of the local density of states (LDOS). All-optical techniques probing emission dynamics in active media are commonly used to measure the LDOS and benchmark experimental performance against theoretical predictions. However, metal coatings needed to obtain strong LDOS modifications in, for instance, nanocavities, are incompatible with all-optical characterization. So far, no reliable method exists to validate theoretical predictions. Here, we use subnanosecond pulses of focused electrons to penetrate the metal and excite a buried active medium at precisely defined locations inside subwavelength resonant nanocavities. We reveal the spatial layout of the spontaneous-emission decay dynamics inside the cavities with deep-subwavelength detail, directly mapping the LDOS. We show that emission enhancement converts to inhibition despite an increased number of modes, emphasizing the critical role of optimal emitter location. Our approach yields fundamental insight in dynamics at deep-subwavelength scales for a wide range of nano-optical systems.

  7. Design and Analysis of Enhanced Modulation Response in Integrated Coupled Cavities DBR Lasers Using Photon-Photon Resonance

    Directory of Open Access Journals (Sweden)

    Paolo Bardella

    2016-01-01

    Full Text Available In the last few decades, various solutions have been proposed to increase the modulation bandwidth and, consequently, the transmission bit-rate of semiconductor lasers. In this manuscript, we discuss a design procedure for a recently proposed laser cavity realized with the monolithic integration of two distributed Bragg reflector (DBR lasers allowing one to extend the modulation bandwidth. Such an extension is obtained introducing in the dynamic response a photon-photon resonance (PPR at a frequency higher than the modulation bandwidth of the corresponding single-section laser. Design guidelines will be proposed, and dynamic small and large signal simulations results, calculated using a finite difference traveling wave (FDTW numerical simulator, will be discussed to confirm the design results. The effectiveness of the design procedure is verified in a structure with PPR frequency at 35 GHz allowing one to obtain an open eye diagram for a non-return-to-zero (NRZ digital signal up to 80 GHz . Furthermore, the investigation of the rich dynamics of this structure shows that with proper bias conditions, it is possible to obtain also a tunable self-pulsating signal in a frequency range related to the PPR design.

  8. Particle and power deposition on divertor targets in EAST H-mode plasmas

    International Nuclear Information System (INIS)

    Wang, L.; Xu, G.S.; Guo, H.Y.; Chen, R.; Ding, S.; Gan, K.F.; Gao, X.; Gong, X.Z.; Jiang, M.; Liu, P.; Liu, S.C.; Luo, G.N.; Ming, T.F.; Wan, B.N.; Wang, D.S.; Wang, F.M.; Wang, H.Q.; Wu, Z.W.; Yan, N.; Zhang, L.

    2012-01-01

    The effects of edge-localized modes (ELMs) on divertor particle and heat fluxes were investigated for the first time in the Experimental Advanced Superconducting Tokamak (EAST). The experiments were carried out with both double null and lower single null divertor configurations, and comparisons were made between the H-mode plasmas with lower hybrid current drive (LHCD) and those with combined ion cyclotron resonance heating (ICRH). The particle and heat flux profiles between and during ELMs were obtained from Langmuir triple-probe arrays embedded in the divertor target plates. And isolated ELMs were chosen for analysis in order to reduce the uncertainty resulting from the influence of fast electrons on Langmuir triple-probe evaluation during ELMs. The power deposition obtained from Langmuir triple probes was consistent with that from the divertor infra-red camera during an ELM-free period. It was demonstrated that ELM-induced radial transport predominantly originated from the low-field side region, in good agreement with the ballooning-like transport model and experimental results of other tokamaks. ELMs significantly enhanced the divertor particle and heat fluxes, without significantly broadening the SOL width and plasma-wetted area on the divertor target in both LHCD and LHCD + ICRH H-modes, thus posing a great challenge for the next-step high-power, long-pulse operation in EAST. Increasing the divertor-wetted area was also observed to reduce the peak heat flux and particle recycling at the divertor target, hence facilitating long-pulse H-mode operation. The particle and heat flux profiles during ELMs appeared to exhibit multiple peak structures, and were analysed in terms of the behaviour of ELM filaments and the flux tubes induced by modified magnetic topology during ELMs. (paper)

  9. H-mode regimes and observators of central toroidal rotation in Alcator C-Mod

    International Nuclear Information System (INIS)

    Greenwald, M.; Rice, J.; Boivin, R.

    1999-01-01

    The Enhanced D α or EDA H-mode regime in Alcator C-Mod has been investigated and compared in detail to ELM-free plasmas. (In this paper, ELM-free will refer to discharges with no type I ELMs and with no sign of EDA, though technically, most EDA plasmas are ELM-free as well.) EDA discharges have only slightly lower energy confinement than comparable ELM-free ones, but show markedly reduced impurity confinement. Thus EDA discharges do not accumulate impurities and typically have a lower fraction of radiated power. EDA plasmas are seen to be more likely at low plasma current (q > 3.7 - 4), for moderate plasma shaping (0.35 - 0.55), and for high neutral pressures. No obvious trends were observed with input power or pressure (β). In both H-mode regimes, and in ICRF heated L-modes, central impurity toroidal rotation has been deduced, from the Doppler shifts of argon x-ray lines. Rotation velocities up to 1.3 x 10 5 m/s in the co-current direction have been observed in H-mode discharges that had no direct momentum input. There is a strong correlation between the increase in the central impurity rotation velocity and the increase in the plasma stored energy, induced by ICRF heating. In otherwise similar discharges with the same stored energy increase, plasmas with lower current rotate faster. The ion pressure gradient is an unimportant contributor to the central impurity rotation and the presence of a substantial core radial electric field is inferred during the ICRF pulse. An inward shift of ions induced by ICRF waves could give rise to a non-ambipolar electric field in the plasma core. Comparisons with a neo-classical ion orbit shift model show good agreement with the observations, both in magnitude, and in the scaling with plasma current. (author)

  10. Density profile analysis during an ELM event in ASDEX Upgrade H-modes

    International Nuclear Information System (INIS)

    Nunes, I.; Manso, M.; Serra, F.; Horton, L.D.; Conway, G.D.; Loarte, A.

    2005-01-01

    This paper reports results on measurements of the density profiles. Here we analyse the behaviour of the electron density for a set of experiments in type I ELMy H-mode discharges in ASDEX Upgrade where the plasma current, plasma density, triangularity and input power were varied. Detailed measurements of the radial extent of the perturbation on the density profiles caused by the edge localized mode (ELM) crash (ELM affected depth), the velocity of the radial propagation of the perturbation as well as the width and gradient of the density pedestal are determined. The effect of a type I ELM event on the density profiles affects the outermost 20-40% of the plasma minor radius. At the scrape-off layer (SOL) the density profile broadens while in the pedestal region the density decreases resulting in a smaller density gradient. This change in the density profile defines a pivot point around which the density profile changes. The average radial velocity at the SOL is in the range 125-150 ms -1 and approximately constant for all the density layers far from the pivot point. The width of the density pedestal is approximately constant for all the ELMy H-mode discharges analysed, with values between 2 and 3.5 cm. These results are then compared with an analytical model where the width of the density is predominantly set by ionization (neutral penetration model). The width of the density profiles for L-mode discharges is included, since L- and H-mode have different particle transport. No agreement between the experimental results and the model is found

  11. Ball-Pen Probe Measurements in L-Mode and H-Mode on ASDEX Upgrade

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Horáček, Jan; Müller, H. W.; Rohde, V.; Ionita, C.; Schrittwieser, R.; Mehlmann, F.; Kurzan, B.; Stöckel, Jan; Dejarnac, Renaud; Weinzettl, Vladimír; Seidl, Jakub; Peterka, M.

    2010-01-01

    Roč. 50, č. 9 (2010), s. 854-859 ISSN 0863-1042. [International Workshop on Electric Probes in Magnetized Plasmas/8th./. Innsbruck, 21.09.2009-24.09.2009] R&D Projects: GA AV ČR KJB100430901; GA ČR GA202/09/1467 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tokamak * ball- pen probe * electron temperature * L-mode * H-mode * ELMs Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.006, year: 2010 http://onlinelibrary.wiley.com/doi/10.1002/ctpp.201010145/pdf

  12. Crossbar H-mode drift-tube linac design with alternative phase focusing for muon linac

    Science.gov (United States)

    Otani, M.; Futatsukawa, K.; Hasegawa, K.; Kitamura, R.; Kondo, Y.; Kurennoy, S.

    2017-07-01

    We have developed a Crossbar H-mode (CH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The CH-DTL accelerates muons from β = v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.

  13. VH mode accessibility and global H-mode properties in previous and present JET configurations

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T T.C.; Ali-Arshad, S; Bures, M; Christiansen, J P; Esch, H P.L. de; Fishpool, G; Jarvis, O N; Koenig, R; Lawson, K D; Lomas, P J; Marcus, F B; Sartori, R; Schunke, B; Smeulders, P; Stork, D; Taroni, A; Thomas, P R; Thomsen, K [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    In JET VH modes, there is a distinct confinement transition following the cessation of ELMs, observed in a wide variety of tokamak operating conditions, using both NBI and ICRF heating methods. Important factors which influence VH mode accessibility such as magnetic configuration and vessel conditions have been identified. The new JET pumped divertor configuration has much improved plasma shaping control and power and particle exhaust capability and should permit exploitation of plasmas with VH confinement properties over an even wider range of operating regimes, particularly at high plasma current; first H-modes have been obtained in the 1994 JET operating period and initial results are reported. (authors). 7 refs., 6 figs.

  14. Papers presented at the 6th H-mode workshop (Seeon, Germany)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The 6th H-mode workshop was held at Kloster Seeon (Germany) during the period of September 22-24, 1997. Contribution to this workshop is reported. Reports include. 1. Role of Nonuniform Superthermal Ions for Internal Transport Barriers. 2. Electric Field Bifurcation and Transition in the Core Plasma of CHS. 3. Formation and Termination of High Ion Temperature Mode in Heliotron/torsatron Plasmas. 4. Transition to an Enhanced Internal Transport Barrier. 5. Physics of Collapses - Probabilistic Occurrence of ELMs and Crashes -. (J.P.N.)

  15. Confinement improvement in H-mode-like plasmas in helical systems

    International Nuclear Information System (INIS)

    Itoh, K.; Sanuki, H.; Itoh, S.; Fukuyama, A.; Yagi, M.

    1993-06-01

    The reduction of the anomalous transport due to the inhomogeneous radial electric field is theoretically studied for toroidal helical plasmas. The self-sustained interchange-mode turbulence is analysed for the system with magnetic shear and magnetic hill. For the system with magnetic well like conventional stellarators, the ballooning mode turbulence is studied. Influence of the radial electric field inhomogeneity on the transport coefficients and fluctuations are quantitatively shown. Unified theory of the transport coefficients in the L-mode and H-mode-like plasmas are presented. (author)

  16. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    Science.gov (United States)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  17. Status of the COMPASS tokamak and characterization of the first H-mode

    Czech Academy of Sciences Publication Activity Database

    Pánek, Radomír; Adámek, Jiří; Aftanas, Milan; Bílková, Petra; Böhm, Petr; Brochard, F.; Cahyna, Pavel; Cavalier, Jordan; Dejarnac, Renaud; Dimitrova, Miglena; Grover, O.; Harrison, J.; Háček, Pavel; Havlíček, Josef; Havránek, Aleš; Horáček, Jan; Hron, Martin; Imríšek, Martin; Janky, Filip; Kirk, A.; Komm, Michael; Kovařík, Karel; Krbec, Jaroslav; Kripner, Lukáš; Markovič, Tomáš; Mitošinková, Klára; Mlynář, Jan; Naydenkova, Diana; Peterka, Matěj; Seidl, Jakub; Stöckel, Jan; Štefániková, Estera; Tomeš, Matěj; Urban, Jakub; Vondráček, Petr; Varavin, Mykyta; Varju, Jozef; Weinzettl, Vladimír; Zajac, Jaromír

    2016-01-01

    Roč. 58, č. 1 (2016), č. článku 014015. ISSN 0741-3335 R&D Projects: GA MŠk(CZ) LM2011021; GA ČR(CZ) GAP205/12/2327; GA ČR(CZ) GA15-10723S Institutional support: RVO:61389021 Keywords : COMPASS * ELM * tokamak * H-mode Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016

  18. Quiescent H-mode plasmas with strong edge rotation in the cocurrent direction.

    Science.gov (United States)

    Burrell, K H; Osborne, T H; Snyder, P B; West, W P; Fenstermacher, M E; Groebner, R J; Gohil, P; Leonard, A W; Solomon, W M

    2009-04-17

    For the first time in any tokamak, quiescent H-mode (QH-mode) plasmas have been created with strong edge rotation in the direction of the plasma current. This confirms the theoretical prediction that the QH mode should exist with either sign of the edge rotation provided the magnitude of the shear in the edge rotation is sufficiently large and demonstrates that counterinjection and counteredge rotation are not essential for the QH mode. Accordingly, the present work demonstrates a substantial broadening of the QH-mode operating space and represents a significant confirmation of the theory.

  19. Rotation characteristics of main ions and impurity ions in H-mode tokamak plasma

    International Nuclear Information System (INIS)

    Kim, J.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Kim, Y.; St. John, H.E.; Seraydarian, R.P.; Wade, M.R.

    1994-01-01

    Poloidal and toroidal rotation of the main ions (He 2+ ) and the impurity ions (C 6+ and B 5+ ) in H-mode helium plasmas have been measured via charge exchange recombination spectroscopy in the DIII-D tokamak. It was discovered that the main ion poloidal rotation is in the ion diamagnetic drift direction while the impurity ion rotation is in the electron diamagnetic drift direction, in qualitative agreement with the neoclassical theory. The deduced radial electric field in the edge is of the same negative-well shape regardless of which ion species is used, validating the fundamental nature of the electric field in L-H transition phenomenology

  20. Dental cavities

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001055.htm Dental cavities To use the sharing features on this page, please enable JavaScript. Dental cavities are holes (or structural damage) in the ...

  1. Status of the COMPASS tokamak and characterization of the first H-mode

    Science.gov (United States)

    Pánek, R.; Adámek, J.; Aftanas, M.; Bílková, P.; Böhm, P.; Brochard, F.; Cahyna, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Grover, O.; Harrison, J.; Háček, P.; Havlíček, J.; Havránek, A.; Horáček, J.; Hron, M.; Imríšek, M.; Janky, F.; Kirk, A.; Komm, M.; Kovařík, K.; Krbec, J.; Kripner, L.; Markovič, T.; Mitošinková, K.; Mlynář, J.; Naydenkova, D.; Peterka, M.; Seidl, J.; Stöckel, J.; Štefániková, E.; Tomeš, M.; Urban, J.; Vondráček, P.; Varavin, M.; Varju, J.; Weinzettl, V.; Zajac, J.; the COMPASS Team

    2016-01-01

    This paper summarizes the status of the COMPASS tokamak, its comprehensive diagnostic equipment and plasma scenarios as a baseline for the future studies. The former COMPASS-D tokamak was in operation at UKAEA Culham, UK in 1992-2002. Later, the device was transferred to the Institute of Plasma Physics of the Academy of Sciences of the Czech Republic (IPP AS CR), where it was installed during 2006-2011. Since 2012 the device has been in a full operation with Type-I and Type-III ELMy H-modes as a base scenario. This enables together with the ITER-like plasma shape and flexible NBI heating system (two injectors enabling co- or balanced injection) to perform ITER relevant studies in different parameter range to the other tokamaks (ASDEX-Upgrade, DIII-D, JET) and to contribute to the ITER scallings. In addition to the description of the device, current status and the main diagnostic equipment, the paper focuses on the characterization of the Ohmic as well as NBI-assisted H-modes. Moreover, Edge Localized Modes (ELMs) are categorized based on their frequency dependence on power density flowing across separatrix. The filamentary structure of ELMs is studied and the parallel heat flux in individual filaments is measured by probes on the outer mid-plane and in the divertor. The measurements are supported by observation of ELM and inter-ELM filaments by an ultra-fast camera.

  2. Accounting of the Power Balance for Neutral-beam heated H-Mode Plasmas in NSTX

    International Nuclear Information System (INIS)

    Paul, S.F.; Maingi, R.; Soukhanovskii, V.; Kaye, S.M.; Kugel, H.

    2004-01-01

    A survey of the dependence of power balance on input power, shape, and plasma current was conducted for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Measurements of heat to the divertor strike plates and divertor and core radiation were taken over a wide range of plasma conditions. The different conditions were obtained by inducing a L-mode to H-mode transition, changing the divertor configuration [lower single null (LSN) vs. double-null (DND)] and conducting a NBI power scan in H-mode. 60-70% of the net input power is accounted for in the LSN discharges with 20% of power lost as fast ions, 30-45% incident on the divertor plates, up to 10% radiated in the core, and about 12% radiated in the divertor. In contrast, the power accountability in DND is 85-90%. A comparison of DND and LSN data show that the remaining power in the LSN is likely to be directed to the upper divertor

  3. BURNING PLASMA PROJECTIONS USING DRIFT WAVE TRANSPORT MODELS AND SCALINGS FOR THE H-MODE PEDESTAL

    International Nuclear Information System (INIS)

    KINSEY, J.E.; ONJUN, T.; BATEMAN, G.; KRITZ, A.; PANKIN, A.; STAEBLER, G.M.; WALTZ, R.E.

    2002-01-01

    OAK-B135 The GLF23 and Multi-Mode (MM95) transport models are used along with a model for the H-mode pedestal to predict the fusion performance for the ITER, FIRE, and IGNITOR tokamak designs. The drift-wave predictive transport models reproduce the core profiles in a wide variety of tokamak discharges, yet they differ significantly in their response to temperature gradient (stiffness). Recent gyro-kinetic simulations of ITG/TEM and ETG modes motivate the renormalization of the GLF23 model. The normalizing coefficients for the ITG/TEM modes are reduced by a factor of 3.7 while the ETG mode coefficient is increased by a factor of 4.8 in comparison with the original model. A pedestal temperature model is developed for type I ELMy H-mode plasmas based on ballooning mode stability and a theory-motivated scaling for the pedestal width. In this pedestal model, the pedestal density is proportional to the line-averaged density and the pedestal temperature is inversely related to the pedestal density

  4. Gyrokinetic Calculations of Microinstabilities and Transport During RF H-Modes on Alcator C-Mod

    International Nuclear Information System (INIS)

    Redi, M.H.; Fiore, C.; Bonoli, P.; Bourdelle, C.; Budny, R.; Dorland, W.D.; Ernst, D.; Hammett, G.; Mikkelsen, D.; Rice, J.; Wukitch, S.

    2002-01-01

    Physics understanding for the experimental improvement of particle and energy confinement is being advanced through massively parallel calculations of microturbulence for simulated plasma conditions. The ultimate goal, an experimentally validated, global, non-local, fully nonlinear calculation of plasma microturbulence is still not within reach, but extraordinary progress has been achieved in understanding microturbulence, driving forces and the plasma response in recent years. In this paper we discuss gyrokinetic simulations of plasma turbulence being carried out to examine a reproducible, H-mode, RF heated experiment on the Alcator CMOD tokamak3, which exhibits an internal transport barrier (ITB). This off axis RF case represents the early phase of a very interesting dual frequency RF experiment, which shows density control with central RF heating later in the discharge. The ITB exhibits steep, spontaneous density peaking: a reduction in particle transport occurring without a central particle source. Since the central temperature is maintained while the central density is increasing, this also suggests a thermal transport barrier exists. TRANSP analysis shows that ceff drops inside the ITB. Sawtooth heat pulse analysis also shows a localized thermal transport barrier. For this ICRF EDA H-mode, the minority resonance is at r/a * 0.5 on the high field side. There is a normal shear profile, with q monotonic

  5. Characteristics of edge localized mode in JFT-2M H-mode

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi; Funahashi, Akimasa; Goldston, R.J.

    1989-03-01

    Characteristics of edge localized mode (ELM/ERP) during H-mode plasma of JFT-2M were investigated. It was found that ELM/ERP is mainly a density fluctuation phenomena in the edge, and electron temperature in the edge except just near the separatrix is not very much perturbed. Several experimental conditions to controll ELM/ERP are, plasma density, plasma ion species, heating power, and plasma current ramping. ELM/ERPs found in low density deuterium discharge are suppressed by raising the density. ELM/ERPs are pronounced in hydrogen plasma compared with deuterium plasma. ELM/ERPs seen in hydrogen plasma or in near marginal H-mode conditions are suppressed by increasing the heating power. ELM/ERPs are found to be suppressed by plasma current ramp down, whereas they are enhanced by current ramp up. MHD aspect of ELM/ERP was investigated. No clear MHD features of ELM/ERP were found. However, reversal of mode rotation seen imediately after ELM/ERP suggests the temporal return to L-mode during the ELM/ERP event. (author)

  6. Methane penetration in DIII-D ELMing H-mode plasmas

    International Nuclear Information System (INIS)

    West, W.P.; Lasnier, C.J.; Whyte, D.G.; Isler, R.C.; Evans, T.E.; Jackson, G.L.; Rudakov, D.; Wade, M.R.; Strachan, J.

    2003-01-01

    Carbon penetration into the core plasma during midplane and divertor methane puffing has been measured for DIII-D ELMing H-mode plasmas. The methane puffs are adjusted to a measurable signal, but global plasma parameters are only weakly affected (line average density, e > increases by E , drops by 6+ density profiles in the core measured as a function of time using charge exchange recombination spectroscopy. The methane penetration factor is defined as the difference in the core content with the puff on and puff off, divided by the carbon confinement time and the methane puffing rate. In ELMing H-mode discharges with ion ∇B drift direction into the X-point, increasing the line averaged density from 5 to 8x10 19 m -3 dropped the penetration factor from 6.6% to 4.6% for main chamber puffing. The penetration factor for divertor puffing was below the detection limit (<1%). Changing the ion ∇B drift to away from the X-point decreased the penetration factor by more than a factor of five for main chamber puffing

  7. Pedestal Temperature Model for Type III ELMy H-mode Plasma

    International Nuclear Information System (INIS)

    Buangam, W.; Suwanna, S.; Onjun, T.; Poolyarat, N.; Picha, R.; Singhsomroje, W.

    2009-07-01

    Full text: It is widely known that the improved performance of H-mode plasma results mainly from a formation of the pedestal, which is a narrow region of strong pressure gradient near the edge of plasma. A predictive capability for the conditions at the top of the pedestal is important, especially for predictive simulations of future experiments. New models for predicting the temperature values at the top of the pedestal for type III ELMy H-mode plasma are developed by using two different approaches: a theory-based approaches and an empirical approach. For a theory-based approach, a model is developed based on the calculation of thermal energy in the pedestal region and on accepted scaling laws of energy confinement time. For an empirical model, a scaling law for pedestal temperature in terms of plasma controlled parameters, such as plasma current, magnetic field, heating power, is deduced from experimental data. Predictions from these models are compared with experimental data from the Pedestal International Database. Statistical quantities, such as Root-Mean Square Error (RMSE) and offset values, are computed to quantify the predictive capability of the models. It is found that the theory-based model predicts the pedestal temperature values moderately well yielding RMSE between 30% and 40%. The IPB98(y,3) scaling law yields with best agreement with RMSE of 30.4%. The empirical model predicts the pedestal temperature value with better agreement, yield RMSE of 25.9%

  8. Fuel ion rotation measurement and its implications on H-mode theories

    International Nuclear Information System (INIS)

    Kim, J.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Hinton, F.L.; Kim, Y.B.; Seraydarian, R.; Mandl, W.

    1993-10-01

    Poloidal and toroidal rotation of the fuel ions (He 2+ ) and the impurity ions (C 6+ and B 5+ ) in H-mode helium plasmas have been investigated in the DIII-D tokamak by means of charge exchange recombination spectroscopy, resulting in the discovery that the fuel ion poloidal rotation is in the ion diamagnetic drift direction while the impurity ion rotation is in the electron diamagnetic drift direction. The radial electric field obtained from radial force balance analysis of the measured pressure gradients and rotation velocities is shown to be the same regardless of which ion species is used and therefore is a more fundamental parameter than the rotation flows in studying H-mode phenomena. It is shown that the three contributions to the radial electric field (diamagnetic, poloidal rotation, and toroidal rotation terms) are comparable and consequently the poloidal flow does not solely represent the E x B flow. In the high-shear edge region, the density scale length is comparable to the ion poloidal gyroradius, and thus neoclassical theory is not valid there. In view of this new discovery that the fuel and impurity ions rotate in opposite sense, L-H transition theories based on the poloidal rotation may require improvement

  9. Correlation of H-mode density barrier width and neutral penetration length

    International Nuclear Information System (INIS)

    Groebner, R.J.

    2002-01-01

    Pedestal studies in DIII-D find a good correlation between the width of the H-mode particle barrier width(ne) and the neutral penetration length. These results are obtained by comparing experimental n e profiles to the predictions of an analytic model for the density profile, obtained from a solution of the particle continuity equations for electrons and deuterium atoms. Initial bench-marking shows that the model is consistent with the fluid neutrals model of the UEDGE code. In its range of validity (edge temperature between 0.02-0.3 keV), the model quantitatively predicts the observed values of width(ne), the observed decrease of width(ne) as the pedestal density n e,ped increases, the observed increase of the gradient of n e with the square of n e,ped , and the observation that L-mode and H-mode profiles with the same n e,ped have very similar widths. In the model, width(ne) depends on the fuelling source and on the plasma transport. Thus, these results provide evidence that the width of the particle barrier depends on both plasma physics and atomic physics. (author)

  10. Intermittency in the Scrape-off Layer of the National Spherical Torus Experiment During H-mode Confinement

    International Nuclear Information System (INIS)

    Maqueda, R.J.; Stotler, D.P.; Zweben, S.J.

    2010-01-01

    A gas puff imaging diagnostic is used in the National Spherical Tokamak Experiment (M. Ono, et al., Nucl. Fusion 40, 557 (2000)) to study the edge turbulence and intermittency present during H-mode discharges. In the case of low power Ohmic H-modes the suppression of turbulence/blobs is maintained through the duration of the (short lived) H-modes. Similar quiescent edges are seen during the early stages of H-modes created with the use of neutral beam injection. Nevertheless, as time progresses following the L-H transition, turbulence and blobs reappear although at a lower level than that typically seen during L-mode confinement. It is also seen that the time-averaged SOL emission profile broadens, as the power loss across the separatrix increases. These broad profiles are characterized by a large level of fluctuations and intermittent events.

  11. A quantitative analysis of the effect of ELMs on H-mode thermal energy confinement in DIII-D

    International Nuclear Information System (INIS)

    Schissel, D.P.; Osborne, T.H.; Carlstrom, T.N.; Zohm, H.

    1992-06-01

    The desire to reach ignition in future tokamaks the energy confinement time critical parameter. The most promising enhanced (over L-mode) confinement regime is the H-mode, discovered on ASDEX with neutral beam heating, and then confirmed with various auxiliary heating sources on numerous machines. The knowledge of how H-mode τ E depends on different parameters is of chemical importance to the performance predictions for next generation devices. Inter-machine H-mode total and thermal energy confinement (τ th ) scalings, which are being utilized to predict ITER thermal energy confinement, have been created for discharges where the Edge Localized Mode (ELM) instability has not been present. Confinement scaling research hm concentrated on this ELM-free H-mode phase mostly owing to the difficulty of characterizing ELM behavior. To date, long pulse H-mode operation has only been achieved by utilizing ELMs to flush out unpurities and prevent radiative collapse of the discharge. Unfortunately, accompanying the ELMS is a decrease of the plasma stored energy due to the expulsion of particles near the edge of the discharge resulting in a reduction of the steep edge electron density gradient. In order to predict ITER's H-mode τ th in the presence of ELMS, an estimated 25% confinement degradation factor has been applied to the ELM-free predictions. Our work, summarized in this paper, indicates that this 25% reduction factor is too large and instead a value of approximately 15% would be more appropriate

  12. ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES

    International Nuclear Information System (INIS)

    WOLF, NS; PETRIE, TW; PORTER, GD; ROGNLIEN, TD; GROEBNER, RJ; MAKOWSKI, MA

    2002-01-01

    OAK A271 ROLE OF NEUTRALS IN CORE FUELING AND PEDESTAL STRUCTURE IN H-MODE DIII-D DISCHARGES. The 2-D fluid code UEDGE was used to analyze DIII-D experiments to determine the role of neutrals in core fueling, core impurities, and also the H-mode pedestal structure. The authors compared the effects of divertor closure on the fueling rate and impurity density of high-triangularity, H-mode plasmas. UEDGE simulations indicate that the decrease in both deuterium core fueling (∼ 15%-20%) and core carbon density (∼ 15%-30%) with the closed divertor compared to the open divertor configuration is due to greater divertor screening of neutrals. They also compared UEDGE results with a simple analytic model of the H-mode pedestal structure. The model predicts both the width and gradient of the transport barrier in n e as a function of the pedestal density. The more sophisticated UEDGE simulations of H-mode discharges corroborate the simple analytic model, which is consistent with the hypothesis that fueling processes play a role in H-mode transport barrier formation

  13. Exploration of the Super H-mode regime on DIII-D and potential advantages for burning plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, W. M., E-mail: solomon@fusion.gat.com; Bortolon, A.; Grierson, B. A.; Nazikian, R.; Poli, F. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Snyder, P. B.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Leonard, A. W.; Meneghini, O.; Osborne, T. H.; Petty, C. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Loarte, A. [ITER Organization, Route de Vinon-sur-Verdon - CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2016-05-15

    A new high pedestal regime (“Super H-mode”) has been predicted and accessed on DIII-D. Super H-mode was first achieved on DIII-D using a quiescent H-mode edge, enabling a smooth trajectory through pedestal parameter space. By exploiting Super H-mode, it has been possible to access high pedestal pressures at high normalized densities. While elimination of Edge localized modes (ELMs) is beneficial for Super H-mode, it may not be a requirement, as recent experiments have maintained high pedestals with ELMs triggered by lithium granule injection. Simulations using TGLF for core transport and the EPED model for the pedestal find that ITER can benefit from the improved performance associated with Super H-mode, with increased values of fusion power and gain possible. Similar studies demonstrate that the Super H-mode pedestal can be advantageous for a steady-state power plant, by providing a path to increasing the bootstrap current while simultaneously reducing the demands on the core physics performance.

  14. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  15. Predictive modelling of edge transport phenomena in ELMy H-mode tokamak fusion plasmas

    International Nuclear Information System (INIS)

    Loennroth, J.-S.

    2009-01-01

    This thesis discusses a range of work dealing with edge plasma transport in magnetically confined fusion plasmas by means of predictive transport modelling, a technique in which qualitative predictions and explanations are sought by running transport codes equipped with models for plasma transport and other relevant phenomena. The focus is on high confinement mode (H-mode) tokamak plasmas, which feature improved performance thanks to the formation of an edge transport barrier. H-mode plasmas are generally characterized by the occurrence of edge localized modes (ELMs), periodic eruptions of particles and energy, which limit confinement and may turn out to be seriously damaging in future tokamaks. The thesis introduces schemes and models for qualitative study of the ELM phenomenon in predictive transport modelling. It aims to shed new light on the dynamics of ELMs using these models. It tries to explain various experimental observations related to the performance and ELM-behaviour of H-mode plasmas. Finally, it also tries to establish more generally the potential effects of ripple-induced thermal ion losses on H-mode plasma performance and ELMs. It is demonstrated that the proposed ELM modelling schemes can qualitatively reproduce the experimental dynamics of a number of ELM regimes. Using a theory-motivated ELM model based on a linear instability model, the dynamics of combined ballooning-peeling mode ELMs is studied. It is shown that the ELMs are most often triggered by a ballooning mode instability, which renders the plasma peeling mode unstable, causing the ELM to continue in a peeling mode phase. Understanding the dynamics of ELMs will be a key issue when it comes to controlling and mitigating the ELMs in future large tokamaks. By means of integrated modelling, it is shown that an experimentally observed increase in the ELM frequency and deterioration of plasma confinement triggered by external neutral gas puffing might be due to a transition from the second to

  16. Modification of H-Mode Pedestal Instabilities in the DIII-D Tokamak

    International Nuclear Information System (INIS)

    J.R. Ferron; M.S. Chu; G.L. Jackson; L.L. Lao; R.L. Miller; T.H. Osborne; P.B. Snyder; E.J. Strait; T.S. Taylor; A.D. Turnbull; A.M. Garofalo; M.A. Makowski; B.W. Rice; M.S. Chance; L.R. Baylor; M. Murakami; M.R. Wade

    1999-01-01

    Through comparison of experiment and ideal magnetohydrodynamic (MHD) theory, modes driven in the edge region of tokamak H-mode discharges [Type I edge-localized modes (ELMs)] are shown to result from low toroidal mode number (n) instabilities driven by pressure gradient and current density. The mode amplitude and frequency are functions of the discharge shape. Reductions in mode amplitude are observed in discharge shapes with either high squareness or low triangularity where the low-n stability threshold in the edge pressure gradient is predicted to be reduced and the most unstable mode is expected to have higher values of n. The importance of access to the ballooning mode second stability regime is demonstrated through the changes in the ELM character that occur when second regime access is not available. An edge stability model is presented that predicts that there is a threshold value of n for second regime access and that the most unstable mode has n near this threshold

  17. Characteristics of edge pedestals in LHW and NBI heated H-mode plasmas on EAST

    Science.gov (United States)

    Zang, Q.; Wang, T.; Liang, Y.; Sun, Y.; Chen, H.; Xiao, S.; Han, X.; Hu, A.; Hsieh, C.; Zhou, H.; Zhao, J.; Zhang, T.; Gong, X.; Hu, L.; Liu, F.; Hu, C.; Gao, X.; Wan, B.; the EAST Team

    2016-10-01

    By using the recently developed Thomson scattering diagnostic, the pedestal structure of the H-mode with neutral beam injection (NBI) or/and lower hybrid wave (LHW) heating on EAST (Experimental Advanced Superconducting Tokamak) is analyzed in detail. We find that a higher ratio of the power of the NBI to the total power of the NBI and the lower hybrid wave (LHW) will produce a large and regular different edge-localized mode (ELM), and a lower ratio will produce a small and irregular ELM. The experiments show that the mean pedestal width has good correlation with β \\text{p,\\text{ped}}0.5 , The pedestal width appears to be wider than that on other similar machines, which could be due to lithium coating. However, it is difficult to draw any conclusion of correlation between ρ * and the pedestal width for limited ρ * variation and scattered distribution. It is also found that T e/\

  18. Tokamak fluidlike equations, with applications to turbulence and transport in H mode discharges

    International Nuclear Information System (INIS)

    Kim, Y.B.; Biglari, H.; Carreras, B.A.; Diamond, P.H.; Groebner, R.J.; Kwon, O.J.; Spong, D.A.; Callen, J.D.; Chang, Z.; Hollenberg, J.B.; Sundaram, A.K.; Terry, P.W.; Wang, J.F.

    1990-01-01

    Significant progress has been made in developing tokamak fluidlike equations which are valid in all collisionality regimes in toroidal devices, and their applications to turbulence and transport in tokamaks. The areas highlighted in this paper include: the rigorous derivation of tokamak fluidlike equations via a generalized Chapman-Enskog procedure in various collisionality regimes and on various time scales; their application to collisionless and collisional drift wave models in a sheared slab geometry; applications to neoclassical drift wave turbulence; i.e. neoclassical ion-temperature-gradient-driven turbulence and neoclassical electron-drift-wave turbulence; applications to neoclassical bootstrap-current-driven turbulence; numerical simulation of nonlinear bootstrap-current-driven turbulence and tearing mode turbulence; transport in Hot-Ion H mode discharges. 20 refs., 3 figs

  19. Reciprocating Probe Measurements of L-H Transition in LHCD H-mode on EAST

    DEFF Research Database (Denmark)

    Peng, Liu; Guosheng, Xu; Huiqian, Wang

    2013-01-01

    that the power loss P loss was comparable during the L-H transition, by comparing the adjacent L-mode and H-mode discharge. The Dα emission, Te and ne decreased rapidly in the time scale of about 1 ms, and the radial electric field Er turned positive in this process near the last closed flux surface. Multiple L......-H-L transitions were observed during a single shot when the applied LHW power was marginal to the threshold. The floating potential (Vf) had negative spikes corresponding with the Dα signal, and Er oscillation evolved into several intermittent negative spikes just before the L-H transition. In some shots......, dithering was observed just before the L-H transition....

  20. Physics of the L-mode to H-mode transition in tokamaks

    International Nuclear Information System (INIS)

    Burrell, K.H.; Carlstrom, T.N.; Gohil, P.; Groebner, R.J.; Kim, J.; Osborne, T.H.; St. John, H.; Stambaugh, R.D.; Doyle, E.J.; Moyer, R.A.; Rettig, C.L.; Peebles, W.A.; Rhodes, T.L.; Finkenthal, D.; Hillis, D.L.; Wade, M.R.; Matsumoto, H.; Watkins, J.G.

    1992-07-01

    Combined theoretical and experimental work has resulted in the creation of a paradigm which has allowed semi-quantitative understanding of the edge confinement improvement that occurs in the H-mode. Shear in the E x B flow of the fluctuations in the plasma edge can lead to decorrelation of the fluctuations, decreased radial correlation lengths and reduced turbulent transport. Changes in the radial electric field, the density fluctuations and the edge transport consistent with shear stabilization of turbulence have been seen in several tokamaks. The purpose of this paper is to discuss the most recent data in the light of the basic paradigm of electric field shear stabilization and to critically compare the experimental results with various theories

  1. ELM suppression in low edge collisionality H-mode discharges using n = 3 magnetic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Evans, T E [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Doyle, E J [University of California, Los Angeles, California (United States); Fenstermacher, M E [Lawrence Livermore National Laboratory, Livermore, California (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Moyer, R A [University of California, San Diego, California (United States); Osborne, T H; Schaffer, M J; Snyder, P B [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Thomas, P R [CEA Cadarache EURATOM Association, Cadarache (France); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Boedo, J A [University of California, San Diego, California (United States); Garofalo, A M [Columbia University, New York, New York (United States); Gohil, P; Jackson, G L; La Haye, R J [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Lasnier, C J [Lawrence Livermore National Laboratory, Livermore, California (United States); Reimerdes, H [Columbia University, New York, New York (United States); Rhodes, T L [University of California, Los Angeles, California (United States); Scoville, J T [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-9784 (United States); Wang, G [University of California, Los Angeles, California (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, New Mexico (United States); Zeng, L [University of California, Los Angeles, California (United States)

    2005-12-15

    Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces pedestal current density and maximum edge pressure gradient below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport.

  2. Dependence of H-mode power threshold on global and local edge parameters

    International Nuclear Information System (INIS)

    Groebner, R.J.; Carlstrom, T.N.; Burrell, K.H.

    1995-12-01

    Measurements of local electron density n e , electron temperature T e , and ion temperature T i have been made at the very edge of the plasma just prior to the transition into H-mode for four different single parameter scans in the DIII-D tokamak. The means and standard derivations of n e , T e , and T i under these conditions for a value of the normalized toroidal flux of 0.98 are respectively, 1.5 ± 0.7 x 10 19 m -3 , 0.051 ± 0.016 keV, and 0.14 ± 0.03 keV. The threshold condition for the transition is more sensitive to temperature than to density. The data indicate that the dependence is not as simple as a requirement for a fixed value of the ion collisionality

  3. ELM suppression in low edge collisionality H-mode discharges using n = 3 magnetic perturbations

    International Nuclear Information System (INIS)

    Burrell, K H; Evans, T E; Doyle, E J; Fenstermacher, M E; Groebner, R J; Leonard, A W; Moyer, R A; Osborne, T H; Schaffer, M J; Snyder, P B; Thomas, P R; West, W P; Boedo, J A; Garofalo, A M; Gohil, P; Jackson, G L; La Haye, R J; Lasnier, C J; Reimerdes, H; Rhodes, T L; Scoville, J T; Solomon, W M; Thomas, D M; Wang, G; Watkins, J G; Zeng, L

    2005-01-01

    Using resonant magnetic perturbations with toroidal mode number n = 3, we have produced H-mode discharges without edge localized modes (ELMs) which run with constant density and radiated power for periods up to about 2550 ms (17 energy confinement times). These ELM suppression results are achieved at pedestal collisionalities close to those desired for next step burning plasma experiments such as ITER and provide a means of eliminating the rapid erosion of divertor components in such machines which could be caused by giant ELMs. The ELM suppression is due to an enhancement in the edge particle transport which reduces pedestal current density and maximum edge pressure gradient below the threshold for peeling-ballooning modes. These n = 3 magnetic perturbations provide a means of active control of edge plasma transport

  4. Nonlinear theory of trapped electron temperature gradient driven turbulence in flat density H-mode plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.

    1990-12-01

    Ion temperature gradient turbulence based transport models have difficulties reconciling the recent DIII-D H-mode results where the density profile is flat, but χ e > χ i in the core region. In this work, a nonlinear theory is developed for recently discovered ion temperature gradient trapped electron modes propagating in the electron diamagnetic direction. This instability is predicted to be linearly unstable for L Ti /R approx-lt κ θ ρ s approx-lt (L Ti /R) 1/4 . They are also found to be strongly dispersive even at these long wavelengths, thereby suggesting the importance of the wave-particle-wave interactions in the nonlinear saturation phase. The fluctuation spectrum and anomalous fluxes are calculated. In accordance with the trends observed in DIII-D, the predicted electron thermal diffusivity can be larger than the ion thermal diffusivity. 17 refs., 3 figs

  5. Development of ITER 15 MA ELMy H-mode Inductive Scenario

    International Nuclear Information System (INIS)

    C. E. Kessel, D. Campbell, Y. Gribov, G. Saibene, G. Ambrosino, T. Casper, M. Cavinato, H. Fujieda, R. Hawryluk, L. D. Horton, A. Kavin, R. Kharyrutdinov, F. Koechl, J. Leuer, A. Loarte, P. J. Lomas, T. Luce, V. Lukash, M. Mattei, I.Nunes, V. Parail, A. Polevoi, A. Portone, R. Sartori, A.C.C. Sips, P. R. Thomas, A. Welander and J. Wesley

    2008-01-01

    The poloidal field (PF) coil system on ITER, which provides both feedforward and feedback control of plasma position, shape, and current, is a critical element for achieving mission performance. Analysis of PF capabilities has focused on the 15 MA Q = 10 scenario with a 300-500 s flattop burn phase. The operating space available for the 15 MA ELMy H-mode plasma discharges in ITER and upgrades to the PF coils or associated systems to establish confidence that ITER mission objectives can be reached have been identified. Time dependent self-consistent free-boundary calculations were performed to examine the impact of plasma variability, discharge programming, and plasma disturbances. Based on these calculations a new reference scenario was developed based upon a large bore initial plasma, early divertor transition, low level heating in L-mode, and a late H-mode onset. Equilibrium analyses for this scenario indicate that the original PF coil limitations do not allow low li (<0.8) operation or lower flux states, and the flattop burn durations were predicted to be less than the desired 400 s. This finding motivates the expansion of the operating space, considering several upgrade options to the PF coils. Analysis was also carried out to examine the feedback current reserve required in the CS and PF coils during a series of disturbances and a feasibility assessment of the 17 MA scenario was undertaken. Results of the studies show that the new scenario and modified PF system will allow a wide range of 15 MA 300-500 s operation and more limited but finite 17 MA operation

  6. Technical note: Coupling infrared gas analysis and cavity ring down spectroscopy for autonomous, high-temporal-resolution measurements of DIC and δ13C-DIC

    Science.gov (United States)

    Call, Mitchell; Schulz, Kai G.; Carvalho, Matheus C.; Santos, Isaac R.; Maher, Damien T.

    2017-03-01

    A new approach to autonomously determine concentrations of dissolved inorganic carbon (DIC) and its carbon stable isotope ratio (δ13C-DIC) at high temporal resolution is presented. The simple method requires no customised design. Instead it uses two commercially available instruments currently used in aquatic carbon research. An inorganic carbon analyser utilising non-dispersive infrared detection (NDIR) is coupled to a Cavity Ring-down Spectrometer (CRDS) to determine DIC and δ13C-DIC based on the liberated CO2 from acidified aliquots of water. Using a small sample volume of 2 mL, the precision and accuracy of the new method was comparable to standard isotope ratio mass spectrometry (IRMS) methods. The system achieved a sampling resolution of 16 min, with a DIC precision of ±1.5 to 2 µmol kg-1 and δ13C-DIC precision of ±0.14 ‰ for concentrations spanning 1000 to 3600 µmol kg-1. Accuracy of 0.1 ± 0.06 ‰ for δ13C-DIC based on DIC concentrations ranging from 2000 to 2230 µmol kg-1 was achieved during a laboratory-based algal bloom experiment. The high precision data that can be autonomously obtained by the system should enable complex carbonate system questions to be explored in aquatic sciences using high-temporal-resolution observations.

  7. Dependence of helium transport on plasma current and ELM frequency in H-mode discharges in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Finkenthal, D.F.; West, W.P.; Burrell, K.H.; Seraydarian, R.P.

    1993-05-01

    The removal of helium (He) ash from the plasma core with high efficiency to prevent dilution of the D-T fuel mixture is of utmost importance for future fusion devices, such as the International Thermonuclear Experimental Reactor (ITER). A variety of measurements in L-mode conditions have shown that the intrinsic level of helium transport from the core to the edge may be sufficient to prevent sufficient dilution (i.e., τ He /τ E < 5). Preliminary measurements in biased-induced, limited H-mode discharges in TEXTOR suggest that the intrinsic helium transport properties may not be as favorable. If this trend is shown also in diverted H-mode plasmas, then scenarios based on ELMing H-modes would be less desirable. To further establish the database on helium transport in H-mode conditions, recent studies on the DIII-D tokamak have focused on determining helium transport properties in H-mode conditions and the dependence of these properties on plasma current and ELM frequency

  8. Non-markovian model of photon-assisted dephasing by electron-phonon interactions in a coupled quantum-dot-cavity system

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Nielsen, Torben Roland; Lodahl, Peter

    2010-01-01

    treatments. A pronounced consequence is the emergence of a phonon induced spectral asymmetry when detuning the cavity from the quantum-dot resonance. The asymmetry can only be explained when considering the polaritonic quasiparticle nature of the quantum-dot-cavity system. Furthermore, a temperature induced...

  9. Effect of ripple-induced transport on H-mode performance in tokamaks

    International Nuclear Information System (INIS)

    Parail, V.; Vries, P. de; Lonnroth, J.; Kiviniemi, T.; Johnson, T.; Loarte, A.; Saibene, G.; Hatae, T.; Kamada, Y.; Konovalov, S.; Oyama, N.; Shinohara, K.; Tobita, K.; Urano, H.

    2005-01-01

    A number of experiments have shown that ripple-induced transport influences performance of ELMy H-modes in the tokamak. A noticeable difference in confinement, ELM frequency and amplitude was found between JET (with ripple amplitude δ∼0.1%) and JT-60U (with δ∼1%) in otherwise identical discharges. It was previously shown in JET experiments with enhanced ripple that a gradual increase in the ripple amplitude first leads to a modest improvement in plasma confinement, which is followed by the degradation of edge pedestal and further transition to the L-mode regime if δ increases further. The DIII-D team recently reported a marginal increase in confinement in experiments with an edge transport enhanced by the externally driven resonant magnetic perturbation. Numerical predictive modelling of the dynamics of ELMy H-mode JET plasma relevant to a JET/JT-60U similarity experiment has been conducted taking into account ripple-induced ion transport, which was computed using the orbit following code ASCOT. This predictive modelling reveals that, depending on plasma parameters, ripple amplitude and localisation (the latter depending on the toroidal coil design), this additional transport can either improve global plasma confinement or reduce it. These controlled ripple losses might be used as an effective tool for ELM mitigation and may provide an explanation for the difference between JET and JT-60U observed in the similarity experiments. A detailed comparison between ripple- induced transport and the alternative method of ELM mitigation by an externally driven edge magnetic perturbation is discussed. The fact that ripple losses mainly increase ion transport, while a stochastic magnetic layer increases electron transport indicates that it might be beneficial to use a combination of both methods in future experiments. This work was funded partly by the United Kingdom Engineering and Physical Sciences Research Council and by the European Communities under the contract of

  10. Predictive modelling of the impact of argon injection on H-mode plasmas in JET with the RITM code

    International Nuclear Information System (INIS)

    Unterberg, B; Kalupin, D; Tokar', M Z; Corrigan, G; Dumortier, P; Huber, A; Jachmich, S; Kempenaars, M; Kreter, A; Messiaen, A M; Monier-Garbet, P; Ongena, J; Puiatti, M E; Valisa, M; Hellermann, M von

    2004-01-01

    Self-consistent modelling of energy and particle transport of the plasma background and impurities has been performed with the code RITM for argon seeded high density H-mode plasmas in JET. The code can reproduce both the profiles in the plasma core and the structure of the edge pedestal. The impact of argon on core transport is found to be small; in particular, no significant change in confinement is observed in both experimental and modelling results. The same transport model, which has been used to reproduce density peaking in the radiative improved mode in TEXTOR, reveals a flat density profile in Ar seeded JET H-mode plasmas in agreement with the experimental observations. This behaviour is attributed to the rather flat profile of the safety factor in the bulk of H-mode discharges

  11. H-mode-like discharge under the presence of 1/1 rational surface at ergodic layer in LHD

    International Nuclear Information System (INIS)

    Morita, Shigeru; Morisaki, Tomohiro; Tanaka, Kenji

    2004-01-01

    H-mode-like discharge was found in LHD with a full B t field of 2.5T at an outwardly shifted configuration of R ax = 4.00 m where the m/n = 1/1 rational surface is located at the ergodic layer. The H-mode-like discharge was triggered by changing the P NBI from 9MW to 5 MW in a density range of 4-8 x 10 13 cm -3 , followed by a clear density rise, ELM-like H α bursts, and a reduction of magnetic fluctuation. These H-mode-like features vanished with a small radial movement of the 1/1 surface. (author)

  12. Experimental study of the β-limit in ohmic H-mode in the TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Krikunov, S.V.; Levin, L.S.; Rozhdestvensky, V.V.; Tukachinsky, A.S.; Yaroshevich, S.P.

    1998-01-01

    Because of its high confinement properties, the H-mode provides good opportunities to achieve high beta values in a tokamak. In this paper the results of an experimental study of β T and β N limits in the H-mode, obtained in a circular cross section tokamak without auxiliary heating are presented. The experiments were performed in the TUMAN-3M tokamak. The device has the following parameters: R 0 =0.53m, a s =0.22m (limiter configuration), B T ≤1.2T, I p ≤175kA, n-bar e ≤6.2x10 19 m -3 . The stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with fast current ramp-down in ohmic H-mode. A maximum value of β T of 2.0% and β N of 2.0 were achieved. The β N limit achieved reveals itself as a 'soft' (non-disruptive) limit. The stored energy slowly decays after the current ramp-down. No correlation was found between beta restriction and MHD phenomena. Internal transport barrier (ITB) formation was observed in ohmic H-mode. An enhancement factor of 2.0 over ITER93H(ELM-free) was found in the ohmic H-mode with ITB. (author)

  13. The influence of gas fuelling location on H-mode access in the MAST spherical tokamak

    International Nuclear Information System (INIS)

    Field, A R; Carolan, P G; Conway, N J; Counsell, G F; Cunningham, G; Helander, P; Meyer, H; Taylor, D; Tournianski, M R; Walsh, M J

    2004-01-01

    The observation that high-field side (HFS) gas puff refuelling facilitates access to the improved confinement (H-mode) regime on the COMPASS-D and MAST tokamaks prompted a theoretical investigation of the role of the neutral gas dynamics in controlling the edge plasma rotation and radial E-field, E r . Within the framework of neo-classical theory, higher edge plasma flow, and hence E r , are predicted when fuelling from the HFS-rather than from the more usual low-field side (LFS)-provided neutral viscosity dominates the transport of toroidal angular momentum. Here, these predictions are compared with experiments on MAST, where the influence of the gas-puff location on the edge E r profile is measured spectroscopically. An increase in E r is indeed observed with HFS refuelling in the region where the edge transport barrier forms, provided the neutral density at the LFS is sufficiently low so as not to damp the toroidal flow

  14. Study of the conditions for spontaneous H-mode transitions in DIII-D

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Groebner, R.J.

    1996-01-01

    A series of scaling studies attempting to correlate the H(high)-mode power threshold (P TH ) with global parameters have been conducted. Data from these discharges is also being used to look for dependence of P TH on local edge parameters and to test theories of the transition. Boronization and better operational techniques have resulted in lower power thresholds and weaker density scaling. Neon impurity injection experiments show that radiation also plays a role in determining P TH . A low density threshold for the L(low)-H(high) transition has been linked with the locked mode low density limit, and can be reduced with the use of an error field correcting coil. Highly developed edge diagnostics, with spatial resolution as low as 5 mm, are used to evaluate how the power threshold depends on local edge conditions. Preliminary analysis of local edge conditions for parameter scans of n e , B T , and I p in single-null discharges, and the X-point imbalance in double-null discharges-show that, just before the transition to H-mode, the edge temperatures near the separatrix are approximately constant at 100 i e *i , varied from 2 to 17, demonstrating that a transition condition as simple as v *i = constant is inconsistent with the data. The local edge parameters of n e , T e , and T i do not always follow the same global scaling as P TH . Therefore, theories of the L-H transition need not be constrained by these scalings

  15. Fast wave current drive in H mode plasmas on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Petty, C.C.; Grassie, J.S. de; Baity, F.W.

    1999-01-01

    Current driven by fast Alfven waves is measured in H mode and VH mode plasmas on the DIII-D tokamak for the first time. Analysis of the poloidal flux evolution shows that the fast wave current drive profile is centrally peaked but sometimes broader than theoretically expected. Although the measured current drive efficiency is in agreement with theory for plasmas with infrequent ELMs, the current drive efficiency is an order of magnitude too low for plasmas with rapid ELMs. Power modulation experiments show that the reduction in current drive with increasing ELM frequency is due to a reduction in the fraction of centrally absorbed fast wave power. The absorption and current drive are weakest when the electron density outside the plasma separatrix is raised above the fast wave cut-off density by the ELMs, possibly allowing an edge loss mechanism to dissipate the fast wave power since the cut-off density is a barrier for fast waves leaving the plasma. (author)

  16. H-mode pedestal characteristics in ITER shape discharges on DIII-D

    International Nuclear Information System (INIS)

    Osborne, T.H.; Burrell, K.H.; Groebner, R.J.

    1998-09-01

    Characteristics of the H-mode pedestal are studied in Type 1 ELM discharges with ITER cross-sectional shape and aspect ratio. The scaling of the width of the edge step gradient region, δ, which is most consistent with the data is with the normalized edge pressure, (β POL PED ) 0.4 . Fits of δ to a function of temperature, such as ρ POL , are ruled out in divertor pumping experiments. The edge pressure gradient is found to scale as would be expected from infinite n ballooning mode theory; however, the value of the pressure gradient exceeds the calculated first stable limit by more than a factor of 2 in some discharges. This high edge pressure gradient is consistent with access to the second stable regime for ideal ballooning for surfaces near the edge. In lower q discharges, including discharges at the ITER value of q, edge second stability requires significant edge current density. Transport simulations give edge bootstrap current of sufficient magnitude to open second stable access in these discharges. Ideal kink analysis using current density profiles including edge bootstrap current indicate that before the ELM these discharges may be unstable to low n, edge localized modes

  17. Review of DIII-D H-Mode Density Limit Studies

    International Nuclear Information System (INIS)

    Maingi, R.; Mahdavi, M.A.

    2005-01-01

    Density limit studies over the past 10 yr on DIII-D have successfully identified several processes that limit plasma density in various operating modes. The recent focus of these studies has been on maintenance of the high-density operational window with good H-mode level energy confinement. We find that detachment and onset of multifaceted axisymmetric radiation from the edge (MARFE), fueling efficiency, particle confinement, and magnetohydrodynamic activity can impose density limits in certain regimes. By studying these processes, we have devised techniques with either pellets or gas fueling and divertor pumping to achieve line average density above Greenwald scaling, relying on increasing the ratio of pedestal to separatrix density, as well as density profile peaking. The scaling of several of these processes to next-step devices (e.g., the International Thermonuclear Experimental Reactor) has indicated that sufficiently high pedestal density can be achieved with conventional fueling techniques while ensuring divertor partial detachment needed for heat flux reduction. One density limit process requiring further study is neoclassical tearing mode (NTM) onset, and techniques for avoidance/mitigation of NTMs need additional development in present-day devices operated at high density

  18. A model for a scrape-off-layer low-high (L-H) mode transition

    International Nuclear Information System (INIS)

    Cohen, R.H.; Xu, X.

    1995-01-01

    Increasing the radial mode number has a stabilizing effect on the conducting-wall and curvature-driven interchange modes in a tokamak scrape-off layer (SOL), arising from the increased polarization response. Such an effect is naturally imposed as the SOL width is decreased, and for a narrow-enough SOL, the stabilizing effect is stronger than the increase in the instability drives. By combining a mixing-length estimate for the thermal diffusivity with energy conservation and heat conduction equations and the condition of continuity of the heat flux at the separatrix, it is found that the resultant turbulence-transport system admits two solutions, one stable and one unstable, at different SOL widths; the inclusion of additional physics can add a second stable root at lower width. These roots are plausibly identified with SOL behavior in low (L) and high (H) modes. Particularly when a model is introduced for finite-β, finite-k parallel effects on the modes, a power threshold for transition to the narrower root is obtained, suggesting a possible L-H transition mechanism. The non-monotonic dependence of the turbulent heat flux vs SOL width and the possibility of multiple solutions for the equilibrium SOL width are verified with nonlinear simulations. copyright 1995 American Institute of Physics

  19. X-Divertor Geometries for Deeper Detachment Without Degrading the DIII-D H-Mode

    Science.gov (United States)

    Covele, Brent; Kotschenreuther, M. T.; Valanju, P. M.; Mahajan, S. M.; Leonard, A. W.; Hyatt, A. W.; McLean, A. G.; Thomas, D. M.; Guo, H. Y.; Watkins, J. G.; Makowski, M. A.; Hill, D. N.

    2015-11-01

    Recent DIII-D experiments comparing the standard divertor (SD) and X-Divertor (XD) geometries show heat and particle flux reduction at the divertor target plate. The XD features large poloidal flux expansion, increased connection length, and poloidal field line flaring, quantified by the Divertor Index. Both SD and XD were pushed deep into detachment with increased gas puffing, until core energy confinement and pedestal pressure were substantially reduced. As expected, outboard target heat fluxes are significantly reduced in the XD compared to the SD under similar upstream plasma conditions, even at low Greenwald fraction. The high-triangularity (floor) XD cases show larger reduction in temperature, heat, and particle flux relative to the SD in all cases, while low-triangularity (shelf) XD cases show more modest reductions over the SD. Consequently, heat flux reduction and divertor detachment may be achieved in the XD with less gas puffing and higher pedestal pressures. Further causative analysis, as well as detailed modeling with SOLPS, is underway. These initial experiments suggest the XD as a promising candidate to achieve divertor heat flux control compatible with robust H-mode operation. Work supported by US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-04ER54754, and DE-FG02-04ER54742.

  20. Edge operational space for high density/high confinement ELMY H-modes in JET

    International Nuclear Information System (INIS)

    Sartori, R.; Saibene, G.; Loarte, A.

    2002-01-01

    This paper discusses how the proximity to the L-H threshold affects the confinement of ELMy H-modes at high density. The largest reduction in confinement at high density is observed at the transition from the Type I to the Type III ELMy regime. At medium plasma triangularity, δ≅0.3 (where δ is the average triangularity at the separatrix), JET experiments show that by increasing the margin above the L-H threshold power and maintaining the edge temperature above the critical temperature for the transition to Type III ELMs, it is possible to avoid the degradation of the pedestal pressure with density, normally observed at lower power. As a result, the range of achievable densities (both in the core and in the pedestal) is increased. At high power above the L-H threshold power the core density was equal to the Greenwald limit with H97≅0.9. There is evidence that a mixed regime of Type I and Type II ELMs has been obtained at this intermediate triangularity, possibly as a result of this increase in density. At higher triangularity, δ≅0.5, the power required to achieve similar results is lower. (author)

  1. Plasma interaction with tungsten samples in the COMPASS tokamak in ohmic ELMy H-modes

    International Nuclear Information System (INIS)

    Dimitrova, M; Weinzettl, V; Matejicek, J; Dejarnac, R; Stöckel, J; Havlicek, J; Panek, R; Popov, Tsv; Marinov, S; Costea, S

    2016-01-01

    This paper reports experimental results on plasma interaction with tungsten samples with or without pre-grown He fuzz. Under the experimental conditions, arcing was observed on the fuzzy tungsten samples, resulting in localized melting of the fuzz structure that did not extend into the bulk. The parallel power flux densities were obtained from the data measured by Langmuir probes embedded in the divertor tiles on the COMPASS tokamak. Measurements of the current-voltage probe characteristics were performed during ohmic ELMy H-modes reached in deuterium plasmas at a toroidal magnetic field B T = 1.15 T, plasma current I p = 300 kA and line-averaged electron density n e = 5×10 19 m -3 . The data obtained between the ELMs were processed by the recently published first-derivative probe technique for precise determination of the plasma potential and the electron energy distribution function (EEDF). The spatial profile of the EEDF shows that at the high-field side it is Maxwellian with a temperature of 5 -- 10 eV. The electron temperatures and the ion-saturation current density obtained were used to evaluate the radial distribution of the parallel power flux density as being in the order of 0.05 -- 7 MW/m 2 . (paper)

  2. Comparison of H-mode pedestals in different confinement regimes in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Groebner, R J [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Luce, T C [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Fenstermacher, M E [Lawrence Livermore National Laboratory, Livermore, California (United States); Jackson, G L [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Osborne, T H [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States); Wade, M R [General Atomics, PO Box 85608, San Diego, California, 92186-5608 (United States)

    2006-05-15

    A survey of global performance parameters and their correlation with pedestal parameters is performed for standard H-mode, QH-mode and the enhanced confinement regimes of VH-mode, hybrid and advanced tokamak in the DIII-D tokamak. This study shows that there is a trend for global confinement quality or global beta to increase as the pedestal electron pressure or beta increases. However, there are also improvements in core confinement and beta, observed at fixed pedestal pressure or beta, which indicate that factors other than pedestal parameters also contribute to the best core performance. Several other pedestal structure parameters are found to be similar among these regimes. The scale lengths for electron pressure in the pedestal are in the range 0.8-1.6 cm at the outer midplane, most {eta}{sub e} values are in the range 1-3 in the middle of the T{sub e} pedestal and the T{sub e} and n{sub e} pedestals tend to penetrate the same distance into the plasma.

  3. H-mode threshold power scaling and the ∇B drift effect

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Burrell, K.H.; Groebner, R.J.; Staebler, G.M.

    1997-06-01

    One of the largest influences on the H-mode power threshold (P TH ) is the direction of the ion ∇B drift relative to the X-point location, where factors of 2--3 increase in P TH are observed for the ion ∇B drift away from the X-point. It is proposed that the threshold power scaling observed in single-null configurations with the ion ∇B drift toward the X-point location (P TH ∼ nB, where n is the plasma density, and B is the toroidal field) is due to the scaling of the magnitude of the ∇B drift effect. Hinton and later Hinton and Stebler have modeled this effect as neoclassical cross field fluxes of both heat and particles driven by poloidal temperature gradients on the open field lines in the scrape-off layer (SOL). The ∇B drift effect influences the power threshold by affecting the edge conditions needed for the L-H transition. It is not essential for the L-H transition itself since transitions are observed with either direction of B. Predictions of this model include saturation of the B scaling of P TH at high field, 1/B scaling of P TH with reverse B, and no B scaling of P TH in balanced double-null configurations. This last prediction is consistent with the observed scaling of p TH in double-null plasma sin DIII-D

  4. Global gyrokinetic simulations of the H-mode tokamak edge pedestal

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Weigang; Parker, Scott E.; Chen, Yang [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Groebner, Richard J. [General Atomics, Post Office Box 85068, San Diego, California 92186 (United States); Yan, Zheng [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Pankin, Alexei Y.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80305 (United States)

    2013-05-15

    Global gyrokinetic simulations of DIII-D H-mode edge pedestal show two types of instabilities may exist approaching the onset of edge localized modes: an intermediate-n, high frequency mode which we identify as the “kinetic peeling ballooning mode (KPBM),” and a high-n, low frequency mode. Our previous study [W. Wan et al., Phys. Rev. Lett. 109, 185004 (2012)] has shown that when the safety factor profile is flattened around the steep pressure gradient region, the high-n mode is clearly kinetic ballooning mode and becomes the dominant instability. Otherwise, the KPBM dominates. Here, the properties of the two instabilities are studied by varying the density and temperature profiles. It is found that the KPBM is destabilized by density and ion temperature gradient, and the high-n mode is mostly destabilized by electron temperature gradient. Nonlinear simulations with the KPBM saturate at high levels. The equilibrium radial electric field (E{sub r}) reduces the transport. The effect of the parallel equilibrium current is found to be weak.

  5. Structure, stability and ELM dynamics of the H-mode pedestal in DIII-D

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Leonard, A.W.; Osborne, T.H.

    2005-01-01

    Experiments are described that have increased understanding of the transport and stability physics that set the H-mode edge pedestal width and height, determine the onset of Type-I edge localized modes (ELMs), and produce the nonlinear dynamics of the ELM perturbation in the pedestal and scrape-off layer (SOL). Predictive models now exist for the n e pedestal profile and the p e height at the onset of Type-I ELMs, and progress has been made toward predictive models of the T e pedestal width and nonlinear ELM evolution. Similarity experiments between DIII-D and JET suggested that neutral penetration physics dominates in the relationship between the width and height of the n e pedestal while plasma physics dominates in setting the T e pedestal width. Measured pedestal conditions including edge current at ELM onset agree with intermediate-n peeling-ballooning (P-B) stability predictions. Midplane ELM dynamics data show the predicted (P-B) structure at ELM onset, large rapid variations of the SOL parameters, and fast radial propagation in later phases, similar to features in nonlinear ELM simulations. (author)

  6. Operational conditions and characteristics of ELM-events during H-mode plasmas in the stellarator W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Grigull, P.; Wobig, H.; Kisslinger, J.; McCormick, K.; Anton, M.; Baldzuhn, J.; Fiedler, S.; Fuchs, Ch.; Geiger, J.; Giannone, L.; Hartfuss, H.-J.; Holzhauer, E.; Hirsch, M.; Jaenicke, R.; Kick, M.; Maassberg, H.; Wagner, F.; Weller, A.

    2000-01-01

    H-mode operation in the low-shear stellarator W7-AS is achieved for specific plasma edge topologies characterized by three 'operational windows' of the edge rotational transform. An explanation for this strong influence of the magnetic configuration could be the increase of viscous damping if rational surfaces and thus island structures occur within the relevant plasma edge layer, thereby impeding the development of an edge transport barrier. Prior to the final transition to a quiescent state, the plasma edge passes a rich phenomenology of dynamic behaviour such as dithering and ELMs. Plasma edge parameters indicate that a quiescent H-mode occurs if a certain edge pressure is achieved. (author)

  7. Role of zonal flow predator-prey oscillations in triggering the transition to H-mode confinement.

    Science.gov (United States)

    Schmitz, L; Zeng, L; Rhodes, T L; Hillesheim, J C; Doyle, E J; Groebner, R J; Peebles, W A; Burrell, K H; Wang, G

    2012-04-13

    Direct evidence of zonal flow (ZF) predator-prey oscillations and the synergistic roles of ZF- and equilibrium E×B flow shear in triggering the low- to high-confinement (L- to H-mode) transition in the DIII-D tokamak is presented. Periodic turbulence suppression is first observed in a narrow layer at and just inside the separatrix when the shearing rate transiently exceeds the turbulence decorrelation rate. The final transition to H mode with sustained turbulence and transport reduction is controlled by equilibrium E×B shear due to the increasing ion pressure gradient.

  8. PREFACE: 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers

    Science.gov (United States)

    Takizuka, Tomonori

    2008-07-01

    This volume of Journal of Physics: Conference Series contains papers based on invited talks and contributed posters presented at the 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers. This meeting was held at the Tsukuba International Congress Center in Tsukuba, Japan, on 26-28 September 2007, and was organized jointly by the Japan Atomic Energy Agency and the University of Tsukuba. The previous ten meetings in this series were held in San Diego (USA) 1987, Gut Ising (Germany) 1989, Abingdon (UK) 1991, Naka (Japan) 1993, Princeton (USA) 1995, Kloster Seeon (Germany) 1997, Oxford (UK) 1999, Toki (Japan) 2001, San Diego (USA) 2003, and St Petersburg (Russia) 2005. The purpose of the eleventh meeting was to present and discuss new results on H-mode (edge transport barrier, ETB) and internal transport barrier, ITB, experiments, theory and modeling in magnetic fusion research. It was expected that contributions give new and improved insights into the physics mechanisms behind high confinement modes of H-mode and ITBs. Ultimately, this research should lead to improved projections for ITER. As has been the tradition at the recent meetings of this series, the program was subdivided into six topics. The topics selected for the eleventh meeting were: H-mode transition and the pedestal-width Dynamics in ETB: ELM threshold, non-linear evolution and suppression, etc Transport relations of various quantities including turbulence in plasmas with ITB: rotation physics is especially highlighted Transport barriers in non-axisymmetric magnetic fields Theory and simulation on transport barriers Projections of transport barrier physics to ITER For each topic there was an invited talk presenting an overview of the topic, based on contributions to the meeting and on recently published external results. The six invited talks were: A Leonard (GA, USA): Progress in characterization of the H-mode pedestal and L-H transition N Oyama (JAEA, Japan): Progress and issues in

  9. Plasma dynamics with second and third-harmonic ECRH and access to quasi-stationary ELM-free H-mode on TCV

    International Nuclear Information System (INIS)

    Porte, L.; Coda, S.; Alberti, S.; Arnoux, G.; Blanchard, P.; Bortolon, A.; Fasoli, A.; Goodman, T.P.; Klimanov, Y.; Martin, Y.; Maslov, M.; Scarabosio, A.; Weisen, H.

    2007-01-01

    Intense electron cyclotron resonance heating (ECRH) and electron cyclotron current drive (ECCD) are employed on the Tokamak a Configuration Variable (TCV) both in second- and third-harmonic X-mode (X2 and X3). The plasma behaviour under such conditions is driven largely by the electron dynamics, motivating extensive studies of the heating and relaxation phenomena governing both the thermal and suprathermal electron populations. In particular, the dynamics of suprathermal electrons are intimately tied to the physics of X2 ECCD. ECRH is also a useful tool for manipulating the electron distribution function in both physical and velocity space. Fundamental studies of the energetic electron dynamics have been performed using periodic, low-duty-cycle bursts of ECRH, with negligible average power injection, and with electron cyclotron emission (ECE). The characteristic times of the dynamical evolution are clearly revealed. Suprathermal electrons have also been shown to affect the absorption of X3 radiation. Thermal electrons play a crucial role in high density plasmas where indirect ion heating can be achieved through ion-electron collisions. In recent experiments ∼ 1.35 MW of vertically launched X3 ECRH was coupled to a diverted ELMy H-mode plasma. In cases where ≥ 1.1 MW of ECRH power was coupled, the discharge was able to transition into a quasi-stationary ELM-free H-mode regime. These H-modes operated at β N ∼ 2, n-bar e /n G approx. 0.25 and had high energy confinement, H IPB98(y,2) up to ∼ 1.6. Despite being purely electron heated and having no net particle source these discharges maintained a density peaking factor (n e,o /(n e ) ∼ 1.6). They also exhibited spontaneous toroidal momentum production in the co-current direction. The momentum production is due to a transport process as there is no external momentum input. This process supports little or no radial gradient of the toroidal velocity

  10. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  11. Mechanical design and fabrication of power feed cavity test setup

    International Nuclear Information System (INIS)

    Ghodke, S.R.; Dhavle, A.S.; Sharma, Vijay; Sarkar, Shreya; Kumar, Mahendra; Nayak, Susanta; Barnwal, Rajesh; Jayaprakash, D.; Mondal, J.; Nimje, V.T.; Mittal, K.C.; Gantayet, L.M.

    2013-01-01

    Power feed cavity set up consists of nine number of accelerating cavity and eight numbers of coupling cavity for testing of power feed cavity with coupling flange for 2856 MHz S band standing wave coupled cavity linac. When we are assembling the cavity and applying the pressure, its resonance frequency changes with applied pressure/load. After some critical pressure/load frequency change becomes negligible or zero. This set up will be used to find out assembly performance of power feed cavity and its coupler. Top four cavity or eight half cells as well as bottom four cavity or eight half cells will be brazed separately. Power feed cavity will be sandwiched between this two brazed cavity assemblies. This paper discuss about linear motion bush, linear motion rod, load cell, hydraulic actuator, power pack, stepper motor PLC control, jig boring, alignment, tolerances and assembly procedure for this test setup. (author)

  12. Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: The role of non-Markovian phonon-induced decoherence

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka

    2013-01-01

    We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity quantum electrodynamics systems. Employing an exact diagonalization approach we find large differences compared to standard methods...

  13. radiofrequency cavity

    CERN Multimedia

    1988-01-01

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  14. Ballooning mode stability for self-consistent pressure and current profiles at the H-mode edge

    International Nuclear Information System (INIS)

    Miller, R.L.; Lin-Liu, Y.R.; Osborne, T.H.; Taylor, T.S.

    1997-11-01

    The edge pressure gradient (H-mode pedestal) for computed equilibria in which the current density profile is consistent with the bootstrap current may not be limited by the first regime ballooning limit. The transition to second stability is easier for: higher elongation, intermediate triangularity, larger ratio, pedestal at larger radius, narrower pedestal width, higher q 95 , and lower collisionality

  15. H-mode transition physics close to double null on MAST and its applications to other tokamaks

    International Nuclear Information System (INIS)

    Meyer, H.; Carolan, P.G.; Cunningham, G.; Kirk, A.; Lloyd, B.; Saarelma, S.; Wilson, H.R.; Conway, G.D.; Horton, L.D.; Ryter, F.; Schirmer, J.; Suttrop, W.; Maingi, R.

    2005-01-01

    By accessing extreme parameter regimes combined with well diagnosed edge MAST data contribute towards the understanding of H-mode physics. The first inter-machine comparisons with respect to the influence of the magnetic topology on the power threshold with ASDEX Upgrade and NSTX reveal a reduction of the power threshold in true double null (C-DN) configuration opening new operation regimes in both devices. In L-mode, the negative radial electric field close to the separatrix was found to be more negative in C-DN than in single null (SN), whilst most of the other edge parameters are similar. Pedestal temperatures in MAST are lower than in ASDEX Upgrade in MAST-equivalent discharges, whereas the pedestal densities can be similar, although in long inter ELM periods the MAST density pedestal is higher than on ASDEX Upgrade. In order to test four leading H-mode theories MAST data are compared statistically to their H-mode access criteria. The usual DN operating regime with co current NBI in MAST has been extended to include single null (SN) configurations, to provide more direct comparisons with conventional tokamaks. The plasma edge in SN on MAST is more stable to ELMs and the typical type-III ELMs, often observed in C-DN, are absent, despite input powers close to the H-mode threshold power. In this respect, the stability of measured plasma edge profiles in SN and DN against ideal peeling-ballooning modes will be discussed. (author)

  16. Metal impurity transport control in JET H-mode plasmas with central ion cyclotron radiofrequency power injection

    DEFF Research Database (Denmark)

    Valisa, M.; Carraro, L.; Predebon, I.

    2011-01-01

    The scan of ion cyclotron resonant heating (ICRH) power has been used to systematically study the pump out effect of central electron heating on impurities such as Ni and Mo in H-mode low collisionality discharges in JET. The transport parameters of Ni and Mo have been measured by introducing...

  17. H-mode pedestal characteristics, ELMs, and energy confinement in ITER shape discharges on DIII-D

    International Nuclear Information System (INIS)

    Osborne, T.H.; Groebner, R.J.; Lao, L.L.; Leonard, A.W.; Miller, R.L.; Thomas, D.M.; Waltz, R.E.; Maingi, R.; Porter, G.D.

    1997-12-01

    The H-mode confinement enhancement factor, H, is found to be strongly correlated with the height of the edge pressure pedestal in ITER shape discharges. In discharges with Type I ELMs the pedestal pressure is set by the maximum pressure gradient before the ELM and the width of the H-mode transport barrier. The pressure gradient before Type I ELMs is found to scale as would be expected for a stability limit set by ideal ballooning modes, but with values significantly in excess of that predicted by stability code calculations. The width of the H-mode transport barrier is found to scale equally well with pedestal P(POL)(2/3) or B(POL)(1/2). The improved H value in high B(POL) discharges may be due to a larger edge pressure gradient and wider H-mode transport barrier consistent with their higher edge ballooning mode limit. Deuterium puffing is found to reduce H consistent with the smaller pedestal pressure which results from the reduced barrier width and critical pressure gradient. Type I ELM energy loss is found to be proportional to the change in the pedestal energy

  18. H-mode pedestal and threshold studies over an expanded operating space on Alcator C-Moda)

    Science.gov (United States)

    Hubbard, A. E.; Hughes, J. W.; Bespamyatnov, I. O.; Biewer, T.; Cziegler, I.; LaBombard, B.; Lin, Y.; McDermott, R.; Rice, J. E.; Rowan, W. L.; Snipes, J. A.; Terry, J. L.; Wolfe, S. M.; Wukitch, S.

    2007-05-01

    This paper reports on studies of the edge transport barrier and transition threshold of the high confinement (H) mode of operation on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)], over a wide range of toroidal field (2.6-7.86T) and plasma current (0.4-1.7MA). The H-mode power threshold and edge temperature at the transition increase with field. Barrier widths, pressure limits, and confinement are nearly independent of field at constant current, but the operational space at high B shifts toward higher temperature and lower density and collisionality. Experiments with reversed field and current show that scrape-off-layer flows in the high-field side depend primarily on configuration. In configurations with the B ×∇B drift away from the active X-point, these flows lead to more countercurrent core rotation, which apparently contributes to higher H-mode thresholds. In the unfavorable case, edge temperature thresholds are higher, and slow evolution of profiles indicates a reduction in thermal transport prior to the transition in particle confinement. Pedestal temperatures in this case are also higher than in the favorable configuration. Both high-field and reversed-field results suggest that parameters at the L-H transition are influencing the evolution and parameters of the H-mode pedestal.

  19. Differences in the H-mode pedestal width of temperature and density

    International Nuclear Information System (INIS)

    Schneider, P A; Wolfrum, E; Günter, S; Kurzan, B; Lackner, K; Zohm, H; Groebner, R J; Osborne, T H; Ferron, J R; Snyder, P B; Beurskens, M N A; Dunne, M G

    2012-01-01

    A pedestal database was built using data from type-I ELMy H-modes of ASDEX Upgrade, DIII-D and JET. ELM synchronized pedestal data were analysed with the two-line method. The two-line method is a bilinear fit which shows better reproducibility of pedestal parameters than a modified hyperbolic tangent fit. This was tested with simulated and experimental data. The influence of the equilibrium reconstruction on pedestal parameters was investigated with sophisticated reconstructions from CLISTE and EFIT including edge kinetic profiles. No systematic deviation between the codes could be observed. The flux coordinate system is influenced by machine size, poloidal field and plasma shape. This will change the representation of the width in different coordinates, in particular, the two normalized coordinates Ψ N and r/a show a very different dependence on the plasma shape. The scalings derived for the pedestal width, Δ, of all machines suggest a different scaling for the electron temperature and the electron density. Both cases show similar dependence with machine size, poloidal magnetic field and pedestal electron temperature and density. The influence of ion temperature and toroidal magnetic field is different on each of Δ T e and Δ n e . In dimensionless form the density pedestal width in Ψ N scales with ρ 0.6 i* , the temperature pedestal width with β p,ped 0.5 . Both widths also show a strong correlation with the plasma shape. The shape dependence originates from the coordinate transformation and is not visible in real space. The presented scalings predict that in ITER the temperature pedestal will be appreciably wider than the density pedestal. (paper)

  20. Quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields

    International Nuclear Information System (INIS)

    Burrell, K.H.; Garofalo, A.M.; Osborne, T.H.; Snyder, P.B.; Solomon, W.M.; Park, J.-K.; Fenstermacher, M.E.; Orlov, D.M.

    2013-01-01

    Quiescent H-mode (QH-mode) sustained by magnetic torque from non-axisymmetric magnetic fields is a promising operating mode for future burning plasmas including ITER. Using magnetic torque from n = 3 fields to replace counter-I p torque from neutral beam injection, we have achieved long duration, counter-rotating QH-mode operation with neutral beam injection (NBI) torque ranging continuously from counter-I p up to co-I p values of about 1 N m. This co-I p torque is about 3 times the scaled torque that ITER will have. This range also includes operation at zero net NBI torque, applicable to rf wave heated plasmas. These n = 3 fields have been created using coils either inside or, most recently, outside the toroidal coils. Experiments utilized an ITER-relevant lower single-null plasma shape and were done with ITER-relevant values ν ped * ∼0.08, β T ped ∼ 1%$ and β N = 2. Discharges have confinement quality H 98y2 = 1.3, exceeding the value required for ITER. Initial work with low q 95 = 3.4 QH-mode plasmas transiently reached fusion gain values of G = β N H 89 /q 95 2 =0.4, which is the desired value for ITER; the limits on G have not yet been established. This paper also includes the most recent results on QH-mode plasmas run without n = 3 fields and with co-I p NBI; these shots exhibit co-I p plasma rotation and require NBI torque ⩾2 N m. The QH-mode work to date has made significant contact with theory. The importance of edge rotational shear is consistent with peeling–ballooning mode theory. We have seen qualitative and quantitative agreement with the predicted torque from neoclassical toroidal viscosity. (paper)

  1. First-wall heat-flux measurements during ELMing H-mode plasma

    International Nuclear Information System (INIS)

    Lasnier, C.J.; Allen, S.L.; Hill, D.N.; Leonard, A.W.; Petrie, T.W.

    1994-01-01

    In this report we present measurements of the diverter heat flux in DIII-D for ELMing H-mode and radiative diverter conditions. In previous work we have examined heat flux profiles in lower single-null diverted plasmas and measured the scaling of the peak heat flux with plasma current and beam power. One problem with those results was our lack of good power accounting. This situation has been improved to better than 80--90% accountability with the installation of new bolometer arrays, and the operation of the entire complement of 5 Infrared (IR) TV cameras using the DAPS (Digitizing Automated Processing System) video processing system for rapid inter-shot data analysis. We also have expanded the scope of our measurements to include a wider variety of plasma shapes (e.g., double-null diverters (DND), long and short single-null diverters (SND), and inside-limited plasmas), as well as more diverse discharge conditions. Double-null discharges are of particular interest because that shape has proven to yield the highest confinement (VH-mode) and beta of all DIII-D plasmas, so any future diverter modifications for DIII-D will have to support DND operation. In addition, the proposed TPX tokamak is being designed for double-null operation, and information on the magnitude and distribution of diverter heat flux is needed to support the engineering effort on that project. So far, we have measured the DND power sharing at the target plates and made preliminary tests of heat flux reduction by gas injection

  2. Gyrokinetic Stability Studies of the Microtearing Mode in the National Spherical Torus Experiment H-mode

    International Nuclear Information System (INIS)

    Baumgaertel J.A., Redi M.H., Budny R.V., Rewoldt G., Dorland W.

    2005-01-01

    Insight into plasma microturbulence and transport is being sought using linear simulations of drift waves on the National Spherical Torus Experiment (NSTX), following a study of drift wave modes on the Alcator C-Mod Tokamak. Microturbulence is likely generated by instabilities of drift waves, which cause transport of heat and particles. Understanding this transport is important because the containment of heat and particles is required for the achievement of practical nuclear fusion. Microtearing modes may cause high heat transport through high electron thermal conductivity. It is hoped that microtearing will be stable along with good electron transport in the proposed low collisionality International Thermonuclear Experimental Reactor (ITER). Stability of the microtearing mode is investigated for conditions at mid-radius in a high density NSTX high performance (H-mode) plasma, which is compared to the proposed ITER plasmas. The microtearing mode is driven by the electron temperature gradient, and believed to be mediated by ion collisions and magnetic shear. Calculations are based on input files produced by TRXPL following TRANSP (a time-dependent transport analysis code) analysis. The variability of unstable mode growth rates is examined as a function of ion and electron collisionalities using the parallel gyrokinetic computational code GS2. Results show the microtearing mode stability dependence for a range of plasma collisionalities. Computation verifies analytic predictions that higher collisionalities than in the NSTX experiment increase microtearing instability growth rates, but that the modes are stabilized at the highest values. There is a transition of the dominant mode in the collisionality scan to ion temperature gradient character at both high and low collisionalities. The calculations suggest that plasma electron thermal confinement may be greatly improved in the low-collisionality ITER

  3. Pellet injection into H-mode ITER plasma with the presence of internal transport barriers

    Science.gov (United States)

    Leekhaphan, P.; Onjun, T.

    2011-04-01

    The impacts of pellet injection into ITER type-1 ELMy H-mode plasma with the presence of internal transport barriers (ITBs) are investigated using self-consistent core-edge simulations of 1.5D BALDUR integrated predictive modeling code. In these simulations, the plasma core transport is predicted using a combination of a semi-empirical Mixed B/gB anomalous transport model, which can self-consistently predict the formation of ITBs, and the NCLASS neoclassical model. For simplicity, it is assumed that toroidal velocity for ω E× B calculation is proportional to local ion temperature. In addition, the boundary conditions are predicted using the pedestal temperature model based on magnetic and flow shear stabilization width scaling; while the density of each plasma species, including both hydrogenic and impurity species, at the boundary are assumed to be a large fraction of its line averaged density. For the pellet's behaviors in the hot plasma, the Neutral Gas Shielding (NGS) model by Milora-Foster is used. It was found that the injection of pellet could result in further improvement of fusion performance from that of the formation of ITB. However, the impact of pellet injection is quite complicated. It is also found that the pellets cannot penetrate into a deep core of the plasma. The injection of the pellet results in a formation of density peak in the region close to the plasma edge. The injection of pellet can result in an improved nuclear fusion performance depending on the properties of pellet (i.e., increase up to 5% with a speed of 1 km/s and radius of 2 mm). A sensitivity analysis is carried out to determine the impact of pellet parameters, which are: the pellet radius, the pellet velocity, and the frequency of injection. The increase in the pellet radius and frequency were found to greatly improve the performance and effectiveness of fuelling. However, changing the velocity is observed to exert small impact.

  4. Temporal evolution of H-mode pedestal in DIII-D

    International Nuclear Information System (INIS)

    Groebner, R.J.; Osborne, T.H.; Leonard, A.W.; Fenstermacher, M.E.

    2009-01-01

    The temporal evolution of pedestal parameters is examined in the initial edge localized mode (ELM)-free phase and inter-ELM phases of H-mode discharges in the DIII-D tokamak. These discharges are heated by deuterium neutral beam injection and achieve type-I ELMing conditions. Pedestal parameters exhibit qualitatively similar behaviour in both the ELM-free and inter-ELM phases. There is a trend for the widths and heights of pedestals for electron density, temperature and pressure to increase during these phases; the increase in width is most pronounced in the density and least pronounced in electron temperature. Near the separatrix, the ion temperature achieves higher values but a flatter profile as compared with the electron temperature. Higher heating powers lead to a faster evolution of the pedestal and to a shorter period until the onset of an ELM. For sufficiently long ELM-free or inter-ELM periods, some parameters, particularly gradients, approach a steady state. However, a simultaneous steady state in all parameters is not observed. The simultaneous increase in density width and pedestal density is opposite to the predictions of a simple model, which predicts that the density width is set by neutral penetration. Thus, additional physics must be added to the simple model to provide a more general description of pedestal behaviour. However, the barrier growth is qualitatively consistent with time-dependent theoretical models that predict a self-consistent temporal growth of the pedestal due to E x B shearing effects. In addition, an approximate linear correlation is observed between the density width and the square root of the pedestal ion temperature and also between the density width and the square root of the pedestal beta poloidal. These pedestal studies suggest that a complete model of the pedestal width in type-I ELMing discharges must be time dependent, include transport physics during inter-ELM periods and include the limits to pedestal evolution

  5. Tungsten Transport in the Core of JET H-mode Plasmas, Experiments and Modelling

    Science.gov (United States)

    Angioni, Clemente

    2014-10-01

    The physics of heavy impurity transport in tokamak plasmas plays an essential role towards the achievement of practical fusion energy. Reliable predictions of the behavior of these impurities require the development of realistic theoretical models and a complete understanding of present experiments, against which models can be validated. Recent experimental campaigns at JET with the ITER-like wall, with a W divertor, provide an extremely interesting and relevant opportunity to perform this combined experimental and theoretical research. Theoretical models of both neoclassical and turbulent transport must consistently include the impact of any poloidal asymmetry of the W density to enable quantitative predictions of the 2D W density distribution over the poloidal cross section. The agreement between theoretical predictions and experimentally reconstructed 2D W densities allows the identification of the main mechanisms which govern W transport in the core of JET H-mode plasmas. Neoclassical transport is largely enhanced by centrifugal effects and the neoclassical convection dominates, leading to central accumulation in the presence of central peaking of the density profiles and insufficiently peaked ion temperature profiles. The strength of the neoclassical temperature screening is affected by poloidal asymmetries. Only around mid-radius, turbulent diffusion offsets neoclassical transport. Consistently with observations in other devices, ion cyclotron resonance heating in the plasma center can flatten the electron density profile and peak the ion temperature profile and provide a means to reverse the neoclassical convection. MHD activity may hamper or speed up the accumulation process depending on mode number and plasma conditions. Finally, the relationship of JET results to a parallel modelling activity of the W behavior in the core of ASDEX Upgrade plasmas is presented. This project has received funding from the European Union's Horizon 2020 research and innovation

  6. Influence of gas puff location on the coupling of lower hybrid waves in JET ELMy H-mode plasmas

    Czech Academy of Sciences Publication Activity Database

    Ekedahl, A.; Petržílka, Václav; Baranov, Y.; Biewer, T.M.; Brix, M.; Goniche, M.; Jacquet, P.; Kirov, K.K.; Klepper, C.C.; Mailloux, J.; Mayoral, M.-L.; Nave, M.F.F.; Ongena, J.; Rachlew, E.

    2012-01-01

    Roč. 54, č. 7 (2012), 074004-074004 ISSN 0741-3335. [IAEA Fusion Energy Conference 2010/23./. Daejeon, 11.10.2010-16.10.2010] R&D Projects: GA ČR GA202/07/0044; GA ČR GAP205/10/2055; GA MŠk(CZ) LG11018 Institutional research plan: CEZ:AV0Z20430508 Keywords : LH wave * plasma * current drive * tokamak * LHCD Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.369, year: 2012 http://iopscience.iop.org/0741-3335/54/7/074004/pdf/0741-3335_54_7_074004.pdf

  7. Metasurface external cavity laser

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Luyao, E-mail: luyaoxu.ee@ucla.edu; Curwen, Christopher A.; Williams, Benjamin S. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Hon, Philip W. C.; Itoh, Tatsuo [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Chen, Qi-Sheng [Northrop Grumman Aerospace Systems, Redondo Beach, California 90278 (United States)

    2015-11-30

    A vertical-external-cavity surface-emitting-laser is demonstrated in the terahertz range, which is based upon an amplifying metasurface reflector composed of a sub-wavelength array of antenna-coupled quantum-cascade sub-cavities. Lasing is possible when the metasurface reflector is placed into a low-loss external cavity such that the external cavity—not the sub-cavities—determines the beam properties. A near-Gaussian beam of 4.3° × 5.1° divergence is observed and an output power level >5 mW is achieved. The polarized response of the metasurface allows the use of a wire-grid polarizer as an output coupler that is continuously tunable.

  8. Power requirements for superior H-mode confinement on Alcator C-Mod: experiments in support of ITER

    International Nuclear Information System (INIS)

    Hughes, J.W.; Reinke, M.L.; Terry, J.L.; Brunner, D.; Greenwald, M.; Hubbard, A.E.; LaBombard, B.; Lipschultz, B.; Ma, Y.; Wolfe, S.; Wukitch, S.J.; Loarte, A.

    2011-01-01

    Power requirements for maintaining sufficiently high confinement (i.e. normalized energy confinement time H 98 ≥ 1) in H-mode and its relation to H-mode threshold power scaling, P th , are of critical importance to ITER. In order to better characterize these power requirements, recent experiments on the Alcator C-Mod tokamak have investigated H-mode properties, including the edge pedestal and global confinement, over a range of input powers near and above P th . In addition, we have examined the compatibility of impurity seeding with high performance operation, and the influence of plasma radiation and its spatial distribution on performance. Experiments were performed at 5.4 T at ITER relevant densities, utilizing bulk metal plasma facing surfaces and an ion cyclotron range of frequency waves for auxiliary heating. Input power was scanned both in stationary enhanced D α (EDA) H-modes with no large edge localized modes (ELMs) and in ELMy H-modes in order to relate the resulting pedestal and confinement to the amount of power flowing into the scrape-off layer, P net , and also to the divertor targets. In both EDA and ELMy H-mode, energy confinement is generally good, with H 98 near unity. As P net is reduced to levels approaching that in L-mode, pedestal temperature diminishes significantly and normalized confinement time drops. By seeding with low-Z impurities, such as Ne and N 2 , high total radiated power fractions are possible, along with substantial reductions in divertor heat flux (>4x), all while maintaining H 98 ∼ 1. When the power radiated from the confined versus unconfined plasma is examined, pedestal and confinement properties are clearly seen to be an increasing function of P net , helping to unify the results with those from unseeded H-modes. This provides increased confidence that the power flow across the separatrix is the correct physics basis for ITER extrapolation. The experiments show that P net /P th of one or greater is likely to lead to H

  9. Pedestal structure and stability in H-mode and I-mode: a comparative study on Alcator C-Mod

    International Nuclear Information System (INIS)

    Hughes, J.W.; Walk, J.R.; Davis, E.M.; LaBombard, B.; Baek, S.G.; Churchill, R.M.; Greenwald, M.; Hubbard, A.E.; Lipschultz, B.; Marmar, E.S.; Reinke, M.L.; Rice, J.E.; Theiler, C.; Terry, J.; White, A.E.; Whyte, D.G.; Snyder, P.B.; Groebner, R.J.; Osborne, T.; Diallo, A.

    2013-01-01

    New experimental data from the Alcator C-Mod tokamak are used to benchmark predictive modelling of the edge pedestal in various high-confinement regimes, contributing to greater confidence in projection of pedestal height and width in ITER and reactors. ELMy H-modes operate near stability limits for ideal peeling–ballooning modes, as shown by calculations with the ELITE code. Experimental pedestal width in ELMy H-mode scales as the square root of β pol at the pedestal top, i.e. the dependence expected from theory if kinetic ballooning modes (KBMs) were responsible for limiting the pedestal width. A search for KBMs in experiment has revealed a short-wavelength electromagnetic fluctuation in the pedestal that is a candidate driver for inter-edge localized mode (ELM) pedestal regulation. A predictive pedestal model (EPED) has been tested on an extended set of ELMy H-modes from C-Mod, reproducing pedestal height and width reasonably well across the data set, and extending the tested range of EPED to the highest absolute pressures available on any existing tokamak and to within a factor of three of the pedestal pressure targeted for ITER. In addition, C-Mod offers access to two regimes, enhanced D-alpha (EDA) H-mode and I-mode, that have high pedestals, but in which large ELM activity is naturally suppressed and, instead, particle and impurity transport are regulated continuously. Pedestals of EDA H-mode and I-mode discharges are found to be ideal magnetohydrodynamic (MHD) stable with ELITE, consistent with the general absence of ELM activity. Invocation of alternative physics mechanisms may be required to make EPED-like predictions of pedestals in these kinds of intrinsically ELM-suppressed regimes, which would be very beneficial to operation in burning plasma devices. (paper)

  10. A superconducting test cavity for DORIS

    International Nuclear Information System (INIS)

    Bauer, W.; Brandelik, A.; Lekmann, W.; Szecsi, L.

    1978-03-01

    A summary of experimental goals, technical requirements and possible solutions for the construction of a superconducting accelerating cavity to be tested at DORIS is given. The aim of the experiment is to prove the applicability of superconducting cavities in storage rings and to study the problems typical for this application. The paper collects design considerations about cavity geometry and fabrication, input coupling, output coupling for higher modes, tuner, cryostat and controls. (orig.) [de

  11. Couplings

    Science.gov (United States)

    Stošić, Dušan; Auroux, Aline

    Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

  12. Pellet injection into H-mode ITER plasma with the presence of internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Leekhaphan, P. [Thammasat University, School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology (Thailand); Onjun, T. [Thammasat University, School of Manufacturing Systems and Mechanical Engineering, Sirindhorn International Institute of Technology (Thailand)

    2011-04-15

    The impacts of pellet injection into ITER type-1 ELMy H-mode plasma with the presence of internal transport barriers (ITBs) are investigated using self-consistent core-edge simulations of 1.5D BALDUR integrated predictive modeling code. In these simulations, the plasma core transport is predicted using a combination of a semi-empirical Mixed B/gB anomalous transport model, which can self-consistently predict the formation of ITBs, and the NCLASS neoclassical model. For simplicity, it is assumed that toroidal velocity for {omega}{sub E Multiplication-Sign B} calculation is proportional to local ion temperature. In addition, the boundary conditions are predicted using the pedestal temperature model based on magnetic and flow shear stabilization width scaling; while the density of each plasma species, including both hydrogenic and impurity species, at the boundary are assumed to be a large fraction of its line averaged density. For the pellet's behaviors in the hot plasma, the Neutral Gas Shielding (NGS) model by Milora-Foster is used. It was found that the injection of pellet could result in further improvement of fusion performance from that of the formation of ITB. However, the impact of pellet injection is quite complicated. It is also found that the pellets cannot penetrate into a deep core of the plasma. The injection of the pellet results in a formation of density peak in the region close to the plasma edge. The injection of pellet can result in an improved nuclear fusion performance depending on the properties of pellet (i.e., increase up to 5% with a speed of 1 km/s and radius of 2 mm). A sensitivity analysis is carried out to determine the impact of pellet parameters, which are: the pellet radius, the pellet velocity, and the frequency of injection. The increase in the pellet radius and frequency were found to greatly improve the performance and effectiveness of fuelling. However, changing the velocity is observed to exert small impact.

  13. Comparing 1.5D ONETWO and 2D SOLPS analyses of inter-ELM H-mode plasma in DIII-D

    International Nuclear Information System (INIS)

    Owen, Larry W.; Canik, John; Groebner, R.; Callen, J.D.; Bonnin, X.; Osborne, T.H.

    2010-01-01

    A DIII-D inter-ELM H-mode plasma that is in approximate transport equilibrium is analysed with the 1.5D ONETWO core code and the 2D SOLPS code. In order to investigate the importance of core-edge coupling and 2D effects, including divertor fuelling across the X-point and poloidal asymmetries that are not explicitly included in ONETWO, the domain of SOLPS is extended to very near the magnetic axis. Two principal objectives are (1) to determine whether poloidal asymmetries in the plasma distributions are large enough to vitiate a core-type interpretive plasma transport analysis and (2) to determine whether the interpretive transport coefficients and neutral beam power and particle sources from ONETWO, when used in 2D SOLPS full plasma simulations, yield the same quality fits to the measured upstream density and temperature profiles as obtained with ONETWO. Results show that only a small increase in the separatrix value of the particle diffusion coefficient, and no change in the thermal diffusivities from ONETWO was needed to get excellent agreement of the upstream SOLPS density and temperature profiles and the Thomson scattering and CER data. Good agreement of the ONETWO and SOLPS flux surface averaged distributions of the core electron and D+ densities and temperatures are also obtained. Likewise the C6+ density, with a simple chemical sputtering model based on a constant fraction of the divertor D+ flux, the core heat and particle fluxes and the neutral density reveal no 2D effects in the core/pedestal region that would vitiate a 1.5D treatment of the inter-ELM H-mode plasma.

  14. Predictive transport modelling of type I ELMy H-mode dynamics using a theory-motivated combined ballooning-peeling model

    International Nuclear Information System (INIS)

    Loennroth, J-S; Parail, V; Dnestrovskij, A; Figarella, C; Garbet, X; Wilson, H

    2004-01-01

    This paper discusses predictive transport simulations of the type I ELMy high confinement mode (H-mode) with a theory-motivated edge localized mode (ELM) model based on linear ballooning and peeling mode stability theory. In the model, a total mode amplitude is calculated as a sum of the individual mode amplitudes given by two separate linear differential equations for the ballooning and peeling mode amplitudes. The ballooning and peeling mode growth rates are represented by mutually analogous terms, which differ from zero upon the violation of a critical pressure gradient and an analytical peeling mode stability criterion, respectively. The damping of the modes due to non-ideal magnetohydrodynamic effects is controlled by a term driving the mode amplitude towards the level of background fluctuations. Coupled to simulations with the JETTO transport code, the model qualitatively reproduces the experimental dynamics of type I ELMy H-mode, including an ELM frequency that increases with the external heating power. The dynamics of individual ELM cycles is studied. Each ELM is usually triggered by a ballooning mode instability. The ballooning phase of the ELM reduces the pressure gradient enough to make the plasma peeling unstable, whereby the ELM continues driven by the peeling mode instability, until the edge current density has been depleted to a stable level. Simulations with current ramp-up and ramp-down are studied as examples of situations in which pure peeling and pure ballooning mode ELMs, respectively, can be obtained. The sensitivity with respect to the ballooning and peeling mode growth rates is investigated. Some consideration is also given to an alternative formulation of the model as well as to a pure peeling model

  15. Fast generation of three-qubit Greenberger-Horne-Zeilinger state based on the Lewis-Riesenfeld invariants in coupled cavities.

    Science.gov (United States)

    Huang, Xiao-Bin; Chen, Ye-Hong; Wang, Zhe

    2016-05-24

    In this paper, we propose an efficient scheme to fast generate three-qubit Greenberger-Horne-Zeilinger (GHZ) state by constructing shortcuts to adiabatic passage (STAP) based on the "Lewis-Riesenfeld (LR) invariants" in spatially separated cavities connected by optical fibers. Numerical simulations illustrate that the scheme is not only fast, but robust against the decoherence caused by atomic spontaneous emission, cavity losses and the fiber photon leakages. This might be useful to realize fast and noise-resistant quantum information processing for multi-qubit systems.

  16. Fluctuation-Coupling of Cathode Cavity Pressure and Arc Voltage in a dc Plasma Torch with a Long Inter-Electrode Channel at Reduced Pressure

    International Nuclear Information System (INIS)

    Cao Jin-Wen; Huang He-Ji; Pan Wen-Xia

    2014-01-01

    Fluctuations of cathode cavity pressure and arc voltage are observed experimentally in a dc plasma torch with a long inter-electrode channel. The results show that they have the same frequency of around 4 kHz under typical experimental conditions. The observed phase difference between the pressure and the voltage, which is influenced by the path length between the pressure sensor and the cathode cavity, varies with different input powers. Combined with numerical simulation, the position of the pressure perturbation origin is estimated, and the results show that it is located at 0.01–0.05 m upstream of the inter-electrode channel outlet

  17. A new boundary control scheme for simultaneous achievement of H-mode and radiative cooling (SHC boundary)

    International Nuclear Information System (INIS)

    Ohyabu, N.

    1995-05-01

    We have proposed a new boundary control scheme (SHC boundary), which could allow simultaneous achievement of the H-mode type confinement improvement and radiative cooling with wide heat flux distribution. In our proposed configuration, a low m island layer sharply separates a plasma confining region from an open 'ergodic' boundary. The degree of openness in the ergodic boundary must be high enough to make the plasma pressure constant along the field line, which in turn separates low density plasma just outside the plasma confining region (the key external condition for achieving a good H-mode discharge) from very high density, cold radiative plasma near the wall (required for effective edge radiative cooling). Examples of such proposed SHC boundaries for Heliotron typed devices and tokamaks are presented. (author)

  18. Characterisation of the ELM synchronized H-mode edge pedestal in ASDEX upgrade and DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Philip A.; Wolfrum, Elisabeth; Guenter, Sibylle; Kurzan, Bernd; Zohm, Hartmut [Max Planck Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Groebner, Rich; Osborne, Tom H.; Ferron, John; Snyder, Philip B. [General Atomics, San Diego, CA (United States); Dunne, Mike G. [Department of Physics, University College Cork, Association Euratom-DCU, Cork (Ireland); Collaboration: ASDEX Upgrade Team; DIII-D Team

    2011-07-01

    The results of a large database of edge pedestal data from type-I ELMy H-mode discharges from ASDEX Upgrade and DIII-D are presented. The data from high resolution edge diagnostics of both devices is analysed with the same analysis code in order to avoid systematic differences. Furthermore, sophisticated equilibrium reconstructions are used to asses uncertainties which arise during mapping from 2D real space coordinates to 1D flux coordinates. ELM synchronization allows the study of the pedestal structure at the ELM stability boundary. The pedestal is characterized by its top value, the gradient and the width. A large parameter range is covered by the two devices. Over this parameter range the profile shape of edge electron density differs from that of the temperature, irrespective of the device. However, the resulting electron pressure profile shape remains similar for all analysed H-Mode discharges.

  19. Scaling of ELM and H-mode pedestal characteristics in ITER shape discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Osborne, T.H.; Groebner, R.J.; Lao, L.L.; Leonard, A.W.; Miller, R.L.; Thomas, D.M.; Waltz, R.E.; Maingi, R.; Porter, G.D.

    1997-07-01

    The authors have shown a correlation between the H-mode pressure pedestal height and the energy confinement enhancement in ITER shape discharges on DIII-D which is consistent with the behavior of H in different ELM classes. The width of the steep gradient region was found to equally well fit the scalings δ/R ∝ (ρ POL /R) 2/3 and δ/R ∝ (β POL PED /R) 1/2 . The normalized pressure gradient α MHD was found to be relatively constant just before a type I ELM. An estimate of T PED for ITER gave 1 to 5 keV. They also estimate ΔE ELM ≅ 26 MJ for ITER. They identified a distinct class of type III ELM at low density which may play a role in setting H at powers near the H-mode threshold power

  20. Measurement of peripheral electron temperature by electron cyclotron emission during the H-mode transition in JFT-2M tokamak

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Yamamoto, Takumi; Kawashima, Hisato

    1987-01-01

    Time evolution and profile of peripheral electron temperature during the H-mode like transition in a tokamak plasma is measured using the second and third harmonic of electron cyclotron emission (ECE). The so called ''H-mode'' state which has good particle/energy confinement is characterized by sudden decrease in the spectral line intensity of deuterium molecule. Such a sudden decrease in the line intensity of D α with good energy confinement is found not only in divertor discharges, but also in limiter dischargs in JFT-2M tokamak. It is found by the measurement of ECE that the peripheral electron temperature suddenly increases in both of such phases. The relation between H-transition and the peripheral electron temperature or its profile is investigated. (author)

  1. Storage and retrieval of time-entangled soliton trains in a three-level atom system coupled to an optical cavity

    Science.gov (United States)

    Welakuh, Davis D. M.; Dikandé, Alain M.

    2017-11-01

    The storage and subsequent retrieval of coherent pulse trains in the quantum memory (i.e. cavity-dark state) of three-level Λ atoms, are considered for an optical medium in which adiabatic photon transfer occurs under the condition of quantum impedance matching. The underlying mechanism is based on intracavity Electromagnetically-Induced Transparency, by which properties of a cavity filled with three-level Λ-type atoms are manipulated by an external control field. Under the impedance matching condition, we derive analytic expressions that suggest a complete transfer of an input field into the cavity-dark state by varying the mixing angle in a specific way, and its subsequent retrieval at a desired time. We illustrate the scheme by demonstrating the complete transfer and retrieval of a Gaussian, a single hyperbolic-secant and a periodic train of time-entangled hyperbolic-secant input photon pulses in the atom-cavity system. For the time-entangled hyperbolic-secant input field, a total controllability of the periodic evolution of the dark state population is made possible by changing the Rabi frequency of the classical driving field, thus allowing to alternately store and retrieve high-intensity photons from the optically dense Electromagnetically-Induced transparent medium. Such multiplexed photon states, which are expected to allow sharing quantum information among many users, are currently of very high demand for applications in long-distance and multiplexed quantum communication.

  2. Suppression of tungsten accumulation during ELMy H-mode by lower hybrid wave heating in the EAST tokamak

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2017-08-01

    Full Text Available EAST tokamak has been equipped with upper tungsten divertor since 2014. The tungsten accumulation has been often observed in NBI-heated H-mode discharges suggesting deleterious tungsten confinement in the plasma core. It causes not only H-L back transition but also plasma disruption in several discharges. Suppression of the tungsten accumulation is therefore the most important issue in EAST to achieve a long pulse H-mode discharge. In order to study the tungsten behavior in the long pulse discharge, tungsten spectra have been measured at 20–140Å. The tungsten density, nw, is evaluated from the intensity of tungsten unresolved transition array (W-UTA in a wavelength range of 45–70Å which is composed of several ionization stages of tungsten, e.g. W27+-W45+ at Te0∼2.5keV. It is found that the tungsten accumulation can be suppressed when the 4.6GHz LHW with PLHW∼0.8MW is superimposed on the NBI phase (PNBI= 1.9MW. During the superimposed phase the ELM frequency, fELM, increases from ∼30Hz to ∼60Hz and the tungsten density is halved compared to the NBI-heated discharge. The H-mode discharge can be thus steadily sustained for longer period. It is found that the nw is a large function of the ratio of LHW power to the total injection power, PLHW/(PLHW+PNBI, and the nw can be reduced, at least, in an order of magnitude smaller than that in NBI-heated discharges at PLHW/(PLHW+PNBI≥0.8. The result strongly suggests a possible way toward the steady H-mode discharge.

  3. The 13th International Workshop on H-mode Physics and Transport Barriers (Oxford, UK, 2011) The 13th International Workshop on H-mode Physics and Transport Barriers (Oxford, UK, 2011)

    Science.gov (United States)

    Saibene, G.

    2012-11-01

    The 13th International Workshop on H-mode Physics and Transport Barriers, held in Lady Margaret Hall College in Oxford in October 2011 continues the tradition of bi-annual international meetings dedicated to the study of transport barriers in fusion plasmas. The first meeting of this series took place in S Diego (CA, US) in 1987, and since then scientists in the fusion community studying the formation and effects of transport barriers in plasmas have been meeting at this small workshop to discuss progress, new experimental evidence and related theoretical studies. The first workshops were strongly focussed on the characterization and understanding of the H-mode plasma, discovered in ASDEX in 1982. Tokamaks throughout the entire world were able to reproduce the H-mode transition in the following few years and since then the H-mode has been recognised as a pervasive physics feature of toroidally confined plasmas. Increased physics understanding of the H-mode transition and of the properties of H-mode plasmas, together with extensive development of diagnostic capabilities for the plasma edge, led to the development of edge transport barrier studies and theory. The H-mode Workshop reflected this extension in interest, with more and more contributions discussing the phenomenology of edge transport barriers and instabilities (ELMs), L-H transition and edge transport barrier formation theory. In the last 15 years, in response to the development of fusion plasma studies, the scientific scope of the workshop has been broadened to include experimental and theoretical studies of both edge and internal transport barriers, including formation and sustainment of transport barriers for different transport channels (energy, particle and momentum). The 13th H-mode Workshop was organized around six leading topics, and, as customary for this workshop, a lead speaker was selected for each topic to present to the audience the state-of-the-art, new understanding and open issues, as well

  4. Application of the H-Mode, a Design and Interaction Concept for Highly Automated Vehicles, to Aircraft

    Science.gov (United States)

    Goodrich, Kenneth H.; Flemisch, Frank O.; Schutte, Paul C.; Williams, Ralph A.

    2006-01-01

    Driven by increased safety, efficiency, and airspace capacity, automation is playing an increasing role in aircraft operations. As aircraft become increasingly able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help us understand their use and guide their design using new forms of automation and interaction. We propose a novel design metaphor to aid the conceptualization, design, and operation of highly-automated aircraft. Design metaphors transfer meaning from common experiences to less familiar applications or functions. A notable example is the "Desktop metaphor" for manipulating files on a computer. This paper describes a metaphor for highly automated vehicles known as the H-metaphor and a specific embodiment of the metaphor known as the H-mode as applied to aircraft. The fundamentals of the H-metaphor are reviewed followed by an overview of an exploratory usability study investigating human-automation interaction issues for a simple H-mode implementation. The envisioned application of the H-mode concept to aircraft is then described as are two planned evaluations.

  5. Effect of Wave Accessibility on Lower Hybrid Wave Current Drive in Experimental Advanced Superconductor Tokamak with H-Mode Operation

    International Nuclear Information System (INIS)

    Li Xin-Xia; Xiang Nong; Gan Chun-Yun

    2015-01-01

    The effect of the wave accessibility condition on the lower hybrid current drive in the experimental advanced superconductor Tokamak (EAST) plasma with H-mode operation is studied. Based on a simplified model, a mode conversion layer of the lower hybrid wave between the fast wave branch and the slow wave branch is proved to exist in the plasma periphery for typical EAST H-mode parameters. Under the framework of the lower hybrid wave simulation code (LSC), the wave ray trajectory and the associated current drive are calculated numerically. The results show that the wave accessibility condition plays an important role on the lower hybrid current drive in EAST plasma. For wave rays with parallel refractive index n ‖ = 2.1 or n ‖ = 2.5 launched from the outside midplane, the wave rays may penetrate the core plasma due to the toroidal geometry effect, while numerous reflections of the wave ray trajectories in the plasma periphery occur. However, low current drive efficiency is obtained. Meanwhile, the wave accessibility condition is improved if a higher confined magnetic field is applied. The simulation results show that for plasma parameters under present EAST H-mode operation, a significant lower hybrid wave current drive could be obtained for the wave spectrum with peak value n ‖ = 2.1 if a toroidal magnetic field B T = 2.5 T is applied. (paper)

  6. Study on H-mode access at low density with lower hybrid current drive and lithium-wall coatings on the EAST superconducting tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Wan, B.N.; Li, J.G.

    2011-01-01

    The first high-confinement mode (H-mode) with type-III edge localized modes at an H factor of HIPB98(y,2) ~ 1 has been obtained with about 1 MW lower hybrid wave power on the EAST superconducting tokamak. The first H-mode plasma appeared after wall conditioning by lithium (Li) evaporation before ...

  7. Thermo-mechanical and damage analyses of EAST carbon divertor under type-I ELMy H-mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.X. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Ye, M.Y. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Peng, X.B., E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wu, S.T. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Qian, X.Y.; Zhu, C.C. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China)

    2016-04-15

    Highlights: • Type-I ELMy H-mode is one of the most severe operating environment in tokamak. • An actual time-history heat load has been used in thermo-mechanical analysis. • The analysis results are time-dependent during the whole discharge process. • The analysis could be very useful in evaluating the operational capability of the divertor. - Abstract: The lower carbon divertor has been used since 2008 in EAST, and many significant physical results, like the 410 s long pulse discharge and the 32 s H-mode operation, have been achieved. As the carbon divertor will still be used in the next few years while the injected auxiliary heating power would be increased gradually, it’s necessary to evaluate the operational capability of the carbon divertor under the heat loads during future operation. In this paper, an actual time-history heat load during type-I ELMy H-mode from EAST experiment, as one of the most severe operating environment in tokamak, has been used in the calculation and analysis. The finite element (FE) thermal and mechanical calculations have been carried out to analysis the stress and deformation of the carbon divertor during the heat loads. According to the results, the main impact on the overall temperature comes from the relative stable phase before and after the type-I ELMs and local peak load, and the transient thermal load such as type-I ELMy only has a significant effect on the surface temperature of the graphite tiles. The carbon divertor would work with high stress near the screw bolts in the current operational conditions, because of high preload and conservative frictional coefficient between the bolts and heatsink. For the future operation, new plasma facing materials (PFM) and divertor technology should be developed.

  8. First HIBP Measurement of Plasma Potential During the H-Mode Transition on the TUMAN-3M Tokamak

    International Nuclear Information System (INIS)

    Askinazi, L.G.; Golant, V.E.; Kornev, V.A.; Lebedev, S.V.; Shevkin, E.A.; Tukachinsky, A.S.; Zhubr, N.A.; Chmyga, A.A.; Dreval, N.B.; Khrebtov, S.M.; Komarov, A.S.; Krupnik, L.I.; Oost, G. van; Tendler, M.

    2003-01-01

    The difficulty of Heavy Ion Beam Probe (HIBP) application on the TUMAN-3M (R=0.53m, a=0.22m, BT=0.8T, Ip=140kA, Te=0.5keV, n<4 1019m-3) -- significant toroidal shift of beam trajectory -- is caused by high ratio of poloidal field to toroidal one. Strong UV radiation from the plasma loads the energy analyzer's detector and complicates the problem even more. This paper presents the results of first measurement of plasma potential evolution in the discharges performed in ohmic H-mode using 80 keV K+ beam and a Proca-Green secondary ion energy analyzer. Spatial region covered by the diagnostic in the experiments discussed was 0< r<0.6a. Spatial scan was performed utilizing the toroidal field decrease due to capacity power supply battery discharge. The change in plasma potential of the order of 100V has been measured during the H-mode formation. The potential in core plasma (r<0.6a) starts to change simultaneously with L-H transition, and than changes during ∼6-8ms after the transition. Thus, the potential changes rather slowly in a comparison with L-H transition timescale (∼2ms for TUMAN-3M ohmic H-mode). Possible explanation to the slow change in central plasma potential may be a formation of potential well structure at the plasma edge, in which radial electric field changes direction. This kind of structure is beneficial for the edge turbulent transport suppression because of high |∂Er/∂r|, but not necessary requires a strong change in central plasma potential to occur immediately. The results from microwave reflectometry support this hypothesis

  9. Study of density fluctuation in L-mode and H-mode plasmas on JFT-2M by microwave reflectometer

    International Nuclear Information System (INIS)

    Shinohara, Kouji

    1997-08-01

    We propose the model which can explain the runaway phase. The model takes account of the scattered wave which is caused by the density fluctuation near the cut-off layer. We should take a new approach instead of the conventional phase measurement in order to derive the information of the density fluctuation from the data with the runaway phase. The complex spectrum and the rotary spectrum analyses are useful tools to analyze such data. The density fluctuation in L-mode and H-mode plasmas is discussed by using this new approach. We have observed that the reduction of the density fluctuation is localized in the edge region where the sheared electric field is produced. The fluctuations in the range of frequency lower than 100 kHz are mainly reduced. Two interesting features have been observed. One is the detection of the coherent mode around 100 kHz in H-mode. This mode appears about 10 ms after L to H transition. The timing corresponds to the formation of a steep density and temperature gradient in the edge region. The other is the enhancement of the fluctuations with the frequency higher than 300 kHz in H-mode in contrast to the reduction of the fluctuations with the frequency lower than 100 kHz. The Doppler shift is observed in the complex auto-power spectrum of the reflected wave when the plasma is actively moved. We have confirmed that the movement of the plasma is appropriately measured by using the low pass filter. The reflectometer can be used to measure the density profile by using a low pass filter even when the runaway phase phenomenon occurs. (author). 150 refs

  10. New features of L-H transition in limiter H-modes of JIPP T-IIU

    International Nuclear Information System (INIS)

    Toi, K.; Morita, S.; Kawahata, K.

    1992-09-01

    In limiter H-modes of JIPP T-IIU, a new type of L-H transition preceded by an ELM is observed. The preceding ELM (pre-ELM) appears just prior to the L-H transition. This type of transition is usually observed in H-modes of JIPP T-IIU. The L-H transition without the pre-ELM is triggered only in the case when a sufficiently large rapid current ramp down is emploied. In H-modes with constant q(a)∼3.5-4.5, coherent magnetic oscillations with m=3/n=1 destabilized during L-phase are further enhanced at the pre-ELM, and suppressed suddenly at the transition. This mode is situated in the region of the transport barrier. Propagation frequency of the m=3/n=1 mode, which may be affected by plasma mass rotation, rises appreciably (by ∼ 10 %) during H-phase with frequent ELMs, but remains unchanged for at least 200 μs after the transition. Behaviours of the m=3/n=1 and m=2/n=1 modes are well explained by quasi-linear resistive tearing mode analysis for modelled toroidal current density profiles slightly detached from the limiter. These experimental results suggest that the transition is controlled by the change of a magnetic field structure relating to the modification of a toroidal current density profile near the edge. The possibility for the development of edge radial electric field as a consequence of the transition is discussed. (author)

  11. Long sustainment of quasi-steady-state high βp H mode discharges in JT-60U

    International Nuclear Information System (INIS)

    Isayama, A.; Kamada, Y.; Ozeki, T.; Ide, S.; Fujita, T.; Oikawa, T.; Suzuki, T.; Neyatani, Y.; Isei, N.; Hamamatsu, K.; Ikeda, Y.; Takahashi, K.; Kajiwara, K.

    2001-01-01

    Quasi-steady-state high β p H mode discharges performed by suppressing neoclassical tearing modes (NTMs) are described. Two operational scenarios have been developed for long sustainment of the high β p H mode discharge: NTM suppression by profile optimization, and NTM stabilization by local electron cyclotron current drive (ECCD)/electron cyclotron heating (ECH) at the magnetic island. Through optimization of pressure and safety factor profiles, a high β p H mode plasma with H 89PL = 2.8, HH y,2 = 1.4, β p ∼ 2.0 and β N ∼ 2.5 has been sustained for 1.3 s at small values of collisionality ν e* and ion Larmor radius ρ i* without destabilizing the NTMs. Characteristics of the NTMs destabilized in the region with central safety factor above unity are investigated. The relation between the beta value at the mode onset β N on and that at the mode disappearance β N off can be described as β N off /β N on =0.05-0.4, which shows the existence of hysteresis. The value of β N /ρ i* at the onset of an m/n = 3/2 NTM has a collisionality dependence, which is empirically given by β N /ρ i* ∝ ν e* 0.36 . However, the profile effects such as the relative shapes of pressure and safety factor profiles are equally important. The onset condition seems to be affected by the strength of the pressure gradient at the mode rational surface. Stabilization of the NTM by local ECCD/ECH at the magnetic island has been attempted. A 3/2 NTM has been completely stabilized by EC wave injection of 1.6 MW. (author)

  12. Role of Density Gradient Driven Trapped Electron Modes in the H-Mode Inner Core with Electron Heating

    Science.gov (United States)

    Ernst, D.

    2015-11-01

    We present new experiments and nonlinear gyrokinetic simulations showing that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron heating. Thus α-heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking. These DIII-D low torque quiescent H-mode experiments were designed to study DGTEM turbulence. Gyrokinetic simulations using GYRO (and GENE) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra, with and without ECH. Adding 3.4 MW ECH doubles Te /Ti from 0.5 to 1.0, which halves the linear TEM critical density gradient, locally flattening the density profile. Density fluctuations from Doppler backscattering (DBS) intensify near ρ = 0.3 during ECH, displaying a band of coherent fluctuations with adjacent toroidal mode numbers. GYRO closely reproduces the DBS spectrum and its change in shape and intensity with ECH, identifying these as coherent TEMs. Prior to ECH, parallel flow shear lowers the effective nonlinear DGTEM critical density gradient 50%, but is negligible during ECH, when transport displays extreme stiffness in the density gradient. GS2 predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q0 >qmin > 1 . A related experiment in the same regime varied the electron temperature gradient in the outer half-radius (ρ ~ 0 . 65) using ECH, revealing spatially coherent 2D mode structures in the Te fluctuations measured by ECE imaging. Fourier analysis with modulated ECH finds a threshold in Te profile stiffness. Supported by the US DOE under DE-FC02-08ER54966 and DE-FC02-04ER54698.

  13. Low-n magnetohydrodynamic edge instabilities in quiescent H-mode plasmas with a safety-factor plateau

    International Nuclear Information System (INIS)

    Zheng, L.J.; Kotschenreuther, M.T.; Valanju, P.

    2013-01-01

    Low-n magnetohydrodynamic (MHD) modes in the quiescent high confinement mode (H-mode) pedestal are investigated in this paper. Here, n is the toroidal mode number. The low collisionality regime is considered, so that a safety-factor plateau arises in the pedestal region because of the strong bootstrap current. The JET-like (Joint European Torus) equilibria of quiescent H-mode discharges are generated numerically using the VMEC code. The stability of this type of equilibria is analysed using the AEGIS code, with subsonic rotation effects taken into account. The current investigation extends the previous studies of n = 1 modes to n = 2 and 3 modes. The numerical results show that the MHD instabilities in this type of equilibria have characteristic features of the infernal mode. We find that this type of mode tends to prevail when the safety-factor value in the shear-free region is slightly larger than an integer. In this case the frequencies (ω n ) of modes with toroidal mode number n roughly follow the rule ω n ∼ −nΩ p , where Ω p is the local rotation frequency where the infernal harmonic prevails. Since the infernal mode tends to develop near the pedestal top, where pressure driving is strong but magnetic shear stabilization is weak, this local rotation frequency tends to be close to the pedestal top value. These typical mode features bear close resemblance to the edge harmonic oscillations (or outer modes) at the quiescent H-mode discharges observed experimentally. (paper)

  14. Harnessing the mode mixing in optical fiber-tip cavities

    International Nuclear Information System (INIS)

    Podoliak, Nina; Horak, Peter; Takahashi, Hiroki; Keller, Matthias

    2017-01-01

    We present a systematic numerical study of Fabry–Pérot optical cavities with Gaussian-shape mirrors formed between tips of optical fibers. Such cavities can be fabricated by laser machining of fiber tips and are promising systems for achieving strong coupling between atomic particles and an optical field as required for quantum information applications. Using a mode mixing matrix method, we analyze the cavity optical eigenmodes and corresponding losses depending on a range of cavity-shape parameters, such as mirror radius of curvature, indentation depth and cavity length. The Gaussian shape of the mirrors causes mixing of optical modes in the cavity. We investigate the effect of the mode mixing on the coherent atom-cavity coupling as well as the mode matching between the cavity and a single-mode optical fiber. While the mode mixing is associated with increased cavity losses, it can also lead to an enhancement of the local optical field. We demonstrate that around the resonance between the fundamental and 2nd order Laguerre–Gaussian modes of the cavity it is possible to obtain 50% enhancement of the atom-cavity coupling at the cavity center while still maintaining low cavity losses and high cavity-fiber optical coupling. (paper)

  15. W transport and accumulation control in the termination phase of JET H-mode discharges and implications for ITER

    Science.gov (United States)

    Köchl, F.; Loarte, A.; de la Luna, E.; Parail, V.; Corrigan, G.; Harting, D.; Nunes, I.; Reux, C.; Rimini, F. G.; Polevoi, A.; Romanelli, M.; Contributors, JET

    2018-07-01

    Tokamak operation with W PFCs is associated with specific challenges for impurity control, which may be particularly demanding in the transition from stationary H-mode to L-mode. To address W control issues in this phase, dedicated experiments have been performed at JET including the variation of the decrease of the power and current, gas fuelling and central ion cyclotron heating (ICRH), and applying active ELM control by vertical kicks. The experimental results obtained demonstrate the key role of maintaining ELM control to control the W concentration in the exit phase of H-modes with slow (ITER-like) ramp-down of the neutral beam injection power in JET. For these experiments, integrated fully predictive core+edge+SOL transport modelling studies applying discrete models for the description of transients such as sawteeth and ELMs have been performed for the first time with the JINTRAC suite of codes for the entire transition from stationary H-mode until the time when the plasma would return to L-mode focusing on the W transport behaviour. Simulations have shown that the existing models can appropriately reproduce the plasma profile evolution in the core, edge and SOL as well as W accumulation trends in the termination phase of JET H-mode discharges as function of the applied ICRH and ELM control schemes, substantiating the ambivalent effect of ELMs on W sputtering on one side and on edge transport affecting core W accumulation on the other side. The sensitivity with respect to NB particle and momentum sources has also been analysed and their impact on neoclassical W transport has been found to be crucial to reproduce the observed W accumulation characteristics in JET discharges. In this paper the results of the JET experiments, the comparison with JINTRAC modelling and the adequacy of the models to reproduce the experimental results are described and conclusions are drawn regarding the applicability of these models for the extrapolation of the applied W

  16. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    Energy Technology Data Exchange (ETDEWEB)

    S.S. Medley; N.N. Gorelenkov; R. Andre; R.E. Bell; D.S. Darrow; E.D. Fredrickson; S.M. Kaye; B.P. LeBlanc; A.L. Roquemore; and the NSTX Team

    2004-03-15

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times

  17. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Medley, S.S.; Gorelenkov, N.N.; Andre, R.; Bell, R.E.; Darrow, D.S.; Fredrickson, E.D.; Kaye, S.M.; LeBlanc, B.P.; Roquemore, A.L.

    2004-01-01

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E ∼ 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times, and

  18. Evaluation of Particle Pinch and Diffusion Coefficients in the Edge Pedestal of DIII-D H-mode Discharges

    Science.gov (United States)

    Stacey, W. M.; Groebner, R. J.

    2009-11-01

    Momentum balance requires that the radial particle flux satisfy a pinch-diffusion relationship. The pinch can be evaluated in terms of measurable quantities (rotation velocities, Er, etc.) by the use of momentum and particle balance [1,2], the radial particle flux can be determined by momentum balance, and then the diffusion coefficient can be evaluated from the pinch diffusion relation using the measured density gradient. Applications to several DIII-D H-mode plasmas are presented. 6pt [1] W.M. Stacey, Contr. Plasma Phys. 48, 94 (2008). [2] W.M. Stacey and R.J. Groebner, Phys. Plasmas 15, 012503 (2008).

  19. Energy transport to the divertor plates of ASDEX-Upgrade during ELMy H-mode phases

    International Nuclear Information System (INIS)

    Herrmann, A.; Laux, M.; Coster, D.; Neuhauser, J.; Reiter, D.; Schneider, R.; Weinlich, M.

    1995-01-01

    The energy flux to the ASDEX-Upgrade divertor plates is routinely measured by themography and Langmuir probes. The thermographically observed power decay length at the target plate is about 1 cm near the inboard separatrix. During an edge localized mode (ELM) of type I the density profiles are significantly, changed; an additional contribution occurs characterized by a power decay length in the order of 10 cm outside the separatrix and additional power is deposited into the private flux region. It is supposed that this is due to the changing, contribution of energy conduction versus convection. Results of ELM-modelling using the coupled B2-EIRENE code reproduce the main features of the experimental observations. The sheath transmission factor is calculated by combining themography and Langmuir probe data. ((orig.))

  20. Design of rf conditioner cavities

    International Nuclear Information System (INIS)

    Govil, R.; Rimmer, R.A.; Sessler, A.; Kirk, H.G.

    1992-06-01

    Theoretical studies are made of radio frequency structures which can be used to condition electron beams so as to greatly reduce the stringent emittance requirements for successful lasing in a free-electron laser. The basic strategy of conditioning calls for modulating an electron beam in the transverse dimension, by a periodic focusing channel, while it traverses a series of rf cavities, each operating in a TM 210 mode. In this paper, we analyze the cavities both analytically and numerically (using MAFIA simulations). We find that when cylindrical symmetry is broken the coupling impedance can be greatly enhanced. We present results showing various performance characteristics as a function of cavity parameters, as well as possible designs for conditioning cavities

  1. Enhancement of mode-converted electron Bernstein wave emission during National Spherical Torus Experiment H-mode plasmas

    International Nuclear Information System (INIS)

    Taylor, G.; Efthimion, P.C.; Jones, B.; Le Blanc, B.P.; Maingi, R.

    2002-01-01

    A sudden, threefold increase in emission from fundamental electrostatic electron Bernstein waves (EBW) which mode convert and tunnel to the electromagnetic X-mode has been observed during high energy and particle confinement (H-mode) transitions in the National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The mode-converted EBW emission viewed normal to the magnetic field on the plasma midplane increases when the density profile steepens in the vicinity of the mode conversion layer, which is located in the plasma scrape off. The measured conversion efficiency during the H-mode is consistent with the calculated EBW to X-mode conversion efficiency derived using edge density data. Calculations indicate that there may also be a small residual contribution to the measured X-mode electromagnetic radiation from polarization-scrambled, O-mode emission, converted from EBWs

  2. Heuristic Drift-based Model of the Power Scrape-off width in H-mode Tokamaks

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    An heuristic model for the plasma scrape-off width in H-mode plasmas is introduced. Grad B and curv B drifts into the SOL are balanced against sonic parallel flows out of the SOL, to the divertor plates. The overall particle flow pattern posited is a modification for open field lines of Pfirsch-Shlueter flows to include sinks to the divertors. These assumptions result in an estimated SOL width of ∼ 2αρ p /R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, defined above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Haerm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in reasonable quantitative agreement both in absolute magnitude and in scaling with recent experimental data from deuterium plasmas. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  3. Effect of variation in equilibrium shape on ELMing H-mode performance in DIII-D diverted plasmas

    International Nuclear Information System (INIS)

    Fenstermacher, M.E.; Osborne, T.H.; Petrie, T.W.

    2001-01-01

    The changes in the performance of the core, pedestal, scrape-off-layer (SOL), and divertor plasmas as a result of changes in triangularity, δ, up/down magnetic balance, and secondary divertor volume were examined in shape variation experiments using ELMing H mode plasmas on DIII-D. In moderate density, unpumped plasmas, high δ∼0.7 increased the energy in the H mode pedestal and the global energy confinement of the core, primarily due to an increase in the margin by which the edge pressure gradient exceeded the value which would have been expected had it been limited by infinite-n ideal ballooning modes. In addition, a nearly balanced double-null (DN) shape was effective for sharing the peak heat flux in the divertor in these attached plasmas. For detached plasmas good heat flux sharing was obtained for a substantial range of unbalanced DN shapes. Finally, the presence of a second X-point in unbalanced DN shapes did not degrade the plasma performance if it was sufficiently far inside the vacuum vessel. These results indicate that a high δ unbalanced DN shape has some advantages over a single null shape for future high power tokamak operation. (author)

  4. Ion thermal conductivity and convective energy transport in JET hot-ion regimes and H-modes

    International Nuclear Information System (INIS)

    Tibone, F.; Balet, B.; Cordey, J.G.

    1989-01-01

    Local transport in a recent series of JET experiments has been studied using interpretive codes. Auxiliary heating, mainly via neutral beam injection, was applied on low-density target plasmas confined in the double-null X-point configuration. This has produced two-component plasmas with high ion temperature and neutron yield and, above a threshold density, H-modes characterised by peak density and power deposition profiles. H-mode confinement was also obtained for the first time with 25 MW auxiliary power, of which 10 MW was from ion cyclotron resonance heating. We have used profile measurements of electron temperature T e from electron cyclotron emission and LIDAR Thomson scattering, ion temperature T i from charge-exchange recombination spectroscopy (during NBI), electron density n e from LIDAR and Abel-inverted interferometer measurements. Only sparse information is, however, available to date concerning radial profiles of effective ionic charge and radiation losses. Deuterium depletion due to high impurity levels is an important effect in these discharges, and our interpretation of thermal ion energy content, neutron yield and ion particle fluxes needs to be confirmed using measured Z eff -profiles. (author) 4 refs., 4 figs

  5. Local Physics Basis of Confinement Degradation in JET ELMy H-Mode Plasmas and Implications for Tokamak Reactors

    International Nuclear Information System (INIS)

    Budny, R.V.; Alper, B.; Borba, D.; Cordey, J.G.; Ernst, D.R.; Gowers, C.

    2001-01-01

    First results of gyrokinetic analysis of JET [Joint European Torus] ELMy [Edge Localized Modes] H-mode [high-confinement modes] plasmas are presented. ELMy H-mode plasmas form the basis of conservative performance predictions for tokamak reactors of the size of ITER [International Thermonuclear Experimental Reactor]. Relatively high performance for long duration has been achieved and the scaling appears to be favorable. It will be necessary to sustain low Z(subscript eff) and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one with an intense gas puff and the other with a spontaneous transition between Type I to III ELMs at the heating power threshold. Linear gyrokinetic analysis gives the growth rate, gamma(subscript lin) of the fastest growing modes. The flow-shearing rate omega(subscript ExB) and gamma(subscript lin) are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high |gamma(subscript ExB)|/gamma(subscript lin) near the top of the pedestal for high confinement

  6. An Heuristic Drift-Based Model of the Power Scrape-Off Width in H-Mode Tokamaks

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2011-01-01

    An heuristic model for the plasma scrape-off width in H-mode plasmas is introduced. Grad B and curv B drifts into the SOL are balanced against sonic parallel flows out of the SOL, to the divertor plates. The overall mass flow pattern posited is a modification for open field lines of Pfirsch-Shlueter flows to include sinks to the divertors. These assumptions result in an estimated SOL width of 2αρ p /R. They also result in a first-principles calculation of the particle confinement time of H-mode plasmas, qualitatively consistent with experimental observations. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, defined above, with heat from the main plasma. The separatrix temperature is calculated based on a two-point model balancing power input to the SOL with Spitzer-Haerm parallel thermal conduction losses to the divertor. This results in an heuristic closed-form prediction for the power scrape-off width that is in remarkable quantitative agreement both in absolute magnitude and in scaling with recent experimental data. Further work should include full numerical calculations, including all magnetic and electric drifts, as well as more thorough comparison with experimental data.

  7. Investigation of the hydrogen fluxes in the plasma edge of W7-AS during H-mode discharges

    International Nuclear Information System (INIS)

    Langer, U.; Taglauer, E.; Fischer, R.

    2001-01-01

    In the stellarator W7-AS the H-mode is characterized by an edge transport barrier which is localized within a few centimeters inside the separatrix. The corresponding L-H transition shows well-known features such as the steepening of the temperature and density profiles in the region of the separatrix. With a so-called sniffer probe the temporal development of the hydrogen and deuterium fluxes has been studied in the plasma edge during different H-mode discharges with deuterium gas puffing. Prior to the transition a significant reduction of the deuterium and also the hydrogen fluxes can be observed. This fact confirms the assumption that the steepening of the density profiles starts at the outermost edge of the plasma. Moreover, sniffer probe measurements in the plasma edge could therefore identify a precursor for the L-H transition. The analysis of the hydrogen neutral gases shows a distinct change of the hydrogen isotope ratio during the transition. This observation is in agreement with the change in the particle fluxes onto the targets and can also be seen in the reduced H α signals from the limiters. It is further demonstrated that significant improvement in the time resolution of the measured data can be obtained by deconvolution of the data with the apparatus function using Bayesian probability theory and the Maximum Entropy method with adaptive kernels

  8. Effects of triangularity on confinement, density limit and profile stiffness of H-modes on ASDEX upgrade

    International Nuclear Information System (INIS)

    Stober, J.; Gruber, O.; Kallenbach, A.; Mertens, V.; Ryter, F.; Staebler, A.; Suttrop, W.; Treutterer, W.

    2000-01-01

    At ASDEX Upgrade the influence of triangularity on the H-mode performance has been studied intensively. It has been found that confinement increases with δ for a fixed line-averaged density. Though confinement decreases with increasing density for all analysed values of δ, H-factors (ITERH-98P) at the Greenwald density could be raised to 1 for the highest δ values achieved so far. The H-mode density limit could be increased by approx. 20%. There is a scatter of about 30% on the confinement data, which is anti-correlated to the average density in the scrape-off layer or the neutral fluxes outside the plasma. For nearly all discharges analysed so far, the temperature profiles are self-similar. This indication of profile stiffness could be verified by changing the heat-flux profile by changing the beam-voltage of the neutral-beam injection (NBI) at high density. At low density, first results indicate a deviation from this stiff behaviour. (author)

  9. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    Science.gov (United States)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  10. The H-mode pedestal, ELMs and TF ripple effects in JT-60U/JET dimensionless identity experiments

    International Nuclear Information System (INIS)

    Saibene, G.; Oyama, N.; Loennroth, J.; Andrew, Y.; Luna, E. de la; Giroud, C.; Huysmans, G.T.A.; Kamada, Y.; Kempenaars, M.A.H.; Loarte, A.; Donald, D. Mc; Nave, M.M.F.; Meiggs, A.; Parail, V.; Sartori, R.; Sharapov, S.; Stober, J.; Suzuki, T.; Takechi, M.; Toi, K.; Urano, H.

    2007-01-01

    This paper summarizes results of dimensionless identity experiments in JT-60U and JET, aimed at the comparison of the H-mode pedestal and ELM behaviour in the two devices. Given their similar size, dimensionless matched plasmas are also similar in their dimensional parameters (in particular, the plasma minor radius a is the same in JET and JT-60U). Power and density scans were carried out at two values of I p , providing a q scan (q 95 = 3.1 and 5.1) with fixed (and matched) toroidal field. Contrary to initial expectations, a dimensionless match between the two devices was quite difficult to achieve. In general, p ped in JT-60U is lower than in JET and, at low q, the pedestal pressure of JT-60U with a Type I ELMy edge is matched in JET only in the Type III ELM regime. At q 95 = 5.1, a dimensionless match in ρ*, ν* and β p,ped is obtained with Type I ELMs, but only with low power JET H-modes. These results motivated a closer investigation of experimental conditions in the two devices, to identify possible 'hidden' physics that prevents obtaining a good match of pedestal values over a large range of plasmas parameters. Ripple-induced ion losses of the medium bore plasma used in JT-60U for the similarity experiments are identified as the main difference with JET. The magnitude of the JT-60U ripple losses is sufficient to induce counter-toroidal rotation in co-injected plasma. The influence of ripple losses was demonstrated at q 95 = 5.1: reducing ripple losses by ∼2 (from 4.3 to 1.9 MW) by replacing positive with negative neutral beam injection at approximately constant P in resulted in an increased p ped in JT-60U, providing a good match to full power JET H-modes. At the same time, the counter-toroidal rotation decreased. Physics mechanisms relating ripple losses to pedestal performance are not yet identified, and the possible role of velocity shear in the pedestal stability, as well as the possible influence of ripple on thermal ion transport are briefly

  11. Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Doyle, E J [University of California, Los Angeles, CA 90095-1597 (United States); Austin, M E [University of Texas at Austin, Austin, TX 78712 (United States); DeGrassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Gohil, P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Greenfield, C M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Jayakumar, R [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); Kaplan, D H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Lao, L L [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); McKee, G R [University of Wisconsin, Madison, WI 53706-1687 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Rhodes, T L [University of California, Los Angeles, CA 90095-1597 (United States); Wade, M R [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, G [University of California, Los Angeles, CA 90095-1597 (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Zeng, L [University of California, Los Angeles, CA 90095-1597 (United States)

    2004-05-01

    H-mode operation is the choice for next step tokamak devices based on either conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the {beta} limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D over the past four years have demonstrated a new operating regime, the quiescent H-mode (QH-mode) regime, that solves these problems. QH-mode plasmas have now been run for over 4 s (>30 energy confinement times). Utilizing the steady-state nature of the QH-mode edge allows us to obtain unprecedented spatial resolution of the edge ion profiles and the edge radial electric field, E{sub r}, by sweeping the edge plasma slowly past the view points of the charge exchange spectroscopy system. We have investigated the effects of direct edge ion orbit loss on the creation and sustainment of the QH-mode. Direct loss of ions injected into the velocity-space loss cone at the plasma edge is not necessary for creation or sustainment of the QH-mode. The direct ion orbit loss has little effect on the edge E{sub r} well. The E{sub r} at the bottom of the well in these cases is about -100 kV m{sup -1} compared with -20 to -30 kV m{sup -1} in the standard H-mode. The well is about 1 cm wide, which is close to the diameter of the deuteron gyro-orbit. We also have investigated the effect of changing edge triangularity by changing the plasma shape from upwardly biased single null to magnetically balanced double null. We have now achieved the QH-mode in these double-null plasmas. The increased triangularity allows us to increase pedestal density in QH-mode plasmas by a factor of about 2.5 and overall pedestal pressure by a factor of 2. Pedestal {beta} and {nu}{sup *} values matching the values desired for ITER have been achieved. In

  12. Strong Exciton–Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr3 Micro/Nanowire Fabry-Pérot Cavity

    KAUST Repository

    Du, Wenna; Zhang, Shuai; Shi, Jia; Chen, Jie; Wu, Zhiyong; Mi, Yang; Liu, Zhixiong; Li, Yuanzheng; Sui, Xinyu; Wang, Rui; Qiu, Xiaohui; Wu, Tao; Xiao, Yunfeng; Zhang, Qing; Liu, Xinfeng

    2018-01-01

    for their optical application, however, is rarely studied. In this work, we demonstrated the strong coupling of exciton-photon and polariton lasing in high quality CsPbBr micro/nanowires synthesized by a CVD method. By exploring spatial resolved PL spectra of CsPbBr

  13. TESLA superconducting RF cavity development

    International Nuclear Information System (INIS)

    Koepke, K.

    1995-01-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.)

  14. Kinetic equilibrium reconstruction for the NBI- and ICRH-heated H-mode plasma on EAST tokamak

    Science.gov (United States)

    Zhen, ZHENG; Nong, XIANG; Jiale, CHEN; Siye, DING; Hongfei, DU; Guoqiang, LI; Yifeng, WANG; Haiqing, LIU; Yingying, LI; Bo, LYU; Qing, ZANG

    2018-04-01

    The equilibrium reconstruction is important to study the tokamak plasma physical processes. To analyze the contribution of fast ions to the equilibrium, the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics, kinetic diagnostics and TRANSP code. It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region. The fast-ion current contributes mainly in the core region while contributes little to the pedestal current. A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current. It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.

  15. Characteristics of heat flux and particle flux to the divertor in H-mode of JT-60U

    International Nuclear Information System (INIS)

    Itami, K.; Hosogane, N.; Asakura, N.; Kubo, H.; Tsuji, S.; Shimada, M.

    1995-01-01

    Heat flux and particle flux behavior in H-mode is studied in a comparative manner. It was confirmed that the multiple peak structure of heat flux during ELM activity has a role in reducing the average value of a peak heat flux at the divertor. In order to characterize heat and particle flux during ELM activity, the ELM part and the steady state part of heat flux and particle flux were determined and statistically analyzed. A large in-out asymmetry of peak ELM heat flux density was found. The asymmetry is almost unaffected by the ion grad-B drift direction. In-out asymmetry of both ELM and steady-state parts of the particle flux were found to be similar. ((orig.))

  16. Formation of an internal transport barrier in the ohmic H-mode in the TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Andrejko, M.V.; Askinazi, L.G.; Golant, V.E.; Zhubr, N.A.; Kornev, V.A.; Krikunov, S.V.; Lebedev, S.V.; Levin, L.S.; Razdobarin, G.T.; Rozhdestvensky, V.V.; Smirnov, A.I.; Tukachinsky, A.S.; Yaroshevich, S.P.

    2000-01-01

    In experiments on studying the ohmic H-mode in the TUMAN-3M tokamak, it is found that, in high-current (I p ∼ 120-170 kA) discharges, a region with high electron-temperature and density gradients is formed in the plasma core. In this case, the energy confinement time τ E attains 9-18 ms, which is nearly twice as large as that predicted by the ELM-free ITER-93H scaling. This is evidence that the internal transport barrier in a plasma can exist without auxiliary heating. Calculations of the effective thermal diffusivity by the ASTRA transport code demonstrate a strong suppression of heat transport in the region where the temperature and density gradients are high

  17. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    Science.gov (United States)

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  18. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    Science.gov (United States)

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  19. H-mode WEST tungsten divertor operation: deuterium and nitrogen seeded simulations with SOLEDGE2D-EIRENE

    Directory of Open Access Journals (Sweden)

    G. Ciraolo

    2017-08-01

    Full Text Available Simulations of WEST H-mode divertor scenarios have been performed with SOLEDGE2D-EIRENE edge plasma transport code, both for pure deuterium and nitrogen seeded discharge. In the pure deuterium case, a target heat flux of 8 MW/m2 is reached, but misalignment between heat and the particle outflux yields 50 eV plasma temperature at the target plates. With nitrogen seeding, the heat and particle outflux are observed to be aligned so that lower plasma temperatures at the target plates are achieved together with the required high heat fluxes. This change in heat and particle outflux alignment is analysed with respect to the role of divertor geometry and the impact of vertical vs horizontal target plates on neutrals spreading.

  20. Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R., E-mail: rmaingi@pppl.gov [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Bell, R.E. [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Boyle, D.P. [Princeton University, Princeton, NJ (United States); Diallo, A.; Kaita, R.; Kaye, S.M.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08543 (United States); Sabbagh, S.A. [Columbia University, New York, NY (United States); Scotti, F.; Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2017-04-15

    A sequence of H-mode discharges with increasing levels of pre-discharge lithium evaporation (‘dose’) was conducted in high triangularity and elongation boundary shape in NSTX. Energy confinement increased, and recycling decreased with increasing lithium dose, similar to a previous lithium dose scan in medium triangularity and elongation plasmas. Data-constrained SOLPS interpretive modeling quantified the edge transport change: the electron particle diffusivity decreased by 10–30x. The electron thermal diffusivity decreased by 4x just inside the top of the pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline expectation for lithium benefits in NSTX-U, which is optimized for a boundary shape similar to the one in this experiment.

  1. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Garofalo, A. M., E-mail: garofalo@fusion.gat.com; Burrell, K. H.; Meneghini, O.; Osborne, T. H.; Paz-Soldan, C.; Smith, S. P.; Snyder, P. B.; Turnbull, A. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Eldon, D.; Grierson, B. A.; Solomon, W. M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Hanson, J. M. [Columbia University, 2960 Broadway, New York, New York 10027-6900 (United States); Holland, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Huijsmans, G. T. A.; Liu, F.; Loarte, A. [ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance (France); Zeng, L. [University of California Los Angeles, P.O. Box 957099, Los Angeles, California 90095-7099 (United States)

    2015-05-15

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER-like shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory, the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. The DIII-D results are in excellent agreement with these predictions, and nonlinear magnetohydrodynamic analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.

  2. Voltage control of cavity magnon polariton

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, S., E-mail: kaurs3@myumanitoba.ca; Rao, J. W.; Gui, Y. S.; Hu, C.-M., E-mail: hu@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Yao, B. M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); National Laboratory for Infrared Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-07-18

    We have experimentally investigated the microwave transmission of the cavity-magnon-polariton (CMP) generated by integrating a low damping magnetic insulator onto a 2D microwave cavity. The high tunability of our planar cavity allows the cavity resonance frequency to be precisely controlled using a DC voltage. By appropriately tuning the voltage and magnetic bias, we can observe the cavity photon magnon coupling and the magnetic coupling between a magnetostatic mode and the generated CMP. The dispersion of the generated CMP was measured by either tuning the magnetic field or the applied voltage. This electrical control of CMP may open up avenues for designing advanced on-chip microwave devices that utilize light-matter interaction.

  3. Early 500 MHz prototype LEP RF Cavity with superposed storage cavity

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    The principle of transferring the RF power back and forth between the accelerating cavity and a side-coupled storage cavity was demonstrated with this 500 MHz prototype. In LEP, the accelerating frequency was 352.2 MHz, and accelerating and storage cavities were consequently larger. See also 8002294, 8006061, 8407619X, and Annual Reports 1980, p.115; 1981, p.95; 1985, vol.I, p.13.

  4. EDITORIAL: Special issue containing papers presented at the 12th International Workshop on H-mode Physics and Transport Barriers Special issue containing papers presented at the 12th International Workshop on H-mode Physics and Transport Barriers

    Science.gov (United States)

    Hahm, T. S.

    2010-06-01

    The 12th International Workshop on H-mode Physics and Transport Barriers was held at the Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA between September 30 and October 2, 2009. This meeting was the continuation of a series of previous meetings which was initiated in 1987 and has been held bi-annually since then. Following the recent tradition at the last few meetings, the program was sub- divided into six sessions. At each session, an overview talk was presented, followed by two or three shorter oral presentations which supplemented the coverage of important issues. These talks were followed by discussion periods and poster sessions of contributed papers. The sessions were: Physics of Transition to/from Enhanced Confinement Regimes, Pedestal and Edge Localized Mode Dynamics, Plasma Rotation and Momentum Transport, Role of 3D Physics in Transport Barriers, Transport Barriers: Theory and Simulations and High Priority ITER Issues on Transport Barriers. The diversity of the 90 registered participants was remarkable, with 22 different nationalities. US participants were in the majority (36), followed by Japan (14), South Korea (7), and China (6). This special issue of Nuclear Fusion consists of a cluster of 18 accepted papers from submitted manuscripts based on overview talks and poster presentations. The paper selection procedure followed the guidelines of Nuclear Fusion which are essentially the same as for regular articles with an additional requirement on timeliness of submission, review and revision. One overview paper and five contributed papers report on the H-mode pedestal related results which reflect the importance of this issue concerning the successful operation of ITER. Four papers address the rotation and momentum transport which play a crucial role in transport barrier physics. The transport barrier transition condition is the main focus of other four papers. Finally, four additional papers are devoted to the behaviour and control of

  5. Review of cavity optomechanical cooling

    International Nuclear Information System (INIS)

    Liu Yong-Chun; Hu Yu-Wen; Xiao Yun-Feng; Wong Chee Wei

    2013-01-01

    Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and applications ranging from high-precision metrology to quantum information processing. For these purposes, a crucial step is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the motional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then, the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit. (topical review - quantum information)

  6. Segmented trapped vortex cavity

    Science.gov (United States)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  7. Integrated simulations of H-mode operation in ITER including core fuelling, divertor detachment and ELM control

    Science.gov (United States)

    Polevoi, A. R.; Loarte, A.; Dux, R.; Eich, T.; Fable, E.; Coster, D.; Maruyama, S.; Medvedev, S. Yu.; Köchl, F.; Zhogolev, V. E.

    2018-05-01

    ELM mitigation to avoid melting of the tungsten (W) divertor is one of the main factors affecting plasma fuelling and detachment control at full current for high Q operation in ITER. Here we derive the ITER operational space, where ELM mitigation to avoid melting of the W divertor monoblocks top surface is not required and appropriate control of W sources and radiation in the main plasma can be ensured through ELM control by pellet pacing. We apply the experimental scaling that relates the maximum ELM energy density deposited at the divertor with the pedestal parameters and this eliminates the uncertainty related with the ELM wetted area for energy deposition at the divertor and enables the definition of the ITER operating space through global plasma parameters. Our evaluation is thus based on this empirical scaling for ELM power loads together with the scaling for the pedestal pressure limit based on predictions from stability codes. In particular, our analysis has revealed that for the pedestal pressure predicted by the EPED1  +  SOLPS scaling, ELM mitigation to avoid melting of the W divertor monoblocks top surface may not be required for 2.65 T H-modes with normalized pedestal densities (to the Greenwald limit) larger than 0.5 to a level of current of 6.5–7.5 MA, which depends on assumptions on the divertor power flux during ELMs and between ELMs that expand the range of experimental uncertainties. The pellet and gas fuelling requirements compatible with control of plasma detachment, core plasma tungsten accumulation and H-mode operation (including post-ELM W transient radiation) have been assessed by 1.5D transport simulations for a range of assumptions regarding W re-deposition at the divertor including the most conservative assumption of zero prompt re-deposition. With such conservative assumptions, the post-ELM W transient radiation imposes a very stringent limit on ELM energy losses and the associated minimum required ELM frequency. Depending on

  8. Impurity transport model for the normal confinement and high density H-mode discharges in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Ida, K; Burhenn, R; McCormick, K; Pasch, E; Yamada, H; Yoshinuma, M; Inagaki, S; Murakami, S; Osakabe, M; Liang, Y; Brakel, R; Ehmler, H; Giannone, L; Grigull, P; Knauer, J P; Maassberg, H; Weller, A

    2003-01-01

    An impurity transport model based on diffusivity and the radial convective velocity is proposed as a first approach to explain the differences in the time evolution of Al XII (0.776 nm), Al XI (55 nm) and Al X (33.3 nm) lines following Al-injection by laser blow-off between normal confinement discharges and high density H-mode (HDH) discharges. Both discharge types are in the collisional regime for impurities (central electron temperature is 0.4 keV and central density exceeds 10 20 m -3 ). In this model, the radial convective velocity is assumed to be determined by the radial electric field, as derived from the pressure gradient. The diffusivity coefficient is chosen to be constant in the plasma core but is significantly larger in the edge region, where it counteracts the high local values of the inward convective velocity. Under these conditions, the faster decay of aluminium in HDH discharges can be explained by the smaller negative electric field in the bulk plasma, and correspondingly smaller inward convective velocity, due to flattening of the density profiles

  9. Experimental evidence for the suitability of ELMing H-mode operation in ITER with regard to core transport of helium

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Burrell, K.H.

    1996-09-01

    Studies have been conducted in DIII-D to assess the viability of the ITER design with regard to helium ash removal, including both global helium exhaust studies and detailed helium transport studies. With respect to helium ash accumulation, the results are encouraging for successful operation of ITER in ELMing H-mode plasmas with conventional high-recycling divertor operation. Helium can be removed from the plasma core with a characteristic time constant of ∼ 8 energy confinement times, even with a central source of helium. Furthermore, the exhaust rate is limited by the pumping efficiency of the system and not by transport of helium within the plasma core. Helium transport studies have shown that D He /X eff ∼ 1 in all confinement regimes studied to date and there is little dependence of D He /X eff on normalized gyroradius in dimensionless scaling studies, suggesting that D He /X eff will be ∼ 1 in ITER. These observations suggest that helium transport within the plasma core should be sufficient to prevent unacceptable fuel dilution in ITER. However, helium exhaust is also strongly dependent on many factors (e.g., divertor plasma conditions, plasma and baffling geometry, flux amplification, pumping speed, etc.) that are difficult to extrapolate. Studies have revealed the helium diffusivity decreases as the plasma density increases, which is unfavorable to ITER's extremely high density operation

  10. Analysis of performance degradation in an electron heating dominant H-mode plasma after ECRH termination in EAST

    Science.gov (United States)

    Du, Hongfei; Ding, Siye; Chen, Jiale; Wang, Yifeng; Lian, Hui; Xu, Guosheng; Zhai, Xuemei; Liu, Haiqing; Zang, Qing; Lyu, Bo; Duan, Yanmin; Qian, Jinping; Gong, Xianzu

    2018-06-01

    In recent EAST experiments, significant performance degradation accompanied by a decrease of internal inductance is observed in an electron heating dominant H-mode plasma after the electron cyclotron resonance heating termination. The lower hybrid wave (LHW) deposition and effective electron heat diffusivity are calculated to explain this phenomenon. Analysis shows that the changes of LHW heating deposition rather than the increase of transport are responsible for the significant decrease in energy confinement (). The reason why the confinement degradation occurred on a long time scale could be attributed to both good local energy confinement in the core and also the dependence of LHW deposition on the magnetic shear. The electron temperature profile shows weaker stiffness in near axis region where electron heating is dominant, compared to that in large radius region. Unstable electron modes from low to high k in the core plasma have been calculated in the linear GYRO simulations, which qualitatively agree with the experimental observation. This understanding of the plasma performance degradation mechanism will help to find ways of improving the global confinement in the radio-frequency dominant scenario in EAST.

  11. Initial results of H-mode edge pedestal turbulence evolution with quadrature reflectometer measurements on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. [University of California, Los Angeles, CA 90095 (United States)]. E-mail: wangg@fusion.gat.com; Peebles, W.A. [University of California, Los Angeles, CA 90095 (United States); Doyle, E.J. [University of California, Los Angeles, CA 90095 (United States); Rhodes, T.L. [University of California, Los Angeles, CA 90095 (United States); Zeng, L. [University of California, Los Angeles, CA 90095 (United States); Nguyen, X. [University of California, Los Angeles, CA 90095 (United States); Osborne, T.H. [General Atomics, San Diego, CA 92186-5608 (United States); Snyder, P.B. [General Atomics, San Diego, CA 92186-5608 (United States); Kramer, G.J. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Groebner, R.J. [General Atomics, San Diego, CA 92186-5608 (United States); Burrell, K.H. [General Atomics, San Diego, CA 92186-5608 (United States); Leonard, A.W. [General Atomics, San Diego, CA 92186-5608 (United States); Fenstermacher, M.E. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Strait, E.J. [General Atomics, San Diego, CA 92186-5608 (United States)

    2007-06-15

    High-resolution quadrature reflectometer measurements of density fluctuation levels have been obtained on DIII-D for H-mode edge pedestal studies. Initial results are presented from the L-H transition to the first ELM for two cases: (i) a low pedestal beta discharge, in which density turbulence in the pedestal has little change during the ELM-free phase, and (ii) a high pedestal beta discharge in which both density and magnetic turbulence are observed to increase before the first ELM. These high beta data are consistent with the existence of electromagnetic turbulence suggested by some transport models. During Type-I ELM cycles, when little magnetic turbulence can be observed, pedestal turbulence increases just after an ELM crash and then decreases before next ELM strikes, in contrast to a drop after ELM crash and then it re-grows when strong magnetic turbulence shows similar behavior. Clear ELM precursors are observed on {<=}20% of Type-I ELMs observed to date.

  12. A Comparison of Plasma Performance Between Single-Null and Double-Null Configurations During Elming H-Mode

    International Nuclear Information System (INIS)

    Petrie, T.W.; Fenstermacher, M.E.; Allen, S.L.; Carlstrom, T.N.; Gohil, P.; Groebner, R.J.; Greenfield, C.M.; Hyatt, A.W.; Lasnier, C.J.; La Haye, R.J.; Leonard, A.W.; Mahdavi, M.A.; Osborne, T.H.; Porter, G.D.; Rhodes, T.L.; Thomas, D.M.; Watkins, J.G.; West, W.P.; Wolf, N.S.

    1999-01-01

    Tokamak plasma performance generally improves with increased shaping of the plasma cross section, such as higher elongation and higher triangularity. The stronger shaping, especially higher triangularity, leads to changes in the magnetic topology of the divertor. Because there are engineering and divertor physics issues associated with changes in the details of the divertor flux geometry, especially as the configuration transitions from a single-null (SN) divertor to a marginally balanced double-null (DN) divertor, we have undertaken a systematic evaluation of the plasma characteristics as the magnetic geometry is varied, particularly with respect to (1) energy confinement, (2) the response of the plasma to deuterium gas fueling, (3) the operational density range for the ELMing H-mode, and (4) heat flux sharing by the diverters. To quantify the degree of divertor imbalance (or equivalently, to what degree the shape is double-null or single-null), we define a parameter DRSEP. DRSEP is taken as the radial distance between the upper divertor separatrix and the lower divertor separatrix, as determined at the outboard midplane. For example, if DRSEP=O, the configuration is a magnetically balanced DN; if DRSEP = +1.0 cm, the divertor configuration is biased toward the upper divertor. Three examples are shown in Fig. 1. In the following discussions, VB drift is directed toward the lower divertor

  13. Plasma-edge gradients in L-mode and ELM-free H-mode JET plasmas

    International Nuclear Information System (INIS)

    Breger, P.; Zastrow, K.-D.; Davies, S.J.; K ig, R.W.T.; Summers, D.D.R.; Hellermann, M.G. von; Flewin, C.; Hawkes, N.C.; Pietrzyk, Z.A.; Porte, L.

    1998-01-01

    Experimental plasma-edge gradients in JET during the edge-localized-mode (ELM) free H-mode are examined for evidence of the presence and location of the transport barrier region inside the magnetic separatrix. High spatial resolution data in electron density is available in- and outside the separatrix from an Li-beam diagnostic, and in electron temperature inside the separatrix from an ECE diagnostic, while outside the separatrix, a reciprocating probe provides electron density and temperature data in the scrape-off layer. Ion temperatures and densities are measured using an edge charge-exchange diagnostic. A comparison of observed widths and gradients of this edge region with each other and with theoretical expectations is made. Measurements show that ions and electrons form different barrier regions. Furthermore, the electron temperature barrier width (3-4 cm) is about twice that of electron density, in conflict with existing scaling laws. Suitable parametrization of the edge data enables an electron pressure gradient to be deduced for the first time at JET. It rises during the ELM-free phase to reach only about half the marginal pressure gradient expected from ballooning stability before the first ELM. Subsequent type I ELMs occur on a pressure gradient contour roughly consistent with both a constant barrier width model and a ballooning mode envelope model. (author)

  14. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  15. Cavity QED with single trapped Ca+-ions

    International Nuclear Information System (INIS)

    Mundt, A.B.

    2003-02-01

    This thesis reports on the design and setup of a vacuum apparatus allowing the investigation of cavity QED effects with single trapped 40 Ca + ions. The weak coupling of ion and cavity in the 'bad cavity limit' may serve to inter--convert stationary and flying qubits. The ion is confined in a miniaturized Paul trap and cooled via the Doppler effect to the Lamb--Dicke regime. The extent of the atomic wave function is less than 30 nm. The ion is enclosed by a high finesse optical cavity. The technically--involved apparatus allows movement of the trap relative to the cavity and the trapped ion can be placed at any position in the standing wave. By means of a transfer lock the cavity can be resonantly stabilized with the S 1/2 ↔ D 5/2 quadrupole transition at 729 nm (suitable as a qubit) without light at that wavelength being present in the cavity. The coupling of the cavity field to the S 1/2 ↔ D 5/2 quadrupole transition is investigated with various techniques in order to determine the spatial dependence as well as the temporal dynamics. The orthogonal coupling of carrier and first--order sideband transitions at field nodes and antinodes is explored. The coherent interaction of the ion and the cavity field is confirmed by exciting Rabi oscillations with short resonant pulses injected into the cavity. Finally, first experimental steps towards the observation of cavity enhanced spontaneous emission have been taken. (author)

  16. Phonon Routing in Integrated Optomechanical Cavity-waveguide Systems

    Science.gov (United States)

    2015-08-20

    cavity (bottom beam of Fig. 1b), allowing for evanescent cou- pling of laser light into and out of the cavity. A single optical fiber taper is used to...couple light into the on- chip coupling waveguide, and a photonic crystal mirror is etched in to the end of the optical coupling waveguide so that light...coupled into the nanobeam cavity can be recollected by the optical fiber taper as per Ref. [36]. Figure 1c shows the band structure of the phonon

  17. Cellular automata in photonic cavity arrays.

    Science.gov (United States)

    Li, Jing; Liew, T C H

    2016-10-31

    We propose theoretically a photonic Turing machine based on cellular automata in arrays of nonlinear cavities coupled with artificial gauge fields. The state of the system is recorded making use of the bistability of driven cavities, in which losses are fully compensated by an external continuous drive. The sequential update of the automaton layers is achieved automatically, by the local switching of bistable states, without requiring any additional synchronization or temporal control.

  18. Radial transport in the far scrape-off layer of ASDEX upgrade during L-mode and ELMy H-mode

    DEFF Research Database (Denmark)

    Ionita, C.; Naulin, Volker; Mehlmann, F.

    2013-01-01

    The radial turbulent particle flux and the Reynolds stress in the scrape-off layer (SOL) of ASDEX Upgrade were investigated for two limited L-mode (low confinement) and one ELMy H-mode (high confinement) discharge. A fast reciprocating probe was used with a probe head containing five Langmuir...

  19. Edge Pedestal Control in Quiescent H-Mode Discharges in DIII-D Using Co Plus Counter Neutral Beam Injection

    International Nuclear Information System (INIS)

    Burrell, K.H.; Osborne, T.H.; Snyder, P.B.; West, W.P.; Chu, M.S.; Fenstermacher, M.E.; Gohil, P.; Solomon, W.M.

    2008-01-01

    We have made two significant discoveries in our recent studies of quiescent H-mode (QH-mode) plasmas in DIII-D. First, we have found that we can control the edge pedestal density and pressure by altering the edge particle transport through changes in the edge toroidal rotation. This allows us to adjust the edge operating point to be close to, but below the ELM stability boundary, maintaining the ELM-free state while allowing up to a factor of two increase in edge pressure. The ELM boundary is significantly higher in more strongly shaped plasmas, which broadens the operating space available for QH-mode and leads to improved core performance. Second, for the first time on any tokamak, we have created QH-mode plasmas with strong edge co-rotation; previous QH-modes in all tokamaks had edge counter rotation. This result demonstrates that counter NBI and edge counter rotation are not essential conditions for QH-mode. Both these investigations benefited from the edge stability predictions based on peeling-ballooning mode theory. The broadening of the ELM-stable region with plasma shaping is predicted by that theory. The theory has also been extended to provide a model for the edge harmonic oscillation (EHO) that regulates edge transport in the QH-mode. Many of the features of that theory agree with the experimental results reported either previously or in the present paper. One notable example is the prediction that co-rotating QH-mode is possible provided sufficient shear in the edge rotation can be created

  20. Towards cooperative guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire.

    Science.gov (United States)

    Flemisch, Frank Ole; Bengler, Klaus; Bubb, Heiner; Winner, Hermann; Bruder, Ralph

    2014-01-01

    This article provides a general ergonomic framework of cooperative guidance and control for vehicles with an emphasis on the cooperation between a human and a highly automated vehicle. In the twenty-first century, mobility and automation technologies are increasingly fused. In the sky, highly automated aircraft are flying with a high safety record. On the ground, a variety of driver assistance systems are being developed, and highly automated vehicles with increasingly autonomous capabilities are becoming possible. Human-centred automation has paved the way for a better cooperation between automation and humans. How can these highly automated systems be structured so that they can be easily understood, how will they cooperate with the human? The presented research was conducted using the methods of iterative build-up and refinement of framework by triangulation, i.e. by instantiating and testing the framework with at least two derived concepts and prototypes. This article sketches a general, conceptual ergonomic framework of cooperative guidance and control of highly automated vehicles, two concepts derived from the framework, prototypes and pilot data. Cooperation is exemplified in a list of aspects and related to levels of the driving task. With the concept 'Conduct-by-Wire', cooperation happens mainly on the guidance level, where the driver can delegate manoeuvres to the automation with a specialised manoeuvre interface. With H-Mode, a haptic-multimodal interaction with highly automated vehicles based on the H(orse)-Metaphor, cooperation is mainly done on guidance and control with a haptically active interface. Cooperativeness should be a key aspect for future human-automation systems. Especially for highly automated vehicles, cooperative guidance and control is a research direction with already promising concepts and prototypes that should be further explored. The application of the presented approach is every human-machine system that moves and includes high

  1. Reactor-relevant quiescent H-mode operation using torque from non-axisymmetric, non-resonant magnetic fields

    International Nuclear Information System (INIS)

    Burrell, K. H.; Garofalo, A. M; Osborne, T. H.; Schaffer, M. J.; Snyder, P. B.; Solomon, W. M.; Park, J.-K.; Fenstermacher, M. E.

    2012-01-01

    Results from recent experiments demonstrate that quiescent H-mode (QH-mode) sustained by magnetic torque from non-axisymmetric magnetic fields is a promising operating mode for future burning plasmas. Using magnetic torque from n=3 fields to replace counter-I p torque from neutral beam injection (NBI), we have achieved long duration, counter-rotating QH-mode operation with NBI torque ranging from counter-I p to up to co-I p values of 1-1.3 Nm. This co-I p torque is 3 to 4 times the scaled torque that ITER will have. These experiments utilized an ITER-relevant lower single-null plasma shape and were done with ITER-relevant values of ν ped * and β N ped . These discharges exhibited confinement quality H 98y2 =1.3, in the range required for ITER. In preliminary experiments using n=3 fields only from a coil outside the toroidal coil, QH-mode plasmas with low q 95 =3.4 have reached fusion gain values of G=β N H 89 /q 95 2 =0.4, which is the desired value for ITER. Shots with the same coil configuration also operated with net zero NBI torque. The limits on G and co-I p torque have not yet been established for this coil configuration. QH-mode work to has made significant contact with theory. The importance of edge rotational shear is consistent with peeling-ballooning mode theory. Qualitative and quantitative agreements with the predicted neoclassical toroidal viscosity torque is seen.

  2. Dynamics of the Plasma Edge during the L-H Transition and H-mode in MAST

    Energy Technology Data Exchange (ETDEWEB)

    Scannell, R.; Meyer, H.; Cunningham, G.; Field, A.; Kirk, A.; Samuli, S.; Patel, A., E-mail: rory.scannell@ccfe.ac.uk [EURATOM /CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Dunai, D.; Zoletnik, S. [KFKI-RMKI, EURATOM Association, Budapest (Hungary)

    2012-09-15

    Full text: The evolution of the MAST plasma during the L-H transition has been studied in the density range 1.5 - 3.0 x 10{sup 19} m{sup -3}. A dithering transition phase, the duration of which depends on the plasma density, is observed before the transition to ELMy or ELM free H-mode. A range of new diagnostic data has been taken during these periods, showing a spin-up of the perpendicular He{sup +} flow correlated with changes in the Da emission. In this density range the power threshold increases with increasing density. As well as the expected power threshold dependency on absolute density, the threshold power is observed to depend on the density evolution prior to the transition. Small changes in fuelling location, plasma current, toroidal field and plasma shape can lead to changes in the power threshold by a factor of two, significantly larger than hose predicted by the scaling. The pedestal evolution between typical type I ELMs in connected double null configuration on MAST show increasing pedestal pressure and width as function time through the ELM cycle. This results in an expanding high pressure gradient region with little increase in peak pressure gradient within this region. It has been shown that the triggering of these ELMs is caused by decreasing stability limit as the transport barrier moves inwards. Application of n = 6 resonant magnetic perturbations to the plasma causes ELM mitigation, with smaller but much more frequent ELMs. The pressure gradients in this mitigated period are significantly less than those observed during non-mitigated type I ELMs. This reduction in pressure gradient, which indicates a different stability limit, results from both a decrease in pedestal height and increase in pedestal width. (author)

  3. Parametric dependencies of the experimental tungsten transport coefficients in ICRH and ECRH assisted ASDEX Upgrade H-modes

    Science.gov (United States)

    Sertoli, M.; Angioni, C.; Odstrcil, T.; ASDEX Upgrade Team; Eurofusion MST1 Team

    2017-11-01

    The profiles of the W transport coefficients have been experimentally calculated for a large database of identical ASDEX Upgrade H-mode discharges where only the radio-frequency (RF) power characteristics have been varied [Angioni et al., Nucl. Fusion 57, 056015 (2017)]. Central ion cyclotron resonance heating (ICRH) in the minority heating scheme has been compared with central and off-axis electron cyclotron resonance heating (ECRH), using both localized and broad heat deposition profiles. The transport coefficients have been calculated applying the gradient-flux relation to the evolution of the intrinsic W density in-between sawtooth cycles as measured using the soft X-ray diagnostic. For both ICRH and ECRH, the major player in reducing the central W density peaking is found to be the reduction of inward pinch and, in the case of ECRH, the rise of an outward convection. The impurity convection increases, from negative to positive, almost linearly with RF-power, while no appreciable changes are observed in the diffusion coefficient, which remains roughly at neoclassical levels independent of RF power or background plasma conditions. The ratio vW/DW is consistent with the equilibrium ∇ n W / n W prior to the sawtooth crash, corroborating the separate estimates of diffusion and convection. These experimental findings are slightly different from previous results obtained analysing the evolution of impurity injections over many sawtooth cycles. Modelling performed using the drift-kinetic code NEO and the gyro-kinetic code GKW (assuming axisymmetry) overestimates the diffusion coefficient and underestimates the experimental positive convection. This is a further indication that magneto-hydrodynamic/neoclassical models accounting for 3D effects may be needed to characterize impurity transport in sawtoothing tokamak plasmas.

  4. Simulations of particle and heat fluxes in an ELMy H-mode discharge on EAST using BOUT++ code

    Science.gov (United States)

    Wu, Y. B.; Xia, T. Y.; Zhong, F. C.; Zheng, Z.; Liu, J. B.; team3, EAST

    2018-05-01

    In order to study the distribution and evolution of the transient particle and heat fluxes during edge-localized mode (ELM) bursts on the Experimental Advanced Superconducting Tokamak (EAST), the BOUT++ six-field two-fluid model is used to simulate the pedestal collapse. The profiles from the EAST H-mode discharge #56129 are used as the initial conditions. Linear analysis shows that the resistive ballooning mode and drift-Alfven wave are two dominant instabilities for the equilibrium, and play important roles in driving ELMs. The evolution of the density profile and the growing process of the heat flux at divertor targets during the burst of ELMs are reproduced. The time evolution of the poloidal structures of T e is well simulated, and the dominant mode in each stage of the ELM crash process is found. The studies show that during the nonlinear phase, the dominant mode is 5, and it changes to 0 when the nonlinear phase goes to saturation after the ELM crash. The time evolution of the radial electron heat flux, ion heat flux, and particle density flux at the outer midplane (OMP) are obtained, and the corresponding transport coefficients D r, χ ir, and χ er reach maximum around 0.3 ∼ 0.5 m2 s‑1 at ΨN = 0.9. The heat fluxes at outer target plates are several times larger than that at inner target plates, which is consistent with the experimental observations. The simulated profiles of ion saturation current density (j s) at the lower outboard (LO) divertor target are compared to those of experiments by Langmuir probes. The profiles near the strike point are similar, and the peak values of j s from simulation are very close to the measurements.

  5. Dependence of the L- to H-mode Power Threshold on Toroidal Rotation and the Link to Edge Turbulence Dynamics

    International Nuclear Information System (INIS)

    McKee, G.; Gohil, P.; Schlossberg, D.; Boedo, J.; Burrell, K.; deGrassie, J.; Groebner, R.; Makowski, M.; Moyer, R.; Petty, C.; Rhodes, T.; Schmitz, L.; Shafer, M.; Solomon, W.; Umansky, M.; Wang, G.; White, A.; Xu, X.

    2008-01-01

    The injected power required to induce a transition from L-mode to H-mode plasmas is found to depend strongly on the injected neutral beam torque and consequent plasma toroidal rotation. Edge turbulence and flows, measured near the outboard midplane of the plasma (0.85 < r/a < 1.0) on DIII-D with the high-sensitivity 2D beam emission spectroscopy (BES) system, likewise vary with rotation and suggest a causative connection. The L-H power threshold in plasmas with the ion (del)B drift away from the X-point decreases from 4-6 MW with co-current beam injection, to 2-3 MW with near zero net injected torque, and to <2 MW with counter injection. Plasmas with the ion (del)B drift towards the X-point exhibit a qualitatively similar though less pronounced power threshold dependence on rotation. 2D edge turbulence measurements with BES show an increasing poloidal flow shear as the L-H transition is approached in all conditions. At low rotation, the poloidal flow of turbulent eddies near the edge reverses prior to the L-H transition, generating a significant poloidal flow shear that exceeds the measured turbulence decorrelation rate. This increased poloidal turbulence velocity shear may facilitate the L-H transition. No such reversal is observed in high rotation plasmas. The poloidal turbulence velocity spectrum exhibits a transition from a Geodesic Acoustic Mode zonal flow to a higher-power, lower frequency, zero-mean-frequency zonal flow as rotation varies from co-current to balanced during a torque scan at constant injected neutral beam power, perhaps also facilitating the L-H transition. This reduced power threshold at lower toroidal rotation may benefit inherently low-rotation plasmas such as ITER

  6. Improved reactor cavity

    International Nuclear Information System (INIS)

    Katz, L.R.; Demarchais, W.E.

    1984-01-01

    A reactor pressure vessel disposed in a cavity has coolant inlet or outlet pipes extending through passages in the cavity walls and welded to pressure nozzles. The cavity wall has means for directing fluid away from a break at a weld away from the pressure vessel, and means for inhibiting flow of fluid toward the vessel. (author)

  7. Repulsive fluxons in a stack of Josephson junctions perturbed by a cavity

    DEFF Research Database (Denmark)

    Madsen, Søren; Pedersen, Niels Falsig; Christiansen, Peter Leth

    2008-01-01

    The BSCCO type intrinsic Josephson junction has been modeled as a stack of inductively coupled long Josephson junctions, which were described by a system of coupled sine-Gordon equations. In a system of 10 long Josephson junctions coupled to a linear cavity, we numerically investigate how...... of the inductive coupling strength, we investigate the cavity current, fluxon phase difference, and current–voltage characteristic. The stack-cavity system with in-phase fluxon motion may be utilized as a THz oscillator....

  8. Optomechanic interactions in phoxonic cavities

    Directory of Open Access Journals (Sweden)

    Bahram Djafari-Rouhani

    2014-12-01

    Full Text Available Phoxonic crystals are periodic structures exhibiting simultaneous phononic and photonic band gaps, thus allowing the confinement of both excitations in the same cavity. The phonon-photon interaction can be enhanced due to the overlap of both waves in the cavity. In this paper, we discuss some of our recent theoretical works on the strength of the optomechanic coupling, based on both photoelastic and moving interfaces mechanisms, in different (2D, slabs, strips phoxonic crystals cavities. The cases of two-dimensional infinite and slab structures will enable us to mention the important role of the symmetry and degeneracy of the modes, as well as the role of the materials whose photoelastic constants can be wavelength dependent. Depending on the phonon-photon pair, the photoelastic and moving interface mechanisms can contribute in phase or out-of-phase. Then, the main part of the paper will be devoted to the optomechanic interaction in a corrugated nanobeam waveguide exhibiting dual phononic/photonic band gaps. Such structures can provide photonic modes with very high quality factor, high frequency phononic modes of a few GHz inside a gap and optomechanical coupling rate reaching a few MHz.

  9. Design of half-reentrant SRF cavities

    International Nuclear Information System (INIS)

    Meidlinger, M.; Grimm, T.L.; Hartung, W.

    2006-01-01

    The shape of a TeSLA inner cell can be improved to lower the peak surface magnetic field at the expense of a higher peak surface electric field by making the cell reentrant. Such a single-cell cavity was designed and tested at Cornell, setting a world record accelerating gradient [V. Shemelin et al., An optimized shape cavity for TESLA: concept and fabrication, 11th Workshop on RF Superconductivity, Travemuende, Germany, September 8-12, 2003; R. Geng, H. Padamsee, Reentrant cavity and first test result, Pushing the Limits of RF Superconductivity Workshop, Argonne National Laboratory, September 22-24, 2004]. However, the disadvantage to a cavity is that liquids become trapped in the reentrant portion when it is vertically hung during high pressure rinsing. While this was overcome for Cornell's single-cell cavity by flipping it several times between high pressure rinse cycles, this may not be feasible for a multi-cell cavity. One solution to this problem is to make the cavity reentrant on only one side, leaving the opposite wall angle at six degrees for fluid drainage. This idea was first presented in 2004 [T.L. Grimm et al., IEEE Transactions on Applied Superconductivity 15(6) (2005) 2393]. Preliminary designs of two new half-reentrant (HR) inner cells have since been completed, one at a high cell-to-cell coupling of 2.1% (high-k cc HR) and the other at 1.5% (low-k cc HR). The parameters of a HR cavity are comparable to a fully reentrant cavity, with the added benefit that a HR cavity can be easily cleaned with current technology

  10. Analysis of a three-cell cavity which suppresses instabilities associated with the accelerating mode

    International Nuclear Information System (INIS)

    Yamazaki, Y.; Kageyama, T.

    1994-01-01

    In a large ring with extremely heavy beam loading such as a B-factory it is possible that the accelerating mode, itself, gives rise to a longitudinal coupled-bunch instability. In order to solve this problem Shintake proposed to attach a storage cavity to an accelerating cavity. The present paper shows that the system can be put into practical use, if one adds a coupling cavity in between the two cavities. (author)

  11. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Q. Q., E-mail: yangqq@ipp.ac.cn; Zhong, F. C., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Jia, M. N. [College of Science, Donghua University, Shanghai 201620 (China); Xu, G. S., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  12. Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D.

    Science.gov (United States)

    Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L

    2016-11-01

    Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.

  13. Electron Bernstein wave heating of over-dense H-mode plasmas in the TCV tokamak via O-X-B double mode conversion

    International Nuclear Information System (INIS)

    Pochelon, A.; Mueck, A.; Curchod, L.; Camenen, Y.; Coda, S.; Duval, B.P.; Goodman, T.P.; Klimanov, I.; Laqua, H.P.; Martin, Y.; Moret, J.-M.; Porte, L.; Sushkov, A.; Udintsev, V.S.; Volpe, F.

    2007-01-01

    This paper reports on the first demonstration of electron Bernstein wave heating (EBWH) by double mode conversion from ordinary (O-) to Bernstein (B-) via the extraordinary (X-) mode in an over-dense tokamak plasma, using low field side launch, achieved in the TCV tokamak H-mode, making use of its naturally generated steep density gradient. This technique offers the possibility of overcoming the upper density limit of conventional EC microwave heating. The sensitive dependence of the O-X mode conversion on the microwave launching direction has been verified experimentally. Localized power deposition, consistent with theoretical predictions, has been observed at densities well above the conventional cut-off. Central heating has been achieved, at powers up to two megawatts. This demonstrates the potential of EBW in tokamak H-modes, the intended mode of operation for a reactor such as ITER

  14. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    In typical circuit QED systems on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present design considerations for the 3D microwave cavity as well as the superconducting transmon qubit. Moreover, we show experimental data of a high purity aluminum cavity demonstrating quality factors above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. Our experiments also demonstrate that the quality factor is less dependent on the power compared to planar resonator geometries. Furthermore, we present strategies for tuning both the cavity and the qubit individually.

  15. SC-cavity operation via WG-transformer

    International Nuclear Information System (INIS)

    Dwersteg, B.

    1990-01-01

    Varying beam currents in storage rings like PETRA and HERA strongly change the match condition of the generator-cavity system. To maintain optimum energy transfer variable input coupling is needed. A variable waveguide transformer was developed which covers transformation ratios of 0.2 to 5. Additionally this device allows to change the cavity phase independently. The parameters of a system consisting of generator, transformer and superconducting cavity under operation in a storage ring will be discussed. (author)

  16. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M

    1999-01-01

    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  17. Cavity Optomechanics at Millikelvin Temperatures

    Science.gov (United States)

    Meenehan, Sean Michael

    The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials. However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high

  18. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...... (18, 19) for receiving light from the grating region (11) is formed within or to be connected to the grating region, and functions as an 5 output coupler for the VCL. Thereby, vertical lasing modes (16) are coupled to lateral in-plane modes (17, 20) of the in-plane waveguide formed in the silicon...

  19. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  20. Circuit QED with 3D cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Edwar; Eder, Peter; Fischer, Michael; Goetz, Jan; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Muenchen (Germany); Haeberlein, Max; Wulschner, Karl Friedrich [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Fedorov, Kirill; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-07-01

    In typical circuit QED systems, on-chip superconducting qubits are coupled to integrated coplanar microwave resonators. Due to the planar geometry, the resonators are often a limiting factor regarding the total coherence of the system. Alternatively, similar hybrid systems can be realized using 3D microwave cavities. Here, we present studies on transmon qubits capacitively coupled to 3D cavities. The internal quality factors of our 3D cavities, machined out of high purity aluminum, are above 1.4 .10{sup 6} at the single photon level and a temperature of 50 mK. For characterization of the sample, we perform dispersive shift measurements up to the third energy level of the qubit. We show simulations and data describing the effect of the transmon geometry on it's capacitive properties. In addition, we present progress towards an integrated quantum memory application.

  1. Cavity syncronisation of underdamped Josephson junction arrays

    DEFF Research Database (Denmark)

    Barbara, P.; Filatrella, G.; Lobb, C.

    2003-01-01

    the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current...

  2. Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms

    International Nuclear Information System (INIS)

    Greentree, Andrew D.; Prawer, Steven; Hollenberg, Lloyd C. L.; Salzman, J.

    2006-01-01

    Photonic-band-gap cavities are prime solid-state systems to investigate light-matter interactions in the strong coupling regime. However, as the cavity is defined by the geometry of the periodic dielectric pattern, cavity control in a monolithic structure can be problematic. Thus, either the state coherence is limited by the read-out channel, or in a high-Q cavity, it is nearly decoupled from the external world, making measurement of the state extremely challenging. We present here a method for ameliorating these difficulties by using a coupled cavity arrangement, where one cavity acts as a switch for the other cavity, tuned by control of the atomic transition

  3. Influence of Li conditioning on Lower Hybrid Current Drive efficiency in H-mode and L- mode plasmas on EAST

    Directory of Open Access Journals (Sweden)

    Goniche Marc

    2017-01-01

    Full Text Available The lower hybrid current drive efficiency on the EAST tokamak is estimated on a large database of low loop voltage discharges (VL of these discharges, can account for the high efficiency according to the expected scaling with Zeff and . Modelling with a ray-tracing code coupled to a Fokker-Planck solver supports this result, assuming that the fast electron transport is reduced in the zero loop voltage discharge with high efficiency.

  4. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.; Potukuchi, P.N.

    1993-01-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed

  5. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1993-07-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed.

  6. Cavity design programs

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1996-01-01

    Numerous computer programs are available to help accelerator physicists and engineers model and design accelerator cavities and other microwave components. This article discusses the problems these programs solve and the principles upon which these programs are based. Some examples of how these programs are used in the design of accelerator cavities are also given

  7. Formation of coronal cavities

    International Nuclear Information System (INIS)

    An, C.H.; Suess, S.T.; Tandberg-Hanssen, E.; Steinolfson, R.S.

    1986-01-01

    A theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence is presented. It is argued that the formation of a cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support

  8. Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton.

    Science.gov (United States)

    Bai, Lihui; Harder, Michael; Hyde, Paul; Zhang, Zhaohui; Hu, Can-Ming; Chen, Y P; Xiao, John Q

    2017-05-26

    Using electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusion length, instead depending on the interplay between the local and global properties of the coupled system, enabling systematic spin current control over large distance scales (several centimeters in this work). This flexibility opens the door to improved spin current generation and manipulation for cavity spintronic devices.

  9. Superconducting rf and beam-cavity interactions

    International Nuclear Information System (INIS)

    Bisognano, J.J.

    1987-01-01

    Beam-cavity interactions can limit the beam quality and current handling capability of linear and circular accelerators. These collective effects include cumulative and regenerative transverse beam breakup (BBU) in linacs, transverse multipass beam breakup in recirculating linacs and microtrons, longitudinal and transverse coupled-bunch instabilities in storage rings, and a variety of transverse and longitudinal single-bunch phenomena (instabilities, beam breakup, and energy deposition). The superconducting radio frequency (SRF) environment has a number of features which distinguish it from room temperature configuration with regard to these beam-cavity interactions. Typically the unloaded Qs of the lower higher order modes (HOM) are at the 10 9 level and require significant damping through couplers. High gradient CW operation, which is a principal advantage of SRF, allows for better control of beam quality, which for its preservation requires added care which respect to collective phenomena. Gradients are significantly higher than those attainable with copper in CW operation but remain significantly lower than those obtainable with pulsed copper cavities. Finally, energy deposition by the beam into the cavity can occur in a cryogenic environment. In this note those characteristics of beam-cavity interactions which are of particular importance for superconducting RF cavities are highlighted. 6 refs., 4 figs

  10. ELMs and constraints on the H-mode pedestal: A model based on peeling-ballooning modes

    International Nuclear Information System (INIS)

    Snyder, P.B.; Ferron, J.R.; Wilson, H.R.

    2003-01-01

    We propose a model for Edge Localized Modes (ELMs) and pedestal constraint based upon theoretical analysis of instabilities which can limit the pedestal height and drive ELMs. The sharp pressure gradients, and resulting bootstrap current, in the pedestal region provide free energy to drive peeling and ballooning modes. The interaction of peeling-ballooning coupling, ballooning mode second stability, and finite-Larmor-radius effects results in coupled peeling-ballooning modes of intermediate wavelength generally being the limiting instability. A highly efficient new MHD code, ELITE, is used to calculate quantitative stability constraints on the pedestal, including con straits on the pedestal height. Because of the impact of collisionality on the bootstrap current, these pedestal constraints are dependant on the density and temperature separately, rather than simply on the pressure. A model of various ELM types is developed, and quantitatively compared to data. A number of observations agree with predictions, including ELM onset times, ELM depth and variation in pedestal height with collisionality and discharge shape. Stability analysis of series of model equilibria are used both o predict and interpret pedestal trends in existing experiments and to project pedestal constraints for future burning plasma tokamak designs. (author)

  11. Analysis of plasma coupling with the prototype DIII-D ICRF antenna

    International Nuclear Information System (INIS)

    Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.

    1988-01-01

    Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs

  12. Analysis of plasma coupling with the prototype DIII-D ICRF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.

    1988-01-01

    Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs.

  13. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    International Nuclear Information System (INIS)

    WEST, WP; BURRELL, KH; DeGRASSIE, JS; DOYLE, EJ; GREENFIELD, CM; LASNIER, CJ; SNYDER, PB; ZENG, L.

    2003-01-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D α time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with β N *H 89L product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved

  14. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    WEST,WP; BURRELL,KH; deGRASSIE,JS; DOYLE,EJ; GREENFIELD,CM; LASNIER,CJ; SNYDER,PB; ZENG,L

    2003-08-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D{sub {alpha}} time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with {beta}{sub N}*H{sub 89L} product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved.

  15. A novel nano-sensor based on optomechanical crystal cavity

    Science.gov (United States)

    Zhang, Yeping; Ai, Jie; Ma, Jingfang

    2017-10-01

    Optical devices based on new sensing principle are widely used in biochemical and medical area. Nowadays, mass sensing based on monitoring the frequency shifts induced by added mass in oscillators is a well-known and widely used technique. It is interesting to note that for nanoscience and nanotechnology applications there is a strong demand for very sensitive mass sensors, being the target a sensor for single molecule detection. The desired mass resolution for very few or even single molecule detection, has to be below the femtogram range. Considering the strong interaction between high co-localized optical mode and mechanical mode in optomechanical crystal (OMC) cavities, we investigate OMC splitnanobeam cavities in silicon operating near at the 1550nm to achieve high optomechanical coupling rate and ultra-small motion mass. Theoretical investigations of the optical and mechanical characteristic for the proposed cavity are carried out. By adjusting the structural parameters, the cavity's effective motion mass below 10fg and mechanical frequency exceed 10GHz. The transmission spectrum of the cavity is sensitive to the sample which located on the center of the cavity. We conducted the fabrication and the characterization of this cavity sensor on the silicon-on-insulator (SOI) chip. By using vertical coupling between the tapered fiber and the SOI chip, we measured the transmission spectrum of the cavity, and verify this cavity is promising for ultimate precision mass sensing and detection.

  16. SPS RF Accelerating Cavity

    CERN Multimedia

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  17. Direct measurements of the plasma potential in ELMy H-mode plasma with ball-pen probes on ASDEX Upgrade tokamak

    Czech Academy of Sciences Publication Activity Database

    Adámek, Jiří; Stöckel, Jan; Brotánková, Jana; Horáček, Jan; Rohde, V.; Müller, H. W.; Herrmann, A.; Schrittwieser, R.; Mehlmann, F.; Ionita, C.

    390-391, - (2009), s. 1114-1117 ISSN 0022-3115. [International Conference on Plasma-Surface Interactions in Controlled Fusion Device/18th./. Toledo, 26.05.2008-30.05.2008] R&D Projects: GA AV ČR KJB100430601 Institutional research plan: CEZ:AV0Z20430508 Keywords : Edge plasma * Electric field * ELMs * H-mode * ASDEX-Upgrade Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.933, year: 2009 http://dx.doi.org/10.1016/j.jnucmat.2009.01.286

  18. Drift-based Model for Power Scrape-off Width in Low-Gas-Puff H-mode Plasmas: Theory and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Goldston, R., E-mail: rgoldston@pppl.gov [Princeton Plasma Physics Laboratory, Princeton (United States)

    2012-09-15

    Full text: A heuristic model for the plasma scrape-off width in low-gas-puff tokamak H-mode plasmas is introduced. {nabla}B and curvature drifts into the scrape-off layer (SOL) are balanced against near-sonic parallel flows out of the SOL, to the divertor plates. These assumptions result in an estimated SOL width of order the poloidal gyroradius. It is next assumed that anomalous perpendicular electron thermal diffusivity is the dominant source of heat flux across the separatrix, investing the SOL width, derived above, with heat from the main plasma. The separatrix temperature is then calculated based on a two-point model balancing power input to the SOL with Spitzer-Hiarm parallel thermal conduction losses to the divertor. This results in a heuristic closed-form prediction for the power scrape-off width that is in quantitative agreement both in absolute magnitude and in scaling with recent experimental data. The applicability of the Spitzer-Harm model to this regime can be questioned at the lowest densities, where the presence of a sheath can raise the divertor target electron temperature. A more general two-point model including a finite ratio of divertor target to upstream electron temperature shows only a 5% effect on the SOL width with target temperature f{sub T} = 75% of upstream, so this effect is likely negligible in experimentally relevant regimes. To achieve the near-sonic flows measured experimentally, and assumed in this model, sets requirements on the ratio of upstream to total SOL particle sources relative to the square-root of the ratio of target to upstream temperature. As a result very high recycling regimes may allow significantly wider power fluxes. The Pfisch-Schluter model for equilibrium flows has been modified to allow near-sonic flows, appropriate for gradient scale lengths of order the poloidal gyroradius. This results in a new quadrupole flow pattern that amplifies the usual P-S flows at the outer midplane, while reducing them at the inner

  19. Direct measurements of the plasma potential in ELMy H-mode plasma with ball-pen probes on ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Adamek, J., E-mail: adamek@ipp.cas.c [Institute of Plasma Physics, Association EURATOM/IPP.CR, Prague, Za Slovankou 3, 182 00, Prague 8 (Czech Republic); Rohde, V.; Mueller, H.W.; Herrmann, A. [Institute of Plasma Physics, Association EURATOM/IPP, Garching (Germany); Ionita, C.; Schrittwieser, R.; Mehlmann, F. [Institute for Ion Physics and Applied Physics, University of Innsbruck, Association EURATOM/OAW (Austria); Stoeckel, J.; Horacek, J.; Brotankova, J. [Institute of Plasma Physics, Association EURATOM/IPP.CR, Prague, Za Slovankou 3, 182 00, Prague 8 (Czech Republic)

    2009-06-15

    Experimental investigations of the plasma potential and electric field were performed for ELMy H-mode plasmas in the vicinity of the limiter shadow of ASDEX Upgrade. A fast reciprocating probe with a probe head containing four ball-pen probes (BPPs) [J. Adamek et al., Czech. J. Phys. 54 (2004) C95 - C99.] was used on the midplane manipulator. Different gradients of the plasma potential were observed during ELMs and in between them. The temporal resolution of the direct plasma potential measurements with BPP was determined by using power-spectra analysis.

  20. Helium Exhaust Studies in H-Mode Discharges in the DIII-D Tokamak Using an Argon-Frosted Divertor Cryopump

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Mahdavi, M.A.; Maingi, R.; West, W.P.; Brooks, N.H.; Burrell, K.H.; Groebner, R.J.; Jackson, G.L.; Klepper, C.C.; Laughon, G.; Menon, M.M.; Mioduszewski, P.K.

    1995-01-01

    The first experiments demonstrating exhaust of thermal helium in a diverted, H-mode deuterium plasma have been performed on the DIII-D tokamak. The helium, introduced via gas puffing, is observed to reach the plasma core, and then is readily removed from the plasma with a time constant of ∼10--20 energy-confinement times by an in-vessel cryopump conditioned with argon frosting. Detailed analysis of the helium profile evolution suggests that the exhaust rate is limited by the exhaust efficiency of the pump (∼5%) and not by the intrinsic helium-transport properties of the plasma