WorldWideScience

Sample records for h-d gas mixture

  1. Permeation of a H2 + HD + D2 gas mixture through a polymer membrane

    International Nuclear Information System (INIS)

    Mercea, P.; Cuna, S.; Kreibik, S.; Ursu, I.

    1990-01-01

    The selective permeation of a H 2 + HD + D 2 gas mixture through a polyethylene terephthalate membrane was studied at T 20 0 C. It was found that the permeation of the HD through the membrane leads to a smaller overall hydrogen-deuterium separation factor than that determined in the permeation experiments with pure H 2 and D 2 . On the other hand, a process of isotopic exchange between deuterium atoms from the penetrant gas stream and hydrogen atoms from the polymer membrane is assumed and discussed in order to explain temporal variations of the H 2 , HD and D 2 concentrations of the permanent gas stream. (author)

  2. Separation of H-D mixtures by cryogenic distillation

    International Nuclear Information System (INIS)

    Luo Yangming; Gu Mei; Wang Heyi; Liu Jun; Fu Zhonghua; Xia Xiulong; Liu Yunnu; Weng Kuiping; Xie Bo; Ren Xingbi

    2007-01-01

    In this paper, separation of hydrogen-deuterium mixtures were performed on a cryogenic distillation apparatus. The results show that the D/H ratio in the reboiler reduced to 1.27x10 -2 at 120h with a flow flux of 5mol/h of the gas mixture in D/H ratio of 1.4xl0 -4 . The enrichment effect increased apparently with D/H ratio of the feeding gas. However, the deuterium content in the top of distillation column increased with the deuterium content in the reboiler, and the de-deuterium efficiencies decreased. In the full reflux experiment, the de-deuterium efficiency increased with heating power of the reboiler, and the inside pressure in the distillation column increased, too. It was necessary that suitable heating power should be chosen in order to control operation pressure in the cryogenic distillation process. (authors)

  3. Transfer of π- from hydrogen to deuterium in H2O + D2O mixtures

    International Nuclear Information System (INIS)

    Stanislaus, S.; Measday, D.F.; Vetterli, D.; Weber, P.; Aniol, K.A.; Harston, M.R.; Armstrong, D.S.

    1989-07-01

    The transfer of stopping π - mesons from hydrogen to deuterium has been investigated in mixtures of H 2 O+D 2 O as a function of D 2 O concentration. The concentration dependence of the transfer probability is similar to that observed for the gas mixtures of H 2 and D 2 but slightly more transfer is found for H 2 O+D 2 O. (Author) 17 refs., 2 tabs., 4 figs

  4. Isotopic exchange processes in cold plasmas of H2/D2 mixtures.

    Science.gov (United States)

    Jiménez-Redondo, Miguel; Carrasco, Esther; Herrero, Víctor J; Tanarro, Isabel

    2011-05-28

    Isotope exchange in low pressure cold plasmas of H(2)/D(2) mixtures has been investigated by means of mass spectrometric measurements of neutrals and ions, and kinetic model calculations. The measurements, which include also electron temperatures and densities, were performed in a stainless steel hollow cathode reactor for three discharge pressures: 1, 2 and 8 Pa, and for mixture compositions ranging from 100% H(2) to 100% D(2). The data are analyzed in the light of the model calculations, which are in good global agreement with the experiments. Isotope selective effects are found both in the surface recombination and in the gas-phase ionic chemistry. The dissociation of the fuel gas molecules is followed by wall recycling, which regenerates H(2) and D(2) and produces HD. Atomic recombination at the wall is found to proceed through an Eley-Rideal mechanism, with a preference for reaction of the adsorbed atoms with gas phase D atoms. The best fit probabilities for Eley-Rideal abstraction with H and D are: γ(ER H) = 1.5 × 10(-3), γ(ER D) = 2.0 × 10(-3). Concerning ions, at 1 Pa the diatomic species H(2)(+), D(2)(+) and HD(+), formed directly by electron impact, prevail in the distributions, and at 8 Pa, the triatomic ions H(3)(+), H(2)D(+), HD(2)(+) and D(3)(+), produced primarily in reactions of diatomic ions with molecules, dominate the plasma composition. In this higher pressure regime, the formation of the mixed ions H(2)D(+) and HD(2)(+) is favoured in comparison with that of H(3)(+) and D(3)(+), as expected on statistical grounds. The model results predict a very small preference, undetectable within the precision of the measurements, for the generation of triatomic ions with a higher degree of deuteration, which is probably a residual influence at room temperature of the marked zero point energy effects (ZPE), relevant for deuterium fractionation in interstellar space. In contrast, ZPE effects are found to be decisive for the observed distribution of

  5. Isotopic analysis of H2, HD, D2 mixtures and analysis of ortho-para-hydrogen mixtures by gas chromatography

    International Nuclear Information System (INIS)

    Botter, F.; Perriere, G. de la; Tistchenko, S.

    1961-01-01

    This communication describes the present situation concerning the possibilities of vapor phase chromatography for the separation and analysis of mixtures of H 2 , HD and D 2 and of ortho- and para-hydrogen mixtures. Separation factors for physical adsorption of the various varieties of hydrogen have been deduced from chromatograms and have also been measured directly with a static method - the agreements is good. (author) [fr

  6. Selective capillary diffusion of equimolar H2/D2 gas mixtures through etched ion track membranes prepared from polyethylene terephthalate and polyimide

    International Nuclear Information System (INIS)

    Schmidt, K.; Angert, N.; Trautmann, C.

    1996-01-01

    The selective capillary diffusion of equimolar H 2 /D 2 gas mixtures through ion track membranes prepared from polyethylene terephthalate and polyimide was investigated at a temperature of 293 K, a primary pressure of 0.15 MPa and a secondary pressure of 10 -4 MPa. Different values of the separation factor Z(H 2 /D 2 ) between experiment and computer simulation exists in the case of polyethylene terephthalate ion track membranes because of multiple pores. Membranes for which multiple pores were reduced by varying the irradiation angle showed an increased separation factor. The separation factor is a function of the pore diameter. This is shown for polyimide ion track membranes with a pore size in the range of 0.17 and 0.5 μm. After grafting with styrene the separation factor increased, indicating grafting within the pores. (orig.)

  7. Experimental Study of Gas Explosions in Hydrogen Sulfide-Natural Gas-Air Mixtures

    Directory of Open Access Journals (Sweden)

    André Vagner Gaathaug

    2014-01-01

    Full Text Available An experimental study of turbulent combustion of hydrogen sulfide (H2S and natural gas was performed to provide reference data for verification of CFD codes and direct comparison. Hydrogen sulfide is present in most crude oil sources, and the explosion behaviour of pure H2S and mixtures with natural gas is important to address. The explosion behaviour was studied in a four-meter-long square pipe. The first two meters of the pipe had obstacles while the rest was smooth. Pressure transducers were used to measure the combustion in the pipe. The pure H2S gave slightly lower explosion pressure than pure natural gas for lean-to-stoichiometric mixtures. The rich H2S gave higher pressure than natural gas. Mixtures of H2S and natural gas were also studied and pressure spikes were observed when 5% and 10% H2S were added to natural gas and also when 5% and 10% natural gas were added to H2S. The addition of 5% H2S to natural gas resulted in higher pressure than pure H2S and pure natural gas. The 5% mixture gave much faster combustion than pure natural gas under fuel rich conditions.

  8. arXiv R&D studies on eco-friendly gas mixtures for the ALICE Muon Identifier

    CERN Document Server

    INSPIRE-00584065

    Resistive Plate Chambers (RPCs), used for the Muon Spectrometer of the ALICE experiment at CERN LHC, are currently operated in maxi-avalanche mode with a low threshold value and without amplification in the front-end electronics. RPC detectors have shown a good operation stability with the current gas mixture during the entire Run 1 (2010$-$2013) and the ongoing Run 2 (2015$-$2018) at the LHC. The gas mixture is made up of $C_{2}H_{2}F_{4}$, $SF_{6}$ and $iC_{4}H_{10}$. Since the first two gases have high Global Warming Potentials (GWPs), there is the risk that they will be phased out of production in the next years, due to the recent restrictions and regulations of the European Union. Therefore, finding a new eco-friendly gas mixture has become extremely important in order to reduce the emissions of greenhouse gases. In addition, the present $iC_{4}H_{10}$ contribution makes the current gas mixture flammable. Non-flammable components, or at least in non-flammable concentrations, would be advisable to make th...

  9. Modeling Phase Equilibria for Acid Gas Mixtures Using the CPA Equation of State. I. Mixtures with H2S

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2010-01-01

    (water, methanol, and glycols) are modeled assuming presence or not of cross-association interactions. Such interactions are accounted for using either a combining rule or a cross-solvation energy obtained from spectroscopic data. Using the parameters obtained from the binary systems, one ternary......The Cubic-Plus-Association (CPA) equation of state is applied to a large variety of mixtures containing H2S, which are of interest in the oil and gas industry. Binary H2S mixtures with alkanes, CO2, water, methanol, and glycols are first considered. The interactions of H2S with polar compounds...... and three quaternary mixtures are considered. It is shown that overall excellent correlation for binary, mixtures and satisfactory prediction results for multicomponent systems are obtained. There are significant differences between the various modeling approaches and the best results are obtained when...

  10. A study of the accelerated zircaloy-4 oxidation reaction with H2O/H2 mixture gas

    International Nuclear Information System (INIS)

    Kim, Y. S.; Cho, I. J.

    2001-01-01

    A study of the Zircaloy-4 reaction with H 2 O/H 2 mixture gas is carried out by using TGA (Thermo Gravimetric Apparatus) to estimate the hydrogen embrittlement which can possibly cause catastrophic nuclear fuel rod failure. Reaction rates are measured as a function of H 2 /H 2 O. In the experiments reaction temperature is set at 500 .deg. C and total pressure of the mixture gas is maintained at 1 atm. Experimental results reveal that hydriding and oxidation reaction are competing. In early stage, hydriding kinetics is faster than oxidation, however, oxidant in H 2 O forms oxide on the surface as steam environment is maintained, thus, this growing oxide begins to protect the zirconium base metal against hydrogen permeation. In this second stage, the total kinetic rate follows enhanced oxidation kinetics. In the final stage, it is observed that the oxide is broken down and massive hydriding takes place through the mechanical defects in the oxide, whose kinetics is similar to pure hydriding kinetics. These results are confirmed by SEM and EDX analysis along with hydrogen concentration measurements

  11. First measurements of dtμ-cycle characteristics in liquid H/D/T mixture

    International Nuclear Information System (INIS)

    Averin, Yu.P.; Balin, D.V.; Bom, V.R.

    1998-01-01

    The muon catalyzed fusion in dense triple mixture of hydrogen isotopes has been investigated for the first time. The experimental method is based on the registration of neutrons from dtμ fusions by a full absorption detectors in 4π geometry. The measurements have been performed in H/D/T mixture at T = 22 K and φ ≅ 1.1 LHD at four sets of isotope concentrations. The basic parameters of dtμ cycle (neutron yield, cycling rate and total sticking) in H/D/T mixtures are presented and discussed

  12. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    Science.gov (United States)

    Vacquand, Christèle; Deville, Eric; Beaumont, Valérie; Guyot, François; Sissmann, Olivier; Pillot, Daniel; Arcilla, Carlo; Prinzhofer, Alain

    2018-02-01

    This paper proposes a comparative study of reduced gas seepages occurring in ultrabasic to basic rocks outcropping in ophiolitic complexes based on the study of seepages from Oman, the Philippines, Turkey and New Caledonia. This study is based on analyses of the gas chemical composition, noble gases contents, stable isotopes of carbon, hydrogen and nitrogen. These seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct types of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These types are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich type, associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 types. H2-bearing gases are either associated with ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and alkaline conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4. The N2-rich type is notably associated with relatively high contents of crustal 4He and in this gas type N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  13. Uranous nitrate production using PtO2 catalyst and H2/H2 gas mixtures

    International Nuclear Information System (INIS)

    Rao, K.S.; Shyamlal, R.; Narayanan, C.V.; Patil, A.R.; Ramanujam, A.; Kansra, V.P.; Balu, K.; Vaidya, V.N.

    2001-01-01

    The feasibility of producing near 100% uranous nitrate, the partitioning agent used in the spent fuel reprocessing by Purex process, by catalytically reducing uranyl nitrate with H 2 and H 2 gas mixtures was extensively studied. As near quantitative reduction of uranyl nitrate could be easily achieved in laboratory scale studies, pilot plant scale reduction of uranyl nitrate was also carried out and five litres of uranyl nitrate of 100 g/1 could be quantitatively reduced in one hour. (author)

  14. Reduced gas seepages in serpentinized peridotite complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures

    Science.gov (United States)

    Deville, E.; Vacquand, C.; Beaumont, V.; Francois, G.; Sissmann, O.; Pillot, D.; Arcilla, C. A.; Prinzhofer, A.

    2017-12-01

    A comparative study of reduced gas seepages associated to serpentinized ultrabasic rocks was conducted in the ophiolitic complexes of Oman, the Philippines, Turkey and New Caledonia. This study is based on analyzes of the gas chemical composition, noble gases contents, and stable isotopes of carbon, hydrogen and nitrogen. These gas seepages are mostly made of mixtures of three main components which are H2, CH4 and N2 in various proportions. The relative contents of the three main gas components show 4 distinct families of gas mixtures (H2-rich, N2-rich, N2-H2-CH4 and H2-CH4). These families are interpreted as reflecting different zones of gas generation within or below the ophiolitic complexes. In the H2-rich family associated noble gases display signatures close to the value of air. In addition to the atmospheric component, mantle and crustal contributions are present in the N2-rich, N2-H2-CH4 and H2-CH4 families. H2-bearing gases are either associated to ultra-basic (pH 10-12) spring waters or they seep directly in fracture systems from the ophiolitic rocks. In ophiolitic contexts, ultrabasic rocks provide an adequate environment with available Fe2+ and high pH conditions that favor H2 production. CH4 is produced either directly by reaction of dissolved CO2 with basic-ultrabasic rocks during the serpentinization process or in a second step by H2-CO2 interaction. H2 is present in the gas when no more carbon is available in the system to generate CH4 (conditions of strong carbon restriction). The N2-rich family is associated with relatively high contents of crustal 4He. In this family N2 is interpreted as issued mainly from sediments located below the ophiolitic units.

  15. Non-self-sustained electric discharge in oxygen gas mixtures: singlet delta oxygen production

    CERN Document Server

    Ionin, A A; Kotkov, A A; Kochetov, I V; Napartovich, A P; Seleznev, L V; Sinitsyn, D V; Hager, G D

    2003-01-01

    The possibility of obtaining a high specific input energy in an electron-beam sustained discharge ignited in oxygen gas mixtures O sub 2 : Ar : CO (or H sub 2) at the total gas pressures of 10-100 Torr was experimentally demonstrated. The specific input energy per molecular component exceeded approx 6 kJ l sup - sup 1 atm sup - sup 1 (150 kJ mol sup - sup 1) as a small amount of carbon monoxide was added into a gas mixture of oxygen and argon. It was theoretically demonstrated that one might expect to obtain a singlet delta oxygen yield of 25% exceeding its threshold value needed for an oxygen-iodine laser operation at room temperature, when maintaining a non-self-sustained discharge in oxygen gas mixtures with molecular additives CO, H sub 2 or D sub 2. The efficiency of singlet delta oxygen production can be as high as 40%.

  16. Physical limit of stability in supercooled D2O and D2O+H2O mixtures

    Science.gov (United States)

    Kiselev, S. B.; Ely, J. F.

    2003-01-01

    The fluctuation theory of homogeneous nucleation was applied for calculating the physical boundary of metastable states, the kinetic spinodal, in supercooled D2O and D2O+H2O mixtures. The kinetic spinodal in our approach is completely determined by the surface tension and equation of state of the supercooled liquid. We developed a crossover equation of state for supercooled D2O, which predicts a second critical point of low density water-high density water equilibrium, CP2, and represents all available experimental data in supercooled D2O within experimental accuracy. Using Turnbull's expression for the surface tension we calculated with the crossover equation of state for supercooled D2O the kinetic spinodal, TKS, which lies below the homogeneous nucleation temperature, TH. We show that CP2 always lies inside in the so-called "nonthermodynamic habitat" and physically does not exist. However, the concept of a second "virtual" critical point is physical and very useful. Using this concept we have extended this approach to supercooled D2O+H2O mixtures. As an example, we consider here an equimolar D2O+H2O mixture in normal and supercooled states at atmospheric pressure, P=0.1 MPa.

  17. μ CF Study of D/T and H/D/T Mixtures in Homogeneous and Inhomogeneous Medium, and Comparison of Their Fusion Yields

    Science.gov (United States)

    Eskandari, M. R.; Faghihi, F.; Gheisari, R.

    Muon reactivation coefficient are determined for muonic He (He = 42He = α , He = 23 He = h) for up to six (n = 1, 2, 3, ..., 6) states of formation and at temperature Tp = 100 eV and for various relative ion densities. In the next decade it may be possible to explore new conditions for further energy gain in muon catalyzed fusion system, μ CF, using nonuniform (temperature and density) plasma states. Here, we have considered a model for inhomogeneous μ CF for mixtures of D/T and H/D/T. Using coupled dynamical equations it is shown that the neutrons yield per muon injection, Yn (neutrons/muon), in the dt branch of an inhomogeneous H/D/T mixture is at least 2.24 times higher than similar homogeneous systems and this rate for a D/T mixture is 1.92. Also, we have compared the neutron yield in the dt branch of homogeneous D/T and H/D/T mixtures (temperature range T = 300-800 K, and density φ = 1 LHD). It is shown that Yn(D/T)/Yn(H/D/T) = 1.32, which is in good agreement with recently measured experimental values. In other words our calculations show that the addition of protonium to a D/T mixture leads to a significant decrease in the cycling rate for the physical conditions described herein.

  18. Isotopic analysis of H{sub 2}, HD, D{sub 2} mixtures and analysis of ortho-para-hydrogen mixtures by gas chromatography; Dosages par chromatographie en phase gazeuse de melanges d'hydrogene, d'hydrogene deutere, de deuterium et de melanges ortho-para-hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F; Perriere, G de la; Tistchenko, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    This communication describes the present situation concerning the possibilities of vapor phase chromatography for the separation and analysis of mixtures of H{sub 2}, HD and D{sub 2} and of ortho- and para-hydrogen mixtures. Separation factors for physical adsorption of the various varieties of hydrogen have been deduced from chromatograms and have also been measured directly with a static method - the agreements is good. (author) [French] Le present rapport decrit diverses possibilites qu'offre la chromatographie gazeuse d'elution en ce qui concerne le dosage des melanges H{sub 2}, HD, D{sub 2} et des varietes ortho et para de l'hydrogene. On a calcule, a partir des chromatogrammes obtenus, les facteurs de separation par adsorption physique des differentes varietes d'hydrogene, et compare aux facteurs de separation determines par mesure directe. (auteur)

  19. Improved gas mixtures for gas-filled particle detectors

    Science.gov (United States)

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  20. Kinetic-sound propagation in dilute gas mixtures

    International Nuclear Information System (INIS)

    Campa, A.; Cohen, E.G.D.

    1989-01-01

    Kinetic sound is predicted in dilute disparate-mass binary gas mixtures, propagating exclusively in the light compound and much faster than ordinary sound. It should be detectable by light-scattering experiments, as an extended shoulder in the scattering cross section for large frequencies. As an example, H 2 -Ar mixtures are discussed

  1. The RealGas and RealGasH2O Options of the TOUGH+ Code for the Simulation of Coupled Fluid and Heat Flow in Tight/Shale Gas Systems

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George; Freeman, Craig

    2013-09-30

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas . The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include: coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas

  2. Structure of solid H2-D2 mixtures

    International Nuclear Information System (INIS)

    Krupskij, I.N.; Kovalenko, S.I.; Krajnyukova, N.V.

    1978-01-01

    The structure of vapor deposited H 2 -D 2 solid mixtures is investigated. The electron-diffraction examination has been carried out in the temperature range from 2.3K up to the sample sublimation temperature, taking place in case of H 2 at T approximately 5K and D 2 -at T approximately 7K. On the basis of the difractogramm obtained it is shown that in solid films of pure components a FCC structure with parameters asub(Hsub(2))=5.310+-0.01A and asub(Osub(2))=5.100+-0.005A is realized, the structure being metastable in the temperature range. The existence of non-limitted solubility in solid two-component condensates is stated. The decay absence at T approximately 5K, when molecula mobility is enough for the transition of metastable FCC structure into HCP, is in good agreement with the results of experimental and theoretical estimations, according to which the decay critical temperature should not exceed 4K. The existance of the continuous series of solutions at lower temperatures is explained by a small coefficient value of a volumetric and surface diffusion of molecula as well

  3. Study of nanosecond discharges in H2-air mixtures at atmospheric pressure for plasma assisted combustion applications

    Science.gov (United States)

    Kobayashi, Sumire; Bonaventura, Zdeněk; Tholin, Fabien; Popov, Nikolay A.; Bourdon, Anne

    2017-07-01

    This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2-air mixtures defined by their equivalence ratios ϕ (i.e. φ =0, air, φ =0.3, lean mixture, φ =1, stoichiometric mixture and φ =1.5, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2-air mixtures with φ \\in [0,1.5]. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non

  4. H2-H2O-HI Hydrogen Separation in H2-H2O-HI Gaseous Mixture Using the Silica Membrane

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2002-01-01

    It was evaluated aiming at the application for hydrogen iodide decomposition in the thermochemical lS process. Porous alumina tube having pore size of 0.1 μm was modified by chemical vapor deposition using tetraethoxysilane. The permeance single gas of He, H 2 , and N 2 was measured at 300-600 o C. Hydrogen permeance of the modified membrane at a permeation temperature of 600 o C was about 5.22 x 10 -08 mol/Pa m 2 s, and 3.2 x 10 -09 of using gas mixture of H 2 -H 2 O-HI, where as HI permeances was below 1 x 10 -10 mol/Pa m 2 s. The Hydrogen permeance relative was not changed after 25 hours exposure in a mixture of H 2 -H 2 O-HI gas at the temperature of 450 o C. (author)

  5. Determination of D-lactide content in lactide stereoisomeric mixture using gas chromatography-polarimetry.

    Science.gov (United States)

    Feng, Lidong; Bian, Xinchao; Chen, Zhiming; Xiang, Sheng; Liu, Yanlong; Sun, Bin; Li, Gao; Chen, Xuesi

    2017-03-01

    An analytical method has been proposed to quantify the D-lactide content in a lactide stereoisomeric mixture using combined gas chromatography and polarimetry (GC- polarimetry). As for a lactide stereoisomeric mixture, meso-lactide can be determined quantitatively using GC, but D- and L-lactides cannot be separated by the given GC system. The composition of a lactide stereoisomeric mixture is directly relative to its specific optical rotation. The specific optical rotations of neat L-lactide were obtained in different solutions, which were -266.3° and -298.8° in dichloromethane (DCM) and toluene solutions at 20°C, respectively. Therefore, for a lactide sample, the D-lactide content could be calculated based on the meso-lactide content obtained from GC and the specific optical rotations of the sample and neat L-lactide obtained from polarimetry. The effects of impurities and temperature on the test results were investigated, respectively. When the total content of impurities was not more than 1.0%, the absolute error for determining D-lactide content was less than 0.10% in DCM and toluene solutions. When the D-lactide content was calculated according to the specific optical rotation of neat L-lactide at 20°C, the absolute error caused by the variation in temperature of 20±15°C was not more than 0.2 and 0.7% in DCM and toluene solutions, respectively, and thus usually could be ignored in a DCM solution. When toluene was used as a solvent for the determination of D-lactide content, a temperature correction for specific optical rotations could be introduced and would ensure the accuracy of results. This method is applicable to the determination of D-lactide content in lactide stereoisomeric mixtures. The standard deviation (STDEV) of the measurements is less than 0.5%, indicating that the precision is suitable for this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Study of argon-based Penning gas mixtures for use in proportional counters

    International Nuclear Information System (INIS)

    Agrawal, P.C.; Ramsey, B.D.; Weisskopf, M.C.

    1989-01-01

    Results from an experimental investigation of three Penning gas mixtures, namely argon-acetylene (Ar-C 2 H 2 ), argon-xenon (Ar-Xe) and argon-xenon-trimethylamine (Ar-Xe-TMA), are reported. The measurements, carried out in cylindrical geometry as well as parallel plate geometry detectors, demonstrate that the Ar-C 2 H 2 mixtures show a significant Penning effect even at an acetylene concentration of 10% and provide the best energy resolution among all the argon-based gas mixtures (≤13% FWHM at 5.9 keV and 6.7% at 22.2 keV). In the parallel plate detector the Ar-C 2 H 2 fillings provide a resolution of ≅7% FWHM at 22.2 keV up to a gas gain of at least ≅10 4 . The nonmetastable Penning mixture Ar-Xe provides the highest gas gain among all the argon-based gas mixtures and is well suited for use in long-duration space-based experiments. Best results are obtained with 5% and 20% Xe in Ar, the energy resolution being ≅7% FWHM at 22.2 keV and ≅4.5% at 59.6 keV for gas gain 3 . Addition of ≥1% TMA to an 80% Ar-20% Xe mixture produces a dramatic increase in gas gain but the energy resolution remains unaffected (≅7% FWHM at 22.2 keV). This increase in gas gain is attributed to the occurrence of a Penning effect between Xe and TMA, the ionization potential of TMA being 8.3 eV, just below the xenon metastable potential of 8.39 eV. (orig.)

  7. The effect of the partial pressure of H2 gas and atomic hydrogen on diamond films deposited using CH3OH/H2O gas

    International Nuclear Information System (INIS)

    Lee, Kwon-Jai; Koh, Jae-Gui; Shin, Jae-Soo; Kwon, Ki-Hong; Lee, Chang-Hee

    2006-01-01

    Diamond films were deposited on Si(100) substrates by hot filament chemical vapor deposition (HFCVD) with a CH 3 OH/H 2 O gas mixture while changing the gas ratio. The films were analyzed with scanning electron microscopy (SEM), Raman spectroscopy, and optical emission spectroscopy (OES). The diamond films were grown with CH 3 OH being 52 % by volume of the gas mixture. The effect of atomic hydrogen on the film was different from that of the CH 4 /H 2 gas mixture. Analysis with OES during film growth indicated that among the thermally dissociated hydrogen radicals, only H α contributed to the etching of graphite.

  8. Improving Students' Understanding of the Connections between the Concepts of Real-Gas Mixtures, Gas Ideal-Solutions, and Perfect-Gas Mixtures

    Science.gov (United States)

    Privat, Romain; Jaubert, Jean-Noël; Moine, Edouard

    2016-01-01

    In many textbooks of chemical-engineering thermodynamics, a gas mixture obeying the fundamental law pV[subscript m] = RT is most often called ideal-gas mixture (in some rare cases, the term perfect-gas mixture can be found). These textbooks also define the fundamental concept of ideal solution which in theory, can be applied indifferently to…

  9. Intelligent gas-mixture flow sensor

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Dijkstra, Fred; Houkes, Z.; van Kuijk, J.C.C.; van Kuijk, Joost

    A simple way to realize a gas-mixture flow sensor is presented. The sensor is capable of measuring two parameters from a gas flow. Both the flow rate and the helium content of a helium-nitrogen gas mixture are measured. The sensor exploits two measurement principles in combination with (local)

  10. Buffer gas cooling and mixture analysis

    Science.gov (United States)

    Patterson, David S.; Doyle, John M.

    2018-03-06

    An apparatus for spectroscopy of a gas mixture is described. Such an apparatus includes a gas mixing system configured to mix a hot analyte gas that includes at least one analyte species in a gas phase into a cold buffer gas, thereby forming a supersaturated mixture to be provided for spectroscopic analysis.

  11. Installation for gas purification and gas mixture preparation

    International Nuclear Information System (INIS)

    Ciortea, Constantin; Dumitrescu, Ioana; Armeanu, Adrian

    2002-01-01

    The Gas Production Division of ICSI at Rm. Valcea developed advanced facilities for purification of hydrogen, nitrogen, methane gases, etc, with concentrations up to 99.999 % vol. Pure and ultrapure gases are used for analytical purposes in food industry, biology, medicine, research laboratories, chemical and metallurgical industries. In the frame of ICSI the purified gases are used for preparation of usual and special mixtures of gases as for instance for production of Ar + CO 2 , Ar + CH 4 , Ar + H 2 , Ar + N 2 , N 2 + CO 2 , N 2 + O 2 etc. These mixtures are required in diverse sectors of chemical, electrical, machine and food industry, in nuclear power plants for monitoring, in laboratories of equipment calibrations, etc. (authors)

  12. On thermal conductivity of gas mixtures containing hydrogen

    Science.gov (United States)

    Zhukov, Victor P.; Pätz, Markus

    2017-06-01

    A brief review of formulas used for the thermal conductivity of gas mixtures in CFD simulations of rocket combustion chambers is carried out in the present work. In most cases, the transport properties of mixtures are calculated from the properties of individual components using special mixing rules. The analysis of different mixing rules starts from basic equations and ends by very complex semi-empirical expressions. The formulas for the thermal conductivity are taken for the analysis from the works on modelling of rocket combustion chambers. \\hbox {H}_2{-}\\hbox {O}_2 mixtures are chosen for the evaluation of the accuracy of the considered mixing rules. The analysis shows that two of them, of Mathur et al. (Mol Phys 12(6):569-579, 1967), and of Mason and Saxena (Phys Fluids 1(5):361-369, 1958), have better agreement with the experimental data than other equations for the thermal conductivity of multicomponent gas mixtures.

  13. Determination of local concentration of H2O molecules and gas temperature in the process of hydrogen – oxygen gas mixture heating by means of linear and nonlinear laser spectroscopy

    International Nuclear Information System (INIS)

    Kozlov, D N; Kobtsev, V D; Stel'makh, O M; Smirnov, Valery V; Stepanov, E V

    2013-01-01

    Employing the methods of linear absorption spectroscopy and nonlinear four-wave mixing spectroscopy using laserinduced gratings we have simultaneously measured the local concentrations of H 2 O molecules and the gas temperature in the process of the H 2 – O 2 mixture heating. During the measurements of the deactivation rates of pulsed-laser excited singlet oxygen O 2 (b 1 Σ + g ) in collisions with H 2 in the range 294 – 850 K, the joint use of the two methods made it possible to determine the degree of hydrogen oxidation at a given temperature. As the mixture is heated, H 2 O molecules are formed by 'dark' reactions of H 2 with O 2 in the ground state. The experiments have shown that the measurements of tunable diode laser radiation absorption along an optical path through the inhomogeneously heated gas mixture in a cell allows high-accuracy determination of the local H 2 O concentration in the O 2 laser excitation volume, if the gas temperature in this volume is known. When studying the collisional deactivation of O 2 (b 1 Σ + g ) molecules, the necessary measurements of the local temperature can be implemented using laser-induced gratings, arising due to spatially periodic excitation of O 2 (X 3 Σ - g ) molecules to the b 1 Σ + g state by radiation of the pump laser of the four-wave mixing spectrometer. (laser spectroscopy)

  14. Pumping characteristics for H2, CO and gas mixture of H2 and CO of distributed ion pump for the SPring-8 storage ring

    International Nuclear Information System (INIS)

    Hirano, Nobuo; Kobari, Toshiaki; Matsumoto, Manabu

    1995-01-01

    Evacuation in the vacuum chamber of the deflection magnet part of the SPring-8 storage ring is planned to be performed with a non evaporable getter pump (NEG) as well as a distributed ion pump (DIP). Pumping characteristics for H 2 , CO and a gas mixture of H 2 and CO of DIP was investigated. The structure of the DIP constructed on a trial basis and an experimental setup to measure the DIP pumping characteristics were described. Pumping speed above 100 L/s per 1 m at the 10 -6 Pa device and pumping speed of about 500 L/s per 1 m at the 10 -7 Pa device were achieved for a gas mixture of H 2 and CO (37% and 55% CO). On the DIP saturated with CO, pumping speed for H 2 is about twice that of pumping speed for CO at the 10 -7 Pa device. Pumping speed for CO is about 1.5 times of the speed for N 2 at the 10 -6 Pa device. Pressure of 1.2 x 10 -8 Pa (9.0 x 10 -11 Torr) is achieved at a room temperature by baking at 150degC for 40 hr. Thus, it was confirmed that the DIP has sufficient pumping characteristics as a pump for the SPring-8 storage ring. (T.H.)

  15. Ion swarm data for electrical discharge modeling in air and flue gas mixtures

    International Nuclear Information System (INIS)

    Nelson, D.; Benhenni, M.; Eichwald, O.; Yousfi, M.

    2003-01-01

    The first step of this work is the determination of the elastic and inelastic ion-molecule collision cross sections for the main ions (N 2 + , O 2 + , CO 2 + , H 2 O + and O - ) usually present either in the air or flue gas discharges. The obtained cross section sets, given for ion kinetic energies not exceeding 100 eV, correspond to the interactions of each ion with its parent molecule (symmetric case) or nonparent molecule (asymmetric case). Then by using these different cross section sets, it is possible to obtain the ion swarm data for the different gas mixtures involving N 2 , CO 2 , H 2 O and O 2 molecules whatever their relative proportions. These ion swarm data are obtained from an optimized Monte Carlo method well adapted for the ion transport in gas mixtures. This also allows us to clearly show that the classical linear approximations usually applied for the ion swarm data in mixtures such as Blanc's law are far to be valid. Then, the ion swarm data are given in three cases of gas mixtures: a dry air (80% N 2 , 20% O 2 ), a ternary gas mixture (82% N 2 , 12% CO 2 , 6% O 2 ) and a typical flue gas (76% N 2 , 12% CO 2 , 6% O 2 , 6% H 2 O). From these reliable ion swarm data, electrical discharge modeling for a wire to plane electrode configuration has been carried out in these three mixtures at the atmospheric pressure for different applied voltages. Under the same discharge conditions, large discrepancies in the streamer formation and propagation have been observed in these three mixture cases. They are due to the deviations existing not only between the different effective electron-molecule ionization rates but also between the ion transport properties mainly because of the presence of a highly polar molecule such as H 2 O. This emphasizes the necessity to properly consider the ion transport in the discharge modeling

  16. Electron drift velocities of Ar-CO2-CF4 gas mixtures

    International Nuclear Information System (INIS)

    Markeloff, R.

    1994-11-01

    The muon spectrometer for the D0 experiment at Fermi National Accelerator Laboratory uses proportional drift tubes filled with an Ar-CO 2 -CF 4 gas mixture. Measurements of drift velocity as a function of electric field magnitude for 90%-5%-5% and 90%-4%-6% Ar-CO 2 -CF 4 mixtures are presented, and our operational experiences with these gases at D0 is discussed

  17. Secondary electron emission from solid HD and a solid H2-D2 mixture

    DEFF Research Database (Denmark)

    Sørensen, H.; Børgesen, P.; Hao-Ming, Chen

    1983-01-01

    Secondary electron emission from solid HD and a solid 0.6 H2 + 0.4 D2 mixture has been studied for electron and hydrogen ion bombardment at primary energies from 0.5 to 3 keV and 2 to 10 keV/amu, respectively. The yield for solid HD is well explained by a simple stoichiometric model of the low...

  18. Study of properties of helium-based gas mixtures for use of low momentum and high precision measurement in drift chambers

    International Nuclear Information System (INIS)

    Chen Chang; Zhang Qinjian; Ma Jimao; Huang Xiuping; Yi Kai; Zheng Shuchen

    1998-01-01

    Measured drift velocities using an uniform field drift chamber and multiplication factors obtained with proportional tubes in He-based gas mixtures He + CH 4 (80/20, 70/30) and He + iC 4 H 10 (85/15, 80/20, 70/30) are reported. The results are good agreement with calculations by Garfield Code. The Saturated drift velocity is V d ≅ 2.7 cm/μs and multiplication factor of M ≅ 10 4 -10 5 at certain working voltage is manageable in He/CH 4 (80/20) gas mixture, and it is good candidate of working gas for use of low momentum and high precision measurement in the drift chambers

  19. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    Science.gov (United States)

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  20. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Science.gov (United States)

    2010-01-01

    ... natural gas or petroleum. 503.38 Section 503.38 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS... mixtures containing natural gas or petroleum. (a) Eligibility. Section 212(d) of the Act provides for a... proposes to use a mixture of natural gas or petroleum and an alternate fuel as a primary energy source; (2...

  1. Systematic study of RPC performances in polluted or varying gas mixtures compositions: an online monitor system for the RPC gas mixture at LHC

    CERN Document Server

    Capeans, M; Mandelli, B

    2012-01-01

    The importance of the correct gas mixture for the Resistive Plate Chamber (RPC) detector systems is fundamental for their correct and safe operation. A small change in the percentages of the gas mixture components can alter the RPC performance and this will rebound on the data quality in the ALICE, ATLAS and CMS experiments at CERN. A constant monitoring of the gas mixture injected in the RPCs would avoid such kind of problems. A systematic study has been performed to understand RPC performances with several gas mixture compositions and in the presence of common gas impurities. The systematic analysis of several RPC performance parameters in different gas mixtures allows the rapid identification of any variation in the RPC gas mixture. A set-up for the online monitoring of the RPC gas mixture in the LHC gas systems is also proposed.

  2. Method of separation of gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, M.A.; Potapov, V.F.; Potapova, M.S.

    1980-04-05

    Gas mixtures are separated in a rectification tower by repeated counterflow contact of the heated gas flow and cool condensate as the pressure drops in each stage of separation (StR) and when condensate is added from StR with lower pressure to the StR with higher pressure. In order to reduce energy consumption noncondensing gas in amounts of 5-15 percent by weight of the amount of incoming gases are added. Hydrocarbon or carbon dioxide gas can be used as the latter. Example. To separate natural gas of the Shatlyk deposit of composition, percent by mo1: C1 -- 94.960; C2 -- 4.260; C3 -- 0.200; C4 -- 0.08; C4+B -- 0.51. It is enriched with carbon dioxide gas in an amount of 10 percent by weight. Upon rectification of the enriched hydrocarbon mixture separation is achieved at lower pressures of the gas mixture and less cold. This leads to reduction of energy consumption by 10-12 percent.

  3. Characterisation of the coke formed during metal dusting of iron in CO-H2-H2O gas mixtures

    International Nuclear Information System (INIS)

    Zhang, J.; Schneider, A.; Inden, G.

    2003-01-01

    Carbon deposits formed on the surface of iron samples during carburisation at 700 deg. C in a gas mixture of 75%CO-24.81%H 2 -0.19%H 2 O were characterised by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Moessbauer spectroscopy and transmission electron microscopy (TEM). Cross-section observation of the iron sample by light optical microscopy revealed the formation of cementite after only 10 min reaction, together with a thin layer of graphite. After 4 h reaction, a thick coke layer was formed on top of the cementite surface. SEM surface observation indicated the formation of filamentous carbon in the coke layer. Further analysis of the coke by XRD and Moessbauer showed the presence of mainly Fe 3 C and small amount of Fe 2 C but no metallic iron in the carbon deposit. TEM analysis of the coke detected very convoluted filaments with iron-containing particles at the tip or along their length. These particles were identified to be cementite by selected area diffraction. Carbon deposits produced at the same temperature but with other gas compositions were also analysed by using XRD. It was found that with a low content of CO, e.g. 5%, both α-Fe and Fe 3 C were detected in the coke. Increasing CO content to more than 30%, iron carbide was the only iron-containing phase

  4. Process for purification of gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, S Z; Letitschevskij, V I; Maergojz, I I; Michailov, L A; Puschkarev, L I

    1977-06-23

    The process relates to the purification of gas mixtures of N, H, and Ar, or N and H, or N and O which contain CO, CO/sub 2/ and water vapour. Single-stage adsorption occurs under standard pressure at temperatures from -40 to +4/sup 0/C up to the point of CO penetration through the zeolite layer. Zeolite is of type A or X combined with Ca, Na, Ag, Cd, Co, Ni, Mn or a natural zeolite of the type klinoptilolite. Regeneration is achieved at constant temperature and pressure of 1-5x10/sup -1/ Torr or by heating to 120-600/sup 0/C.

  5. An experimental approach aiming the production of a gas mixture composed of hydrogen and methane from biomass as natural gas substitute in industrial applications.

    Science.gov (United States)

    Kraussler, Michael; Schindler, Philipp; Hofbauer, Hermann

    2017-08-01

    This work presents an experimental approach aiming the production of a gas mixture composed of H 2 and CH 4 , which should serve as natural gas substitute in industrial applications. Therefore, a lab-scale process chain employing a water gas shift unit, scrubbing units, and a pressure swing adsorption unit was operated with tar-rich product gas extracted from a commercial dual fluidized bed biomass steam gasification plant. A gas mixture with a volumetric fraction of about 80% H 2 and 19% CH 4 and with minor fractions of CO and CO 2 was produced by employing carbon molecular sieve as adsorbent. Moreover, the produced gas mixture had a lower heating value of about 15.5MJ·m -3 and a lower Wobbe index of about 43.4MJ·m -3 , which is similar to the typical Wobbe index of natural gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Diffusion Monte Carlo simulations of gas phase and adsorbed D2-(H2)n clusters

    Science.gov (United States)

    Curotto, E.; Mella, M.

    2018-03-01

    We have computed ground state energies and analyzed radial distributions for several gas phase and adsorbed D2(H2)n and HD(H2)n clusters. An external model potential designed to mimic ionic adsorption sites inside porous materials is used [M. Mella and E. Curotto, J. Phys. Chem. A 121, 5005 (2017)]. The isotopic substitution lowers the ground state energies by the expected amount based on the mass differences when these are compared with the energies of the pure clusters in the gas phase. A similar impact is found for adsorbed aggregates. The dissociation energy of D2 from the adsorbed clusters is always much higher than that of H2 from both pure and doped aggregates. Radial distributions of D2 and H2 are compared for both the gas phase and adsorbed species. For the gas phase clusters, two types of hydrogen-hydrogen interactions are considered: one based on the assumption that rotations and translations are adiabatically decoupled and the other based on nonisotropic four-dimensional potential. In the gas phase clusters of sufficiently large size, we find the heavier isotopomer more likely to be near the center of mass. However, there is a considerable overlap among the radial distributions of the two species. For the adsorbed clusters, we invariably find the heavy isotope located closer to the attractive interaction source than H2, and at the periphery of the aggregate, H2 molecules being substantially excluded from the interaction with the source. This finding rationalizes the dissociation energy results. For D2-(H2)n clusters with n ≥12 , such preference leads to the desorption of D2 from the aggregate, a phenomenon driven by the minimization of the total energy that can be obtained by reducing the confinement of (H2)12. The same happens for (H2)13, indicating that such an effect may be quite general and impact on the absorption of quantum species inside porous materials.

  7. Gas Mixtures for Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-04-01

    Full Text Available Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of various gas mixtures selection for micro-jet cooling.

  8. Plasma nitriding of CA-6NM steel: effect of H2 + N2 gas mixtures in nitride layer formation for low N2 contents at 500 ºC

    Directory of Open Access Journals (Sweden)

    Angela Nardelli Allenstein

    2010-12-01

    Full Text Available This work aims to characterize the phases, thickness, hardness and hardness profiles of the nitride layers formed on the CA-6NM martensitic stainless steel which was plasma nitrided in gas mixtures containing different nitrogen amounts. Nitriding was performed at 500 ºC temperature, and 532 Pa (4 Torr pressure, for gas mixtures of 5% N2 + 95% H2, 10% N2 + 90% H2, and 20% N2 + 80% H2, and 2 hours nitriding time. A 6 hours nitriding time condition for gas mixture of 5% N2 + 95% H2 was also studied. Nitrided samples results were compared with non-nitrided condition. Thickness and microstructure of the nitrided layers were characterized by optical microscopy (OM, using Villela and Nital etchants, and the phases were identified by X-ray diffraction. Hardness profiles and hardness measured on surface steel were determined using Vickers hardness and nanoindentation tester, respectively. It was verified that nitrided layer produced in CA-6NM martensitc stainless steel is constituted of compound layer, being that formation of the diffusion zone was not observed for the studied conditions. The higher the nitrogen amounts in gas mixture the higher is the thickness of the nitrided layer and the probability to form different nitride phases, in the case γ'-Fe4N, ε-Fe2-3N and CrN phases. Intrinsic hardness of the nitrided layers produced in the CA-6NM stainless steel is about 12-14 GPa (~1200-1400 HV.

  9. Internal combustion engines fueled by natural gas-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akansu, S.O.; Kahraman, N. [Erciyes University, Kayseri (Turkey). Engineering Faculty; Dulger, Z. [Kocaeli University (Turkey). Engineering Faculty; Veziroglu, T.N. [University of Miami, Coral Gables, FL (United States). College of Engineering

    2004-11-01

    In this study, a survey of research papers on utilization of natural gas-hydrogen mixtures in internal combustion engines is carried out. In general, HC, CO{sub 2}, and CO emissions decrease with increasing H{sub 2}, but NO{sub x} emissions generally increase. If a catalytic converter is used, NO{sub x} emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards may be reached. Efficiency values vary with H{sub 2} amount, spark timing, compression ratio, equivalence ratio, etc. Under certain conditions, efficiency values can be increased. In terms of BSFC, emissions and BTE, a mixture of low hydrogen percentage is suitable for using. (author)

  10. Study of ionization losses in He-based gas mixtures

    CERN Document Server

    Borsato, E; Dal Corso, F; Morandin, M; Posocco, M; Stroili, R; Voci, C; Buccheri, A; Ferroni, F; Lacava, F; Lamanna, E; Mazzoni, M A; Morganti, S; Pastore, F C; Piredda, G; Pontecorvo, L

    1999-01-01

    Helium based gas mixtures are particularly interesting since they have a good tracking resolution because of the reduced multiple scattering. We have studied the differential energy loss dE/dx in several mixtures, He-isobutane and He-ethane. We present results from measurements performed with electrons, pions and protons in the momentum range between 1 and 5 GeV/c obtained in a prototype drift chamber with a 3 cm cell. The results show that helium performs well in measuring energy losses for charged particles.

  11. Gas-chromatographic separation of hydrogen isotopic mixtures

    International Nuclear Information System (INIS)

    Preda, Anisoara; Bidica, Nicolae

    2005-01-01

    Full text: Gas chromatographic separation of hydrogen isotopes have been reported in the literature since late of 1950's. Gas chromatography is primarily an analytical method, but because of its properties it may be used in many other fields with excellent results. A simple method is proposed for the gas-chromatographic analysis of complex gas mixtures containing hydrogen isotopes; the method is based on the substantial difference in the thermal conductivity of these isotopes. One of the main disadvantages of the conventional gas chromatography is the long retention times required for the analysis of hydrogen gas mixtures while the column is operated at very low temperature. The method described in this paper was based on using a capillary molecular sieve 5A column operated for this kind of separation at 173 K. The carrier gas was Ne and the detector was TCD. In the paper chromatograms for various carrier flow rates and various hydrogen isotope mixtures are presented. (authors)

  12. Transport Properties of operational gas mixtures used at LHC

    CERN Document Server

    Assran, Yasser

    2011-01-01

    This report summarizes some useful data on the transport characteristics of gas mixtures which are required for detection of charged particles in gas detectors. We try to replace Freon used for RPC detector in the CMS experiment with another gas while maintaining the good properties of the Freon gas mixture unchanged. We try to switch to freonless gas mixture because Freon is not a green gas, it is very expensive and its availability is decreasing. Noble gases like Ar, He, Ne and Xe (with some quenchers like carbon dioxide, methane, ethane and isobutene) are investigated. Transport parameters like drift velocity, diffusion, Townsend coefficient, attachment coefficient and Lorentz angle are computed using Garfield software for different gas mixtures and compared with experimental data.

  13. Hydroprocesssing of light gas oil - rape oil mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Walendziewski, Jerzy; Stolarski, Marek; Luzny, Rafal; Klimek, Bartlomiej [Faculty of Chemistry, Wroclaw University of Technology, ul. Gdanska 7/9, 50-310 Wroclaw (Poland)

    2009-05-15

    Two series of experiments of hydroprocessing of light gas oil - rape oil mixtures were carried out. The reactor feed was composed of raw material: first series - 10 wt.% rape oil and 90 wt.% of diesel oil; second series - 20 wt.% rape oil and 80 wt.% of diesel oil. Hydroprocessing of both mixtures was performed with the same parameter sets, temperature (320, 350 and 380 C), hydrogen pressure 3 and 5 MPa, LHSV = 2 h{sup -} {sup 1} and hydrogen feed ratio of 500 Nm{sup 3}/m{sup 3}. It was stated that within limited range it is possible to control vegetable oil hydrogenolysis in the presence of light gas oil fraction (diesel oil boiling range) through the proper selection of the process parameters. Hydrogenolysis of ester bonds and hydrogenation of olefinic bonds in vegetable oils are the main reactions in the process. Basic physicochemical properties of the obtained hydroprocessed products are presented. (author)

  14. Operation of the multigap resistive plate chamber using a gas mixture free of flammable components

    CERN Document Server

    Akindinov, A; Antonioli, P; Arcelli, S; Basile, M; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; De Caro, A; De Pasquale, S; Di Bartolomeo, A; Fusco-Girard, M; Golovine, V; Guida, M; Hatzifotiadou, D; Kaidalov, A B; Kim, D H; Kim, D W; Kisselev, S M; Laurenti, G; Lee, K; Lee, S C; Lioublev, E; Luvisetto, M L; Margotti, A; Martemyanov, A N; Nania, R; Noferini, F; Otiougova, P; Pesci, A; Pinazza, O; Polozov, P A; Scapparone, E; Scioli, G; Sellitto, S B; Semeria, F; Smirnitsky, A V; Tchoumakov, M M; Usenko, E; Valenti, G; Voloshin, K G; Williams, M C S; Zagreev, B V; Zampolli, C; Zichichi, A

    2004-01-01

    We have investigated the operation of the multigap resistive plate chamber (MRPC) for the ALICE-TOF system with a gas mixture free of flammable components. Two different gas mixtures, with and without iso-C//4H//1//0 have been used to measure the performance of the MRPC. The efficiency, time resolution, total charge, and the fast to total charge ratio have been found to be comparable.

  15. Reference value standards and primary standards for pH measurements in D2O and aqueous-organic solvent mixtures: new accessions and assessments

    International Nuclear Information System (INIS)

    Mussini, P.R.; Mussini, T.; Rondinini, S.

    1997-01-01

    Recommended Reference Value Standards based on the potassium hydro-genphthalate buffer at various temperatures are reported for pH measurements in various binary solvent mixtures of water with eight organic solvents: methanol, ethanol, 2-propanol, 1,2-ethanediol, 2-methoxyethanol (''methylcellosolve''), acetonitrile, 1,4-dioxane, and dimethyl sulfoxide, together with Reference Value Standard based on the potassium deuterium phthalate buffer for pD measurements in D 2 O. In addition are reported Primary Standards for pH based on numerous buffers in various binary solvent mixtures of water with methanol, ethanol, and dimethyl sulfoxide, together with Primary Standards for pD in D 2 O based on the citrate, phosphate and carbonate buffers. (author)

  16. Gas-chromatographic separation of hydrogen isotopes mixtures on capillary molecular sieve 5 A column at 173 K

    International Nuclear Information System (INIS)

    Bidica, N.; Preda, A.; Stanciu, V.

    2002-01-01

    Analysis of a gas mixture of hydrogen species, is not too easy because the differences in their physical-chemical properties are very small; the most different are their masses, and consequently most common analytical method appear to be the mass-spectrometry. However, the impossibility to distinguish between two ions (atomic or molecular) with the same mass renders this method as unapplicable. Another problem is the decay of tritium with production of 3 He. These disadvantages of mass-spectrometry have made that other analytical methods, like gas chromatography, to be considered and developed. Thus, there are many papers about various chromatographic columns especially prepared for hydrogen species separation but the preparation and treatment of these columns are very difficult to reproduce. Besides these, there are two other main disadvantages: column operating temperature is very low and long retention times for hydrogen species (more than half an hour) are required. However, the gas-chromatography method still remains an appropriate one. The method described in this paper was based on using a capillary molecular sieve 5A column which has been operated for this kind of separation. The retention times were relatively short, about 8-9 minutes. The carrier gas was Ne and the detector - TCD. In the paper chromatograms for various carrier flow rates and various hydrogen isotope mixtures are presented. The results demonstrated a quite good efficiency for H 2 , HD, D 2 and a not very good one for orthoH 2 -paraH 2 . (authors)

  17. Gas Mixtures for Welding with Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.

    2015-01-01

    Welding with micro-jet cooling after was tested only for MIG and MAG processes. For micro-jet gases was tested only argon, helium and nitrogen. A paper presents a piece of information about gas mixtures for micro-jet cooling after in welding. There are put down information about gas mixtures that could be chosen both for MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gas mixtures on metallographic structure of steel welds. Mechani...

  18. Adsorption of gas mixtures on heterogeneous solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jaroniec, M; Rudzinski, W

    1977-01-01

    A review of theoretical studies on the physical adsorption from gas mixtures on heterogeneous solid surfaces, mainly by Jaroniec and coworkers, covers the vector notation used in the calculations; adsorption isotherms for multicomponent gases; the generalized integral equation for adsorption of gas mixtures, its numerical and analytical solutions, applied, (e.g., to interpret the experimental adsorption isotherms of ethane/ethylene on Nuxit-AL); thermodynamic relations, applied, (e.g., to calculating isosteric adsorption heats from experimental parameters for the adsorption of propylene from propane/propylene mixtures on Nuxit-AL); and the derivation and use of a simplified integral equation for describing the adsorption from gas mixtures on heterogeneous surfaces. 75 references.

  19. Burned gas and unburned mixture composition prediction in biodiesel-fuelled compression igniton engine

    International Nuclear Information System (INIS)

    Chuepeng, S.; Komintarachati, C.

    2009-01-01

    A prediction of burned gas and unburned mixture composition from a variety of methyl ester based bio diesel combustion in compression ignition engine, in comparison with conventional diesel fuel is presented. A free-energy minimisation scheme was used to determine mixture composition. Firstly, effects of bio diesel type were studied without exhaust gas recirculation (EGR). The combustion of the higher hydrogen-to-carbon molar ratio (H/C) bio diesel resulted in lower carbon dioxide and oxygen emissions but higher water vapour in the exhaust gases, compared to those of lower H/C ratios. At the same results also show that relative air-to-fuel ratio, that bio diesel combustion gases contain a higher amount of water vapour and a higher level of carbon dioxide compared to those of diesel. Secondly, influences of EGR (burned gas fraction) addition to bio diesel-fuelled engine on unburned mixture were simulated. For both diesel and bio diesel, the increased burned gas fraction addition to the fresh charge increased carbon dioxide and water vapour emissions while lowering oxygen content, especially for the bio diesel case. The prediction was compared with experimental results from literatures; good agreement was found. This can be considered to be a means for explaining some phenomenon occurring in bio diesel-fuelled engines. (author)

  20. Experimental investigation of H2/D2 isotope separation by cryo-adsorption in metal-organic frameworks

    International Nuclear Information System (INIS)

    Teufel, Julia Sonja

    2012-01-01

    Light-gas isotopes differ in their adsorption behavior under cryogenic conditions in nanoporous materials due to their difference in zero-point energy. However, the applicability of these cryo-effects for the separation of isotope mixtures is still lacking an experimental proof. The current work describes the first experimentally obtained H 2 /D 2 selectivity values of nanoporous materials measured by applying isotope mixtures in low-temperature thermal desorption spectroscopy (TDS). The dissertation contains the following key points: 1) A proof of the experimental method, i.e. it is shown that TDS leads to reasonable selectivity values. 2) A series of small-pore MFU-4 derivatives (MOFs) is shown to separate isotope mixtures by quantum sieving, i.e. by the difference in the adsorption kinetics. The influence of the pore size on the selectivity is studied systematically for this series. 3) Two MOFs with pores much larger than the kinetic diameter of H 2 do not exhibit kinetic quantum sieving. However, if the MOFs are exposed to an isotope mixture, deuterium adsorbs preferentially at the adsorption sites with high heats of adsorption. According to the experimental results, these strong adsorption sites can be every selective for deuterium. On the basis of the experimentally obtained selectivity values, technical implementations for H 2 /D 2 light-gas isotope separation by cryo-adsorption are described.

  1. Comparison of diamond growth with different gas mixtures in microwave plasma asssited chemical vapor deposition (MWCVD

    Directory of Open Access Journals (Sweden)

    Corat Evaldo J.

    2003-01-01

    Full Text Available In this work we study the influence of oxygen addition to several halocarbon-hydrogen gas systems. Diamond growth have been performed in a high power density MWCVD reactor built in our laboratory. The growth experiments are monitored by argon actinometry as a reference to plasma temperature and atomic hydrogen production, and by mass spectrometry to compare the exhaust gas composition. Atomic hydrogen actinometry revealed that the halogen presence in the gas phase is responsible for a considerable increase of atomic hydrogen concentration in the gas phase. Mass spectrometry shows similar results for all gas mixtures tested. Growth studies with oxygen addition to CF4/H2, CCl4/H2, CCl2F2/H2 and CH3Cl/H2 reveals that oxygen increases the carbon solubility in the gas phase but no better diamond growth conditions were found. Halogens are not, per se, eligible for diamond growth. All the possible advantages, as the higher production of atomic hydrogen, have been suppressed by the low carbon solubility in the gas phase, even when oxygen is added. The diamond growth with small amount of CF4 added to CH4/H2 mixture is not aggressive to the apparatus but brings several advantages to the process.

  2. Effective ionization coefficients, electron drift velocities, and limiting breakdown fields for gas mixtures of possible interest to particle detectors

    International Nuclear Information System (INIS)

    Datskos, P.G.

    1991-01-01

    We have measured the gas-density, N, normalized effective ionization coefficient, bar a/N, and the electron drift velocity, w, as a function of the density-reduced electric field, E/N, and obtained the limiting, (E/N) lim , value of E/N for the unitary gases Ar, CO 2 , and CF 4 , the binary gas mixtures CO 2 :Ar (20: 80), CO 2 :CH 4 (20:80), and CF 4 :Ar (20:80), and the ternary gas mixtures CO 2 :CF 4 :Ar (10:10:80) and H 2 O: CF 4 :Ar (2:18:80). Addition of the strongly electron thermalizing gas CO 2 or H 2 O to the binary mixture CF 4 :Ar (1)''cools'' the mixture (i.e., lowers the electron energies), (2) has only a small effect on the magnitude of w(E/N) in the E/N range employed in the particle detectors, and (3) increases bar a/N for E/N ≥ 50 x 10 -17 V cm 2 . The increase in bar a/N, even though the electron energies are lower in the ternary mixture, is due to the Penning ionization of CO 2 (or H 2 O) in collisions with excited Ar* atoms. The ternary mixtures -- being fast, cool, and efficient -- have potential for advanced gas-filled particle detectors such as those for the SCC muon chambers. 17 refs., 8 figs., 1 tab

  3. Mineral storage of CO2/H2S gas mixture injection in basaltic rocks

    Science.gov (United States)

    Clark, D. E.; Gunnarsson, I.; Aradottir, E. S.; Oelkers, E. H.; Sigfússon, B.; Snæbjörnsdottír, S. Ó.; Matter, J. M.; Stute, M.; Júlíusson, B. M.; Gíslason, S. R.

    2017-12-01

    Carbon capture and storage is one solution to reducing CO2 emissions in the atmosphere. The long-term geological storage of buoyant supercritical CO2 requires high integrity cap rock. Some of the risk associated with CO2 buoyancy can be overcome by dissolving CO2 into water during its injection, thus eliminating its buoyancy. This enables injection into fractured rocks, such as basaltic rocks along oceanic ridges and on continents. Basaltic rocks are rich in divalent cations, Ca2+, Mg2+ and Fe2+, which react with CO2 dissolved in water to form stable carbonate minerals. This possibility has been successfully tested as a part of the CarbFix CO2storage pilot project at the Hellisheiði geothermal power plant in Iceland, where they have shown mineralization occurs in less than two years [1, 2]. Reykjavik Energy and the CarbFix group has been injecting a mixture of CO2 and H2S at 750 m depth and 240-250°C since June 2014; by 1 January 2016, 6290 tons of CO2 and 3530 tons of H2S had been injected. Once in the geothermal reservoir, the heat exchange and sufficient dissolution of the host rock neutralizes the gas-charged water and saturates the formation water respecting carbonate and sulfur minerals. A thermally stable inert tracer was also mixed into the stream to monitor the subsurface transport and to assess the degree of subsurface carbonation and sulfide precipitation [3]. Water and gas samples have been continuously collected from three monitoring wells and geochemically analyzed. Based on the results, mineral saturation stages have been defined. These results and tracer mass balance calculations are used to evaluate the rate and magnitude of CO2 and H2S mineralization in the subsurface, with indications that mineralization of carbon and sulfur occurs within months. [1] Gunnsarsson, I., et al. (2017). Rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur. Manuscript submitted for publication. [2] Matter, J., et al. (2016). Rapid

  4. Coherent soft X-ray high-order harmonics using tight-focusing laser pulses in the gas mixture.

    Science.gov (United States)

    Lu, Faming; Xia, Yuanqin; Zhang, Sheng; Chen, Deying; Zhao, Yang; Liu, Bin

    2014-01-01

    We experimentally study the harmonics from a Xe-He gas mixture using tight-focusing femtosecond laser pulses. The spectrum in the mixed gases exhibits an extended cutoff region from the harmonic H21 to H27. The potential explanation is that the harmonics photons from Xe contribute the electrons of He atoms to transmit into the excited-state. Therefore, the harmonics are emitted from He atoms easily. Furthermore, we show that there are the suppressed harmonics H15 and H17 in the mixed gases. The underlying mechanism is the destructive interference between harmonics generated from different atoms. Our results indicate that HHG from Xe-He gas mixture is an efficient method of obtaining the coherent soft X-ray source.

  5. The energy dependence of selective hydrogen atom abstraction by H(D) atoms in the photolysis of neopentane - ethane mixtures at 77 K

    International Nuclear Information System (INIS)

    Miyazaki, T.; Fueki, K.

    1980-01-01

    Selective hydrogen - atom - abstraction reaction by H or D atom has been studied in a neo C 5 H 12 - C 2 H 6 (less than 1 mol %) mixture at 77 K by ESR spectroscopy. The H (or D) atom produced by the photolysis of HI (or DI) reacts with neo - C 2 H 12 and C 2 H 6 to form neo - C 5 H 11 and C 2 H 5 radicals. In order to obtain H atoms with different kinetic energies, the photolysis was performed with different lights of 313, 254 and 229 nm. The selective formation of the C 2 H 5 radical by the reaction of the H (or D) atom with C 2 H 6 becomes more effective with the decrease in the energy of the H (or D) atom. The formation of the neo - C 5 H 11 radical by the reaction of the H (or D) atom with neo - C 2 H 12 becomes more effective with the increase in the energy of the H (or D) atom. (A.R.H.) [pt

  6. The RealGas and RealGasH2O options of the TOUGH+ code for the simulation of coupled fluid and heat flow in tight/shale gas systems

    Science.gov (United States)

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas. The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and sh...

  7. Membrane Separation of Gas Mixtures under the Influence of Resonance Radiation.

    Czech Academy of Sciences Publication Activity Database

    Levdansky, Valerij Vladimirovič; Izák, Pavel

    2017-01-01

    Roč. 173, FEB (2017), s. 93-98 ISSN 1383-5866 R&D Projects: GA ČR GA14-12695S Institutional support: RVO:67985858 Keywords : membranes * gas mixture * separation Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 3.359, year: 2016

  8. Nitrocarburising in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammoniapropene- hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  9. Deposition of pyrolytic carbon from C2H2--C3H6--Ar gas mixtures: coating under adiabatic conditions

    International Nuclear Information System (INIS)

    Gyarmati, E.; Gupta, A.K.; Puetter, B.

    In this report a method is described by which pyrolytic carbon can be deposited from ethylene-propylene-argon gas mixtures at temperatures between 1230 and 1330 0 C in 55-mm fluidized bed apparatus without heat exchange with the apparatus

  10. Neutral interstellar gas toward epsilon persei: H I, H2, D I, N I, O I

    International Nuclear Information System (INIS)

    Vidal, A.; Ferlet, R.; Laurent, C.; York, D.G.

    1982-01-01

    The study of the interstellar medium toward epsilon Per, a moderately reddened (E/sub B/-V = 0.1) B0.5 star, through the analysis of H I, D I, H 2 , N I, O I, and Ar I absorption features, revealed the following structure of the line of sight: (1) a main interstellar, cold (Tapprox.100 K; b = 2.9 km s -1 ) component, (2) a weak (approx.1% of the main one) probably cold component, and (3) a weak (also approx.1% of the main one) and hot component (Tapprox.8000 K). All three components have normal abundances. Comparison with ground-based observations or other UV studies reveals the presence on the line of sight of an H II region not detected in the neutral species observed in this study. High-velocity H I gas is also detected, located either in the interstellar medium or very likely in the stellar wind for the blue-shifted components. One of these features is blended with the deuterium lines and therefore obscures our D/H evaluation. All we can say is that the data are compatible with a D/H ratio equal to 1.5 x 10 -5 . This blended feature proved to vary by at least a factor of 3 in column density within few hours, a result which sustains our interpretation of the stellar wind origin of the blueshifted high-velocity H I component. However, the alternative interpretation of a high D/H (approx.10 -4 ) value is also compatible with our data

  11. Nitrocarburizing in ammonia-hydrocarbon gas mixtures

    DEFF Research Database (Denmark)

    Pedersen, Hanne; Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present work investigates the possibility of nitrocarburising in ammonia-acetylene-hydrogen and ammonia-propene-hydrogen gas mixtures, where unsaturated hydrocarbon gas is the carbon source during nitrocarburising. Consequently, nitrocarburising is carried out in a reducing atmosphere...... microscopy and X-ray diffraction analysis. It is shown that the use of unsaturated hydrocarbon gas in nitrocarburising processes is a viable alternative to traditional nitrocarburising methods....

  12. Separation of the components of the TBP-H2 MBP-HDBP-H3PO4 mixture

    International Nuclear Information System (INIS)

    Pires, M.A.F.; Abrao, A.

    1981-04-01

    Several schemes for the separation of dibutylphosphoric acid (HDBP), monobutylphosphoric acid (H 2 MBP) and orthophosphoric acid (H 3 PO 4 ) as hydrolytic and radiolytic degradation products from tri-n-butylphosphate (TBP) were studied. For the resolution of a HDBP, H 2 MPB and H 3 PO 4 mixture in TBP-diluent, or in TBP-diluent-heavy metal nitrate (U-VI, Th-IV or Zr-IV), techniques such as ion exchange chromatography, ion chromatography and separation onto a chromatographic alumina column were investigated. For the identification, determination and analytical resolution following up for the several systems studied, techniques such as refraction index measurement, electrical conductivity measurement, molecular spectrophotometry and gas chromatography were applied. Special emphasys was given to the separation using alumina column where the HDBP acid was retained and eluted selectively for its separation from TBP-varsol-uranyl nitrate mixtures. This analytical procedure was applied to the samples coming from the Uranium Purification Pilot Plant in operation at the Centro de Engenharia Quimica (IPEN). (Author) [pt

  13. Evaluation of the performance of thermal diffusion column separating binary gas mixtures with continuous draw-off

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Shimizu, Masami; Takashima, Yoichi

    1977-01-01

    Advanced transport relations involving three column constants, H sup(σ), K sub(c)sup(σ) and K sub(d)sup(σ), are developed to describe the separation performance of a thermal diffusion column with continuous draw-off. These constants were related to some integral functions of velocity profile, temperature distribution, density of gas mixture and characteristic values of transport coefficients. The separation of binary gas mixture by this technique was so effective that three reasonable factors had to be introduced into the column constants in the theory. They are a circulation constant of natural convection, a definition of characteristic mean temperature and a definition of mean composition over the column. The separation performance and the column constants also varied with the distortion of velocity profile due to continuous draw-off from the top or the bottom of column. However, its effect was not large, compared with the other factors mentioned above. The theory presented here makes possible to estimate the separation performance of hot-wire type thermal diffusion column with high accuracy. (auth.)

  14. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  15. Nanoparticle formation in H2O/N-2 and H2O/Ar mixtures under irradiation by 20 MeV protons and positive corona discharge

    DEFF Research Database (Denmark)

    Imanaka, M.; Tomita, S.; Kanda, S.

    2010-01-01

    To investigate the contribution of ions to gas nucleation, we have performed experiments on the formation of water droplets in H2O/N-2 and H2O/Ar gas mixtures by irradiation with a 20 MeV proton beam and by positive corona discharge. The size of the formed nanoparticles was measured using...

  16. Detonation velocity in poorly mixed gas mixtures

    Science.gov (United States)

    Prokhorov, E. S.

    2017-10-01

    The technique for computation of the average velocity of plane detonation wave front in poorly mixed mixture of gaseous hydrocarbon fuel and oxygen is proposed. Here it is assumed that along the direction of detonation propagation the chemical composition of the mixture has periodic fluctuations caused, for example, by layered stratification of gas charge. The technique is based on the analysis of functional dependence of ideal (Chapman-Jouget) detonation velocity on mole fraction (with respect to molar concentration) of the fuel. It is shown that the average velocity of detonation can be significantly (by more than 10%) less than the velocity of ideal detonation. The dependence that permits to estimate the degree of mixing of gas mixture basing on the measurements of average detonation velocity is established.

  17. Spectroscopic investigations of high-power laser-induced dielectric breakdown in gas mixtures containing carbon monoxide.

    Science.gov (United States)

    Civis, Svatopluk; Babánková, Dagmar; Cihelka, Jaroslav; Sazama, Petr; Juha, Libor

    2008-08-07

    Large-scale plasma was created in gas mixtures containing carbon monoxide by high-power laser-induced dielectric breakdown (LIDB). The composition of the mixtures used corresponded to a cometary and/or meteoritic impact into the Earth's early atmosphere. A multiple-centimeter-sized fireball was created by focusing a single 85 J, 450 ps near-infrared laser pulse into the center of a 15 L gas cell. The excited reaction intermediates that formed in various stages of the LIDB plasma chemical evolution were investigated by optical emission spectroscopy (OES) with temporal resolution. Special attention was paid to any OES signs of molecular ions. However, carbon monoxide cations were registered only if their production was enhanced by Penning ionization, i.e., excess He was added to the CO. The chemical consequences of laser-produced plasma generation in a CO-N 2-H 2O mixture were investigated using high resolution Fourier-transform infrared absorption spectroscopy (FTIR) and gas chromatography (GC). Several simple inorganic and organic compounds were identified in the reaction mixture exposed to ten laser sparks. H 2 (18)O was used to avoid possible contamination. The large laser spark triggered more complex reactivity originating in carbon monoxide than expected, when taking into account the strong triple bond of carbon monoxide causing typically inefficient dissociation of this molecule in electrical discharges.

  18. D/H fractionation in the H2-H2O system at supercritical water conditions: Compositional and hydrogen bonding effects

    Science.gov (United States)

    Foustoukos, Dionysis I.; Mysen, Bjorn O.

    2012-06-01

    O-D⋯O environment. This difference allows enhanced gas solubility in the denser and more polar H2O clusters, and thus, affects the D/H exchange between the H2-D2 volatiles and the coexisting H2O-D2O mixtures. The proposed role of temperature in promoting differences in the density and polarity of hydrogen-bonded OHO and ODO molecules may be explained with isotope-specific molar volume effects similar to those suggested to account for the hydrogen isotope fractionation between H2O and hydroxide mineral phases (e.g. brucite) across large pressure intervals.

  19. Uranous nitrate production for purex process applications using PtO2 catalyst and H2/H2-gas mixtures

    International Nuclear Information System (INIS)

    Sreenivasa Rao, K.; Shyamali, R.; Narayan, C.V.; Patil, A.R.; Jambunathan, U.; Ramanujam, A.; Kansara, V.P.

    2003-04-01

    In the Purex process of spent fuel reprocessing. the twin objectives- decontamination and partitioning are achieved by extracting uranium (VI) and plutonium (IV) together in the solvent 30% TBP-dodecane and then selectively reducing Pu (IV) to Pu (III) in which valency it is least extractable in the solvent. Uranous nitrate stabilized with hydrazine nitrate is the widely employed partitioning agent. The conventional method of producing U(IV) is by the electrolytic reduction of uranyl nitrate with hydrazine nitrate as uranous ion stabilizer. Tre percentage conversion of U(VI) to U(IV) obtained in this method is 50 -60 %. The use of this solution as partitioning agent leads not only to the dilution of the plutonium product but also to increase in uranium processing load by each externally fed uranous nitrate batch. Also the oxide coating of the anode, TSIA (Titanium Substrate Insoluble Anode) wears out after a certain period of operation. This necessitates recoating which is quite cumbersome considering the amount of the decontamination involved. An alternative to the conventional electrolytic method of reduction of uranyl nitrate to uranous nitrate was explored at FRD laboratory .The studies have revealed that near 100% uranous nitrate can be produced by reducing uranyl nitrate with H 2 gas or H 2 (8%)- Ar/N 2 gas mixture in presence of PtO 2 catalyst. This report describes the laboratory scale studies carried out to optimize the various parameters. Based on these studies reduction of uranyl nitrate on a pilot plant scale was carried out. The design and operation of the reductor column and also the various studies carried out in the pilot plant studies are discussed. Near 100% conversion of uranyl nitrate to uranous nitrate and also the redundancy of supply of electrical energy make this process a viable alternative to the existing electrolytic method. (author)

  20. Interaction of a H2O/Ar Plasma Jet with Nitrogen Atmosphere: Effect of the Method for Calculating Thermophysical Properties of the Gas Mixture on the flow field

    Czech Academy of Sciences Publication Activity Database

    Agon, N.; Vierendeels, J.; Hrabovský, Milan; Murphy, A.B.; Van Oost, G.

    2015-01-01

    Roč. 35, č. 2 (2015), s. 365-386 ISSN 0272-4324 R&D Projects: GA ČR(CZ) GA15-19444S Institutional support: RVO:61389021 Keywords : Thermal plasma * Computational fluid dynamics * Thermophysical properties * Mixing rules * Ionized gas mixtures Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.811, year: 2015 http://link.springer.com/article/10.1007%2Fs11090-014-9605-6

  1. Kinetics of the radiation-induced exchange reactions of H2, D2, and T2: a review

    International Nuclear Information System (INIS)

    Pyper, J.W.; Briggs, C.K.

    1978-01-01

    Mixtures of H 2 --T 2 or D 2 --T 2 will exchange to produce HT or DT due to catalysis by the tritium β particle. The kinetics of the reaction D 2 + T 2 = 2DT may play an important role in designing liquid or solid targets of D 2 --DT--T 2 for implosion fusion, and distillation schemes for tritium cleanup systems in fusion reactors. Accordingly, we have critically reviewed the literature for information on the kinetics and mechanism of radiation-induced self-exchange reactions among the hydrogens. We found data for the reaction H 2 + T 2 = 2HT in the gas phase and developed a scheme based on these data to predict the halftime to equilibrium for any gaseous H 2 + T 2 mixture at ambient temperature with an accuracy of +-10 percent. The overall order of the H 2 + T 2 = 2HT reaction is 1.6 based on an initial rate treatment of the data. The most probable mechanism for radiation-induced self-exchange reaction is an ion-molecule chain mechanism

  2. Noble gas, binary mixtures for commercial gas-cooled reactor systems

    International Nuclear Information System (INIS)

    El-Genk, M. S.; Tournier, J. M.

    2007-01-01

    Commercial gas cooled reactors employ helium as a coolant and working fluid for the Closed Brayton Cycle (CBC) turbo-machines. Helium has the highest thermal conductivity and lowest dynamic viscosity of all noble gases. This paper compares the relative performance of pure helium to binary mixtures of helium and other noble gases of higher molecular weights. The comparison is for the same molecular flow rate, and same operating temperatures and geometry. Results show that although helium is a good working fluid because of its high heat transfer coefficient and significantly lower pumping requirement, a binary gas mixture of He-Xe with M = 15 gm/mole has a heat transfer coefficient that is ∼7% higher than that of helium and requires only 25% of the number stages of the turbo-machines. The binary mixture, however, requires 3.5 times the pumping requirement with helium. The second best working fluid is He-Kr binary mixture with M = 10 gm/mole. It has 4% higher heat transfer coefficient than He and requires 30% of the number of stages in the turbo-machines, but requires twice the pumping power

  3. Velocity limitations in coaxial plasma gun experiments with gas mixtures

    International Nuclear Information System (INIS)

    Axnaes, I.

    1976-04-01

    The velocity limitations found in many crossed field plasma experiments with neutral gas present are studied for binary mixtures of H 2 , He, N 2 O 2 , Ne and Ar. The apparatus used is a coaxial plasma gun with an azimuthal magnetic bias field. The discharge parameters are chosen so that the plasma is weakly ionized. In some of the mixtures it is found that one of the components tends to dominate in the sense that only a small amount (regarding volume) of that component is needed for the discharge to adopt a limiting velocity close to that for the pure component. Thus in a mixture between a heavy and a light component having nearly equal ionization potentials the heavy component dominates. Also if there is a considerable difference in ionization potential between the components, the component with the lowest ionization potential tends to dominate. (author)

  4. Evaluation of gas migration characteristics of compacted and saturated Ca-bentonite mixture

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2014-01-01

    In the current concept of near-surface pit disposal for low level radioactive waste, compacted bentonite mixture will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier mainly by the chemical interaction between aluminum and the alkaline component of cement, or water. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the compacted bentonite mixture, gas will accumulate in the void space inside of the compacted bentonite mixture until its pressure becomes large enough for it to enter the compacted bentonite mixture as a discrete gaseous phase. It is expected to be not easy for gas to entering into the compacted bentonite mixture as a discrete gaseous phase because the pore of the compacted bentonite mixture is so minute. Therefore in this study, the gas migration characteristics and the effect of gas migration on the hydraulic conductivity of the compacted Ca-bentonite mixture are investigated by the gas migration tests. The effect of stress state on the migration characteristics is also investigated by the gas migration tests and by parametric study using the model of two phase flow through deformable porous media, which was originally developed by CRIEPI. Results of this study imply that : (1) Large gas breakthrough pressure, which is defined as a rapid increase of amount of discharged gas, is affected by initial stress conditions as well as Ca-bentonite content of the mixture. (2) Hydraulic conductivity measured after the large gas breakthrough is substantially the same that measured before the gas migration test. (3) Axial stress change and volume change of the specimen during the gas migration test can be reproduced by the numerical simulation using the model of two-phase flow through deformable porous media, which was originally developed by CRIEPI. (4) Gas migration of a small scale model is numerically simulated to investigate the

  5. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    Science.gov (United States)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  6. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Marques, J-L; Forster, G; Schein, J

    2013-01-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned

  7. The Huber’s Method-based Gas Concentration Reconstruction in Multicomponent Gas Mixtures from Multispectral Laser Measurements under Noise Overshoot Conditions

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2016-01-01

    Full Text Available Laser gas analysers are the most promising for the rapid quantitative analysis of gaseous air pollution. A laser gas analysis problem is that there are instable results in reconstruction of gas mixture components concentration under real noise in the recorded laser signal. This necessitates using the special processing algorithms. When reconstructing the quantitative composition of multi-component gas mixtures from the multispectral laser measurements are efficiently used methods such as Tikhonov regularization, quasi-solution search, and finding of Bayesian estimators. These methods enable using the single measurement results to determine the quantitative composition of gas mixtures under measurement noise. In remote sensing the stationary gas formations or in laboratory analysis of the previously selected (when the gas mixture is stationary air samples the reconstruction procedures under measurement noise of gas concentrations in multicomponent mixtures can be much simpler. The paper considers a problem of multispectral laser analysis of stationary gas mixtures for which it is possible to conduct a series of measurements. With noise overshoots in the recorded laser signal (and, consequently, overshoots of gas concentrations determined by a single measurement must be used stable (robust estimation techniques for substantial reducing an impact of the overshoots on the estimate of required parameters. The paper proposes the Huber method to determine gas concentrations in multicomponent mixtures under signal overshoot. To estimate the value of Huber parameter and the efficiency of Huber's method to find the stable estimates of gas concentrations in multicomponent stationary mixtures from the laser measurements the mathematical modelling was conducted. Science & Education of the Bauman MSTU 108 The mathematical modelling results show that despite the considerable difference among the errors of the mixture gas components themselves a character of

  8. Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber

    KAUST Repository

    Shi, Xian

    2017-01-05

    Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber are numerically investigated using an 1-D unsteady, shock-capturing, compressible and reacting flow solver. Different combinations of reaction front propagation and end-gas combustion modes are observed, i.e., 1) deflagration without end-gas combustion, 2) deflagration to end-gas autoignition, 3) deflagration to end-gas detonation, 4) developing or developed detonation, occurring in the sequence of increasing initial temperatures. Effects of ignition location and chamber size are evaluated: the asymmetric ignition is found to promote the reactivity of unburnt mixture compared to ignitions at center/wall, due to additional heating from asymmetric pressure waves. End-gas combustion occurs earlier in smaller chambers, where end-gas temperature rise due to compression heating from the deflagration is faster. According to the ξ−ε regime diagram based on Zeldovich theory, modes of reaction front propagation are primarily determined by reactivity gradients introduced by initial ignition, while modes of end-gas combustion are influenced by the total amount of unburnt mixture at the time when autoignition occurs. A transient reactivity gradient method is provided and able to capture the occurrence of detonation.

  9. Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber

    KAUST Repository

    Shi, Xian; Ryu, Je Ir; Chen, Jyh-Yuan; Dibble, Robert W.

    2017-01-01

    Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber are numerically investigated using an 1-D unsteady, shock-capturing, compressible and reacting flow solver. Different combinations of reaction front propagation and end-gas combustion modes are observed, i.e., 1) deflagration without end-gas combustion, 2) deflagration to end-gas autoignition, 3) deflagration to end-gas detonation, 4) developing or developed detonation, occurring in the sequence of increasing initial temperatures. Effects of ignition location and chamber size are evaluated: the asymmetric ignition is found to promote the reactivity of unburnt mixture compared to ignitions at center/wall, due to additional heating from asymmetric pressure waves. End-gas combustion occurs earlier in smaller chambers, where end-gas temperature rise due to compression heating from the deflagration is faster. According to the ξ−ε regime diagram based on Zeldovich theory, modes of reaction front propagation are primarily determined by reactivity gradients introduced by initial ignition, while modes of end-gas combustion are influenced by the total amount of unburnt mixture at the time when autoignition occurs. A transient reactivity gradient method is provided and able to capture the occurrence of detonation.

  10. Polyimide hollow fiber membranes for CO2 separation from wet gas mixtures

    Directory of Open Access Journals (Sweden)

    F. Falbo

    2014-12-01

    Full Text Available Matrimid®5218 hollow fiber membranes were prepared using the dry-wet spinning process. The transport properties were measured with pure gases (H2, CO2, N2, CH4 and O2 and with a mixture (30% CO2 and 70% N2 in dry and wet conditions at 25 ºC, 50 ºC, 60 ºC and 75 ºC and up to 600 kPa. Interesting values of single gas selectivity up to 60 ºC (between 31 and 28 for CO2/N2 and between 33 and 30 for CO2/CH4 in dry condition were obtained. The separation factor measured for the mixture was 20% lower compared to the single gas selectivity, in the whole temperature range analyzed. In saturation conditions the data showed that water influences the performance of the membranes, inducing a reduction of the permeance of all gases. Moreover, the presence of water caused a decrease of single gas selectivity and separation factor, although not so significant, highlighting the very high water resistance of hollow fiber membrane modules.

  11. Burning Behaviour of High-Pressure CH4-H2-Air Mixtures

    Directory of Open Access Journals (Sweden)

    Jacopo D'Alessio

    2013-01-01

    Full Text Available Experimental characterization of the burning behavior of gaseous mixtures has been carried out, analyzing spherical expanding flames. Tests were performed in the Device for Hydrogen-Air Reaction Mode Analysis (DHARMA laboratory of Istituto Motori—CNR. Based on a high-pressure, constant-volume bomb, the activity is aimed at populating a systematic database on the burning properties of CH4, H2 and other species of interest, in conditions typical of internal combustion (i.c. engines and gas turbines. High-speed shadowgraph is used to record the flame growth, allowing to infer the laminar burning parameters and the flame stability properties. Mixtures of CH4, H2 and air have been analyzed at initial temperature 293÷305 K, initial pressure 3÷18 bar and equivalence ratio  = 1.0. The amount of H2 in the mixture was 0%, 20% and 30% (vol.. The effect of the initial pressure and of the Hydrogen content on the laminar burning velocity and the Markstein length has been evaluated: the relative weight and mutual interaction has been assessed of the two controlling parameters. Analysis has been carried out of the flame instability, expressed in terms of the critical radius for the onset of cellularity, as a function of the operating conditions.

  12. Ion mobilities in Xe/Ne and other rare-gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, D; Pitchford, L C [Centre de Physique des Plasmas et Applications de Toulouse (CPAT), UMR 5002 CNRS, 118 route de Narbonne, 31062 Toulouse (France); Phelps, A V [JILA, University of Colorado and National Institute of Technology, Boulder, Colorado (United States); Urquijo, J de [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Post Office Box 48-3, 62251, 80309-0440 Cuernavaca, Moreno (Mexico); Basurto, E [Departmento de Ciencias Basicas, Universidad Autonoma Metropolitana, 02200 Mexico Distrito Federal (Mexico)

    2003-10-01

    The ion mobility or drift velocity data important for modeling glow discharges in rare gas mixtures are not generally available, nor are the ion-neutral scattering cross sections needed to calculate these data. In this paper we propose a set of cross sections for Xe{sup +} and Ne{sup +} collisions with Xe and Ne atoms. Ion mobilities at 300 K calculated using this cross section set in a Monte Carlo simulation are reported for reduced field strengths, E/N, up to 1500x10{sup -21} V m{sup 2}, in pure gases and in Xe/Ne mixtures containing 5% and 20% Xe/Ne, which are mixtures of interest for plasma display panels (PDPs). The calculated Xe{sup +} mobilities depend strongly on the mixture composition, but the Ne{sup +} mobility varies only slightly with increasing Xe in the mixture over the range studied here. The mobilities in pure gases compare well with available experimental values, and mobilities in gas mixtures at low E/N compare well with our recent measurements which will be published separately. Results from these calculations of ion mobilities are used to evaluate the predictions of Blanc's law and of the mixture rule proposed by Mason and Hahn [Phys. Rev. A 5, 438 (1972)] for determining the ion mobilities in mixtures from a knowledge of the mobilities in each of the pure gases. The mixture rule of Mason and Hahn is accurate to better than 10% at high field strengths over a wide range of conditions of interest for modeling PDPs. We conclude that a good estimate of ion mobilities at high E/N in Xe/Ne and other binary rare gas mixtures can be obtained using this mixture rule combined with known values of mobilities in parent gases and with the Langevin form for mobility of rare gas ions ion in other gases. This conclusion is supported by results in Ar/Ne mixtures which are also presented here.

  13. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  14. Reduced viscosity interpreted for fluid/gas mixtures

    Science.gov (United States)

    Lewis, D. H.

    1981-01-01

    Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.

  15. Method of removing hydrogen sulphide from hot gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.; Yumura, M.

    1987-12-22

    Hydrogen sulphide can be removed from hot gas mixtures by contacting the hot gas mixture at temperatures in the range of 500-900/sup 0/C with an adsorbent consisting of managanese nodules. The nodules may contain additional calcium cations. In sulphided form, the nodules are catalytically active for hydrogen sulphide decomposition to produce hydrogen. Regeneration of the adsorbent can be accomplished by roasting in an oxidizing atmosphere. The nodules can be used to treat gaseous mixtures containing up to 20% hydrogen sulfide, for example, gases produced during pyrolysis, cracking, coking, and hydrotreating processes. Experiments using the processes described in this patent are also outlined. 6 tabs.

  16. Penning transfer in argon-based gas mixtures

    CERN Document Server

    Sahin, O; Tapan, I; Ozmutlu, E N

    2010-01-01

    Penning transfers, a group of processes by which excitation energy is used to ionise the gas, increase the gas gain in some detectors. Both the probability that such transfers occur and the mechanism by which the transfer takes place, vary with the gas composition and pressure. With a view to developing a microscopic electron transport model that takes Penning transfers into account, we use this dependence to identify the transfer mechanisms at play. We do this for a number of argon-based gas mixtures, using gain curves from the literature.

  17. Evaluation of gas migration characteristics of compacted bentonite and Ca-bentonite mixture

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2014-01-01

    In the current concept of subsurface disposal and near-surface pit disposal for low level radioactive waste, compacted bentonite and Ca-bentonite mixture will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides, respectively. Hydrogen gas can be generated inside the engineered barrier of subsurface disposal facilities mainly by anaerobic corrosion of metals used for containers, etc. Hydrogen gas can be also generated inside the engineered barrier of near-surface pit disposal facilities mainly by the chemical interaction between aluminum and the alkaline component of cement, or water. If the gas generation rate exceeds the diffusion rate of gas molecules inside of the compacted bentonite and Ca-bentonite mixture, gas will accumulate in the void space inside of the compacted bentonite and Ca-bentonite mixture until breakthrough occurs. It is expected to be not easy for gas to entering into the compacted bentonite mixture as a discrete gaseous phase because the pore of the compacted bentonite and Ca-bentonite mixture is so minute. Therefore in this study, the gas migration characteristics and the effect of gas migration on the hydraulic conductivity of the compacted bentonite and Ca-bentonite mixture are investigated by the gas migration tests. The applicability of the two phase flow model without considering deformability of the specimen is investigated. The applicability of the model of two phase flow through deformable porous media, which was originally developed by CRIEPI, is also investigated. Results of this study imply that : (1) Gas migration mechanism of the compacted bentonite and Ca-bentonite mixture is revealed through gas migration test. (2) Hydraulic conductivity measured after the large gas breakthrough is substantially the same that measured before the gas migration test. (3) Stress change, pore-water pressure change and volume change of the specimen during the gas migration test can be reproduced by the numerical

  18. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    Science.gov (United States)

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  19. New gas mixtures for Resistive Plate Chambers operated in avalanche mode

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M [Dipartimento Interateneo di Fisica, Universita di Bari and sezione INFN, via Amendola 173, I-70126 Bari (Italy); Cassano, V; Nuzzo, S; Piscitelli, G; Vadruccio, D; Zaza, S [Dipartimento Interateneo di Fisica, Universita di Bari and sezione INFN, via Amendola 173, I-70126 Bari (Italy)

    2012-01-01

    The possibility of using gas mixtures containing Helium, to overcome some of the problems encountered with standard gas mixture employed up to now for Resistive Plate Chambers, is studied here. New and interesting experimental results are reported, opening a possible original path of investigation in this field.

  20. Binary and ternary gas mixtures for use in glow discharge closing switches

    Science.gov (United States)

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  1. Synthesis of 25-hydroxy-[26,27-3H]vitamin D2, 1,25-dihydroxy-[26,27-3H]vitamin D2 and their (24R)-epimers

    International Nuclear Information System (INIS)

    Sicinski, R.R.; Tanaka, Y.; Phelps, M.; Schnoes, H.K.; DeLuca, H.F.

    1987-01-01

    Synthesis of a C-24-epimeric mixture of 25-hydroxy-[26,27- 3 H]vitamin D2 and a C-24-epimeric mixture of 1,25-dihydroxy-[26,27- 3 H]vitamin D2 by the Grignard reaction of the corresponding 25-keto-27-nor-vitamin D2 and 1 alpha-acetoxy-25-keto-27-nor-vitamin D3 with tritiated methyl magnesium bromide is described. Separation of epimers by high-performance liquid chromatography afforded pure radiolabeled vitamins of high specific activity (80 Ci/mmol). The identities and radiochemical purities of 25-hydroxy-[26,27- 3 H[vitamin D2 and 1,25-dihydroxy-[26,27- 3 H]vitamin D2 D2 were established by cochromatography with synthetic 25-hydroxyvitamin D2 or 1,25-dihydroxyvitamin D2. Biological activity of 25-hydroxy-[26,27- 3 H]vitamin D2 was demonstrated by its binding to the rat plasma binding protein for vitamin D compounds, and by its in vitro conversion to 1,25-dihydroxy-[26,27- 3 H]vitamin D2 by kidney homogenate prepared from vitamin D-deficient chickens. The biological activity of 1,25-dihydroxy-[26,27- 3 H]vitamin D2 was demonstrated by its binding to the chick intestinal receptor for 1,25-dihydroxyvitamin D3

  2. Treatment of low-temperature tar-gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Schick, F

    1928-07-04

    Process for the treating and conversion of low-temperature tar-vapor and gas mixtures in the presence of metals or metal oxides as well as bodies of large surface, without previous condensation of the liquid material to be treated, characterized by the treatment taking place with a mixture of desulfurizing metals and metal oxides which, if necessary, are precipitated on carriers and large surface nonmetal cracking catalysts, such as active carbon and silica gel.

  3. Detection of gases and gas mixtures by correlation spectroscopy

    OpenAIRE

    Dakin, J.P.; Gunning, M.J.; Chambers, P.

    2002-01-01

    The reliable detection and monitoring of gases and gas mixtures is known to play a crucial role in many real-world environmental and industrial applications. It is of considerable importance to utilise techniques that are not susceptible to poisoning, are specific to a target gas in a mixture, are unaffected by contaminants, and can be adapted for in-process monitoring. Ever-more stringent requirements in this field dictate a need for ongoing research in this area. As many common gases exhibi...

  4. Detonability of H2-air-diluent mixtures

    International Nuclear Information System (INIS)

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.; Berman, M.

    1987-06-01

    This report describes the Heated Detonation Tube (HDT). Detonation cell width and velocity results are presented for H 2 -air mixtures, undiluted and diluted with CO 2 and H 2 O for a range of H 2 concentration, initial temperature and pressure. The results show that the addition of either CO 2 or H 2 O significantly increases the detonation cell width and hence reduces the detonability of the mixture. The results also show that the detonation cell width is reduced (detonability is increased) for increased initial temperature and/or pressure

  5. Infra-red absorption in rare-gas mixtures

    International Nuclear Information System (INIS)

    Weiss, S.

    1980-01-01

    Infrared absorption in rare-gas mixtures has been studied extensively, so that by now the spectra at room temperature of almost all pairs are available. Turning attention first to the gas phase, it is shown that the considerable mass of experimental results can be reduced to yield a relatively simple picture. Having reviewed the experimental facts, the interpretation and extraction of information is discussed. (KBE)

  6. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James Anthony

    2002-07-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH{sub 3} radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch{sub 4}/H{sub 2} and C{sub 2}H{sub 2}/H{sub 2} gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C{sub 2}{yields}C{sub 1} species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH{sub 3}/CH{sub 4}/H{sub 2} and N{sub 2}/CH{sub 4}/H{sub 2} gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH{sub 3}, influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H{sub 2}/CH{sub 4}/N{sub 2} gas mixture. Spatially resolved species emission intensity maps were obtained for C{sub 2}(d{yields}a), CN(B{yields}X) and H{sub {beta}} from Abel-inverted datasets. The C{sub 2}(d{yields}a) and CN(B{yields}X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N{sub 2} additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C{sub 2}(a) in a DC-arcjet reactor operating on an Ar/H{sub 2}/CH{sub 4} gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C{sub 2}(v=0) transition revealed a rotational temperature of {approx

  7. Operation of gas electron multiplier (GEM) with propane gas at low pressure and comparison with tissue-equivalent gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    De Nardo, L., E-mail: laura.denardo@unipd.it [University of Padova, Physics and Astronomy Department and PD-INFN, via Marzolo 8, I-35131 Padova (Italy); Farahmand, M., E-mail: majid.farahmand@rivm.nl [Centre for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), PO Box 1, NL-3720 BA Bilthoven (Netherlands)

    2016-05-21

    A Tissue-Equivalent Proportional Counter (TEPC), based on a single GEM foil of standard geometry, has been tested with pure propane gas at low pressure, in order to simulate a tissue site of about 1 µm equivalent size. In this work, the performance of GEM with propane gas at a pressure of 21 and 28 kPa will be presented. The effective gas gain was measured in various conditions using a {sup 244}Cm alpha source. The dependence of effective gain on the electric field strength along the GEM channel and in the drift and induction region was investigated. A maximum effective gain of about 5×10{sup 3} has been reached. Results obtained in pure propane gas are compared with gas gain measurements in gas mixtures commonly employed in microdosimetry, that is propane and methane based Tissue-Equivalent gas mixtures.

  8. Characterisation of Oil-Gas Mixtures by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    . The present project deals with development of a technique for quick analysis of oil-gas mixtures. The main emphasis is laid on characterisation of gas phases in equilibrium with oil at high pressures and high temperatures by Raman spectroscopy. The Raman technique has a great potential of being useful, due...

  9. The critical ionization velocity mechnism for the case of gas mixture

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1982-08-01

    The theory of the critical ionization velocity mechnisms is discussed. In the case of gas mixture the critical velocity is expected to depend on the ionization cross sections. An analytic approximation is introduced which can be used to set limits on a generalized expression for the critical velocity of gas mixtures. (Author)

  10. Mass Transport Properties of LiD-U Mixtures from Orbital FreeMolecular Dynamics Simulations and a Pressure-Matching Mixing Rule

    International Nuclear Information System (INIS)

    Burakovsky, Leonid; Kress, Joel D.; Collins, Lee A.

    2012-01-01

    Mass transport properties for LiD-U mixtures were calculated using a pressure matching mixture rule for the mixing of LiD and of U properties simulated with Orbital Free Molecular Dynamics (OFMD). The mixing rule was checked against benchmark OFMD simulations for the fully interacting three-component (Li, D, U) system. To obtain transport coefficients for LiD-U mixtures of different (LiD) x U (1-x) compositions as functions of temperature and mixture density is a tedious task. Quantum molecular dynamics (MD) simulations can be employed, as in the case LiD or U. However, due to the presence of the heavy constituent U, such simulations proceed so slowly that only a limited number of numerical data points in the (x, ρ, T) phase space can be obtained. To finesse this difficulty, transport coefficients for a mixture can be obtained using a pressure-matching mixing rule discussed. For both LiD and U, the corresponding transport coefficients were obtained earlier from quantum molecular dynamics simulations. In these simulations, the quantum behavior of the electrons was represented using an orbital free (OF) version of density functional theory, and ions were advanced in time using classical molecular dynamics. The total pressure of the system, P = nk B T/V + P e , is the sum of the ideal gas pressure of the ions plus the electron pressure. The mass self-diffusion coefficient for species α, D α , the mutual diffusion coefficient for species α and β, Dαβ, and the shear viscosity, η, are computed from the appropriate autocorrelation function. The details of similar QMD calculations on LiH are described in Ref. [1] for 0.5 eV < T < 3 eV, and in Ref. [2] for 2 eV < T < 6 eV.

  11. An experimental study on premixed CNG/H2/CO2 mixture flames

    Science.gov (United States)

    Yilmaz, Ilker; Yilmaz, Harun; Cam, Omer

    2018-03-01

    In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW). All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.

  12. Mobile Sensor System AGaMon for Breath Control: Numerical Signal Analysis of Ternary Gas Mixtures and First Field Tests

    Directory of Open Access Journals (Sweden)

    Rolf Seifert

    2018-01-01

    Full Text Available An innovative mobile sensor system for breath control in the exhaled air is introduced. In this paper, the application of alcohol control in the exhaled air is considered. This sensor system operates semiconducting gas sensor elements with respect to the application in a thermo-cyclic operation mode. This operation mode leads to so-called conductance-over-time-profiles (CTPs, which are fingerprints of the gas mixture under consideration and can be used for substance identification and concentration determination. Especially for the alcohol control in the exhaled air, ethanol is the leading gas component to be investigated. But, there are also other interfering gas components in the exhaled air, like H2 and acetone, which may influence the measurement results. Therefore, a ternary ethanol-H2-acetone gas mixture was investigated. The establishing of the mathematical calibration model and the data analysis was performed with a newly developed innovative calibration and evaluation procedure called ProSens 3.0. The analysis of ternary ethanol-H2-acetone gas samples with ProSens 3.0 shows a very good substance identification performance and a very good concentration determination of the leading ethanol component. The relative analysis errors for the leading component ethanol were in all considered samples less than 9 %. First field test performed with the sensor system AGaMon shows very promising results.

  13. Gas mixtures for spark gap closing switches with emphasis on efficiency of operation

    International Nuclear Information System (INIS)

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-01-01

    The efficient operation of a spark gap closing switch requires a gaseous medium with large breakdown strength, low conduction voltage, and a short formative time lag. Gas properties necessary to achieve these requirements are identified and discussed. Based on available knowledge of such properties, a number of binary (e.g., c-C 4 F 8 , or l-C 3 F 6 , or n-C 4 F 10 , or C 3 F 8 , or C 6 F 6 in Ar or He or H 2 ) and ternary gas mixtures (e.g., c-C 4 F 8 , or n-C 4 F 10 , or C 3 F 8 in Ar or He + C 2 H 2 or another low ionization onset additive) have been identified which may be suitable for use in spark gap closing switches

  14. Impact of Different H/D Ratio on Axial Gas Holdup Measured by Four-Tips Optical Fiber Probe in Slurry Bubble Column

    Directory of Open Access Journals (Sweden)

    Yasser Imad Abdulaziz

    2016-02-01

    Full Text Available In wide range of chemical, petrochemical and energy processes, it is not possible to manage without slurry bubble column reactors. In this investigation, time average local gas holdup was recorded for three different height to diameter (H/D ratios 3, 4 and 5 in 18" diameter slurry bubble column. Air-water-glass beads system was used with superficial velocity up to 0.24 m/s. the gas holdup was measured using 4-tips optical fiber probe technique. The results show that the axial gas holdup increases almost linearly with the superficial gas velocity in 0.08 m/s and levels off with a further increase of velocity. A comparison of the present data with those reported for other slurry bubble column having diameters larger than 18" and H/D higher than 5 indicated that there is little effect of diameter on gas holdup. Also, local section-average gas holdups increase with increasing superficial gas velocity, while the effect of solid loading are less significant than that of superficial gas velocity.

  15. Determination of the absolute concentrations of H2O - D2O mixtures using the increase in sensitivity of infra-red absorption measurements

    International Nuclear Information System (INIS)

    Ceccaldi, M.

    1964-01-01

    A description is given in this report of original work concerning an infrared method for determining the absolute isotopic content of H 2 O - D 2 O mixtures. The spectrum is obtained, in both the liquid and the solid states, of water of unknown D 2 O content and of mixtures of this water and light water. The Beer-Lambert law-is Well followed in this case; the measurement of three parameters involved in this law is described together with a method of measuring the fourth parameter. The results obtained using infrared and nuclear resonance techniques are compared. The concentration of the 99.9960 per cent reference water is known with a precision of a least + 40 ppm - 20 ppm and very likely to ± 5 ppm. (author) [fr

  16. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  17. Catalytic activity of Cu4-cluster to adsorb H2S gas: h-BN nanosheet

    Science.gov (United States)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-05-01

    We have investigated the electronic properties, adsorptions strength and charge transfer using first principles calculations using density functional theory (DFT). The hexagonal boron nitride (h-BN) substrate shows metallic behavior, which helps to enhance the absorption process. The adsorption of three different orientations (S, D and T) of the H2S gas molecules to analyze the maximum adsorption strength from them onto a copper cluster (Cu4) based on h-BN nanosheet. The maximum adsorption energy of the H2S gas molecule is -1.50 eV for the S orientation and for D and U, it is -0.71 eV and -0.78 eV, respectively. The results show that Cu4 cluster helps to capture H2S gas from the environment and results are useful for the cleaning environment from the toxic gases.

  18. Electron scattering in dense He-Ar gas mixtures: A pressure shift study

    International Nuclear Information System (INIS)

    Asaf, U.; Felps, W.S.; McGlynn, S.P.

    1989-01-01

    The dependence of the energies of high-n Rydberg states of CH 3 I on the molar composition of helium-argon mixtures (in the number density range 1.3x10 20 --5.6x10 20 cm -3 ) is reported. The energy shifts, when normalized to a given density value, are found to vary linearly with the mole fraction of either component of the binary, rare-gas mixture. The observed change in sign of the energy shift is attributable to the different signs of the electron scattering lengths for the two rare-gas components. As a result, there exists a mixture composition, at a mole ratio [He]/[Ar]=2.0, at which the shift is null. The experimental results for the gas mixture agree with the Fermi formula, as modified to include the Alekseev-Sobel'man polarization term. Effective electron scattering lengths and cross sections, polarizabilities, and thermal velocities are used to characterize the effects of the binary gas perturber system

  19. Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures

    Science.gov (United States)

    Piotrowska, A.; Chorowski, M.; Dorosz, P.

    2017-02-01

    Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.

  20. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-10-16

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance.

  1. An experimental study on premixed CNG/H2/CO2 mixture flames

    Directory of Open Access Journals (Sweden)

    Yilmaz Ilker

    2018-03-01

    Full Text Available In this study, the effect of swirl number, gas composition and CO2 dilution on combustion and emission behaviour of CNG/H2/CO2 gas mixtures was experimentally investigated in a laboratory scale combustor. Irrespective of the gas composition, thermal power of the combustor was kept constant (5 kW. All experiments were conducted at or near stoichiometric and the local atmospheric conditions of the city of Kayseri, Turkey. During experiments, swirl number was varied and the combustion performance of this combustor was analysed by means of centreline temperature distributions. On the other hand, emission behaviour was examined with respect to emitted CO, CO2 and NOx levels. Dynamic flame behaviour was also evaluated by analysing instantaneous flame images. Results of this study revealed the great impact of swirl number and gas composition on combustion and emission behaviour of studied flames.

  2. Thermodynamic characterization of deepwater natural gas mixtures with heavy hydrocarbon content at high pressures

    International Nuclear Information System (INIS)

    Atilhan, Mert; Aparicio, Santiago; Ejaz, Saquib; Zhou, Jingjun; Al-Marri, Mohammed; Holste, James J.; Hall, Kenneth R.

    2015-01-01

    This paper includes high-accuracy density measurements and phase envelopes for deepwater natural gas mixtures. Mixtures primarily consist of (0.88 and 0.94) mole fraction methane and both mixtures includes heavy components (C 6+ ) more than 0.002 mole fraction. Experimental density and phase envelope data for deep and ultra-deep reservoir mixtures are scarce in literature and high accuracy measurements for such parameters for such natural gas-like mixtures are essential to validate the benchmark equations for custody transfer such as AGA8-DC92 and GERG-2008 equation of states (EOS). Thus, in this paper we report density and phase envelope experimental data via compact single-sinker magnetic suspension densimeter and isochoric apparatuses. Such data help gas industry to avoid retrograde condensation in natural gas pipelines

  3. Corrosion of API 5L B and X52 in crude oil/water/gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, J J; Gonzalez, J J; Viloria, A; De Veer, H; De Abreu, Y

    2000-02-01

    Laboratory and field tests were conducted to evaluate the corrosion behavior of API 5L grade B and X52 steels using Furrial's crude oil in the presence of water and gas containing carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). The results suggest that the corrosiveness of this crude oil/water/gas mixture is not detrimental to either steel. However, pitting corrosion was observed. The low general corrosion rates measured were attributed to the natural inhibiting properties of the crude oil.

  4. Indium-tin oxide thin films deposited at room temperature on glass and PET substrates: Optical and electrical properties variation with the H2-Ar sputtering gas mixture

    Science.gov (United States)

    Álvarez-Fraga, L.; Jiménez-Villacorta, F.; Sánchez-Marcos, J.; de Andrés, A.; Prieto, C.

    2015-07-01

    The optical and electrical properties of indium tin oxide (ITO) films deposited at room temperature on glass and polyethylene terephthalate (PET) substrates were investigated. A clear evolution of optical transparency and sheet resistance with the content of H2 in the gas mixture of H2 and Ar during magnetron sputtering deposition is observed. An optimized performance of the transparent conductive properties ITO films on PET was achieved for samples prepared using H2/(Ar + H2) ratio in the range of 0.3-0.6%. Moreover, flexible ITO-PET samples show a better transparent conductive figure of merit, ΦTC = T10/RS, than their glass counterparts. These results provide valuable insight into the room temperature fabrication and development of transparent conductive ITO-based flexible devices.

  5. Two generators to produce SI-traceable reference gas mixtures for reactive compounds at atmospheric levels

    Science.gov (United States)

    Pascale, C.; Guillevic, M.; Ackermann, A.; Leuenberger, D.; Niederhauser, B.

    2017-12-01

    To answer the needs of air quality and climate monitoring networks, two new gas generators were developed and manufactured at METAS in order to dynamically generate SI-traceable reference gas mixtures for reactive compounds at atmospheric concentrations. The technical features of the transportable generators allow for the realization of such gas standards for reactive compounds (e.g. NO2, volatile organic compounds) in the nmol · mol-1 range (ReGaS2), and fluorinated gases in the pmol ṡ mol-1 range (ReGaS3). The generation method is based on permeation and dynamic dilution. The transportable generators have multiple individual permeation chambers allowing for the generation of mixtures containing up to five different compounds. This mixture is then diluted using mass flow controllers, thus making the production process adaptable to generate the required amount of substance fraction. All parts of ReGaS2 in contact with the gas mixture are coated to reduce adsorption/desorption processes. Each input parameter required to calculate the generated amount of substance fraction is calibrated with SI-primary standards. The stability and reproducibility of the generated amount of substance fractions were tested with NO2 for ReGaS2 and HFC-125 for ReGaS3. They demonstrate stability over 1-4 d better than 0.4% and 0.8%, respectively, and reproducibility better than 0.7% and 1%, respectively. Finally, the relative expanded uncertainty of the generated amount of substance fraction is smaller than 3% with the major contributions coming from the uncertainty of the permeation rate and/or of the purity of the matrix gas. These relative expanded uncertainties meet then the needs of the data quality objectives fixed by the World Meteorological Organization.

  6. Corrosion of API 5L B and X52 in crude oil/water/gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Perdomo, J.J.; Gonzalez, J.J.; Viloria, A.; De Veer, H.; De Abreu, Y.

    2000-02-01

    Laboratory and field tests were conducted to evaluate the corrosion behavior of API 5L grade B and X52 steels using Furrial's crude oil in the presence of water and gas containing carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). The results suggest that the corrosiveness of this crude oil/water/gas mixture is not detrimental to either steel. However, pitting corrosion was observed. The low general corrosion rates measured were attributed to the natural inhibiting properties of the crude oil.

  7. Real-time composition determination of gas mixtures

    NARCIS (Netherlands)

    Lötters, Joost Conrad; van der Wouden, E.J.; Groenesteijn, Jarno; Sparreboom, Wouter; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2014-01-01

    We have designed and implemented an analytical calculation model with which we can real-time determine the composition of gas mixtures. The model is based upon a multi-parameter flow measurement system, consisting of a Coriolis and thermal flow sensor, a density meter and a pressure sensor. The

  8. GAZVIL - Gases and gas mixtures for welding in protective medium

    International Nuclear Information System (INIS)

    Avram, I.; Constantin, N.; Cristescu, I.; Stefan, L.; Zamfirache, M.

    1996-01-01

    Gases and gas mixtures are used in machine building industry as protective environment in the welding by the procedures: MIG, MAG, TIG, plasma and micro-plasma. Also they are used in jet plasma production as well as controlled environment in materials heat treatments, passivation or protective procedures of equipment of chemical and petrochemical industries. Gases and gas mixtures are obtained in particular quality conditions while their purity is certified by specific methods making use of performing technology in laboratories to be qualified in the frame of the RELAR system

  9. Investigation of Dalton and Amagat's laws for gas mixtures with shock propagation

    Science.gov (United States)

    Wayne, Patrick; Trueba Monje, Ignacio; Yoo, Jason H.; Truman, C. Randall; Vorobieff, Peter

    2016-11-01

    Two common models describing gas mixtures are Dalton's Law and Amagat's Law (also known as the laws of partial pressures and partial volumes, respectively). Our work is focused on determining the suitability of these models to prediction of effects of shock propagation through gas mixtures. Experiments are conducted at the Shock Tube Facility at the University of New Mexico (UNM). To validate experimental data, possible sources of uncertainty associated with experimental setup are identified and analyzed. The gaseous mixture of interest consists of a prescribed combination of disparate gases - helium and sulfur hexafluoride (SF6). The equations of state (EOS) considered are the ideal gas EOS for helium, and a virial EOS for SF6. The values for the properties provided by these EOS are then used used to model shock propagation through the mixture in accordance with Dalton's and Amagat's laws. Results of the modeling are compared with experiment to determine which law produces better agreement for the mixture. This work is funded by NNSA Grant DE-NA0002913.

  10. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  11. Nanoporous materials for hydrogen storage and H2/D2 isotope separation

    International Nuclear Information System (INIS)

    Oh, Hyunchul

    2014-01-01

    uptake in Pt doped carbon over pristine carbon is observed indicating a limited role of the spillover effect for practical hydrogen storage. Secondly, the synthesis of a new organic-inorganic hybrid material ''metal doped covalent-organic framework (COF)'' via gas phase infiltration method is presented. In this way, COFs can be used as novel scaffolds for the stabilization of nanoparticles with a nearly mono-dispersed size and homogeneous distribution. At room temperature, the hydrogen storage capacity of Pd doped COFs is enhanced by a factor of 2∝3 compared to the pristine COFs. This significant enhancement of Pd doped COFs can be assigned to the catalytic hydrogenation of organic fragments such as bicyclopentadiene originating from the Pd precursor. Chapter 5 focuses on separation of hydrogen isotopes with nanoporous materials. Separating gaseous mixtures that consist of very similar particles (such as mixture of light gas isotopes or mixtures of noble gases) is one of the challenges in modern separation technology. Especially D 2 /H 2 separation is a difficult task since its size, shape and thermodynamic properties share each other. Recently, quantum sieving in confined space has received increased attention as an efficient method for hydrogen isotope separation. Despite many theoretical calculations, however, it has been difficult to identify a feasible microporous material up to now. Among various porous materials, the novel class of microporous framework materials (COFs, ZIFs and MOFs) is considered as the most promising approach for isotope sieving due to ultra-high porosity and uniform pore size which can be tailored in these materials. Hence, one focus is the investigation of the fundamental correlation between D 2 /H 2 molar ratio and pore size at optimized operating conditions by using different nanoporous frameworks. It reveals that the D 2 /H 2 molar ratio is strongly depending on pore size, pressure and temperature. The experiments indicate clearly that

  12. Microkinetics of H2S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere

    Institute of Scientific and Technical Information of China (English)

    Huiling Fan; Chunhu Li; Hanxian Guo; Kechang Xie

    2003-01-01

    The microkinetics of H2S removal by ZnO desulfurization in H2O-CO2-N2, H2O-CO-N2 andH2O-O2-N2 gas mixtures was studied by thermogravimetric analysis. Experiments were carried out with100 120 mesh ZnO powder at temperatures from 473 K to 563 K. The results show that the kineticbehaviors of desulfurization could all be described by an improved shrinking-core model. The activationenergies of the reaction and the diffusion in different gas atmospheres were estimated.

  13. Recombination of KrD+ and KrH+ ions in afterglow plasma

    International Nuclear Information System (INIS)

    Korolov, I; Kotrik, T; Plasil, R; Hejduk, M; Varju, J; Dohnal, P; Glosik, J

    2009-01-01

    Reported is flowing afterglow (FALP) study of recombination of KrH + and KrD + ions with electrons at 250 K in mixtures of He/Kr/H 2 and He/Kr/D 2 , respectively. The influence of fast recombining cluster ions formation on apparent effective recombination rate coefficients (α eff ) was measured and used in data analysis. The obtained binary rate coefficients for recombination of KrH + and KrD + are α KrH+ = 2x10 -8 cm 3 s -1 and α KrD+ = 1x10 -8 cm 3 s -1 .

  14. Recombination of KrD+ and KrH+ ions in afterglow plasma

    Science.gov (United States)

    Korolov, I.; Kotrik, T.; Plasil, R.; Hejduk, M.; Varju, J.; Dohnal, P.; Glosik, J.

    2009-11-01

    Reported is flowing afterglow (FALP) study of recombination of KrH+ and KrD+ ions with electrons at 250 K in mixtures of He/Kr/H2 and He/Kr/D2, respectively. The influence of fast recombining cluster ions formation on apparent effective recombination rate coefficients (αeff) was measured and used in data analysis. The obtained binary rate coefficients for recombination of KrH+ and KrD+ are αKrH+ = 2×10-8 cm3s-1 and αKrD+ = 1×10-8 cm3s-1.

  15. A system for removing both oxygen and nitrogen from a rare gas-hydrocarbon mixture

    International Nuclear Information System (INIS)

    Dijkman, W.H.

    1989-01-01

    A study has been made how to remove nitrogen from a mixture of a rare gas and a hydrocarbon in addition to the removal of oxygen, H 2 O and gaseous oxides. The purpose was to find a simple method for the purification of drift-chamber gases in a recirculation system. Such a method would reduce the operating costs of the large detectors presently constructed for LEP. A promising technique has been developed. First results of a chemical reactor using the novel technique are presented. The N 2 content of Ar/air mixtures containing up to 28% air could be reduced to a level of 20 ppm at a flow rate of 0.11 m 3 /h (200 ppm at 1.0 m 3 /h); and the O 2 content to 30 and 300 ppm respectively. Water and gaseous oxides concentrations were always below 5 ppm. Some of the practical problems still to be solved are discussed and suggestions are given for further development and applications. The method can in principle be of more general use. (orig.)

  16. Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus

    International Nuclear Information System (INIS)

    Rene, Eldon R.; Spackova, Radka; Veiga, Maria C.; Kennes, Christian

    2010-01-01

    The biodegradation performance of a biofilter, inoculated with the fungus Sporothrix variecibatus, to treat gas-phase styrene and acetone mixtures under steady-state and transient conditions was evaluated. Experiments were carried out by varying the gas-flow rates (0.05-0.4 m 3 h -1 ), leading to empty bed residence times as low as 17.1 s, and by changing the concentrations of gas-phase styrene (0.01-6.3 g m -3 ) and acetone (0.01-8.9 g m -3 ). The total elimination capacities were as high as 360 g m -3 h -1 , with nearly 97.5% removal of styrene and 75.6% for acetone. The biodegradation of acetone was inhibited by the presence of styrene, while styrene removal was affected only slightly by the presence of acetone. During transient-state experiments, increasing the overall pollutant load by almost 3-fold, i.e., from 220 to 600 g m -3 h -1 , resulted in a sudden drop of removal efficiency (>90-70%), but still high elimination capacities were maintained. Periodic microscopic observations revealed that the originally inoculated Sporothrix sp. remained present in the reactor and actively dominant in the biofilm.

  17. Ageing studies with argon/methane based gas mixtures

    International Nuclear Information System (INIS)

    Silander, K.; De Lima, E.P.; Fraga, M.M.; Ferreira Marques, R.; Fraga, F.; Salete M.; Policarpo, A.J.P.L.; Leite, S.C.P.

    1995-01-01

    Ageing studies on a single wire proportional counter with Ar/CH 4 (90:10) (P10) and Ar/CH 4 /H 2 (89.5 : 10 : 0.5) (P10/H 2 ) mixtures irradiated with 6.4 keV X-ray photons from an X-ray generator, under well controlled conditions, are reported. For both mixtures, results are presented for the variation of the gain as a function of the accumulated charge per centimetre of the wire. The intensities of the main emissions (CI line at 193.1 nm and of the CH (A-X, B-X, C-X) molecular bands centred, respectively, at 431, 389 and 314 nm) are also measured. No ageing effects were observed up to an accumulated charge of 350 mC/cm with the P10/H 2 mixture. The tests performed with P10 following the P10/H 2 run, both for low and high irradiation rates, showed also negligible ageing, in contradiction with previous results. This may indicate that there is still some hydrogen adsorbed in the system that prevents the chamber from ageing. (orig.)

  18. Enthalpic pair wise self-interactions of four deoxynucleosides (dU, dC, dG, dT) in (dimethylsulfoxide + water) mixtures at T = 298.15 K

    International Nuclear Information System (INIS)

    Jia, Zhao-Peng; Chen, Nan; Wang, Hua-Qin; Zhu, Li-Yuan; Hu, Xin-Gen

    2014-01-01

    Graphical abstract: Enthalpic pairwise self-interaction coefficients (h xx ) of the four 2′-deoxynucleosides are of uneven increasing magnitudes (■, 2′-deoxyuridine; ▪, 2′-deoxycytidine; ▪, 2′-deoxyguanosine; ▪, 2′-deoxythymidine). - Highlights: • Dilution enthalpies of 2′-deoxynucleosides in (DMSO + water) mixtures were determined. • Enthalpic coefficients (h xx ) were calculated based on McMillan–Mayer’ theory. • The values of h xx are large negative cross the studied range of mixed solvents. • Hydrophilic interactions are proved to be prevailing in the ternary solutions. • The trends of h xx depend on the (hydrophobic / hydrophilic) equilibrium of solutes. - Abstract: The dilution enthalpies of four 2′-deoxynucleosides, namely 2′-deoxyuridine (dU), 2′-deoxycytidine (dC), 2′-deoxyguanosine (dG) and 2′-deoxythymidine (dT), in (dimethylsulfoxide (DMSO) + water) mixtures of various mass fractions (w DMSO = 0 to 0.30) have been determined at T = 298.15 K, respectively, using an isothermal titration calorimeter (ITC200 MicroCal). On the basis of McMillan–Mayer’ theory, enthalpic pair wise self-interaction coefficients (h xx ) of each compound at different values of w DMSO have been evaluated from successive dilution enthalpies. It was found that the values of h xx are all large negative and increase gradually with w DMSO across the whole composition range of the mixed solvent studied, though the degree of variation among them is somewhat different. The results indicate that (hydrophilic + hydrophilic) interactions are prevailing over (hydrophobic + hydrophobic) and (hydrophobic + hydrophilic) interactions in the ternary aqueous solutions under study

  19. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    Science.gov (United States)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  20. A study of gas mixtures for the ATLAS MDT

    International Nuclear Information System (INIS)

    Zhao, T.; He, L.

    1996-01-01

    Results of a gas study for the ATLAS Monitored Drift Tubes (MDT) are reported. The electron drift velocity, Lorentz angle and tube radius to drift time relations are calculated for selected gas mixtures by using the CERN drift chamber simulation code GARFIELD/MAGBOLTZ. The drift tube efficiency, gas gain, avalanche size and self-quenching streamer (SQS) mode fraction as functions of anode voltage are measured by using radioactive sources. Discussions of the results, including effects of nitrogen and water vapor, are presented

  1. Numerical Analysis of Inlet Gas-Mixture Flow Rate Effects on Carbon Nanotube Growth Rate

    Directory of Open Access Journals (Sweden)

    B. Zahed

    2013-01-01

    Full Text Available The growth rate and uniformity of Carbon Nano Tubes (CNTs based on Chemical Vapor Deposition (CVD technique is investigated by using a numerical model. In this reactor, inlet gas mixture, including xylene as carbon source and mixture of argon and hydrogen as  carrier gas enters into a horizontal CVD reactor at atmospheric pressure. Based on the gas phase and surface reactions, released carbon atoms are grown as CNTs on the iron catalysts at the reactor hot walls. The effect of inlet gas-mixture flow rate, on CNTs growth rate and its uniformity is discussed. In addition the velocity and temperature profile and also species concentrations throughout the reactor are presented.

  2. Multi Parameter Flow Meter for On-Line Measurement of Gas Mixture Composition

    Directory of Open Access Journals (Sweden)

    Egbert van der Wouden

    2015-04-01

    Full Text Available In this paper we describe the development of a system and model to analyze the composition of gas mixtures up to four components. The system consists of a Coriolis mass flow sensor, density, pressure and thermal flow sensor. With this system it is possible to measure the viscosity, density, heat capacity and flow rate of the medium. In a next step the composition can be analyzed if the constituents of the mixture are known. This makes the approach universally applicable to all gasses as long as the number of components does not exceed the number of measured properties and as long as the properties are measured with a sufficient accuracy. We present measurements with binary and ternary gas mixtures, on compositions that range over an order of magnitude in value for the physical properties. Two platforms for analyses are presented. The first platform consists of sensors realized with MEMS fabrication technology. This approach allows for a system with a high level of integration. With this system we demonstrate a proof of principle for the analyses of binary mixtures with an accuracy of 10%. In the second platform we utilize more mature steel sensor technology to demonstrate the potential of this approach. We show that with this technique, binary mixtures can be measured within 1% and ternary gas mixtures within 3%.

  3. Comparative Study of Gas Reconstruction Robust Methods for Multicomponent Gas Mixtures

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2015-01-01

    Full Text Available When using laser methods of gas analysis, one of the arising problems is instability in results of defining a quantitative composition of gases under control of multicomponent mixes in the conditions of real noise of measurements. It leads to demand for using the special algorithms to process results of laser measurements.For multicomponent gaseous mixes, when solving a problem of quantitative gas analysis based on the results of multispectral laser measurements, use of methods for solving incorrect mathematical tasks is efficient.If mix is stationary (i.e. there is a possibility for a series of measurements it is possible to use a much simpler method to determine concentration of gases, i.e. the least-squares method based on the minimization of residual function.However, the estimates obtained by the least-squares method are effective if distribution of measurement errors is according to the normal law. In practice, the law of errors distribution is often non-normal, and loss of estimate efficiency achieved by the least-squares method occurs even at a small share of bursts.With bursts available in the measuring signal, it is necessary to use the stationary estimation methods allowing the significantly reduced impact on the estimate of considerable bursts.To estimate an efficiency of the robust methods for defining a quantitative composition of the multicomponent stationary gas mixes from multispectral laser measurements a mathematical simulation was performed. A gas mixture was considered to be stationary, and n measurements (at each wavelength were taken ( n were specified from 2 to 6 to define a quantitative composition of gases in the mixture. Simulation was implemented for gas mixes with the number of components from 4 to 6.Results of mathematical simulation show that the robust estimate based on the residual function ( x  arctg x , allows us, in conditions of the bursts of a variable signal, to reduce significantly the error of

  4. Separation of molecular hydrogen isotope mixtures on zeolite NaX-3M

    International Nuclear Information System (INIS)

    Polevoj, A.S.; Yudin, I.P.

    1984-01-01

    The transfer unito height (TUH) have been determined at separation of the H 2 -D 2 mixture using zeolite NaX-3M depending on temperature and linear gas flow rate in the column. Experimentally the TUH value has been determined by the method of stepped variation of the concentration of one of the separated components at the entrance into the column and measurement of the substance front wash-out at the outlet. The results of determining TUH in the column of 10 mm diameter filled by the zeolite immobile layer with granules of 2-3 mm size show that with increasing the temperature from 77 K to 87.3 K TUH decreases while at constant temperature it increases with the growth of linear gas flow rate. The mentioned above circumstances testify to the essential contribution to the TUH value of the hydrogen diffusion process in the sorbent grain. The given TUH absolute values indicate the high rate of interphase isotope exchange at separation of the H 2 -D 2 mixture using NaX-3M zeolite

  5. Fluorescence of RbH and RbD formed by irradiating the mixed gases Rb + H2 and Rb + D2 with laser light

    International Nuclear Information System (INIS)

    Kato, Hajime; Toyosaka, Yukiko; Suzuki, Tomonari

    1985-01-01

    When a mixture of 85 Rb, 85 Rb 2 , and D 2 was irradiated by laser light at 5145 or 4880 A, small visible particles appeared and the fluorescence spectra were observed. By analyzing these spectra, we determined the rotational constants B v and the centrifugal distortion constants D v and H v for the X 1 Σ + and A 1 Σ + states of 85 RbD. By considering the isotopic dependence of the Dunham coefficients, we determined various molecular constants of 85 RbH whose values were in good agreement with the observed fluorescence spectra of 85 RbH excited by laser lines at 4762, 4765, and 4880 A. The process of RbH formation is discussed. (author)

  6. Rapid and sensitive determination of deuterium concentration by gas chromatography

    International Nuclear Information System (INIS)

    Takahashi, Tomiki; Ohokoshi, Sumio; Shinriki, Nariko; Sato, Toshio

    1984-01-01

    Gas chromatographic determination of hydrogen isotopes D 2 and HD has hitherto been carried out with a molecular sieve column kept at -195 0 C under the H 2 carrier gas. However, the amount of D 2 in hydrogen gas containing low HD concentration of less than 5 % can be practically neglected judging from the equilibrium constant of H 2 -D 2 exchange reaction. Therefore, there is no need to separate HD from D 2 . As an improvement, in this paper, the gas chromatographic determination of HD in low concentration ( 2 as a carrier gas enabled us to enhance the cell current of TCD drastically, hence gave rise to high sensitivity of HD detection. The limit of determination of the concentration of HD was 0.01%. In the case of the higher concentration (>5%) of HD in hydrogen gas, D 2 and HD have been separated and determined by the method described above, but this method takes more than ten minutes. Therefore, we designed a new gas chromatographic analysis of the HD-D 2 mixture with an activated alumina column at -195 0 C under the H 2 carrier gas (330 ml/min). The advantages of this method are in (1) rapid analysis (in 1 min), (2) no need of the rigid activation temperature ((110--250) 0 C), (3) no change of the relative molar sensitivity of HD to D 2 at the various flow rates of H 2 carrier gas ((100--300)ml/min). (author)

  7. Summer Student Project: GEM Simulation and Gas Mixture Characterization

    CERN Document Server

    Oviedo Perhavec, Juan Felipe

    2013-01-01

    Abstract This project is a numerical simulation approach to Gas Electron Multiplier (GEM) detectors design. GEMs are a type of gaseous ionization detector that have proposed as an upgrade for CMS muon endcap. The main advantages of this technology are high spatial and time resolution and outstanding aging resistance. In this context, fundamental physical behavior of a Gas Electron Multiplier (GEM) is analyzed using ANSYS and Garfield++ software coupling. Essential electron transport properties for several gas mixtures were computed as a function of varying electric and magnetic field using Garfield++ and Magboltz.

  8. Second law of thermodynamics in volume diffusion hydrodynamics in multicomponent gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dadzie, S. Kokou, E-mail: k.dadzie@glyndwr.ac.uk [Department of Engineering and Applied Physics, Glyndŵr University, Mold Road, Wrexham LL11 2AW (United Kingdom)

    2012-10-01

    We presented the thermodynamic structure of a new continuum flow model for multicomponent gas mixtures. The continuum model is based on a volume diffusion concept involving specific species. It is independent of the observer's reference frame and enables a straightforward tracking of a selected species within a mixture composed of a large number of constituents. A method to derive the second law and constitutive equations accompanying the model is presented. Using the configuration of a rotating fluid we illustrated an example of non-classical flow physics predicted by new contributions in the entropy and constitutive equations. -- Highlights: ► A thermodynamic structure is presented for a new continuum flow model in multicomponent gas mixtures. ► A derivation method to obtain constitutive equations is presented. ► A configuration of a rotating gas is used to illustrate the role of new contributions in the structure of the entropy equation.

  9. Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus

    Energy Technology Data Exchange (ETDEWEB)

    Rene, Eldon R.; Spackova, Radka; Veiga, Maria C. [University of La Coruna, Dpt. of Chemical Engineering, Campus da Zapateira, Rua da Fraga, 10, 15008 La Coruna (Spain); Kennes, Christian, E-mail: kennes@udc.es [University of La Coruna, Dpt. of Chemical Engineering, Campus da Zapateira, Rua da Fraga, 10, 15008 La Coruna (Spain)

    2010-12-15

    The biodegradation performance of a biofilter, inoculated with the fungus Sporothrix variecibatus, to treat gas-phase styrene and acetone mixtures under steady-state and transient conditions was evaluated. Experiments were carried out by varying the gas-flow rates (0.05-0.4 m{sup 3} h{sup -1}), leading to empty bed residence times as low as 17.1 s, and by changing the concentrations of gas-phase styrene (0.01-6.3 g m{sup -3}) and acetone (0.01-8.9 g m{sup -3}). The total elimination capacities were as high as 360 g m{sup -3} h{sup -1}, with nearly 97.5% removal of styrene and 75.6% for acetone. The biodegradation of acetone was inhibited by the presence of styrene, while styrene removal was affected only slightly by the presence of acetone. During transient-state experiments, increasing the overall pollutant load by almost 3-fold, i.e., from 220 to 600 g m{sup -3} h{sup -1}, resulted in a sudden drop of removal efficiency (>90-70%), but still high elimination capacities were maintained. Periodic microscopic observations revealed that the originally inoculated Sporothrix sp. remained present in the reactor and actively dominant in the biofilm.

  10. Humidifier for RPC gas mixture for bakelite RPCs

    International Nuclear Information System (INIS)

    Sehgal, S.T.; Sehgal, R.; Pant, L.M.

    2011-01-01

    Bakelite RPCs are very sensitive to environmental parameters, especially the relative humidity (RH) and temperature. As the name suggests, bakelite RPCs are basically fabricated from high quality 2 mm thick high pressure laminates (HPLs). For operating the RPCs in avalanche mode of operation, a typical mixture of R134a. Iso-butane and SF 6 is used in a particular combination of 96.2 : 3.5 : 0.3 in order to achieve an optimal signal output. If the gas mixture inside the gas-gaps has a different humidity, which in case of dry gases is typically of the order of 0.4 - 0.5 ppm, then a drastic change in the humidity inside and outside of the bakelite sheet starts affecting the resistivity of bakelite which in turn has an adverse effect in its performance characteristics. Due to variation of the bakelite resistivity, electric field inside the gas gaps of RPC changes in an uncontrolled fashion which is very unsatisfactory in the proportional mode of operation. Simple estimation for RPC operating at high rate (∼ 1 kHz/cm 2 ) shows that variation in resistivity can cause noticeable voltage drop in electrodes which is resulted by the flow of current across the plates

  11. Generation of spectral clusters in a mixture of noble and Raman-active gases.

    Science.gov (United States)

    Hosseini, Pooria; Abdolvand, Amir; St J Russell, Philip

    2016-12-01

    We report a novel scheme for the generation of dense clusters of Raman sidebands. The scheme uses a broadband-guiding hollow-core photonic crystal fiber (HC-PCF) filled with a mixture of H2, D2, and Xe for efficient interaction between the gas mixture and a green laser pump pulse (532 nm, 1 ns) of only 5 μJ of energy. This results in the generation from noise of more than 135 rovibrational Raman sidebands covering the visible spectral region with an average spacing of only 2.2 THz. Such a spectrally dense and compact fiber-based source is ideal for applications where closely spaced narrow-band laser lines with high spectral power density are required, such as in spectroscopy and sensing. When the HC-PCF is filled with a H2-D2 mixture, the Raman comb spans the spectral region from the deep UV (280 nm) to the near infrared (1000 nm).

  12. Calculated isotropic Raman spectra from interacting H2-rare-gas pairs

    International Nuclear Information System (INIS)

    Gustafsson, M; Głaz, W; Bancewicz, T; Godet, J-L; Maroulis, G; Haskapoulos, A

    2014-01-01

    We report on a theoretical study of the H 2 -He and H 2 -Ar pair trace-polarizability and the corresponding isotropic Raman spectra. The conventional quantum mechanical approach for calculations of interaction-induced spectra, which is based on an isotropic interaction potential, is employed. This is compared with a close-coupling approach, which allows for inclusion of the full, anisotropic potential. It is established that the anisotropy of the potential plays a minor role for these spectra. The computed isotropic collision-induced Raman intensity, which is due to dissimilar pairs in H 2 -He and H 2 -Ar gas mixtures, is comparable to the intensities due to similar pairs (H 2 -H 2 , He-He, and Ar-Ar), which have been studied previously

  13. Gas-phase evolution of Ar/H2O and Ar/CH4 dielectric barrier discharge plasmas

    Science.gov (United States)

    Barni, Ruggero; Riccardi, Claudia

    2018-04-01

    We present some experimental results of an investigation aimed to hydrogen production with atmospheric pressure plasmas, based on the use of dielectric barrier discharges, fed with a high-voltage alternating signal at frequency 30-50 kHz, in mixtures of methane or water vapor diluted in argon. The plasma gas-phase of the discharge was investigated by means of optical and electrical diagnostics. The emission spectra of the discharges was measured with a wide band spectrometer and a photosensor module, based on a photomultiplier tube. A Rogowski coil allowed to measure the electric current flowing into the circuit and a high voltage probe was employed for evaluating the voltage at the electrodes. The analysis of the signals of voltage and current shows the presence of microdischarges between the electrodes in two alternating phases during the period of oscillation of the applied voltage. The hydrogen concentration in the gaseous mixture was measured too. Besides this experimental campaign, we present also results from a numerical modeling of chemical kinetics in the gas-phase of Ar/H2O and Ar/CH4 plasmas. The simulations were conducted under conditions of single discharge to study the evolution of the system and of fixed frequency repeated discharging. In particular in Ar/H2O mixtures we could study the evolution from early atomic dissociation in the discharge, to longer time scales, when chemical reactions take place producing an increase of the density of species such as OH, H2O2 and subsequently of H and H2. The results of numerical simulations provide some insights into the evolution happening in the plasma gas-phase during the hydrogen reforming process.

  14. Study of peculiarities of hydrogen isotopes mixture permeation through low activated steel F82H

    International Nuclear Information System (INIS)

    Kenzhin, Ye.A.; Tazhibayeva, I.L; Kulsartov, T.V.; Shestakov, V.P.; Chikhray, Ye.V.; Afanasev, S.E.; Zheldak, Yu.L.

    2003-01-01

    Full text: The problem of diffusion tritium leakage through blanket materials of future fusion device makes some constructive difficulties concerned with protection of personnel and environment and also with losses of tritium, which is planned to be used in the same device. One of the little-studied problems in the tritium leakage process in Fusion Power Plant is that in fact tritium will penetrate through materials while other hydrogen isotopes are present. These are deuterium and hydrogen which always are present in metals. Therefore, for evaluation of tritium leakage in future Fusion Power Plant under such conditions it is necessary to have experimental data about permeation of these hydrogen isotopes through the structure materials.One of proposed structure materials of fusion reactor blanket is low activated steel F82H. The experiment results on evaluation of .hydrogen, deuterium and its mixture interaction parameters with steel F82H are shown in this work. The tests were carried out within temperature range 273-973 K under inlet hydrogen pressure of 100-2000 Pa. Diffusivity, deuterium and hydrogen permeation constants for low activated steel F82H was determined from experiment results. Those experimental results were used for created phenomenology model which describes hydrogen isotope penetration through tube sample from hydrogen isotopes mixture. That model was used so determining the ratios of desorption rates (D-D, D-H, H-H) on outlet side of sample. Using of so obtained results, we can correctly evaluate, the titanium leakage from blanket of fusion machine which will be constructed using low activated steel F82H

  15. [Osteogenesis of human adipose-derived mesenchymal stem cells-biomaterial mixture in vivo after 3D bio-printing].

    Science.gov (United States)

    Song, Yang; Wang, Xiao-fei; Wang, Yu-guang; Sun, Yu-chun; Lv, Pei-jun

    2016-02-18

    To construct human adipose-derived mesenchymal stem cells (hASCs)-biomaterial mixture 3D bio-printing body and detect its osteogenesis in vivo, and to establish a guideline of osteogenesis in vivo by use of 3D bio-printing technology preliminarily. P4 hASCs were used as seed cells, whose osteogenic potential in vitro was tested by alkaline phosphatase (ALP) staining and alizarin red staining after 14 d of osteogenic induction. The cells were added into 20 g/L sodium alginate and 80 g/L gelatin mixture (cell density was 1 × 10(6)/mL), and the cell-sodium alginate-gelatin mixture was printed by Bioplotter 3D bio-printer (Envision company, Germany), in which the cells'survival rate was detected by live- dead cell double fluorescence staining. Next, the printing body was osteogenically induced for 1 week to gain the experimental group; and the sodium alginate-gelatin mixture without cells was also printed to gain the control group. Both the experimental group and the control group were implanted into the back of the nude mice. After 6 weeks of implantation, the samples were collected, HE staining, Masson staining, immunohistochemical staining and Inveon Micro CT test were preformed to analyze their osteogenic capability. The cells'survival rate was 89%± 2% after printing. Six weeks after implantation, the samples of the control group were mostly degraded, whose shape was irregular and gel-like; the samples of the experimental group kept their original size and their texture was tough. HE staining and Masson staining showed that the bone-like tissue and vessel in-growth could be observed in the experimental group 6 weeks after implantation, immunohistochemical staining showed that the result of osteocalcin was positive, and Micro CT results showed that samples of the experimental group had a higher density and the new bone volume was 18% ± 1%. hASCs -biomaterial mixture 3D bio-printing body has capability of ectopic bone formation in nude mice, and it is feasible to

  16. Influence of the gas mixture radio on the correlations between the excimer XeCl emission and the sealed gas temperature in dielectric barrier discharge lamps

    CERN Document Server

    Xu Jin Zhou; Ren Zhao Xing

    2002-01-01

    For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl emission and the sealed gas temperature have been founded, and a qualitative explication is presented. For gas mixture with chlorine larger than 3%, the emission intensity increases with the sealed gas temperature, while with chlorine about 2%, the emission intensity decreases with the increasing in the gas temperature, and could be improved by cooling water. However, if chlorine is less than 1.5%, the discharge appears to be a mixture mode with filaments distributed in a diffused glow-like discharge, and the UV emission is independent on the gas temperature

  17. Experimental study on the natural gas dual fuel engine test and the higher the mixture ratio of hydrogen to natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S.; Lee, Y.S.; Park, C.K. [Cheonnam University, Kwangju (Korea); Masahiro, S. [Kyoto University, Kyoto (Japan)

    1999-05-28

    One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of Total Hydrogen Carbon(THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. And when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the nocking limit decreases and the produce of NOx increases. 5 refs., 9 figs., 1 tab.

  18. Gas--liquid equilibria in mixtures of hydrogen and thianaphthene

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, H M; Simnick, J J; Lin, H M; Chao, K C

    1978-12-01

    Gas--liquid equilibrium conditions in binary mixtures of hydrogen and thianaphthene were experimentally determined at temperature of 190 to 430/sup 0/C and pressures to 250 atm in a flow apparatus. The same apparatus was also employed to measure the vapor pressure of thianaphthene. Comparisons of the new mixture data with Chao--Seader and Grayson--Streed correlations show that both correlations predict the thianaphthene equilibrium ratios well but are in error by up to about 45 and 35% respectively for K-values of hydrogen. 4 figures, 2 tables.

  19. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  20. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Science.gov (United States)

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  1. Hydrogen radiolytic production in light and heavy water mixtures under conditions similar to LOCA (loss of coolant accidents)

    International Nuclear Information System (INIS)

    Garcia Rodenas, L.; Ali, S.P.; Liberman, S.J.

    1987-01-01

    H 2 , HD and D 2 radiolytic yield in heavy and light water mixtures has been determined to supply the necessary data which will allow to make a realistic estimation of the solution of such gas under LOCA conditions as a function of time. (Author)

  2. The ‘ideal selectivity’ vs ‘true selectivity’ for permeation of gas mixture in nanoporous membranes

    Science.gov (United States)

    He, Zhou; Wang, Kean

    2018-03-01

    In this study, we proposed and validated a novel and non-destructive experimental technology for measuring the permeation of binary gas mixture in nanoporous membranes. The traditional time lag rig was modified to examine the permeation characteristics of each gas component as well as that of the binary gas mixtures. The difference in boiling points of each species were explored. Binary gas mixtures of CO2/He were permeated through the nanoporous carbon molecular sieve membrane (CMSM). The results showed that, due to the strong interaction among different molecules and with the porous network of the membrane, the measured perm-selectivity or ‘true selectivity’ of a binary mixture can significantly deviate from the ‘ideal selectivity’ calculated form the permeation flux of each pure species, and this deviation is a complicated function of the molecular properties and operation conditions.

  3. Absorption spectra between 0.8 {mu} and 30 {mu} of mixtures of H{sub 2}O - D{sub 2}O in the liquid state; Le spectre d'absorption des melanges H{sub 2}O-D{sub 2}O a l'etat liquide entre 0,8 et 30 {mu}

    Energy Technology Data Exchange (ETDEWEB)

    Ceccaldi, M; Goldman, M; Roth, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    There has been very little work carried out recently on the absorption bands of H{sub 2}O, HDO and D{sub 2}O in the liquid state. We have established the spectra of these molecules in between 0.8 and 30 p. The table of absorption bands of the molecules HDO and D{sub 2}O for which all the bands corresponding to those for H{sub 2}O had not been established has been completed. We have sought a convenient method of representing the variations in optical density of certain HDO bands as a function of the concentration of heavy water in the mixtures studied. (author) [French] Il y a peu de travaux recents sur les bandes d'absorption de H{sub 2}O, HDO et D{sub 2}O a l'etat liquide. Nous avons releve les spectres de ces molecules entre 0,8 et 30 p. Le tableau des bandes d'absorption des molecules HDO et D{sub 2}O, pour lesquelles le releve de toutes les bandes correspondantes a celles de H{sub 2}O n'etait pas encore effectue, a ete complete. Nous avons cherche des modes de representation commodes des variations de densite optique de certaines bandes de HDO en fonction de la teneur en eau lourde des melanges etudies. (auteur)

  4. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    International Nuclear Information System (INIS)

    Smith, James Anthony

    2002-01-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH 3 radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch 4 /H 2 and C 2 H 2 /H 2 gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C 2 →C 1 species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH 3 /CH 4 /H 2 and N 2 /CH 4 /H 2 gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH 3 , influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H 2 /CH 4 /N 2 gas mixture. Spatially resolved species emission intensity maps were obtained for C 2 (d→a), CN(B→X) and H β from Abel-inverted datasets. The C 2 (d→a) and CN(B→X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N 2 additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C 2 (a) in a DC-arcjet reactor operating on an Ar/H 2 /CH 4 gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C 2 (v=0) transition revealed a rotational temperature of ∼3300 K. This gas temperature is similar to that deduced from optical emission spectroscopy studies of the C 2 (d→a) transition. (author)

  5. A long-term aging study of honeycomb drift tubes for the HERA-B Outer Tracker using a circulated and purified CF$_{4}$ gas mixture

    CERN Document Server

    Capéans-Garrido, M; Hohlmann, M; Schmidt, B

    2003-01-01

    The Outer Tracker of HERA-B uses a gas mixture containing CF/sub 4/ to obtain high electron drift velocities. The high cost of this gas makes it necessary to circulate the gas mixture which must then be purified to avoid accumulation of air and pollutants. However, the usage of gas purifiers poses the danger of outgassing pollutants from the purifiers themselves into the gas stream. Purifiers could also be attacked chemically by the aggressive products from the cracking of CF/sub 4/ molecules in the plasma avalanches of the detector. This could potentially release further harmful pollutants into the gas stream. To test for such effects, a long-term irradiation study of about 3000 h was carried out with the honeycomb drift tubes that are used in the Outer Tracker. This provided a check of the long-term stability of the gas purifiers before putting them into operation for the full-size detector. We report on the experimental setup, procedures and the results obtained. (8 refs).

  6. Density functional theory for adsorption of gas mixtures in metal-organic frameworks.

    Science.gov (United States)

    Liu, Yu; Liu, Honglai; Hu, Ying; Jiang, Jianwen

    2010-03-04

    In this work, a recently developed density functional theory in three-dimensional space was extended to the adsorption of gas mixtures. Weighted density approximations to the excess free energy with different weighting functions were adopted for both repulsive and attractive contributions. An equation of state for hard-sphere mixtures and a modified Benedict-Webb-Rubin equation for Lennard-Jones mixtures were used to estimate the excess free energy of a uniform fluid. The theory was applied to the adsorption of CO(2)/CH(4) and CO(2)/N(2) mixtures in two metal-organic frameworks: ZIF-8 and Zn(2)(BDC)(2)(ted). To validate the theoretical predictions, grand canonical Monte Carlo simulations were also conducted. The predicted adsorption and selectivity from DFT were found to agree well with the simulation results. CO(2) has stronger adsorption than CH(4) and N(2), particularly in Zn(2)(BDC)(2)(ted). The selectivity of CO(2) over CH(4) or N(2) increases with increasing pressure as attributed to the cooperative interactions of adsorbed CO(2) molecules. The composition of the gas mixture exhibits a significant effect on adsorption but not on selectivity.

  7. Un nouveau moyen de mesure absolue du taux gazeux des mélanges gaz-liquides : le SMAC A New Absolute Measurement of the Volumetric Gas Ratio of Gas-Liquid Mixture: the Smac

    Directory of Open Access Journals (Sweden)

    Porot P.

    2006-11-01

    Full Text Available Du graphe (P, V de la compression d'un mélange gaz-liquide, on peut tirer la valeur du taux volumique de gaz dans le mélange. La vérification théorique et expérimentale de ce principe ainsi que ses limites d'application comme moyen de mesure sont présentées. Ce résultat a été utilisé pour développer un système de mesure de l'aération de l'huile moteur, le SMAC (Système de Mesure d'Aération par Compressibilité. Des exemples d'application, tels que l'étude de la sensibilité de certaines huiles à l'aération, sont exposés. Oil aeration can be a real problem in engine oil circuit. The involved lubrication power decrease and thermic properties changes can damage the engine. Furthermore, the increased compressibility is very dangerous for hydraulic systems like valve lash adjusters. A first step to control this aeration is to be able to measure it. Gammametry is often used but this measurement needs a very precise calibration and is quite complicated and dangerous. A new absolute measurement has been discovered, based on the difference of compressibility between air and oil. It is absolute because the measurement principle is independant of the conditions, The system does not need a new calibration at each new environment. It is valid for any gas-liquid mixture. From the (P, V graph of a gas-liquid mixture compression, one can derive the gas-liquid volumetric ratio. The log-log graph (P/PO, 1-V/VO of a mixture sample pressurization always shows an inflexion point. The y value of this inflexion point (1-V/VO is equal to the volumetric gas ratio of the sample (before compression. This phenomenon is obvious on hydraulic curves (see Annexe 1. To check it, we have proceeded to a theoretical demonstration and an experimental verification. The theoretical demonstration of this principle concludes that the principle is verified as long as the ration P index 0 / alpha B is small. B is the oil bulk modulus, alpha is the volumetric gas ratio

  8. Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower.

    Science.gov (United States)

    Jia, Ru; Li, Yingchao; Al-Mahamedh, Hussain H; Gu, Tingyue

    2017-01-01

    Different species of microbes form mixed-culture biofilms in cooling water systems. They cause microbiologically influenced corrosion (MIC) and biofouling, leading to increased operational and maintenance costs. In this work, two D-amino acid mixtures were found to enhance two non-oxidizing biocides [tetrakis hydroxymethyl phosphonium sulfate (THPS) and NALCO 7330 (isothiazoline derivatives)] and one oxidizing biocide [bleach (NaClO)] against a biofilm consortium from a water cooling tower in lab tests. Fifty ppm (w/w) of an equimass mixture of D-methionine, D-leucine, D-tyrosine, D-tryptophan, D-serine, D-threonine, D-phenylalanine, and D-valine (D8) enhanced 15 ppm THPS and 15 ppm NALCO 7330 with similar efficacies achieved by the 30 ppm THPS alone treatment and the 30 ppm NALCO 7330 alone treatment, respectively in the single-batch 3-h biofilm removal test. A sequential treatment method was used to enhance bleach because D-amino acids react with bleach. After a 4-h biofilm removal test, the sequential treatment of 5 ppm bleach followed by 50 ppm D8 achieved extra 1-log reduction in sessile cell counts of acid producing bacteria, sulfate reducing bacteria, and general heterotrophic bacteria compared with the 5 ppm bleach alone treatment. The 10 ppm bleach alone treatment showed a similar efficacy with the sequential treatment of 5 ppm bleach followed by 50 ppm D8. The efficacy of D8 was found better than that of D4 (an equimass mixture of D-methionine, D-leucine, D-tyrosine, and D-tryptophan) in the enhancement of the three individual biocides against the biofilm consortium.

  9. Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower

    Directory of Open Access Journals (Sweden)

    Ru Jia

    2017-08-01

    Full Text Available Different species of microbes form mixed-culture biofilms in cooling water systems. They cause microbiologically influenced corrosion (MIC and biofouling, leading to increased operational and maintenance costs. In this work, two D-amino acid mixtures were found to enhance two non-oxidizing biocides [tetrakis hydroxymethyl phosphonium sulfate (THPS and NALCO 7330 (isothiazoline derivatives] and one oxidizing biocide [bleach (NaClO] against a biofilm consortium from a water cooling tower in lab tests. Fifty ppm (w/w of an equimass mixture of D-methionine, D-leucine, D-tyrosine, D-tryptophan, D-serine, D-threonine, D-phenylalanine, and D-valine (D8 enhanced 15 ppm THPS and 15 ppm NALCO 7330 with similar efficacies achieved by the 30 ppm THPS alone treatment and the 30 ppm NALCO 7330 alone treatment, respectively in the single-batch 3-h biofilm removal test. A sequential treatment method was used to enhance bleach because D-amino acids react with bleach. After a 4-h biofilm removal test, the sequential treatment of 5 ppm bleach followed by 50 ppm D8 achieved extra 1-log reduction in sessile cell counts of acid producing bacteria, sulfate reducing bacteria, and general heterotrophic bacteria compared with the 5 ppm bleach alone treatment. The 10 ppm bleach alone treatment showed a similar efficacy with the sequential treatment of 5 ppm bleach followed by 50 ppm D8. The efficacy of D8 was found better than that of D4 (an equimass mixture of D-methionine, D-leucine, D-tyrosine, and D-tryptophan in the enhancement of the three individual biocides against the biofilm consortium.

  10. Condensation in gas transmission pipelines. Phase behavior of mixtures of hydrogen with natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, J.A.; Michels, J.P.J. [Amsterdam Univ. (Netherlands). Van der Waals-Zeeman Inst.; Rosmalen, R.J. van [Energy, Roden (Netherlands)

    2005-05-01

    Several pressure and temperature reductions occur along gas transmission lines. Since the pressure and temperature conditions of the natural gas in the pipeline are often close to the dew point curve, liquid dropout can occur. Injection of hydrogen into the natural gas will change the phase envelope and thus the liquid dropout. This condensation of the heavy hydrocarbons requires continuous operational attention and a positive effect of hydrogen may affect the decision to introduce hydrogen. In this paper we report on calculations of the amount of condensate in a natural gas and in this natural gas mixed with 16.7% hydrogen. These calculations have been performed at conditions prevailing in gas transport lines. The results will be used to discuss the difference in liquid dropout in a natural gas and in a mixture with hydrogen at pressure reduction stations, at crossings under waterways, at side-branching, and at separators in the pipelines. (author)

  11. Synthesis of (R)-5-(Di[2,3-3H2]propylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one-([3H]U-86170) and (R)-5-([2,3-3H2]propylamino)-5,6-dihydro-4H-imidazo(4,5,1-ij) quinolin-2(1H)-one ([3H]U-91356)

    International Nuclear Information System (INIS)

    Moon, M.W.; Hsi, R.S.P.

    1992-01-01

    (R)-5-(diallylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (12b) was prepared in 9% overall yield from 3-aminoquinoline. Reaction of 12b in ethyl acetate with tritium gas in presence of a 5% platinum on carbon catalyst afforded a mixture of (R)-5-(di[2,3- 3 H 2 ]propylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]-quinolin-2(1H)-one ([ 3 H]U-86170, 69 Ci/mmol) and (R)-5-([2,3- 3 H 2 ]-propylamino)5,6-dihydro-4H-imidazo-[4,5,1-ij]quinolin-2(1H)-one ( [ 3 H]U-91356, 34 Ci/mmol) which was separated by preparative reverse-phase chromatography. U-86170 and U-91356 are potent dopamine D2 agonists. The labelled compounds are useful for drug disposition studies. [ 3 H]U-86170 is also useful as a dopamine D2 agonist radioligand for receptor binding studies. (author)

  12. Sound speed models for a noncondensible gas-steam-water mixture

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1984-01-01

    An analytical expression is derived for the homogeneous equilibrium speed of sound in a mixture of noncondensible gas, steam, and water. The expression is based on the Gibbs free energy interphase equilibrium condition for a Gibbs-Dalton mixture in contact with a pure liquid phase. Several simplified models are discussed including the homogeneous frozen model. These idealized models can be used as a reference for data comparison and also serve as a basis for empirically corrected nonhomogeneous and nonequilibrium models

  13. Indium-tin oxide thin films deposited at room temperature on glass and PET substrates: Optical and electrical properties variation with the H2–Ar sputtering gas mixture

    International Nuclear Information System (INIS)

    Álvarez-Fraga, L.; Jiménez-Villacorta, F.; Sánchez-Marcos, J.; Andrés, A. de; Prieto, C.

    2015-01-01

    Highlights: • ITO deposition on glass and PET at room temperature by using H. • High transparency and low resistance is obtained by tuning the H. • The figure of merit for ITO films on PET becomes maximal for thickness near 100 nm. - Abstract: The optical and electrical properties of indium tin oxide (ITO) films deposited at room temperature on glass and polyethylene terephthalate (PET) substrates were investigated. A clear evolution of optical transparency and sheet resistance with the content of H 2 in the gas mixture of H 2 and Ar during magnetron sputtering deposition is observed. An optimized performance of the transparent conductive properties ITO films on PET was achieved for samples prepared using H 2 /(Ar + H 2 ) ratio in the range of 0.3–0.6%. Moreover, flexible ITO-PET samples show a better transparent conductive figure of merit, Φ TC = T 10 /R S , than their glass counterparts. These results provide valuable insight into the room temperature fabrication and development of transparent conductive ITO-based flexible devices

  14. Electron-beam sustained glow discharge in a N{sub 2}+CO gas mixture at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Azharonok, V V; Filatova, I I; Chubrik, N I; Shimanovich, V D [Belarussian Academy of Sciences, Minsk (Belarus). Inst. of Molecular and Atomic Physics; Gurashvili, V A; Kuzmin, V N; Turkin, N G; Vaselenok, A A [Troitsk Institute of Innovative and Fusion Research (Russian Federation)

    1997-12-31

    A quasi-continuum electron-beam sustained glow discharge in a flow of N{sub 2} + CO gas mixture at cryogenic temperature was studied by emission spectroscopy. The effective values of electron-ion recombination and rate of electron adhesion to electronegative molecules (Fe(CO){sub 5}, Ni(CO){sub 4}, H{sub 2}O) present in the discharge were determined in dependence on the reduced electric field strength E/N. (author). 1 tab., 2 figs., 5 refs.

  15. Analysis of trace levels of impurities and hydrogen isotopes in helium purge gas using gas chromatography for tritium extraction system of an Indian lead lithium ceramic breeder test blanket module.

    Science.gov (United States)

    Devi, V Gayathri; Sircar, Amit; Yadav, Deepak; Parmar, Jayraj

    2018-01-12

    In the fusion fuel cycle, the accurate analysis and understanding of the chemical composition of any gas mixture is of great importance for the efficient design of a tritium extraction and purification system or any tritium handling system. Methods like laser Raman spectroscopy and gas chromatography with thermal conductivity detector have been considered for hydrogen isotopes analyses in fuel cycles. Gas chromatography with a cryogenic separation column has been used for the analysis of hydrogen isotopes gas mixtures in general due to its high reliability and ease of operation. Hydrogen isotopes gas mixture analysis with cryogenic columns has been reported earlier using different column materials for percentage level composition. In the present work, trace levels of hydrogen isotopes (∼100 ppm of H 2 and D 2 ) have been analyzed with a Zeolite 5A and a modified γ-Al 2 O 3 column. Impurities in He gas (∼10 ppm of H 2 , O 2 , and N 2 ) have been analyzed using a Zeolite 13-X column. Gas chromatography with discharge ionization detection has been utilized for this purpose. The results of these experiments suggest that the columns developed were able to separate ppm levels of the desired components with a small response time (<6 min) and good resolution in both cases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  17. Effects of hydrogen mixture into helium gas on deuterium removal from lithium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Akihito, E-mail: tsuchiya@frontier.hokudai.ac.jp [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Hino, Tomoaki; Yamauchi, Yuji; Nobuta, Yuji [Laboratory of Plasma Physics and Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Akiba, Masato; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan)

    2013-10-15

    Lithium titanate (Li{sub 2}TiO{sub 3}) pebbles were irradiated with deuterium ions with energy of 1.7 keV and then exposed to helium or helium–hydrogen mixed gas at various temperatures, in order to evaluate the effects of gas exposure on deuterium removal from the pebbles. The amounts of residual deuterium in the pebbles were measured by thermal desorption spectroscopy. The mixing of hydrogen gas into helium gas enhanced the removal amount of deuterium. In other words, the amount of residual deuterium after the helium–hydrogen mixed gas exposure at lower temperature was lower than that after the helium gas exposure. In addition, we also evaluated the pebbles exposed to the helium gas with different hydrogen mixture ratio from 0% to 1%, at 573 K. Although the amount of residual deuterium in the pebbles after the exposure decreased with increasing the hydrogen mixture ratio, the implanted deuterium partly remained after the exposure. These results suggest that the tritium inventory may occur at low temperature region in the blanket during the operation.

  18. Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture

    Science.gov (United States)

    Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.

    2017-05-01

    In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.

  19. Discharge-current characteristics in UV-preionized Kr/He, F2/He gas-mixtures and KrF excimer laser gas. Shigaisen yobi denri Kr/He, F2/He kongo kitai hoden oyobi KrF laser reiki hoden no denryu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, N.; Kawakami, H.; Yukimura, K. (Doshisha University, Kyoto (Japan))

    1992-08-15

    In order to study effects of Kr and F2 on discharge characteristics of KrF excimer laser gas, gap phenomena in Kr/He and F2/He gas-mixtures were observed and discharge current (I[sub d]) was measured. In the range where Kr concentration was over 10% in Kr/He gas, in which production of filamentation as well as glow discharge started, discontinuous change in I[sub d] in the second or third half cycle was observed. According to the results of experiments and model analyses, it was considered that the discontinuity of the current showed the transition point to filamentation. When F2 concentration was in the range between 0.1 and 0.3% in F2/He mixture gas, filamentation and arc with glow were observed. Sine-waveform I[sub d] ended in the first half cycle, and began to flow again after cessation or had almost constant current due to arc and others. When F2 was over 0.4%, only are discharge was observed. It was thus found that F2 has a large effect on discharge characteristics of KrF laser gas. 18 refs., 9 figs.

  20. On-farm Euthanasia of Broiler Chickens: Effects of Different Gas Mixtures on behavior and brain activity

    NARCIS (Netherlands)

    Gerritzen, M.A.; Lambooij, E.; Reimert, H.G.M.; Stegeman, J.A.; Spruijt, B.M.

    2004-01-01

    The purpose of this study was to investigate the suitability of gas mixtures for euthanasia of groups of broilers in their housing by increasing the percentage of CO2. The suitability was assessed by the level of discomfort before loss of consciousness, and the killing rate. The gas mixtures

  1. [Effect of krypton-containing gas mixture on Japanese quail embryo development].

    Science.gov (United States)

    Kussmaul', A R; Gur'eva, T S; Dadasheva, O A; Pavlov, N B; Pavlov, B N

    2008-01-01

    Investigated were effects of gas mixture with up to 3.0 kgs/cm2 of krypton on the embryonic development of domesticated Japanese quail (Coturnix coturnix japonica dom.). Results demonstrated absence of a serious krypton effect on Japanese quail embryos. Development of embryos proceeded in due course; morphometrically the experimental embryos were essentially similar to controls. It should be noted that despite exposure to acute hypoxic hypoxia during the initial 12 hours of development in the krypton-containing gas mixture, viability of quail embryos was high enough which can be ascribed to the krypton protective action. Besides, an additional experiment showed that krypton partial pressure of 5-5.5 kgs/cm2 produces the narcotic effect on adult Japanese quails.

  2. Analytical resolution of the mixture TBP-HDBP-H2MBP-H3PO4

    International Nuclear Information System (INIS)

    Pires, M.A.F.

    1983-01-01

    Several schemes for the separation of dibutylphosphoric acid (HDBP), main degradation product of tributylphosphate (TBP), in TBP/diluent, TBP/diluent-uranyl nitrate and TBP/diluent-thorium nitrate mixture were studied. For the resolution of HDBP-TBP/diluent-heavy metal nitrates (U-VI,Th-IV) systems, techniques such as: in exchange chromatography, ion chromatography using common ion exchangers and chromatographic separation with alumina column were investigated. For the identification, determination and analytical resolution following up the several systems studied, techniques such as refraction index measurement, electrical conductivity measurement, molecular absorption spectrophotometry, gas chromatography and ion chromatography, were applied. The separation of HDBP component was achieved using an alumina column where it was adsorbed from the TBP/diluent-uranyl nitrate and selectively eluted. Several modifications of this procedure for samples from the Uranium Purification Pilot Plant at Instituto de Pesquisas Energeticas e Nucleares (Sao Paulo, Brazil) were made. Special emphasis was given to the determination of HDBP using the ion chromatography technique. HDBP along with any monobutylphosphate acid (H 2 MBP) and phosphoric acid (H 3 PO 4 ) were stripped from the organic phase into dilute sodium hydroxide. HDBP is separated from H 2 MBP and H 3 PO 4 by ion chromatography and determined by its peak height. The determination of degradation products from TBP in TBP/diluent-uranyl nitrate and TBP/diluent-thorium nitrate systems was then performed. The detection limit for dibutylphosphate is 1.0μg HDBP/ml of analyte solution. (Author) [pt

  3. Use of gas mixture electroluminescence for optical data readout from wire chambers

    International Nuclear Information System (INIS)

    Polyakov, V.A.; Rykalin, V.I.; Tskhadadze, Eh.G.

    1988-01-01

    The radiation spectra, the values of electroluminescence yield and coefficients of gas amplification of Ar and Ne mixture with inorganic and organic additions in a wire chamber operating under proportional and self-quenching streamer conditions are measured. Maximum light yield: 2x10 7 photons for Ar+acetone+white spirit gas mixture in a proportional regime and 1.1x10 7 photons for Ar+CO 2 + ethyl alcohol+ white spirit in self-quenching streamer regime is obtained. Three methods of optical data readout from the wire chambers are tested. The best results are obtained when spectrum shifting bands and fibers are placed behind the chamber cathode planes

  4. Development of a real-time absorption method for detecting the mercaptan odorizing mixture of natural gas

    NARCIS (Netherlands)

    Kireev, SV; Petrov, NG; Podolyako, EM; Shnyrev, SL

    The absorption of mercaptan mixtures used for odorizing natural gas and mixtures of natural gas is experimentally studied in the spectral range 2.5-20 mu m. An absorption method for the real-time detection of the odorant concentration is proposed. The method is based on intensity measurements of the

  5. Surface ignition behaviors of methane–air mixture in a gas oven burner

    International Nuclear Information System (INIS)

    Ryu, Jungwan; Kwon, Jongseo; Kim, Ryanggyun; Kim, Minseong; Kim, Youngsoo; Jeon, Chunghwan; Song, Juhun

    2014-01-01

    In a gas oven burner, commonly used as a residential appliance, a surface igniter is a critical component for creating a pilot flame near the surface that can propagate safely back to the nozzle of the burner. The igniter should meet critical operating requirements: a lower surface temperature needed to ignite a methane–air mixture and a stable/safe ignition sustained. Otherwise, such failure would result in an instantaneous peak in carbon monoxide emission and a safety hazard inside a closed oven. Several theoretical correlations have been used to predict ignition temperature as well as the critical ignition/extinction limit for a stagnation flow ignition. However, there have only been a few studies on ignition modes or relevant stability analysis, and therefore a more detailed examination of the transient ignition process is required. In this study, a high-speed flame visualization technique with temperature measurement was employed to reveal a surface ignition phenomenon and subsequent flame propagation of a cold combustible methane–air mixture in a gas oven burner. The operating parameters were the temperature–time history of the igniter surface, mixture velocity, and the distance of the igniter from the nozzle. The surface ignition temperatures were analyzed for such parameters under a safe ignition mode, while several abnormal modes leading to ignition failure were also recognized. - Highlights: •We revealed a surface ignition behavior of combustible mixture in gas oven burner. •We employed a flame visualization technique with temperature measurement. •We evaluated effects of parameters such as lifetime, mixture velocity and igniter distance. •We recognized several abnormal modes leading to ignition failure

  6. Effect of Gas Fueling Location on H-mode Access in NSTX

    International Nuclear Information System (INIS)

    Maingi, R.; Bell, M.; Bell, R.; Biewer, T.; Bush, C.; Chang, C.S.; Gates, D.; Kaye, S.; Kugel, H.; LeBlanc, B.; Maqueda, R.; Menard, J.; Mueller, D.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2003-01-01

    The dependence of H-mode access on the poloidal location of the gas injection source has been investigated in the National Spherical Torus Experiment (NSTX). We find that gas fueling from the center stack midplane area produces the most reproducible H-mode access with generally the lowest L-H threshold power in lower single-null configuration. The edge toroidal rotation velocity is largest (in direction of the plasma current) just before the L-H transition with center stack midplane fueling, and then reverses direction after the L-H transition. Simulation of these results with a 2-D guiding-center Monte Carlo neoclassical transport code is qualitatively consistent with the trends in the measured velocities. Double-null discharges exhibit H-mode access with gas fueling from either the center stack midplane or center stack top locations, indicating a reduced sensitivity of H-mode access on fueling location in that shape

  7. Repetitively pulsed VUV emitter pumped by a barrier discharge in a mixture of helium with heavy water (D{sub 2}O) vapour

    Energy Technology Data Exchange (ETDEWEB)

    Shuaibov, Aleksandr K; Minya, A I; Hrytsak, R V; Gomoki, Z T; Shevera, Igor' V [Uzhgorod National University, Uzhgorod (Ukraine)

    2012-08-31

    A gas-discharge lamp based on a barrier discharge in a He - D{sub 2}O mixture at partial pressures p{sub D2O} = 0.04 - 0.33 kPa and p{sub He} = 10 - 60 kPa is studied. The emission spectrum of the discharge plasma contains mainly the A {yields} X and C {yields} X bands of OD hydroxyl ({lambda} = 144 - 160 nm). The intensities of these bands are optimised by varying the pressure and composition of working mixtures. (laser applications and other topics in quantum electronics)

  8. Recombination of KrD{sup +} and KrH{sup +} ions in afterglow plasma

    Energy Technology Data Exchange (ETDEWEB)

    Korolov, I; Kotrik, T; Plasil, R; Hejduk, M; Varju, J; Dohnal, P; Glosik, J, E-mail: juraj.glosik@mff.cuni.c [Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague (Czech Republic)

    2009-11-15

    Reported is flowing afterglow (FALP) study of recombination of KrH{sup +} and KrD{sup +} ions with electrons at 250 K in mixtures of He/Kr/H{sub 2} and He/Kr/D{sub 2}, respectively. The influence of fast recombining cluster ions formation on apparent effective recombination rate coefficients ({alpha}{sub eff}) was measured and used in data analysis. The obtained binary rate coefficients for recombination of KrH{sup +} and KrD{sup +} are {alpha}{sub KrH+} = 2x10{sup -8} cm{sup 3}s{sup -1} and {alpha}{sub KrD+} = 1x10{sup -8} cm{sup 3}s{sup -1}.

  9. Diode Laser-Based Sensor for Fast Measurement of Binary Gas Mixtures

    National Research Council Canada - National Science Library

    McNesby, Kevin

    1999-01-01

    The development and characterization of a gas sensor to measure binary mixtures of oxygen and the vapor from a series of volatile organic compounds, with a time resolution of 10 milliseconds, is described...

  10. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids.

    Science.gov (United States)

    Finotello, Alexia; Bara, Jason E; Narayan, Suguna; Camper, Dean; Noble, Richard D

    2008-02-28

    This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].

  11. Aerosol formation on the flash photolysis of SO2/gas mixtures

    International Nuclear Information System (INIS)

    Fogel, L.D.; Sutherland, J.W.

    1979-01-01

    A long-lived transient absorption observed on the flash photolysis of SO 2 /gas mixtures at lambda> or =190 nm has been identified as resulting from light scattering by H 2 SO 4 aerosols. No detectable signals were monitored on photolysis at lambda> or =270 nm, indicating that the aerosol precursors originated from the promotion of SO 2 into its second singlet level and into its dissociation continuum. The SO 3 that was formed was hydrated immediately to yield H 2 SO 4 vapor in a highly supersaturated state and heteromolecular homogeneous nucleation to produce H 2 SO 4 aerosols ensued. This nucleation was quenched rapidly as the acid vapor was consumed by further nucleation, by condensation, and by vapor diffusion to the cell walls. A model was formulated in which the condensations of the H 2 SO 4 and the H 2 O vapors on the growing droplets were considered kinetically negligible and the particles grew by coagulation; simultaneously, they were lost by tranquil gravitational settling and by diffusion to the cell walls. Computer simulations demonstrated that the observed time dependence of the absorbance data (measured at a fixed wavelength) could be accounted for by this scheme. The effects of temperature, pressure, and wavelength (of the analyzing light) were also described satisfactorily by this model

  12. Selective and quantitative method for gas mixtures measurement with one single nano particular metal oxide gas sensor; Methode d'analyse selective et quantitative d'un melange gazeux a partir d'un microcapteur a oxyde metallique nanoparticulaire

    Energy Technology Data Exchange (ETDEWEB)

    Parret, F.

    2006-01-15

    This work has been developed in the frame of Nanosensoflex European project, in the LAAS-CNRS laboratory at Toulouse. The aim of this project was to improve gas sensor technology and to optimize SnO{sub 2} sensing layer selectivity thanks to a new operating mode associated to a new technique of response treatment. In this context, this doctoral dissertation is focused on the last point: we have experimentally demonstrated that the shape of transient response curves of these sensors, using short temperature variations is affected by the surrounding atmosphere with a good reproducibility. Also, we have defined a temperature profile dedicated to CO detection in a mixture of NO{sub 2} and propane. This profile, with a total duration of 12 s, includes 6 temperature steps and do not exceed a maximum temperature of 500 C. By consideration of shapes and time constants of the normalized response curves, associated to a Linear Discriminant Analysis, we managed to discriminate each gas mixture and then to quantify CO-concentration from 1 to 200 ppm, independently of relative humidity rate. (author)

  13. Numerical study of combustion initiation in a supersonic flow of H2-air mixture by resonance laser radiation

    International Nuclear Information System (INIS)

    Bezgin, L V; Kopchenov, V I; Kuleshov, P S; Titova, N S; Starik, A M

    2012-01-01

    A comparative analysis of the efficiency of approaches based on the exposure of reacting gas to resonance laser radiation to enhance combustion in a supersonic flow of H 2 -air mixture is conducted. The kinetic processes responsible for the intensification of chain reactions in premixed and non-premixed H 2 -air flows upon photodissociation of O 2 molecules by 193.3 nm laser radiation, excitation of these molecules to the singlet sigma state by laser photons with 762.346 nm wavelength and heating the mixture by laser radiation are analysed in a detailed manner. It is shown that both photochemical methods, photodissociation and excitation of O 2 molecules, are much more effective in shortening the ignition delay length than merely heating the mixture. For the premixed flow, the photodissociation of O 2 molecules ensures a slightly higher reduction in the ignition delay than the laser-induced excitation of molecular oxygen to the singlet sigma state. However, in the non-premixed flow the situation is inverted. The analysis shows that both photochemical methods make it possible to raise the efficiency of conversion of reactant chemical energy to thermal energy released during combustion compared with the method of heating the mixtures. (paper)

  14. Cryotrapping assisted mass spectrometry for the analysis of complex gas mixtures

    International Nuclear Information System (INIS)

    Ferreira, Jose A.; Tabares, Francisco L.

    2007-01-01

    A simple method is described for the unambiguous identification of the individual components in a gas mixture showing strong overlapping of their mass spectrometric cracking patterns. The method, herein referred to as cryotrapping assisted mass spectrometry, takes advantage of the different vapor pressure values of the individual components at low temperature (78 K for liquid nitrogen traps), and thus of the different depletion efficiencies and outgassing patterns during the fast cooling and slow warming up of the trap, respectively. Examples of the use of this technique for gas mixtures with application to plasma enhanced chemical vapor deposition of carbon and carbon-nitrogen hard films are shown. Detection of traces of specific C 3 hydrocarbons ( 2 containing deposition plasmas are addressed as representative examples of specific applications of the technique

  15. Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production

    International Nuclear Information System (INIS)

    Bičáková, Olga; Straka, Pavel

    2016-01-01

    Highlights: • Co-pyrolysis of waste tires/coal mixtures yields mainly smokeless fuel (55–74 wt%). • Alternatively, the smokeless fuel can serve as carbonaceous sorbent. • The obtained tar contained maltenes (80–85 wt%) and asphaltenes (6–8 wt%). • Tar from co-pyrolysis can serve as heating oil or a source of maltenes for repairing of asphalt surfaces. • The hydrogen-rich gas was obtained (61–65 vol% H_2, 24–25 vol% CH_4, 1.4–2 vol% CO_2). - Abstract: The processing of waste tires with two different types of bituminous coal was studied through the slow co-pyrolysis of 1 kg of waste tire/coal mixtures with 15, 30 and 60 wt% waste tires on a laboratory scale. The waste tire/coal mixtures were pyrolysed using a quartz reactor in a stationary bed. The mixtures were heated at a rate 5 °C/min up to the final temperature of 900 °C with a soaking time of 30 min at the required temperature. The mass balance of the process and the properties of the coke and tar obtained were evaluated, further, the influence of the admixture in the charge on the amount and composition of the obtained coke and tar was determined. It was found that the smokeless fuel/carbonaceous sorbent and a high yield of tar for further use can be obtained through the slow co-pyrolysis. The obtained tars contained mostly maltenes (80–85 wt%). FTIR analysis showed that the maltenes from the co-pyrolysis of coal/waste tires exhibited significantly lower aromaticity as compared with that from coal alone. The gas obtained from pyrolysis or co-pyrolysis of waste tire/coal mixtures contained a high amount of hydrogen (above 60 vol%) and methane (above 20 vol%).

  16. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    Directory of Open Access Journals (Sweden)

    Orlov Alexey

    2016-01-01

    Full Text Available This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.

  17. Probing peptide fragment ion structures by combining sustained off-resonance collision-induced dissociation and gas-phase H/D exchange (SORI-HDX) in Fourier transform ion-cyclotron resonance (FT-ICR) instruments.

    Science.gov (United States)

    Somogyi, Arpád

    2008-12-01

    The usefulness of gas-phase H/D exchange is demonstrated to probe heterogeneous fragment and parent ion populations. Singly and multiply protonated peptides/proteins were fragmented by using sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The fragments and the surviving precursor ions then all undergo H/D exchange in the gas-phase with either D(2)O or CD(3)OD under the same experimental conditions. Usually, 10 to 60 s of reaction time is adequate to monitor characteristic differences in the H/D exchange kinetic rates. These differences are then correlated to isomeric ion structures. The SORI-HDX method can be used to rapidly test fragment ion structures and provides useful insights into peptide fragmentation mechanisms.

  18. Experimental validation of GASDECOM for High Heating Value Processed Gas mixtures (58 MJ/m3) by specialized shock tube

    International Nuclear Information System (INIS)

    Botros, K.K.; Geerligs, J.; Carlson, L.; Reed, M.

    2013-01-01

    One of the fundamental requirements of the design of pipelines is the control of propagating ductile fracture, in which the Battelle two-curve method still forms the basis of the analytical framework used throughout the industry. The GASDECOM (GAS DECOMpression) tool is typically used for calculating decompression wave speed, which is one of these two curves. It uses the BWRS (Benedict–Webb–Rubin–Starling) equation of state to idealize the decompression process as isentropic and one-dimensional. While this equation of state was developed and validated against a quite restricted range of gas compositions, GASDECOM continues to perform relatively well for compositions slightly outside the original range of BWRS. The present research was focused on examining the performance of GASDECOM for mixture compositions up to a High (gross) Heating Value (HHV) of 58 MJ/m 3 . Four tests were conducted using a specialized high pressure shock tube (42 m long, I.D. = 38.1 mm) to experimentally determine the decompression wave speeds and compare them to the predictions by GASDECOM. Two tests were conducted on a gas mixture of HHV = 52 MJ/m 3 and the other two on even richer gas mixture of HHV = 58 MJ/m 3 , all were from nominal initial pressures of 15 MPa and initial temperatures of 40 °C. The results from these tests show that decompression wave speeds are consistent with predictions of GASDECOM for gases of HHV typical of the previously validated range of BWRS. Predictions of the saturation pressure represented by the plateau pressure in the decompression wave speed curve were also in good agreement with measurements despite the fact that they occurred close to the critical point of the respective mixture compositions. -- Highlights: • Performance of GASDECOM for mixture up to HHV of 58 MJ/m3 was examined. • Experiments were conducted using a specialized high pressure shock. • Results show that decompression speeds are consistent with predictions of GASDECOM.

  19. Performance of low pH biofilters treating a paint solvent mixture: Continuous and intermittent loading

    International Nuclear Information System (INIS)

    Qi Bing; Moe, William M.

    2006-01-01

    Two biofilters packed with a reticulated polyurethane foam medium were inoculated with a compost-derived enrichment culture grown under acidic conditions (pH 3.0) and then operated over a period lasting 63 days. Both biofilters were supplied with a humidified gas stream containing a five-component mixture of acetone, methyl ethyl ketone, toluene, ethylbenzene, and p-xylene at a total VOC loading rate 80.3 g m -3 h -1 to simulate treatment of air emissions resulting from manufacture of reformulated paint. One biofilter was operated under continuous loading conditions and the other received intermittent loading with contaminants supplied only 8 h/day. Nutrient solution with pH 3.0 was supplied approximately once per week to provide nitrogen and other nutrients. Data are presented which demonstrate that undefined mixed cultures acclimated at low pH can successfully treat paint solvent mixtures in biofilters. The biofilter receiving continuous loading reached high overall removal efficiency (greater than 90% overall removal) 3 weeks after startup, and performance increased over time reaching overall removal in the range of 97-99% after 50 days. Performance of the intermittently loaded biofilter developed more slowly, requiring 6 weeks to stabilize at an overall removal efficiency in excess of 90%. In both biofilters, ketone components were more rapidly degraded than aromatic components, and removal of aromatic compounds was somewhat unstable even after 2 months of biofilter operation. Scanning electron microscopy (SEM) revealed that fungi dominated the microbial populations in both biofilters

  20. Compressible Flow Phenomena at Inception of Lateral Density Currents Fed by Collapsing Gas-Particle Mixtures

    Science.gov (United States)

    Valentine, Greg A.; Sweeney, Matthew R.

    2018-02-01

    Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.

  1. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E; Roth, F von; Hottinger, P; Truong, T B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  2. On-farm euthanasia of broiler chickens: effects of different gas mixtures on behavior and brain activity.

    Science.gov (United States)

    Gerritzen, M A; Lambooij, B; Reimert, H; Stegeman, A; Spruijt, B

    2004-08-01

    The purpose of this study was to investigate the suitability of gas mixtures for euthanasia of groups of broilers in their housing by increasing the percentage of CO2. The suitability was assessed by the level of discomfort before loss of consciousness, and the killing rate. The gas mixtures injected into the housing were 1) 100% CO2, 2) 50% N2 + 50% CO2, and 3) 30% O2 + 40% CO2 + 30% N2, followed by 100% CO2. At 2 and 6 wk of age, groups of 20 broiler chickens per trial were exposed to increasing CO2 percentages due to the injection of these gas mixtures. Behavior and killing rate were examined. At the same time, 2 broilers per trial equipped with brain electrodes were observed for behavior and brain activity. Ten percent of the 2-wk-old broilers survived the increasing CO2 percentage due to the injection of 30% O2 + 40% CO2 + 30% N2 mixture, therefore this mixture was excluded for further testing at 6 wk of age. At 6 wk of age, 30% of the broilers survived in the 50% N2 + 50% CO2 group. The highest level of CO2 in the breathing air (42%) was reached by the injection of the 100% CO2 mixture, vs. 25% for the other 2 mixtures. In all 3 gas mixtures, head shaking, gasping, and convulsions were observed before loss of posture. Loss of posture and suppression of electrical activity of the brain (n = 7) occurred almost simultaneously. The results of this experiment indicate that euthanasia of groups of 2- and 6-wk-old broilers by gradually increasing the percentage of CO2 in the breathing air up to 40% is possible.

  3. Process and device for the adsorptive separation of krypton from a krypton/nitrogen gas mixture

    International Nuclear Information System (INIS)

    Ringel, H.; Messler, M.

    1985-01-01

    The gas mixture flows through an adsorption column, which is filled with a means of adsorbing Krypton and nitrogen. The adsorption column is desorbed after adsorption of the gas components by a gaseous flushing material, which flows through the adsorption column in the same direction as the gas mixture. In order to achieve a high degree of separation, the adsorption material is loaded with nitrogen and Krypton from the gas inlet, where Krypton is only absorbed over part of the length of the whole column by the adsorption material. The part of the length is such that on desorption of the adsorption column with the flushing material at first only nitrogen and later only Krypton is obtained at the outlet of the adsorption column. (Waste gas system of a reprocession plant). (orig./HP) [de

  4. Aging measurements on triple-GEM detectors operated with $CF_{4}$-based gas mixtures

    CERN Document Server

    Alfonsi, M; De Simone, P; Murtas, F; Poli Lener, M P; Bonivento, W; Cardini, A; Raspino, D; Saitta, B; Pinci, D; Baccaro, S; 10.1016/j.nuclphysbps.2005.03.054

    2006-01-01

    We present the results of a global irradiation test of full size triple-GEM detectors operated with CF/sub 4/-based gas mixtures. This study has been performed in the framework of an R&D activity on detectors for the innermost region of the first muon station of the LHCb experiment. The prototypes have been irradiated at the Calliope facility of the ENEA-Casaccia with a high intensity 1.25 MeV detectors performances have been measured with X-rays and with a 3 Ge V pion beam at CERN. A SEM analysis on several samples of the detectors has been performed to complete the understanding of the physical processes occurring in a GEM detector during a strong irradiation.

  5. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    Energy Technology Data Exchange (ETDEWEB)

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, (United States); Bates, R.; Bitadze, A. [School of Physics and Astronomy, University of Glasgow, G12 8QQ, (United Kingdom); Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L. [CERN, 1211 Geneva 23, (Switzerland); Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A. [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, 13288 Marseille Cedex 09, (France); Deterre, C.; O' Rourke, A. [Deutsches Elektronen-Synchrotron, Notkestrasse 85, D-22607 Hamburg, (Germany); Doubek, M.; Vacek, V. [Czech Technical University, Technick 4, 166 07 Prague 6, (Czech Republic); Degeorge, C. [Physics Department, Indiana University, Bloomington, IN 47405, (United States); Katunin, S. [B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), 188300 St. Petersburg, (Russian Federation); Langevin, N. [Institut Universitaire de Technologie of Marseille, University of Aix-Marseille, 142 Traverse Charles Susini, 13013 Marseille, (France); McMahon, S. [Rutherford Appleton Laboratory - Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 OQX, (United Kingdom); Nagai, K. [Department of Physics, Oxford University, Oxford OX1 3RH, (United Kingdom); Robinson, D. [Department of Physics and Astronomy, University of Cambridge, (United Kingdom); Rossi, C. [INFN - Genova, Via Dodecaneso 33, 16146 Genova, (Italy)

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  6. Syntheses of [5-2H]-uracil, [5-2H]-cytosine, [6-2H]-uracil and [6-2H]-cytosine

    International Nuclear Information System (INIS)

    Kiritani, Reiko; Asano, Takeyoshi; Fujita, Shin-ichi; Dohmaru, Takaaki; Kawanishi, Tetsuro

    1986-01-01

    Syntheses of [5- 2 H]-, [6- 2 H]-uracil and [5- 2 H]-, [6- 2 H]-cytosine were investigated. The catalytic reaction of uracil or cytosine with 2 H 2 gas in alkaline media gave rise to [6- 2 H]-compounds almost exclusively. On the other hand, the reaction of 5-bromouracil or 5-bromocytosine with 2 H 2 gas gave rise to a mixture of [5- 2 H]-, [6- 2 H]- and [5- 2 H, 6- 2 H]-compounds depending on the experimental conditions. By controlling the temperature, the pressure of 2 H 2 gas and the amount of catalyst, [5- 2 H]-uracil and [5- 2 H]-cytosine were obtained. The isotopic distribution in each product was measured by 1 H NMR spectroscopy combined with an HPLC method. (author)

  7. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2011-01-01

    In Part I of this series of articles, the study of H2S mixtures has been presented with CPA. In this study the phase behavior of CO2 containing mixtures is modeled. Binary mixtures with water, alcohols, glycols and hydrocarbons are investigated. Both phase equilibria (vapor–liquid and liquid–liqu...

  8. HDT mixtures treatment strategies by gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Laquerbe, C.; Contreras, S.; Demoment, J. [Commissariat a l' Energie Atomique - CEA/Valduc, F-21121 Is sur Tille (France)

    2008-07-15

    Gas phase chromatographic processes are of interest for the separation of hydrogen isotopes from an HDT mixture. For a certain quantity, they are very competitive and present several benefits. Nevertheless no active packing material allows to have simultaneously good enrichment performances for tritium production and high decontamination capabilities for HD gases. The influence of the packing material is first described in this article. Then two specific processes (TCAP and Reverse Chromatography), each well adapted to perform one target, are presented. Finally, the problematic to propose an optimized treatment scheme associating these two processes is formulated. (authors)

  9. HDT mixtures treatment strategies by gas chromatography

    International Nuclear Information System (INIS)

    Laquerbe, C.; Contreras, S.; Demoment, J.

    2008-01-01

    Gas phase chromatographic processes are of interest for the separation of hydrogen isotopes from an HDT mixture. For a certain quantity, they are very competitive and present several benefits. Nevertheless no active packing material allows to have simultaneously good enrichment performances for tritium production and high decontamination capabilities for HD gases. The influence of the packing material is first described in this article. Then two specific processes (TCAP and Reverse Chromatography), each well adapted to perform one target, are presented. Finally, the problematic to propose an optimized treatment scheme associating these two processes is formulated. (authors)

  10. Investigation of the helium proportion influence on the Prandtl number value of gas mixtures

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2014-01-01

    Full Text Available The paper investigates an influence of helium fraction (light gases on the Prandtl number value for binary and more complex gas mixtures.It is shown that a low value of the Prandtl number (Pr-number results in decreasing a temperature recovery factor value and, respectively, in reducing a recovery temperature value on the wall (thermoinsulated wall temperature with the compressive gas flow bypassing it. This, in turn, allows us to increase efficiency of gasdynamic energy separation in Leontyev's tube.The paper conducts a numerical research of the influence of binary and more complex gas mixture composition on the Prandtl number value. It is shown that a mixture of two gases with small and large molecular weight allows us to produce a mixture with a lower value of the Prandtl number in comparison with the initial gases. Thus, the value of Prandtl number decreases by 1.5-3.2 times in comparison with values for pure components (the more a difference of molar mass of components, the stronger is a decrease.The technique to determine the Prandtl number value for mixtures of gases in the wide range of temperatures and pressure is developed. Its verification based on experimental data and results of numerical calculations of other authors is executed. It is shown that it allows correct calculation of binary and more complex mixtures of gasesFor the mixtures of inert gases it has been obtained that the minimum value of the Prandtl number is as follows: for helium - xenon mixtures (He-Xe makes 0.2-0.22, for helium - krypton mixtures (He-Kr – 0.3, for helium - argon mixes (He-Ar – 0.41.For helium mixture with carbon dioxide the minimum value of the Prandtl number makes about 0.4, for helium mixture with N2 nitrogen the minimum value of the Prandtl number is equal to 0.48, for helium-methane (CH4 - 0.5 and helium – oxygen (O2 – 0.46.This decrease is caused by the fact that the thermal capacity of mixture changes under the linear law in regard to the

  11. Metal/glass composites for analysis of hydrogen isotopes by gas-chromatography

    International Nuclear Information System (INIS)

    Nicolae, Constantin Adrian; Sisu, Claudia; Stefanescu, Doina; Stanciu, Vasile

    1999-01-01

    The separation process of hydrogen isotopes by cryogenic distillation or thermal diffusion is a key technology for tritium separation from heavy water in CANDU reactor and for tritium fuel cycle in thermonuclear fusion reactor. In each process, analytical techniques for analyzing the hydrogen isotope mixture are required. An extensive experimental research has been carried out in order to produce the most suitable adsorbents and to establish the best operating conditions for selective separation and analysis of hydrogen isotopes by gas-chromatography. This paper describes the preparation of adsorbent materials used as stationary phases in the gas-chromatographic column for hydrogen isotope separation and the treatment (activation) of stationary phases. Modified thermoresisting glass with Fe(NH 4 ) 2 (SO 4 ) 2 ·6H 2 O and Cr 2 O 3 respectively have been experimentally investigated at 77 K for H 2 , HD and D 2 separation and the results of chromatographic runs are reported and discussed. The gas-chromatographic apparatus used in this study is composed of a Hewlett-Packard 7620A gas-chromatograph equipped with a gas carrier flow rate controller and a thermal conductivity detector. The apparatus comprises also a Dewar vessel containing the separation column. The hydrogen isotopes, H 2 , HD, D 2 , and their mixture have been obtained in our laboratories. The best operating conditions and parameters of the Fe 3+ /glass adsorbent column , i.e. granulometry, column length, pressure-drop along the column, carrier gas flow rate and sample volume have been studied by means of the analysis of the retention times, separation factors and HETP. (authors)

  12. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    Science.gov (United States)

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  13. Vibrational relaxation in OCS mixtures

    International Nuclear Information System (INIS)

    Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.

    1976-01-01

    Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)

  14. The (gas + liquid) critical properties and phase behaviour of some binary alkanol (C2-C5) + alkane (C5-C12) mixtures

    International Nuclear Information System (INIS)

    Morton, David W.; Lui, Matthew P.W.; Young, Colin L.

    2003-01-01

    Previously, the investigation of the (gas + liquid) critical properties of (alkanol + alkane) mixtures has focussed on (primary alkanol + straight chain alkane) mixtures. The experimental data available for (alkanol + alkane) mixtures, which include secondary or tertiary alcohols and/or branched chain alkanes, are extremely limited. This work extends the existing body of data on (alkanol + alkane) mixtures to include mixtures containing these components. Here the (gas + liquid) critical temperatures of 29 {alkanol (C 2 -C 5 ) + alkane (C 5 -C 12 )} mixtures are reported. All the (gas + liquid) critical lines for the binary mixtures studied are continuous, indicating they obey either Type I or Type II phase behaviour

  15. Microwave Determination of Water Mole Fraction in Humid Gas Mixtures

    Science.gov (United States)

    Cuccaro, R.; Gavioso, R. M.; Benedetto, G.; Madonna Ripa, D.; Fernicola, V.; Guianvarc'h, C.

    2012-09-01

    A small volume (65 cm3) gold-plated quasi-spherical microwave resonator has been used to measure the water vapor mole fraction x w of H2O/N2 and H2O/air mixtures. This experimental technique exploits the high precision achievable in the determination of the cavity microwave resonance frequencies and is particularly sensitive to the presence of small concentrations of water vapor as a result of the high polarizability of this substance. The mixtures were prepared using the INRIM standard humidity generator for frost-point temperatures T fp in the range between 241 K and 270 K and a commercial two-pressure humidity generator operated at a dew-point temperature between 272 K and 291 K. The experimental measurements compare favorably with the calculated molar fractions of the mixture supplied by the humidity generators, showing a normalized error lower than 0.8.

  16. D/H in Water Evolved from Martian Rocks in Gale Crater

    Science.gov (United States)

    Mahaffy, P. R.; Franz, H. B.; Atreya, S. K.; Webster, C. R.

    2017-12-01

    The Sample Analysis at Mars (SAM) instrument suite with its Quadrupole Mass Spectrometer (QMS) and Tunable Laser Spectrometer (TSL) measures isotopes such as δ34S in SO2 [1], δ37Cl in HCl [2], δ15N in N2 or NO [3], δ13C in CH4 [4], δ13C and δ18O in CO2 [5-6], δD in H2O [7], and a variety of noble gas isotopes [8-9]. Fractionation of isotopes of H, C, O, N, Ar, and Xe indicates a substantial loss of atmosphere to space. For xenon this may have occurred early in the history of Mars by hydrodynamic escape [10] or spread over time for C, O, N, and Ar [11]. Nevertheless, the detailed history of atmospheric loss and the predictions of the climate when the Gale crater was a lake are still not well constrained. Isotopes from light elements that are presently measured in the atmosphere but that were also locked into minerals in rocks more than 3 billion years ago are of particular interest as they may provide additional constraints on the history of atmospheric loss. These include 15N/14N presently measured in atmospheric N2 [3] but also in nitrogen released from ancient nitrates as NO [12] and D/H in atmospheric water [13] and in water or hydroxyl locked into minerals and released in the SAM evolved gas analysis (EGA) experiments [7]. D/H in water can be measured by both the TSL and the QMS. Typically the D/H decreases over the course of the EGA temperature ramp, since gas that has exchanged with the current atmosphere is released at lower temperatures. Less easily exchanged gas reflecting the D/H ratio in the water of formation of a mineral, such as that from the dehydroxylation of a phylosillicate, is released at higher temperatures. We will examine some of the D/H measurements made on drilled and powdered rocks and the trends in the variation of the D/H ratio with release temperature. We will compare these ratios with the D/H in atmospheric water and discuss possible consequences for loss of D/H over time. References: [1] Franz et al., in press. [2] Farley et al

  17. Absorption from multicomponent gas mixtures comparing with Elemir gasoline plant

    Energy Technology Data Exchange (ETDEWEB)

    Miscevic, D

    1970-10-01

    A short description and explanation are outlined of all factors which have influence on hydrocarbon absorption from multicomponent gas mixtures. A short review of these different methods for absorption efficiency calculation is given. On the basis of the explained methods, the absorption from one natural gas at the Elemir plant is calculated and the results are given in tabular data. The number of the theoretical plate and L/V ratio for a given recovery of the key component is fixed by the calculation and by a graphical solution. Special attention is given for absorption oil depending on gas flow, pressure, and temperature. A series of diagrams is presented showing required absorption oil at the Elemir plant for given propane recovery, depending on the variables which are mentioned.

  18. Multidimensional modeling of the effect of Exhaust Gas Recirculation (EGR) on exergy terms in an HCCI engine fueled with a mixture of natural gas and diesel

    International Nuclear Information System (INIS)

    Jafarmadar, Samad; Nemati, Peyman; Khodaie, Rana

    2015-01-01

    Highlights: • The exergy efficiency decreases by 41.3%. • The irreversibility increases by 46.80%. • The cumulative heat loss exergy decreases by 68.10%. • The cumulative work exergy decreases by 63.4%. • The exhaust losses exergy increases by 28.79%. - Abstract: One of the most important issues in HCCI engines is auto-ignition timing control. EGR introduction into intake charge can be a method to control combustion phasing and its duration. In the current study, a FORTRAN-based code which includes 10 species (O_2, N_2, H_2O, CO_2, CO, H_2, OH, O, N, NO) associated with combustion products was employed to study the exergy analysis in a dual fuel (natural gas + diesel) HCCI engine at four EGR (exhaust gas recirculation) mass fractions (0%, 10%, 20%, and 30%) while the diesel fuel amount was held constant. In order to achieve this task, a 3-D CFD code was employed to model the energy balance during a closed cycle of running engine simulation. Moreover, an efficient Extend Coherent Flame Model-Three Zone model (ECFM-3Z) method was employed to analyze the combustion process. With crank positions at different EGR mass fractions, the exergy terms were identified and calculated separately. It was found that as EGR mass fraction increased from 0% to 30% (in 10% increment steps), exergy efficiency decreased from 48.9% to 28.7%. Furthermore, with the change in EGR mass fraction, the cumulative heat loss exergy decreased from 10.1% to 5.64% of mixture fuels chemical exergy.

  19. Device for determining heat capacity of gases and gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nachev, N

    1980-01-01

    This article describes the use of a capillary-flow colorimeter to determine the heat capacity of gases and gaseous mixtures. The research and tests confirm the possibility and advisability of making these measurements. The calorimeters are graduated to allow for the influence of the pressure and temperature of the investigated gas and exchange with the environment.

  20. Membrane separation study for methane-hydrogen gas mixtures by molecular simulations

    Directory of Open Access Journals (Sweden)

    T. Kovács

    2017-06-01

    Full Text Available Direct simulation results for stationary gas transport through pure silica zeolite membranes (MFI, LTA and DDR types are presented using a hybrid, non-equilibrium molecular dynamics simulation methodology introduced recently. The intermolecular potential models for the investigated CH_4 and H_2 gases were taken from literature. For different zeolites, the same atomic (Si and O interaction parameters were used, and the membranes were constructed according to their real (MFI, LTA, or DDR crystal structures. A realistic nature of the applied potential parameters was tested by performing equilibrium adsorption simulations and by comparing the calculated results with the data of experimental adsorption isotherms. The results of transport simulations carried out at 25°C and 125°C, and at 2.5, 5 or 10 bar clearly show that the permeation selectivities of CH_4 are higher than the corresponding permeability ratios of pure components, and significantly differ from the equilibrium selectivities in mixture adsorptions. We experienced a transport selectivity in favor of CH_4 in only one case. A large discrepancy between different types of selectivity data can be attributed to dissimilar mobilities of the components in a membrane, their dependence on the loading of a membrane, and the unlike adsorption preferences of the gas molecules.

  1. Methods to produce calibration mixtures for anesthetic gas monitors and how to perform volumetric calculations on anesthetic gases.

    Science.gov (United States)

    Christensen, P L; Nielsen, J; Kann, T

    1992-10-01

    A simple procedure for making calibration mixtures of oxygen and the anesthetic gases isoflurane, enflurane, and halothane is described. One to ten grams of the anesthetic substance is evaporated in a closed, 11,361-cc glass bottle filled with oxygen gas at atmospheric pressure. The carefully mixed gas is used to calibrate anesthetic gas monitors. By comparison of calculated and measured volumetric results it is shown that at atmospheric conditions the volumetric behavior of anesthetic gas mixtures can be described with reasonable accuracy using the ideal gas law. A procedure is described for calculating the deviation from ideal gas behavior in cases in which this is needed.

  2. [Three dimensional bioprinting technology of human dental pulp cells mixtures].

    Science.gov (United States)

    Xue, Shi-hua; Lv, Pei-jun; Wang, Yong; Zhao, Yu; Zhang, Ting

    2013-02-18

    To explore the three dimensional(3D)bioprinting technology, using human dental pulp cells (hDPCs) mixture as bioink and to lay initial foundations for the application of the 3D bioprinting technology in tooth regeneration. Imageware 11.0 computer software was used to aid the design of the 3D biological printing blueprint. Sodium alginate-gelatin hydrosol was prepared and mixed with in vitro isolated hDPCs. The mixture contained 20 g/L sodium alginate and 80 g/L gelatin with cell density of 1×10(6)/mL. The bioprinting of hDPCs mixture was carried out according to certain parameters; the 3D constructs obtained by printing were examined; the viability of hDPCs after printing by staining the constructs with calcein-AM and propidium iodide dye and scanning of laser scanning confocal microscope was evaluated. The in vitro constructs obtained by the bioprinting were cultured, and the proliferation of hDPCs in the constructs detected. By using Imageware 11.0 software, the 3D constructs with the grid structure composed of the accumulation of staggered cylindrical microfilament layers were obtained. According to certain parameters, the hDPCs-sodium alginate-gelatin blends were printed by the 3D bioprinting technology. The self-defined shape and dimension of 3D constructs with the cell survival rate of 87%± 2% were constructed. The hDPCs could proliferate in 3D constructs after printing. In this study, the 3D bioprinting of hDPCs mixtures was realized, thus laying initial foundations for the application of the 3D bioprinting technology in tooth regeneration.

  3. The influence of surface-active agents in gas mixture on the intensity of jet condensation

    Science.gov (United States)

    Yezhov, YV; Okhotin, VS

    2017-11-01

    The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

  4. Development of Innovating Materials for Distributing Mixtures of Hydrogen and Natural Gas. Study of the Barrier Properties and Durability of Polymer Pipes

    Directory of Open Access Journals (Sweden)

    Klopffer Marie-Hélène

    2015-02-01

    Full Text Available With the growing place taken by hydrogen, a question still remains about its delivery and transport from the production site to the end user by employing the existing extensive natural gas pipelines. Indeed, the key challenge is the significant H2 permeation through polymer infrastructures (PolyEthylene (PE pipes, components such as connecting parts. This high flow rate of H2 through PE has to be taken into account for safety and economic requirements. A 3-year project was launched, the aim of which was to develop and assess material solutions to cope with present problems for hydrogen gas distribution and to sustain higher pressure compared to classical high density polyethylene pipe. This project investigated pure hydrogen gas and mixtures with natural gas (20% of CH4 and 80% of H2 in pipelines with the aim to select engineering polymers which are more innovative than polyethylene and show outstanding properties, in terms of permeation, basic mechanical tests but also more specific characterizations such as long term ageing and behaviour. The adequate benches, equipments and scientific approach for materials testing had been developed and validated. In this context, the paper will focus on the evaluation of the barrier properties of 3 polymers (PE, PA11 and PAHM. Experiments were performed for pure H2 and CH4 and also in the presence of mixtures of hydrogen and natural gas in order to study the possible mixing effects of gases. It will report some round-robin tests that have been carried out. Secondly, by comparing data obtained on film, polymer membrane and on pipe section, the influence of the polymer processing will be studied. Innovative multilayers systems will be proposed and compared on the basis of the results obtained on monolayer systems. Finally, the evolution of the transport properties of the studied polymers with an ageing under representative service conditions will be discussed.

  5. Effectiveness and reaction networks of H2O2 vapor with NH3 gas for decontamination of the toxic warfare nerve agent, VX on a solid surface.

    Science.gov (United States)

    Gon Ryu, Sam; Wan Lee, Hae

    2015-01-01

    The nerve agent, O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) must be promptly eliminated following its release into the environment because it is extremely toxic, can cause death within a few minutes after exposure, acts through direct skin contact as well as inhalation, and persists in the environment for several weeks after release. A mixture of hydrogen peroxide vapor and ammonia gas was examined as a decontaminant for the removal of VX on solid surfaces at ambient temperature, and the reaction products were analyzed by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectrometry (NMR). All the VX on glass wool filter disks was found to be eliminated after 2 h of exposure to the decontaminant mixtures, and the primary decomposition product was determined to be non-toxic ethyl methylphosphonic acid (EMPA); no toxic S-[2-(diisopropylamino)ethyl] methylphosphonothioic acid (EA-2192), which is usually produced in traditional basic hydrolysis systems, was found to be formed. However, other by-products, such as toxic O-ethyl S-vinyl methylphosphonothioate and (2-diisopropylaminoethyl) vinyl disulfide, were detected up to 150 min of exposure to the decontaminant mixture; these by-products disappeared after 3 h. The two detected vinyl byproducts were identified first in this study with the decontamination system of liquid VX on solid surfaces using a mixture of hydrogen peroxide vapor and ammonia gas. The detailed decontamination reaction networks of VX on solid surfaces produced by the mixture of hydrogen peroxide vapor and ammonia gas were suggested based on the reaction products. These findings suggest that the mixture of hydrogen peroxide vapor and ammonia gas investigated in this study is an efficient decontaminant mixture for the removal of VX on solid surfaces at ambient temperature despite the formation of a toxic by-product in the reaction process.

  6. Rapid and Sensitive Quantification of Isotopic Mixtures Using a Rapidly-Swept External Cavity Quantum Cascade Laser

    Directory of Open Access Journals (Sweden)

    Brian E. Brumfield

    2016-05-01

    Full Text Available A rapidly-swept external-cavity quantum cascade laser with an open-path Herriott cell is used to quantify gas-phase chemical mixtures of D2O and HDO at a rate of 40 Hz (25-ms measurement time. The chemical mixtures were generated by evaporating D2O liquid near the open-path Herriott cell, allowing the H/D exchange reaction with ambient H2O to produce HDO. Fluctuations in the ratio of D2O and HDO on timescales of <1 s due to the combined effects of plume transport and the H/D exchange chemical reaction are observed. Noise-equivalent concentrations (1σ (NEC of 147.0 ppbv and 151.6 ppbv in a 25-ms measurement time are determined for D2O and HDO, respectively, with a 127-m optical path. These NECs are improved to 23.0 and 24.0 ppbv with a 1-s averaging time for D2O and HDO, respectively. NECs <200 ppbv are also estimated for N2O, 1,1,1,2–tetrafluoroethane (F134A, CH4, acetone and SO2 for a 25-ms measurement time. The isotopic precision for measurement of the [D2O]/[HDO] concentration ratio of 33‰ and 5‰ is calculated for the current experimental conditions for measurement times of 25 ms and 1 s, respectively.

  7. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Dongwook; Kim, Sang-Yong; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2016-10-01

    Raw biogas can be an alternative feedstock to pure methane (CH4) for methanol production. In this investigation, we evaluated the methanol production potential of Methylosinus sporium from raw biogas originated from an anaerobic digester. Furthermore, the roles of different gases in methanol production were investigated using synthetic gas mixtures of CH4, carbon dioxide (CO2), and hydrogen (H2). Maximum methanol production was 5.13, 4.35, 6.28, 7.16, 0.38, and 0.36mM from raw biogas, CH4:CO2, CH4:H2, CH4:CO2:H2, CO2, and CO2:H2, respectively. Supplementation of H2 into raw biogas increased methanol production up to 3.5-fold. Additionally, covalent immobilization of M. sporium on chitosan resulted in higher methanol production from raw biogas. This study provides a suitable approach to improve methanol production using low cost raw biogas as a feed containing high concentrations of H2S (0.13%). To our knowledge, this is the first report on methanol production from raw biogas, using immobilized cells of methanotrophs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The analog of Blanc's law for drift velocities of electrons in gas mixtures in weakly ionized plasma

    International Nuclear Information System (INIS)

    Chiflikian, R.V.

    1995-01-01

    The analog of Blanc's law for drift velocities of electrons in multicomponent gas mixtures in weakly ionized spatially homogeneous low-temperature plasma is derived. The obtained approximate-analytical expressions are valid for average electron energy in the 1--5 eV range typical for plasma conditions of low-pressure direct current (DC) discharges. The accuracy of these formulas is ±5%. The analytical criterion of the negative differential conductivity (NDC) of electrons in binary mixtures of gases is obtained. NDC of electrons is predicted in He:Kr and He:Xe rare gas mixtures. copyright 1995 American Institute of Physics

  9. Chemically modified glasses for analysis of hydrogen isotopes by gas-chromatography

    International Nuclear Information System (INIS)

    Stanciu, Vasile; Stefanescu, Doina

    1999-01-01

    Hydrogen isotope separation process by such methods as cryogenic distillation or thermal diffusion method is one of the key technologies of the tritium separation from heavy water of CANDU reactors and in the tritium fuel cycle for a thermonuclear fusion reactor. In each process, the analytical techniques for measuring contents of hydrogen isotope mixture are necessary. An extensive experimental research has been carried out in order to produce the most suitable absorbent and define the best operating conditions for selective separation and analysis of hydrogen isotope by gas-chromatography. This paper describes the preparation of adsorbent materials utilised as stationary phase in the gas-chromatographic column for hydrogen isotope separation and treatment (activation) of stationary phase. Modified thermo-resisting glass with Fe(NH 4 ) 2 (SO 4 ) 2 6H 2 O and Cr 2 O 3 , respectively, have been experimentally investigated at 77 K for H 2 , HD and D 2 separation and the results of chromatographic runs are also reported and discussed. The gas-chromatographic apparatus used is composed of a Hewlett-Packard 7620A gas-chromatograph equipped with a gas carrier flow rate controller and a thermal conductivity detector (TCD). The apparatus comprises also a Dewar vessel containing the separation column. The hydrogen isotopes H 2 , HD, D 2 and their mixture have been obtained in our laboratories. The best operating conditions of the adsorbent column Fe (III)/glass and Cr 2 O 3 /glass, i.e. granulometry, column length, pressure-drop along the column, carrier gas flow rate, sample volume have been studied by means of the analysis of the retention times, separation factors and HETP. (authors)

  10. Method of determination of muon catalyzed fusion parameters in H-T mixture

    CERN Document Server

    Bystritskij, V M

    2002-01-01

    A method for measurement of the muon catalyzed fusion parameters mu CF in the H-T mixture is proposed. The kinetics of the mu-atomic and mu-molecular processes preceding the pt reaction in the pt mu molecule is described. Analytical expressions are obtained for the yields and time distributions of gamma quanta and conversion muons formed in nuclear fusion reactions in pt mu molecules. It is shown that information on the desired parameters can be found from the joint analysis of the time distributions of gamma quanta and conversion muons obtained in experiments with the H-T mixture at three (and more) appreciable different atomic concentrations of tritium. The planned experiments with the H-T mixture at the meson facility PSI (Switzerland) are optimized to gain the precise information about the desired mu CF parameters

  11. Method of determination of muon catalyzed fusion parameters in H-T mixture

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Gerasimov, V.V.

    2002-01-01

    A method for measurement of the muon catalyzed fusion parameters μCF in the H-T mixture is proposed. The kinetics of the mu-atomic and mu-molecular processes preceding the pt reaction in the ptμ molecule is described. Analytical expressions are obtained for the yields and time distributions of γ quanta and conversion muons formed in nuclear fusion reactions in ptμ molecules. It is shown that information on the desired parameters can be found from the joint analysis of the time distributions of γ quanta and conversion muons obtained in experiments with the H-T mixture at three (and more) appreciable different atomic concentrations of tritium. The planned experiments with the H-T mixture at the meson facility PSI (Switzerland) are optimized to gain the precise information about the desired μCF parameters

  12. Role of functional nanoparticles to enhance the polymeric membrane performance for mixture gas separation

    NARCIS (Netherlands)

    Ingole, Pravin G.; Baig, Muhammad Irshad; Choi, Wook; An, Xinghai; Choi, Won Kil; Lee, Hyung Keun

    2017-01-01

    To improve the water vapor/gas separation the hydroxylated TiO2(OH-TiO2) nanopartilces have been synthesized and surface of polysulfone (PSf) hollow fiber membrane (HFM) has been coated as thin film nanocomposite (TFN) membranes. To remove the water vapor from mixture gas, hollow fiber membrane has

  13. Glass transition behaviour of the quaternary ammonium type ionic liquid, {[DEME][I] + H2O} mixtures

    International Nuclear Information System (INIS)

    Imai, Yusuke; Abe, Hiroshi; Matsumoto, Hitoshi; Shimada, Osamu; Hanasaki, Tomonori; Yoshimura, Yukihiro

    2011-01-01

    By a simple DTA system, the glass transition temperatures of the quaternary ammonium type ionic liquid, {N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium iodide, [DEME][I] + H 2 O} mixtures after quick pre-cooling were measured as a function of water concentration (x mol% H 2 O). Results were compared with the previous results of {[DEME][BF 4 ] + H 2 O} mixtures in which double glass transitions were observed in the water concentration region of (16.5 to 30.0) mol% H 2 O. Remarkably, we observed the double glass transition phenomenon in {[DEME][I] + H 2 O} mixtures too, but the two-T g s regions lie towards the water-rich side of (77.5 to 85.0) mol% H 2 O. These clearly reflect the difference in the anionic effect between BF 4 - and I - on the water structure. The end of the glass-formation region of {[DEME][I] + H 2 O} mixtures is around x = 95.0 mol% H 2 O, and this is comparable to that of {[DEME][BF 4 ] + H 2 O} mixtures (x = 96.0 mol% H 2 O).

  14. Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, R.; Rosseel, E.

    2000-01-01

    It is well known that adding hydrogen to natural gas extends the lean limit of combustion and that in this way extremely low emission levels can be obtained: even the equivalent zero emission vehicle (EZEV) requirements can be reached. The emissions reduction is especially important at light engine loads. In this paper results are presented for a GM V8 engine. Natural gas, pure hydrogen and different blends of these two fuels have been tested. The fuel supply system used provides natural gas/hydrogen mixtures in variable proportion, regulated independently of the engine operating condition. The influence of the fuel composition on the engine operating characteristics and exhaust emissions has been examined, mainly but not exclusively for 10 and 20% hydrogen addition. At least 10% hydrogen addition is necessary for a significant improvement in efficiency. Due to the conflicting requirements for low hydrocarbons and low NO{sub x} determining the optimum hythane composition is not straight-forward. For hythane mixtures with a high hydrogen fraction, it is found that a hydrogen content of 80% or less guarantees safe engine operation (no backfire nor knock), whatever the air excess factor. It is shown that to obtain maximum engine efficiency for the whole load range while taking low exhaust emissions into account, the mixture composition should be varied with respect to engine load.

  15. The pH Value of Fungicide, Insecticide and Mineral Fertilizer Mixtures Depending on Water Quality

    Directory of Open Access Journals (Sweden)

    Dušanka Inđić

    2008-01-01

    Full Text Available The paper deals with the effect of water quality on the pH value of fungicides, insecticides, mineral fertilizers and their mixtures. The fungicides propineb (Antracol WP-70 and mancozeb (Dithane M-70, insecticides pirimiphos-methyl (Actellic-50 and imidacloprid(Confidor 200-SL, several fertilizers (Ferticare I, Ferticare II, Ferticare III and Wuxal Super and their mixtures were analyzed for pH value under laboratory conditions using a potentiometric pH meter. Measurements were made directly after preparation or mixing with tap and well water and 24 hours later. Tap water exhibited a neutral reaction. A slightly alkaline reaction of well water was mostlikely due to high ammonium content. The suspensions of Antracol WP-70 exhibited slightly alkaline reactions with both water types during 24 hours. The spray liquids of Dithane M-70 mixed with tap or well water had neutral reaction after preparation and slightly alkaline reaction after 24 hours. The emulsions of Actellic-50 showed neutral reaction with both water types, followed by a pH increase in tap water after 24 hours. The solutions of Confidor200-SL had a slightly alkaline reaction after mixing and the pH value increased with both water types after 24 hours. It is therefore recommended to apply these insecticides directly after preparation. Mineral fertilizers considerably reduced pH values of the fungicide and insecticide components in double and triple mixtures, especially Ferticare nutrients which had a moderately acid reaction. Wuxal Super had a neutral reaction with both water types.The mixtures with well water increased pH values, which indicates that water pH does affect the pH value of the mixture. Both individual fertilizers and all mixtures (double and triple with Ferticare had pH values between 2.4 and 6, which allows their active liquids to be stored for 12 to 24 hours. The suspensions (Antracol WP-70, double and triple mixtures, emulsions (Actellic-50 and Actellic-50+Wuxal Super

  16. Aging measurements on triple-GEM detectors operated with $CF_{4}$- based gas mixtures

    CERN Document Server

    Alfonsi, M; Bencivenni, G; Bonivento, W; Cardini, A; Lener, M P; Murtas, F; Pinci, D; Raspino, D; Saitta, B; De Simone, P

    2004-01-01

    We present the results of a global irradiation test of full size triple-GEM detectors operated with CF/sub 4/-based gas mixtures. This study has been performed in the framework of an R&D activity on detectors for the innermost region of the first muon station of the LHCb experiment. The prototypes have been irradiated at the Calliope facility of the ENEA-Casaccia with a high intensity 1.25 MeV gamma from a /sup 60/Co source. After the irradiation test the detectors performances have been measured with X-rays and with a 3 GeV pion beam at CERN. A SEM analysis on several samples of the detectors has been performed to complete the understanding of the physical processes occurring in the GEM detector during the strong irradiation.

  17. Vibrational excitation of D2 by low energy electrons

    International Nuclear Information System (INIS)

    Buckman, S.J.; Phelps, A.V.

    1985-01-01

    Excitation coefficients for the production of vibrationally exicted D 2 by low energy electrons have been determined from measurements of the intensity of infrared emission from mixtures of D 2 and small concentrations of CO 2 or CO. The measurements were made using the electron drift tube technique and covered electric field to gas density ratios (E/n) from (5 to 80) x 10 -21 V m 2 , corresponding to mean electron energies between 0.45 and 4.5 eV. The CO 2 and CO concentrations were chosen to allow efficient excitation transfer from the D 2 to the carbon containing molecule, but to minimize direct excitation of the CO 2 or CO. The measured infrared intensities were normalized to predicted values for N 2 --CO 2 and N 2 --CO mixtures at E/n where the efficiency of vibrational excitation is known to be very close to 100%. The experimental excitation coefficients are in satisfactory agreement with predictions based on electron--D 2 cross sections at mean electron energies below 1 eV, but are about 50% too high at mean energies above about 2 eV. Application of the technique to H 2 did not yield useful vibrational excitation coefficients. The effective coefficients in H 2 --CO 2 mixtures were a factor of about 3 times the predicted values. For our H 2 --CO mixtures the excitation of CO via excitation transfer from H 2 is small compared to direct electron excitation of CO molecules. Published experiments and theories on electron--H 2 and electron--D 2 collisions are reviewed to obtain the cross sections used in the predictions

  18. Dimension effect in impuriton gas of 3He -4He superfluid mixture

    International Nuclear Information System (INIS)

    Adamenko, I.N.; Bortnik, L.N.; Chervanev, A.I.

    1999-01-01

    The flow of quasiparticle gas forced by the gradients of thermodynamical values in the volume filled with a powder is considered. The exact solution of the kinetic equation is obtained. It is expressed in terms of matrix elements of the collision integral and partial scattering cross-sections of quasiparticles at the powder. The condition describing the steady non-equilibrium state of the quasiparticles gas in the volume filled with a porous material is obtained. The results obtained are valid for arbitrary relations of frequencies of quasiparticle-quasiparticle and quasiparticle-powder collisions. The transitions from the Knudsen regime of quasiparticle gas flow to the hydrodynamic one is investigated. The Knudsen effect in degenerated quantum gas is studied. The steady non-equilibrium state of 3 He- 4 He superfluid mixture impuriton gas is studied in confined geometry

  19. Cu-TDPAT, an rht -type dual-functional metal-organic framework offering significant potential for use in H 2 and natural gas purification processes operating at high pressures

    KAUST Repository

    Wu, Haohan; Yao, Kexin; Zhu, Yihan; Li, Baiyan; Shi, Zhan; Krishna, Rajamani A A; Li, Jing

    2012-01-01

    The separations of CO 2/CO/CH 4/H 2, CO 2/H 2, CH 4/H 2, and CO 2/CH 4 mixtures at pressures ranging to 7 MPa are important in a variety of contexts, including H 2 production, natural gas purification, and fuel-gas processing. The primary objective of this study is to demonstrate the selective adsorption potential of an rht-type metal-organic framework [Cu 3(TDPAT)(H 2O) 3]·10H 2O·5DMA (Cu-TDPAT), possessing a high density of both open metal sites and Lewis basic sites. Experimental high pressure pure component isotherm data for CO 2, CO, CH 4, and H 2 are combined with the Ideal Adsorbed Solution Theory (IAST) for estimation of mixture adsorption equilibrium. The separation performance of Cu-TDPAT is compared with four other microporous materials, specifically chosen in order to span a wide range of physicochemical characteristics: MgMOF-74, MIL-101, LTA-5A, and NaX. For all mixtures investigated, the capacity of Cu-TDPAT to produce the desired product, H 2 or CH 4, satisfying stringent purity requirements, in a fixed bed operating at pressures exceeding about 4 MPa, is either comparable to, or exceeds, that of other materials. © 2012 American Chemical Society.

  20. Cu-TDPAT, an rht -type dual-functional metal-organic framework offering significant potential for use in H 2 and natural gas purification processes operating at high pressures

    KAUST Repository

    Wu, Haohan

    2012-08-09

    The separations of CO 2/CO/CH 4/H 2, CO 2/H 2, CH 4/H 2, and CO 2/CH 4 mixtures at pressures ranging to 7 MPa are important in a variety of contexts, including H 2 production, natural gas purification, and fuel-gas processing. The primary objective of this study is to demonstrate the selective adsorption potential of an rht-type metal-organic framework [Cu 3(TDPAT)(H 2O) 3]·10H 2O·5DMA (Cu-TDPAT), possessing a high density of both open metal sites and Lewis basic sites. Experimental high pressure pure component isotherm data for CO 2, CO, CH 4, and H 2 are combined with the Ideal Adsorbed Solution Theory (IAST) for estimation of mixture adsorption equilibrium. The separation performance of Cu-TDPAT is compared with four other microporous materials, specifically chosen in order to span a wide range of physicochemical characteristics: MgMOF-74, MIL-101, LTA-5A, and NaX. For all mixtures investigated, the capacity of Cu-TDPAT to produce the desired product, H 2 or CH 4, satisfying stringent purity requirements, in a fixed bed operating at pressures exceeding about 4 MPa, is either comparable to, or exceeds, that of other materials. © 2012 American Chemical Society.

  1. Investigation of H2S and CO2 Removal from Gas Streams Using Hollow Fiber Membrane Gas–liquid Contactors

    Directory of Open Access Journals (Sweden)

    S. M. Mirfendereski

    2017-07-01

    Full Text Available Chemical absorption of H2S and CO2 from CH4 was carried out in a polypropylene porous asymmetric hollow fiber membrane contactor (HFMC. A 0.5 mol L–1 aqueous solution of methyldiethanolamine (MDEA was used as chemical absorbent solution. Effects of gas flow rate, liquid flow rate, H2S concentration and CO2 concentration on the H2S outlet concentrations and CO2 removal percentage were investigated. The results showed that the removal of H2S with aqueous solution of MDEA was very high and indicated almost total removal of H2S. Experimental results also indicated that the membrane contactor was very efficient in the removal of trace H2S at high gas/ liquid flow ratio. The removal of H2S was almost complete with a recovery of more than 96 %. Using feed gas mixtures containing 5000 ppm H2S with CO2 concentrations in the range of 4–12 vol.%, the outlet H2S concentration of less than 1.0 ppm was attained with less than 4.0 vol.% of CO2 permeated and absorbed.

  2. Characterization of two-phase mixture (petroleum, salted water or gas) by gamma radiation transmission

    International Nuclear Information System (INIS)

    Eichlt, Jair Romeu

    2003-01-01

    A mathematical description was accomplished to determine the discrimination of a substance in a two-phase mixture, for one beam system, using the five energy lines (13.9, 17.8,26.35 and 59,54 keV) of the 241 Am source. The mathematical description was also accomplished to determine the discrimination of two substances in a three-phase mixture, for a double beam system.. he simulated mixtures for the one beam system were petroleum/salted water or gas. The materials considered in these simulations were: four oils types, denominated as A, B, Bell and Generic, one kind of natural gas and salted water with the following salinities: 35.5, 50, 100, 150, 200, 250 and 300 kg/m 3 of Na Cl. The simulation for the one beam system consisted of a box with acrylic walls and other situation with a box of epoxi walls reinforced with fiber of carbon. The epoxi with carbon fiber was used mainly due to the fact that this material offers little attenuation to the fotons and it resists great pressures. With the results of the simulations it was calculated tables of minimum discrimination for each possible two-phase mixture with petroleum, gas and salted water at several salinities. These discrimination tables are the theoretical forecasts for experimental measurements, since they supply the minimum mensurable percentage for each energy line, as well as the ideal energy for the measurement of each mixture, or situation. The simulated discrimination levels were tested employing experimental arrangements with conditions and materials similar to those of the simulations, for the case of box with epoxi wall reinforced with carbon fiber, at the energies of 20.8 and 59.54 keV. It was obtained good results. For example, for the mixture of salted water (35.5 kg/m 3 ) in paraffin (simulating the petroleum), it was obtained an experimental discrimination minimum of 10% of salted water for error statistics of 5% in I and I o , while the theoretical simulation foresaw the same discrimination level

  3. Fast gas heating and radial distribution of active species in nanosecond capillary discharge in pure nitrogen and N2:O2 mixtures

    Science.gov (United States)

    Lepikhin, N. D.; Popov, N. A.; Starikovskaia, S. M.

    2018-05-01

    Fast gas heating is studied experimentally and numerically using pulsed nanosecond capillary discharge in pure nitrogen and N2:O2 mixtures under the conditions of high specific deposited energy (up to 1 eV/molecule) and high reduced electric fields (100–300 Td). Deposited energy, electric field and gas temperature are measured as functions of time. The radial distribution of active species is analyzed experimentally. The roles of processes involving {{{N}}}2({{B}}) ={{{N}}}2({{{B}}}3{{{\\Pi }}}{{g}},{{{W}}}3{{{Δ }}}{{u}},{{B}}{{\\prime} }3{{{Σ }}}{{u}}-), {{{N}}}2({{{A}}}3{{{Σ }}}{{u}}+) and N(2D) excited nitrogen species leading to heat release are analyzed using numerical modeling in the framework of 1D axial approximation.

  4. Thermodynamic simulations of hydrate formation from gas mixtures in batch operations

    International Nuclear Information System (INIS)

    Kobayashi, Takehito; Mori, Yasuhiko H.

    2007-01-01

    This paper deals with the hydrate formation from mixed hydrate-forming gases such as natural gas to be converted to hydrates for the purpose of its storage and biogases from which carbon dioxide is to be separated by hydrate formation. When a batch operation is selected for processing such a gas mixture in a closed reactor, we need to predict the evolution of the thermodynamic and compositional states inside the reactor during the operation. We have contrived a simulation scheme that allows us to estimate the simultaneous changes in the composition of the residual gas, the structure of the hydrate formed and the guest composition in the hydrate, in addition to the change in the system pressure, with the progress of hydrate formation during each operation. This scheme assumes the transient hydrate forming process in a reactor during each operation to be a series of numerous equilibrium states, each slightly deviating from the preceding state. That is, a thermodynamic system composed of the contents of the reactor is assumed to be subjected to a quasi-static, irreversible change in state, instantaneously keeping itself in thermodynamic equilibrium. The paper demonstrates a simulation of a process of hydrate formation from a methane + propane mixture and compares its results to relevant experimental results reported by Uchida et al. [Uchida T, Morikawa M, Takeya S, Ikeda IY, Ohmura R, Nagao J, et al. Two-step formation of methane-propane mixed gas hydrates in a batch-type reactor. AIChE J 2004;50(2):518-23

  5. Estimation of the minimum Prandtl number for binary gas mixtures formed with light helium and certain heavier gases: Application to thermoacoustic refrigerators

    International Nuclear Information System (INIS)

    Campo, Antonio; Papari, Mohammad M.; Abu-Nada, Eiyad

    2011-01-01

    This paper addresses a detailed procedure for the accurate estimation of low Prandtl numbers of selected binary gas mixtures. In this context, helium (He) is the light primary gas and the heavier secondary gases are nitrogen (N 2 ), oxygen (O 2 ), xenon (Xe), carbon dioxide (CO 2 ), methane (CH 4 ), tetrafluoromethane or carbon tetrafluoride (CF 4 ) and sulfur hexafluoride (SF 6 ). The three thermophysical properties forming the Prandtl number of binary gas mixtures Pr mix are heat capacity at constant pressure C p,mix (thermodynamic property), viscosity η mix (transport property) and thermal conductivity λ mix (transport property), which in general depend on temperature T and molar gas composition w. The precise formulas for the calculation of the trio C p,mix , η mix , and λ mix are gathered from various dependable sources. When the set of computed Pr mix values for the seven binary gas mixtures He + N 2 , He + O 2 , He + Xe, He + CO 2 , He + CH 4 , He + CF 4 , He + SF 6 at atmospheric conditions T = 300 K, p = 1 atm is plotted against the molar gas composition w on the w-domain [0,1], the family of Pr mix (w) curves exhibited distinctive concave shapes. In the curves format, all Pr mix (w) curves initiate with Pr ∼ 0.7 at w = 0 (associated with light primary He). Forthwith, each Pr mix (w) curve descends to a unique minimum and thereafter ascend back to Pr ∼ 0.7 at the terminal point w = 1 (connected to heavier secondary gases). Overall, it was found that among the seven binary gas mixtures tested, the He + Xe gas mixture delivered the absolute minimum Prandtl number Pr mix,min = 0.12 at the optimal molar gas composition w opt = 0.975. - Highlights: →Accurate estimation of low Prandtl numbers for some helium-based binary gas mixtures. →The thermophysical properties of the gases are calculated with precise formulas. →The absolute minimum Prandtl number is delivered by the He + Xe binary gas mixture. →Application to experimental thermoacoustic

  6. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    Science.gov (United States)

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-09-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.

  7. Gas hydrate formation process for pre-combustion capture of carbon dioxide

    International Nuclear Information System (INIS)

    Lee, Hyun Ju; Lee, Ju Dong; Linga, Praveen; Englezos, Peter; Kim, Young Seok; Lee, Man Sig; Kim, Yang Do

    2010-01-01

    In this study, gas hydrate from CO 2 /H 2 gas mixtures with the addition of tetrahydrofuran (THF) was formed in a semi-batch stirred vessel at various pressures and temperatures to investigate the CO 2 separation/recovery properties. This mixture is of interest to CO 2 separation and recovery from Integrated Gasification Combine Cycle (IGCC) power plants. During hydrate formation the gas uptake was determined and composition changes in the gas phase were obtained by gas chromatography. The impact of THF on hydrate formation from the CO 2 /H 2 was observed. The addition of THF significantly reduced the equilibrium formation conditions. 1.0 mol% THF was found to be the optimum concentration for CO 2 capture based on kinetic experiments. The present study illustrates the concept and provides thermodynamic and kinetic data for the separation/recovery of CO 2 (pre-combustion capture) from a fuel gas (CO 2 /H 2 ) mixture.

  8. Effect of Channel Geometry and Properties of a Vapor-Gas Mixture on Volume Condensation in a Flow through a Nozzle

    Science.gov (United States)

    Sidorov, A. A.; Yastrebov, A. K.

    2018-01-01

    A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor-gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor-gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.

  9. Deflagration-to-detonation transition and detonation propagation in H2-air mixtures with transverse concentration gradients

    International Nuclear Information System (INIS)

    Boeck, Lorenz Rupprecht

    2015-01-01

    Explosion of H 2 -air mixtures portrays a major hazard in nuclear reactors during severe loss-of-coolant accidents. Spatial gradients in H 2 concentration prevail in real-world scenarios. Mixture inhomogeneity can lead to significantly stronger explosions as compared to homogeneous mixtures. The present work identifies and quantifies the underlying physical mechanisms.

  10. Detritiation of Tritiated Effluent Gas and Water

    International Nuclear Information System (INIS)

    Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Lee, Min Soo; Yim, Sung Paal; Chung Hong Suk

    2007-06-01

    In a demonstration scale equipment for treatment of tritium in off-gas, Pt/SDBC as oxidation catalyst and Zeolite 13X as adsorbent was charged in the beds, respectively. It was confirmed from the performance test that decontamination factor of the equipment showed more than 100 under the flow rate of off-gas of 90 l/hr and at the temperature of 65 ∼ 80 .deg. C. A small scale CECE process has been developed combining LPCE catalytic column with SPE (solid polymer electrolyte) electrolysis. The catalytic column was a trickle-bed type packed with the mixture of 1 wt% Pt/SDBC catalyst and 4 mm Dixon wire-mesh ring. The experimental results of the CECE process proved that the decontamination factor of 13 ∼ 20 under the operating conditions of the water of the 4 l/day and the effluent hydrogen gas of 16.2 mol/h. A design code of CECE process also developed which will be applied the tritium industry. An experimental method for the reduction of tritiated organic waste by using catalytic oxidation was tested in a heated catalytic reactor of 0.5 wt% Pd/Al 2 O 3 . The simulated organic liquid was converted to water over 99%. A gas chromatographic column material was developed for the separation of mixed hydrogen isotopes. 17 wt% Pd-Pt on alumina showed 90% separation efficiency at 77 % yield for the separation of 29.2 % D 2 -H 2 gas mixture

  11. Detritiation of Tritiated Effluent Gas and Water

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Lee, Min Soo; Yim, Sung Paal; Chung Hong Suk

    2007-06-15

    In a demonstration scale equipment for treatment of tritium in off-gas, Pt/SDBC as oxidation catalyst and Zeolite 13X as adsorbent was charged in the beds, respectively. It was confirmed from the performance test that decontamination factor of the equipment showed more than 100 under the flow rate of off-gas of 90 l/hr and at the temperature of 65 {approx} 80 .deg. C. A small scale CECE process has been developed combining LPCE catalytic column with SPE (solid polymer electrolyte) electrolysis. The catalytic column was a trickle-bed type packed with the mixture of 1 wt% Pt/SDBC catalyst and 4 mm Dixon wire-mesh ring. The experimental results of the CECE process proved that the decontamination factor of 13 {approx} 20 under the operating conditions of the water of the 4 l/day and the effluent hydrogen gas of 16.2 mol/h. A design code of CECE process also developed which will be applied the tritium industry. An experimental method for the reduction of tritiated organic waste by using catalytic oxidation was tested in a heated catalytic reactor of 0.5 wt% Pd/Al{sub 2}O{sub 3}. The simulated organic liquid was converted to water over 99%. A gas chromatographic column material was developed for the separation of mixed hydrogen isotopes. 17 wt% Pd-Pt on alumina showed 90% separation efficiency at 77 % yield for the separation of 29.2 % D{sub 2}-H{sub 2} gas mixture.

  12. Amplification and scintillation properties of oxygen-rich gas mixtures for optical-TPC applications

    International Nuclear Information System (INIS)

    Weissman, L; Gai, M; Breskin, A; Chechik, R; Dangendorf, V; Tittelmeier, K; Weller, H R

    2006-01-01

    We studied electron amplification and light emission from avalanches in oxygen-containing gas mixtures. The mixtures investigated in this work included, among others, CO 2 and N 2 O mixed with Triethylamine (TEA) or N 2 . Double-Step Parallel Gap (DSPG) multipliers and THick Gas Electron Multipliers (THGEM) were investigated. High light yields were measured from CO 2 + N 2 and CO 2 + TEA, though with different emission spectra. We observed the characteristic wave-length emission of N 2 and of TEA and used a polymer wave-length shifter to convert TEA UV-light into the visible spectrum. The results of these measurements indicate the applicability of optical recording of ionizing tracks in a TPC target-detector designed to study the cross-sections of the 16 O(γ, α) 12 C reaction, a central problem in nuclear astrophysics

  13. Improvement of supercritical CO2 Brayton cycle using binary gas mixture

    International Nuclear Information System (INIS)

    Jeong, Woo Seok

    2011-02-01

    A Sodium-cooled Fast Reactor (SFR) is one of the strongest candidates for the next generation nuclear reactor. However, the conventional design of a SFR concept with an indirect Rankine cycle is inevitably subjected to a sodium-water reaction. To prevent hazardous situation caused by sodium-water reaction, the SFR with Brayton cycle using Supercritical Carbon dioxide (S-CO 2 cycle) as a working fluid can be an alternative approach. The S-CO 2 Brayton cycle is more sensitive to the critical point of working fluids than other Brayton cycles. This is because compressor work significantly decreases at slightly above the critical point due to high density near the boundary between the supercritical state and the subcritical state. For this reason, the minimum temperature and pressure of cycle are just above the CO 2 critical point. The critical point acts as a limitation of the lowest operating condition of the cycle. In general, lowering the rejection temperature of a thermodynamic cycle increases the efficiency and thus, changing the critical point of CO 2 can result in an improvement of the total cycle efficiency with the same cycle layout. Modifying the critical point of the working fluid can be done by adding other gases to CO 2 . The direction and range of the CO 2 critical point variation depends on the mixed component and its amount. In particular, chemical reactivity of the gas mixture itself and the gas mixture with sodium at high temperatures are of interest. To modify the critical point of the working fluid, several gases were chosen as candidates by which chemical stability with sodium within the interested range of cycle operating condition was assured: CO 2 was mixed with N 2 , O 2 , He, Ar and Xe. To evaluate the effect of shifting the critical point and changes in the properties of the S-CO 2 Brayton cycle, a supercritical Brayton cycle analysis code connected with the REFPROP program from the NIST was developed. The developed code is for evaluating

  14. A portable gas recirculation unit for gaseous detectors

    Science.gov (United States)

    Guida, R.; Mandelli, B.

    2017-10-01

    The use of greenhouse gases (usually C2H2F4, CF4 and SF6) is sometimes necessary to achieve the required performance for some gaseous detectors. The consumption of these gases in the LHC systems is reduced by recycling the gas mixture thanks to a complex gas recirculation system. Beyond greenhouse gas consumption due to LHC systems, a considerable contribution is generated by setups used for LHC detector upgrade projects, R&D activities, detector quality assurance or longevity tests. In order to minimise this emission, a new flexible and portable gas recirculation unit has been developed. Thanks to its low price, flexibility and user-friendly operation it can be easily adapted for the different types of detector systems and set-ups.

  15. Theory of vibrational relaxation in mixtures of ortho- and para-hydrogen

    International Nuclear Information System (INIS)

    Moise, A.; Pritchard, H.O.

    1981-01-01

    A numerical study of the vibrational relaxation at 500 K of a mixture of ortho-H 2 and para-H 2 is described. The required state-to-state rate constants were calculated and missing pieces of data were estimated by interpolation. It is concluded that only one relaxation time will be observed in any mixture of orth-H 2 and para-H 2 and that (except at very high dilutions in a third inert gas) the relaxation rate constant will be close to the mean of the individual rate constants for relaxation, weighted according to the respective mole fractions of ortho-H 2 and para-H 2 present in the mixture. The relaxation process can be modelled as an electrical RC network, whose time constants can be written down as sums of the appropriate microscopic rate constants. By using this model the conditions required for a mixture of two gases to exhibit two distinct vibrational relaxation times can be explored

  16. Discrete unified gas kinetic scheme for all Knudsen number flows. III. Binary gas mixtures of Maxwell molecules

    Science.gov (United States)

    Zhang, Yue; Zhu, Lianhua; Wang, Ruijie; Guo, Zhaoli

    2018-05-01

    Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002), 10.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure, temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The results are compared with those from other reliable numerical methods. The results show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.

  17. Recombination of H3+ and D3+ ions with electrons in low temperature plasma

    International Nuclear Information System (INIS)

    Glosik, J; Plasil, R.; Pysanenko, A.; Poterya, V.; Kudrna, P.; Zakouril, P.

    2002-01-01

    From the decaying plasma (stationary afterglow) in the mixture of He, Ar and H 2 (or D 2 ) we determined the overall recombination rate constant (α eff ) of the recombination of H 3 + and D 3 + ions with electrons at thermal energies. We observed dependence of recombination rate coefficients on partial pressure of hydrogen (and deuterium), which indicates that observed recombination is the three-body process proceeding most probably via formation of long lived intermediate state. From the obtained data we conclude that binary dissociative recombination of H 3 + and D 3 + ions with electrons is very slow with rate coefficient α DR -9 cm 3 s -1 and α DR -9 cm 3 s -1 , respectively. (author)

  18. Gas Gain Measurement Of GEM-Foil In Argon-Carbon Dioxide Mixture

    International Nuclear Information System (INIS)

    Nguyen Ngoc Duy; Vuong Huu Tan; Le Hong Khiem

    2011-01-01

    Nuclear reaction measurement with radioactive beam at low energy plays an important role in nuclear astrophysics and nuclear structure. The trajectory of particle beams can be obtained by using an active gas target, multiple-sampling and tracking proportional chamber (MSTPC), as a proportional counter. Because of intensity of low energy radioactive beam, in the stellar reaction such as (α, p), (p, α), it is necessary to increase the gain for the counter. In this case, a gas electrons multiplier (GEM) foil will be used, so the proportional counter is called GEM-MSTPC. The efficient gas gain of GEM foils which relates to foil thickness and operating pressure was investigated with two type of the foils, 400 μm and 200 μm, in Argon (70%) + Carbon dioxide (30%) mixture. (author)

  19. Quantum state-resolved, bulk gas energetics: Comparison of theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    McCaffery, Anthony J., E-mail: A.J.McCaffery@sussex.ac.uk [Department of Chemistry, University of Sussex, Brighton, Sussex BN1 6SJ (United Kingdom)

    2016-05-21

    Until very recently, the computational model of state-to-state energy transfer in large gas mixtures, introduced by the author and co-workers, has had little experimental data with which to assess the accuracy of its predictions. In a novel experiment, Alghazi et al. [Chem. Phys. 448, 76 (2015)] followed the equilibration of highly vibrationally excited CsH(D) in baths of H{sub 2}(D{sub 2}) with simultaneous time- and quantum state-resolution. Modal temperatures of vibration, rotation, and translation for CsH(D) were obtained and presented as a function of pump-probe delay time. Here the data from this study are used as a test of the accuracy of the computational method, and in addition, the consequent changes in bath gas modal temperatures, not obtainable in the experiment, are predicted. Despite large discrepancies between initial CsH(D) vibrational states in the experiment and those available using the computational model, the quality of agreement is sufficient to conclude that the model’s predictions constitute at least a very good representation of the overall equilibration that, for some measurements, is very accurate.

  20. Diffusion of plutonium in mixtures of bentonite and sand at pH 3

    International Nuclear Information System (INIS)

    Sharma, H.D.; Oscarson, D.W.

    1991-04-01

    Apparent diffusion coefficients, D, were measured for Pu in compacted mixtures of bentonite and sand (soil) at 25 degrees C and pH 3. The clay content of the soil ranged from 10 to 100 wt% and the clay dry density, p c (the mass of clay divided by the combined volume of clay and voids), varied from about 0.5 to 1.6 Mg/m 3 . At a clay content of ≥25% and p c > 0.7 Mg/m 3 , D was not significantly affected by either clay content or density and ranged from 2 x 10 -13 to 7 x 10 -13 m 2 /s; at lower clay contents and densities, however, D was as much as an order of magnitude higher. In all systems, a small fraction of the Pu (<10%) migrated faster than the bulk of the Pu; this is attributed to a second stable species of Pu that has a greater mobility

  1. Analytical method validation of GC-FID for the simultaneous measurement of hydrocarbons (C2-C4) in their gas mixture

    OpenAIRE

    Oman Zuas; Harry budiman; Muhammad Rizky Mulyana

    2016-01-01

    An accurate gas chromatography coupled to a flame ionization detector (GC-FID) method was validated for the simultaneous analysis of light hydrocarbons (C2-C4) in their gas mixture. The validation parameters were evaluated based on the ISO/IEC 17025 definition including method selectivity, repeatability, accuracy, linearity, limit of detection (LOD), limit of quantitation (LOQ), and ruggedness. Under the optimum analytical conditions, the analysis of gas mixture revealed that each target comp...

  2. The analysis of mixtures of ortho and para-hydrogen and the catalytic conversion o.H{sub 2} {yields} p.H{sub 2}; Analyse des melanges d'ortho et para-hydrogenes et conversion catalytique o.H{sub 2} {yields} p.H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F; Dirian, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    This report describes experiments undertaken to measure the catalytic activity at - 195 deg. C of different types of absorbents for the heterogeneous conversion o.H{sub 2} {yields} p.H{sub 2}. The analytical method employed is a differential measurement of the thermal conductivity of the gas. In contrast to the classic method of FARKAS we have worked at room temperature (the difference of several per cent between the thermal conductivities of ortho and para-hydrogen at this temperature being found sufficiently great) and with a continuously recording system. The gas is at atmospheric pressure. We have investigated also the possibilities of an industrial katharometer which would allow a great extension to be given to this method of analysis. The instrument proved satisfactory. It has been checked that the paramagnetic conversion obeys first order kinetics. A certain number of absorbing substances were tested and amongst them, the active carbons, often used in the laboratory for the production of para-hydrogen, were shown to be the least active. A chromium oxide-aluminium oxide catalyst prepared from data available in the literature had a very great activity. In addition, some observations of the influence of adsorbed gases on the catalytic activity are reported: the comparison with the literature data is not easy due to the uncertainty in the physico-chemical nature of the absorbents used in the two cases. Finally, some bibliographic data relative to the properties of the two forms of hydrogen, their measurement, and the different mechanisms of interconversion are given. (author) [French] Le present rapport rend compte des essais entrepris en vue de determiner l'activite catalytique a - 195 deg. C de differents types d'absorbants vis-a-vis de la reaction de conversion heterogene o.H{sub 2} {yields} p.H{sub 2}. Le procede analytique utilise est la mesure differentielle de la conductibilite thermique du gas. Contrairement a la classique methode de FARKAS, on a opere d

  3. Cracked gas generator

    Energy Technology Data Exchange (ETDEWEB)

    Abthoff, J; Schuster, H D; Gabler, R

    1976-11-17

    A small cracked-gas generator in a vehicle driven, in particular, by an air combustion engine has been proposed for the economic production of the gases necessary for low toxicity combustion from diesel fuel. This proceeds via catalytic crack-gasification and exploitation of residual heat from exhaust gases. This patent application foresees the insertion of one of the catalysts supporting the cracked-gas reaction in a container through which the reacting mixture for cracked-gas production flows in longitudinal direction. Further, air ducts are embedded in the catalyst through which exhaust gases and fresh air flow in counter direction to the cracked gas flow in the catalyst. The air vents are connected through heat conduction to the catalyst. A cracked gas constituting H/sub 2//CO/CO/sub 2//CH/sub 4/ and H/sub 2/O can be produced from the air-fuel mixture using appropriate catalysts. By the addition of 5 to 25% of cracked gas to the volume of air drawn in by the combustion engine, a more favourable combustion can be achieved compared to that obtained under normal combustion conditions.

  4. The Submillimeter Spectrum of MnH and MnD (X7Σ+)

    Science.gov (United States)

    Halfen, D. T.; Ziurys, L. M.

    2008-01-01

    The submillimeter-wave spectrum of the MnH and MnD radicals in their 7Σ+ ground states has been measured in the laboratory using direct absorption techniques. These species were created in the gas phase by the reaction of manganese vapor, produced in a Broida-type oven, with either H2 or D2 gas in the presence of a DC discharge. The N = 0 → 1 transition of MnH near 339 GHz was recorded, which consisted of multiple hyperfine components arising from both the manganese and hydrogen nuclear spins. The N = 2 → 3 transition of MnD near 517 GHz was measured as well, but in this case only the manganese hyperfine interactions were resolved. Both data sets were analyzed with a Hund's case b Hamiltonian, and rotational, fine structure, magnetic hyperfine, and electric quadrupole constants have been determined for the two manganese species. An examination of the magnetic hyperfine constants shows that MnH is primarily an ionic species, but has more covalent character than MnF. MnH is a good candidate species for astronomical searches with Herschel, particularly toward material associated with luminous blue variable stars.

  5. Application of fuzzy logic to determine the odour intensity of model gas mixtures using electronic nose

    Science.gov (United States)

    Szulczyński, Bartosz; Gębicki, Jacek; Namieśnik, Jacek

    2018-01-01

    The paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can be successfully used to estimate the odour intensity of tested gas mixtures. The correctness of the results obtained using fuzzy logic was equal to 68%.

  6. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    Science.gov (United States)

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-07

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  7. Thermodynamic modelling of acid gas removal from natural gas using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj

    2017-01-01

    Thermodynamics of natural gas sweetening process needs to be known for proper design of natural gas treating plants. Absorption with aqueous N-Methyldiethanolamine is currently the most commonly used process for removal of acid gas (CO2 and H2S) impurities from natural gas. Model parameters...... for the Extended UNIQUAC model have already been determined by the same authors to calculate single acid gas solubility in aqueous MDEA. In this study, the model is further extended to estimate solubility of CO2 and H2S and their mixture in aqueous MDEA at high pressures with methane as a makeup gas....

  8. Metallurgical response of an AISI 4140 steel to different plasma nitriding gas mixtures

    Directory of Open Access Journals (Sweden)

    Adão Felipe Oliveira Skonieski

    2013-01-01

    Full Text Available Plasma nitriding is a surface modification process that uses glow discharge to diffuse nitrogen atoms into the metallic matrix of different materials. Among the many possible parameters of the process, the gas mixture composition plays an important role, as it impacts directly the formed layer's microstructure. In this work an AISI 4140 steel was plasma nitrided under five different gas compositions. The plasma nitriding samples were characterized using optical and scanning electron microscopy, microhardness test, X-ray diffraction and GDOES. The results showed that there are significant microstructural and morphological differences on the formed layers depending on the quantity of nitrogen and methane added to the plasma nitriding atmosphere. Thicknesses of 10, 5 and 2.5 µm were obtained when the nitrogen content of the gas mixtures were varied. The possibility to obtain a compound layer formed mainly by γ'-Fe4N nitrides was also shown. For all studied plasma nitriding conditions, the presence of a compound layer was recognized as being the responsible to hinder the decarburization on the steel surface. The highest value of surface hardness - 1277HV - were measured in the sample which were nitrided with 3vol.% of CH4.

  9. Plasma excitation processes in flue gas simulated with Monte Carlo electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tas, M.A.; Veldhuizen, E.M. van; Rutgers, W.R. [Eindhoven University of Technology (Netherlands). Div. of Electrical Energy Systems

    1997-06-07

    The excitation of gas molecules in flue gas by electron impact is calculated with a Monte Carlo (MC) algorithm for electron dynamics in partially ionized gases. The MC algorithm is straightforward for any mixture of molecules for which cross sections are available. Electron drift is simulated in the first case for homogeneous electric fields and in the second case for secondary electrons which are produced by electron-beam irradiation. The electron energy distribution function {epsilon}-bar{sub {theta}}, V-bar{sub d}, {lambda}-bar, the energy branching and the rate of excitation are calculated for standard gas mixtures of Ar-N{sub 2}, O{sub 2} and H{sub 2}O. These fundamental process parameters are needed for the study of reactions to remove NO{sub x} from flue gas. The calculated results indicate that the production of highly excited molecules in the high electric field of a streamer corona discharge has an efficiency similar to that of electron-beam irradiation. (author)

  10. Adaptation to natural gas of the H group

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, V. (Aktiengesellschaft fuer Licht- und Kraftversorgung, Muenchen (F.R. Germany))

    1976-07-01

    The adaptation to natural gas of the 'H' group presents a necessary task from the politico-economical viewpoint which must also be fulfilled by the gas suppliers Selb-Marktredwitz und Umgebung GmbH as gas supply undertakings in the interest of its customers. About 21,000 gas devices with 8,900 customers were adjusted to natural gas of the 'H' group within the framework of the adaptation action carried out. The density of the devices was about 2.4 devices per household and about 2.0 devices per customer in the commercial field.

  11. Measurements of ion mobility in argon and neon based gas mixtures

    CERN Document Server

    INSPIRE-00507268

    2017-01-01

    As gaseous detectors are operated at high rates of primary ionisation, ions created in the detector have a considerable impact on the performance of the detector. The upgraded ALICE Time Projection Chamber (TPC) will operate during LHC Run$\\,3$ with a substantial space charge density of positive ions in the drift volume. In order to properly simulate such space charges, knowledge of the ion mobility $K$ is necessary. To this end, a small gaseous detector was constructed and the ion mobility of various gas mixtures was measured. To validate the corresponding signal analysis, simulations were performed. Results are shown for several argon and neon based mixtures with different $\\textrm{CO}_2$ fractions. A decrease of $K$ was measured for increasing water content.

  12. An experimental investigation of the isochoric heat capacity of superheated steam and mixtures of superheated steam and hydrogen gas

    International Nuclear Information System (INIS)

    Nowak, E.S.; Chan, J.S.

    1975-01-01

    Measurements on the specific heat at constant volume of superheated steam and hydrogen gas mixtures at concentrations varying from 1.6 to 0.8 moles of water vapor per mole of hydrogen gas were made for temperatures ranging from 240 to 400 deg C. It was found that the experimental specific heat values of the mixtures are in good agreement with the ideal mixture values only near the saturation temperature of steam. The difference between the measured and the calculated ideal mixture values is a function of temperature, pressure and composition varying from about 11 to 24% at conditions far removed from the saturation temperature of steam. This indicates the heat of mixing is of significance in the steam-hydrogen system

  13. Evaluation of a Pitot type spirometer in helium/oxygen mixtures.

    Science.gov (United States)

    Søndergaard, S; Kárason, S; Lundin, S; Stenqvist, O

    1998-08-01

    Mixtures of helium and oxygen are regaining a place in the treatment of obstruction of the upper and lower respiratory tract. The parenchymal changes during the course of IRDS or ARDS may also benefit from the reintroduction of helium/oxygen. In order to monitor and document the effect of low-density gas mixtures, we evaluated the Datex AS/3 Side Stream Spirometry module with D-lite (Datex-Engstrom Instrumentarium Corporation, Finland) against two golden standards. Under conditions simulating controlled and spontaneous ventilation with gas mixtures of He (approx. 80, 50, and 20%)/O2 or N2(approx. 21 and 79%)/02, simultaneous measurements using Biotek Ventilator Tester (Bio-Tek Instr., Vermont, USA) or body plethysmograph (SensorMedics System, Anaheim, USA) were correlated with data from the spirometry module. Data were analyzed according to a statistical regression model resulting in a best-fit equation based on density, voltage, and volume measurements. As expected, the D-lite (a modified Pitot tube) showed density-dependent behaviour. Regression equations and percentage deviation of estimated versus measured values were calculated. Measurements with the D-lite using low-density gases are satisfactorily contained in best-fit equations with a standard deviation of less than 5% during all ventilatory modes and mixtures.

  14. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    OpenAIRE

    Orlov Alexey; Ushakov Anton; Sovach Victor

    2016-01-01

    This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge casca...

  15. Gas chromatographic analysis of Tri-N-Octyl-Phosphine oxide (Topo) in D2EHPA-Topo-Kerosene mixtures

    International Nuclear Information System (INIS)

    Perez Garcia, M.

    1973-01-01

    A study about the minimum limit of TOPO, detectable by gas chromatography in an organic phase formed by D2EHPA and kerosene is carried out. The retention time and response factor under the same conditions are also studied. Octacosane has been used as a reference hydrocarbon. (Author) 8 refs

  16. Thermodynamic properties of acid gases in mixture with natural gas and water

    NARCIS (Netherlands)

    Tang, X.

    2011-01-01

    The reliable removal of acid gas components, such as carbon dioxide (CO2) and hydrogen sulfide (H2S) from natural gas is an important technical challenge. Crude oil and hydrocarbon gas streams may contain high levels of CO2 and/or H2S as contaminants. It is desirable to prevent any contaminant to

  17. Polymer ultrapermeability from the inefficient packing of 2D chains

    Science.gov (United States)

    Rose, Ian; Bezzu, C. Grazia; Carta, Mariolino; Comesaña-Gándara, Bibiana; Lasseuguette, Elsa; Ferrari, M. Chiara; Bernardo, Paola; Clarizia, Gabriele; Fuoco, Alessio; Jansen, Johannes C.; Hart, Kyle E.; Liyana-Arachchi, Thilanga P.; Colina, Coray M.; McKeown, Neil B.

    2017-09-01

    The promise of ultrapermeable polymers, such as poly(trimethylsilylpropyne) (PTMSP), for reducing the size and increasing the efficiency of membranes for gas separations remains unfulfilled due to their poor selectivity. We report an ultrapermeable polymer of intrinsic microporosity (PIM-TMN-Trip) that is substantially more selective than PTMSP. From molecular simulations and experimental measurement we find that the inefficient packing of the two-dimensional (2D) chains of PIM-TMN-Trip generates a high concentration of both small (Gas permeability data for PIM-TMN-Trip surpass the 2008 Robeson upper bounds for O2/N2, H2/N2, CO2/N2, H2/CH4 and CO2/CH4, with the potential for biogas purification and carbon capture demonstrated for relevant gas mixtures. Comparisons between PIM-TMN-Trip and structurally similar polymers with three-dimensional (3D) contorted chains confirm that its additional intrinsic microporosity is generated from the awkward packing of its 2D polymer chains in a 3D amorphous solid. This strategy of shape-directed packing of chains of microporous polymers may be applied to other rigid polymers for gas separations.

  18. Test of freonless operation of resistive plate chambers with glass electrodes--1 mm gas gap vs 2 mm gas gap

    CERN Document Server

    Sakaue, H; Takahashi, T; Teramoto, Y

    2002-01-01

    Non-freon gas mixtures (Ar/iso-C sub 4 H sub 1 sub 0) were tested as the chamber gas for 1 and 2 mm gas gap Resistive Plate Chambers (RPCs) with float glass as the resistive electrodes, operated in the streamer mode. With the narrower (1 mm) gas gap, streamer charge is reduced (approx 1/3), which reduces the dead time (and dead area), associated with each streamer, improving the detection efficiency. The best performance was obtained for two cases: Ar/iso-C sub 4 H sub 1 sub 0 =50/50 and 60/40. For the 50/50 mixture, a detection efficiency of better than 98% was obtained for the 1 mm gap RPC, while the efficiency was 95% for the 2 mm gap RPC, each operated as a double-gap RPC. The measured time resolution (rms) was 1.45+-0.05 (2.52+-0.09) ns for the 1 (2) mm gap RPC for the 50/50 mixture.

  19. Appearance of enhancement effect in adsorption of binary gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sakano, T. [Ajinomoto General Foods, Inc., Tokyo (Japan); Tamon, H.; Okazaki, M. [Kyoto University, Kyoto (Japan)

    1997-10-20

    The properties of adsorbents and adsorbates contributing to the enhancement in adsorption of binary gas mixtures were experimentally investigated. It is found that adsorbent is required to maintain the phenolic hydroxyl group and the carbonyl group as acidic surface oxides on the carbon surface, and to have a microporous structure for the main adsorption sites. Each gas component is required to be chemisorbed on the phenolic hydroxyl group or the carbonyl group on the adsorbent, and that both components are adsorbed in the micropores together. From the characterization of adsorbents after adsorption-desorption runs, it is demonstrated that the adsorbates in the micropores exist at a higher density than in the bulk state through the promotion of micropore filling when adsorption enhancement appears. 17 refs., 7 figs., 5 tabs.

  20. The effect of non-condensable gas on direct contact condensation of steam/air mixture

    International Nuclear Information System (INIS)

    Lee, H. C.; Park, S. K.; Kim, M. H.

    1998-01-01

    To investigate the effects of noncondensable gas on the direct contact film condensation of vapor mixture, a series of experiments has been carried out. The rectangular duct inclined 87.deg. to the horizontal plane was used for this experiment. The average heat transfer coefficient of the steam-air mixture was obtained at the atmospheric pressure with four main parameters, air-mass fraction, vapor velocity, film Reynolds number,and the degree of water film subcooling having an influence on the condensation heat transfer coefficient. With the analysis on 88 cases of experiments, a correlation of the average Nusselt number for direct contact film condensation of steam-air mixture at a vertical wall proposed as functions of film Reynolds number, mixture Reynolds number, air mass fraction, and Jacob number. The average heat transfer coefficient for steam-air mixture condensation decreased significantly while air mass fraction increases with the same inlet mixture velocity and inlet film temperature. The average heat transfer coefficients also decreased with the degree of film subcooling increasing and were scarcely affected by film Reynolds number below the mixture Reynolds number about 30,000

  1. Pressure-dependent electron attachment and breakdown strengths of unitary gases, and synergism of binary gas mixtures: a relationship

    International Nuclear Information System (INIS)

    Hunter, S.R.; Christophorou, L.G.

    1984-04-01

    The relationship between the pressure-dependent electron attachment rate constants (k/sub a/) which have been observed in 1-C 3 F 6 and in several perfluoroalkanes, and the uniform field breakdown strengths (E/N)/sub lim/ in these gases is discussed. Measurements of the pressure dependence of k/sub a/ of OCS in a buffer gas of Ar are presented and the possible pressure dependence of (E/N)/sub lim/ in OCS is discussed. Uniform field breakdown measurements have been performed in C 3 F 8 , n-C 4 F 10 , and SO 2 over a range of gas pressures (3 less than or equal to P/sub T/ less than or equal to 290 kPa) and are reported. All three molecules have been found to possess pressure-dependent (E/N)/sub lim/ values. The various types of synergistic behavior which have been observed in binary gas dielectric mixtures are summarized and discussed. A new mechanism is outlined which can explain the synergism observed in several gas mixtures where the (E/N)/sub lim/ values of the mixutres are greater than those of the individual gas constituents. Model calculations are presented which support this mechanism, and can be used to explain the pressure-dependent synergistic effects which have been reported in 1-C 3 F 6 /SF 6 gas mixture

  2. Enclathration of CO2 as a co-guest of structure H hydrates and its implications for CO2 capture and sequestration

    International Nuclear Information System (INIS)

    Lee, Yohan; Lee, Dongyoung; Lee, Jong-Won; Seo, Yongwon

    2016-01-01

    Highlights: • We examine sH hydrates with CO 2 + N 2 + neohexane for CO 2 capture and sequestration. • The structural transition occurs in the CO 2 (40%) + N 2 (60%) + neohexane system. • CO 2 molecules are enclathrated into sH hydrates in the N 2 -rich systems. • CO 2 selectivity in sH hydrates is slightly lower than that in sI hydrates. • ΔH d values provide information on the structural transition of sH to sI hydrates. - Abstract: In this study, the thermodynamic behaviors, cage-specific guest distributions, structural transition, and dissociation enthalpies of sH hydrates with CO 2 + N 2 gas mixtures were investigated for their potential applications to hydrate-based CO 2 capture and sequestration. The stability conditions of the CO 2 + N 2 + water systems and the CO 2 + N 2 + neohexane (2,2-dimethylbutane, NH) + water systems indicated that the gas mixtures in the range of flue gas compositions could form sH hydrates, thereby mitigating the pressure and temperature required for gas hydrate formation. Structure identification using powder X-ray diffraction (PXRD) revealed the coexistence of sI and sH hydrates in the CO 2 (40%) + N 2 (60%) + NH system and the hydrate structure transformed from sH into sI as the CO 2 concentration increased. In addition, the Raman analysis clearly demonstrated that CO 2 molecules were enclathrated into the cages of sH hydrates in the N 2 -rich systems. It was found from direct CO 2 composition measurements that CO 2 selectivity in the sH hydrate phase was slightly lower than that in the corresponding sI hydrate phase. Dissociation enthalpy (ΔH d ) measurements using a high-pressure micro-differential scanning calorimeter (HP μ-DSC) indicated that the ΔH d values could also provide valuable information on the structural transition of sH to sI hydrates with respect to the CO 2 concentration in the feed gas. This study provides a better understanding of the thermodynamic and physicochemical background for CO 2

  3. Deflagration-to-detonation transition and detonation propagation in H{sub 2}-air mixtures with transverse concentration gradients

    Energy Technology Data Exchange (ETDEWEB)

    Boeck, Lorenz Rupprecht

    2015-06-11

    Explosion of H{sub 2}-air mixtures portrays a major hazard in nuclear reactors during severe loss-of-coolant accidents. Spatial gradients in H{sub 2} concentration prevail in real-world scenarios. Mixture inhomogeneity can lead to significantly stronger explosions as compared to homogeneous mixtures. The present work identifies and quantifies the underlying physical mechanisms.

  4. Chemical behaviors of tritium formed in a LiF-BeF2 mixture and its removal from a molten mixture

    International Nuclear Information System (INIS)

    Oishi, J.; Moriyama, H.; Maeda, S.; Ohmura, T.; Moritani, K.

    1987-01-01

    Chemical behaviors of tritium formed in a LiF-BeF 2 mixture were studied using a radiometric method. Most of tritium was found to be present in the T + and T - states under no thermal treatment. The distribution of tritium in chemical states was explained by considering hot atom reactions and radiation chemical reactions. Tritium behaviors in a molten LiF-BeF 2 mixture were also studied at 873 K. In the presence of hydrogen, the isotopic exchange reaction which is TF + H 2 → HT + HF was observed to occur probably in the salt phase. The removal of tritium in a molten LiF-BeF 2 mixture was tried by sparging a gas in a melt for tritium purge, and the effects of the composition of purge gas and of the construction material of crucibles containing the melt on the removal rate were observed. (author)

  5. Thermodynamic parameters and transport coefficients of the U-C-F gas mixture in the steady flow gaseous core fission reactor

    International Nuclear Information System (INIS)

    Berg, M.S. van den.

    1995-01-01

    Thermodynamic parameters and transport coefficients have been calculated for a multicomponent reacting U-C-F gas mixture in the steady flow gaseous core fission reactor. Element abundances are consistent with thermodynamic equilibrium between the gas mixture and a cooled solid graphite wall at 2500 K. Results are presented for various pressures, a fluorine potential of 5.6 and temperatures between 2500 and 7000 K. As a result of dissociation processes of uranium and carbon fluoride compounds, ''effective'' values of thermodynamic parameters and transport coefficients show anomalous behaviour with respect to so-called ''frozen'' values. The chemical reaction energy of the U-C-F gas mixture has been calculated as the driving-force behind the process of fuel redistribution to attain criticality conditions inside a functioning reactor. (author)

  6. Continuous infra-red measurement using an interference filter, dosage of H{sub 2}O - D{sub 2}O mixtures; Doseur continu infra-rouge a filtre interferentiel dosage des melanges H{sub 2}O - D{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Ceccaldi, M; Goujon, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    In this report is described original work leading to the construction of an apparatus for the continuous measurement of the isotopic content of H{sub 2}O - D{sub 2}O mixtures. The measurement is based on an application of the Beer-Lambert law to the {gamma}{sub OH} band of HDO (3400 cm{sup -1}). The conditions of measurement are given. The apparatus is a double-beam device in which the wave length selection is obtained with an interference filter together with a modulator acting as a pass-band filter. The large-surface pneumatic detector using capacity changes has made it possible to obtain a simple optical set-up. Various results are presented. If sufficient precautions are taken to maintain the apparatus and the water at a constant temperature it is possible to carry out measurements with a precision of {+-} 0.002, or else to detect concentration differences of 0.001 per cent in the case of heavy waters containing more than 99.5 per cent of D{sub 2}O. (authors) [French] Dans ce memoire original il est decrit la realisation d'un appareil destine a mesurer en continu la teneur isotopique des melanges H{sub 2}O-D{sub 2}O. La mesure est basee sur l'application de la loi de Beer-Lambert a la bande {gamma}{sub OH} de HDO (3400 cm{sup -1}). Les conditions de mesure sont precisees. L'appareil est un dispositif 'double-faisceau' dans lequel la selection des longueurs d'onde est obtenue par un filtre interferentiel associe a un modulateur travaillant en filtre passe-bande. Le detecteur pneumatique, de grande surface, a variation de capacite, a permis un montage optique simple. Divers resultats sont presentes. En prenant la precaution de maintenir constante la temperature de l'appareil et de l'eau on peut effectuer des mesures a {+-} 0,002 pour cent pres, ou mettre en evidence des ecarts de teneur de 0,001 pour cent pour des eaux lourdes de titre superieur a 99,5 pour cent. (auteurs)

  7. Gas transport in graphitic materials

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1995-02-01

    The characterization of the gas transport properties of porous solids is of interest in several fields of science and technology. Many catalysts, adsorbents, soils, graphites and carbons are porous. The gas transport through most porous solids can be well described by the dusty gas model invented by Evans, Watson and Mason. This model includes all modes of gas tranport under steady-state conditions, which are Knudsen diffusion, combined Knudsen/continuum diffusion and continuum diffusion, both for gas pairs with equal and different molecular weights. In the absence of a pressure difference gas transport in a pore system can be described by the combined Knudsen/continuum diffusion coefficient D 1 for component 1 in the pores, the Knudsen diffusion coefficient D 1K in the pores, and the continuum diffusion coefficient D 12 for a binary mixture in the pores. The resistance to stationary continuum diffusion of the pores is characterized by a geometrical factor (ε/τ) 12 = (ε/τ)D 12 , were D 12 is the continuum diffusion coefficient for a binary mixture in free space. The Wicke-Kallenbach method was often used to measure D 1 as function of pressure. D 12 and D 1K can be derived from a plot 1/D 1 νs P, and ε/τcan be calculated since D 12 is known. D 1K and the volume of dead end pores can be derived from transient measurements of the diffusional flux at low pressures. From D 1K the expression (ε/τ c ) anti l por may be calculated, which characterizes the pore system for molecular diffusion, where collisions with the pore walls are predominant. (orig.)

  8. Possibilities of gas-phase radio-chromatography application to permanent-gas analysis

    International Nuclear Information System (INIS)

    Dupuis, M.C.; Charrier, G.; Alba, C.; Massimino, D.

    1970-01-01

    The gas-phase radio-chromatography technique has been applied to the rapid analysis of permanent gases (H 2 , O 2 , N 2 , A, Kr, Xe, CO, CH 4 ) labelled with radioactive indicators ( 3 H, 37 A, 85 Kr, 133 Xe). After calibration, the components of such a mixture can be identified and their concentrations measured in less than two hours, using a sample volume of from 0.1 to 10 cm 3 . The minimum detectable activity is of the order of 10 -4 μC for each radioactive isotope. The measurements are reproducible to about 2 to 3 per cent. This work has been mainly concerned with the influence of parameters affecting the response of the radioactivity detector (ionization chamber or gas flow proportional counter). The method has very numerous applications both theoretically, for the study of chromatographic phenomena under ideal conditions (infinitesimal concentrations made possible by the use of radioactive tracers), and practically, for rapid and accurate radiochemical analysis of radioactive gas mixtures. (authors) [fr

  9. Conformations of cationized linear oligosaccharides revealed by FTMS combined with in-ESI H/D exchange.

    Science.gov (United States)

    Kostyukevich, Yury; Kononikhin, Alexey; Popov, Igor; Nikolaev, Eugene

    2015-10-01

    Previously (Kostyukevich et al. Anal Chem 2014, 86, 2595), we have reported that oligosaccharides anions are produced in the electrospray in two different conformations, which differ by the rate of gas phase hydrogen/deuterium (H/D) exchange reaction. In the present paper, we apply the in-electrospray ionization (ESI) source H/D exchange approach for the investigation of the oligosaccharides cations formed by attaching of metal ions (Na, K) to the molecule. It was observed that the formation of different conformers can be manipulated by varying the temperature of the desolvating capillary of the ESI interphase. Separation of the conformers was performed using gas phase H/D approach. Because the conformers have different rates of the H/D exchange reaction, the deuterium distribution spectrum becomes bimodal. It was found that the conformation corresponding to the slow H/D exchange rate dominates in the spectrum when the capillary temperature is low (~200 °C), and the conformation corresponding to the fast H/D exchange rate dominates at high (~400 °C) temperatures. In the intermediate temperature region, two conformers are present simultaneously. It was also observed that large oligosaccharide requires higher temperature for the formation of another conformer. It was found that the presence of the conformers considerably depends on the solvent used for ESI and the pH. We have compared these results with the previously performed in-ESI source H/D exchange experiments with peptides and proteins. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures

    OpenAIRE

    Orlov, Aleksey Alekseevich; Ushakov, Anton; Sovach, Victor

    2017-01-01

    The article presents results of development of a mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of silicon isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary hydraulic processes in gas centrifuge cascades for separation...

  11. Synthesis of 24S and 24R-hydroxy-[24-3H] vitamin D3 and their metabolism in rachitic rats

    International Nuclear Information System (INIS)

    Tanaka, Y.; DeLuca, H.F.; Akaiwa, A.; Morisaki, M.; Ikekawa, N.

    1976-01-01

    An epimeric mixture of 24-hydroxy-[24- 3 H] vitamin D 3 was synthesized by the reduction of 24-ketovitamin D 3 by sodium borotritide. The epimeric mixture was converted to the trimethylsilylether derivatives and subjected to high-pressure liquid chromatography using silica gel columns to separate the 24-hydroxy-[24- 3 H] vitamin D 3 isomers. The 24R-hydroxy-[24- 3 H]vitamin D 3 induced calcification in rachitic rats while the 24S-hydroxy-[24- 3 H]vitamin D 3 had little or no such activity. As both isomers of 24-hydroxy-vitamin D 3 are metabolized to 24,25-dihydroxyvitamin D 3 , it appears that the 24-hydroxyvitamin D 3 -25-hydroxylase does not discriminate between the isomers. Only the R-isomer of 24-hydroxyvitamin D 3 is metabolized to 1,24-dihydroxyvitamin D 3 , although only trace amounts of this compound were found 2 days after the administration of 24-hydroxyvitamin D 3 . The striking difference in the metabolism of the isomers is the high selectivity of the 1-hydroxylase for the R-isomer. It is suggested that the high specificity of biological activity for the R-isomer of 24-hydroxyvitamin D 3 is because of the specificity of the 1-hydroxylation of 24,25-dihydroxyvitamin D 3 for the R configuration

  12. Gas barrier properties of hydrogenated amorphous carbon films coated on polyethylene terephthalate by plasma polymerization in argon/n-hexane gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, Oleksandr; Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com; Petr, Martin; Choukourov, Andrei; Hanuš, Jan; Biederman, Hynek

    2013-07-01

    Hydrogenated amorphous carbon thin films were deposited by RF plasma polymerization in argon/n-hexane gas mixture on polyethylene terephthalate (PET) foils. It was found that such deposited films may significantly improve the barrier properties of PET. It was demonstrated that the principal parameter that influences barrier properties of such deposited films towards oxygen and water vapor is the density of the coatings. Moreover, it was shown that for achieving good barrier properties it is advantageous to deposit coatings with very low thickness. According to the presented results, optimal thickness of the coating should not be higher than several tens of nm. - Highlights: • a-C:H films were prepared by plasma polymerization in Ar/n-hexane atmosphere. • Barrier properties of coatings are dependent on their density and thickness. • Highest barrier properties were observed for films with thickness 15 nm.

  13. Electron cloud sizes in gas-filled detectors

    International Nuclear Information System (INIS)

    Boggende, A.J.F. den; Schrijver, C.J.

    1984-01-01

    Electron cloud sizes have been calculated for gas mixtures containing Ar, Xe, CO 2 , CH 4 , and N 2 for drifts through a constant electric field. The transport coefficients w and D/μ are in good agreement with experimental data of various sources for pure gases. Results of measurements, also performed in this work, for Ar+CO 2 , Ar+CH 4 , and Ar+Xe+CO 2 mixtures are in fair agreement with the calculated cloud sizes. For a large number of useful gas mixtures calculated electron cloud sizes are presented and discussed, most of which are given for the first time. A suggestion is made for an optimal gas mixture for an X-ray position sensitive proportional counter for medium and low energies. (orig.)

  14. Performance Characterization of Gas-Solid Cyclone for Separation of Particle from Syngas Produced from Food Waste Gasifier Plant

    Directory of Open Access Journals (Sweden)

    Osezua O. Ibhadode

    2017-06-01

    Full Text Available A biofuel from any biodegradable formation process such as a food waste bio-digester plant is a mixture of several gases such as methane (CH4, carbon dioxide (CO2, hydrogen sulfide (H2S, ammonia (NH3 and impurities like water and dust particles. The results are reported of a parametric study of the process of separation of methane, which is the most important gas in the mixture and usable as a biofuel, from particles and H2S. A cyclone, which is a conventional, economic and simple device for gas-solid separation, is considered based on the modification of three Texas A&M cyclone designs (1D2D, 2D2D and 1D3D by the inclusion of an air inlet tube. A parametric sizing is performed of the cyclone for biogas purification, accounting for the separation of hydrogen sulfide (H2S and dust particles from the biofuel. The stochiometric oxidation of H2S to form elemental sulphur is considered a useful cyclone design criterion. The proposed design includes geometric parameters and several criteria for quantifying the performance of cyclone separators such as the Lapple Model for minimum particle diameter collected, collection efficiency and pressure drop. For biogas volumetric flow rates between 0 and 1 m/s and inlet flow velocities of 12 m/s, 15 m/s and 18 m/s for the 1D2D, 2D2D and 1D3D cyclones, respectively, it is observed that the 2D2D configuration is most economic in terms of sizing (total height and diameter of cyclone. The 1D2D configuration experiences the lowest pressure drop. A design algorithm coupled with a user-friendly graphics interface is developed on the MATLAB platform, providing a tool for sizing and designing suitable cyclones.

  15. Glass transition behavior of octyl β-D-glucoside and octyl β-D-thioglucoside/water binary mixtures.

    Science.gov (United States)

    Ogawa, Shigesaburo; Asakura, Kouichi; Osanai, Shuichi

    2010-11-22

    The lyotropic behavior and glass-forming properties of octyl β-D-glucoside (C8Glu) and octyl β-D-thioglucoside (C8SGlu)/water binary mixtures were evaluated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The results clearly indicate that the mixture forms a glass in the supercooling state of liquid crystalline phases such as cubic, lamellar, and smectic. The glass transition temperature (T(g)) of the mixture was strongly dependent on solute concentration, with a higher concentration correlating with a higher T(g). The experimental T(g) was consistent with the predicted value calculated using the Couchman-Karasz equation in both the C8Glu and C8SGlu/water mixtures. The change of heat capacity at T(g) showed the two bending points under variation of concentrations. And the highest temperature of phase transition from lamellar to isotropic solution was observed at around 50% molar concentration. It was expected that non-percolated state of water existed in extremely higher concentration ranges. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    Science.gov (United States)

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  17. The computer simulation of 3d gas dynamics in a gas centrifuge

    Science.gov (United States)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  18. The computer simulation of 3d gas dynamics in a gas centrifuge

    International Nuclear Information System (INIS)

    Borman, V D; Bogovalov, S V; Borisevich, V D; Tronin, I V; Tronin, V N

    2016-01-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there. (paper)

  19. Reaction titration: a convenient method for titering reactive hydride agents (Red-Al, LiAlH4, DIBALH, L-Selectride, NaH, and KH) by No-D NMR spectroscopy.

    Science.gov (United States)

    Hoye, Thomas R; Aspaas, Andrew W; Eklov, Brian M; Ryba, Troy D

    2005-05-26

    The concentration of reactive metal hydride (Met-H) reducing agents can be determined (in < or = 20 min) using No-D NMR spectroscopy. The method involves (i) reacting Met-H with an excess of p-methoxybenzaldehyde, (ii) quenching with excess acetic acid, (iii) recording the No-D NMR spectrum of this homogeneous mixture, and (iv) deducing the concentration of Met-H from the % conversion (as measured by integration). By a conceptually related method, the titer of the basic alkali metal hydrides KH and NaH can also be determined.

  20. Modeling the flow of activated H2 + CH4 mixture by deposition of diamond nanostructures

    Directory of Open Access Journals (Sweden)

    Plotnikov Mikhail

    2017-01-01

    Full Text Available Algorithm of the direct simulation Monte Carlo method for the flow of hydrogen and methane mixture in a cylindrical channel is developed. Heterogeneous reactions on tungsten channel surfaces are included into the model. Their effects on flows are analyzed. A one-dimensional approach based on the solution of equilibrium chemical kinetics equations is used to analyze gas-phase methane decomposition. The obtained results may be useful for optimization of gas-dynamic sources of activated gas diamond synthesis.

  1. Phase diagrams for an ideal gas mixture of fermionic atoms and bosonic molecules

    DEFF Research Database (Denmark)

    Williams, J. E.; Nygaard, Nicolai; Clark, C. W.

    2004-01-01

    We calculate the phase diagrams for a harmonically trapped ideal gas mixture of fermionic atoms and bosonic molecules in chemical and thermal equilibrium, where the internal energy of the molecules can be adjusted relative to that of the atoms by use of a tunable Feshbach resonance. We plot...... diagrams obtained in recent experiments on the Bose-Einstein condensation to Bardeen-Cooper-Schrieffer crossover, in which the condensate fraction is plotted as a function of the initial temperature of the Fermi gas measured before a sweep of the magnetic field through the resonance region....

  2. Formation of Singlet Fermion Pairs in the Dilute Gas of Boson-Fermion Mixture

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-10-01

    Full Text Available We argue the formation of a free neutron spinless pairs in a liquid helium -dilute neutron gas mixture. We show that the term, of the interaction between the excitations of the Bose gas and the density modes of the neutron, meditate an attractive interaction via the neutron modes, which in turn leads to a bound state on a spinless neutron pair. Due to presented theoretical approach, we prove that the electron pairs in superconductivity could be discovered by Frölich earlier then it was made by the Cooper.

  3. Flame kernel characterization of laser ignition of natural gas-air mixture in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Dharamshi, Kewal; Agarwal, Avinash Kumar

    2011-09-01

    In this paper, laser-induced ignition was investigated for compressed natural gas-air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air-fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel-air mixture was investigated under different relative air-fuel ratios ( λ=1.2-1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas-air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.

  4. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part IV. Applications to mixtures of CO2 with alkanes

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Ali, Shahid; Kontogeorgis, Georgios

    2015-01-01

    The thermodynamic properties of pure gaseous, liquid or supercritical CO2 and CO2 mixtures with hydrocarbons and other compounds such as water, alcohols, and glycols are very important in many processes in the oil and gas industry. Design of such processes requires use of accurate thermodynamic...... models, capable of predicting the complex phase behavior of multicomponent mixtures as well as their volumetric properties. In this direction, over the last several years, the cubic-plus-association (CPA) thermodynamic model has been successfully used for describing volumetric properties and phase...

  5. Rare-gas dependence of the self-quenching streamer

    International Nuclear Information System (INIS)

    Yoshioka, K.; Hashimoto, M.; Koori, N.; Kumabe, I.; Ohgaki, H.; Matoba, M.

    1989-01-01

    The self-quenching streamer (SQS) mode is understood these days as one of the basic modes of gas counter operation. In the present work, the SQS transition is clearly observed for Ar-, Kr- and Xe-mixtures with CH 4 , C 2 H 6 , C 3 H 8 , isoC 4 H 10 and CO 2 , and for He- and Ne-mixtures with C 2 H 6 , C 3 H 8 and isoC 4 H 10 . For He- and Ne-mixtures with CH 4 or CO 2 , the GM discharge is developed instead of the SQS transition. The avalanche size at the transition voltage decreases, in the order of He-, Ne-, Ar-, Kr- and Xe-mixtures, except for He-mixtures with CH 4 or CO 2 . The mechanisms of the SQS transition proposed by Atac et al. and Zhang have disadvantages in explaining all these results. If the photo-ionization is assumed as in Atac's mechanism, energetic photons whose yield is sufficiently large are needed for the SQS transition. The interaction between metastable states of rare gases proposed by Zhang may be energetically capable of producing electrons for the transition; effects of quenching gas in mixtures cannot be explained by this mechanism. Further investigation is necessary for microscopic processes occurring in the avalanche development. More detailed information is required on the atomic reaction cross sections of photo-ionization, radiative recombination, etc. (N.K.)

  6. Quantitative mixture fraction measurements in combustion system via laser induced breakdown spectroscopy

    KAUST Repository

    Mansour, Mohy S.

    2015-01-01

    Laser induced breakdown spectroscopy (LIBS) technique has been applied to quantitative mixture fraction measurements in flames. The measured spectra of different mixtures of natural gas and air are used to obtain the calibration parameters for local elemental mass fraction measurements and hence calculate the mixture fraction. The results are compared with the mixture fraction calculations based on the ratios of the spectral lines of H/N elements, H/O elements and C/(N+O) and they show good agreement within the reaction zone of the flames. Some deviations are observed outside the reaction zone. The ability of LIBS technique as a tool for quantitative mixture fraction as well as elemental fraction measurements in reacting and non-reacting of turbulent flames is feasible. © 2014 Elsevier Ltd. All rights reserved.

  7. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    Science.gov (United States)

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  8. Infrared and near infrared emission spectra of TeH and TeD

    Science.gov (United States)

    Yu, Shanshan; Shayesteh, Alireza; Fu, Dejian; Bernath, Peter F.

    2005-04-01

    The vibration-rotation emission spectra for the X2Π ground state and the near infrared emission spectra of the X2Π 1/2- X2Π 3/2 system of the TeH and TeD free radicals have been measured at high resolution using a Fourier transform spectrometer. TeH and TeD were generated in a tube furnace with a DC discharge of a flowing mixture of argon, hydrogen (or deuterium), and tellurium vapor. In the infrared region, for the X2Π 3/2 spin component we observed the 1-0, 2-1, and 3-2 vibrational bands for most of the eight isotopologues of TeH and the 1-0 and 2-1 bands for three isotopologues of TeD. For the X2Π 1/2- X2Π 3/2 transition, we observed the 0-0 and 1-1 bands for TeH and the 0-0, 1-1, and 2-2 bands for TeD. Except for a few lines, the tellurium isotopic shift was not resolved for the X2Π 1/2- X2Π 3/2 transitions of TeH and TeD. Local perturbations with Δ v = 2 between the two spin components of the X2Π state of TeH were found: X2Π 1/2, v = 0 with X2Π 3/2, v = 2; X2Π 1/2, v = 1 with X2Π 3/2, v = 3. The new data were combined with the previous data from the literature and two kinds of fits (Hund's case (a) and Hund's case (c)) were carried out for each of the 10 observed isotopologues: 130TeD, 128TeD, 126TeD, 130TeH, 128TeH, 126TeH, 125TeH, 124TeH, 123TeH, and 122TeH.

  9. A custom on-line ultrasonic gas mixture analyzer with simultaneous flowmetry developed for use in the LHC-ATLAS experiment, with wide application in high and low flow gas delivery systems

    International Nuclear Information System (INIS)

    Bates, R.; Bitadze, A.; Battistin, M.; Berry, S.; Berthoud, J.; Bonneau, P.; Botelho- Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Da Riva, E.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L.; Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A.; Boyd, G.; Deterre, C.; Doubek, M.; Vacek, V.; Vitek, M.; Degeorge, C.; Katunin, S.; Langevin, N.; McMahon, S.; Nagai, K.; Robinson, D.; Rossi, C.

    2013-06-01

    We describe a combined ultrasonic instrument for continuous gas flow measurement and simultaneous real-time binary gas mixture analysis. In the instrument, sound bursts are transmitted in opposite directions, which may be aligned with the gas flow path or at an angle to it, the latter configuration being the best adapted to high flow rates. Custom electronics based on Microchip R dsPIC and ADuC847 micro-controllers transmits 50 kHz ultrasound pulses and measures transit times in the two directions together with the process gas temperature and pressure. The combined flow measurement and mixture analysis algorithm exploits the phenomenon whereby the sound velocity in a binary gas mixture at known temperature and pressure is a unique function of the molar concentration of the two components. The instrument is central to a possible upgrade to the present ATLAS silicon tracker cooling system in which octafluoro-propane (C 3 F 8 ) evaporative cooling fluid would be replaced by a blend containing up to 25% hexafluoro-ethane (C 2 F 6 ). Such a blend will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider (LHC) increases. The instrument has been developed in two geometries following computational fluid dynamics studies of various mechanical layouts. An instrument with 45 crossing angle has been built in stainless steel and installed for commissioning in the ATLAS silicon tracker evaporative fluorocarbon cooling system. It can be used in gas flows up to 20000 l.min -1 , and has demonstrated a flow resolution of 2.3% of full scale for linear flow velocities up to 10 m.s-1 in preliminary studies with air. Other instruments are currently used to detect low levels of C 3 F 8 vapour leaking into the N 2 environmental gas surrounding the ATLAS silicon tracker. Gas from several

  10. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    Science.gov (United States)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  11. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO2 transport applications

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2016-01-01

    to data on ternary and multicomponent mixtures) to model the phase behaviour of ternary and quaternary systems with CO2 and glycols. It is concluded that CPA performs satisfactorily for most multicomponent systems considered. Some differences between the various modelling approaches are observed....... This work is the last part of a series of studies, which aim to arrive in a single "engineering approach" for applying CPA to acid gas mixtures, without introducing significant changes to the model. An overall assessment, based also on the obtained results of this series (Tsivintzelis et al., 2010, 2011...

  12. Linking the Value Assessment of Oil and Gas Firms to Ambidexterity Theory Using a Mixture of Normal Distributions

    Directory of Open Access Journals (Sweden)

    Casault Sébastien

    2016-05-01

    Full Text Available Oil and gas exploration and production firms have return profiles that are not easily explained by current financial theory – the variation in their market returns is non-Gaussian. In this paper, the nature and underlying reason for these significant deviations from expected behavior are considered. Understanding these differences in financial market behavior is important for a wide range of reasons, including: assessing investments, investor relations, decisions to raise capital, assessment of firm and management performance. We show that using a “thicker tailed” mixture of two normal distributions offers a significantly more accurate model than the traditionally Gaussian approach in describing the behavior of the value of oil and gas firms. This mixture of normal distribution is also more effective in bridging the gap between management theory and practice without the need to introduce complex time-sensitive GARCH and/or jump diffusion dynamics. The mixture distribution is consistent with ambidexterity theory that suggests firms operate in two distinct states driven by the primary focus of the firm: an exploration state with high uncertainty and, an exploitation (or production state with lower uncertainty. The findings have direct implications on improving the accuracy of real option pricing techniques and futures analysis of risk management. Traditional options pricing models assume that commercial returns from these assets are described by a normal random walk. However, a normal random walk model discounts the possibility of large changes to the marketplace from events such as the discovery of important reserves or the introduction of new technology. The mixture distribution proves to be well suited to inherently describe the unusually large risks and opportunities associated with oil and gas production and exploration. A significance testing study of 554 oil and gas exploration and production firms empirically supports using a mixture

  13. Modelling of associating mixtures for applications in the oil & gas and chemical industries

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Folas, Georgios; Muro Sunè, Nuria

    2007-01-01

    Thermodynamic properties and phase equilibria of associating mixtures cannot often be satisfactorily modelled using conventional models such as cubic equations of state. CPA (cubic-plus-association) is an equation of state (EoS), which combines the SRK EoS with the association term of SAFT. For non......-alcohol (glycol)-alkanes and certain acid and amine-containing mixtures. Recent results include glycol-aromatic hydrocarbons including multiphase, multicomponent equilibria and gas hydrate calculations in combination with the van der Waals-Platteeuw model. This article will outline some new applications...... thermodynamic models especially those combining cubic EoS with local composition activity coefficient models are included. (C) 2007 Elsevier B.V. All rights reserved....

  14. Controlling the position of a stabilized detonation wave in a supersonic gas mixture flow in a plane channel

    Science.gov (United States)

    Levin, V. A.; Zhuravskaya, T. A.

    2017-03-01

    Stabilization of a detonation wave in a stoichiometric hydrogen-air mixture flowing at a supersonic velocity into a plane symmetric channel with constriction has been studied in the framework of a detailed kinetic mechanism of the chemical interaction. Conditions ensuring the formation of a thrust-producing f low with a stabilized detonation wave in the channel are determined. The inf luence of the inf low Mach number, dustiness of the combustible gas mixture supplied to the channel, and output cross-section size on the position of a stabilized detonation wave in the f low has been analyzed with a view to increasing the efficiency of detonation combustion of the gas mixture. It is established that thrust-producing flow with a stabilized detonation wave can be formed in the channel without any energy consumption.

  15. Use of separating nozzles or ultra-centrifuges for obtaining helium from gas mixtures containing helium

    International Nuclear Information System (INIS)

    Reimann, T.

    1987-01-01

    To obtain helium from gas mixtures containing helium, particularly from natural gas, it is proposed to match the dimensions of the separation devices for a ratio of the molecular weights to be separated of 4:1 of more, which ensures a higher separation factor and therefore a smaller number of separation stages to be connected in series. The process should make reasonably priced separation of helium possible. (orig./HP) [de

  16. Investigation on the performance and emission parameters of dual fuel diesel engine with mixture combination of hydrogen and producer gas as secondary fuel

    Directory of Open Access Journals (Sweden)

    A. E. Dhole

    2016-06-01

    Full Text Available This study presents experimental investigation in to the effects of using mixture of producer gas and hydrogen in five different proportions as a secondary fuel with diesel as pilot fuel at wide range of load conditions in dual fuel operation of a 4 cylinder turbocharged and intercooled 62.5 kW gen-set diesel engine at constant speed of 1500 RPM. Secondary fuel Substitution is in different percentage of diesel at each load. To generate producer gas, the rice husk was used as source in the downdraft gasifier. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. It was found that of all the combinations tested, mixture combination of PG:H2=(60:40% is the most suited one at which the brake thermal efficiency is in good comparison to that of diesel operation. Decreased NOx emissions and increased CO emissions were observed for dual fuel mode for all the fuel combinations compared to diesel fuel operation.

  17. Use of the Boltzmann equation for calculating the scattering law in gas mixtures

    International Nuclear Information System (INIS)

    Eder, O.J.; Lackner, T.

    1989-01-01

    A new approach is presented for the calculation of the dynamical incoherent structure factor S s (q, ω) for a dilute binary gas mixture. The starting point is the linearized one-dimensional Boltzmann equation for a mixture of particles interacting via a quasi-Maxwell potential (V(r) ≅ 1/r ν , ν=4). It is shown how - in the Fourier-Laplace space (q, ω) - the solution of the Boltzman equation can be expressed as an infinite continued fraction. The well known hydrodynamic limit (q→0) and the free gas limit (q→∞) are correctly reproduced as the appropriate limits of the continued fraction. A brief comparison between S s (q, ω) for two interaction potentials (quasi-Maxwell potential, ν=4, and hard core potential, ν=∞) is presented, and it is found that, after scaling the variables to the respective diffusion coefficients, only little dependence on the potential remains. Furthermore, for a one-component system in three dimensions results are summarized for the dynamical incoherent and coherent structure factor. (orig.) [de

  18. 2D-Ising critical behavior in mixtures of water and 3-methylpyridine

    International Nuclear Information System (INIS)

    Sadakane, Koichiro; Iguchi, Kazuya; Nagao, Michihiro; Seto, Hideki

    2011-01-01

    The effect of an antagonistic salt on the phase behavior and nanoscale structure of a mixture of D 2 O and 3-methylpyridine was investigated by visual inspection and small-angle neutron scattering (SANS). The addition of the antagonistic salt, namely sodium tetraphenylborate (NaBPh 4 ), induces the shrinking of the two-phase region in contrast to the case in which a normal (hydrophilic) salt is added. Below the phase separation point, the SANS profiles cannot be described by the Ornstein-Zernike function owing to the existence of a long-range periodic structure. With increasing salt concentration, the critical exponents change from the values of 3D-Ising and approach those of 2D-Ising. These results suggest that the concentration fluctuation of the mixture of solvents is limited to a quasi two-dimensional space by the periodic structure induced by the adding the salt. The same behaviors were also observed in mixtures composed of water, 3-methylpyridine, and ionic surfactant.

  19. The radiolysis of simple gas mixtures—I. Rates of production and destruction of methane in mixtures with carbon dioxide as a major constituent

    Science.gov (United States)

    Dyer, Alan; Moorse, Graham E.

    Carbon dioxide based gas mixtures, similar to those used as coolants in the Advanced Gas-Cooled Nuclear Reactors have been radiolysed at the comparatively low dose rate of 3Gy s -1 using y-radiation from a 60Co source. The variation in the methane concentration (initially in the range 60-70 volume parts per million) with dose, temperature, pressure and gas composition was determined. The gas mixtures were radiolysed in sealed stainless steel capsules and it was found that for a wide range of conditions a steady-state methane concentration was obtained irrespective of the initial methane content of the gas mixture. Packing the irradiation vessel with mild steel, stainless steel or graphite demonstrated that heterogeneous processes played a significant role in the reaction scheme. A mechanism involving the deposition of reactive carbon on surface is outlined.

  20. Analytical method validation of GC-FID for the simultaneous measurement of hydrocarbons (C2-C4 in their gas mixture

    Directory of Open Access Journals (Sweden)

    Oman Zuas

    2016-09-01

    Full Text Available An accurate gas chromatography coupled to a flame ionization detector (GC-FID method was validated for the simultaneous analysis of light hydrocarbons (C2-C4 in their gas mixture. The validation parameters were evaluated based on the ISO/IEC 17025 definition including method selectivity, repeatability, accuracy, linearity, limit of detection (LOD, limit of quantitation (LOQ, and ruggedness. Under the optimum analytical conditions, the analysis of gas mixture revealed that each target component was well-separated with high selectivity property. The method was also found to be precise and accurate. The method linearity was found to be high with good correlation coefficient values (R2 ≥ 0.999 for all target components. It can be concluded that the GC-FID developed method is reliable and suitable for determination of light C2-C4 hydrocarbons (including ethylene, propane, propylene, isobutane, and n-butane in their gas mixture. The validated method has successfully been applied to the estimation of hydrocarbons light C2-C4 hydrocarbons in natural gas samples, showing high performance repeatability with relative standard deviation (RSD less than 1.0% and good selectivity with no interference from other possible components could be observed.

  1. Gas-particle partitioning of semivolatile organic compounds (SOCs) on mixtures of aerosols in a smog chamber.

    Science.gov (United States)

    Chandramouli, Bharadwaj; Jang, Myoseon; Kamens, Richard M

    2003-09-15

    The partitioning behavior of a set of diverse SOCs on two and three component mixtures of aerosols from different sources was studied using smog chamber experimental data. A set of SOCs of different compound types was introduced into a system containing a mixture of aerosols from two or more sources. Gas and particle samples were taken using a filter-filter-denuder sampling system, and a partitioning coefficient Kp was estimated using Kp = Cp/(CgTSP). Particle size distributions were measured using a differential mobility analyzer and a light scattering detector. Gas and particle samples were analyzed using GCMS. The aerosol composition in the chamber was tracked chemically using a combination of signature compounds and the organic matter mass fraction (f(om)) of the individual aerosol sources. The physical nature of the aerosol mixture in the chamber was determined using particle size distributions, and an aggregate Kp was estimated from theoretically calculated Kp on the individual sources. Model fits for Kp showed that when the mixture involved primary sources of aerosol, the aggregate Kp of the mixture could be successfully modeled as an external mixture of the Kp on the individual aerosols. There were significant differences observed for some SOCs between modeling the system as an external and as an internal mixture. However, when one of the aerosol sources was secondary, the aggregate model Kp required incorporation of the secondary aerosol products on the preexisting aerosol for adequate model fits. Modeling such a system as an external mixture grossly overpredicted the Kp of alkanes in the mixture. Indirect evidence of heterogeneous, acid-catalyzed reactions in the particle phase was also seen, leading to a significant increase in the polarity of the resulting aerosol mix and a resulting decrease in the observed Kp of alkanes in the chamber. The model was partly consistent with this decrease but could not completely explain the reduction in Kp because of

  2. Impact of pH on hydrogen oxidizing redox processes in aquifers due to gas intrusions

    Science.gov (United States)

    Metzgen, Adrian; Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Dahmke, Andreas

    2017-04-01

    Hydrogen production from excess energy and its storage can help increasing the efficiency of solar and wind in the energy mix. Therefore, hydrogen needs large-scale intermediate storage independent of the intended later use as hydrogen gas or as reactant to produce methane in the Sabatier process. A possible storage solution is using the geological subsurface such as caverns built in salt deposits or aquifers that are not used for drinking water production. However, underground storage of hydrogen gas potentially leads to accidental gas leakages into near-surface potable aquifers triggering subsequent geochemical processes. These leakages pose potential risks that are currently not sufficiently understood. To close this gap in knowledge, a high-pressure laboratory column system was used to simulate a hydrogen gas intrusion into a shallow aquifer. Water and sediment were gained from a sandy Pleistocene aquifer near Neumünster, Germany. In the first stage of the experiment, 100% hydrogen gas was used to simulate dissolved hydrogen concentrations between 800 and 4000 µM by varying pH2 between 2 and 15 bars. pH values rose to between 7.9 and 10.4, partly due to stripping CO2 from the groundwater used during H2 gas addition. In a second stage, the pH was regulated in a range of 6.7 to 7.9 by using a gas mixture of 99% H2 and 1% CO2 at 5 bars of total gas pressure. Observed processes included hydrogen oxidation, sulfate reduction, acetogenesis, formate production, and methanogenesis, which were independent of the hydrogen concentration. Hydrogen oxidation and sulfate reduction showed zeroth order reaction rates and rate constants (106 to 412 µM/h and 12 to 33 µM/h, respectively) in the pH range between 8 and 10. At pH levels between 7 and 8, both reactions started out faster near the column's inflow but then seemed limited towards the columns outflow, suggesting the dependence of sulfate reduction on the pH-value. Acetogenesis dominated the pH range between 8 and 10

  3. Highly stable hydrogenated gallium-doped zinc oxide thin films grown by DC magnetron sputtering using H2/Ar gas

    International Nuclear Information System (INIS)

    Takeda, Satoshi; Fukawa, Makoto

    2004-01-01

    The effects of water partial pressure (P H 2 O ) on electrical and optical properties of Ga-doped ZnO films grown by DC magnetron sputtering were investigated. With increasing P H 2 O , the resistivity (ρ) of the films grown in pure Ar gas (Ar-films) significantly increased due to the decrease in both free carrier density and Hall mobility. The transmittance in the wavelength region of 300-400 nm for the films also increased with increasing P H 2 O . However, no significant P H 2 O dependence of the electrical and optical properties was observed for the films grown in H 2 /Ar gas mixture (H 2 /Ar-films). Secondary ion mass spectrometry (SIMS) and X-ray diffraction (XRD) analysis revealed that hydrogen concentration in the Ar-films increased with increasing P H 2 O and grain size of the films decreases with increasing the hydrogen concentration. These results indicate that the origin of the incorporated hydrogen is attributed to the residual water vapor in the coating chamber, and that the variation of ρ and transmittance along with P H 2 O of the films resulted from the change in the grain size. On the contrary, the hydrogen concentration in H 2 /Ar-films was almost constant irrespective of P H 2 O and the degree of change in the grain size of the films versus P H 2 O was much smaller than that of Ar-films. These facts indicate that the hydrogen primarily comes from H 2 gas and the adsorption species due to H 2 gas preferentially adsorb to the growing film surface over residual water vapor. Consequently, the effects of P H 2 O on the crystal growth are reduced

  4. Non-Watson-Crick structures in oligodeoxynucleotides: Self-association of d(TpCpGpA) stabilized at acidic pH

    International Nuclear Information System (INIS)

    Topping, R.J.; Stone, M.P.; Brush, C.K.; Harris, T.M.

    1988-01-01

    The 1 H NMR spectrum of the tetradeoxynucleotide d(TpCpGpA) was examined as a function of temperature, pH, and concentration. At pH 7 and above the solution conformation for this oligodeoxynucleotide appears to be a mixture of random coil and Watson-Crick duplex. At 25 degree C, a pH titration of d(TpCpGaA) shown that distinct conformational changes occur as the pH is lowered below 7.0. These conformational changes are reversible upon readjusting the pH to neutrality, indicating the presence of a pH-dependent set of conformational equilibria. At 25 degree C, the various conformational state in the mixture are in rapid exchange on the NMR time scale. Examination of the titration curve shown the presence of distinct conformational states at pH greater than 7, and between pH 4 and pH 5. When the pH titration is repeated at 5 degree C, the conformational equilibria are in slow exchange on the NMR time scale; distinct signals from each conformational state are observable. The stable conformational state present between pH 4 and pH 5 represents an ordered conformation of d(TpCpGpA) which dissociates to a less ordered structure upon raising the temperature. The ordered conformation differs from the Watson-Crick helix, as is shown from nuclear Overhauser enhancement experiments, as well as chemical shift data. These results indicate that their ordered conformation is similar to the conformation of d(TpCpGpA) observed between pH 4 and pH 5. In the present case it is likely that stabilization of an ordered duplex conformation for d(TpCpGpA) is achieved by protonation of cytosine. A possible model which could explain the data involves formation of Hoogsteen C + :G base pairs

  5. Collisional energy transfer in Na(4p--3d)--He,H2 collisions

    International Nuclear Information System (INIS)

    Kleiber, P.D.; Wong, T.H.; Bililign, S.

    1993-01-01

    We have investigated the direct collisional energy transfer process Na*(4p)+M→Na*(3d)+M, where M=He,H 2 under gas cell conditions. We have measured the temporal profiles of the Na(3d--3p) sensitized fluorescence as a function of quenching gas pressure and fit the profiles to a two-state rate equation model to obtain the quenching rate coefficients from the Na*(4p) state. The total energy transfer rate coefficient out of the 4p state for He is small [(0.5±0.2)x10 -10 cm 3 /s]. The total quenching rate coefficient out of the 4p state is much larger for H 2 [(3.9±0.5)x10 -10 cm 3 /s]. Evidence suggests that the energy transfer rate coefficient for the 4p--3d process is ∼2.0x10 -10 cm 3 /s with the remainder of the 4p quenching being predominantly reactive. We also compare the far-red wing absorption line shapes for the NaHe and NaH 2 systems

  6. Multipoint Ignition of a Gas Mixture by a Microwave Subcritical Discharge with an Extended Streamer Structure

    Science.gov (United States)

    Aleksandrov, K. V.; Busleev, N. I.; Grachev, L. P.; Esakov, I. I.; Ravaev, A. A.

    2018-02-01

    The results of experimental studies on using an electrical discharge with an extended streamer structure in a quasioptical microwave beam in the multipoint ignition of a propane-air mixture have been reported. The pulsed microwave discharge was initiated at the interior surface of a quartz tube that was filled with the mentioned flammable mixture and introduced into a microwave beam with a subbreakdown initial field. Gas breakdown was initiated by an electromagnetic vibrator. The dependence of the type of discharge on the microwave field strength was examined, the lower concentration threshold of ignition of the propane-air mixture by the studied discharge was determined, and the dynamics of combustion of the flammable mixture with local and multipoint ignition were compared.

  7. Biogenic Carbon Fraction of Biogas and Natural Gas Fuel Mixtures Determined with 14C

    NARCIS (Netherlands)

    Palstra, Sanne W. L.; Meijer, Harro A. J.

    2014-01-01

    This study investigates the accuracy of the radiocarbon-based calculation of the biogenic carbon fraction for different biogas and biofossil gas mixtures. The focus is on the uncertainty in the C-14 reference values for 100% biogenic carbon and on the C-13-based isotope fractionation correction of

  8. Ionised gas kinematics in bipolar H II regions

    Science.gov (United States)

    Dalgleish, Hannah S.; Longmore, Steven N.; Peters, Thomas; Henshaw, Jonathan D.; Veitch-Michaelis, Joshua L.; Urquhart, James S.

    2018-05-01

    Stellar feedback plays a fundamental role in shaping the evolution of galaxies. Here we explore the use of ionised gas kinematics in young, bipolar H II regions as a probe of early feedback in these star-forming environments. We have undertaken a multi-wavelength study of a young, bipolar H II region in the Galactic disc, G316.81-0.06, which lies at the centre of a massive (˜103 M⊙) infrared-dark cloud filament. It is still accreting molecular gas as well as driving a ˜0.2 pc ionised gas outflow perpendicular to the filament. Intriguingly, we observe a large velocity gradient (47.81 ± 3.21 km s-1 pc-1) across the ionised gas in a direction perpendicular to the outflow. This kinematic signature of the ionised gas shows a reasonable correspondence with the simulations of young H II regions. Based on a qualitative comparison between our observations and these simulations, we put forward a possible explanation for the velocity gradients observed in G316.81-0.06. If the velocity gradient perpendicular to the outflow is caused by rotation of the ionised gas, then we infer that this rotation is a direct result of the initial net angular momentum in the natal molecular cloud. If this explanation is correct, this kinematic signature should be common in other young (bipolar) H II regions. We suggest that further quantitative analysis of the ionised gas kinematics of young H II regions, combined with additional simulations, should improve our understanding of feedback at these early stages.

  9. VUV emission spectra from binary rare gas mixtures near the resonance lines of Xe I and Kr I

    CERN Document Server

    Morozov, A; Gerasimov, G; Arnesen, A; Hallin, R

    2003-01-01

    Emission spectra of Xe-X (X = He, Ne, Ar and Kr) and of Kr-Y (Y = He, Ne and Ar) mixtures with low concentrations of the heavier gases (0.1-1%) and moderate total pressures (50-200 hPa) have been recorded near each of the two resonance lines of Xe and Kr in DC glow capillary discharges. The recorded intense emissions have narrow spectral profiles with FWHM of about 0.1 nm. The profiles are very similar in shape to profiles of known high resolution absorption spectra recorded at comparable gas pressures. A tentative identification of the emission structures is given, which involves transitions in heteronuclear molecules and quasimolecules between weakly-bound states.

  10. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, S.Z.; Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Previous experiments have been carried out by Vierow, Ogg, Kageyama and Siddique for condensation from steam/gas mixtures in vertical tubes. In each case the data scatter relative to the correlation was large and there was not close agreement among the three investigations. A new apparatus has been designed and built using the lessons learned from the earlier studies. Using the new apparatus, an extensive new data base has been obtained for pure steam, steam-air mixtures and steam-helium mixtures. Three different correlations, one implementing the degradation method initially proposed by Vierow and Schrock, a second diffusion layer theory initially proposed by Peterson, and third mass transfer conductance model are presented in this paper. The correlation using the simple degradation factor method has been shown, with some modification, to give satisfactory engineering accuracy when applied to the new data. However, this method is based on very simplified arguments that do not fully represent the complex physical phenomena involved. Better representation of the data has been found possible using modifications of the more complex and phenomenologically based method which treats the heat transfer conductance of the liquid film in series with the conductance on the vapor-gas side with the latter comprised of mass transfer and sensible heat transfer conductance acting in parallel. The mechanistic models, based on the modified diffusion layer theory or classical mass transfer theory for mass transfer conductance with transpiration successfully correlate the data for the heat transfer of vapor-gas side. Combined with the heat transfer of liquid film model proposed by Blangetti, the overall heat transfer coefficients predicted by the correlations from mechanistic models are in close agreement with experimental values.

  11. Evaluation of the performance and response of the bacharach TLV sniffer and H-Nu photoionization gas analyzer to common hydrocarbon solvents.

    Science.gov (United States)

    Chelton, C F; Zakraysek, N; Lautner, G M; Confer, R G

    1983-10-01

    Two direct reading instruments, the H-Nu PI 101 photoionization analyzer and the J.W. Bacharach TLV Sniffer, were evaluated under laboratory conditions to determine their performance characteristics when challenged by vapors of common hydrocarbon solvent mixtures. Each instrument was evaluated against the manufacturer's recommended test solvent for rise time, fall time, noise, span drift, zero drift, position sensitivity, battery life, and recharge time. The precision, accuracy, and operating linear range were also determined for the test solvents and some petroleum solvent mixtures which are common refinery products. For these latter mixtures, correction factors are presented which allow for an improved estimate of ambient concentrations when monitoring with each of these instruments. All tests except operating humidity range were performed by challenging each instrument with a known concentration of hydrocarbon generated by evaporating calculated liquid volumes into a static chamber. Humidity tests were performed using a dynamic dilution apparatus generating a fixed concentration of hydrocarbon while relative humidity was varied. Concentrations in both systems were verified by gas injection into gas chromatograph. Each instrument performed well when challenged by manufacturers' recommended test solvents. Humidity was shown to influence each instrument's readings. Also, the instruments were shown to have application as monitors of airborne concentrations of common hydrocarbon solvent mixtures.

  12. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    International Nuclear Information System (INIS)

    Abbrescia, M.; Muhammad, S.; Saviano, G.; Auwegem, P. Van; Cauwenbergh, S.; Tytgat, M.; Benussi, L.; Bianco, S.; Passamonti, L.; Pierluigi, D.; Piccolo, D.; Primavera, F.; Russo, A.; Ferrini, M.

    2016-01-01

    The operations of Resistive Plate Chambers in LHC experiments require Fluorine based (F-based) gases for optimal performance. Recent European regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade, several tests are ongoing to measure the performance of the detector with these new ecological gas mixtures, in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard CMS electronic setup are under test. In this paper preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze, with CO 2 and CF 3 I based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  13. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    CERN Document Server

    Abbrescia, M.

    2016-01-01

    The operations of Resistive Plate Chambers in LHC experiments require Fluorine based (F-based) gases for optimal performance. Recent European regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade, several tests are ongoing to measure the performance of the detector with these new ecological gas mixtures, in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard CMS electronic setup are under test. In this paper preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze, with CO2 and CF3I based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  14. Perceptual characterization and analysis of aroma mixtures using gas chromatography recomposition-olfactometry.

    Directory of Open Access Journals (Sweden)

    Arielle J Johnson

    Full Text Available This paper describes the design of a new instrumental technique, Gas Chromatography Recomposition-Olfactometry (GC-R, that adapts the reconstitution technique used in flavor chemistry studies by extracting volatiles from a sample by headspace solid-phase microextraction (SPME, separating the extract on a capillary GC column, and recombining individual compounds selectively as they elute off of the column into a mixture for sensory analysis (Figure 1. Using the chromatogram of a mixture as a map, the GC-R instrument allows the operator to "cut apart" and recombine the components of the mixture at will, selecting compounds, peaks, or sections based on retention time to include or exclude in a reconstitution for sensory analysis. Selective recombination is accomplished with the installation of a Deans Switch directly in-line with the column, which directs compounds either to waste or to a cryotrap at the operator's discretion. This enables the creation of, for example, aroma reconstitutions incorporating all of the volatiles in a sample, including instrumentally undetectable compounds as well those present at concentrations below sensory thresholds, thus correcting for the "reconstitution discrepancy" sometimes noted in flavor chemistry studies. Using only flowering lavender (Lavandula angustifola 'Hidcote Blue' as a source for volatiles, we used the instrument to build mixtures of subsets of lavender volatiles in-instrument and characterized their aroma qualities with a sensory panel. We showed evidence of additive, masking, and synergistic effects in these mixtures and of "lavender' aroma character as an emergent property of specific mixtures. This was accomplished without the need for chemical standards, reductive aroma models, or calculation of Odor Activity Values, and is broadly applicable to any aroma or flavor.

  15. Perceptual Characterization and Analysis of Aroma Mixtures Using Gas Chromatography Recomposition-Olfactometry

    Science.gov (United States)

    Johnson, Arielle J.; Hirson, Gregory D.; Ebeler, Susan E.

    2012-01-01

    This paper describes the design of a new instrumental technique, Gas Chromatography Recomposition-Olfactometry (GC-R), that adapts the reconstitution technique used in flavor chemistry studies by extracting volatiles from a sample by headspace solid-phase microextraction (SPME), separating the extract on a capillary GC column, and recombining individual compounds selectively as they elute off of the column into a mixture for sensory analysis (Figure 1). Using the chromatogram of a mixture as a map, the GC-R instrument allows the operator to “cut apart" and recombine the components of the mixture at will, selecting compounds, peaks, or sections based on retention time to include or exclude in a reconstitution for sensory analysis. Selective recombination is accomplished with the installation of a Deans Switch directly in-line with the column, which directs compounds either to waste or to a cryotrap at the operator's discretion. This enables the creation of, for example, aroma reconstitutions incorporating all of the volatiles in a sample, including instrumentally undetectable compounds as well those present at concentrations below sensory thresholds, thus correcting for the “reconstitution discrepancy" sometimes noted in flavor chemistry studies. Using only flowering lavender (Lavandula angustifola ‘Hidcote Blue’) as a source for volatiles, we used the instrument to build mixtures of subsets of lavender volatiles in-instrument and characterized their aroma qualities with a sensory panel. We showed evidence of additive, masking, and synergistic effects in these mixtures and of “lavender' aroma character as an emergent property of specific mixtures. This was accomplished without the need for chemical standards, reductive aroma models, or calculation of Odor Activity Values, and is broadly applicable to any aroma or flavor. PMID:22912722

  16. A method for calculating the gas volume proportions and inhalation temperature of inert gas mixtures allowing reaching normothermic or hypothermic target body temperature in the awake rat

    Directory of Open Access Journals (Sweden)

    Jacques H Abraini

    2017-01-01

    Full Text Available The noble gases xenon (Xe and helium (He are known to possess neuroprotective properties. Xe is considered the golden standard neuroprotective gas. However, Xe has a higher molecular weight and lower thermal conductivity and specific heat than those of nitrogen, the main diluent of oxygen (O2 in air, conditions that could impair or at least reduce the intrinsic neuroprotective properties of Xe by increasing the critical care patient's respiratory workload and body temperature. In contrast, He has a lower molecular weight and higher thermal conductivity and specific heat than those of nitrogen, but is unfortunately far less potent than Xe at providing neuroprotection. Therefore, combining Xe with He could allow obtaining, depending on the gas inhalation temperature and composition, gas mixtures with neutral or hypothermic properties, the latter being advantageous in term of neuroprotection. However, calculating the thermal properties of a mixture, whatever the substances – gases, metals, rubbers, etc. – is not trivial. To answer this question, we provide a graphical method to assess the volume proportions of Xe, He and O2 that a gas mixture should contain, and the inhalation temperature to which it should be administered to allow a clinician to maintain the patient at a target body temperature.

  17. Study on methane separation from steam reforming product gas with polyimide membrane

    International Nuclear Information System (INIS)

    Koiso, Hiroshi; Inagaki, Yoshiyuki; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Hino, Ryutaro.

    1997-10-01

    In the HTTR hydrogen production system by steam reforming of natural gas (main component: CH 4 ), CH 4 conversion rate is limited to approximately 65% due to high pressure and low temperature conditions (4.5 MPa, 800degC). The one of the measures to improve CH 4 conversion is recycling of residual CH 4 extracted from steam reforming product gas with a gas separator. Experimental and analytical studies on CH 4 separation from gas mixture composed of CH 4 , H 2 , CO 2 and CO were carried out to investigate gas separation characteristics of a polyimide membrane gas separator. Measured permeability of each gas in gas mixture was reduced from 1/3 to 1/14 of that obtained with a single gas (catalog value). The polyimide membrane could extracted CH 4 of approximately 80% from gas mixture, then, H 2 and CO 2 more than 98% were removed. It was confirmed that the polyimide membrane could be available to residual CH 4 recycling. The analytical results by a difference method gave good prospects of experimental results such as permeated flow rate, mol-fraction profiles and so on. Therefore, it can be said the analysis method was established. (author)

  18. Binary gas mixture adsorption-induced deformation of microporous carbons by Monte Carlo simulation.

    Science.gov (United States)

    Cornette, Valeria; de Oliveira, J C Alexandre; Yelpo, Víctor; Azevedo, Diana; López, Raúl H

    2018-07-15

    Considering the thermodynamic grand potential for more than one adsorbate in an isothermal system, we generalize the model of adsorption-induced deformation of microporous carbons developed by Kowalczyk et al. [1]. We report a comprehensive study of the effects of adsorption-induced deformation of carbonaceous amorphous porous materials due to adsorption of carbon dioxide, methane and their mixtures. The adsorption process is simulated by using the Grand Canonical Monte Carlo (GCMC) method and the calculations are then used to analyze experimental isotherms for the pure gases and mixtures with different molar fraction in the gas phase. The pore size distribution determined from an experimental isotherm is used for predicting the adsorption-induced deformation of both pure gases and their mixtures. The volumetric strain (ε) predictions from the GCMC method are compared against relevant experiments with good agreement found in the cases of pure gases. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Gas Flow Validation with Panda Tests from the OECD SETH Benchmark Covering Steam/Air and Steam/Helium/Air Mixtures

    International Nuclear Information System (INIS)

    Royl, P.; Travis, J.R.; Breitung, W.; Kim, J.; Kim, S.B.

    2009-01-01

    The CFD code GASFLOW solves the time-dependent compressible Navier-Stokes Equations with multiple gas species. GASFLOW was developed for nonnuclear and nuclear applications. The major nuclear applications of GASFLOW are 3D analyses of steam/hydrogen distributions in complex PWR containment buildings to simulate scenarios of beyond design basis accidents. Validation of GASFLOW has been a continuously ongoing process together with the development of this code. This contribution reports the results from the open posttest GASFLOW calculations that have been performed for new experiments from the OECD SETH Benchmark. Discussed are the steam distribution tests 9 and 9 bis, 21 and 21 bis involving comparable sequences with and without steam condensation and the last SETH test 25 with steam/helium release and condensation. The latter one involves lighter gas mixture sources like they can result in real accidents. The helium is taken as simulant for hydrogen

  20. A range of newly developed mobile generators to dynamically produce SI-traceable reference gas mixtures for reactive compounds at atmospheric concentrations

    Science.gov (United States)

    Leuenberger, Daiana; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Niederhauser, Bernhard

    2017-04-01

    Three new mobile facilities have been developed at METAS to dynamically generate SI-traceable reference gas mixtures for a variety of reactive compounds at atmospheric amount of substance fractions and at very low levels of uncertainty (Ux balance. The carrier gas is previously purified from the compounds of interest using commercially available purification cartridges. The permeation chambers of ReGaS2 and ReGaS3 have multiple individual cells allowing for the generation of mixtures containing up to 5 different components if required. ReGaS1 allows for the generation of one-component mixtures only. These primary mixtures are then diluted to the required amount of substance fractions using thermal mass flow controllers for full flexibility and adaptability of the generation process over the entire range of possible concentrations. In order to considerably reduce adsorption/desorption processes and thus stabilisation time, all electro-polished stainless steel parts of ReGaS1 and ReGaS2 in contact with the reference gas mixtures are passivated with SilcoNert2000® surface coating. These three state-of-the-art mobile reference gas generators are applicable under both, laboratory and field conditions. Moreover the dynamic generation method can be adapted and applied to a large variety of molecules (e.g. BTEX, CFCs, HCFCs, HFCs and other refrigerants) and is particularly suitable for reactive gas species and/or at concentration ranges which are unstable when stored in pressurised cylinders. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

  1. High-efficiency condenser of steam from a steam-gas mixture

    Science.gov (United States)

    Milman, O. O.; Krylov, V. S.; Ptakhin, A. V.; Kondratev, A. V.; Yankov, G. G.

    2017-12-01

    The design of a module for a high-efficiency condenser of steam with a high content (up to 15%) of noncondensable gases (NCGs) with a nearly constant steam-gas mixture (SGM) velocity during the condensation of steam has been developed. This module provides the possibility to estimate the operational efficiency of six condenser zones during the motion of steam from the inlet to the SGM suction point. Some results of the experimental tests of the pilot high-efficiency condenser module are presented. The dependence of the average heat transfer coefficient k¯ on the volumetric NCG concentration v¯ has been derived. It is shown that the high-efficiency condenser module can provide a moderate decrease in k¯ from 4400-4600 to 2600-2800 W/(m2 K) at v¯ ≈ 0.5-9.0%. The heat transfer coefficient distribution over different module zones at a heat duty close to its nominal value has been obtained. From this distribution, it can be seen that the average heat transfer coefficient decreases to 2600 W/(m2 K) at an NCG concentration v¯ = 7.5%, but the first condenser sections ( 1- 3) retain high values of k¯ at a level of no lower than 3200 W/(m2 K), and the last sections operate less well, having k¯ at a level of 1700 W/(m2 K). The dependence of the average heat transfer coefficient on the water velocity in condenser tubes has been obtained at a nearly nominal duty such that the extrapolation of this dependence to the water velocity of 2 m/s may be expected to give k¯ = 5000 W/(m2 K) for relatively pure steam, but an increase in k¯ at v¯ = 8% will be smaller. The effect of the gas removal device characteristic on the operation of the high-efficiency condenser module is described. The design developed for the steam condenser of a gas-turbine plant with a power of 25 MW, a steam flow rate of 40.2 t/h, and a CO2 concentration of up to 12% with consideration for the results of performed studies is presented.

  2. Current gas storage R and D programmes at Gas Research Institute

    International Nuclear Information System (INIS)

    Shikari, Y.A.

    1990-01-01

    The Gas Research Institute (GRI) is currently involved in the development of concepts aimed at an enhancement of natural gas service to the consumer. In order to maintain the attractiveness of the gas options to industrial consumers and to reinforce the ''value-in-use'' of natural gas to residential as well as commercial customers, it is essential to develop efficient, economical, and safe means of reducing the ''cost-of-service'', including that of natural gas storage in underground formations. Specifically, research and development (R and D) is needed to explore ways to better utilize existing storage fields and also to develop new storage facilities at minimum cost. GRI is currently sponsoring research projects aimed at controlling gas migration in underground gas storage reservoirs, reducing base (or cushion) gas requirements, understanding the gas-gas phase mixing behaviour via laboratory experiments and reservoir models, developing cost-effective gas separation processes using membranes, and optimizing the operation and maintenance (O and M) costs of underground gas storage operations. This paper provides an overview of the GRI's Gas Storage R and D Programme and highlights key results achieved to date for selected research projects. (author). 16 refs, 6 figs, 3 tabs

  3. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    Science.gov (United States)

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  4. Relaxation phenomena in dense gas separation membranes

    NARCIS (Netherlands)

    Wessling, Matthias

    1993-01-01

    Solution-diffusion membranes are widely used for the separation of gaseous and liquid mixtures. The separation of air (O2/N2), landfill gas (CH4/CO2) and purge gas streams (NH3/H2) in the ammonia synthesis are examples for state-of-the-art membrane gas separation processes. For the separation of

  5. Determination of electron impact ionization and excitation coefficients in He-Xe gas mixtures. He-Xe kongo gas ni okeru denshi shototsu denri keisu oyobi reiki keisu no sokutei to kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K.; Tachibana, K. (Kyoto Inst. of Technology, Kyoto (Japan))

    1991-03-20

    The rare gas discharge gives a stable discharge and light emission characteristics at low temperature in comparison with the discharge of the vapor of such a metal as Hg. The present barrier for the commercialization of the color PDP lies in the lower level of its emission intensity and efficiency in comparison with that of CRT. In this report, an electron impact ionization coefficient in a gas mixture and an electron impact excitation coefficient for a XeIs {sub 4} level were analyzed using a Boltzmann equation by means of a steady state Townsend method using a drift tube. By comparing both, the elementary process in the gas mixture is investiagted to discuss the respective contributions for the effective ionization coefficient and the excitation coefficient. As a result, it was found that the ionization process in the He-Xe gas mixture could be described by the processes of direct ionization of Xe and He, and an indirect ionization (Penning effect) by an active helium. 37 refs., 12 figs.

  6. Detailed H2 and CO Electrochemistry for a MEA Model Fueled by Syngas

    KAUST Repository

    Lee, W. Y.

    2015-07-17

    © The Electrochemical Society. SOFCs can directly oxidize CO in addition to H2, which allows them to be coupled to a gasifier. Many membrane-electrode-assembly (MEA) models neglect CO electrochemistry due to sluggish kinetics and the water-gas-shift reaction, but CO oxidation may be important for high CO-content syngas. The 1D-MEA model presented here incorporates detailed mechanisms for both H2 and CO oxidation, individually fitted to experimental data. These mechanisms are then combined into a single model, which provides a good fit to experimental data for H2/CO mixtures. Furthermore, the model fits H2/CO data best when a single chargetransfer step in the H2 mechanism is assumed to be rate-limiting for all current densities. This differs from the result for H2/H2O mixtures, where H2 adsorption becomes rate-limiting at high current densities. These results indicate that CO oxidation cannot be neglected in MEA models running on CO-rich syngas, and that CO oxidation can alter the H2 oxidation mechanism.

  7. Analysis of Simultaneous Gas-Liquid Flow Through an Orifice and Its Application to Flow Metering Etude de l'écoulement simultané d'un mélange gaz-liquide à travers un orifice et son application à la mesure du débit

    Directory of Open Access Journals (Sweden)

    Pascal H.

    2006-11-01

    Full Text Available The purpose of this article is to show a more accurate orifice equation for a two-phase flow, such a compressible mixture of gas and liquid. The orifice equation given here con be used for the measurement of a gas-liquid mixture of fine emulsions by the orificemeter method. From the thermodynamic point of view, an equation of state has been formulated which provides the relationship between the specific mass of the mixture and pressure, under conditions of adiabatic expansion. The results obtained enable the mass flow rates of gas and liquid ta be determined without separation of the phases, provided thot the gas liquid mass ratio is known. The critical pressure ratio corresponding ta sonic velocity is also determined. Cet article présente une relation plus précise pour l'écoulement d'un système à deux phases, tel qu'un mélange compressible gaz-liquide, à travers un diaphragme. Cette relation peut être utilisée pour des mesures de mélanges gaz-liquide très finement divisés, c'est-à-dire des émulsions ou brouillards, par la méthode du diaphragme en paroi mince. Du point de vue thermodynamique, on a formulé une équation d'état donnant la relation entre la masse spécifique du mélange et la pression dans des conditions d'expansion adiabatique. Les résultats obtenus per-mettent de déterminer le débit massique du gaz et du liquide, sans séparation des deux phases, à condition que le rapport de masse gaz-liquide soit connu. On détermine également le rapport de pression critique correspondantà la vitesse du son.

  8. pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water

    International Nuclear Information System (INIS)

    Avisar, D.; Lester, Y.; Mamane, H.

    2010-01-01

    Water and wastewater effluents contain a vast range of chemicals in mixtures that have different chemical structures and characteristics. This study presents a treatment technology for the removal of mixtures of antibiotic residues (sulfamethoxazole (SMX), oxtetracycline (OTC) and ciprofloxacin (CIP)) from contaminated water. The treatment combines pH modification of the water to an optimal value, followed by a photolytic treatment using direct polychromatic ultraviolet (UV) irradiation by medium pressure UV lamp. The pH adjustment of the treated water leads to structural modifications of the pollutant's molecule thus may enhance direct photolysis by UV light. Results showed that an increase of water pH from 5 to 7 leads to a decrease in degradation rate of SMX and an increase in degradation rate of OTC and CIP, when studied separately and not in a mixture. Thus, the optimal pH values for UV photodegradation in a mixture, involve initial photolysis at pH 5 and then gradually changing the pH from 5 to 7 during the UV exposure. For example, this resulted in 99% degradation of SMX at pH 5 and enhanced degradation of OTC and CIP from 54% and 26% to 91% and 96% respectively when pH was increased from 5 to 7. Thus the pH induced photolytic treatment has a potential in improving treatment of antibiotics in mixtures.

  9. pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water

    Energy Technology Data Exchange (ETDEWEB)

    Avisar, D., E-mail: droravi@post.tau.ac.il [Hydro-chemistry Laboratory, Geography and the Environment, Tel Aviv University, Tel Aviv 69978 (Israel); Lester, Y. [Hydro-chemistry Laboratory, Geography and the Environment, Tel Aviv University, Tel Aviv 69978 (Israel); School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Mamane, H. [School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2010-03-15

    Water and wastewater effluents contain a vast range of chemicals in mixtures that have different chemical structures and characteristics. This study presents a treatment technology for the removal of mixtures of antibiotic residues (sulfamethoxazole (SMX), oxtetracycline (OTC) and ciprofloxacin (CIP)) from contaminated water. The treatment combines pH modification of the water to an optimal value, followed by a photolytic treatment using direct polychromatic ultraviolet (UV) irradiation by medium pressure UV lamp. The pH adjustment of the treated water leads to structural modifications of the pollutant's molecule thus may enhance direct photolysis by UV light. Results showed that an increase of water pH from 5 to 7 leads to a decrease in degradation rate of SMX and an increase in degradation rate of OTC and CIP, when studied separately and not in a mixture. Thus, the optimal pH values for UV photodegradation in a mixture, involve initial photolysis at pH 5 and then gradually changing the pH from 5 to 7 during the UV exposure. For example, this resulted in 99% degradation of SMX at pH 5 and enhanced degradation of OTC and CIP from 54% and 26% to 91% and 96% respectively when pH was increased from 5 to 7. Thus the pH induced photolytic treatment has a potential in improving treatment of antibiotics in mixtures.

  10. Fully integrated microfluidic measurement system for real-time determination of gas and liquid mixtures composition

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Groenesteijn, Jarno; van der Wouden, E.J.; Sparreboom, Wouter; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2015-01-01

    We have designed and realised a fully integrated microfluidic measurement system for real-time determination of both flow rate and composition of gas- and liquid mixtures. The system comprises relative permittivity sensors, pressure sensors, a Coriolis flow and density sensor, a thermal flow sensor

  11. Comparison of methods for calculating thermodynamic properties of binary mixtures in the sub and super critical state: Lee-Kesler and cubic equations of state for binary mixtures containing either CO2 or H2S

    International Nuclear Information System (INIS)

    Yang, Jyisy; Griffiths, Peter R.; Goodwin, Anthony R.H.

    2003-01-01

    The (ρ,T,p) and (vapor + liquid) equilibria for fluid mixtures containing either CO 2 or H 2 S have been determined from 13 equations of state. The estimated values have been compared with published experimental results. CO 2 and H 2 S were used to represent non-polar and polar fluids, respectively. The equations of state investigated were as follows: (a) the Lee-Kesler equation; (b) two equations that included new reference fluids for the Lee-Kesler method; (c) three so-called extended equations of state; and (d) seven cubic equations of state. After adjustment of the binary interaction parameters the predicted values differed from the experimental data by about 0.8% for CO 2 mixtures while for H 2 S mixtures the uncertainty was about ±2.8%. Somewhat larger errors, although still lower than ±5%, were obtained for co-existing phase densities; the Lee-Kesler method provided results of the highest accuracy. The cubic equations proposed by Schmidt and Wenzel and Valderrama provide the most reliable predictions of both single and co-existing phase densities. Comparison of the predicted (vapor + liquid) equilibrium with experiment shows that each of the seven cubic equations provides results of similar accuracy and all within ±6%

  12. Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO{sub 2} capture from H{sub 2}/CO{sub 2} binary gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong-Yoon; Park, Myung-June [Ajou University, Suwon (Korea, Republic of); Hwang, Kyung-Ran; Park, Jong-Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-07-15

    A Pd-based membrane module for the capture of CO{sub 2} from a H{sub 2}/CO{sub 2} binary gas mixture was considered, and computational fluid dynamics modeling was used to predict the module performance. Detailed models of momentum and mass balances, including local flux as a function of local linear velocity, satisfactorily described CO{sub 2} fraction in a retentate tube when compared to the experimental data under various feed flow rates. By using the model, several cases having different geometries, including the location and diameter of feed tube and the number and location of the feed and retentate tubes, were considered. Among tested geometries, the case of two feed tubes with each offset by an angle, θ, of 45° from the center line, and a feed tube diameter of 2.45mm showed the increase of the feed flow rate up to 11.80% compared to the reference case while a CO{sub 2} fraction of 90% in the retentate, which was the criterion for effective CO{sub 2} capture in the present study, was guaranteed. This would result in a plausible reduction in capital expenditures for the CO{sub 2} capture process.

  13. Studies on the separation of hydrogen isotopes and spin isomers by gas chromatography

    International Nuclear Information System (INIS)

    Pushpa, K.K.; Annaji Rao, K.

    2000-08-01

    Separation and analysis of mixture of hydrogen isotopes has gained considerable importance because of various applications needing different isotopes in lasers, nuclear reactions and tracer or labelled compounds. In the literature gas chromatographic methods are reported using columns packed with partly dehydrated or thoroughly dehydrated alumina/molecular sieve stationary phase at 77 deg K with helium, neon and even hydrogen or deuterium as carrier gas. In the present study an attempt is made to compare the chromatographic behaviour of these two stationary phases using virgin and Fe doped form in partly dehydrated and thoroughly dehydrated state, using helium, neon, hydrogen and deuterium as carrier gas. The results of this study show that helium or neon carrier gas behave similarly broad peaks with some tailing. Sharp symmetric peaks are obtained with hydrogen or deuterium carrier gas. This is attributed to large hold up capacity for H 2 or D 2 at 77 deg K in these materials as compared to helium or neon. Spin isomers of H 2 or D 2 are separated on Fe free stationary phases, though ortho H 2 and HD are not resolved. Using a combination of Fe doped short column and plain alumina column, both maintained in dehydrated form, the effect of Fe doping on thermal equilibrium of ortho/para forms at 77 deg K is clearly demonstrated. (author)

  14. Palladium(II)-Catalysed Aminocarbonylation of Terminal Alkynes for the Synthesis of 2-Ynamides: Addressing the Challenges of Solvents and Gas Mixtures.

    Science.gov (United States)

    Hughes, N Louise; Brown, Clare L; Irwin, Andrew A; Cao, Qun; Muldoon, Mark J

    2017-02-22

    2-Ynamides can be synthesised through Pd II catalysed oxidative carbonylation, utilising low catalyst loadings. A variety of alkynes and amines can be used to afford 2-ynamides in high yields, whilst overcoming the drawbacks associated with previous oxidative methods, which rely on dangerous solvents and gas mixtures. The use of [NBu 4 ]I allows the utilisation of the industrially recommended solvent ethyl acetate. O 2 can be used as the terminal oxidant, and the catalyst can operate under safer conditions with low O 2 concentrations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Extraction of volume produced H- or D- ions from a sheet plasma, 2

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1984-02-01

    A development to large area H - or D - ion source is tried by using three extraction electrodes: The first electrode bias voltage is set near the wall potential (floating), the second electrode is set near 13 % of main extraction voltage and the third electrode is the main acceleration electrode. An ion current of 13 mA (3.3 mA/cm 2 ) for H - or 11 mA (2.8 mA/ cm 2 ) for D - at 3 KeV is extracted from 9 apertures of 6 mm phi in 4 cm 2 outside of the sheet plasma (14 cm wide and 1.0 cm thick) under a pressure of 7.7 x 10 -4 H2 or D2 gas and a weak magnetic field 50 gauss. Then, it is noted that the corresponding electron current is suppressed below 1/10 of the H - or D - ion current. (author)

  16. Study of influence of gas mixture composition on the multistep avalanche chambers characteristics

    International Nuclear Information System (INIS)

    Abdushukurov, D.A.; Zanevskij, Yu.V.; Peshekhonov, V.D.

    1987-01-01

    The influence of the concentration of organic quenchers on the operation of multistep avalanche chambers /MSAC/ has been studied. An empirical dependence of the gas amplification factor of MSAC on the quencher concentration has been derived. Measures are considered to increase the stability of the MSAC operation. To improve the MSAC operation argon + n-heptane, neon + methane and neon + argon + methane mixtures are suggested

  17. Microbial hydrogenogenic CO conversions: applications in synthesis gas purification and biodesulfurization

    NARCIS (Netherlands)

    Sipma, J.

    2006-01-01

    Hydrogen gas attracts great interest as a potential clean future fuel and it is an excellent electron donor in biotechnological reductive processes, e.g. in biodesulfurization. Bulk production of H 2 relies on the conversion of organic matter into synthesis gas, a mixture of H

  18. Silicon surface damage caused by reactive ion etching in fluorocarbon gas mixtures containing hydrogen

    International Nuclear Information System (INIS)

    Norstroem, H.; Blom, H.; Ostling, M.; Nylandsted Larsen, A.; Keinonen, J.; Berg, S.

    1991-01-01

    For selective etching of SiO 2 on silicon, gases or gas mixtures containing hydrogen are often used. Hydrogen from the glow discharge promotes the formation of a thin film polymer layer responsible for the selectivity of the etching process. The reactive ion etch (RIE) process is known to create damage in the silicon substrate. The influence of hydrogen on the damage and deactivation of dopants is investigated in the present work. The distribution of hydrogen in silicon, after different etching and annealing conditions have been studied. The influence of the RIE process on the charge carrier concentration in silicon has been investigated. Various analytical techniques like contact resistivity measurements, four point probe measurements, and Hall measurements have been used to determine the influence of the RIE process on the electrical properties of processed silicon wafers. The hydrogen profile in as-etched and post annealed wafers was determined by the 1 H( 15 N,αγ) 12 C nuclear reaction. The depth of the deactivated surface layer is discussed in terms of the impinging hydrogen ion energy, i.e., the possibility of H + ions to pick up an energy equal to the peak-to-peak voltage of the rf signal

  19. Thermochemistry of the solution of β-alanine in (H2O + alcohol) mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Smirnov, Valeriy I.; Badelin, Valentin G.

    2013-01-01

    Highlights: • Enthalpies of β-alanine dissolution have been measured in aqueous solution of MeOH, EtOH, 1-PrOH and 2-PrOH. • Measured data were reported as functions of composition of water + alcohol mixtures. • Enthalpy coefficients of pairwise interactions have been analyzed in terms of McMillan–Mayer theory. - Abstract: The enthalpies of the solution of β-alanine in H 2 O + (methanol, ethanol, 1-propanol and 2-propanol) mixtures with alcohol content up to 0.4 mol fractions, have been determined calorimetrically at T = 298.15 K. The standard enthalpies of the solution and transfer of β-alanine from water to aqueous alcohol have been calculated. The effect of structure properties of a mixed solvent on specified enthalpy characteristics of β-alanine is discussed. The enthalpy coefficients of pairwise interactions between β-alanine and alcohol molecules have been computed. It has been found that these coefficients become increasingly positive in methanol, ethanol, 1-propanol, and 2-propanol sequence. A comparative analysis of thermodynamic characteristics of dissolution of β-alanine and D,L-α-alanine in the mixtures studied has been made

  20. Laminar burning velocities of near-flammability-limit H2-air-steam mixtures

    International Nuclear Information System (INIS)

    Loesel Sitar, J.V.; Chan, C.K.; Torchia, F.; Guerrero, A.

    1995-01-01

    Laminar burning velocities of lean H 2 -air-steam mixtures near the flammability limit were measured by using the pressure-time history of an expanding flame kernel. Although flames in these mixtures are inherently unstable, this difficulty was avoided by using the early pressure rise of the burn. A comparison of results from that method with burning velocities determined from schlieren photographs of the expanding flame kernel gave good agreement. Despite the difficulties, it is believed that the pressure trace method gives results that are useful in modelling reactor accident scenarios. 8 refs., 4 figs

  1. CO2 capture by gas hydrate crystallization: Application on the CO2-N2 mixture

    International Nuclear Information System (INIS)

    Bouchemoua, A.

    2012-01-01

    CO 2 capture and sequestration represent a major industrial and scientific challenge of this century. There are different methods of CO 2 separation and capture, such as solid adsorption, amines adsorption and cryogenic fractionation. Although these processes are well developed at industrial level, they are energy intensive. Hydrate formation method is a less energy intensive and has an interesting potential to separate carbon dioxide. Gas hydrates are Document crystalline compounds that consist of hydrogen bonded network of water molecules trapping a gas molecule. Gas hydrate formation is favored by high pressure and low temperature. This study was conducted as a part of the SECOHYA ANR Project. The objective is to study the thermodynamic and kinetic conditions of the process to capture CO 2 by gas hydrate crystallization. Firstly, we developed an experimental apparatus to carry out experiments to determine the thermodynamic and kinetic formation conditions of CO 2 -N 2 gas hydrate mixture in water as liquid phase. We showed that the operative pressure may be very important and the temperature very low. For the feasibility of the project, we used TBAB (Tetrabutylammonium Bromide) as thermodynamic additive in the liquid phase. The use of TBAB may reduce considerably the operative pressure. In the second part of this study, we presented a thermodynamic model, based on the van der Waals and Platteeuw model. This model allows the estimation of thermodynamic equilibrium conditions. Experimental equilibrium data of CO 2 -CH 4 and CO 2 -N 2 mixtures are presented and compared to theoretical results. (author)

  2. Probing the Gaseous Structure of a β-Hairpin Peptide with H/D Exchange and Electron Capture Dissociation.

    Science.gov (United States)

    Straus, Rita N; Jockusch, Rebecca A

    2017-02-01

    An improved understanding of the extent to which native protein structure is retained upon transfer to the gas phase promises to enhance biological mass spectrometry, potentially streamlining workflows and providing fundamental insights into hydration effects. Here, we investigate the gaseous conformation of a model β-hairpin peptide using gas-phase hydrogen-deuterium (H/D) exchange with subsequent electron capture dissociation (ECD). Global gas-phase H/D exchange levels, and residue-specific exchange levels derived from ECD data, are compared among the wild type 16-residue peptide GB1p and several variants. High protection from H/D exchange observed for GB1p, but not for a truncated version, is consistent with the retention of secondary structure of GB1p in the gas phase or its refolding into some other compact structure. Four alanine mutants that destabilize the hairpin in solution show levels of protection similar to that of GB1p, suggesting collapse or (re)folding of these peptides upon transfer to the gas phase. These results offer a starting point from which to understand how a key secondary structural element, the β-hairpin, is affected by transfer to the gas phase. This work also demonstrates the utility of a much-needed addition to the tool set that is currently available for the investigation of the gaseous conformation of biomolecules, which can be employed in the future to better characterize gaseous proteins and protein complexes. Graphical Abstract ᅟ.

  3. Microscopic dynamics of binary mixtures and quasi-colloidal systems

    International Nuclear Information System (INIS)

    Smorenburg, H.E.

    1996-01-01

    In the study on the title subject two questions are addressed. One is whether the microscopic dynamics of binary mixtures and quasi-colloidal systems can be understood theoretically with kinetic theories for equivalent hard sphere mixtures. The other question that arises is whether the similarity in the dynamics of dense simple fluids and concentrated colloidal suspensions also holds for binary mixtures and quasi-colloidal systems. To answer these questions, we have investigated a number of binary gas mixtures and quasi-colloidal system with different diameter ratios and concentrations. We obtain the experimental dynamic structure factors S expt (κ,ω) of the samples from inelastic neutron scattering. We compare S expt (κ,ω) with the dynamic structure S HS (κ,ω) of an equivalent hard sphere fluid, that we calculate with the Enskog theory. In chapter 2, 3 and 4 we study dense He-Ar gas mixtures (diameter ratio R=1.4, and mass ratio M=10) at low and high Ar concentrations. Experiment and kinetic theory are in good agreement. In chapter 5 we study dilute quasi-colloidal suspensions of fullerene C60 molecules dissolved in liquid CS2. The diameter ratio R=2.2 is larger than in previous experiments while the mass ratio M=9.5 is more or less the same. We obtain the self diffusion coefficient D S of one C60 molecule in CS2 and find D s ≤D SE ≤D E , with D E obtained from kinetic theory and D SE from the Stokes-Einstein description. It appears that both descriptions are relevant but not so accurate. In chapter 6 we study three dense mixtures of neopentane in 40 Ar (diameter ratio R=1.7, mass ratio M=2) at low and high neopentane concentrations. At low concentration, we find a diffusion coefficient of neopentane in Ar, which is in good agreement with kinetic theory and in moderate agreement with the Stokes-Einstein description. At high concentration the collective translational dynamics of neopentane shows a similar behaviour as in dense colloids and simple fluids

  4. Improving the performance of plastic SQS tubes by means of a modified gas mixture

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.E.

    1987-01-01

    In the course of developing the plastic SQS detector modules for the muon endcaps on the OPAL experiment, we met with great difficulty in achieving reliable operation from the devices when following the accepted design and operation methods. Study of the breakdown modes of the devices revealed that interaction with the cathode surfaces seemed to be a key factor. In an attempt to ameliorate the situation the standard gas mixture was modified to include a very small doping of a liquid freon. With this gas stable operation became routine with counting plateaux of just on 90% over a range of 400 V in EHT. The pulse height spectra obtained with the doped gas give some insight into the streamer mechanism. (author)

  5. Adsorption of Hydrophobin-Protein Mixtures at the Air-Water Interface: The Impact of pH and Electrolyte.

    Science.gov (United States)

    Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Cox, Andrew R; Hedges, Nick

    2015-09-15

    The adsorption of the proteins β-casein, β-lactoglobulin, and hydrophobin, and the protein mixtures of β-casein/hydrophobin and β-lactoglobulin/hydrophobin have been studied at the air-water interface by neutron reflectivity, NR. Changing the solution pH from 7 to 2.6 has relatively little impact on the adsorption of hydrophobin or β-lactoglobulin, but results in a substantial change in the structure of the adsorbed layer of β-casein. In β-lactoglobulin/hydrophobin mixtures, the adsorption is dominated by the hydrophobin adsorption, and is independent of the hydrophobin or β-lactoglobulin concentration and solution pH. At pH 2.6, the adsorption of the β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption over the range of β-casein concentrations studied. At pH 4 and 7, the adsorption of β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption at low β-casein concentrations. At higher β-casein concentrations, β-casein is adsorbed onto the surface monolayer of hydrophobin, and some interpenetration between the two proteins occurs. These results illustrate the importance of pH on the intermolecular interactions between the two proteins at the interface. This is further confirmed by the impact of PBS, phosphate buffered saline, buffer and CaCl2 on the coadsorption and surface structure. The results provide an important insight into the adsorption properties of protein mixtures and their application in foam and emulsion stabilization.

  6. H I, CO, and Planck/IRAS dust properties in the high latitude cloud complex, MBM 53, 54, 55 and HLCG 92 – 35. Possible evidence for an optically thick H I envelope around the CO clouds

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Yasuo; Okamoto, Ryuji; Kaji, Ryohei; Yamamoto, Hiroaki; Torii, Kazufumi; Hayakawa, Takahiro; Tachihara, Kengo; Okuda, Takeshi; Ohama, Akio; Kuroda, Yutaka; Kuwahara, Toshihisa [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Dickey, John M., E-mail: fukui@a.phys.nagoya-u.ac.jp [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia)

    2014-11-20

    We present an analysis of the H I and CO gas in conjunction with the Planck/IRAS submillimeter/far-infrared dust properties toward the most outstanding high latitude clouds MBM 53, 54, 55 and HLCG 92 – 35 at b = –30° to – 45°. The CO emission, dust opacity at 353 GHz (τ{sub 353}), and dust temperature (T {sub d}) show generally good spatial correspondence. On the other hand, the correspondence between the H I emission and the dust properties is less clear than in CO. The integrated H I intensity W{sub H} {sub I} and τ{sub 353} show a large scatter with a correlation coefficient of ∼0.6 for a T {sub d} range from 16 K to 22 K. We find, however, that W{sub H} {sub I} and τ{sub 353} show better correlation for smaller ranges of T {sub d} every 0.5 K, generally with a correlation coefficient of 0.7-0.9. We set up a hypothesis that the H I gas associated with the highest T {sub d} ≥ 21.5 K is optically thin, whereas the H I emission is generally optically thick for T {sub d} lower than 21.5 K. We have determined a relationship for the optically thin H I gas between atomic hydrogen column density and τ{sub 353}, N{sub H} {sub I} (cm{sup −2})=(1.5×10{sup 26})⋅τ{sub 353}, under the assumption that the dust properties are uniform and we have applied this to estimate N{sub H} {sub I} from τ{sub 353} for the whole cloud. N{sub H} {sub I} was then used to solve for T {sub s} and τ{sub H} {sub I} over the region. The result shows that the H I is dominated by optically thick gas having a low spin temperature of 20-40 K and a density of 40-160 cm{sup –3}. The H I envelope has a total mass of ∼1.2 × 10{sup 4} M {sub ☉}, an order of magnitude larger than that of the CO clouds. The H I envelope properties derived by this method do not rule out a mixture of H I and H{sub 2} in the dark gas, but we present indirect evidence that most of the gas mass is in the atomic state.

  7. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part VI. Multicomponent mixtures with glycols relevant to oil and gas and to liquid or supercritical CO_2 transport applications

    International Nuclear Information System (INIS)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2016-01-01

    Highlights: • CPA EoS was applied to predict the phase behaviour of multicomponent mixtures containing CO_2, glycols, water and alkanes. • Mixtures relevant to oil and gas, CO_2 capture and liquid or supercritical CO_2 transport applications were investigated. • Results are presented using various modelling approaches/association schemes. • The predicting ability of the model was evaluated against experimental data. • Conclusions for the best modelling approach are drawn. - Abstract: In this work the Cubic Plus Association (CPA) equation of state is applied to multicomponent mixtures containing CO_2 with alkanes, water, and glycols. Various modelling approaches are used i.e. different association schemes for pure CO_2 (assuming that it is a non-associating compound, or that it is a self-associating fluid with two, three or four association sites) and different possibilities for modelling mixtures of CO_2 with other hydrogen bonding fluids (only use of one interaction parameter k_i_j or assuming cross association interactions and obtaining the relevant parameters either via a combining rule or using an experimental value for the cross association energy). Initially, new binary interaction parameters were estimated for (CO_2 + glycol) binary mixtures. Having the binary parameters from the binary systems, the model was applied in a predictive way (i.e. no parameters were adjusted to data on ternary and multicomponent mixtures) to model the phase behaviour of ternary and quaternary systems with CO_2 and glycols. It is concluded that CPA performs satisfactorily for most multicomponent systems considered. Some differences between the various modelling approaches are observed. This work is the last part of a series of studies, which aim to arrive in a single “engineering approach” for applying CPA to acid gas mixtures, without introducing significant changes to the model. An overall assessment, based also on the obtained results of this series (Tsivintzelis

  8. Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice.

    Science.gov (United States)

    Sapouckey, Sarah A; Kassotis, Christopher D; Nagel, Susan C; Vandenberg, Laura N

    2018-03-01

    Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 μg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 μg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 μg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies. Copyright © 2018 Endocrine Society.

  9. Convective behaviour in vapour-gas-aerosol mixtures

    International Nuclear Information System (INIS)

    Clement, C.F.

    1986-01-01

    Unusual convective behaviour can occur in mixtures of gases and heavy vapour, including stabilization of mixtures hot at the base and 'upside-down' convection in mixtures hot at the top. Previous work produced a criterion for this behaviour which ignored the necessary presence of an aerosol. Modification arising from aerosol condensation is derived and is shown to involve the Lewis and condensation numbers of the mixture, as well as a quantity involving the temperature drop across a boundary layer. It becomes negligible at high temperatures, but can crucially affect the temperature for the onset of unusual behaviour. Aerosol formation produces an asymmetry between the convective forces in boundary layers in which the mixture is being heated and cooled, respectively, for example at the base and roof of a cavity. The convective behaviour discussed could occur in situations relevant to nuclear safety. (author)

  10. The H2O/D2O exchange across vesicular lipid bilayers

    International Nuclear Information System (INIS)

    Engelbert, H.P.; Lawaczek, R.

    1985-01-01

    A new method to measure the water (D 2 O/H 2 O) permeation across vesicular lipid bilayers is described. The method is based on the solvent isotope effect of the light scattering which is a consequence of the different indices of refraction of D 2 O and H 2 O. Unilamellar lipid vesicles in excess of H 2 O are rapidly mixed with D 2 O or vice versa. As result of the H 2 O/D 2 O exchange across the vesicular bilayer the light scattering signal has a time dependent, almost single exponential component allowing the deduction of the exchange relaxation rate and, at known size, of the permeability coefficient. The experimental results are in accord with calculations from the Mie theory of light scattering for coated spheres. The method is applicable for large vesicles where the permeation is the rate-limiting step. Size separations are performed by a flow dialysis through a sequence of pore-membrane-filters. For dimyristoyl-lecithin bilayers the water permeability-coefficient is 1.9 . 10 -5 cm/s in the crystalline phase and increases by a factor of 10-100 in the liquid-crystalline state. The temperature dependence of the permeation exhibits a sharp change at the phase transition. For binary mixtures of lecithins this sharp change follows the solidus curve of the non-ideal phase diagram determined by spectroscopic techniques. (orig.)

  11. Electrochemical behaviour of cadmium in the H{sub 2}O-D{sub 2}O system. I. Polarographic study

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Lopez, J

    1966-07-01

    The diffusion current of Cd{sup 2} in a H{sub 2}O-D{sub 2}O system with a supporting electrolyte of 0.1 M KC1 + 0.01 M HC1 has been studied as a function of parameters such as time, height of the mercury reservoir and electrolyte temperature. the characteristics of the process are those of a reversible diffusion-controlled process. In the H{sub 2}O-D{sub 2}O system, the values of the diffusion current were smaller than the corresponding ones in H{sub 2}O, at 25 degree centigrade. The decrease was proportional to D{sub 2}O concentration when this was greater than 35 per cent. This fact may be used as an analytical means of determining D{sub 2}O in H{sub 2}O mixtures. (Author) 7 refs.

  12. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  13. High-temperature shock tube and modeling studies on the reactions of methanol with D-atoms and CH3-radicals.

    Science.gov (United States)

    Peukert, S L; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the hydrogen abstraction reactions D + CH3OH → CH2O + H + HD (A) and CH3 + CH3OH → CH2O + H + CH4 (B). For reaction A, the experiments span a T-range of 1016 K ≤ T ≤ 1325 K, at pressures 0.25 bar ≤ P ≤ 0.46 bar. The experiments on reaction B, CH3 + CH3OH, cover a T-range of 1138 K ≤ T ≤ 1270 K, at pressures around 0.40 bar. Reflected shock tube experiments, monitoring the depletion of D-atoms by applying D-atom atomic resonance absorption spectrometry (ARAS), were performed on reaction A using gas mixtures of C2D5I and CH3OH in Kr bath gas. C2D5I was used as precursor for D-atoms. For reaction B, reflected shock tube experiments monitoring H-atom formation with H-ARAS, were carried out using gas mixtures of diacetyl ((CH3CO)2) and CH3OH in Kr bath gas. (CH3CO)2 was used as the source of CH3-radicals. Detailed reaction models were assembled to fit the D-atom and H-atom time profiles in order to obtain experimental rate constants for reactions A and B. Total rate constants from the present experiments on D + CH3OH and CH3 + CH3OH can be represented by the Arrhenius equations kA(T) = 1.51 × 10(-10) exp(-3843 K/T) cm(3) molecules(-1) s(-1) (1016 K ≤ T ≤ 1325 K) and kB(T) = 9.62 × 10(-12) exp(-7477 K/T) cm(3) molecules(-1) s(-1) (1138 K ≤ T ≤ 1270 K). The experimentally obtained rate constants were compared with available rate data from the literature. The results from quantum chemical studies on reaction A were found to be in good agreement with the present results. The present work represents the first direct experimental study on these bimolecular reactions at combustion temperatures and is important to the high-temperature oxidation of CH3OH.

  14. Numerical analysis of mass transfer with graphite oxidation in a laminar flow of multi-component gas mixture through a circular tube

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    1992-10-01

    In the present paper, mass transfer has been numerically studied in a laminar flow through a circular graphite tube to evaluate graphite corrosion rate and generation rate of carbon monoxide during a pipe rupture accident in a high temperature gas cooled reactor. In the analysis, heterogeneous (graphite oxidation and graphite/carbon dioxide reaction) and homogeneous (carbon monoxide combustion) chemical reactions were dealt in the multi-component gas mixture; helium, oxygen, carbon monoxide and carbon dioxide. Multi-component diffusion coefficients were used in a diffusion term. Mass conservation equations of each gas component, mass conservation equation and momentum conservation equations of the gas mixture were solved by using SIMPLE algorism. Chemical reactions between graphite and oxygen, graphite and carbon dioxide, and carbon monoxide combustion were taken into account in the present numerical analysis. An energy equation for the gas mixture was not solved and temperature was held to be constant in order to understand basic mass transfer characteristics without heat transfer. But, an energy conservation equation for single component gas was added to know heat transfer characteristics without mass transfer. The effects of these chemical reactions on the mass transfer coefficients were quantitatively and qualitatively clarified in the range of 50 to 1000 of inlet Reynolds numbers, 0 to 0.5 of inlet oxygen mass fraction and 800 to 1600degC of temperature. (author)

  15. The localized vibrations of H-H-, D-D- and H-D- pairs in KCl, KBr, KI, RbCl and NaCl

    International Nuclear Information System (INIS)

    Robert, R.

    1974-01-01

    The localized vibrational modes of H - H - , D - D - and H - D - pairs in KCl, KBr, KI, RbCl and NaCl were studied for different pair configurations. The measured frequencies of the infrared active modes were found to be in good agreement with a model of two coupled harmonic oscillators. The line width for different modes in the salts studied is discussed. The temperature dependence for the transversal modes T 1 and T 2 of the line width for the H - H - pairs in KCl indicates that the broadening of these lines is due to the 'decomposition mechanism', that generates two phonons. The generated phonons due to the decay of the localized in phase mode are: -one acustic phonon of the lattice, -one localized phonon that corresponds to the out of phase vibration of the H - H - pair. The general properties, as the Ivey law and several particulars of the properties in the alkali-halides studied are presented [pt

  16. Hydrate-based methane separation from coal mine methane gas mixture by bubbling using the scale-up equipment

    International Nuclear Information System (INIS)

    Cai, Jing; Xu, Chun-Gang; Xia, Zhi-Ming; Chen, Zhao-Yang; Li, Xiao-Sen

    2017-01-01

    Highlights: •Hydrate-based methane separation was achieved in the large scale using SHW-II. •Bubbling method was beneficial to reduce energy consumption. •The optimal conditions were determined. •The morphology and flow characteristic of hydrate formation were filmed. -- Abstract: In this work, the hydrate-based methane (CH 4 ) separation from coal mine methane (CMM) gas mixture was carried out by bubbling with a scale-up equipment (SHW-II). The influences of gas/liquid volume ratios (0.25 and 0.60), gas bubble sizes (diameter: 20, 50 and 100 μm) and gas flow rates (7.50, 16.13 and 21.50 mL/min/L) on gas consumption and CH 4 recovery were systematically investigated at 277.15 K and 1.50 MPa. The hydrate formation morphology was filmed by a camera and the hydrate structure was determined by powder X-ray diffraction (PXRD). Gas bubbles generated when gas mixture flowed into bulk solution through a bubble plate from the bottom of SHW-II. Initially, the gas hydrates formed at the bubble boundary and grew up as the shell around the bubble with the continuously rising of the gas bubble, and finally accumulated in the interface between the gaseous phase and solution. The experimental results showed that the THF/CH 4 /N 2 hydrate in SHW-II presented structure II (sII). The gas/liquid volume ratio, gas bubble size and gas flow rate had influences on gas consumption and CH 4 recovery. The increase of gas/liquid volume ratio resulted in the decrease of gas consumption and CH 4 recovery, while the increase of gas flow rate caused the decrease of gas consumption. Both the maximum gas consumption and CH 4 recovery were achieved at the gas bubble with diameter of 50 μm. The optimal operating condition for large-scale CH 4 separation via clatharate hydrate was comprehensively defined as the gas/liquid volume ratio of 0.25, the gas bubble diameter of 50 μm and the gas flow rate of 16.13 mL/min/L at 277.15 K and 1.50 MPa.

  17. H2S mediated thermal and photochemical methane activation

    Science.gov (United States)

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric

    2013-01-01

    Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813

  18. UV-laser-light-controlled photoluminescence of metal oxide nanoparticles in different gas atmospheres: BaTiO3, SrTiO3 and HfO2

    International Nuclear Information System (INIS)

    Mochizuki, Shosuke; Saito, Takashi; Yoshida, Kaori

    2012-01-01

    The photoluminescence (PL) enhancement has been studied at room temperature using various specimen atmospheres (O 2 gas, CO 2 gas, CO 2 -H 2 mixture gas, Ar-H 2 mixture gas and vacuum) under 325 nm laser light irradiation on various metal oxides. Of them, the results obtained for BaTiO 3 nanocrystals, SrTiO 3 ones and HfO 2 powder crystal are given in the present paper. Their PL were considerably increased in intensity by irradiation of 325 nm laser light in CO 2 gas and CO 2 -H 2 mixture gas. The cause of the PL intensity enhancements is discussed in the light of the exciton theory, the defect chemistry and the photocatalytic theory. The results may be applied for the utilization of greenhouse gas (CO 2 ) and the optical sensor for CO 2 gas.

  19. Pulsed electron-beam-sustained discharge in oxygen-containing gas mixtures: electrical characteristics, spectroscopy,and singlet oxygen yield

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Ionin, Andrei A; Klimachev, Yu M; Kotkov, A A; Podmar'kov, Yu P; Seleznev, L V; Sinitsyn, D V; Frolov, M P; Yuryshev, Nikolai N; Kochetov, Igor' V; Napartovich, A P; Hager, G D

    2004-01-01

    The electrical and spectroscopic characteristics of electron-beam-sustained discharge (EBSD) in oxygen and oxygen-containing gas mixtures are studied experimentally under gas pressures up to 100 Torr in a large excitation volume (∼18 L). It is shown that the EBSD in pure oxygen and its mixtures with inert gases is unstable and is characterised by a small specific energy contribution. The addition of small amounts (∼1%-10%) of carbon monoxide or hydrogen to oxygen or its mixtures with inert gases considerably improves the stability of the discharge, while the specific energy contribution W increases by more then an order of magnitude, achieving ∼6.5 kJ L -1 atm -1 per molecular component of the gas mixture. A part of the energy supplied to the EBSD is spent to excite vibrational levels of molecular additives. This was demonstrated experimentally by the initiation of a CO laser based on the O 2 : Ar : CO = 1 : 1 : 0.1 mixture. Experimental results on spectroscopy of the excited electronic states O 2 (a 1 Δ g ) and O 2 (b 1 Σ g + ), of oxygen formed in the EBSD are presented. A technique was worked out for measuring the concentration of singlet oxygen in the O 2 (a 1 Δ g ) state in the afterglow of the pulsed EBSD by comparing with the radiation intensity of singlet oxygen of a given concentration produced in a chemical generator. Preliminary measurements of the singlet-oxygen yield in the EBSD show that its value ∼3% for W ∼ 1.0 kJ L -1 atm -1 is in agreement with the theoretical estimate. Theoretical calculations performed for W ∼ 6.5 kJ L -1 atm -1 at a fixed temperature show that the singlet-oxygen yield may be ∼20%, which is higher than the value required to achieve the lasing threshold in an oxygen-iodine laser at room temperature. (laser applications and other topics in quantum electronics)

  20. Growth Kinetics and Modeling of Direct Oxynitride Growth with NO-O2 Gas Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Everist, Sarah; Nelson, Jerry; Sharangpani, Rahul; Smith, Paul Martin; Tay, Sing-Pin; Thakur, Randhir

    1999-05-03

    We have modeled growth kinetics of oxynitrides grown in NO-O2 gas mixtures from first principles using modified Deal-Grove equations. Retardation of oxygen diffusion through the nitrided dielectric was assumed to be the dominant growth-limiting step. The model was validated against experimentally obtained curves with good agreement. Excellent uniformity, which exceeded expected walues, was observed.

  1. Morphology of Diamond Layers Grown on Different Facets of Single Crystal Diamond Substrates by a Microwave Plasma CVD in CH4-H2-N2 Gas Mixtures

    Directory of Open Access Journals (Sweden)

    Evgeny E. Ashkinazi

    2017-06-01

    Full Text Available Epitaxial growth of diamond films on different facets of synthetic IIa-type single crystal (SC high-pressure high temperature (HPHT diamond substrate by a microwave plasma CVD in CH4-H2-N2 gas mixture with the high concentration (4% of nitrogen is studied. A beveled SC diamond embraced with low-index {100}, {110}, {111}, {211}, and {311} faces was used as the substrate. Only the {100} face is found to sustain homoepitaxial growth at the present experimental parameters, while nanocrystalline diamond (NCD films are produced on other planes. This observation is important for the choice of appropriate growth parameters, in particular, for the production of bi-layer or multilayer NCD-on-microcrystalline diamond (MCD superhard coatings on tools when the deposition of continuous conformal NCD film on all facet is required. The development of the film morphology with growth time is examined with SEM. The structure of hillocks, with or without polycrystalline aggregates, that appear on {100} face is analyzed, and the stress field (up to 0.4 GPa within the hillocks is evaluated based on high-resolution mapping of photoluminescence spectra of nitrogen-vacancy NV optical centers in the film.

  2. CO2 Removal from Multi-component Gas Mixtures Utilizing Spiral-Wound Asymmetric Membranes

    International Nuclear Information System (INIS)

    Said, W.B.; Fahmy, M.F.M.; Gad, F.K.; EI-Aleem, G.A.

    2004-01-01

    A systematic procedure and a computer program have been developed for simulating the performance of a spiral-wound gas permeate for the CO 2 removal from natural gas and other hydrocarbon streams. The simulation program is based on the approximate multi-component model derived by Qi and Henson(l), in addition to the membrane parameters achieved from the binary simulation program(2) (permeability and selectivity). Applying the multi-component program on the same data used by Qi and Henson to evaluate the deviation of the approximate model from the basic transport model, showing results more accurate than those of the approximate model, and are very close to those of the basic transport model, while requiring significantly less than 1 % of the computation time. The program was successfully applied on the data of Salam gas plant membrane unit at Khalda Petroleum Company, Egypt, for the separation of CO 2 from hydrocarbons in an eight-component mixture to estimate the stage cut, residue, and permeate compositions, and gave results matched with the actual Gas Chromatography Analysis measured by the lab

  3. Harmonic-anharmonic transition in disaccharides/H{sub 2}O mixtures by EINS

    Energy Technology Data Exchange (ETDEWEB)

    Magazu, S.; Migliardo, F.; Mondelli, C

    2004-07-15

    This work furnishes new experimental findings on glass-forming systems, i.e. homologues disaccharides (trehalose, maltose, sucrose)/H{sub 2}O mixtures obtained by using elastic incoherent neutron scattering. Such a technique allows to characterize the different degree of 'strength' of the investigated systems by means of the analysis of both the elastic intensity and the mean square displacement behaviours as a function of temperature and Q. The better cryptoprotectant effectiveness of trehalose in comparison with the other disaccharides is ascribed to lower fragility of the matrix in which biostructures are immersed, i.e. of the trehalose/water mixture.

  4. Modelling phase equilibria for acid gas mixtures using the CPA equation of state. Part V: Multicomponent mixtures containing CO2 and alcohols

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2015-01-01

    of CPA for ternary and multicomponent CO2 mixtures containing alcohols (methanol, ethanol or propanol) water and hydrocarbons. This work belongs to a series of studies aiming to arrive in a single "engineering approach" for applying CPA to acid gas mixtures, without introducing significant changes...... to the model. In this direction, CPA results were obtained using various approaches, i.e. different association schemes for pure CO2 (assuming that it is a non-associating compound, or that it is a self-associating fluid with two, three or four association sites) and different possibilities for modelling...... mixtures of CO2 with water and alcohols (only use of one interaction parameter kij or assuming cross-association interactions and obtaining the relevant parameters either via a combining rule or using an experimental value for the cross-association energy). It is concluded that CPA is a powerful model...

  5. Molecular hydrogen (H2) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning

    NARCIS (Netherlands)

    Vollmer, M.K.; Walter, S.; Mohn, J.; Steinbacher, M.; Bond, S.W.; Röckmann, T.; Reimann, S.

    2012-01-01

    Molecular hydrogen (H2), its stable isotope signature ( D), and the key combustion parameters carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were measured from various combustion processes. H2 in the exhaust of gas and oil-fired heaters and of waste incinerator plants was generally

  6. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  7. Separation of gas mixtures

    International Nuclear Information System (INIS)

    1981-01-01

    Apparatus is described for the separation of a gaseous plasma mixture into components in some of which the original concentration of a specific ion has been greatly increased or decreased, comprising: a source for converting the gaseous mixture into a train of plasma packets; an open-ended vessel with a main section and at least one branch section, adapted to enclose along predetermined tracks the original plasma packets in the main section, and the separated plasma components in the branch sections; drive means for generating travelling magnetic waves along the predetermined tracks with the magnetic flux vector of the waves transverse to each of the tracks; and means for maintaining phase coherence between the plasma packets and the magnetic waves at a value needed for accelerating the components of the packets to different velocities and in such different directions that the plasma of each packet is divided into distinctly separate packets in some of which the original concentration of a specific ion has been greatly increased or decreased, and which plasma packets are collected from the branch sections of the vessels. (author)

  8. A light-gas gun for acceleration of pellets of solid D2

    International Nuclear Information System (INIS)

    Nordskov, A.; Skovgaard, H.; Soerensen, H.; Weisberg, K.V.

    1980-10-01

    A gun has been designed and built to be used for injecting solid D 2 pellets into a small tokamak for pellet-plasma interaction studies. The pellets are formed and accelerated at temperatures close to those of liquid helium. They are propelled with pressurised H 2 -gas; the pressure arises when a quantity of solid H 2 placed in the gun barrel behind the pellet is pulse heated. Pellet velocities up to 240 m/s have been obtained. The directional accuracy is better than 0.2deg and the repetition rate is one firing every five minutes. The pellet volume is 0.6 mm 3 (2 x 10 19 molecules) while the quantity of propeller gas used is around 12 x 10 19 molecules. (author)

  9. Possibilities of gas-phase radio-chromatography application to permanent-gas analysis; Possibilites de la radiochromatographie en phase gazeuse applications a l'analyse des gaz permanents

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M C; Charrier, G; Alba, C; Massimino, D [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1970-07-01

    The gas-phase radio-chromatography technique has been applied to the rapid analysis of permanent gases (H{sub 2}, O{sub 2}, N{sub 2}, A, Kr, Xe, CO, CH{sub 4}) labelled with radioactive indicators ({sup 3}H, {sup 37}A, {sup 85}Kr, {sup 133}Xe). After calibration, the components of such a mixture can be identified and their concentrations measured in less than two hours, using a sample volume of from 0.1 to 10 cm{sup 3}. The minimum detectable activity is of the order of 10{sup -4} {mu}C for each radioactive isotope. The measurements are reproducible to about 2 to 3 per cent. This work has been mainly concerned with the influence of parameters affecting the response of the radioactivity detector (ionization chamber or gas flow proportional counter). The method has very numerous applications both theoretically, for the study of chromatographic phenomena under ideal conditions (infinitesimal concentrations made possible by the use of radioactive tracers), and practically, for rapid and accurate radiochemical analysis of radioactive gas mixtures. (authors) [French] La technique de radiochromatographie en phase gazeuse est appliquee a l'analyse rapide de gaz permanents (H{sub 2}, O{sub 2}, N{sub 2}, A, Kr, Xe, CO, CH{sub 4}) marques par des indicateurs radioactifs ({sup 3}H, {sup 37}A, {sup 85}Kr, {sup 133}Xe). Apres etalonnage, l'identification et la mesure des concentrations des constituants d'un tel melange requierent moins de deux heures, sur un volume d'echantillon de 0.1 a 10 cm{sup 3}. L'activite minimum detectable est de l'ordre de 10{sup -4} {mu}C pour chaque isotope radioactif. La reproductibilite des mesures est de l'ordre de 2 a 3 pour cent. L'etude porte principalement sur l'influence des parametres affectant la reponse du detecteur de radioactivite (chambre d'ionisation, ou compteur proportionnel a circulation). La methode est extremement fertile en applications tant sur le plan theorique pour l'etude du phenomene chromatographique dans les conditions

  10. Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity

    Science.gov (United States)

    Fornaroli, Riccardo; Ippolito, Alessio; Tolkkinen, Mari J.; Mykrä, Heikki; Muotka, Timo; Balistrieri, Laurie S.; Schmidt, Travis S.

    2018-01-01

    One of the primary goals of biological assessment of streams is to identify which of a suite of chemical stressors is limiting their ecological potential. Elevated metal concentrations in streams are often associated with low pH, yet the effects of these two potentially limiting factors of freshwater biodiversity are rarely considered to interact beyond the effects of pH on metal speciation. Using a dataset from two continents, a biogeochemical model of the toxicity of metal mixtures (Al, Cd, Cu, Pb, Zn) and quantile regression, we addressed the relative importance of both pH and metals as limiting factors for macroinvertebrate communities. Current environmental quality standards for metals proved to be protective of stream macroinvertebrate communities and were used as a starting point to assess metal mixture toxicity. A model of metal mixture toxicity accounting for metal interactions was a better predictor of macroinvertebrate responses than a model considering individual metal toxicity. We showed that the direct limiting effect of pH on richness was of the same magnitude as that of chronic metal toxicity, independent of its influence on the availability and toxicity of metals. By accounting for the direct effect of pH on macroinvertebrate communities, we were able to determine that acidic streams supported less diverse communities than neutral streams even when metals were below no-effect thresholds. Through a multivariate quantile model, we untangled the limiting effect of both pH and metals and predicted the maximum diversity that could be expected at other sites as a function of these variables. This model can be used to identify which of the two stressors is more limiting to the ecological potential of running waters.

  11. Conversion of tritium gas to tritiated water

    International Nuclear Information System (INIS)

    Papagiannakopoulos, P.J.; Easterly, C.E.

    1979-05-01

    The mechanisms of conversion of tritium gas to tritiated water (HTO) have been examined for several tritium gaseous mixtures. The physical and chemical processes involved in the self-radiolysis of such mixtures have been analyzed and the kinetics involved in the formation of HTO has been presented. It has been determined that the formation of the H and/or OH free radicals, as intermediate species, are of significance in the formation of HTO. Therefore, the problem of reducing the rate of formation of tritiated water in a mixture of gaseous tritium with atmospheric components is one of finding an effective scavenger for the H and/or OH free radicals

  12. Thermal expansion and temperature variation of elastic constants of Li(H,D) and Na(H,D) systems

    International Nuclear Information System (INIS)

    Islam, A.K.M.A.; Hoque, M.T.

    1994-11-01

    An analysis of thermal expansion of Li(H,D) systems up to melting temperature has been performed using the theory of anharmonic lattice. The study has for the first time been extended to Na(H,D) systems where very little or no data are available. The calculated lattice constants of Li(H,D) systems show quite good agreement with experiment. The success of the present calculation with Li(H,D) and room temperature lattice constant data for Na(H,D) given an indication of the reliability of the computed lattice constants and thermal expansion coefficients for Na(H,D) systems. The study also allows us to predict the hitherto unknown lattice constants of Na(H,D) crystal at 0K. The temperature dependence of elastic constants for Li(H,D) systems has also been evaluated. Comparison with measurements shows the reliability of the present calculations. (author). 45 refs, 4 figs

  13. A study of chemical equilibrium of tri-component mixtures of hydrogen isotopes

    International Nuclear Information System (INIS)

    Cristescu, Ioana; Cristescu, I.; Peculea, M.

    1998-01-01

    In this paper we present a model for computing the equilibrium constants for chemical reactions between hydrogen's isotopes as function of temperature. The equilibrium constants were expressed with the aid of Gibbs potential and the partition function of the mixture. We assessed the partition function for hydrogen's isotopes having in view that some nuclei are fermions and other bosons. As results we plotted the values of equilibrium constants as function of temperature. Knowing these values we determined the deuterium distribution on species (for mixture H 2 -HD-D 2 ) as function of total deuterium concentration and the tritium distribution on species (for mixtures D 2 -DT-T 2 and H 2 -HT-T 2 ) as function of total tritium concentration. (authors)

  14. Pressure-induced change in the Raman spectra of ionic liquid [DEME][BF4]-H2O mixtures

    International Nuclear Information System (INIS)

    Imai, Y; Abe, H; Goto, T; Miyashita, T; Yoshimura, Y

    2010-01-01

    We have measured Raman spectral changes of N,N,diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF 4 ]-H 2 O mixtures under high pressure. All the Raman spectra of mixtures of water concentrations below 50.0 mol% H 2 O changed at around 1 GPa at room temperature. The spectrum at high pressure is completely different from that obtained by cooling the sample at a normal pressure.

  15. Tritium release from advanced beryllium materials after loading by tritium/hydrogen gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, Vladimir, E-mail: vladimir.chakin@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, Rolf; Moeslang, Anton; Kurinskiy, Petr; Vladimirov, Pavel [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dorn, Christopher [Materion Beryllium & Composites, 6070 Parkland Boulevard, Mayfield Heights, OH 44124-4191 (United States); Kupriyanov, Igor [Bochvar Russian Scientific Research Institute of Inorganic Materials, Rogova str., 5, 123098 Moscow (Russian Federation)

    2016-06-15

    Highlights: • A major tritium release peak for beryllium samples occurs at temperatures higher than 1250 K. • A beryllium grade with comparatively smaller grain size has a comparatively higher tritium release compared to the grade with larger grain size. • The pebbles of irregular shape with the grain size of 10–30 μm produced by the crushing method demonstrate the highest tritium release rate. - Abstract: Comparison of different beryllium samples on tritium release and retention properties after high-temperature loading by tritium/hydrogen gas mixture and following temperature-programmed desorption (TPD) tests has been performed. The I-220-H grade produced by hot isostatic pressing (HIP) having the smallest grain size, the pebbles of irregular shape with the smallest grain size (10–30 μm) produced by the crushing method (CM), and the pebbles with 1 mm diameter produced by the fluoride reduction method (FRM) having a highly developed inherent porosity show the highest release rate. Grain size and porosity are considered as key structural parameters for comparison and ranking of different beryllium materials on tritium release and retention properties.

  16. A narrow-band k-distribution model with single mixture gas assumption for radiative flows

    Science.gov (United States)

    Jo, Sung Min; Kim, Jae Won; Kwon, Oh Joon

    2018-06-01

    In the present study, the narrow-band k-distribution (NBK) model parameters for mixtures of H2O, CO2, and CO are proposed by utilizing the line-by-line (LBL) calculations with a single mixture gas assumption. For the application of the NBK model to radiative flows, a radiative transfer equation (RTE) solver based on a finite-volume method on unstructured meshes was developed. The NBK model and the RTE solver were verified by solving two benchmark problems including the spectral radiance distribution emitted from one-dimensional slabs and the radiative heat transfer in a truncated conical enclosure. It was shown that the results are accurate and physically reliable by comparing with available data. To examine the applicability of the methods to realistic multi-dimensional problems in non-isothermal and non-homogeneous conditions, radiation in an axisymmetric combustion chamber was analyzed, and then the infrared signature emitted from an aircraft exhaust plume was predicted. For modeling the plume flow involving radiative cooling, a flow-radiation coupled procedure was devised in a loosely coupled manner by adopting a Navier-Stokes flow solver based on unstructured meshes. It was shown that the predicted radiative cooling for the combustion chamber is physically more accurate than other predictions, and is as accurate as that by the LBL calculations. It was found that the infrared signature of aircraft exhaust plume can also be obtained accurately, equivalent to the LBL calculations, by using the present narrow-band approach with a much improved numerical efficiency.

  17. Effect of Water Content on Properties of Homogeneous [bmim]Fe(IIICl4–H2O Mixtures and Their Application in Oxidative Absorption of H2S

    Directory of Open Access Journals (Sweden)

    Jianhong Wang

    2018-01-01

    Full Text Available The potential of 1-butyl-3-methylimidazolium tetrachloroferrate ([bmim]Fe(IIICl4 for replacing an iron(III chelate catalytic solution in the catalytic oxidation of H2S is attributed to its no side reaction and no degradation of the chelating agent. The catalytic oxidation product of water in non-aqueous [bmim]Fe(IIICl4 possibly has an influence on the oxidative absorption of H2S. Water and hydrophobic [bmim]Fe(IIICl4 mixtures at water volume percents from 40% to 70% formed separate phases after srirring, without affecting the oxidative absorption of hydrogen sulfide. Then, studies on the properties of homogeneous [bmim]Fe(IIICl4–H2O mixtures at water volume percents in the range of 5.88–30% and above 80% reveal that these mixtures are both Brønsted and Lewis acids at vol % (H2O ≤ 30%, and only Lewis acids at vol % (H2O ≥ 80%. Raman spectra showed that [bmim]Fe(IIICl4 was the dominating species at vol % (H2O ≤ 30%, in contrast, [bmim]Fe(IIICl4 decomposed into FeCl3·2H2O and [bmim]Cl at vol % (H2O ≥ 80%. Further research on oxidative absorption of H2S by homogeneous [bmim]Fe(IIICl4–H2O mixtures demonstrated that [bmim]Fe(IIICl4 was reduced by H2S to [bmim]Fe(IICl4H and FeCl3·2H2O was reduced to FeCl2, at the same time, H2S was oxidized to S8. In addition, the decrease in acidity caused by increasing the water content increased the weight percent of absorbed H2S, and decreased volatile HCl emissions. However, it is difficult to prevent the suspended S8 generated at vol % (H2O ≥ 80% from the formation of sulfur blockage. Therefore, oxidative absorption of H2S by [bmim]Fe(IIICl4–H2O mixtures is feasible at vol % (H2O < 80% without sulfur blockage.

  18. Mechanism of Nitrogenase H 2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects

    Energy Technology Data Exchange (ETDEWEB)

    Khadka, Nimesh [Department of Chemistry; Milton, Ross D. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States; Shaw, Sudipta [Department of Chemistry; Lukoyanov, Dmitriy [Department; Dean, Dennis R. [Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States; Minteer, Shelley D. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States; Raugei, Simone [Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Hoffman, Brian M. [Department; Seefeldt, Lance C. [Department of Chemistry

    2017-09-15

    Nitrogenase catalyzes the reduction of dinitrogen (N2) to ammonia (NH3) with obligatory reduction of protons (H+) to dihydrogen (H2) through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides at its active site FeMo-cofactor. The overall rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to MoFe protein without Fe protein and ATP hydrolysis, thereby eliminating the normal rate-limiting step. The ratio of catalytic current in mixtures of H2O and D2O, the proton inventory, changes linearly with the D2O/H2O ratio, revealing that a single H/D is involved in the rate limiting step. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H2 formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H2 formation where the proton from S-H+ moves to the hydride in Fe-H-, predicting the number and magnitude of the observed H/D isotope effect. This study not only reveals the mechanism of H2 formation, but also illustrates a strategy for mechanistic study that can be applied to other enzymes and to biomimetic complexes.

  19. Quinoline derivative containing monomeric and polymeric metal carboxylates: Synthesis, crystal structure and gas adsorption study over a 2D layered framework

    Science.gov (United States)

    Gayen, Saikat; Saha, Debraj; Koner, Subratanath

    2018-06-01

    A new supramolecular metal-carboxylate framework [Co(mqc)2]n (1), and another monomeric compound [Zn (mqc)2(H2O)] (2) (mqcH = 4-methoxy 2-quinolinecarboxylic acid) have been synthesized solvothermally and characterized by single crystal X-ray diffraction, elemental analysis, IR spectra, UV-vis spectra, powdered X-ray diffraction (PXRD) and thermogravimetric analysis. Compound 1 is a 2D coordination polymer, extended to a 3D porous supramolecular network having void space in between 2D layers. Compound 1 exhibits gas uptake capacity of N2, H2, CO2 and CH4 like small gas molecules in which moderately high uptake of H2 and CO2 takes place among the 2D MOFs. While the Zn variety, compound 2 features a one-dimensional chain like structure through strong intermolecular hydrogen-bonding.

  20. Properties of L-ascorbic acid in water and binary aqueous mixtures of D-glucose and D-fructose at different temperatures

    Science.gov (United States)

    Sharma, Ravi; Thakur, R. C.; Sani, Balwinder; Kumar, Harsh

    2017-12-01

    Using density and sound velocity partial molar volumes, partial molar adiabatic compressibilities, partial molar expansibilities and structure of L-ascorbic acid have been determined in water and aqueous mixtures of D-glucose and D-fructose at different concentrations and temperatures. Masson's equation was used to analyze the measured data. The obtained parameters have been interpreted in terms of solute-solute and solute-solvent interactions. It is found that the L-ascorbic acid acts as structure breaker in water as well in binary studied mixtures.

  1. Selectivity of Catalytically Modified Tin Dioxide to CO and NH3 Gas Mixtures

    Directory of Open Access Journals (Sweden)

    Artem Marikutsa

    2015-10-01

    Full Text Available This paper is aimed at selectivity investigation of gas sensors, based on chemically modified nanocrystalline tin dioxide in the detection of CO and ammonia mixtures in air. Sol-gel prepared tin dioxide was modified by palladium and ruthenium oxides clusters via an impregnation technique. Sensing behavior to CO, NH3 and their mixtures in air was studied by in situ resistance measurements. Using the appropriate match of operating temperatures, it was shown that the reducing gases mixed in a ppm-level with air could be discriminated by the noble metal oxide-modified SnO2. Introducing palladium oxide provided high CO-sensitivity at 25–50 °C. Tin dioxide modified by ruthenium oxide demonstrated increased sensor signals to ammonia at 150–200 °C, and selectivity to NH3 in presence of higher CO concentrations.

  2. Possibilities of gas-phase radio-chromatography application to permanent-gas analysis; Possibilites de la radiochromatographie en phase gazeuse applications a l'analyse des gaz permanents

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, M.C.; Charrier, G.; Alba, C.; Massimino, D. [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1970-07-01

    The gas-phase radio-chromatography technique has been applied to the rapid analysis of permanent gases (H{sub 2}, O{sub 2}, N{sub 2}, A, Kr, Xe, CO, CH{sub 4}) labelled with radioactive indicators ({sup 3}H, {sup 37}A, {sup 85}Kr, {sup 133}Xe). After calibration, the components of such a mixture can be identified and their concentrations measured in less than two hours, using a sample volume of from 0.1 to 10 cm{sup 3}. The minimum detectable activity is of the order of 10{sup -4} {mu}C for each radioactive isotope. The measurements are reproducible to about 2 to 3 per cent. This work has been mainly concerned with the influence of parameters affecting the response of the radioactivity detector (ionization chamber or gas flow proportional counter). The method has very numerous applications both theoretically, for the study of chromatographic phenomena under ideal conditions (infinitesimal concentrations made possible by the use of radioactive tracers), and practically, for rapid and accurate radiochemical analysis of radioactive gas mixtures. (authors) [French] La technique de radiochromatographie en phase gazeuse est appliquee a l'analyse rapide de gaz permanents (H{sub 2}, O{sub 2}, N{sub 2}, A, Kr, Xe, CO, CH{sub 4}) marques par des indicateurs radioactifs ({sup 3}H, {sup 37}A, {sup 85}Kr, {sup 133}Xe). Apres etalonnage, l'identification et la mesure des concentrations des constituants d'un tel melange requierent moins de deux heures, sur un volume d'echantillon de 0.1 a 10 cm{sup 3}. L'activite minimum detectable est de l'ordre de 10{sup -4} {mu}C pour chaque isotope radioactif. La reproductibilite des mesures est de l'ordre de 2 a 3 pour cent. L'etude porte principalement sur l'influence des parametres affectant la reponse du detecteur de radioactivite (chambre d'ionisation, ou compteur proportionnel a circulation). La methode est extremement fertile en applications tant sur le plan theorique pour l

  3. Aromatic substitution in the gas phase. Alkylation of arenes by gaseous C4H9+ cations

    International Nuclear Information System (INIS)

    Cacace, F.; Ciranni, G.; Giacomello, P.

    1981-01-01

    Butyl cations, obtained in the dilute gas state from the radiolysis of butane in the pressure range from 70 to 750 torr, have been allowed to react with benzene, toluene, and their mixtures or with trace amounts of o-xylene in the gaseous system. The gas-phase butylation yields invariably sec-butylarenes, remarkably free of isomeric byproducts, namely n- and tert-butylarenes. Other alkylation experiments, where gaseous butyl cations from the reaction of butane with radiolytically formed H 3 + ions were used as reagent, confirmed the exclusive formation of sec-butylarenes. The butylation process displays the positional and substrate selectivity and the dependence of orientation on the pressure of the system, typical of other gas-phase ionic substitutions. At high pressures, orth-para orientation predominates in the sec-butylation of toluene, with a ortho:meta:para ratio of 43:30:27 at 715 torr. As the pressure is reduced, a gradual shift in favor of the thermodynamically most stable meta-substituted arenium ion is observed, leading to a ortho:meta:para ratio of 31:48:21 at 70 torr

  4. Effect of oxygen enrichment in air on acid gas combustion under Claus conditions

    KAUST Repository

    Ibrahim, Salisu

    2013-09-01

    Results are presented to examine the combustion of acid gas (H2S and CO2) in hydrogen-fueled flames using a mixture of oxygen and nitrogen under Claus conditions (Φ = 3). Specifically the effect of oxygen enrichment in the above flames is examined. The compositions of acid gas examined are100% H2S and 50% H2S/50% CO2 with different percentages of oxygen enrichment (0%, 19.3% and 69.3%) in the oxygen/nitrogen mixtures. The results revealed that combustion of acid gas formed SO2 wherein the mole fraction of SO2 increased to an asymptotic value at all the oxygen concentrations examined. In addition, increase in oxygen enrichment of the air resulted in increased amounts of SO2 rather than the formation of more desirable elemental sulfur. In case of 50% H2S/50% CO2 acid gas, carbon monoxide mole fraction increased with oxygen enrichment which is an indicator to the availability of additional amounts of oxygen into the reaction pool. This gas mixture resulted in the formation of other sulfurous–carbonaceous compounds (COS and CS2) due to the presence of carbon monoxide. The results showed that the rate of COS formation increased with oxygen enrichment due to the availability of higher amounts of CO while that of CS2 reduced. The global reactions responsible for this observed phenomenon are presented.

  5. 2H(d,p)3H and 2H(d,n)3He reactions at sub-coulomb energies

    International Nuclear Information System (INIS)

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Spartá, R.; Aliotta, M.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Mrazek, J.; Pizzone, R. G.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.

    2012-01-01

    The 2 H( 3 He,p 3 H) 1 H and 2 H( 3 He,n 3 He) 1 H processes have been measured in quasi free kinematics to investigate for the first time the 2 H(d,p) 3 H and 2 H(d,n) 3 He reactions by means of the Trojan Horse Method. The 3 He+d experiment was performed at 18 MeV, corresponding the a d-d energy range from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre Main Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the bare nucleus S(E) factors have been extracted for the first time. They deviate by more than 15% from available direct data with new S(0) values of 57.4±1.8 MeVb for 3 H+p and 60.1±1.9 MeVb for 3 He+n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors.

  6. Data Requirements and Modeling for Gas Hydrate-Related Mixtures and a Comparison of Two Association Models

    DEFF Research Database (Denmark)

    Liang, Xiaodong; Aloupis, Georgios; Kontogeorgis, Georgios M.

    2017-01-01

    the performance of the CPA and sPC-SAFT EOS for modeling the fluid-phase equilibria of gas hydrate-related systems and will try to explore how the models can help in suggesting experimental measurements. These systems contain water, hydrocarbon (alkane or aromatic), and either methanol or monoethylene glycol...... parameter sets have been chosen for the sPC-SAFT EOS for a fair comparison. The comparisons are made for pure fluid properties, vapor liquid-equilibria, and liquid liquid equilibria of binary and ternary mixtures as well as vapor liquid liquid equilibria of quaternary mixtures. The results show, from...

  7. Modified molecular sieves: stationary phase for the gas chromatographic separation of hydrogen isotopes

    International Nuclear Information System (INIS)

    Pushpa, K.K.; Annaji Rao, K.; Iyer, R.M.

    1993-01-01

    Gas chromatographic separation of hydrogen isotopes on different molecular sieves at liquid nitrogen temperature has been investigated. Normal molecular sieves 5A, 13X and AW500 are not satisfactory for the purpose both in the partially dehydrated as well as totally dehydrated state. Molecular sieve 4A in partially dehydrated state separated H 2 and D 2 while H 2 and HD are not well resolved. Iron exchanged or coated molecular sieves 4A, 5A, 13X and AW500 in the partially dehydrated state separated the isotopic mixtures H 2 , HD, D 2 and H 2 , HT, T 2 . The resolution varied depending on the amount of iron content and the residual moisture in the molecular sieves. Good separations were obtained on 15% Fe coated molecular sieve 5A and 5% Fe coated molecular sieve 4A. (author). 18 refs., 6 figs., 3 tabs

  8. Facilitated transport ceramic membranes for high-temperature gas cleanup. Final report, February 1990--April 1994

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, R.; Minford, E.; Damle, A.S.; Gangwal, S.K.; Hart, B.A.

    1994-04-01

    The objective of this program was to demonstrate the feasibility of developing high temperature, high pressure, facilitated transport ceramic membranes to control gaseous contaminants in Integrated Gasification Combined Cycle (IGCC) power generation systems. Meeting this objective requires that the contaminant gas H{sub 2}S be removed from an IGCC gas mixture without a substantial loss of the other gaseous components, specifically H{sub 2} and CH{sub 4}. As described above this requires consideration of other, nonconventional types of membranes. The solution evaluated in this program involved the use of facilitated transport membranes consisting of molten mixtures of alkali and alkaline earth carbonate salts immobilized in a microporous ceramic support. To accomplish this objective, Air Products and Chemicals, Inc., Golden Technologies Company Inc., and Research Triangle Institute worked together to develop and test high temperature facilitated membranes for the removal of H{sub 2}S from IGCC gas mixtures. Three basic experimental activities were pursued: (1) evaluation of the H{sub 2}S chemistry of a variety of alkali and alkaline earth carbonate salt mixtures; (2) development of microporous ceramic materials which were chemically and physically compatible with molten carbonate salt mixtures under IGCC conditions and which could function as a host to support a molten carbonate mixture and; (3) fabrication of molten carbonate/ceramic immobilized liquid membranes and evaluation of these membranes under conditions approximating those found in the intended application. Results of these activities are presented.

  9. Disentangling the effects of low pH and metal mixture toxicity on macroinvertebrate diversity.

    Science.gov (United States)

    Fornaroli, Riccardo; Ippolito, Alessio; Tolkkinen, Mari J; Mykrä, Heikki; Muotka, Timo; Balistrieri, Laurie S; Schmidt, Travis S

    2018-04-01

    One of the primary goals of biological assessment of streams is to identify which of a suite of chemical stressors is limiting their ecological potential. Elevated metal concentrations in streams are often associated with low pH, yet the effects of these two potentially limiting factors of freshwater biodiversity are rarely considered to interact beyond the effects of pH on metal speciation. Using a dataset from two continents, a biogeochemical model of the toxicity of metal mixtures (Al, Cd, Cu, Pb, Zn) and quantile regression, we addressed the relative importance of both pH and metals as limiting factors for macroinvertebrate communities. Current environmental quality standards for metals proved to be protective of stream macroinvertebrate communities and were used as a starting point to assess metal mixture toxicity. A model of metal mixture toxicity accounting for metal interactions was a better predictor of macroinvertebrate responses than a model considering individual metal toxicity. We showed that the direct limiting effect of pH on richness was of the same magnitude as that of chronic metal toxicity, independent of its influence on the availability and toxicity of metals. By accounting for the direct effect of pH on macroinvertebrate communities, we were able to determine that acidic streams supported less diverse communities than neutral streams even when metals were below no-effect thresholds. Through a multivariate quantile model, we untangled the limiting effect of both pH and metals and predicted the maximum diversity that could be expected at other sites as a function of these variables. This model can be used to identify which of the two stressors is more limiting to the ecological potential of running waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Study of gas mixtures and ageing of the multigap resistive plate chamber used for the ALICE TOF

    CERN Document Server

    Akindinov, A; Anselmo, F; Antonioli, P; Basile, M; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; Cosenza, F; D'Antone, I; De Caro, A; De Pasquale, S; Di Bartolomeo, A; Fusco-Girard, M; Golovine, V; Guerzoni, M; Guida, M; Hatzifotiadou, D; Kaidalov, A B; Kim, D H; Kim, D W; Kisselev, S M; Laurenti, G; Lioublev, E; Lee, K; Lee, S C; Luvisetto, M L; Margotti, A; Martemyanov, A N; Massera, F; Meneghini, S; Michinelli, R; Nania, R; Otiougova, P; Pancaldi, G; Pesci, A; Pilastrini, R; Pinazza, O; Polozov, P A; Rizzi, M; Scapparone, E; Scioli, G; Sellitto, S B; Semeria, F; Serra, S; Smirnitsky, A V; Tchoumakov, M M; Ugolini, E; Usenko, E; Valenti, G; Voloshin, K G; Williams, M C S; Zagreev, B V; Zampolli, C; Zichichi, A; Zucchini, A; Zuffa, M

    2004-01-01

    We present in this paper a study of the ALICE-TOF Multigap Resistive Plate Chamber (MRPC) performance by using several gas mixtures. We also present a search for possible ageing effects, by studying two MRPCs irradiated at the CERN Gamma Irradiation Facility.

  11. Aluminium Morphological Modification by Nitrogen-Argon Mixture PIII

    International Nuclear Information System (INIS)

    Munnoz-Castro, A.E.; Valencia Alvarado, R.; Penna-Eguiluz, R.; Mercado-Cabrera, A.; Barocio, S.R.; Rodriguez-Mendez, B.G.; Lopez-Callejas, R.; Piedad-Beneitez, A. de la

    2011-01-01

    With incident fluences of ∼ 10 12 atoms/cm 2 aluminium samples have been plasma immersion ion implanted with either pure nitrogen or argon/nitrogen mixtures at temperatures around 450 o C. X-ray diffraction studies have validated the formation of the cubic phase of AlN, in samples treated with both the gas mixtures and pure nitrogen. Likewise, the presence of the hexagonal phase of AlN has been detected when either pure nitrogen or a 70% N/30% Ar mixture have been used. The signature peak of AlN has also been confirmed by the Raman spectroscopy. The maximal microhardness values were found in samples treated with the mixture. The maximal roughness was achieved with the equal part mixture in all cases, although increasing with the implantation pulse width up to a 300 nm peak at 150 μs. The latter critical value remains invariant under the pure nitrogen plasma treatment, provided that implantation periods in the order of 4.5 h are carried out. (author)

  12. Technologies for direct production of flexible H2/CO synthesis gas

    International Nuclear Information System (INIS)

    Song Xueping; Guo Zhancheng

    2006-01-01

    The use of synthesis gas offers the opportunity to furnish a broad range of environmentally clean fuels and high value chemicals. However, synthesis gas manufacturing systems based on natural gas are capital intensive, and hence, there is great interest in technologies for cost effective synthesis gas production. Direct production of synthesis gas with flexible H 2 /CO ratio, which is in agreement with the stoichiometric ratios required by major synthesis gas based petrochemicals, can decrease the capital investment as well as the operating cost. Although CO 2 reforming and catalytic partial oxidation can directly produce desirable H 2 /CO synthesis gas, they are complicated and continued studies are necessary. In fact, direct production of flexible H 2 /CO synthesis gas can be obtained by optimizing the process schemes based on steam reforming and autothermal reforming as well as partial oxidation. This paper reviews the state of the art of the technologies

  13. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    OpenAIRE

    Stoll, M.; Bakker, J.; Steimle, T.; Meijer, G.; Peters, A.

    2008-01-01

    We report on the buffer-gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 106 cm−3 at a temperature of 650 mK. Storage times of up to 180 ms have been observed, corresponding to a 20-fold lifetime enhancement with respect to the field-free diffusion through the 3He buffer-gas. Using Monte Carlo trajectory simulations, inelastic molecule-3He collision cross sections of 1.6×10−18 and 3.1×10−17 cm2 are extracted for CrH and MnH, respec...

  14. Definitive Ideal-Gas Thermochemical Functions of the (H2O)-O-16 Molecule

    Czech Academy of Sciences Publication Activity Database

    Furtenbacher, T.; Szidarovszky, T.; Hrubý, Jan; Kyuberis, A. A.; Zobov, N. F.; Polyansky, O. L.; Tennyson, J.; Császár, A. G.

    2016-01-01

    Roč. 45, č. 4 (2016), č. článku 043104. ISSN 0047-2689 R&D Projects: GA ČR(CZ) GA16-02647S Institutional support: RVO:61388998 Keywords : ideal-gas thermochemical quantities * ortho- and para-H2 16O * partition function Subject RIV: BJ - Thermodynamics Impact factor: 4.204, year: 2016 http://aip.scitation.org/doi/pdf/10.1063/1.4967723

  15. Velocity slip and translational nonequilibrium of ternary gas mixtures in free jet expansions

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Gallagher, R.J.; Anderson, J.B.; Talbot, L.

    1977-05-01

    An aerodynamic isotope separation technique based on the velocity slip between gases in a rarefied flow has been proposed. To evaluate the efficiency of this separation technique, the velocity and translational temperature of the individual species in binary and ternary gas mixtures of argon and neon in helium have been studied in a low density hypersonic free jet. The velocity and temperature of the gas were determined from the Doppler shift and broadening of the fluorescence excited by an electron beam. Velocity slip and translational nonequilibrium were observed over a range of source pressures. A separation factor based on the velocity slip and temperatures was also determined. A comparison of the velocity slip, temperatures, and separation factor with the results of a Monte Carlo simulation of the flow field is presented

  16. Effects of breathing a hyperoxic hypercapnic gas mixture on blood oxygenation and vascularity of head-and-neck tumors as measured by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Rijpkema, Mark; Kaanders, Johannes H.A.M.; Joosten, Frank; Kogel, Albert J. van der; Heerschap, Arend

    2002-01-01

    Purpose: For head-and-neck tumors, breathing a hyperoxic hypercapnic gas mixture and administration of nicotinamide has been shown to result in a significantly improved tumor response to accelerated radiotherapy (ARCON, Accelerated Radiotherapy with CarbOgen and Nicotinamide). This may be caused by improved tumor oxygenation, possibly mediated by vascular effects. In this study, both blood oxygenation and vascular effects of breathing a hyperoxic hypercapnic gas mixture (98% O 2 +2% CO 2 ) were assessed by magnetic resonance imaging (MRI) in patients with head-and-neck tumors. Methods and Materials: Tumor vascularity and oxygenation were investigated by dynamic gadolinium contrast-enhanced MRI and blood oxygen level dependent (BOLD) MRI, respectively. Eleven patients with primary head-and-neck tumors were each measured twice; with and without breathing the hyperoxic hypercapnic gas mixture. Results: BOLD MR imaging revealed a significant increase of the MRI time constant of transverse magnetization decay (T 2 *) in the tumor during hypercapnic hyperoxygenation, which correlates to a decrease of the deoxyhemoglobin concentration. No changes in overall tumor vascularity were observed, as measured by the gadolinium contrast uptake rate in the tumor. Conclusion: Breathing a hyperoxic hypercapnic gas mixture improves tumor blood oxygenation in patients with head-and-neck tumors, which may contribute to the success of the ARCON therapy

  17. Microstrip gas chamber on thin-film Pestov glass and micro gap chamber

    International Nuclear Information System (INIS)

    Gong, W.G.; Harris, J.W.; Wieman, H.

    1994-07-01

    The authors report developments of the Microstrip Gas Chamber on thin-film Pestov glass and the Micro Gap Chamber. By coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics), they built MSGCs of high gain stability and low leakage current. They were tested in Ar-CH 4 (10%) and He-C 2 H 6 (50%) gas mixtures. Energy resolutions of 17-20% were measured for 6keV x-rays. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material. Micro Gap Chamber was successfully tested in He-C 2 H 6 (50%) and Ar-C 2 H 6 (50%) gas mixtures. Energy resolutions of about 20% were obtained. Both detectors are expected to have high rate capability

  18. Structure and thermal property of N,N-diethyl-N-methyl-N-2-methoxyethyl ammonium tetrafluoroborate-H2O mixtures

    International Nuclear Information System (INIS)

    Imai, Yusuke; Abe, Hiroshi; Goto, Takefumi; Yoshimura, Yukihiro; Michishita, Yosuke; Matsumoto, Hitoshi

    2008-01-01

    By in situ observations using simultaneous X-ray diffraction and differential scanning calorimetry method, complicated phase transitions were observed in N,N-diethyl-N-methyl-N-2-methoxyethyl ammonium tetrafluoroborate, [DEME][BF 4 ] and H 2 O mixtures. In pure [DEME][BF 4 ], two different crystal structures were determined below crystallization temperature, T c . Two kinds of crystals correspond to two stages of melting upon heating. T c decreases with increasing in the H 2 O content of [DEME][BF 4 ]-H 2 O mixture. Around 6.7 mol% H 2 O, an amorphous solid, however, was formed without crystallization on cooling. Glass transition temperature, T g , of the amorphous phase depends on cooling rate of the mixture. On heating, the amorphous solid transformed to a crystal accompanied by an exothermal peak. This unusual cold crystallization is induced by H 2 O molecules. Two different dynamic components were observed in a Raman spectrum of the amorphous phase, where the lower Raman band is crystal-like and the higher one is liquid-like. At higher H 2 O concentration, coexistence of the amorphous solid and crystal was realized below T c , and the cold crystallization also occurred. In spite of a variety of phase transitions, the crystal structure of [DEME][BF 4 ]-H 2 O mixtures is the same one as pure [DEME][BF 4

  19. NOx emission control in SI engine by adding argon inert gas to intake mixture

    International Nuclear Information System (INIS)

    Moneib, Hany A.; Abdelaal, Mohsen; Selim, Mohamed Y.E.; Abdallah, Osama A.

    2009-01-01

    The Argon inert gas is used to dilute the intake air of a spark ignition engine to decrease nitrogen oxides and improve the performance of the engine. A research engine Ricardo E6 with variable compression was used in the present work. A special test rig has been designed and built to admit the gas to the intake air of the engine for up to 15% of the intake air. The system could admit the inert gas, oxygen and nitrogen gases at preset amounts. The variables studied included the engine speed, Argon to inlet air ratio, and air to fuel ratio. The results presented here included the combustion pressure, temperature, burned mass fraction, heat release rate, brake power, thermal efficiency, volumetric efficiency, exhaust temperature, brake specific fuel consumption and emissions of CO, CO 2 , NO and O 2 . It was found that the addition of Argon gas to the intake air of the gasoline engine causes the nitrogen oxide to reduce effectively and also it caused the brake power and thermal efficiency of the engine to increase. Mathematical program has been used to obtain the mixture properties and the heat release when the Argon gas is used.

  20. Upper limit for the D2H+ ortho-to-para ratio in the prestellar core 16293E (CHESS)

    Science.gov (United States)

    Vastel, C.; Caselli, P.; Ceccarelli, C.; Bacmann, A.; Lis, D. C.; Caux, E.; Codella, C.; Beckwith, J. A.; Ridley, T.

    2012-11-01

    The H_3^+ ion plays a key role in the chemistry of dense interstellar gas clouds where stars and planets are forming. The low temperatures and high extinctions of such clouds make direct observations of H_3^+ impossible, but lead to large abundances of H2D+ and D2H+, which are very useful probes of the early stages of star and planet formation. The ground-state rotational ortho-D2H+ 11,1-00,0 transition at 1476.6 GHz in the prestellar core 16293E has been searched for with the Herschel HIFI instrument, within the CHESS (Chemical HErschel Surveys of Star forming regions) Key Program. The line has not been detected at the 21 mK km s-1 level (3σ integrated line intensity). We used the ortho-H2D+ 11,0-11,1 transition and para-D2H+ 11,0-10,1 transition detected in this source to determine an upper limit on the ortho-to-para D2H+ ratio as well as the para-D2H+/ortho-H2D+ ratio from a non-local thermodynamic equilibrium analysis. The comparison between our chemical modeling and the observations suggests that the CO depletion must be high (larger than 100), with a density between 5 × 105 and 106 cm-3. Also the upper limit on the ortho-D2H+ line is consistent with a low gas temperature (~11 K) with a ortho-to-para ratio of 6 to 9, i.e. 2 to 3 times higher than the value estimated from the chemical modeling, making it impossible to detect this high frequency transition with the present state of the art receivers. The chemical network is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/547/A33Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  1. Ceramics and M.H.D

    International Nuclear Information System (INIS)

    Yvars, M.

    1979-10-01

    The materials considered for the insulating walls of a M.H.D. converter are Al 2 O 3 , and the calcium or strontium zirconates. For the conducting walls electricity conducting oxides are being considered such as ZrO 2 or CrO 3 La essentially. The principle of M.H.D. systems is recalled, the materials considered are described as is their behaviour in the corrosive atmospheres of M.H.D. streams [fr

  2. A new metal-organic framework for separation of C2H2/CH4 and CO2/CH4 at room temperature

    Science.gov (United States)

    Duan, Xing; Zhou, You; Lv, Ran; Yu, Ben; Chen, Haodong; Ji, Zhenguo; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2018-04-01

    A 3D microporous metal-organic framework with open Cu2+ sites and suitable pore space, [Cu2(L)(H2O)2]·(H2O)4(DMF)8 (ZJU-15, H4L = 5,5‧-(9H-carbazole-2,7-diyl)diisophthalic acid; DMF = N,N-dimethylformamide; ZJU = Zhejiang University), has been constructed and characterized. The activated ZJU-15a has three different types of cages and exhibits BET surface area of 1660 m2 g-1, and can separate gas mixture of C2H2/CH4 and CO2/CH4 at room temperature.

  3. Convection and chemistry effects in CVD: A 3-D analysis for silicon deposition

    Science.gov (United States)

    Gokoglu, S. A.; Kuczmarski, M. A.; Tsui, P.; Chait, A.

    1989-01-01

    The computational fluid dynamics code FLUENT has been adopted to simulate the entire rectangular-channel-like (3-D) geometry of an experimental CVD reactor designed for Si deposition. The code incorporated the effects of both homogeneous (gas phase) and heterogeneous (surface) chemistry with finite reaction rates of important species existing in silane dissociation. The experiments were designed to elucidate the effects of gravitationally-induced buoyancy-driven convection flows on the quality of the grown Si films. This goal is accomplished by contrasting the results obtained from a carrier gas mixture of H2/Ar with the ones obtained from the same molar mixture ratio of H2/He, without any accompanying change in the chemistry. Computationally, these cases are simulated in the terrestrial gravitational field and in the absence of gravity. The numerical results compare favorably with experiments. Powerful computational tools provide invaluable insights into the complex physicochemical phenomena taking place in CVD reactors. Such information is essential for the improved design and optimization of future CVD reactors.

  4. Laminar burning velocities of near-flammability-limit H{sub 2}-air-steam mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Loesel Sitar, J V; Chan, C K; Torchia, F; Guerrero, A

    1996-12-31

    Laminar burning velocities of lean H{sub 2}-air-steam mixtures near the flammability limit were measured by using the pressure-time history of an expanding flame kernel. Although flames in these mixtures are inherently unstable, this difficulty was avoided by using the early pressure rise of the burn. A comparison of results from that method with burning velocities determined from schlieren photographs of the expanding flame kernel gave good agreement. Despite the difficulties, it is believed that the pressure trace method gives results that are useful in modelling reactor accident scenarios. 8 refs., 4 figs.

  5. Evaporation and Condensation Flows of a Vapor-Gas Mixture from or onto the Condensed Phase with an Internal Structure

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Yamada, Ken

    2005-01-01

    Transient motions of a vapor-gas mixture due to the evaporation and condensation processes from or onto the plane condensed phase, with a temperature field as its internal structure, have been studied...

  6. Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  7. Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    Science.gov (United States)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  8. Spectroscopic characterisation of iodine deposits on 18%Cr/8%Ni and mild steel surfaces oxidised in CO2/CH3I gas mixtures

    International Nuclear Information System (INIS)

    Tyler, J.W.

    1987-08-01

    An understanding and quantification of iodine-131 attenuation within the gas circuit of a Commercial Advanced Gas-cooled Reactor is required for reactor safety assessments. To this end it is desirable to identify the chemical state of iodine in the gas phase or when deposited on reactor surfaces. Samples of 18%Cr/8%Ni and mild steel pipe, with iodine deposited on their surfaces following oxidation in CO 2 /CH 3 I gas mixtures, have been characterised in the present work using a variety of different spectroscopic techniques including X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis, scanning Auger microscopy and X-ray diffraction. The chemical nature of the deposited iodine has been determined by X-ray photoelectron spectroscopy to be a metal iodide by correlating I 3d binding energies with those obtained from well characterised standards; the binding energies of the ejected I 3d photoelectrons being sensitive to the chemical environment experienced by the iodine atoms. The distribution of iodine throughout the oxide layers formed on these steels was determined by repeated cycles of argon-ion bombardment and analysis to build up an elemental depth profile whilst at the same time determining the chemical state of the elements present. Differences in oxide composition and morphology are discussed in relation to the deposition behaviour observed on 18%Cr/8%Ni and mild steel and it is suggested that gradual incorporation of the iodine occurs throughout the oxidation/deposition period. (U.K.)

  9. Bayesian D-Optimal Choice Designs for Mixtures

    NARCIS (Netherlands)

    A. Ruseckaite (Aiste); P.P. Goos (Peter); D. Fok (Dennis)

    2014-01-01

    markdownabstract__Abstract__ Consumer products and services can often be described as mixtures of ingredients. Examples are the mixture of ingredients in a cocktail and the mixture of different components of waiting time (e.g., in-vehicle and out-of-vehicle travel time) in a transportation

  10. Analysis of Water Hammer with Different Closing Valve Laws on Transient Flow of Hydrogen-Natural Gas Mixture

    Directory of Open Access Journals (Sweden)

    Norazlina Subani

    2015-01-01

    Full Text Available Water hammer on transient flow of hydrogen-natural gas mixture in a horizontal pipeline is analysed to determine the relationship between pressure waves and different modes of closing and opening of valves. Four types of laws applicable to closing valve, namely, instantaneous, linear, concave, and convex laws, are considered. These closure laws describe the speed variation of the hydrogen-natural gas mixture as the valve is closing. The numerical solution is obtained using the reduced order modelling technique. The results show that changes in the pressure wave profile and amplitude depend on the type of closing laws, valve closure times, and the number of polygonal segments in the closing function. The pressure wave profile varies from square to triangular and trapezoidal shape depending on the type of closing laws, while the amplitude of pressure waves reduces as the closing time is reduced and the numbers of polygonal segments are increased. The instantaneous and convex closing laws give rise to minimum and maximum pressure, respectively.

  11. Effects of flow rate and gas mixture on the welfare of weaned and neonate pigs during gas euthanasia.

    Science.gov (United States)

    Sadler, L J; Hagen, C D; Wang, C; Widowski, T M; Johnson, A K; Millman, S T

    2014-02-01

    The objectives of this study were to assess efficacy and welfare implications of gas euthanasia when applied to weaned and neonate pigs. Parameters associated with welfare, which were measured before loss of consciousness, included open-mouth breathing, ataxia, righting response, and escape attempts. Two age groups (weaned and neonate) were assessed in 9 gas treatments arranged in a 2 × 4 factorial design, with 2 gas types (CO2 = 100% CO2 and 50:50 = 50:50 CO2:argon) and 4 flow rates (box volume exchange/min: slow = 20%; medium = 35%; fast = 50%; prefill = prefilled followed by 20%) and a control treatment in which ambient air was passed through the box. Pig pairs (10/treatment) were placed in a modified Euthanex AgPro system (Euthanex Corp., Palmer, PA). Behavioral and physiological responses were observed directly and from video recordings for latency, duration, prevalence (percent of pigs affected), and frequency (number of occurrences/pig). Data were analyzed as linear mixed models or with a Cox proportional hazard model as appropriate. Piglet pair was the experimental unit. For the weaned pig, welfare was superior with CO2 relative to 50:50 within 1 or more flow rates on the basis of reduced duration of open-mouth breathing, duration of ataxia, frequency of escape attempts, and duration and frequency of righting response (P euthanasia. As such, a 50:50 CO2:argon gas mixture and slower flow rates should be avoided when euthanizing weaned or neonate pigs with gas methods. Neonate pigs succumb to the effects of gas euthanasia quicker than weaned pigs and display fewer signs of distress.

  12. D/H ratio for Jupiter

    International Nuclear Information System (INIS)

    Smith, H.; Schempp, W.V.; Baines, K.H.

    1989-01-01

    Observations of Jupiter's spectrum near the R5(0) HD line at 6063.88 A are reported. A feature with an equivalent width of 0.065 + or - 0.021 mA is coincident with the expected line. This feature is compared with HD profiles computed for inhomogeneous scattering models for Jupiter to yield a range for the Jovian D/H ratio of 1.0-2.9 x 10 to the -5th. This D/H ratio is in the lower range of previously reported D/H values for Jupiter and corresponds to an essentially solar D/H ratio for Jupiter. The detection of HD features in the presence of probable blends with spectral features of minor atmospheric hydrocarbon molecules is discussed. Such blends may make unambiguous identification of HD features difficult. 26 references

  13. MARVEL analysis of the rotational-vibrational states of the molecular ions H2D+ and D2H+.

    Science.gov (United States)

    Furtenbacher, Tibor; Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G

    2013-07-07

    Critically evaluated rotational-vibrational line positions and energy levels, with associated critically reviewed labels and uncertainties, are reported for two deuterated isotopologues of the H3(+) molecular ion: H2D(+) and D2H(+). The procedure MARVEL, standing for Measured Active Rotational-Vibrational Energy Levels, is used to determine the validated levels and lines and their self-consistent uncertainties based on the experimentally available information. The spectral ranges covered for the isotopologues H2D(+) and D2H(+) are 5.2-7105.5 and 23.0-6581.1 cm(-1), respectively. The MARVEL energy levels of the ortho and para forms of the ions are checked against ones determined from accurate variational nuclear motion computations employing the best available adiabatic ab initio potential energy surfaces of these isotopologues. The number of critically evaluated, validated and recommended experimental (levels, lines) are (109, 185) and (104, 136) for H2D(+) and D2H(+), respectively. The lists of assigned MARVEL lines and levels and variational levels obtained for H2D(+) and D2H(+) as part of this study are deposited in the ESI to this paper.

  14. The promising gas-dynamic schemes of vacuum deposition from the supersonic gas mixture flows

    International Nuclear Information System (INIS)

    Maltsev, R V; Rebrov, A K

    2008-01-01

    Gas jet deposition (GJD) becomes promising method of thin film and nanoparticle deposition. This paper is focused on elaboration of new methods of GJD based on different gas dynamic schemes of flow formation and interaction with substrate. Using direct statistical simulation method, the analysis was performed for: a) interaction of the jet from the sonic nozzle with a substrate; b) fan flow in the result of interaction of two opposite jets; c) convergent flow from the ring nozzle, directional to the axis; d) interaction of the jet after convergent flow with the substrate; e) fan flow in the result of interaction of two opposite jets after convergent expansion

  15. Acid Gas Removal from Natural Gas with Alkanolamines

    DEFF Research Database (Denmark)

    Sadegh, Negar

    commercially for the removal of acid gas impurities from natural gas. Alkanolamines, simple combinations of alcohols and ammonia, are the most commonly used category of chemical solvents for acid gas capture. This Ph.D. project is aboutthermodynamics of natural gas cleaning process with alkanolamines......Some 40 % of the world’s remaining gas reserves are sour or acid, containing large quantities of CO2 and H2S and other sulfur compounds. Many large oil and gas fields have more than 10 mole % CO2 and H2S content. In the gas processing industry absorption with chemical solvents has been used...... pressure on acid gas solubility was also quantitatively investigated through both experimental and modeling approaches....

  16. Comparative study during condensation of R152 a and R134 a with presence of non-condensable gas inside a vertical tube

    Science.gov (United States)

    Charef, Adil; Feddaoui, M'barek; Najim, Monssif; Meftah, Hicham

    2018-04-01

    A computational study of the liquid film condensation from vapour-gas mixtures of HFC refrigerants inside a vertical tube is performed. The external wall of the tube is subjected to constant temperature. The model uses an implicit finite difference method to solve the governing equations for the liquid film and gas flow together including the boundary and interfacial matching conditions. Parametric computations were realised to examine the effects of inlet Reynolds number, tube length, and inlet temperature of the gas mixtures on the condensation mechanism. A comparative study between the results obtained for studied R152 a and R134 a with presence of non-condensable gas is made. The predicted results indicate that the condensation of R152 a-air corresponds to a higher accumulated condensation m c d and local heat transfer coefficient h T when compared to R134 a-air in the same conditions. Increasing the inlet Reynolds number or the tube length improve the condensation. Additionally, lower non-condensable gas in R152 a - a i r substantially enhances the heat and mass exchanges.

  17. Preliminary comparison of MP sparking characteristics for SF6 insulating gas mixtures and pure SF6

    International Nuclear Information System (INIS)

    Lindgren, R.; Wegner, H.E.

    1978-01-01

    Operation of the Brookhaven MP-7 tandem Van de Graaff accelerator with pure SF 6 insulating gas is described. Sparking and terminal voltage were monitored and are compared for operation with a mixture of SF 6 , N 2 , CO 2 and O 2 . The accelerator was found to be more difficult to operate with pure SF 6

  18. D/H diffusion in serpentine

    Science.gov (United States)

    Pilorgé, Hélène; Reynard, Bruno; Remusat, Laurent; Le Floch, Sylvie; Montagnac, Gilles; Cardon, Hervé

    2017-08-01

    Interactions between aqueous fluids and ultrabasic rocks are essential processes in a broad range of contexts including hydrothermal alteration on the parent body of carbonaceous chondrites, at mid-oceanic ridge, and in subduction zones. Tracking these processes and understanding reaction kinetics require knowledge of the diffusion of water in rocks, and of isotope fractionation in major minerals forming under hydrous conditions, such as serpentines. We present a study of D/H inter-diffusion in antigorite, a common variety of serpentine. Experiments were performed in a belt apparatus at 315 °C, 450 °C and 540 °C and at 3.0 GPa on natural antigorite powders saturated with interstitial D2O. An experiment was performed in a diamond anvil cell at 350 °C and 2.5 GPa on an antigorite single-crystal loaded with pure D2O. D/(D + H) ratios were mapped using Raman spectroscopy for the experiments at 315 °C, 450 °C and 540 °C and by NanoSIMS for the experiment at 350 °C. As antigorite is a phyllosilicate, diffusion coefficients were obtained for crystallographic directions parallel and perpendicular to the silicate layers (perpendicular and parallel to the c∗-axis, respectively). Arrhenius relations for D/H inter-diffusion coefficients were determined to be DD/H (m2/s) = 4.71 × 10-2 × exp(-207(-33/+58) (kJ/mol)/RT) and DD/H (m2/s) = 1.61 × 10-4 × exp(-192(-34/+93) (kJ/mol)/RT) perpendicular and parallel to the c∗-axis, respectively, and DD/H (m2/s) = 7.09 × 10-3 × exp(-202(-33/+70) (kJ/mol)/RT) for the bulk diffusivity. Assuming D/H inter-diffusion coefficients for antigorite are the same for all serpentine species, closure temperature and diffusion durations are applied to hydrothermal alteration in the oceanic lithosphere, and in CI, CM and CR chondrites. Closure temperatures lie below 300 °C for terrestrial hydrothermal alteration and depend on serpentine variety because they have different typical grain sizes. Closure temperatures lie below 160 °C for

  19. Velocity slip of gas mixtures in free jet expansions

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Talbot, L.; Coe, D.

    1976-11-01

    Velocity slip in gas mixtures of argon and helium in axisymmetric free jet expansions has been measured using a grating monochromator together with a computer-controlled Fabry-Perot interferometer to observe the fluorescence excited by an electron beam. The Doppler shift between the fluorescence observed parallel and perpendicular to the centerline of the free jet was used to measure the mean velocity of a particular species along the jet centerline, employing the 4880 A line for argon and the 5016 A line for helium. By alternately tracking the parallel and perpendicular fluorescence, the Doppler shift due to the mean velocity was measured directly with an accuracy of 1 percent. Flow field surveys have been made in the initial acceleration region where the flow becomes hypersonic and in the far field region. The differences between argon and helium mean velocities (velocity slip) are in good agreement with molecular beam data and show a correlation with an inverse Knudsen number

  20. Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air

    Science.gov (United States)

    Aints, Märt; Jõgi, Indrek; Laan, Matti; Paris, Peeter; Raud, Jüri

    2018-04-01

    C5 perfluorinated ketone (C5 PFK with UIPAC chemical name 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)-2-butanone and sold by 3M as Novec™ 5110) has a high dielectric strength and a low global warming potential, which makes it interesting as an insulating gas in medium and high-voltage applications. The study was carried out to determine the effective Townsend ionization coefficient α eff as a function of electric field strength and gas density for C5 PFK and for its mixtures with air. The non-self-sustained Townsend discharge between parallel plate electrodes was initiated by illuminating the cathode by UV radiation. The discharge current, I, was measured as a function of inter-electrode distance, d, at different gas densities, N, and electric field strengths, E. The effective ionization coefficient α eff was determined from the semi-logarithmic plots of I/I 0 against d. For each tested gas mixture, the density normalized effective ionization coefficient α eff/N was found to be a unique function of reduced electric field strength E/N. The measurements were carried out in the absolute pressure range of 0.05-1.3 bar and E/N range of 150-1200 Td. The increasing fraction of C5 PFK in air resulted in the decrease of effective ionization coefficient. The limiting electric field strength (E/N)lim where the effective ionization coefficient α eff became zero was 770 Td (190 kV cm-1 at 1 bar) for pure C5 PFK and decreased to 225 Td (78 kV cm-1 at 1.4 bar) for 7.6% C5 PFK/air mixture. The latter value of (E/N)lim is still more than two times higher than the (E/N)lim value of synthetic air and about two-thirds of the value corresponding to pure SF6. The investigated gas mixtures have the potential to become an alternative to SF6 in numerous high- and medium-voltage applications.

  1. Vacancy formation energy of Li(H,D) and Na(H,D) systems

    International Nuclear Information System (INIS)

    Islam, A.K.M.A.

    1993-06-01

    Vacancy defect formation energy (Schottky defect) of lighter hydrides and deuterides of alkali metals are discussed with reference to conductivity measurements and the recent computer simulation calculations. An empirical relation with Debye temperature is found to yield values of Schottky defect formation energies of Li(H,D) systems in agreement with experiments. The relationship is also utilized to obtain the formation energies for Na(H,D) systems for which experimental values are available in the literature. (author). 37 refs, 1 fig., 1 tab

  2. Influence of reaction products of K-getter fuel additives on commercial vanadia-based SCR catalysts Part II. Simultaneous addition of KCl, Ca(OH)(2), H3PO4 and H2SO4 in a hot flue gas at a SCR pilot-scale setup

    DEFF Research Database (Denmark)

    Castellino, Francesco; Jensen, Anker Degn; Johnsson, Jan Erik

    2009-01-01

    A commercial V2O5-WO3-TiO2 corrugated-type SCR monolith has been exposed for 1000 h in a pilot-scale setup to a flue gas doped with KCl, Ca(OH)(2), H3PO4 and H2SO4 by spraying a water solution of the components into the hot flue gas. The mixture composition has been adjusted in order to have P...... surface and did not proceed at the fast rates known for KCl. This fact indicates that binding K in P-K-Ca compounds is an effective way to reduce the negative influence of alkali metals on the lifetime of the vanadia-based SCR catalysts. On the other hand, P-deposition was favoured by the formation...

  3. pH and electric conductivity study of H{sub 2}O/MEG/salt systems on monoethyleneglycol (MEG) reclamation units in gas processing; Estudo de pH e condutividade eletrica em sistemas H{sub 2}O/MEG/sal, em unidades de recuperacao de monoetilenoglicol (MEG), no processamento de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Senna, Camila; Carrijo, Darley; Nascimento, Jailton; Grava, Wilson [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Lemos, Alessandro A.; Andrade, Wander V.; Chiavone-Filho, Osvaldo; Amorim, Josinira Antunes de [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica

    2008-07-01

    The monoethylene glycol (MEG) is injected in natural gas production wells in order to combine with the free water, altering the thermodynamic conditions for the formation of hydrates. The presence of MEG in aqueous solutions containing salts provokes the decrease of the solubility of the same ones. Information of properties as the pH and the conductivity are important for the control of the process. Before this, the present work has as objective determines the behavior of the aqueous solutions with MEG and NaCl in pH and conductivity terms, in different temperatures, with views to the stage of recovery of MEG and the salt precipitation beginning. The experimental methodology consisted of the elaboration of synthetic solutions of the mixtures in study, covering every MEG concentration range and temperature between 5 and 90 deg C. The conductivity results for the system H{sub 2}O+MEG showed that the conductivity decreases with the concentration of MEG and it increases with the temperature. A conductivity increase was observed for diluted concentrations of MEG, due to the most pronounced effect of protonation of MEG. For pH measures, it was necessary to develop a calibration procedure due to the fact that this property varies with the solvent media. The pH values decrease as it increases the concentration of MEG, reaching a value practically constant around 40%. (author)

  4. FORMATION OF S-BEARING SPECIES BY VUV/EUV IRRADIATION OF H2S-CONTAINING ICE MIXTURES: PHOTON ENERGY AND CARBON SOURCE EFFECTS

    International Nuclear Information System (INIS)

    Chen, Y.-J.; Juang, K.-J.; Qiu, J.-M.; Chu, C.-C.; Yih, T.-S.; Nuevo, M.; Jiménez-Escobar, A.; Muñoz Caro, G. M.; Wu, C.-Y. R.; Fung, H.-S.; Ip, W.-H.

    2015-01-01

    Carbonyl sulfide (OCS) is a key molecule in astrobiology that acts as a catalyst in peptide synthesis by coupling amino acids. Experimental studies suggest that hydrogen sulfide (H 2 S), a precursor of OCS, could be present in astrophysical environments. In the present study, we used a microwave-discharge hydrogen-flow lamp, simulating the interstellar UV field, and a monochromatic synchrotron light beam to irradiate CO:H 2 S and CO 2 :H 2 S ice mixtures at 14 K with vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) photons in order to study the effect of the photon energy and carbon source on the formation mechanisms and production yields of S-containing products (CS 2 , OCS, SO 2 , etc.). Results show that (1) the photo-induced OCS production efficiency in CO:H 2 S ice mixtures is higher than that of CO 2 :H 2 S ice mixtures; (2) a lower concentration of H 2 S enhances the production efficiency of OCS in both ice mixtures; and (3) the formation pathways of CS 2 differ significantly upon VUV and EUV irradiations. Furthermore, CS 2 was produced only after VUV photoprocessing of CO:H 2 S ices, while the VUV-induced production of SO 2 occurred only in CO 2 :H 2 S ice mixtures. More generally, the production yields of OCS, H 2 S 2 , and CS 2 were studied as a function of the irradiation photon energy. Heavy S-bearing compounds were also observed using mass spectrometry during the warm-up of VUV/EUV-irradiated CO:H 2 S ice mixtures. The presence of S-polymers in dust grains may account for the missing sulfur in dense clouds and circumstellar environments

  5. Effects of gas composition on the growth of multi-walled carbon nanotube

    International Nuclear Information System (INIS)

    Fang, T.-H.; Chang, W.-J.; Lu, D.-M.; Lien, W.-C.

    2007-01-01

    This paper studies the effects of different gas compositions on the growth of multi-walled carbon nanotube (MWCNT) films by using an electron cyclotron resonance chemical vapor deposition (ECR-CVD) method. The Raman spectrum was employed to explore the composition of the MWCNT films grown under different mixtures of C 3 H 8 and H 2 . The results showed that the optimum relative intensity ratio of the D band to G band (i.e., I D /I G ) is 2 for the cases considered in this study. In addition, the morphology and microstructure of the MWCNTs were examined by field emission scanning electron microscopy (FE-SEM) and field emission gun transmission electron microscopy (FEG-TEM). Furthermore, atomic force microscopy (AFM) and scanning thermal microscopy (SThM) were used to study the surface topography and thermal properties of the MWCNTs

  6. Dependence of helium transport on plasma current and ELM frequency in H-mode discharges in DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Hillis, D.L.; Hogan, J.T.; Finkenthal, D.F.; West, W.P.; Burrell, K.H.; Seraydarian, R.P.

    1993-05-01

    The removal of helium (He) ash from the plasma core with high efficiency to prevent dilution of the D-T fuel mixture is of utmost importance for future fusion devices, such as the International Thermonuclear Experimental Reactor (ITER). A variety of measurements in L-mode conditions have shown that the intrinsic level of helium transport from the core to the edge may be sufficient to prevent sufficient dilution (i.e., τ He /τ E < 5). Preliminary measurements in biased-induced, limited H-mode discharges in TEXTOR suggest that the intrinsic helium transport properties may not be as favorable. If this trend is shown also in diverted H-mode plasmas, then scenarios based on ELMing H-modes would be less desirable. To further establish the database on helium transport in H-mode conditions, recent studies on the DIII-D tokamak have focused on determining helium transport properties in H-mode conditions and the dependence of these properties on plasma current and ELM frequency

  7. Association equilibrium constants and populations of clusters (H2O)n(g) and (D2O)n(g): differences between isotopomers and a possible relation to isotope enrichment

    International Nuclear Information System (INIS)

    Slanina, Z.

    1986-01-01

    Equilibrium constants of H 2 O(g) and D 2 O(g) associations to clusters (H 2 O) n (g) and (D 2 O) n (g) were calculated on the basis of the ab initio SCF CI MCY-B water-water pair potential. Populations of the components of equilibrium cluster mixtures were evaluated at various temperatures and pressures for both isotopomeric series. Differences between the H and D steam are pointed out and possible consequences are discussed. (author)

  8. The Imprint of Atmospheric Evolution in the D/H of Hesperian Clay Minerals on Mars

    Science.gov (United States)

    Mahaffy, P. R.; Webster, C. R.; Stern, J. C.; Brunner, A. E.; Atreya, S. K.; Conrad, P. G.; Domagal-Goldman, S.; Eigenbrode, J. L.; Flesch, G. J.; Christensen, L. E.; hide

    2014-01-01

    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient Martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550 degrees Centigrade and 950 degrees Centigrade from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (plus or minus 0.2) times the ratio in standard mean ocean water. The D/H ratio in this approximately 3-billion-year-old mudstone, which is half that of the present Martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  9. C60-pentacene network formation by 2-D co-crystallization.

    Science.gov (United States)

    Jin, Wei; Dougherty, Daniel B; Cullen, William G; Robey, Steven; Reutt-Robey, Janice E

    2009-09-01

    We report experiments highlighting the mechanistic role of mobile pentacene precursors in the formation of a network C(60)-pentacene co-crystalline structure on Ag(111). This co-crystalline arrangement was first observed by low temperature scanning tunneling microscopy (STM) by Zhang et al. (Zhang, H. L.; Chen, W.; Huang, H.; Chen, L.; Wee, A. T. S. J. Am. Chem. Soc. 2008, 130, 2720-2721). We now show that this structure forms readily at room temperature from a two-dimensional (2-D) mixture. Pentacene, evaporated onto Ag(111) to coverages of 0.4-1.0 ML, produces a two-dimensional (2-D) gas. Subsequently deposited C(60) molecules combine with the pentacene 2-D gas to generate a network structure, consisting of chains of close-packed C(60) molecules, spaced by individual C(60) linkers and 1 nm x 2.5 nm pores containing individual pentacene molecules. Spontaneous formation of this stoichiometric (C(60))(4)-pentacene network from a range of excess pentacene surface coverage (0.4 to 1.0 ML) indicates a self-limiting assembly process. We refine the structure model for this phase and discuss the generality of this co-crystallization mechanism.

  10. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    Science.gov (United States)

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-01-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  11. Effect of interaction between inclusions in a gas-liquid mixture on interphase heat and mass transfer

    International Nuclear Information System (INIS)

    Nigmatulin, B.I.; Kroshilin, A.E.; Kroshilin, V.E.

    1979-01-01

    The effect of interaction between inclusions in a gas-liquid mixture on interphase heat and mass transfer is analyzed. It is taken into account that inclusions (bubbles or drops) are not in a pure carrier phase, but in a disperse medium, mean properties of which are determined by the presence of other inclusions in it and by a temperature field around them. The consideration is carried out in the framework of two model of monodisperse mixture, i.e. that with a chaotic distribution of inclusions, and that with a regular distribution, when the distance between centers of inclusions is fixed. The correlation functions method is shown to be effective for the both models. Mean temperature fields around inclusions are determined along with the intensity of interphase heat and mass transfer. The dependences obtained are in a satisfactory agreement with experimental data. The dependence of interphase heat and mass transfer on the structure of disperse mixture is analyzed

  12. Photochemical oxidation of short-chain polychlorinated n-alkane mixtures using H2O2/UV and the photo-Fenton reaction

    OpenAIRE

    Ken J. Friesen; Taha M. El-Morsi; Alaa S. Abd-El-Aziz

    2004-01-01

    The photochemical oxidation of a series of short-chain polychlorinated n-alkane (PCA) mixtures was investigated using H2O2/UV and modified photo-Fenton conditions (Fe3+/H2O2/UV) in both Milli-Q and lake water. All PCA mixtures, including chlorinated (Cl5 to Cl8) decanes, undecanes, dodecanes and tridecanes degraded in 0.02 M H2O2/UV at pH 2.8 in pure water, with 80±4% disappearance after 3 h of irradiation using a 300 nm light source. Degradation was somewhat enhanced under similar conditions...

  13. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    Science.gov (United States)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-03-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  14. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    Science.gov (United States)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-05-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  15. Dehydriding and re-hydriding properties of high-energy ball milled LiBH{sub 4}+MgH{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Kyle; Shaw, Leon L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT 06269 (United States)

    2010-07-15

    Here we report the first investigation of the dehydriding and re-hydriding properties of 2LiBH{sub 4} + MgH{sub 2} mixtures in the solid state. Such a study is made possible by high-energy ball milling of 2LiBH{sub 4}+MgH{sub 2} mixtures at liquid nitrogen temperature with the addition of graphite. The 2LiBH{sub 4}+MgH{sub 2} mixture ball milled under this condition exhibits a 5-fold increase in the released hydrogen at 265 C when compared with ineffectively ball milled counterparts. Furthermore, both LiBH{sub 4} and MgH{sub 2} contribute to hydrogen release in the solid state. The isothermal dehydriding/re-hydriding cycles at 265 C reveal that re-hydriding is dominated by re-hydriding of Mg. These unusual phenomena are explained based on the formation of nanocrystalline and amorphous phases, the increased defect concentration in crystalline compounds, and possible catalytic effects of Mg,MgH{sub 2} and LiBH{sub 4} on their dehydriding and re-hydriding properties. (author)

  16. In Developping a Bench-Scale Circulating Fluidized Bed Combustor to Burn High Ash Brazilian Coal-Dolomites Mixtures

    Science.gov (United States)

    Ramírez Behainne, Jhon Jairo; Hory, Rogério Ishikawa; Goldstein, Leonardo; Bernárdez Pécora, Araí Augusta

    This work considers some of the questions in burning high ash Brazilian coal-dolomite mixtures in a bench-scale circulating fluidized bed combustor (CFBC). Experimental tests were performed with the CE4500 coal from Santa Catarina State, in southern Brazil, with a Sauter mean diameter d p =43 μm. The coal particles were mixed with dolomite particles of d p = 111 μm and this fuel mixture was fed into the circulating fluidized reactor, previously loaded with quartz sand particles of d p =353 μm. This inert material was previously heated by the combustion of liquefied petroleum gas up to the ignition temperature of the fuel mixture. The CFBC unit has a 100mm internal diameter riser, 4.0m high, as well as a 62.8mm internal diameter downcomer. The loop has a cyclone, a sampling valve to collect particles and a 62.8mm internal diameter L-valve to recirculate the particles in the loop. A screw feeder with a rotation control system was used to feed the fuel mixture to the reactor. The operational conditions were monitored by pressure taps and thermocouples installed along the loop. A data acquisition system showed the main operational conditions to control. Experimental tests performed put in evidence the problems found during bed operation, with special attention to the solids feed device, to the L-valve operation, to particle size, solids inventory, fluidized gas velocity, fuel mixture and recirculated solids feeding positions.

  17. Reduction kinetics of Wüstite scale on pure iron and steel sheets in Ar and H

    NARCIS (Netherlands)

    Mao, W.; Sloof, W.G.

    2017-01-01

    A dense and closed Wüstite scale is formed on pure iron and Mn alloyed steel after oxidation in Ar + 33 vol pct CO2 + 17 vol pct CO gas mixture. Reducing the Wüstite scale in Ar + H2 gas mixture forms a dense and uniform iron layer on top of the remaining Wüstite scale,

  18. Water desalting schemes when using heat gas-vapor mixture in front of contact condenser

    OpenAIRE

    Kuznetsova, Svitlana A.

    2016-01-01

    Ukraine is a country with low quality of fresh water; there are regions with its deficiency. One of the possible solutions to this problem is the desalination of the brackish water from surface and groundwater sources by using heat of the mixture before the contact condenser in gas-steam turbine plants. The plants produce electricity and heat energy for the needs of the industrial, agricultural complexes and the population of Kherson, Nikolaev and Odessa regions. The studies were carried out ...

  19. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    Science.gov (United States)

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  20. Electron thermalization in rare gases and their mixtures

    International Nuclear Information System (INIS)

    Bronic, I.K.; Kimura, M.

    1996-01-01

    The time evolution and temperature dependence of electron energy distribution functions (EDFs) are studied in pure rare gases (He, Ne, Ar, Kr, Xe) as well as in their mixtures by using solutions of the Boltzmann equation. A clear difference between the gases having the Ramsauer endash Townsend (RT) minimum in the momentum-transfer cross section, (RT gases: Ar, Kr, and Xe), and those without the RT minimum (non-RT gases: He and Ne) is pointed out. The influence of the position and the depth of the RT minimum on the EDF and time evolution is studied for three different initial electron energies. A formula proposed for describing thermalization time in a mixture is tested on (i) a non-RT endash non-RT gas mixture, (ii) a RT endash non-RT mixture and (iii) a RT endash RT gas mixture. The linear combination of the reciprocal thermalization times in gas mixture with the component concentrations as weighting factors is found to be valid for gases with a similar energy dependence of the momentum-transfer cross section, σ m , and also for all rare-gas binary mixtures if the initial electron energy is sufficiently below the RT minimum. Conspicuous deviations from the linear relationship are observed in mixtures of gases whose energy dependence of σ m (or the stopping cross section) are different, and theoretical rationales for these findings are provided. copyright 1996 American Institute of Physics

  1. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features.

    Science.gov (United States)

    Li, Fu-An; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-03-12

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In₂O₃ composite, is designed to differentiate NO₂, NH₃, C₃H₆, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In₂O₃, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

  2. Phase transition of DNA-linked gold nanoparticles: Creation of a high concentration of atomic hydrogen in impurity-helium solids

    International Nuclear Information System (INIS)

    Kiselev, S.I.; Khmelenko, V.V.; Bernard, E.P.; Lee, C.Y.; Lee, D.M.

    2003-01-01

    The exchange tunneling reactions D+H 2 →HD+H and D+HD→D 2 +H were used to generate high concentrations of atomic hydrogen in impurity-helium solids. The dependence of atom concentration on the content of hydrogen in the injected gas mixture gave a maximum concentration of 7.5x10 17 cm -3 hydrogen atoms for an initial gas ratio H 2 :D 2 :He=1:4:100

  3. Gas-Solid Reaction Route toward the Production of Intermetallics from Their Corresponding Oxide Mixtures

    Directory of Open Access Journals (Sweden)

    Hesham Ahmed

    2016-08-01

    Full Text Available Near-net shape forming of metallic components from metallic powders produced in situ from reduction of corresponding pure metal oxides has not been explored to a large extent. Such a process can be probably termed in short as the “Reduction-Sintering” process. This methodology can be especially effective in producing components containing refractory metals. Additionally, in situ production of metallic powder from complex oxides containing more than one metallic element may result in in situ alloying during reduction, possibly at lower temperatures. With this motivation, in situ reduction of complex oxides mixtures containing more than one metallic element has been investigated intensively over a period of years in the department of materials science, KTH, Sweden. This review highlights the most important features of that investigation. The investigation includes not only synthesis of intermetallics and refractory metals using the gas solid reaction route but also study the reaction kinetics and mechanism. Environmentally friendly gases like H2, CH4 and N2 were used for simultaneous reduction, carburization and nitridation, respectively. Different techniques have been utilized. A thermogravimetric analyzer was used to accurately control the process conditions and obtain reaction kinetics. The fluidized bed technique has been utilized to study the possibility of bulk production of intermetallics compared to milligrams in TGA. Carburization and nitridation of nascent formed intermetallics were successfully carried out. A novel method based on material thermal property was explored to track the reaction progress and estimate the reaction kinetics. This method implies the dynamic measure of thermal diffusivity using laser flash method. These efforts end up with a successful preparation of nanograined intermetallics like Fe-Mo and Ni-W. In addition, it ends up with simultaneous reduction and synthesis of Ni-WN and Ni-WC from their oxide mixtures

  4. Fast 2D NMR Spectroscopy for In vivo Monitoring of Bacterial Metabolism in Complex Mixtures

    Directory of Open Access Journals (Sweden)

    Rupashree Dass

    2017-07-01

    Full Text Available The biological toolbox is full of techniques developed originally for analytical chemistry. Among them, spectroscopic experiments are very important source of atomic-level structural information. Nuclear magnetic resonance (NMR spectroscopy, although very advanced in chemical and biophysical applications, has been used in microbiology only in a limited manner. So far, mostly one-dimensional 1H experiments have been reported in studies of bacterial metabolism monitored in situ. However, low spectral resolution and limited information on molecular topology limits the usability of these methods. These problems are particularly evident in the case of complex mixtures, where spectral peaks originating from many compounds overlap and make the interpretation of changes in a spectrum difficult or even impossible. Often a suite of two-dimensional (2D NMR experiments is used to improve resolution and extract structural information from internuclear correlations. However, for dynamically changing sample, like bacterial culture, the time-consuming sampling of so-called indirect time dimensions in 2D experiments is inefficient. Here, we propose the technique known from analytical chemistry and structural biology of proteins, i.e., time-resolved non-uniform sampling. The method allows application of 2D (and multi-D experiments in the case of quickly varying samples. The indirect dimension here is sparsely sampled resulting in significant reduction of experimental time. Compared to conventional approach based on a series of 1D measurements, this method provides extraordinary resolution and is a real-time approach to process monitoring. In this study, we demonstrate the usability of the method on a sample of Escherichia coli culture affected by ampicillin and on a sample of Propionibacterium acnes, an acne causing bacterium, mixed with a dose of face tonic, which is a complicated, multi-component mixture providing complex NMR spectrum. Through our experiments

  5. Absorption of Carbon Dioxide in Aqueous Solutions of N-methyldiethanolamine Mixtures

    Science.gov (United States)

    Ma’mun, S.; Svendsen, H. F.

    2018-05-01

    Carbon dioxide (CO2) is one of the greenhouse gases (GHG) that has contributed to the global warming problem. Carbon dioxide is produced in large quantity from coal-fired power plants, iron and steel production, cement production, chemical and petrochemical industries, natural gas purification, and transportation. Some efforts to reduce the CO2 emissions to the atmosphere are then required. Amine-based absorption may be an option for post-combustion capture. The objective of this study is to measure the effect of promoter addition as well as MDEA concentration for the CO2 absorption into the aqueous solutions of MDEA to improve its performances, i.e. increasing the absorption rate and the absorption capacity. Absorption of CO2 in aqueous solutions of MDEA mixtures were measured at 40 °C in a bubble tank reactor. The systems tested were the mixtures of 30 wt% MDEA with 5 and 10 wt% BEA and the mixtures of 40 and 50 wt% MDEA with 6 wt% AEEA. It was found that for MDEA-BEA-H2O mixtures, the higher the promoter concentraation the higher the CO2 absorption rate, while for the MDEA-AEEA-H2O mixtures, the higher the MDEA concentration the lower the CO2 absorption rate.

  6. Evaluation of the H-point standard additions method (HPSAM) and the generalized H-point standard additions method (GHPSAM) for the UV-analysis of two-component mixtures.

    Science.gov (United States)

    Hund, E; Massart, D L; Smeyers-Verbeke, J

    1999-10-01

    The H-point standard additions method (HPSAM) and two versions of the generalized H-point standard additions method (GHPSAM) are evaluated for the UV-analysis of two-component mixtures. Synthetic mixtures of anhydrous caffeine and phenazone as well as of atovaquone and proguanil hydrochloride were used. Furthermore, the method was applied to pharmaceutical formulations that contain these compounds as active drug substances. This paper shows both the difficulties that are related to the methods and the conditions by which acceptable results can be obtained.

  7. Enthalpic discrimination of homochiral pairwise interactions: Enantiomers of proline and hydroxyproline in (dimethyl formamide (DMF) + H2O) and (dimethylsulfoxide (DMSO) + H2O) mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Hu, Xin-Gen; Liu, Jia-Min; Guo, Zheng; Liang, Hong-Yu; Jia, Zhao-Peng; Cheng, Wei-Na; Guo, Ai-Di; Zhang, He-Juan

    2013-01-01

    Highlights: • The h xx values of each α-amino acids decrease gradually with the mass fractions of cosolvents. • The absolute values of h xx of L-enantiomers are larger than D-enantiomers in the range w COS = 0 to 0.30. • The h xx values of the two proline enantiomers are all positive at each composition of mixed solvents. • When a hydrophilic hydroxyl group is introduced into proline enantiomers, the values of h xx become negative. -- Abstract: Dilution enthalpies of two pairs of α-amino acid enantiomers, namely L-proline vsD-proline, and L-hydroxyproline vsD-hydroxyproline, in water-rich regions of dimethyl formamide (DMF) + H 2 O and dimethylsulfoxide (DMSO) + H 2 O mixtures (mass fractions of cosolvents w COS = 0 to 0.30) have been determined respectively at 298.15 K by isothermal titration calorimetry (ITC). The successive values of dilution enthalpy obtained in a single run of ITC determination were used to calculate homochiral enthalpic pairwise interaction coefficients (h xx ) at the corresponding composition of mixed solvents according to the McMillan–Mayer’ statistical thermodynamic approach. The sign and magnitude of h xx were interpreted in terms of solute–solute interactions mediated by solvent and cosolvent molecules, and preferential configurations of homochiral pairwise interactions (L–L or D–D pairs) in aqueous solutions. The variations of h xx with w COS were considered to be dependent greatly on the competition equilibrium between hydrophobic and hydrophilic interactions, as well as the structural alteration of water caused by the two highly polar aprotic cosolvents (DMF and DMSO). Especially, it was found that when one of the two kinds of interactions (hydrophobic or hydrophilic interactions) preponderates over the other in solutions, enthalpic effect of homochiral pairwise interactions is always remarkable, and is characterized by a large absolute value of h xx , positive or negative, which corresponds respectively to the

  8. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2 and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    K. L. Vialetti

    2008-05-20

    This report presents the final hazard categorization for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  9. The evaluation study for gas target system in cyclotron

    International Nuclear Information System (INIS)

    Hur, Min Goo; Yang, Seung Dae; Kim, Sang Wook

    2009-06-01

    The object of this study is an improvement of a gas target and targetry for increasing the radioisotope production yields. The main results are as follows 1. Improvement of beam entrance of the gas target : In this work, the deep hole grid and the hex grid are compared for improvement of beam entrance. Using FEM analysis, it was verified that the hex grid design is more effective than the hole grid. 2. Improvement of target gas loading and withdrawing system : For the targetry, two type of mixture gas (N 2 +H 2 /N 2 +O 2 ) lines was installed for CH 4 /CO 2 production. Use the mixture gas than the He gas, it was proved that the recovery yields was improved and the residual impurity was reduced. 3. Compare the target yields : For improving the cooling efficiency, cooling fin was suggested to the target design. Also, we tested the production yield variation with impurity of the mixture gas. It is more effective to put the cooling fins inside the target cavity for the suppressed target pressure and density reduction effect during the proton beam irradiation. In conclusion, the target with fins inside the target cavity was better for high current irradiation and mass RI production

  10. Noble gas binary mixtures for gas-cooled reactor power plants

    International Nuclear Information System (INIS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2008-01-01

    This paper examines the effects of using noble gases and binary mixtures as reactor coolants and direct closed Brayton cycle (CBC) working fluids on the performance of terrestrial nuclear power plants and the size of the turbo-machines. While pure helium has the best transport properties and lowest pumping power requirement of all noble gases and binary mixtures, its low molecular weight increases the number of stages of the turbo-machines. The heat transfer coefficient for a He-Xe binary mixture having a molecular weight of 15 g/mole is 7% higher than that of helium, and the number of stages in the turbo-machines is 24-30% of those for He working fluid. However, for the same piping and heat exchange components design, the loop pressure losses with He-Xe are ∼3 times those with He. Consequently, for the same reactor exit temperature and pressure losses in piping and heat exchange components, the higher pressure losses in the nuclear reactor decrease the net peak efficiency of the plant with He-Xe working fluid (15 g/mole) by a little more than ∼2% points, at higher cycle compression ratio than with He working fluid

  11. Drift velocity studies at a time projection chamber for various water contents in the gas mixture

    International Nuclear Information System (INIS)

    Stoever, F.W.

    2007-03-01

    For the answer of different open questions in high energy physics the construction of a linear e + e - collider with a c. m. energy of up to one TeV is prepared. With this is connected a comprehensive development on detectors, which must satisfy the requirements of the planned experiments. For the track chamber a TPC is considered. Hereby it deals with a gas-based concept, which has already been proved in past experiments and which is at time further developed by means of test chambers. The composition of the gas mixtureplays hereby an important role. Impurities of the gas mixture, especially by oxygen and water from the ambient air are a fact, which occurs every time in the development phase and can scarcely be avoided. From this arose the motivation to study directly the effects of this impurities. The object of the present thesis are correlations between drift velocity and water content in the chamber gas of a TPC

  12. Data on acetic acid–methanol–methyl acetate–water mixture analysised by dual packed column Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Mallaiah Mekala

    2018-06-01

    Full Text Available The composition of multicomponent determination by colorimetric titration is difficult. This complexity is easily overcome by using Gas Chromatography technique instead of wet method for multi-component mixture analysis. In Gas Chromatography, first the standard chart is prepared by using the known amount sample concentration as the reference. Once calibration chart is prepared the unknown sample concentration easily measured by using the standard chart. In the present study a standard calibration chart developed for the four component system of acetic acid–methanol–methyl acetate–water. The samples were taken at various concentrations of all components and different chromatograms obtained under various concentrations respectively. The method of optimization was first carried out to get the sharp peaks of individual components and binary pairs also. By using those conditions, the multi components concentrations were estimated. From the present results, the area under gas chromatogram is linearly varying with mole% of the components compared to mass%. Keywords: Gas Chromatography, Esterification, Calibration, Retention time, Optimization

  13. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.

    Science.gov (United States)

    Bouša, Daniel; Friess, Karel; Pilnáček, Kryštof; Vopička, Ondřej; Lanč, Marek; Fónod, Kristián; Pumera, Martin; Sedmidubský, David; Luxa, Jan; Sofer, Zdeněk

    2017-08-22

    The preparation and gas-separation performance of self-standing, high-flux, graphene oxide (GO) membranes is reported. Defect-free, 15-20 μm thick, mechanically stable, unsupported GO membranes exhibited outstanding gas-separation performance towards H 2 /CO 2 that far exceeded the corresponding 2008 Robeson upper bound. Remarkable separation efficiency of GO membranes for H 2 and bulky C 3 or C 4 hydrocarbons was achieved with high flux and good selectivity at the same time. On the contrary, N 2 and CH 4 molecules, with larger kinetic diameter and simultaneously lower molecular weight, relative to that of CO 2 , remained far from the corresponding H 2 /N 2 or H 2 /CH 4 upper bounds. Pore size distribution analysis revealed that the most abundant pores in GO material were those with an effective pore diameter of 4 nm; therefore, gas transport is not exclusively governed by size sieving and/or Knudsen diffusion, but in the case of CO 2 was supplemented by specific interactions through 1) hydrogen bonding with carboxyl or hydroxyl functional groups and 2) the quadrupole moment. The self-standing GO membranes presented herein demonstrate a promising route towards the large-scale fabrication of high-flux, hydrogen-selective gas membranes intended for the separation of H 2 /CO 2 or H 2 /alkanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mixture Effects of 3 Mechanistically Different Steroidogenic Disruptors (Prochloraz, Genistein, and Ketoconazole) in the H295R Cell Assay

    DEFF Research Database (Denmark)

    Nielsen, Frederik Knud; Hansen, Cecilie Hurup; Fey, Jennifer Anna

    2015-01-01

    Mixture effects of 3 model endocrine disruptors, prochloraz, ketoconazole, and genistein, on steroidogenesis were tested in the adrenocortical H295R cell line. Seven key steroid hormones (pregnenolone, progesterone, dehydroepiandrosterone, androstenedione, testosterone, estrone, and 17β-estradiol......Mixture effects of 3 model endocrine disruptors, prochloraz, ketoconazole, and genistein, on steroidogenesis were tested in the adrenocortical H295R cell line. Seven key steroid hormones (pregnenolone, progesterone, dehydroepiandrosterone, androstenedione, testosterone, estrone, and 17β...

  15. Amorphous silicon prepared from silane-hydrogen mixture

    International Nuclear Information System (INIS)

    Pietruszko, S.M.

    1982-09-01

    Amorphous silicon films prepared from a d.c. discharge of 10% SiH 4 - 90% H 2 mixture are found to have properties similar to those made from 100% SiH 4 . These films are found to be quite stable against prolonged light exposure. The effect of nitrogen on the properties of these films was investigated. It was found that instead of behaving as a classical donor, nitrogen introduces deep levels in the material. Field effect experiments on a-Si:H films at the bottom (film-substrate interface) and the top (film-vacuum interface) of the film are also reported. (author)

  16. Measurement of activity coefficients of mixtures by head-space gas chromatography: general procedure.

    Science.gov (United States)

    Luis, Patricia; Wouters, Christine; Van der Bruggen, Bart; Sandler, Stanley I

    2013-08-09

    Head-space gas chromatography (HS-GC) is an applicable method to perform vapor-liquid equilibrium measurements and determine activity coefficients. However, the reproducibility of the data may be conditioned by the experimental procedure concerning to the automated pressure-balanced system. The study developed in this work shows that a minimum volume of liquid in the vial is necessary to ensure the reliability of the activity coefficients since it may become a parameter that influences the magnitude of the peak areas: the helium introduced during the pressurization step may produce significant variations of the results when too small volume of liquid is selected. The minimum volume required should thus be evaluated prior to obtain experimentally the concentration in the vapor phase and the activity coefficients. In this work, the mixture acetonitrile-toluene is taken as example, requiring a sample volume of more than 5mL (about more than 25% of the vial volume). The vapor-liquid equilibrium and activity coefficients of mixtures at different concentrations (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 molar fraction) and four temperatures (35, 45, 55 and 70°C) have been determined. Relative standard deviations (RSD) lower than 5% have been obtained, indicating the good reproducibility of the method when a sample volume larger than 5mL is used. Finally, a general procedure to measure activity coefficients by means of pressure-balanced head-space gas chromatography is proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    Rodovsky, T.J.

    2006-01-01

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site

  18. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2006-12-06

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  19. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Rodovsky

    2007-04-12

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site.

  20. Final Hazard Categorization for the Remediation of the 118-D-1, 118-D-2, 118-D-3, 118-H-1, 118-H-2, and 118-H-3 Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    TRodovsky, T.J.

    2007-01-01

    This report presents the final hazard categorization (FHC) for the remediation of the 118-D-1, 118-D-2, and 118-D-3 Burial Grounds located within the 100-D/DR Area of the Hanford Site and the 118-H-1, 118-H-2, and 118-H-3 Burial Grounds located within the 100-H Area of the Hanford Site

  1. Ab initio study of {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 4}He reactions and the tensor force

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D. [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata, 940-8532 (Japan); Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Department of Physics, Niigata University, Niigata 950-2181, Japan and RIKEN Nishina Center, Wako 351-0198 (Japan); Physique Nucleaire Theorique et Physique Mathematique, C.P.229, Universite Libre de Bruxelles, B 1050 Brussels (Belgium); Physique Quantique, CP165/82, Universite Libre de Bruxelles, B-1050 Brussels (Belgium)

    2012-11-12

    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions at low energies are studied with realistic nucleon-nucleon interactions in an ab initio approach. The obtained astrophysical S-factors are all in very good agreement with experiment. The most important channels for both transfer and radiative capture are all found to dominate thanks to the tensor force.

  2. Study on the 21 MeV neutron flux characteristics obtained in the 3H(d,n)4He reaction using of gas target

    International Nuclear Information System (INIS)

    Lovchikova, G.N.; Polyakov, A.V.; Sal'nikov, O.A.; Simakov, S.P.; Sukhikh, S.Eh.; Trufanov, A.M.

    1983-01-01

    The possibility to use gas tritium target as neutron source with the energy 2 MeV for nuclear-physical studies has been considered. Characteristics of neutron flux crested in the reaction 3 H(d, n) 4 He to obtain neutrons are investigated. The study of inelastic scattering processes at the energies permits to expand the experiments conducted up to the present day on the study of spectra of inelastically scattered neutrons in a lower energy region and it is of interest for the clarification of appearance mechanism of high-energy neutrons in the spectra. Characteristics of neutron flux as a result of the reaction 3 (α, n) 4 He at the energy of falling deuterons Esub(d)=5.54 MeV are investigated. Measurements of spectra of scattered neutrons on carbon-12 at the angles 30, 45, 60, 90, 120, 150 degrees are made. Differential cross sections of elastic scattering are obtained

  3. Feasibility study of hydrogen determination in blended gas mixture by an indigenously developed hydrogen determinator

    International Nuclear Information System (INIS)

    Gaikwad, Revati; Sonar, V.R.; Pandey, R.K.; Karekar, C.D.; Raul, Seema; Mahanty, B.; Kelkar, A.; Bhatt, R.B.; Behere, P.G.

    2017-01-01

    It is required to determine accurately the percentage composition of hydrogen in the blended gas of N 2 and H 2 prior to deliver to the sintering furnace. A feasibility study has been carried out to determine the percentage composition of hydrogen in the blended gas by using an indigenously developed hydrogen determinator. The instrument uses gas chromatograph-thermal conductivity (GC-TCD) technique to determine hydrogen. The flow of carrier gas was kept at 100 mL min -1 during the analysis. A very close agreement between the determined value and the reported value of hydrogen content in the commercially available N 2 -H 2 mixed cylinder was found by using the indigenous hydrogen determinator. (author)

  4. Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)' providing data from direct measurement of pressure and mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  5. Comparative analysis of succinate dehydrogenase activity in mammalian peripheral blood lymphocytes and radiomodifying action of gas hypoxis mixtures

    International Nuclear Information System (INIS)

    Gajdamakin, A.N.; Abramov, M.M.

    1987-01-01

    Radiprotective efficiency of gas hypoxic mixtures (GHM) containing 5-12% of oxygen and the rate of the reaction of succinate dehydrogenase (V SDG ) activity in peripheral blood lymphocytes upon breathing GHM were comparatively studied in rats and dogs. V SDG was 4393.5 (%O 2 ) -2,58 and 130.76 (%O 2 ) -1.42 in dogs and rats respectively. Taking into account that DMF in rats is a function of oxygen concentration in the mixture one can obtain a formula for determining a dose modifying factors (DMF) as a function of the rate of SDG activity reaction

  6. FORMATION OF S-BEARING SPECIES BY VUV/EUV IRRADIATION OF H{sub 2}S-CONTAINING ICE MIXTURES: PHOTON ENERGY AND CARBON SOURCE EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-J.; Juang, K.-J.; Qiu, J.-M.; Chu, C.-C.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Nuevo, M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Jiménez-Escobar, A.; Muñoz Caro, G. M. [Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, E-28850 Madrid (Spain); Wu, C.-Y. R. [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States); Fung, H.-S. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Ip, W.-H. [Graduate Institute of Astronomy, National Central University, Jhongli City, Taoyuan County 32049, Taiwan (China)

    2015-01-10

    Carbonyl sulfide (OCS) is a key molecule in astrobiology that acts as a catalyst in peptide synthesis by coupling amino acids. Experimental studies suggest that hydrogen sulfide (H{sub 2}S), a precursor of OCS, could be present in astrophysical environments. In the present study, we used a microwave-discharge hydrogen-flow lamp, simulating the interstellar UV field, and a monochromatic synchrotron light beam to irradiate CO:H{sub 2}S and CO{sub 2}:H{sub 2}S ice mixtures at 14 K with vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) photons in order to study the effect of the photon energy and carbon source on the formation mechanisms and production yields of S-containing products (CS{sub 2}, OCS, SO{sub 2}, etc.). Results show that (1) the photo-induced OCS production efficiency in CO:H{sub 2}S ice mixtures is higher than that of CO{sub 2}:H{sub 2}S ice mixtures; (2) a lower concentration of H{sub 2}S enhances the production efficiency of OCS in both ice mixtures; and (3) the formation pathways of CS{sub 2} differ significantly upon VUV and EUV irradiations. Furthermore, CS{sub 2} was produced only after VUV photoprocessing of CO:H{sub 2}S ices, while the VUV-induced production of SO{sub 2} occurred only in CO{sub 2}:H{sub 2}S ice mixtures. More generally, the production yields of OCS, H{sub 2}S{sub 2}, and CS{sub 2} were studied as a function of the irradiation photon energy. Heavy S-bearing compounds were also observed using mass spectrometry during the warm-up of VUV/EUV-irradiated CO:H{sub 2}S ice mixtures. The presence of S-polymers in dust grains may account for the missing sulfur in dense clouds and circumstellar environments.

  7. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture

    Science.gov (United States)

    Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…

  8. Calculation of electron transport in Ar/N2 and He/Kr gas mixtures emdash implications for validity of the Blanc close-quote s law method

    International Nuclear Information System (INIS)

    Wang, Y.; Van Brunt, R.J.

    1997-01-01

    The electron drift velocities and corresponding mean energies have been calculated numerically using an approximate two-term solution of the Boltzmann transport equation for Ar/N 2 gas mixtures at electric field-to-gas density ratios (E/N) below 2.0x10 -20 Vm 2 (20 Td) and for He/Kr mixtures at E/N below 5.0x10 -21 Vm 2 (5.0 Td). The results are compared with predictions obtained from a method proposed by Chiflikian based on an open-quotes analog of Blanc close-quote s lawclose quotes [Phys. Plasmas 2, 3902 (1995)]. Large differences are found between the results derived from the Blanc close-quote s law method and those found here from solutions of the transport equation that indicate serious errors and limitations associated with use of the Blanc close-quote s law method to compute drift velocities in gas mixtures. copyright 1997 American Institute of Physics

  9. Design validation and performance of closed loop gas recirculation system

    International Nuclear Information System (INIS)

    Kalmani, S.D.; Majumder, G.; Mondal, N.K.; Shinde, R.R.; Joshi, A.V.

    2016-01-01

    A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m 2 , with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C 2 H 2 F 4 ), isobutane (iC 4 H 10 ) and sulphur hexafluoride (SF 6 ) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.

  10. Influence of gas mixture and primary ionization on the performance of limit streamer mode tubes

    International Nuclear Information System (INIS)

    An Jigang; Anderson, K.J.; Merritt, F.S.; Oreglia, M.; Pilcher, J.E.; Possoz, A.; Schappert, W.; Chicago Univ., IL

    1988-01-01

    We report a study of the dependence of limited streamer mode operation on gas composition. Results are given for the plateau onset voltage, plateau length, charge versus voltage, charge spectra and pulse width for various fractions of (Ar, CO 2 , pentane) and (Ar, isobutane). In addition, a series of argon-free strong quenching gas mixtures has been studied which have very attractive characteristics. Chamber lifetime tests for these are also reported. As part of a study of the nature of the limited streamer mode mechanism, the response to X-rays and minimum ionizing particles are compared and differences noted. The character of the primary ionization is found to have a clear effect on the chamber response even in the streamer region. (orig.)

  11. Long-term irradiation of a MSGC made of gold strips on electron conducting C85-1 glass under several gas mixtures and cleanliness conditions

    CERN Document Server

    Bouclier, Roger; Hoch, M; Million, G; Ropelewski, L; Sauli, F; Sharma, A; Shekhtman, L

    1996-01-01

    The present study aims to create reproducible and controlled polluted conditions in a clean gas system in order to be able to compare the behaviour of an MSGC plate operating with Ar-DME and Ne-DME gas mixtures. The achievement of such conditions seems to be more difficult than would be expected from the long term behaviour shown by MSGCs years ago in the same gas system. The pollutants present in the gas rack, possibly originating the dramatic losses reported then, are not present anymore in the gas system after four years of continuous operation with the Ar-DME mixture. The use of new and supposedly clean stainless steel gas pipes of smaller diameter might affect the chamber operation, although the lines are rapidly cleaned ( ~weeks) after being flushed with DME. The back-diffusion of pollutants due to the use of a Si-Oil bubbler affects dramatically the chamber operation, which behave s slightly better with argon than with neon; in view of the other variables, we do not consider this difference as signific...

  12. Approximate thermodynamic state relations in partially ionized gas mixtures

    International Nuclear Information System (INIS)

    Ramshaw, John D.

    2004-01-01

    Thermodynamic state relations for mixtures of partially ionized nonideal gases are often approximated by artificially partitioning the mixture into compartments or subvolumes occupied by the pure partially ionized constituent gases, and requiring these subvolumes to be in temperature and pressure equilibrium. This intuitively reasonable procedure is easily shown to reproduce the correct thermal and caloric state equations for a mixture of neutral (nonionized) ideal gases. The purpose of this paper is to point out that (a) this procedure leads to incorrect state equations for a mixture of partially ionized ideal gases, whereas (b) the alternative procedure of requiring that the subvolumes all have the same temperature and free electron density reproduces the correct thermal and caloric state equations for such a mixture. These results readily generalize to the case of partially degenerate and/or relativistic electrons, to a common approximation used to represent pressure ionization effects, and to two-temperature plasmas. This suggests that equating the subvolume electron number densities or chemical potentials instead of pressures is likely to provide a more accurate approximation in nonideal plasma mixtures

  13. Infrared spectra of 4HeH+, 4HeD+, 3HeH+, and 3HeD+

    International Nuclear Information System (INIS)

    Crofton, M.W.; Altman, R.S.; Haese, N.N.; Oka, T.

    1989-01-01

    Isotopic species of the HeH + molecular ion provide an excellent testing ground for studying isotopic dependence of vibration--rotation constants because of the small masses of He and H isotopes. We have observed infrared spectra of the hot band v=2 left-arrow 1 of HeH + and fundamental bands of isotopic species HeD + , 3 HeH + , and 3 HeD + , and obtained the Dunham coefficients Y kl , and the isotopically independent parameters U kl , Δ He kl , and Δ H kl

  14. New mathematical method for the solution of gas-gas equilibria with special application to HTGR primary-coolant environments

    International Nuclear Information System (INIS)

    Bongartz, K.

    1983-07-01

    A new mathematical method and corresponding computer program have been developed that provide a general method for the numerical solution of an equilibrium problem involving the chemical interactions of gaseous species. The method and computer code were developed to calculate the equilibrium concentrations of impurity gases, such as CO, CO 2 , H 2 , H 2 O, CH 4 , and O 2 , which may be approached as the result of gaseous chemical reactions occurring within the hot primary coolant helium of a high-temperature gas-cooled reactor (HTGR). The method, however, can be applied to any gas mixture

  15. Investigation of H2S separation from H2S/CH4 mixtures using functionalized and non-functionalized vertically aligned carbon nanotube membranes

    Science.gov (United States)

    Gilani, Neda; Towfighi, Jafar; Rashidi, Alimorad; Mohammadi, Toraj; Omidkhah, Mohammad Reza; Sadeghian, Ahmad

    2013-04-01

    Separation of H2S from binary mixtures of H2S/CH4 using vertically aligned carbon nanotube membranes fabricated in anodic aluminum oxide (AAO) template was studied experimentally. Carbon nanotubes (CNTs) were grown in five AAO templates with different pore diameters using chemical vapor deposition, and CNT/AAO membranes with tubular carbon nanotube structure and open caps were selected for separation of H2S. For this, two tubular CNT/AAO membranes were fabricated with the CNT inner diameters of 23 and 8 nm. It was found that permeability and selectivity of the membrane with inner diameter of 23 nm for CNT were independent of upstream feed pressure and H2S feed concentration unlike that of CNT having an inner diameter of 8 nm. Selectivity of these membranes for separation of H2S was obtained in the ranges of 1.36-1.58 and 2.11-2.86, for CNTs with internal diameters of 23 and 8 nm, respectively. In order to enhance the separation of H2S from H2S/CH4 mixtures, dodecylamine was used to functionalize the CNT/AAO membrane with higher selectivity. The results showed that for amido-functionalized membrane, both upstream feed pressure and H2S partial pressure in the feed significantly increased H2S permeability, and selectivity for H2S being in the range of 3.0-5.57 respectively.

  16. Ignition parameters and early flame kernel development of laser-ignited combustible gas mixtures

    International Nuclear Information System (INIS)

    Kopecek, H.; Wintner, E.; Ruedisser, D.; Iskra, K.; Neger, T.

    2002-01-01

    Full text: Laser induced breakdown of focused pulsed laser radiation, the subsequent plasma formation and thermalization offers a possibility of ignition of combustible gas mixtures free from electrode interferences, an arbitrary choice of the location within the medium and exact timing regardless of the degree of turbulence. The development and the decreasing costs of solid state laser technologies approach the pay-off for the higher complexity of such an ignition system due to several features unique to laser ignition. The feasability of laser ignition was demonstrated in an 1.5 MW(?) natural gas engine, and several investigations were performed to determine optimal ignition energies, focus shapes and laser wavelengths. The early flame kernel development was investigated by time resolved planar laser induced fluorescence of the OH-radical which occurs predominantly in the flame front. The flame front propagation showed typical features like toroidal initial flame development, flame front return and highly increased flame speed along the laser focus axis. (author)

  17. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    Science.gov (United States)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  18. Drug: D08730 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D08730 Mixture ... Drug Glycol salicylate - nonanoic acid vanillylamide mixt; GS pla...ster H (TN) Glycol salicylate [DR:D01557], Nonanoic acid vanillylamide [DR:D08282] ... PubChem: 96025413 ...

  19. Measurement and modelling of high pressure density and interfacial tension of (gas + n-alkane) binary mixtures

    International Nuclear Information System (INIS)

    Pereira, Luís M.C.; Chapoy, Antonin; Burgass, Rod; Tohidi, Bahman

    2016-01-01

    Highlights: • (Density + IFT) measurements are performed in synthetic reservoir fluids. • Measured systems include CO_2, CH_4 and N_2 with n-decane. • Novel data are reported for temperatures up to 443 K and pressures up to 69 MPa. • Predictive models are tested in 16 (gas + n-alkane) systems. • Best modelling results are achieved with the Density Gradient Theory. - Abstract: The deployment of more efficient and economical extraction methods and processing facilities of oil and gas requires the accurate knowledge of the interfacial tension (IFT) of fluid phases in contact. In this work, the capillary constant a of binary mixtures containing n-decane and common gases such as carbon dioxide, methane and nitrogen was measured. Experimental measurements were carried at four temperatures (313, 343, 393 and 442 K) and pressures up to 69 MPa, or near the complete vaporisation of the organic phase into the gas-rich phase. To determine accurate IFT values, the capillary constants were combined with saturated phase density data measured with an Anton Paar densitometer and correlated with a model based on the Peng–Robinson 1978 equation of state (PR78 EoS). Correlated density showed an overall percentage absolute deviation (%AAD) to measured data of (0.2 to 0.5)% for the liquid phase and (1.5 to 2.5)% for the vapour phase of the studied systems and P–T conditions. The predictive capability of models to accurately describe both the temperature and pressure dependence of the saturated phase density and IFT of 16 (gas + n-alkane) binary mixtures was assessed in this work by comparison with data gathered from the literature and measured in this work. The IFT models considered include the Parachor, the Linear Gradient Theory (LGT) and the Density Gradient Theory (DGT) approaches combined with the Volume-Translated Predictive Peng–Robinson 1978 EoS (VT-PPR78 EoS). With no adjustable parameters, the VT-PPR78 EoS allowed a good description of both solubility and

  20. Amine–mixed oxide hybrid materials for carbon dioxide adsorption from CO2/H2 mixture

    Science.gov (United States)

    Ravi, Navin; Aishah Anuar, Siti; Yusuf, Nur Yusra Mt; Isahak, Wan Nor Roslam Wan; Shahbudin Masdar, Mohd

    2018-05-01

    Bio-hydrogen mainly contains hydrogen and high level of carbon dioxide (CO2). High concentration of CO2 lead to a limitation especially in fuel cell application. In this study, the amine-mixed oxide hybrid materials for CO2 separation from bio-hydrogen model (50% CO2:50% H2) have been studied. Fourier-transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) characterizations showed that the amine–mixed oxide hybrid materials successfully adsorbed CO2 physically with no chemical adsorption evidence. The dry gas of CO2/H2 mixture adsorbed physically on amine–CuO–MgO hybrid material. No carbonates were detected after several times of adsorption, which indicated the good recyclability of adsorbents. The adsorbent system of diethanolamine (DEA)/15% CuO–75% MgO showed the highest CO2 adsorption capacity of 21.2 wt% due to the presence of polar substance on MgO surface, which can adsorb CO2 at ambient condition. The alcohol group of DEA can enhance the CO2 solubility on the adsorbent surface. In the 20% CuO–50% MgO adsorbent system, DEA as amine type showed a high CO2 adsorption of 19.4 wt%. The 10% amine loading system showed that the DEA adsorption system provided high CO2 adsorption. The BET analysis confirmed that a high amine loading contributed to the decrease in CO2 adsorption due to the low surface area of the adsorbent system.