WorldWideScience

Sample records for h-bridge power converter

  1. Enhanced static ground power unit based on flying capacitor based h-bridge hybrid active-neutral-point-clamped converter

    DEFF Research Database (Denmark)

    Abarzadeh, Mostafa; Madadi Kojabadi, Hossein; Deng, Fujin

    2016-01-01

    Static power converters have various applications, such as static ground power units (GPUs) for airplanes. This study proposes a new configuration of a static GPU based on a novel nine-level flying capacitor h-bridge active-neutral-point-clamped (FCHB_ANPC) converter. The main advantages of the p......Static power converters have various applications, such as static ground power units (GPUs) for airplanes. This study proposes a new configuration of a static GPU based on a novel nine-level flying capacitor h-bridge active-neutral-point-clamped (FCHB_ANPC) converter. The main advantages...

  2. Study and Analysis of a Natural Reference Frame Current Controller for a Multi-Level H-Bridge Power Converter

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Iov, Florin; Zanchetta, P.

    2008-01-01

    will be needed in order to control the power flow and to ensure proper and secure operation of this future grid with an increased level of renewable power. These power converters must be able to provide intelligent power management as well as ancillary services. This paper presents an analysis of the natural...... reference frame controller, based on proportional-resonant (PR) technique, for a multi-level H-bridge power converter for Universal and Flexible Power Management in Future Electricity Network. The proposed method is tested in terms of harmonic content in the Point of Common Coupling (PCC), voltage...

  3. Optimal Selective Harmonic Mitigation Technique on Variable DC Link Cascaded H-Bridge Converter to Meet Power Quality Standards

    DEFF Research Database (Denmark)

    Najjar, Mohammad; Moeini, Amirhossein; Dowlatabadi, Mohammadkazem Bakhshizadeh

    2016-01-01

    In this paper, the power quality standards such as IEC 61000-3-6, IEC 61000-2-12, EN 50160, and CIGRE WG 36-05 are fulfilled for single- and three-phase medium voltage applications by using Selective Harmonic Mitigation-PWM (SHM-PWM) in a Cascaded H-Bridge (CHB) converter. Furthermore, the ER G5/...

  4. Delta-Connected Cascaded H-Bridge Multilevel Converters for Large-Scale Photovoltaic Grid Integration

    DEFF Research Database (Denmark)

    Yu, Yifan; Konstantinou, Georgios; Townsend, Christopher D.

    2017-01-01

    The cascaded H-bridge (CHB) converter is becoming a promising candidate for use in next generation large-scale photovoltaic (PV) power plants. However, solar power generation in the three converter phase-legs can be significantly unbalanced, especially in a large geographically-dispersed plant....... The power imbalance between the three phases defines a limit for the injection of balanced three-phase currents to the grid. This paper quantifies the performance of, and experimentally confirms, the recently proposed delta-connected CHB converter for PV applications as an alternative configuration...... for large-scale PV power plants. The required voltage and current overrating for the converter is analytically developed and compared against the star-connected counterpart. It is shown that the delta-connected CHB converter extends the balancing capabilities of the star-connected CHB and can accommodate...

  5. Comparison of zero-sequence injection methods in cascaded H-bridge multilevel converters for large-scale photovoltaic integration

    DEFF Research Database (Denmark)

    Yu, Yifan; Konstantinou, Georgios; Townsend, Christopher David

    2017-01-01

    to maintain three-phase balanced grid currents with unbalanced power generation. This study theoretically compares power balance capabilities of various zero-sequence injection methods based on two metrics which can be easily generalised for all CHB applications to PV systems. Experimental results based......Photovoltaic (PV) power generation levels in the three phases of a multilevel cascaded H-bridge (CHB) converter can be significantly unbalanced, owing to different irradiance levels and ambient temperatures over a large-scale solar PV power plant. Injection of a zero-sequence voltage is required...... on a 430 V, 10 kW, three-phase, seven-level cascaded H-bridge converter prototype confirm superior performance of the optimal zero-sequence injection technique....

  6. Modeling the full-bridge series-resonant power converter

    Science.gov (United States)

    King, R. J.; Stuart, T. A.

    1982-01-01

    A steady state model is derived for the full-bridge series-resonant power converter. Normalized parametric curves for various currents and voltages are then plotted versus the triggering angle of the switching devices. The calculations are compared with experimental measurements made on a 50 kHz converter and a discussion of certain operating problems is presented.

  7. Control scheme of three-level H-bridge converter for interfacing between renewable energy resources and AC grid

    DEFF Research Database (Denmark)

    Pouresmaeil, Edris; Montesinos-Miracle, Daniel; Gomis-Bellmunt, Oriol

    2011-01-01

    This paper presents a control strategy of multilevel converters for integration of renewable energy resources into power grid. The proposed technique provides compensation for active, reactive, and harmonic current components of grid-connected loads. A three-level H-bridge converter is proposed a...

  8. AC-DC PFC Converter Using Combination of Flyback Converter and Full-bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Moh. Zaenal Efendi

    2014-06-01

    Full Text Available This paper presents a combination of power factor correction converter using Flyback converter and Full-bridge dc-dc converter in series connection. Flyback converter is operated in discontinuous conduction mode so that it can serve as a power factor correction converter and meanwhile Full-bridge dc-dc converter is used for dc regulator. This converter system is designed to produce a 86 Volt of output voltage and 2 A of output current. Both simulation and experiment results show that the power factor of this converter achieves up to 0.99 and meets harmonic standard of IEC61000-3-2. Keywords: Flyback Converter, Full-bridge DC-DC Converter, Power Factor Correction.

  9. Design and Implementation of Battery Charger with Power Factor Correction Using Sepic Converter and Full-bridge DC-DC Converter

    OpenAIRE

    Efendi, Moh. Zaenal; Windarko, Novie Ayub; Amir, Moh. Faisal

    2013-01-01

    This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulato...

  10. Design and Implementation of Battery Charger with Power Factor Correction using Sepic Converter and Full-bridge DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Moh. Zaenal Efendi

    2013-12-01

    Full Text Available This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulator of output voltage and operates at continuous conduction mode. The experimental results show that the power factor of this converter system can be achieved up to 0.96.

  11. A novel static frequency converter based on multilevel cascaded H-bridge used for the startup of synchronous motor in pumped-storage power station

    Energy Technology Data Exchange (ETDEWEB)

    Wang Feng, E-mail: sjtuwfeng@hotmail.co [Key Lab of Control of Power Transmission and Transformation, Ministry of Education, Department of Electrical Engineering, Shanghai Jiaotong University, Minhang District, Shanghai 200240 (China); Jiang Jianguo, E-mail: jiang@sjtu.edu.c [Key Lab of Control of Power Transmission and Transformation, Ministry of Education, Department of Electrical Engineering, Shanghai Jiaotong University, Minhang District, Shanghai 200240 (China)

    2011-05-15

    Research highlights: {yields} A novel Static Frequency Converter (SFC) based on multilevel cascaded H-bridge (CHB) topology is proposed and used for the reversible pump-generating units in pumped-storage power station. {yields} The novel SFC based on CHB has compact configuration, low current harmonic distortion and fast speed response. {yields} Rotor position and Grid connection are realized successfully by the novel SFC. -- Abstract: A novel static frequency converter (SFC) is proposed and is used firstly to start the reversible pump-generating units in pumped-storage power station. Multilevel cascaded H-bridge (CHB) topology and Insulated Gate Bipolar Transistor (IGBT) are applied in the novel SFC. In comparison with the conventional SFC adopting load-commutated inverter (LCI) which is composed of silicon-controlled rectifier (SCR), the novel one has plenty of advantages such as compact configuration, low current harmonic distortion and fast speed response, and these advantages have been verified during 2-year operation at Xiang Hong Dian Pumped-storage power station in China. This application shows that the novel SFC greatly enhances the reliability and success rate of connecting to grid for starting up the pump-generating units. The principle, characteristic and performance of the novel SFC are described in this paper, and some key issues related to the startup of the units of the pumped-storage power station are also presented.

  12. A hierarchical model predictive voltage control for NPC/H-bridge converters with a reduced computational burden

    DEFF Research Database (Denmark)

    Gong, Zheng; Dai, Peng; Wu, Xiaojie

    2017-01-01

    In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS-MPC) stra......In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS......-MPC) strategy is not practical for multilevel converters due to their substantial calculation requirements, especially under high number of voltage levels. To solve this problem, a hierarchical model predictive voltage control (HMPVC) strategy with referring to the implementation of g-h coordinate space vector...... and experiments with a down-scaled NPC/H-Bridge converter prototype under various conditions, which validate the proposed HMPVC strategy....

  13. Integrated power electronic converters and digital control

    CERN Document Server

    Emadi, Ali; Nie, Zhong

    2009-01-01

    Non-isolated DC-DC ConvertersBuck ConverterBoost ConverterBuck-Boost ConverterIsolated DC-DC ConvertersFlyback ConverterForward ConverterPush-Pull ConverterFull-Bridge ConverterHalf-Bridge ConverterPower Factor CorrectionConcept of PFCGeneral Classification of PFC CircuitsHigh Switching Frequency Topologies for PFCApplication of PFC in Advanced Motor DrivesIntegrated Switched-Mode Power ConvertersSwitched-Mode Power SuppliesThe Concept of Integrated ConverterDefinition of Integrated Switched-Mode Power Supplies (ISMPS)Boost-Type Integrated TopologiesGeneral Structure of Boost-Type Integrated T

  14. Cascaded resonant bridge converters

    Science.gov (United States)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  15. Cascaded H-Bridge with Bidirectional Boost Converters for Energy Storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    This paper presents the design and control of a cascaded H-bridge converter for energy storage with bidirectional boost converter as charge/discharge unit. The disadvantage of the second harmonic on the main energy storage unit as well as its voltage variation with the state of charge is solved...... by this structure. The independent phase grid control is proposed for this topology. This strategy is able to control the average dc-link voltage for each phase independently and to balance the cells capacitors voltages. The balance of the energy storage units is achieved by controlling independently each cell...

  16. Grid Connection of Wave Power Farm Using an N-Level Cascaded H-Bridge Multilevel Inverter

    Directory of Open Access Journals (Sweden)

    Rickard Ekström

    2013-01-01

    Full Text Available An N-level cascaded H-bridge multilevel inverter is proposed for grid connection of large wave power farms. The point-absorber wave energy converters are individually rectified and used as isolated DC-sources. The variable power characteristics of the wave energy converters are discussed, and a method of mitigating this issue is demonstrated. The complete power control system is given in detail and has been experimentally verified for a single-phase setup of the 9-level inverter. Theoretical expressions of the power sharing between multilevel cells are derived and show good correspondence with the experimental results.

  17. Analysis and design of a parallel-connected single active bridge DC-DC converter for high-power wind farm applications

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2013-01-01

    This paper presents a parallel-connected Single Active Bridge (SAB) dc-dc converter for high-power applications. Paralleling lower-power converters can lower the current rating of each modular converter and interleaving the outputs can significantly reduce the magnitudes of input and output curre...

  18. Soft-switching PWM full-bridge converters topologies, control, and design

    CERN Document Server

    Ruan, Xinbo

    2014-01-01

    Soft-switching PWM full-bridge converters have been widely used in medium-to-high power dc-dc conversions for topological simplicity, easy control and high efficiency. Early works on soft-switching PWM full-bridge converter by many researchers included various topologies and modulation strategies.  However, these works were scattered, and the relationship among these topologies and modulation strategies had not been revealed. This book intends to describe systematically the soft-switching techniques for pulse-width modulation (PWM) full-bridge converters, including the topologies, control and

  19. High power density dc/dc converter: Selection of converter topology

    Science.gov (United States)

    Divan, Deepakraj M.

    1990-01-01

    The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.

  20. Multi-Objective Optimization Control for the Aerospace Dual-Active Bridge Power Converter

    Directory of Open Access Journals (Sweden)

    Tao Lei

    2018-05-01

    Full Text Available With the development of More Electrical Aircraft (MEA, the electrification of secondary power systems in aircraft is becoming more and more common. As the key power conversion device, the dual active bridge (DAB converter is the power interface for the energy storage system with the high voltage direct current (HVDC bus in aircraft electrical power systems. In this paper, a DAB DC-DC converter is designed to meet aviation requirements. The extended dual phase shifted control strategy is adopted, and a multi-objective genetic algorithm is applied to optimize its operating performance. Considering the three indicators of inductance current root mean square root (RMS value, negative reverse power and direct current (DC bias component of the current for the high frequency transformer as the optimization objectives, the DAB converter’s optimization model is derived to achieve soft switching as the main constraint condition. Optimized methods of controlling quantity for the DAB based on the evolution and genetic algorithm is used to solve the model, and a number of optimal control parameters are obtained under different load conditions. The results of digital, hard-in-loop simulation and hardware prototype experiments show that the three performance indexes are all suppressed greatly, and the optimization method proposed in this paper is reasonable. The work of this paper provides a theoretical basis and researching method for the multi-objective optimization of the power converter in the aircraft electrical power system.

  1. PLTS Transformerless Tegangan 20 kV menggunakan Cascaded H-Bridge Multilevel Inverter

    Directory of Open Access Journals (Sweden)

    ANGGARA BRAJAMUSTHI

    2018-03-01

    Full Text Available ABSTRAK Aplikasi dari inverter multilevel pada sistem Pusat Listrik Tenaga Surya (PLTS dapat menghilangkan kebutuhan terhadap transformator, sehingga dapat mengurangi biaya investasi, mengurangi kompleksitas instalasi dan menghilangkan rugi-rugi daya transformator. Pada penelitian ini, sebuah inverter dengan topologi Cascaded H-Bridge Multilevel Inverter dirancang agar mampu mengubah tegangan rendah DC dari beberapa Photovoltaic (PV array menjadi tegangan fasa-fasa 20 kV AC. Perancangan menghasilkan sebuah inverter 3 fasa 27-level dimana setiap level masing-masing memiliki PV array, DC-DC boost converter, H-bridge inverter, dan keluaran 3 fasa terhubung dengan filter LCL. Setiap komponen dari inverter dan sistem tersebut kemudian dimodelkan pada MATLAB Simulink untuk mensimulasikan kinerja dari setiap komponen dan sistem pada Standard Test Condition (STC dari modul PV. Pada keadaan STC, daya 3 fasa maksimum yang dapat dihasilkan adalah 1,716 MW atau 68,54% dari daya DC maksimum sebesar 2,5 MWp. Sistem dapat menghasilkan tegangan fasa-fasa keluaran sebesar 20 kV dengan Total Harmonic Distortion (THD di bawah 5%. Kata kunci: Pusat Listrik Tenaga Surya (PLTS, photovoltaic, Cascaded H-Bridge Multilevel Inverter ABSTRACT The application of Multilevel Inverter in a Photovoltaic Solar Power Plant system could eliminate the needs of step-up transformer, which will reduce the system investment cost, simplify the system installation and also eliminate power losses of the transformer. In this paper, an inverter design was proposed with Cascaded H-Bridge Multilevel Inverter topology that is capable of converting low voltage DC power from several PV arrays into 20 kV AC power. The design resulted a 3 phase 27-level inverter where each level in the inverter has its own photovoltaic array, DC-DC boost converter, H-bridge inverter, and the 3 phase output is connected to LCL filter. Each component of the Inverter and the system were then modelled in MATLAB

  2. Design and Comparison of Cascaded H-Bridge, Modular Multilevel Converter, and 5-L Active Neutral Point Clamped Topologies for Motor Drive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Marzoughi, Alinaghi [Virginia Tech, Blacksburg, VA (United States). Center for Power Electronics Systems; Burgos, Rolando [Virginia Tech, Blacksburg, VA (United States). Bradley Dept. of Electrical and Computer Engineering; Boroyevich, Dushan [Virginia Tech, Blacksburg, VA (United States). Bradley Dept. of Electrical and Computer Engineering; Xue, Yaosuo [Siemens Corporate Research, Princeton, NJ (United States). Power Electronics Dept.

    2018-03-01

    This paper presents the design procedure and comparison of converters currently used in medium-voltage high-power motor drive applications. For this purpose, the cascaded H-bridge (CHB), modular multilevel converter (MMC), and five-level active neutral point clamped (5-L ANPC) topologies are targeted. The design is performed using 1.7-kV insulated gate bipolar transistors (IGBTs) for CHB and MMC converters, and utilizing 3.3- and 4.5-kV IGBTs for 5-L ANPC topology as normally done in industry. The comparison is done between the designed converter topologies at three different voltage levels (4.16, 6.9, and 13.8 kV, with only the first two voltage levels in case of the 5-L ANPC) and two different power levels (3 and 5 MVA), in order to elucidate the dependence of different parameters on voltage and power rating. Finally, the comparison is done from several points of view such as efficiency, capacitive energy storage, semiconductor utilization, parts count (for measure of reliability), and power density.

  3. Improving Power Converter Reliability

    DEFF Research Database (Denmark)

    Ghimire, Pramod; de Vega, Angel Ruiz; Beczkowski, Szymon

    2014-01-01

    of a high-power IGBT module during converter operation, which may play a vital role in improving the reliability of the power converters. The measured voltage is used to estimate the module average junction temperature of the high and low-voltage side of a half-bridge IGBT separately in every fundamental......The real-time junction temperature monitoring of a high-power insulated-gate bipolar transistor (IGBT) module is important to increase the overall reliability of power converters for industrial applications. This article proposes a new method to measure the on-state collector?emitter voltage...... is measured in a wind power converter at a low fundamental frequency. To illustrate more, the test method as well as the performance of the measurement circuit are also presented. This measurement is also useful to indicate failure mechanisms such as bond wire lift-off and solder layer degradation...

  4. A high efficiency photovoltaic module integrated converter with the asymmetrical half-bridge flyback converter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heeje; Kim, Jongrak; Shin, Dongsul [Department of Electrical Engineering, Pusan National University, Jangjeon, Geumjeong, Busan 609-735 (Korea); Kim, Hosung; Lee, Kyungjun [Department of Electrical Engineering, Pusan National University, Jangjeon, Geumjeong, Busan 609-735 (Korea); New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea); Kim, Jonghyun; Yoo, Dongwook [New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea)

    2010-08-15

    A module integrated converter (MIC) for a photovoltaic (PV) cell is important part of power conditioning system (PCS). It performs maximum power point tracking of a PV cell to generate the power as much as possible from solar energy. There are several methods for connection between the PV modules and the MICs. In order to avoid partial shading effects, converter-per-module approach was proposed. The MIC that performs maximum power point tracking (MPPT), if it is low efficiency, is no use. The MIC whose output is connected to the output of PV module was proposed for high efficiency. However, there are some problems. In this study, an asymmetrical half-bridge flyback converter is proposed instead of the original flyback converter with same method to solve the problems. The proposed MIC was built to verify the performance. The new topology using soft switching technique showed good performance for the efficiency. At the higher power, the efficiency of the proposed converter is higher than existing converter. (author)

  5. A Hybrid Cascade Converter Topology With Series-Connected Symmetrical and Asymmetrical Diode-Clamped H-Bridge Cells

    DEFF Research Database (Denmark)

    Nami, Alireza; Zare, Firuz; Ghosh, Arindam

    2011-01-01

    to approach a very low total harmonic distortion of voltage and current, which leads to the possible elimination of the output filter. Regarding the proposed configuration, a new cascade inverter is verified by cascading an asymmetrical diode-clamped inverter, in which 19 levels can be synthesized in output......A novel H-bridge multilevel pulsewidth modulation converter topology based on a series connection of a high-voltage diode-clamped inverter and a low-voltage conventional inverter is proposed in this paper. A dc link voltage arrangement for the new hybrid and asymmetric solution is presented to have...... voltage with the same number of components. To balance the dc link capacitor voltages for the maximum output voltage resolution as well as synthesize asymmetrical dc link combination, a new multi-output boost converter is utilized at the dc link voltage of a seven-level H-bridge diode-clamped inverter...

  6. Optimal Design of a Push-Pull-Forward Half-Bridge (PPFHB) Bidirectional DC–DC Converter With Variable Input Voltage

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    This paper presents a low-cost bidirectional isolated dc–dc converte, derived from dual-active-bridge converter for the power sources with variable output voltage like supercapacitors. The proposed converter consists of push-pull-forward circuit half-bridge circuit (PPFHB) and a high-frequency tr......This paper presents a low-cost bidirectional isolated dc–dc converte, derived from dual-active-bridge converter for the power sources with variable output voltage like supercapacitors. The proposed converter consists of push-pull-forward circuit half-bridge circuit (PPFHB) and a high...

  7. Half bridge resonant converter for ignition of thermal plasmas

    International Nuclear Information System (INIS)

    Pena E, L.

    1997-01-01

    In this work the background, design, implementation and performance of a half bridge resonant converter (HBRC) used as an electronic ignition system for arc plasma torch generation is presented. The significance of the design lies in its simplicity, versatility and low cost. The system operates like a high voltage supply attached to electrodes before gaseous breakdown and like open circuit when electric arc is established. Resonant converter is implemented with a high voltage and high speed power driver intended for control the power MOSFET transistors connected in half bridge topology with L C load. The HBRC operates besides interference into domestic electric supply line (120 V, 60 Hz) as well electric measurement devices. Advantages and limitations of the converter are reviewed. Experimental impedance variation in the medium as a function of frequency operation and some experiences in striking arcs are also presented. (Author)

  8. Discussion on the control method of the inductor-converter bridge by simulation and experiment

    International Nuclear Information System (INIS)

    Hirano, M.; Kustom, R.L.

    1983-07-01

    With the development of the superconducting magnet as an energy storage unit, pulsed power loads between superconducting magnets of increasing magnitude up to several hundred megawatts or more appear within the realm of possibility. An energy storage unit that is independent of the power grid can be used in applications where the pulsed power required from the power grid may cause a hazardous effect on the power system. An energy transfer system between the storage and the load units eliminates the disturbance on the power grid. An inductor-converter bridge is proposed for such a purpose. The inductor-converter bridge (ICB) is a solid state DC-AC-DC converter system for reversible energy transfer between two high-inductance inductors. The converter thyristors are naturally commutated by a set of wye-connected capacitors on the AC lines of the circuit. The circuit is designed so that, in every converter cycle, a very small fraction of the magnet energy is stored in these capacitors. The characteristics of the inductor-converter bridge are briefly summarized as follows: low energy loss, reversibility of the energy transfer direction, controllability of the energy transfer rate, and no conversion to another energy form

  9. Comparative Analysis of Semiconductor Power Losses of Galvanically Isolated Quasi-Z-Source and Full-Bridge Boost DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Kosenko Roman

    2015-07-01

    Full Text Available This paper compares semiconductor losses of the galvanically isolated quasi-Z-source converter and full-bridge boost DC-DC converter with active clamping circuit. Operation principle of both converters is described. Short design guidelines are provided as well. Results of steady state analysis are used to calculate semiconductor power losses for both converters. Analytical expressions are derived for all types of semiconductor power losses present in these converters. The theoretical results were verified by means of numerical simulation performed in the PSIM simulation software. Its add-on module “Thermal module” was used to estimate semiconductor power losses using the datasheet parameters of the selected semiconductor devices. Results of calculations and simulation study were obtained for four operating points with different input voltage and constant input current to compare performance of the converters in renewable applications, like photovoltaic, where input voltage and power can vary significantly. Power loss breakdown is detailed and its dependence on the converter output power is analyzed. Recommendations are given for the use of the converter topologies in applications with low input voltage and relatively high input current.

  10. A frequency controlled LCL - T resonant converter for H- ion source

    International Nuclear Information System (INIS)

    Gauttam, V.K.; Kasliwal, A.; Banwari, R.; Pandit, T.G.; Thakurta, A.C.

    2013-01-01

    An H - ion source is being developed at Raja Ramanna Centre for Advanced Technology, Indore. An LCL-T resonant power converter with variable frequency control is proposed which is utilized to develop a -20 kV/100 mA high voltage (HV) power supply for extraction of H - ions. The LCL-T resonant topology offers many advantages like gainful utilization of the transformer parasitics as a part of resonant network and low circulating current. The power converter is operated with variable frequency control and above resonance to get well known zero-voltage switching (ZVS) advantages for full bridge semiconductor switches in full load range. The converter energizes the symmetrical Cockcroft-Walton (CW) based HV generator to achieve required high voltage. The CW circuit is an attractive solution for HV generation since it has features like low stored energy and low output ripple. The HV power supply is operated in constant current (CC) mode with closed loop control and soft start of the power supply is achieved by sweeping the switching frequency from 40 kHz to defined operating point. Design parameters, simulation results and experimental results of the power converter are presented in this paper. (author)

  11. Design and development of bipolar 4-quadrant switch-mode power converter for superconducting magnets

    International Nuclear Information System (INIS)

    Yashwant Kumar; Thakur, S.K.; Ghosh, M.K.; Tiwari, T.P.; De, Anirban; Kumari, S.; Saha, S.

    2011-01-01

    A uniform zero crossing magnetic field in a magnet can be achieved by using bipolar power converter with four quadrant operation. A high current bipolar switch-mode power converter (rated ±27 V max , ±7V flat top, ±300A, 100 ppm) has been designed and developed indigenously at VECC Kolkata. Four quadrants operation is accomplished by using power IGBTs in an H-bridge configuration with switching frequency around 20 kHz. The switch-mode power converter is used because of high dynamic response, low output ripple, high efficiency and low input current harmonics. In this paper, circuit topology, function of system components and key system specifications of high current bipolar switch mode power converter is discussed. (author)

  12. Comparative evaluation of bidirectional dual active bridge DC-DC converter variants

    NARCIS (Netherlands)

    Sfakianakis, G.; Everts, J.; Huisman, H.; Lomonova, E.A.

    2016-01-01

    For the realization of DC-DC converters in automotive industry, the Dual Active Bridge (DAB) converter seems to be a promising choice because of its soft-switching and high-power-density capability. Contrary to the traditional 3 level - 3 level (3-3L) DAB, a 3 level - 5 level (3-5L) DAB can operate

  13. A novel power converter for photovoltaic applications

    Science.gov (United States)

    Yuvarajan, S.; Yu, Dachuan; Xu, Shanguang

    A simple and economical power conditioner to convert the power available from solar panels into 60 Hz ac voltage is described. The raw dc voltage from the solar panels is converted to a regulated dc voltage using a boost converter and a large capacitor and the dc output is then converted to 60 Hz ac using a bridge inverter. The ratio between the load current and the short-circuit current of a PV panel at maximum power point is nearly constant for different insolation (light) levels and this property is utilized in designing a simple maximum power point tracking (MPPT) controller. The controller includes a novel arrangement for sensing the short-circuit current without disturbing the operation of the PV panel and implementing MPPT. The switching losses in the inverter are reduced by using snubbers. The results obtained on an experimental converter are presented.

  14. A Cost-Effective Design and Analysis of Full Bridge LLC Resonant Converter

    OpenAIRE

    Kaibalya Prasad Panda; Sreyasee Rout

    2016-01-01

    LLC (Inductor-inductor-capacitor) resonant converter has lots of advantages over other type of resonant converters which include high efficiency, more reliable and have high power density. This paper presents the design and analysis of a full bridge LLC resonant converter. In addition to the operational principle, the ZVS and ZCS conditions are also explained with the DC characteristics. Simulation of the LLC resonant converter is performed in MATLAB/ Simulink and the practical prototype setu...

  15. Experimental studies and computer simulation of the control of energy transfer using inductor-converter bridges

    International Nuclear Information System (INIS)

    Hirano, M.; Kustom, R.L.

    1984-03-01

    An inductor-converter bridge (ICB) is a solid state DC-AC-DC power converter system for bidirectional, controllable, energy transfer between two coils. The ICB is suitable for supplying large pulsed power to such magnets as the superconducting equilibrium field coil of the proposed tokamak power reactors from another superconducting energy storage coil

  16. Analysis of a Multilevel Dual Active Bridge (ML-DAB DC-DC Converter Using Symmetric Modulation

    Directory of Open Access Journals (Sweden)

    M. A. Moonem

    2015-04-01

    Full Text Available Dual active bridge (DAB converters have been popular in high voltage, low and medium power DC-DC applications, as well as an intermediate high frequency link in solid state transformers. In this paper, a multilevel DAB (ML-DAB has been proposed in which two active bridges produce two-level (2L-5L, 5L-2L and 3L-5L voltage waveforms across the high frequency transformer. The proposed ML-DAB has the advantage of being used in high step-up/down converters, which deal with higher voltages, as compared to conventional two-level DABs. A three-level neutral point diode clamped (NPC topology has been used in the high voltage bridge, which enables the semiconductor switches to be operated within a higher voltage range without the need for cascaded bridges or multiple two-level DAB converters. A symmetric modulation scheme, based on the least number of angular parameters rather than the duty-ratio, has been proposed for a different combination of bridge voltages. This ML-DAB is also suitable for maximum power point tracking (MPPT control in photovoltaic applications. Steady-state analysis of the converter with symmetric phase-shift modulation is presented and verified using simulation and hardware experiments.

  17. Reliability Evaluation of a Single-phase H-bridge Inverter with Integrated Active Power Decoupling

    DEFF Research Database (Denmark)

    Tang, Junchaojie; Wang, Haoran; Ma, Siyuan

    2016-01-01

    it with the traditional passive DC-link solution. The converter level reliability is obtained by component level electro-thermal stress modeling, lifetime model, Weibull distribution, and Reliability Block Diagram (RBD) method. The results are demonstrated by a 2 kW single-phase inverter application.......Various power decoupling methods have been proposed recently to replace the DC-link Electrolytic Capacitors (E-caps) in single-phase conversion system, in order to extend the lifetime and improve the reliability of the DC-link. However, it is still an open question whether the converter level...... reliability becomes better or not, since additional components are introduced and the loading of the existing components may be changed. This paper aims to study the converter level reliability of a single-phase full-bridge inverter with two kinds of active power decoupling module and to compare...

  18. Development, analysis, and control of the inductor-converter bridge

    International Nuclear Information System (INIS)

    Ehsani, M.; Kustom, R.L.

    1981-08-01

    The inductor-converter bridge (ICB) is a solid state dc-ac-dc power converter system for bidirectional, controllable, energy transfer between two high Q magnet coils. The ICB is suitable for supplying large pulsed power to such magnets as the superconducting equilibrium field (EF) coil of the proposed tokamak power reactors, from another superconducting energy storage coil. This report presents work on the analysis and control of the ICB system. The process of energy transfer between the coils is explained on the basis of a simple one line equivalent circuit. This circuit is the topological dual of the one line diagram of the nonsalient pole synchoronous generator, connected to the infinite bus through its synchronous reactance. The changes in the average power, average coil currents, and voltages, as functions of time, are calculated by the conventional Fourier method of analysis

  19. Development, analysis, and control of the inductor-converter bridge

    Energy Technology Data Exchange (ETDEWEB)

    Ehsani, Mehrdad; Kustom, Robert L.

    1981-08-01

    The inductor-converter bridge (ICB) is a solid state dc-ac-dc power converter system for bidirectional, controllable, energy transfer between two high Q magnet coils. The ICB is suitable for supplying large pulsed power to such magnets as the superconducting equilibrium field (EF) coil of the proposed tokamak power reactors, from another superconducting energy storage coil. This report presents work on the analysis and control of the ICB system. The process of energy transfer between the coils is explained on the basis of a simple one line equivalent circuit. This circuit is the topological dual of the one line diagram of the nonsalient pole synchoronous generator, connected to the infinite bus through its synchronous reactance. The changes in the average power, average coil currents, and voltages, as functions of time, are calculated by the conventional Fourier method of analysis.

  20. Design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters

    CERN Document Server

    Cravero, Jean-Marc

    2013-01-01

    This technical report presents the design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters. The power stage is based on a half bridge series resonant converter in Discontinuous Conduction Mode (DCM). This simple and robust topology allows obtaining a current source behavior with a low switching losses power stage. The associated control stage is implemented using a commercial controller which has differenti nternal circuits that allows a high integration of the converter control system. The report presents the design and tuning criteria for the DC-DC converter, including the power stage and the control system.

  1. Power Flow Control through a Multi-Level H-Bridge-based Power Converter for Universal and Flexible Power Management in Future Electrical Grids

    DEFF Research Database (Denmark)

    Iov, Florin; Bifaretti, Steffano; Zanchetta, Pericle

    2008-01-01

    The paper proposes a novel power conversion system for Universal and Flexible Power Management (UNIFLEX-PM) in Future Electricity Network. The structure is based on three AC-DC converters each one connected to a different grid, (representing the main grid and/or various distributed generation...... systems) on the AC side, and linked together at DC side by suitable DC isolation modules. Each port of the UNIFLEX-PM system employs a conversion structure based on a three-phase 7-level AC-DC cascaded converter. Effective and accurate power flow control is demonstrated through simulation in Matlab...... and Simulink environment on a simplified model based on a two-port structure and using a Stationery Reference Frame based control solution. Control of different Power flow profiles has been successfully tested in numerous network conditions such as voltage unbalance, frequency excursions and harmonic...

  2. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...

  3. Hybrid HVDC (H2VDC System Using Current and Voltage Source Converters

    Directory of Open Access Journals (Sweden)

    José Rafael Lebre

    2018-05-01

    Full Text Available This paper presents an analysis of a new high voltage DC (HVDC transmission system, which is based on current and voltage source converters (CSC and VSC in the same circuit. This proposed topology is composed of one CSC (rectifier and one or more VSCs (inverters connected through an overhead transmission line in a multiterminal configuration. The main purpose of this Hybrid HVDC (H2VDC, as it was designed, is putting together the best benefits of both types of converters in the same circuit: no commutation failure and system’s black start capability in the VSC side, high power converter capability and low cost at the rectifier side, etc. A monopole of the H2VDC system with one CSC and two VSCs—here, the VSC is the Modular Multilevel Converter (MMC considered with full-bridge submodules—in multiterminal configuration is studied. The study includes theoretical analyses, development of the CSC and VSCs control philosophies and simulations. The H2VDC system’s behavior is analyzed by computational simulations considering steady-state operation and short-circuit conditions at the AC and DC side. The obtained results and conclusions show a promising system for very high-power multiterminal HVDC transmission.

  4. Modeling and Analysis of the Common Mode Voltage in a Cascaded H-Bridge Electronic Power Transformer

    Directory of Open Access Journals (Sweden)

    Yun Yang

    2017-09-01

    Full Text Available Electronic power transformers (EPTs have been identified as emerging intelligent electronic devices in the future smart grid, e.g., the Energy Internet, especially in the application of renewable energy conversion and management. Considering that the EPT is directly connected to the medium-voltage grid, e.g., a10 kV distribution system, and its cascaded H-bridges structure, the common mode voltage (CMV issue will be more complex and severe. The CMV will threaten the insulation of the entire EPT device and even produce common mode current. This paper investigates the generated mechanism and characteristics of the CMV in a cascaded H-bridge EPT (CHB-EPT under both balanced and fault grid conditions. First, the CHB-EPT system is introduced. Then, a three-phase simplified circuit model of the high-voltage side of the EPT system is presented. Combined with a unipolar modulation strategy and carrier phase shifting technology by rigorous mathematical analysis and derivation, the EPT internal CMV and its characteristics are obtained. Moreover, the influence of the sinusoidal pulse width modulation dead time is considered and discussed based on analytical calculation. Finally, the simulation results are provided to verify the validity of the aforementioned model and the analysis results. The proposed theoretical analysis method is also suitable for other similar cascaded converters and can provide a useful theoretical guide for structural design and power density optimization.

  5. Boost Half-Bridge DC-DC Converter with Reconfigurable Rectifier for Ultra-Wide Input Voltage Range Applications

    DEFF Research Database (Denmark)

    Vinnikov, Dmitri; Chub, Andrii; Liivik, Elizaveta

    2018-01-01

    This paper introduces a novel galvanically isolated boost half-bridge dc-dc converter intended for modern power electronic applications where ultra-wide input voltage regulation range is needed. A reconfigurable output rectifier stage performs a transition between the voltage doubler and the full......-bridge diode rectifiers and, by this means, extends the regulation range significantly. The converter features a low number of components and resonant soft switching of semiconductors, which result in high power conversion efficiency over a wide input voltage and load range. The paper presents the operating...

  6. Simulation and analysis of an isolated full-bridge DC/DC boost converter operating with a modified perturb and observe maximum power point tracking algorithm

    Directory of Open Access Journals (Sweden)

    Calebe A. Matias

    2017-07-01

    Full Text Available The purpose of the present study is to simulate and analyze an isolated full-bridge DC/DC boost converter, for photovoltaic panels, running a modified perturb and observe maximum power point tracking method. The zero voltage switching technique was used in order to minimize the losses of the converter for a wide range of solar operation. The efficiency of the power transfer is higher than 90% for large solar operating points. The panel enhancement due to the maximum power point tracking algorithm is 5.06%.

  7. A Single Phase to Three Phase PFC Half-Bridge Converter Using BLDC Drive with SPWM Technique.

    OpenAIRE

    Srinu Duvvada; Manmadha Kumar B

    2014-01-01

    In this paper, a buck half-bridge DC-DC converter is used as a single-stage power factor correction (PFC) converter for feeding a voltage source inverter (VSI) based permanent magnet brushless DC motor (BLDC) drive. The front end of this PFC converter is a diode bridge rectifier (DBR) fed from single-phase AC mains. The BLDC is used to drive a compressor load of an air conditioner through a three-phase VSI fed from a controlled DC link voltage. The speed of the compressor is controlled to ach...

  8. High Voltage Gain Dual Active Bridge Converter with an Extended Operation Range for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Tomas Manez, Kevin; Yudi, Xiao

    2018-01-01

    Bridge (P2DAB) converter, i.e. low-voltage (LV) side parallel and high-voltage (HV) side series, is proposed to achieve high voltage gain and low current stress over switching devices and transformer windings. Given the unmodified P2DAB power stage, by regulating the phase-shift angle between......Developing bidirectional dc-dc converters has become a critical research topic and gains more and more attention in recent years due to the extensive applications of smart grids with energy storages, hybrid and electrical vehicles and dc microgrids. In this paper, a Partial Parallel Dual Active...... the paralleled active bridges, the power equations and voltage gain are then modified, and therefore the operation range can be extended effectively. The operating principles of the proposed converter and its power characteristics under various operation modes are studied, and the design constraints...

  9. A stationary reference frame current control for a multi-level H-bridge power converter for universal and flexible power management in future electricity network

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Iov, Florin; Zanchetta, Pericle

    2008-01-01

    converters for grid connection of renewable sources will be needed. These power converters must be able to provide intelligent power management as well as ancillary services. This paper assesses a control method based on the stationary reference frame with Proportional-Resonant current controllers...

  10. Examples of digital simulation of AC-DC power converter with the Electromagnetic Transients Program

    International Nuclear Information System (INIS)

    Tanahashi, Shugo; Yamada, Shuichi; Mugishima, Mituo; Kitagawa, Shiro.

    1989-03-01

    This article gives a practical guidance for analysis of power converter circuits using the Electromagnetic Transients Program (EMTP). First how to use the program is shown with two simple examples; (1) a power supply with three-phase diode bridge and (2) a feedback system for current control. Then its application to more complicated system is shown with an example of a power supply for Compact Helical System (CHS), where a hybrid power supply with multi-phase diode and thyristor bridges, and two three-phase thyristor converters are driven by an AC generator. (author)

  11. Dual-Input Soft-Switched DC-DC Converter with Isolated Current-Fed Half-Bridge and Voltage-Fed Full-Bridge for Fuel Cell or Photovoltaic Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    integrate a current-fed boost half-bridge (BHB) and a full-bridge (FB) into one equivalent circuit configuration which has dual-input ability and additionally it can reduce the number of the power devices. With the phase-shift control, it can achieve zero-voltage switching turn-on of active switches...... power rating are built up and tested to demonstrate the effectiveness of the proposed converter topology....

  12. Multilevel converters for 10 MW Wind Turbines

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2011-01-01

    Several promising multi-level converter configurations for 10 MW Wind Turbines both with direct drive and one-stage gear box drive using Permanent Magnet Synchronous Generator (PMSG) are proposed, designed and compared. Reliability is a crucial indicator for large scale wind power converters...... that the three-level and five-level H-bridge converter topologies both have potential to achieve improved thermal performances compared to the three-level Neutral-Point-Clamped converter topology in the wind power application....

  13. Glass-melting using an IGBT full-bridge resonant converter

    International Nuclear Information System (INIS)

    Pacheco S, J.O.; Gutierrez O, E.; Benitez R, J.S.; Martinez V, J.; Lopez C, R.

    1999-01-01

    This work describes the design implementation and application of a full-bridge IGBT resonant converter used to obtain glass melting. The design procedure is discussed and complete converter schematics are provided, including drivers and control circuits. A brief review of the glass properties is given, and some coupling parameters of the induction furnace are also described. A very special provision is made to the coupling charge transformer and the heat induced to the glass itself, first by conduction, followed by direct electromagnetic induction when the glass becomes a conductor. A brief analysis of electromagnetic fields, current density and power induced in the material is given. A very simple method is presented to calculate the power absorbed by the load and therefore the efficiency of the heating process. Several tests are carried out to verify the effectiveness of this method. Finally, this paper describes the design and construction of a 5 k W, 50 k Hz Full-Bridge Resonant Converter (FBRC), based on IGBT transistors and a transformer-capacitor coupled to a thermal load composed of a metal-glass cylinder. For glass makers, the benefits obtained by implementing the melting system with an IGBT-based FRBC resides on the relative simplicity of its design, the low-cost of the components, the energy transfer efficiency, and the robustness of its operation. With a proper scaling, this melting system can be used, for instance, to vitrify hazardous industrial wastes, nuclear waste, and fume ashes from melting plants or combustion systems. (Author)

  14. New three-phase ac-ac converter incorporating three-phase boost integrated ZVT bridge and single-phase HF link

    International Nuclear Information System (INIS)

    Abdelhamid, Tamer H.; Sabzali, Ahmad J.

    2008-01-01

    This paper presents a new zero voltage transition (ZVT), power factor corrected three phase ac-ac converter with single phase high frequency (HF) link. It is a two stage converter; the first stage is a boost integrated bridge converter (combination of a 3 ph boost converter and a bridge converter) operated at fixed frequency and that operates in two modes at ZVT for all switches and establishes a 1 ph square wave HF link. The second stage is a bi-directional pulse width modulation (PWM) 3 ph bridge that converts the 1 ph HF link to a 3 ph voltage using a novel switching strategy. The converter modes of operation and key equations are outlined. Simulation of the overall system is conducted using Simulink. The switching strategy and its corresponding control circuit are clearly described. Experimental verification of the simulation is conducted for a prototype of 100 V, 500 W at 10 kHz link frequency

  15. Redesign of the SNS Modulator H-Bridge for Utilization of Press-Pack IGBTs

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A.; Burkhart, Craig; /SLAC; Anderson, David E.; /Oak Ridge

    2008-09-25

    The power conversion group at SLAC is currently redesigning the H-bridge switch plates of the High Voltage Converter Modulators at the Spallation Neutron Source. This integral part to the modulator operation has been indentified as a source of several modulator faults and potentially limits reliability with pulse width modulation operation. This paper is a presentation of the design and implementation of a redesigned switch plate based upon press-pack IGBTs.

  16. Battery pack state of charge balancing algorithm for cascaded H-Bridge multilevel converters

    DEFF Research Database (Denmark)

    Máthé, Lászlo; Burlacu, Paul Dan; Schaltz, Erik

    2016-01-01

    For most of the Multilevel Converter (MC) applications a commonly discussed issue is the maintenance of balance between the energy storage elements from the SubModules (SM). In applications where a battery pack is also part of the SM storage, such as STATCOMs or motor drives, the SM voltage...... is not in linear relation with the State Of Charge (SOC) of the entire battery; thus, the balancing becomes more cumbersome. A method to balance the SOC of the battery packs in a system using cascaded H-Bridge is proposed in this paper. The method uses nearest level control followed by sorting and selection based...... on the SOC of the battery packs. Based on the simulation results the number of switching is reduced considerably compared to the method where the phase shifted PWM is used. In addition, the time needed to achieve the balanced SOC is also reduced. The proposed method has been verified through experiments...

  17. Soft-Switched Dual-Input DC-DC Converter Combining a Boost-Half-Bridge Cell and a Voltage-Fed Full-Bridge Cell

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    This paper presents a new zero-voltage-switching (ZVS) isolated dc-dc converter which combines a boost halfbridge (BHB) cell and a full-bridge (FB) cell, so that two different type of power sources, i.e. both current-fed and voltage-fed, can be coupled effectively by the proposed converter...... for various applications, such as fuel cell and super-capacitor hybrid energy system. By fully using two high frequency transformers and a shared leg of switches, number of the power devices and associated gate driver circuits can be reduced. With phase-shift control, the converter can achieve ZVS turn......-on of active switches and zero-current switching (ZCS) turn-off of diodes. In this paper, derivation, analysis and design of the proposed converter are presented. Finally, a 25~50 V input, 300~400 V output prototype with a 600 W nominal power rating is built up and tested to demonstrate the effectiveness...

  18. Studies on a Hybrid Full-Bridge/Half-Bridge Bidirectional CLTC Multi-Resonant DC-DC Converter with a Digital Synchronous Rectification Strategy

    Directory of Open Access Journals (Sweden)

    Shu-huai Zhang

    2018-01-01

    Full Text Available This study presents a new bidirectional multi-resonant DC-DC converter, which is named CLTC. The converter adds an auxiliary transformer and an extra resonant capacitor based on a LLC resonant DC-DC converter, achieving zero-voltage switching (ZVS for the input inverting switches and zero-current switching (ZCS for the output rectifiers in all load range. The converter also has a wide gain range in two directions. When the load is light, a half-bridge configuration is adopted instead of a full-bridge configuration to solve the problem of voltage regulation. By this method, the voltage gain becomes monotonous and controllable. Besides, the digital synchronous rectification strategy is proposed in forward mode without adding any auxiliary circuit. The conduction time of synchronous rectifiers equals the estimation value of body diodes’ conduction time with the lightest load. Power loss analysis is also conducted in different situations. Finally, the theoretical analysis is validated by a 5 kW prototype.

  19. Commutation Processes in Multiresonant ZVS Bridge Converter

    Directory of Open Access Journals (Sweden)

    Miroslaw Luft

    2008-01-01

    Full Text Available The analysis of the multiresonant ZVS DC/DC bridge converter is presented. The control system of the converter is basedon the method of frequency control at the constant time of transistor turn-off with a phase shift. The operation of the circuit is givenand the operating range of the converter is defined where ZVS switching operation is assured. Control characteristics are given andthe converter’s efficiency is defined. The circuit’s operation is analysed on the basis of results of the converter simulation tests using Simplorer programme.

  20. Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yen-Ching Wang

    2016-06-01

    Full Text Available Bidirectional power converters for electric vehicles (EVs have received much attention recently, due to either grid-supporting requirements or emergent power supplies. This paper proposes a hybrid modulation of the three-phase dual-active bridge (3ΦDAB converter for EV charging systems. The designed hybrid modulation allows the converter to switch its modulation between phase-shifted and trapezoidal modes to increase the conversion efficiency, even under light-load conditions. The mode transition is realized in a real-time manner according to the charging or discharging current. The operation principle of the converter is analyzed in different modes and thus design considerations of the modulation are derived. A lab-scaled prototype circuit with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and effectiveness.

  1. Multilevel Converter by Cascading Two-Level Three-Phase Voltage Source Converter

    Directory of Open Access Journals (Sweden)

    Abdullrahman A. Al-Shamma’a

    2018-04-01

    Full Text Available This paper proposes a topology using isolated, cascaded multilevel voltage source converters (VSCs and employing two-winding magnetic elements for high-power applications. The proposed topology synthesizes 6 two-level, three-phase VSCs, so the power capability of the presented converter is six times the capability of each VSC module. The characteristics of the proposed topology are demonstrated through analyzing its current relationships, voltage relationships and power capability in detail. The power rating is equally shared among the VSC modules without the need for a sharing algorithm; thus, the converter operates as a single three-phase VSC. The comparative analysis with classical neutral-point clamped, flying capacitor and cascaded H-bridge exhibits the superior features of fewer insulated gate bipolar transistors (IGBTs, capacitor requirement and fewer diodes. To validate the theoretical performance of the proposed converter, it is simulated in a MATLAB/Simulink environment and the results are experimentally demonstrated using a laboratory prototype.

  2. Development of a digital solar simulator based on full-bridge converter

    Science.gov (United States)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  3. Application of chaotic pulse width modulation control for suppressing electromagnetic interference in a half-bridge converter

    Directory of Open Access Journals (Sweden)

    Yuhong Song

    2014-08-01

    Full Text Available It was proposed in the former research that chaos control can be used to suppress electromagnetic interference (EMI in DC–DC converters. Analysis on a half-bridge converter is detailed in this study. Here, the practical example of the power supply of personal computers is given to show that, with an external chaotic signal to a pulse width modulation control circuit, the proposed approach can reduce EMI by reducing the amplitudes of power signals such as transformer current and output inductor currents at multiples of fundamental frequency.

  4. Regulation of the output power at the resonant converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefanov, Goce G.; Sarac, Vasilija J. [University Goce Delecev-Stip, Faculty of Electrical Engineering, Radovis (Macedonia, The Former Yugoslav Republic of); Karadzinov, Ljupco V., E-mail: goce.stefanov@ugd.edu.mk [University Kiril and Methodyus-Skopje, FEIT Skopje(Macedonia, The Former Yugoslav Republic of)

    2011-07-01

    In this paper a method for regulating an alternating current voltage source with pair of IGBT transistor’s modules, in a full bridge configuration with series resonant converter is given. With the developed method a solution is obtained which can regulate the phase difference between output voltage and current through the inductor, in order to maintain maximum output power. Control electronic via feedback signals regulates the energy transfer to the tank by changing the pulse width of signals which are used as inputs to the gates of the IGBTs. By increasing or decreasing the pulse width transmitted to the various gates of the IGBT the energy transfer to the tank is increased or decreased . PowerSim simulations program is used for development of controlling methodology. Developed method is practically implemented in a prototype of the device for phase control of resonant converter with variable the resonant load. Key words: pulse width method, phase regulation , power converter.

  5. A new DC/AC boost transformerless converter in application of photovoltaic power generation

    DEFF Research Database (Denmark)

    Wei, Mo; Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    This paper presents a new DC/AC boost transformerless converter in the applications of photovoltaic (PV) power generation. A new circuit topology of single phase full bridge power inverter with additional DC/DC boost stage is proposed. The proposed topology overcomes two commonly existing......, and then converts the DC into AC to supply the load. A special modulation technique is proposed to eliminate the leakage current which is commonly presents in PV transformerless power generation, helps to increase the system efficiency and output performance....

  6. General phase-frequency shifting in the three-phase inductor-converter bridge

    International Nuclear Information System (INIS)

    Ehsani, M.; Kustom, R.L.; Fuja, R.E.; Barnard, T.J.

    1979-01-01

    A fundamental method of shifting phase frequency in the inductor-converter bridge (ICB) for the purpose of controlling the power in real time is presented. Transient switching sequences needed to implement phase-frequency shifting can be developed by the use of this method and the other five system constraints. Two of the constraints that have been expressed in equation form so far are presented. Finally, an alternative algorithm for computing the frequency shifting transient sequences in real time is suggested

  7. Maximum Power Point Tracking for Cascaded PV-Converter Modules Using Two-Stage Particle Swarm Optimization.

    Science.gov (United States)

    Mao, Mingxuan; Duan, Qichang; Zhang, Li; Chen, Hao; Hu, Bei; Duan, Pan

    2017-08-24

    The paper presents a novel two-stage particle swarm optimization (PSO) for the maximum power point tracking (MPPT) control of a PV system consisting of cascaded PV-converter modules, under partial shading conditions (PSCs). In this scheme, the grouping method of the shuffled frog leaping algorithm (SFLA) is incorporated with the basic PSO algorithm, ensuring fast and accurate searching of the global extremum. An adaptive speed factor is also introduced to improve its convergence speed. A PWM algorithm enabling permuted switching of the PV sources is applied. The method enables this PV system to achieve the maximum power generation for any number of PV and converter modules. Simulation studies of the proposed MPPT scheme are performed on a system having two chained PV buck-converter modules and a dc-ac H-bridge connected at its terminals for supplying an AC load. The results show that this type of PV system allows each module to achieve the maximum power generation according its illumination level without affecting the others, and the proposed new control method gives significantly higher power output compared with the conventional P&O and PSO methods.

  8. Half bridge resonant converter for ignition of thermal plasmas; Convertidor resonante de medio puente para la ignicion de plasmas termicos

    Energy Technology Data Exchange (ETDEWEB)

    Pena E, L

    1998-12-31

    In this work the background, design, implementation and performance of a half bridge resonant converter (HBRC) used as an electronic ignition system for arc plasma torch generation is presented. The significance of the design lies in its simplicity, versatility and low cost. The system operates like a high voltage supply attached to electrodes before gaseous breakdown and like open circuit when electric arc is established. Resonant converter is implemented with a high voltage and high speed power driver intended for control the power MOSFET transistors connected in half bridge topology with L C load. The HBRC operates besides interference into domestic electric supply line (120 V, 60 Hz) as well electric measurement devices. Advantages and limitations of the converter are reviewed. Experimental impedance variation in the medium as a function of frequency operation and some experiences in striking arcs are also presented. (Author).

  9. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    Science.gov (United States)

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  10. Comparison between Phase-Shift Full-Bridge Converters with Noncoupled and Coupled Current-Doubler Rectifier

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2013-01-01

    Full Text Available This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR or a coupled current-doubler rectifier (CCDR is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications.

  11. New series half-bridge converters with the balance input split capacitor voltages

    Science.gov (United States)

    Lin, Bor-Ren; Chiang, Huann-Keng; Wang, Shang-Lun

    2016-03-01

    This article presents a new dc/dc converter to perform the main functions of zero voltage switching (ZWS), low converter size, high switching frequency and low-voltage stress. Metal-oxide-semiconductor field-effect transistors (MOSFETs) with high switching frequency are used to reduce the converter size and increase circuit efficiency. To overcome low-voltage stress and high turn-on resistance of MOSFETs, the series half-bridge topology is adopted in the proposed converter. Hence, the low-voltage stress MOSFETs can be used for medium-input voltage applications. The asymmetric pulse-width modulation is used to generate the gating signals and achieve the ZWS. On the secondary side, the parallel connection of two diode rectifiers is adopted to reduce the current rating of passive components. On the primary side, the series connection of two transformers is used to balance two output inductor currents. Two flying capacitors are used to automatically balance the input split capacitor voltages. Finally, experiments with 1000 W rated power are performed to verify the theoretical analysis and the effectiveness of proposed converter.

  12. Soft Switching Full-Bridge PWM DC/DC Converter Using Secondary Snubber

    Directory of Open Access Journals (Sweden)

    Jaroslav Dudrik

    2009-05-01

    Full Text Available A novel full-bridge PWM DC/DCconverter with controlled secondary side rectifier usingsecondary snubber is presented in this paper.Limitation of the circulating current as well as softswitching for all power switches of the inverter isachieved for full load range from no-load to shortcircuit by using controlled rectifier and snubber on thesecondary side. Phase shift PWM control strategy isused for the converter. The principle of operation isexplained and analyzed and the experimental resultson a 1kW, 50 kHz laboratory model of the converterare presented.

  13. Square function analysis of the Inductor-Converter Bridge

    International Nuclear Information System (INIS)

    Ehsani, M.; Kustom, R.L.

    1979-03-01

    The transfer of energy between two superconducting coils can be controlled with an Inductor-Converter Bridge (ICB) by changing the relative timing between the storage side bridge and the load side bridge. The average voltages on the coils have been previously derived as a function of relative timing between the two halves of the bridges and the relative currents in the two coils using a one-line, harmonic current source representation of each coil and its bridge network. Since the coil current in each of the ICB phases appears as bipolar rectangular pulses, an analysis based on unit step functions has been developed. The unit step function analysis leads to simple polynomial expressions relating the average coil voltages to relative timing. The new derivations are shown to have the same harmonic representation as previously developed. The polynomial expressions are more compatible to microprocessor control than are the harmonic function expressions

  14. Design and Implementation of Half-Bridge LLC Resonant Converter by FHA Technique

    Directory of Open Access Journals (Sweden)

    Navid Salehi

    2015-07-01

    Full Text Available Although in existence for many years, only recently has the LLC resonant converters, in particular in its half-bridge implementation, gained in the popularity it certainly deserve. The advantages such as high efficiency, low level of EMI emissions, and its ability to achieve high power density are such features that suited for power supply demand of many modern applications such as ATX PCs and flat panel TVs. One of the major difficulties in concern with designing such converter is complex model and non-linear equations that cannot be easily used into a design procedure. So in this paper, design is based on the assumption that input-to-output power transfer is essentially due to the fundamental Fourier series components of currents and voltages. This technique known as First Harmonic Approximation (FHA and is a proper method to obtain the voltage gain through solving the equivalent ac circuit of the resonant tank. The design simulated by Pspice and finally the experimental results show design procedure base on FHA technique.

  15. Power Loss Analysis and Comparision of DC and AC Side Decoupling Module in a H-bridge Inverter

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Zhu, Guorong

    2016-01-01

    perspective. The analytical power loss models are derived based on the operation principles of the active power decoupling methods. A comparative study is performed based on a 500 W single-phase H-bridge inverter study case with 400 V DC-link voltage level. The results provide a guideline to justify whether...

  16. A ZVS PWM control strategy with balanced capacitor current for half-bridge three-level DC/DC converter

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Chen, Zhe

    2017-01-01

    The capacitor current would be imbalanced under the conventional control strategy in the half-bridge three-level (HBTL) DC/DC converter due to the effect of the output inductance of the power supply and the input line inductance, which would affect the converter's reliability. This paper proposes...... a pulse-wide modulation (PWM) strategy composed of two operation modes for the HBTL DC/DC converter, which can realize the zero-voltage switching (ZVS) for the efficiency improvement. In addition, a capacitor current balancing control is proposed by alternating the two operation modes of the proposed ZVS...... PWM strategy, which can eliminate the current imbalance among the two input capacitors. Therefore, the proposed control strategy can improve the converter's performance and reliability in: 1) reducing the switching losses and noises of the power switches; 2) balancing the thermal stresses...

  17. Six switches solution for single-phase AC/DC/AC converter with capability of second-order power mitigation in DC-link capacitor

    DEFF Research Database (Denmark)

    Liu, Xiong; Wang, Peng; Loh, Poh Chiang

    2011-01-01

    This paper proposes an approach for DC-link second-order harmonic power cancellation in single-phase AC/DC/AC converter with reduced number of switches. The proposed six-switch converter has two bridges with three switches in each of them, where the middle switch in each bridge is shared by the A...

  18. The 25 kW resonant dc/dc power converter

    Science.gov (United States)

    Robson, R. R.

    1983-01-01

    The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.

  19. Performance evaluation of a three-phase dual active bridge DC-DC converter with different transformer winding configurations

    NARCIS (Netherlands)

    Baars, N.; Everts, J.; Wijnands, K.; Lomonova, E.

    2016-01-01

    This paper investigates the impact of three transformer winding configurations, i.e. the Y-Y, the Y-Delta, and the Delta-Delta configuration, on the performance of a three-phase dual active bridge (DAB) dc–dc converter. For each configuration, equations for the phase currents, power flow, and zero

  20. A normalized model for the half-bridge series resonant converter

    Science.gov (United States)

    King, R.; Stuart, T. A.

    1981-01-01

    Closed-form steady-state equations are derived for the half-bridge series resonant converter with a rectified (dc) load. Normalized curves for various currents and voltages are then plotted as a function of the circuit parameters. Experimental results based on a 10-kHz converter are presented for comparison with the calculations.

  1. Test and evaluation of load converter topologies used in the Space Station Freedom power management and distribution dc test bed

    Science.gov (United States)

    Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.

    1991-01-01

    Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.

  2. Radiation tolerant power converter controls

    CERN Document Server

    Todd, B; King, Q; Uznanski, S

    2012-01-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to signifi...

  3. Full range ZVS DC-DC converter

    International Nuclear Information System (INIS)

    Upadhyay, Rinki; Badapanda, M.K.; Hannurkar, P.R.

    2011-01-01

    A 500 V, 24 Amp DC-DC converter with digital signal processor (DSP) based control and protection has been designed, fabricated and tested. Its power circuit consists of IGBT based single phase inverter bridge, ferrite transformer and diode rectifier. All IGBTs in the inverter bridge are operated in zero voltage switching (ZVS) mode to minimize switching losses thereby increasing the efficiency of the converter significantly. The efficiency of this converter is measured to be greater than 97% at full load. In a conventional full bridge inverter, typically ZVS is achieved under full load condition while at light load ZVS is lost. An auxiliary LC circuit has been intentionally incorporated in this converter to achieve ZVS even at light loaded conditions. Detailed simulation of the converter circuit is carried out and crucial waveforms have been presented in this paper. Microchip make dsPIC30F2020 DSP is employed to provide phase shifted PWMs to IGBTs in the inverter bridge. All the crucial parameters are also monitored by this DSP and in case of any unfavorable conditions, the converter is tripped off. Suitable experiments were carried out in this DC-DC converter under different loaded conditions and a close match between the simulated and experimental results were obtained. Such DC-DC converters can be connected in series or parallel for the development of solid state modular power supplies for various applications. (author)

  4. Current Sharing Analysis of Arm Prototype for ITER PF Converter Bridge

    International Nuclear Information System (INIS)

    Li Jinchao; Song Zhiquan; Xu Liuwei; Fu Peng; Guo Bin; Li Sen; Dong Lin; Wang Min

    2014-01-01

    A bridge arm prototype of ITER poloidal field (PF) converter modules has been designed and fabricated. Non-cophase counter parallel connection is chosen as the arm structure of the prototype. Among all factors affecting current sharing, arm structure is the main one. During the design of the arm prototype, a novel method based on inductance matrixes is employed to improve the current sharing of the bridge arm. The test results on the prototype show that the current sharing performance of the arm prototype is much better than relevant design requirement, and that the matrix method is very effective to analyze and solve the current sharing problems of thyristor converters

  5. A Zero-Voltage Switching Control Strategy for Dual Half-Bridge Cascaded Three-Level DC/DC Converter with Balanced Capacitor Voltages

    DEFF Research Database (Denmark)

    Liu, Dong; Wang, Yanbo; Chen, Zhe

    2017-01-01

    The input capacitor's voltages are unbalanced under the conventional control strategy in a dual half-bridge cascaded three-level (TL) DC/DC converter, which would affect the high voltage stresses on the capacitors. This paper proposes a pulse-wide modulation (PWM) strategy with two working modes...... for the dual half-bridge cascaded TL DC/DC converter, which can realize the zero-voltage switching (ZVS). More significantly, a capacitor voltage balance control is proposed by alternating the two working modes of the proposed ZVS PWM strategy, which can eliminate the voltage unbalance on the four input...... capacitors. Therefore, the proposed control strategy can improve the converter's performances in: 1) reducing the switching losses and noises of the power switches; and 2) reducing the voltage stresses on the input capacitors. Finally, the simulation results are conducted to verify the proposed control...

  6. Quasi-Z-Source Half-Bridge DC-DC Converter for Photovoltaic Applications

    OpenAIRE

    Vinnikov, D; Chub, A; Husev, O; Zaķis, J

    2015-01-01

    This paper presents a novel quasi-Z-source halfbridge galvanically isolated DC-DC converter intended for the photovoltaic applications. The topology could be envisioned as an alternative to the boost half-bridge DC-DC converter but the benefit of its symmetric structure reduces the threat of transformer saturation due to the dc flux. The proposed converter features the continuous input current and could be used either with one or two input voltage sources.

  7. Studies of ZVS soft switching of dual-active-bridge isolated bidirectional DC-DC converters

    Science.gov (United States)

    Xu, Fei; Zhao, Feng; Shi, Qibiao; Wen, Xuhui

    2018-05-01

    To operate dual-active-bridge isolated bidirectional dc- dc converter (DAB) at high efficiency, the two bridge switches must operate with Zero-Voltage-Switching (ZVS) over as wide an operating range as possible. This paper proposes a new perspective on realizing ZVS in dead-time. An exact theoretical analysis and mathematical mode is built to explain the process of ZVS switching in dead-time under Single Phase Shift (SPS) control strategy. In order to assure the two bridge switches operate on soft switching, every SPS switching point is analyzed. Generally, dead-time will be determined when the power electronic devices is selected. The key factor to realizing ZVS is the size of the end time of resonance comparing to dead-time. Through detailed analysis, it can obtain the conditions of all switches achieving ZVS turn-on and turn-off. Finally, simulation validates the theoretical analysis and some advice are given to realize the ZVS soft switching.

  8. A study of DC-DC converters with MCT's for arcjet power supplies

    Science.gov (United States)

    Stuart, Thomas A.

    1994-01-01

    Many arcjet DC power supplies use PWM full bridge converters with large arrays of parallel FET's. This report investigates an alternative supply using a variable frequency series resonant converter with small arrays of parallel MCT's (metal oxide semiconductor controlled thyristors). The reasons for this approach are to: increase reliability by reducing the number of switching devices; and decrease the surface mounting area of the switching arrays. The variable frequency series resonant approach is used because the relatively slow switching speed of the MCT precludes the use of PWM. The 10 kW converter operated satisfactorily with an efficiency of over 91 percent. Test results indicate this efficiency could be increased further by additional optimization of the series resonant inductor.

  9. A resonant dc-dc power converter assembly

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the s......The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...... of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...

  10. One-Quadrant Switched-Mode Power Converters

    CERN Document Server

    Petrocelli, R.

    2015-06-15

    This article presents the main topics related to one-quadrant power convert- ers. The basic topologies are analysed and a simple methodology to obtain the steady-state output–input voltage ratio is set out. A short discussion of dif- ferent methods to control one-quadrant power converters is presented. Some of the reported derived topologies of one-quadrant power converters are also considered. Some topics related to one-quadrant power converters such as syn- chronous rectification, hard and soft commutation, and interleaved converters are discussed. Finally, a brief introduction to resonant converters is given.

  11. Optimal Isolation Control of Three-Port Active Converters as a Combined Charger for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhixiang Ling

    2016-09-01

    Full Text Available The three-port converter has three H-bridge ports that can interface with three different energy sources and offers the advantages of flexible power transmission, galvanic isolation ability and high power density. The three-port full-bridge converter can be used in electric vehicles as a combined charger that consists of a battery charger and a DC-DC converter. Power transfer occurs between two ports while the third port is isolated, i.e., the average power is zero. The purpose of this paper is to apply an optimal phase shift strategy in isolation control and provide a detailed comparison between traditional phase shift control and optimal phase shift control under the proposed isolation control scheme, including comparison of the zero-voltage-switching range and the root mean square current for the two methods. Based on this analysis, the optimal parameters are selected. The results of simulations and experiments are given to verify the advantages of dual-phase-shift control in isolation control.

  12. A resonant dc-dc power converter assembly

    OpenAIRE

    Madsen, Mickey Pierre

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or fo...

  13. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  14. A Novel PPFHB Bidirectional DC-DC Converter for Supercapacitor Application

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.

    2009-01-01

    This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase-shift modula......This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase...

  15. Bidirectional dc-to-dc Power Converter

    Science.gov (United States)

    Griesbach, C. R.

    1986-01-01

    Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.

  16. A Dual-Bridge LLC Resonant Converter with Fixed-Frequency PWM Control for Wide Input Applications

    DEFF Research Database (Denmark)

    Xiaofeng, Sun; Li, Xiaohua; Shen, Yanfeng

    2017-01-01

    This paper proposes a dual-bridge (DB) LLC resonant converter for wide input applications. The topology is an integration of a half-bridge (HB) LLC circuit and a full-bridge (FB) LLC circuit. The fixed-frequency PWM control is employed and a range of twice the minimum input voltage can be covered....... Compared with the traditional pulse frequency modulation (PFM) controlled HB/FB LLC resonant converter, the voltage gain range is independent of the quality factor and the magnetizing inductor has little influence on the voltage gain, which can simplify the parameter selection process and benefit...

  17. A dual voltage control strategy for single-phase PWM converters with power decoupling function

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    converter topology based on a symmetrical half bridge circuit is proposed to decouple the ripple power so that balanced instantaneous power flow is assured between source and load, and the required dc-link capacitance can be dramatically reduced. For proper closed-loop regulation, the small signal modeling...... is therefore very sensitive to step load changes. Comprehensive simulation results and experimental results are presented to show the effectiveness of the proposed circuit and control algorithm....

  18. Switching power converters medium and high power

    CERN Document Server

    Neacsu, Dorin O

    2013-01-01

    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  19. Impedance Source Power Electronic Converters

    DEFF Research Database (Denmark)

    Liu, Yushan; Abu-Rub, Haitham; Ge, Baoming

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable...... and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key...... features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding...

  20. Isolated and soft-switched power converter

    Science.gov (United States)

    Peng, Fang Zheng; Adams, Donald Joe

    2002-01-01

    An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.

  1. Atmel Microcontroller Based Soft Switched PWM ZVS Full Bridge DC to DC Converter

    Directory of Open Access Journals (Sweden)

    DEEPAK KUMAR NAYAK

    2010-12-01

    Full Text Available This paper deals with the simulation and implementation of soft switched PWM ZVS full bridge DC to DC converter. The 48V DC is efficiently reduced to 12V DC using a DC to DC converter. This converter has advantages like reduced switching losses, stresses and EMI. Input DC is converted into high frequency AC and it is stepped down to 12V level. Later it is rectified using a full wave rectifier. Laboratory model of microcontroller based DC to DC converter is fabricated and tested. The experimental results are compared with the simulation results.

  2. Active power decoupling with reduced converter stress for single ...

    Indian Academy of Sciences (India)

    SUJATA BHOWMICK

    Department of Electronic Systems Engineering, Indian Institute of Science, ... Single phase; double-frequency ripple; active power decoupling; reduced stress; ... sation of renewable energy sources (e.g., PV), potential ... In standard grid connected DC/AC H-bridge configuration, ..... solar inverter with reduced-size dc link.

  3. Harmonics in power systems of ships with electrical propulsion drives. Comparison between different converters

    Energy Technology Data Exchange (ETDEWEB)

    Lehtonen, M [VTT Energy, Espoo (Finland). Energy Systems

    1996-11-01

    In this report the effects of harmonics in marine power systems is discussed and a comparison is given between the most typical converter types, including pulse width modulated drives, load commutated inverters and cycloconverters. The effect of harmonic distortion on the power system equipment and loads is first briefly discussed. Special attention is given to the circumstances in the low voltage distribution system, where general load equipment is connected. In addition to the total harmonic distortion the effect of voltage deviation to the supply quality is also considered. The origin of harmonics in the load currents of the three converter types is then considered. The differences between the converters are outlined, and the most typical spectra are presented. The possible means for reducing the harmonic distortion are also studied. The solutions considered are the increasing of the short circuit level, the use of harmonic filters and the increasing of the pulse number. In the case of cycloconverters, the optimization of the phase shift between the parallel operating bridges is also presented. Finally the effects of different converter types on the voltage quality are compared using calculations made for a typical marine power system. (author)

  4. LHC Power Converters: A Precision Game

    CERN Multimedia

    2001-01-01

    The LHC test-bed, String 2, is close to commissioning and one important element to get a first chance to prove what it can do is the power converter system. In String 2 there are 16 converters, in the full LHC there will be almost 1800. This article takes a look at what is so special about the power converters for the LHC. The 13 000 Amps power converters with the watercooled cables going to the String 2 feedboxes. The LHC's superconducting magnets will be the pinnacle of high technology. But to work, they'll need the help of high-precision power converters to supply them with extremely stable DC current. Perfection will be the name of the game, with an accuracy of just 1-2 parts per million (ppm) required. LEP, for the sake of comparison, could live with 10-20 ppm. The LHC's power converters will be very different from those of LEP or the SPS since the new accelerator's magnets are mostly superconducting. That means that they require much higher currents at a lower voltage since superconductors have no re...

  5. DC-DC power converter research for Orbiter/Station power exchange

    Science.gov (United States)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  6. Winding design of series AC inductor for dual active bridge converters

    DEFF Research Database (Denmark)

    Shen, Zhan; Wang, Huai; Shen, Yanfeng

    2018-01-01

    The ac resistance and parasitic capacitance of the inductor are the primary considerations in the winding design for the dual-active bridge converter (DAB). They are dependent of up to four independent structure variables. The interactive restrictions between those variables makes the design diff...

  7. Reliability of Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    -link capacitance in power electronic converter systems; wind turbine systems; smart control strategies for improved reliability of power electronics system; lifetime modelling; power module lifetime test and state monitoring; tools for performance and reliability analysis of power electronics systems; fault...... for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity. Drawing on the experience of an international team of experts, this book explores the reliability of PECS covering topics including an introduction to reliability engineering in power...... electronic converter systems; anomaly detection and remaining-life prediction for power electronics; reliability of DC-link capacitors in power electronic converters; reliability of power electronics packaging; modeling for life-time prediction of power semiconductor modules; minimization of DC...

  8. Converters for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Yang, Yongheng

    2015-01-01

    Power electronics technology has become the enabling technology for the integration of distributed power generation systems (DPGS) such as offshore wind turbine power systems and commercial photovoltaic power plants. Depending on the applications, a vast array of DPGS-based power converter...... topologies has been developed and more are coming into the market in order to achieve an efficient and reliable power conversion from the renewables. In addition, stringent demands from both the distribution system operators and the consumers have been imposed on the renewable-based DPGS. This article...... presents an overview of the power converters for the DPGS, mainly based on wind turbine systems and photovoltaic systems, covering a wide range of applications. Moreover, the modulation schemes and interfacing power filters for the power converters are also exemplified. Finally, the general control...

  9. Medium voltage three-level converters for the grid connection of a multi-MW wind turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2009-01-01

    Three-level (3L) neutral point clamped (NPC), flying capacitor (FC), and H-bridge (HB) voltage source converters (VSCs) as a grid-side full-scale medium voltage (MV) converter are modeled, controlled, and simulated for the grid connection of a hypothetical 6MW wind turbine. Via the converter...... topological features and the simulation results demonstrating the converter performance, these three 3L-VSCs are discussed and compared in terms of power density and reliability, which can be considered as two of the most important criteria for the converters placed in wind turbine nacelles. Given the grid...... connection circuit (without capacitive switching ripple filters), the 3L-HB-VSC is expected to be superior with respect to power density and reliability over the 3L-NPC- and -FC-VSCs....

  10. Medium Voltage Three-level Converters for the Grid Connection of aMulti-MW Wind Turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Helle, Lars; Munk-Nielsen, Stig

    2009-01-01

    Three-level (3L) neutral point clamped (NPC), flying capacitor (FC), and H-bridge (HB) voltage source converters (VSCs) as a grid-side full-scale medium voltage (MV) converter are modeled, controlled, and simulated for the grid connection of a hypothetical 6MW wind turbine. Via the converter...... topological features and the simulation results demonstrating the converter performance, these three 3L-VSCs are discussed and compared in terms of power density and reliability, which can be considered as two of the most important criteria for the converters placed in wind turbine nacelles. Given the grid...... connection circuit (without capacitive switching ripple filters), the 3L-HB-VSC is expected to be superior with respect to power density and reliability over the 3L-NPC- and -FC-VSCs....

  11. Digital Fuzzy logic and PI control of phase-shifted full-bridge current-doubler converter

    DEFF Research Database (Denmark)

    Török, Lajos; Munk-Nielsen, Stig

    2011-01-01

    Simple digital fuzzy logic voltage control of a phaseshifted full-bridge (PSFB) converter is proposed in this article. A comparison of the fuzzy controller and the classical PI voltage controller is presented and their effects on the converter dynamics are analyzed. Simulation model of the conver...... of the converter was built in Matlab/Simulink using PLECS. A 600W PSFB convert was designed and built and the control strategies were implemented in a 16 bit fixed point dsPIC microcontroller. The advantages and disadvantages of using Fuzzy logic control are highlighted....

  12. IGBT Based DC/DC Converter

    Directory of Open Access Journals (Sweden)

    M. Akherraz

    1997-12-01

    Full Text Available This paper presents an in-depth analytical and experimental investigation of an indirect DC-DC converter. The DC-AC conversion is a full bridge based on IGBT power modules, and the AC-DC conversion is done via a high  frequency AC link and a first diode bridge. The AC link, which consists of snubbing capacitors and a variable air-gap transformer, is analytically designed to fulfill Zero Voltage commutation requirement. The proposed converter is simulated using PSPICE and a prototype is designed built and tested in the laboratory. PSPICE simulation and experimental results are presented and compared.

  13. Bi-directional power control system for voltage converter

    Science.gov (United States)

    Garrigan, Neil Richard; King, Robert Dean; Schwartz, James Edward

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  14. Integrated module inverter using a zeta DC-DC converter with feedforward MPPT (Maximum Power Point Tracking) control; Inversor modulo integrado utilizando um conversor CC-CC zeta com controle MPPT feedforward

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Henrique Fioravanti Miguel

    2009-08-15

    This work presents the study and development of a processing power system that could be used in the connection of renewable energy sources to commercial power grid. The system consists of a ZETA converter associated with a bridge inverter operating at low frequency. The Zeta converter, operating in discontinuous conduction mode (DCM), plays the main role in this arrangement, producing a rectified sinusoidal current waveform synchronized with the electric grid. The function of the full-bridge inverter, connected in cascade with the Zeta converter, is to reverse every 180 deg the current generated by the Zeta converter. Initially it presents the analysis of the Zeta converter operating in DCM, as well as a design criterion. Following by the control strategy and the experimental results for the proposed system are presented and discussed. (author)

  15. Power converters definitions, classification and converter topologies

    CERN Document Server

    Bordry, Frederick

    2006-01-01

    This paper introduces power conversion principles and defines the terminology. The concepts of sources and switches are defined and classified. From the basic laws of source interconnections, a generic method of power converter synthesis is presented. Some examples illustrate this systematic method. Finally, the notions of commutation cell and soft commutation are introduced and discussed.

  16. A 99%-efficiency GaN converter for 6.78 MHz magnetic resonant wireless power transfer system

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Akuzawa

    2014-10-01

    Full Text Available The authors developed a high-efficiency gallium-nitride (GaN Class-E converter for a 6.78 MHz magnetic resonant wireless power transfer system. A negative-bias gate driver circuit made it possible to use a depletion mode GaN high-electron-mobility transistor (HEMT, and simplified the converter circuit. As the depletion mode GaN HEMT with very small gate–source capacitance provided almost ideal zero-voltage switching, the authors attained a drain efficiency of 98.8% and a total efficiency of 97.7%, including power consumption of a gate driver circuit, at a power output of 33 W. In addition, the authors demonstrated a 6.78 MHz magnetic resonant wireless power transfer system that consisted of the GaN Class-E converter, a pair of magnetic resonant coils 150 mm in diameter with an air-gap distance of 40 mm, and a full-bridge rectifier using Si Schottky barrier diodes. The system achieved a dc–dc efficiency of 82.8% at a power output of 25 W. The efficiencies of coil coupling and the rectifier were estimated to be ∼ 94 and 90%, respectively.

  17. Bidirectional converter interface for a battery energy storage test bench

    DEFF Research Database (Denmark)

    Trintis, Ionut; Thomas, Stephan; Blank, Tobias

    2011-01-01

    This paper presents the bidirectional converter interface for a 6 kV battery energy storage test bench. The power electronic interface consists a two stage converter topology having a low voltage dc-ac grid connected converter and a new dual active bridge dc-dc converter with high transformation...

  18. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based......, and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  19. Optimization Control of Bidirectional Cascaded DC-AC Converter Systems

    DEFF Research Database (Denmark)

    Tian, Yanjun

    in bidirectional cascaded converter. This research work analyses the control strategies based on the topology of dual active bridges converter cascaded with a three phase inverter. It firstly proposed a dc link voltage and active power coordinative control method for this cascaded topology, and it can reduce dc....... The connections of the renewable energy sources to the power system are mostly through the power electronic converters. Moreover, for high controllability and flexibility, power electronic devices are gradually acting as the interface between different networks in power systems, promoting conventional power...... the bidirectional power flow in the distribution level of power systems. Therefore direct contact of converters introduces significant uncertainties to power system, especially for the stability and reliability. This dissertation studies the optimization control of the two stages directly connected converters...

  20. Spectrum analysis of a voltage source converter due to semiconductor voltage drops

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg; Eltouki, Mustafa

    2017-01-01

    It is known that power electronic voltage source converters are non-ideal. This paper presents a state-of-the-art review on the effect of semiconductor voltage drop on the output voltage spectrum, using single-phase H-bridge two-level converter topology with natural sampled pulse width modulation....... The paper describes the analysis of output voltage spectrum, when the semiconductor voltage drop is added. The results of the analysis of the spectral contribution including and excluding semiconductor voltage drop reveal a good agreement between the theoretical results, simulations and laboratory...

  1. Research on Compensating Power Converter used for Artillery

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2014-11-01

    Full Text Available Aiming at the low efficiency shortage of traditional power supply converter used for artillery, a novel compensating power converter used for artillery was proposed, and its work mode was analyzed. The current expression of inductor was given and work statuses under two working modes were analyzed. Finally an experimental prototype based on DSP was built, the results indicate that the compensating power converter own low current and voltage stress and high efficiency because only part of power pass through the converter, thus, the converter own large potential application value.

  2. A Reliability-Oriented Design Method for Power Electronic Converters

    DEFF Research Database (Denmark)

    Wang, Huai; Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    Reliability is a crucial performance indicator of power electronic systems in terms of availability, mission accomplishment and life cycle cost. A paradigm shift in the research on reliability of power electronics is going on from simple handbook based calculations (e.g. models in MIL-HDBK-217F h...... and reliability prediction models are provided. A case study on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical component IGBT modules....

  3. Passive components used in power converters

    CERN Document Server

    Rufer, A; Barrade, P

    2006-01-01

    In power converters, passive components play an important role, and have in general specific nature and properties. The goal of this tutorial is to give an overview, first on inductive components for power conversion, and second on dedicated power capacitors. In a third part, new components— supercapacitors—will be presented. Generally, inductors for power applications must be custom designed. In this tutorial, the most important effects encountered when realising inductive components will be presented in the first part, without entering into the detailed design of such components. For that purpose, the referenced documents that have served as a base for this tutorial must be consulted [1], [2], and mainly [3]. The second part of this tutorial (Capacitors used in power electronics) is dedicated to power capacitors. Unlike inductors, capacitors cannot be specifically designed, but must be selected from a manufacturer’s list of components. Here, the documentation corresponds to a subset of Ref. [4] that h...

  4. Novel screening techniques for wind turbine power converters

    DEFF Research Database (Denmark)

    Jørgensen, Asger Bjørn; Sønderskov, Simon Dyhr; Christensen, Nicklas

    2016-01-01

    Power converters represent one of the highest failure rates in the wind turbine. Therefore converter manufacturers perform burn-in tests to prevent shipping of faulty converters. Recent developments in junction temperature estimation, based on accurate online IGBT collector-emitter voltage...... measurements, allow for thermal stress estimation of the IGBT modules. This is utilized to detect infant mortalities in power converters, by comparing thermal responses of IGBTs for faulty and non-faulty converters. The method proves to be a time and cost efficient candidate to replace burn-in tests of power...... converters for wind turbines applications....

  5. A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim

    2005-01-01

    of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter......This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...

  6. An energy-harvesting power supply for underwater bridge scour monitoring sensors

    Science.gov (United States)

    Wang, Yuli; Li, Yingjie; He, Longzhuang; Shamsi, Pourya; Zheng, Yahong R.

    2018-03-01

    The natural force of scouring has become one of the most critical risk endangering the endurance of bridges, thus leading to the necessity of deploying underwater monitoring sensors to actively detect potential scour holes under bridges. Due to the difficulty in re-charging batteries for underwater sensors, super capacitors with energy harvesting (EH) means are exploited to prolong the sustainability of underwater sensors. In this paper, an energy harvesting power supply based on a helical turbine is proposed to power underwater monitoring sensors. A small helical turbine is designed to convert water flow energy to electrical energy with favorable environmental robustness. A 3-inch diameter, 2.5-inch length and 3-bladed helical turbine was designed with two types of waterproof coupling with the sensor housing. Both designs were prototyped and tested under different flow conditions and we get valid voltage around 0.91 V which is enough to power monitoring sensor. The alternating current (AC) electrical energy generated by the helical turbine is then rectified and boosted to drive a DC charger for efficiently charging one super capacitor. The charging circuit was designed, prototyped and tested thoroughly with the helical turbine harvester. The results were promising, that the overall power supply can power an underwater sensor node with wireless transceivers for long-term operations

  7. Control and design of full-bridge three-level converter for renewable energy sources

    DEFF Research Database (Denmark)

    Yao, Zhilei; Xu, Jing; Guerrero, Josep M.

    2015-01-01

    Output voltage of renewable energy sources, such as fuel cell and PV cell, is often low and varies widely with load and environmental conditions. Therefore, the high step-up DC-DC converter is needed between renewable energy sources and the grid-connected inverter. However, voltage stress...... of rectifier diodes is high and filter is large in traditional voltage-source converters in a wide input-voltage range. In order to solve the aforementioned problems, a full-bridge (FB) three-level (TL) converter is proposed. It can operate at both two-level and three-level modes, so it is suitable for wide...

  8. Self-oscillating resonant power converter

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to resonant power converters and inverters comprising a self-oscillating feedback loop coupled from a switch output to a control input of a switching network comprising one or more semiconductor switches. The self-oscillating feedback loop sets a switching frequency...... of the power converter and comprises a first intrinsic switch capacitance coupled between a switch output and a control input of the switching network and a first inductor. The first inductor is coupled in-between a first bias voltage source and the control input of the switching network and has...... a substantially fixed inductance. The first bias voltage source is configured to generate an adjustable bias voltage applied to the first inductor. The output voltage of the power converter is controlled in a flexible and rapid manner by controlling the adjustable bias voltage....

  9. A New Approach to High Efficincy in Isolated Boost Converters for High-Power Low-Voltage Fuel Cell Apllications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael A. E.

    2008-01-01

    A new low-leakage-inductance low-resistance design approach to low-voltage high-power isolated boost converters is presented. Very low levels of parasitic circuit inductances are achieved by optimizing transformer design and circuit lay-out. Primary side voltage clamp circuits can be eliminated...... by the use of power MOSFETs fully rated for repetitive avalanche. Voltage rating of primary switches can now be reduced, significantly reducing switch on-state losses. Finally, silicon carbide rectifying diodes allow fast diode turn-off, further reducing losses. Test results from a 1.5 kW full-bridge boost...... converter verify theoretical analysis and demonstrate very high efficiency. Worst case efficiency, at minimum input voltage maximum power, is 96.8 percent and maximum efficiency reaches 98 percent....

  10. CAS - CERN Accelerator School: Power Converters

    CERN Document Server

    2015-01-01

    These proceedings collate lectures given at the twenty-eighth specialized course organised by the CERN Accelerator School (CAS). The course was held at the Hotel du Parc, Baden, Switzerland from 7 - 14 May 2014, in collaboration with the Paul Scherrer Institute. Following introductory lectures on accelerators and the requirements on power converters, the course covered components and topologies of the different types of power converters needed for particle accelerators. Issues of design, control and exploitation in a sometimes-hostile environment were addressed. Site visits to ABB and PSI provided an insight into state-of-the-art power converter production and operation, while topical seminars completed the programme.

  11. Analysis of photonic spot profile converter and bridge structure on SOI platform for horizontal and vertical integration

    Science.gov (United States)

    Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib

    2017-08-01

    Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.

  12. Thermal stress comparison in modular power converter topologies for smart transformers in the electrical distribution system

    DEFF Research Database (Denmark)

    Andresen, Markus; Ma, Ke; Liserre, Marco

    2015-01-01

    A Smart Transformer (ST) can cover an important managing role in the future electrical distribution grid. For the moment, the reliability and cost are not competitive with traditional transformers and create a barrier for its application. This work conduct detail designs and analysis...... for a promising modular ST solution, which is composed of Modular Multi-level converter, Quad Active Bridge DC-DC converters, and two-level voltage source converters. The focus is put on the loading conditions and thermal stress of power semiconductor devices in order to discover critical parts of the whole...... system when performing various mission profiles in the realistic distribution grid. It is concluded that the thermal stress for all stages is low during normal operation and especially the isolation stage is stressed least....

  13. Final design of the Korean AC/DC converters for the ITER coil power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong-Seok, E-mail: jsoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Choi, Jungwan; Suh, Jae-Hak; Choi, Jihyun [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Lee, Lacksang; Kim, Changwoo; Park, Hyungjin; Jo, Seongman; Lee, Seungyun; Hwang, Kwangcheol; Liu, Hyoyol [Dawonsys Corp., Siheung 429-450 (Korea, Republic of); Hong, Ki-Don; Sim, Dong-Joon; Lee, Jang-Soo [Hyosung Corp., Gongdeok-Dong, Seoul 121-720 (Korea, Republic of); Lee, Eui-Jae; Kwon, Yang-Hae; Lee, Dae-Yeol; Ko, Ki-Won; Kim, Jong-Min [Mobiis Corp., Yangjae-dong, Seoul 137-888 (Korea, Republic of); Song, Inho [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); and others

    2015-10-15

    The final design of the ITER TF, CS, CC and VS AC/DC converters has been completed to implement ITER requirements following the detailed design and refinements of the preliminary design. The number of parallel thyristors and the rating of fuses are coordinated to keep those devices within the explosion limit even under most severe fault conditions. The impedance of the converter transformer has been optimized taking into account the energization inrush current, short circuit current, reactive power consumption and the available DC voltage. To ensure system integrity, AC/DC converters are mechanically divided into transformers, AC busbars, 6-pulse bridges, DC interconnecting busbars and DC reactors, and then all subsystems are decoupled by flexible links. To provide stable real time network communication down to the converters, a one GbE link is deployed between master controllers and local controllers. IEEE 1588 is implemented to the embedded controllers for precision time synchronization. This paper describes the detailed solutions implemented in the final design for the ITER AC/DC converters with R&D results of converter prototypes.

  14. Lifetime estimation for the power semiconductors considering mission profiles in wind power converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... estimation, more detailed information for the reliability performance of wind power converter can be obtained....

  15. Multi-Functional Distributed Generation Unit for Power Quality Enhancement

    DEFF Research Database (Denmark)

    Zeng, Zheng; Yang, Huan; Guerrero, Josep M.

    2015-01-01

    A multi-functional distributed generation unit (MFDGU) and its control strategy are proposed in this paper for the purpose of enhancing power quality in low-voltage networks. By using the 3H-bridge converter structure, an MFDGU can be applied in 3-phase 4-wire low-voltage distribution networks...... reference of the MFDGU, which can be easily implemented in three-phase networks. A 15kVA prototype consisting of three full bridge converters has been built and tested. Experimental results show the feasibility of the proposed topology and control strategy....

  16. A Voltage Doubler Circuit to Extend the Soft-switching Range of Dual Active Bridge Converters

    DEFF Research Database (Denmark)

    Qin, Zian; Shen, Yanfeng; Wang, Huai

    2017-01-01

    A voltage doubler circuit is realized to extend the soft-switching range of Dual Active Bridge (DAB) converters. No extra hardware is added to the DAB to form this circuit, since it is composed of the dc blocking capacitor and the low side full bridge converter, which already exist in DAB....... With the voltage doubler, the DAB converter can achieve soft switching and high efficiency when the low side dc voltage is close to 2 pu (1 pu is the high side dc voltage divided by the transformer turn ratio), which can be realized only when the low side dc voltage is close to 1 pu by using the conventional phase...... shift modulation in DAB. Thus the soft switching range is extended. The soft switching boundary conditions are derived. A map to show the soft switching or hard switching in the full load and voltage range is obtained. The feasibility and effectiveness of the proposed method is finally verified...

  17. A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter

    DEFF Research Database (Denmark)

    Yao, Wenli; Loh, Poh Chiang; Tang, Yi

    2017-01-01

    Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor......, instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...

  18. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    The topic of this thesis is the design of high efficiency power electronic dc-to-dc converters for high-power, low-input-voltage to high-output-voltage applications. These converters are increasingly required for emerging sustainable energy systems such as fuel cell, battery or photo voltaic based...

  19. Designing and Testing Composite Energy Storage Systems for Regulating the Outputs of Linear Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Zanxiang Nie

    2017-01-01

    Full Text Available Linear wave energy converters generate intrinsically intermittent power with variable frequency and amplitude. A composite energy storage system consisting of batteries and super capacitors has been developed and controlled by buck-boost converters. The purpose of the composite energy storage system is to handle the fluctuations and intermittent characteristics of the renewable source, and hence provide a steady output power. Linear wave energy converters working in conjunction with a system composed of various energy storage devices, is considered as a microsystem, which can function in a stand-alone or a grid connected mode. Simulation results have shown that by applying a boost H-bridge and a composite energy storage system more power could be extracted from linear wave energy converters. Simulation results have shown that the super capacitors charge and discharge often to handle the frequent power fluctuations, and the batteries charge and discharge slowly for handling the intermittent power of wave energy converters. Hardware systems have been constructed to control the linear wave energy converter and the composite energy storage system. The performance of the composite energy storage system has been verified in experiments by using electronics-based wave energy emulators.

  20. Multilevel push pull power converter

    DEFF Research Database (Denmark)

    2007-01-01

    A power converter for converting an input voltage (Vin) into an output voltage (Vout), comprising a first supply potential and a second supply potential established by the input voltage, and at least one primary winding having two terminals, a center tap arranged between the two terminals and con...

  1. A New Modular Multilevel Converter with Integrated Energy Storage

    DEFF Research Database (Denmark)

    Trintis, Ionut; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    applications. Furthermore, this solution can interconnect a DC and AC grid with bidirectional power flow, where both of them can receive or generate excess power to the third source integrated in each converter sub-module. This particularity enables the converter usage as a high voltage UPS system......This paper introduces a new modular converter with integrated energy storage based on the cascaded half-bridge modular multilevel converter with common DC bus. It represents a complete modular solution with power electronics and energy storage building blocks, for medium and high voltage...... in the future HVDC meshed grids. Its functionality and flexibility makes the converter independent on the energy storage unit characteristic. The converter concept with its basic functions and control schemes are described and evaluated in this paper....

  2. Modelling and analysis of the transformer current resonance in dual active bridge converters

    DEFF Research Database (Denmark)

    Qin, Zian; Shen, Zhan; Blaabjerg, Frede

    2017-01-01

    Due to the parasitic capacitances of the transformer and inductor in Dual Active Bridge (DAB) converters, resonance happens in the transformer currents. This high frequency resonant current flowing into the full bridges will worsen their soft-switching performance and thereby reduce its efficiency....... In order to study the generation mechanism of this current resonance, the impedance of the transformer and inductor with parasitic components is modelled in this digest. Then, based on the impedance model, an approach is proposed to mitigate the current resonance. Finally, both the impedance model...

  3. Distance relay performance in future converter dominated power systems

    DEFF Research Database (Denmark)

    Sarkar, Moumita; Jia, Jundi; Yang, Guangya

    2017-01-01

    Increasing penetration of converter-based generations in power system has led to new system challenges. Short circuit power response from converter-based generations is different from that of traditional synchronous generators. Power electronic converters can be designed for over-current only up ...... of converter controls on fault current response of converter-based generations is also investigated. Index Terms—Converter control, distance relays, power system protection, system modelling....... to 1.1-1.25 times of its nominal value. Low availability of short circuit power can cause many challenges such as misoperation of distance relays. The aim of this paper is to investigate the effect of converter dominated systems on performance of distance relays. Backup functionality of the distance...... relay is major concern as miscoordination of backup relays in case of cascading faults can lead to severe stress in system, which can develop into blackout. In this paper, response of relays in traditional system is compared with response of relays in low short-circuit-current power systems. Impact...

  4. Lifetime estimation for the power semiconductors considering mission profiles in wind power converter

    OpenAIRE

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    As a key component in the wind turbine system, power electronic converter and its power semiconductors suffer from adverse power loadings related to environment, and are proven to have certain failure rates. Therefore, correct lifetime estimation of wind power converter is crucial for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power...

  5. Control of improved full-bridge three-level DC/DC converter for wind turbines in a DC grid

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    transformer in the IFBTL dc/dc converter. A modulation strategy, including two operation modes, is proposed for the IFBTL dc/dc converter. Then, a voltage balancing control strategy is proposed for the IFBTL dc/dc converter. Furthermore, the control of the wind turbine based on the IFBTL dc/dc converter......This paper presents an improved full-bridge three-level (IFBTL) dc/dc converter for a wind turbine in a dc grid by inserting a passive filter into the dc/dc converter to improve the performance of the converter. The passive filter can effectively reduce the voltage stress of the medium frequency...

  6. Step-Up DC-DC Power Converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...

  7. Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters

    DEFF Research Database (Denmark)

    Fang, Jingyang; Li, Hongchang; Tang, Yi

    2018-01-01

    Renewable energy sources (RESs), e.g. wind and solar photovoltaics, have been increasingly used to meet worldwide growing energy demands and reduce greenhouse gas emissions. However, RESs are normally coupled to the power grid through fast-response power converters without any inertia, leading...... to decreased power system inertia. As a result, the grid frequency may easily go beyond the acceptable range under severe frequency events, resulting in undesirable load-shedding, cascading failures, or even large-scale blackouts. To address the ever-decreasing inertia issue, this paper proposes the concept...... of distributed power system virtual inertia, which can be implemented by grid-connected power converters. Without modifications of system hardware, power system inertia can be emulated by the energy stored in the dc-link capacitors of grid-connected power converters. By regulating the dc-link voltages...

  8. Power electronic converters modeling and control with case studies

    CERN Document Server

    Bacha, Seddik; Bratcu, Antoneta Iuliana

    2014-01-01

    Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: ·        switched and averaged models; ·        small/large-signal models; and ·        time/frequency models. The second focuses on three groups of control methods: ·        linear control approaches normally associated with power converters; ·        resonant controllers b...

  9. Simulation of Standby Efficiency Improvement for a Line Level Control Resonant Converter Based on Solar Power Systems

    Directory of Open Access Journals (Sweden)

    Ming-Tse Kuo

    2015-01-01

    Full Text Available This paper proposes a new scheme to improve the standby efficiency of the high-power half-bridge line level control (LLC resonant converter. This new circuit is applicable to improving the efficiency of the renewable energy generation system in distributed power systems. The main purpose is to achieve high-efficiency solar and wind power and stable output under different load conditions. In comparison with the traditional one, this novel method can improve standby efficiency at standby. The system characteristics of this proposed method have been analyzed through detailed simulations, which prove its feasibility.

  10. Thermal Analysis of Multilevel Grid-side Converters for 10-MW Wind turbines under Low-Voltage Ride Through

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2013-01-01

    in the power network and able to contribute to the grid recovery by injecting reactive current during grid faults. Consequently, the full-scale power converter solutions are becoming more and more popular to fulfill the growing challenges in the wind power application. Nevertheless, the loading of the power...... devices (particularly the diodes) under LVRT operation. Moreover, the three-level and five-level H-bridge topologies show more potential to reduce the inequality and level of device stress than the well-known three-level neutral point clamped topology....

  11. Advanced Power Converter for Universal and Flexible Power Management in Future Electricity Network

    DEFF Research Database (Denmark)

    Iov, Florin; Blaabjerg, Frede; Bassett, R.

    2007-01-01

    converters for grid connection of renewable sources will be needed. These power converters must be able to provide intelligent power management as well as ancillary services. This paper presents the overall structure and the control aspects of an advanced power converter for universal and flexible power......More "green" power provided by Distributed Generation will enter into the European electricity network in the near future. In order to control the power flow and to ensure proper and secure operation of this future grid, with an increased level of the renewable power, new power electronic...

  12. Operating modes and practical power flow analysis of bidirectional isolated power interface for distributed power systems

    International Nuclear Information System (INIS)

    Wen, Huiqing; Su, Bin

    2016-01-01

    Highlights: • Four operating modes of Dual-Phase-Shift control for Dual Active Bridge converter are presented. • Effects of “minor parameters” such as the deadtime and power device voltage drops are analyzed. • Accurate power flow models with Dual-Phase-Shift control are developed and verified with experimental results. • Optimal operating mode is determined with respect to the efficiency improvement. • Measured efficiency of the Dual Active Bridge converter is improved up to 14%. - Abstract: Due to the intermittent nature of the renewable energy sources including photovoltaic and wind energy, the energy storage systems are essential to stabilize dc bus voltage. Considering the discharge depth of super-capacitors and energy-storage batteries, the bidirectional isolated power interface will operate for a wide range of voltage and power. This study focuses on in-depth analysis of the dual-active-bridge dc–dc converter that is controlled by the dual-phase-shift scheme to improve the conversion efficiency in distributed power system. The power flow of each operating mode with dual-phase-shift control is characterized based on a detailed analysis of the effects of “minor parameters”, including the deadtime and power device voltage drops. The complete output power plane of the dual-active-bridge converter with dual-phase-shift control is obtained and compared with experimental results. The optimal operating mode is determined according to the practical output power range and the power flow characteristics. Experimental evaluation shows the effectiveness of the proposed power flow model with dual-phase-shift control and significant efficiency improvement using the optimal mode of dual-phase-shift compared with the conventional phase shift control.

  13. A New Green Power Inverter for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Gert Karmisholt; Klumpner, Christian; Kjær, Søren Bækhøj

    2002-01-01

    This paper presents a new grid connected inverter for fuel cells. It consists of a two stage power conversion topology. Since the fuel cell operates with a low voltage in a wide voltage range (25 V-45 V) this volt- age must be transformed to around 350-400 V in order to invert this dc power into ac...... power to the grid. The proposed converter consists of an isolated dc-dc converter cascaded with a single phase H-bridge inverter. The dc-dc converter is a current-fed push-pull converter. A new dedicated voltage mode startup procedure has been developed in order to limit the inrush current during...... startup. The inverter is controlled as a power factor controller with resistor emulation.Experimental results of converter efficiency, grid performance and fuel cell response are shown for a 1 kW prototype. The proposed converter exhibits a high efficiency in a wide power range (higher than 92...

  14. Reactive Power Impact on Lifetime Prediction of Two-level Wind Power Converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, M.

    2013-01-01

    The influence of reactive power injection on the dominating two-level wind power converter is investigated and compared in terms of power loss and thermal behavior. Then the lifetime of both the partial-scale and full-scale power converter is estimated based on the widely used Coffin-Manson model...

  15. Power Converters Maximize Outputs Of Solar Cell Strings

    Science.gov (United States)

    Frederick, Martin E.; Jermakian, Joel B.

    1993-01-01

    Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.

  16. Definition of Power Converters

    CERN Document Server

    Bordry, F

    2015-01-01

    The paper is intended to introduce power conversion principles and to define common terms in the domain. The concept s of sources and switches are defined and classified. From the basic laws of source interconnections, a generic method of power converter synthesis is presented. Some examples illustrate this systematic method. Finally, the commutation cell and soft commuta tion are introduced and discussedd.

  17. Adaptive electrothermal protection of power converters

    Directory of Open Access Journals (Sweden)

    Baraniuk G. A.

    2017-06-01

    Full Text Available Thermal management for power converters during normal operation and transient modes when electrical components are warmed up is an actual problem. This can be particularly important for converters with intermittent duty operation, e.g. power supplies for resistance welding. According to some research, nearly 60% of failures are temperature-induced, and for every 10°C temperature rise in operating environment the failure rate nearly doubles. In this paper, thermal motion of state equations eigenvalue is analysed. It is shown, that in semiconductor converters with an output smoothing filter it is appropriate to use thermal protection devices based on thermal normalisation of the converter filter and, while for cases when short circuits are possible it is appropriate to use a soft start system with thermal adaptation for soft start time factor. Based on these results, two systems of thermal protections operating for semiconductor power converters are introduced. Simulation of combined electromagnetic and thermal processes in buck converter operating with both thermal management systems in overlapping environments MATLAB/Simulink and PLECS showed the possibility to significantly reduce thermal shock on semiconductor components. Using the system of filter parameters normalisation decreases the temperature of the crystal from 210°C to 85°C, using the adaptive soft start system decreases the temperature from 180°C to 80°C. The simulation results are confirmed by tests on real devices.

  18. Free-piston Stirling component test power converter

    Science.gov (United States)

    Dochat, George; Dhar, Manmohan

    1991-01-01

    The National Aeronautics and Space Administration (NASA) has been evaluating free-piston Stirling power converters (FPSPCs) for use on a wide variety of space missions. They provide high reliability, long life, and efficient operation and can be coupled with all potential heat sources, various heat input and heat rejection systems, and various power management and distribution systems. FPSPCs can compete favorably with alternative power conversion systems over a range of hundreds of watts to megawatts. Mechanical Technology Incorporated (MTI) is developing FPSPC technology under contract to NASA Lewis Research Center and will demonstrate this technology in two full-scale power converters operating at space temperature conditions. The testing of the first of these, the component test power converter (CTPC), was initiated in Spring 1991 to evaluate mechanical operation at space operating temperatures. The CTPC design, hardware fabrication, and initial test results are reviewed.

  19. Piezoelectric power converter with bi-directional power transfer

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a bi-directional piezoelectric power converter com¬ prising a piezoelectric transformer. The piezoelectric transformer comprises an input electrode electrically coupled to a primary section of the piezoelectric transformer and an output electrode electrically...... coupled to an output section of the piezoelectric transformer to provide a transformer output signal. A bi-directional switching circuit is coupled between the output electrode and a DC or AC output voltage of the power converter. Forward and reverse current conducting periods of the bi......, a reverse current is conducted through the bi-directional switching circuit from the DC or AC output voltage to the output electrode to discharge the DC or AC output voltage and return power to the primary section of the piezoelectric transformer....

  20. Optimizing design of converters using power cycling lifetime models

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup; Munk-Nielsen, Stig

    2015-01-01

    Converter power cycling lifetime depends heavily on converter operation point. A lifetime model of a single power module switched mode power supply with wide input voltage range is shown. A lifetime model is created using a power loss model, a thermal model and a model for power cycling capability...... with a given mission profile. A method to improve the expected lifetime of the converter is presented, taking into account switching frequency, input voltage and transformer turns ratio....

  1. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    Science.gov (United States)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  2. Protection of Hardware: Powering Systems (Power Converter, Normal Conducting, and Superconducting Magnets)

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, H. [Fermilab; Flora, B. [Fermilab; Wolff, D. [Fermilab

    2016-01-01

    Along with the protection of magnets and power converters, we have added a section on personnel protection because this is our highest priority in the design and operation of power systems. Thus, our topics are the protection of people, power converters, and magnet loads (protected from the powering equipment), including normal conducting magnets and superconducting magnets.

  3. LCC Resonant Multilevel Converter for X-ray Applications

    Directory of Open Access Journals (Sweden)

    A. M. Pernía

    2017-10-01

    Full Text Available Medical X-ray appliances use high-voltage power supplies that must be able to work with very different energy requirements. Two techniques can be distinguished in X-ray medical imaging: fluoroscopy and radioscopy. The former involves low power radiation with a long exposure time, while radioscopy requires large power during short radiographic exposure times. Since the converter has to be designed by taking into account the maximum power specification, it will exhibit a poor efficiency when operating at low power levels. Such a problem can be solved by using a new multilevel LCC topology. This topology is based on a classical series-parallel resonant topology, but includes an additional low-voltage auxiliary transformer whose function depends on the X-ray technique considered. When radioscopy operation is selected, the transformer will allow the power to be shared between two full-bridges. If fluoroscopy mode is activated, the auxiliary full bridge is disconnected and the magnetizing inductance of the auxiliary transformer is used to increase the resonant inductor in order to reduce the resonant currents, thus improving the efficiency of the converter.

  4. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    Science.gov (United States)

    Cao, Dong

    -isolated or isolated PV inverter. For the non-isolated transformer-less solution, a semi-Z-source inverter for single phase photovoltaic systems has been proposed. The proposed semi-Z-source inverter utilizes only two switching devices with doubly grounded feature. The total cost have been reduced, the safety and EMI issues caused by the high frequency ground current are solved. For the transformer isolated solution, a boost half-bridge dc-ac micro-inverter has been proposed. The proposed boost half-bridge dc-dc converter utilizes only two switching devices with zero voltage switching features which is able to reduce the total system cost and power loss.

  5. Field Data Logger Prototype for Power Converters

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Ghimire, Pramod; Thøgersen, Paul Bach

    2014-01-01

    and subsequent analysis of the data. This paper presents the development of a low cost prototype field data logger prototype using Raspberry PI and industrial sensors. The functionalities of the data logger prototype are described. An online rainflow count algorithm has been implemented as well.......Mission profile data is very important for the cost effective and reliable design of power converters. The converter design can be improved on the basis of actual field data. Actual mission profile data can be collected for the power converters using field data loggers over a long period of time...

  6. Wireless power charging using point of load controlled high frequency power converters

    Science.gov (United States)

    Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.

    2015-10-13

    An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.

  7. Circuit Simulation for Solar Power Maximum Power Point Tracking with Different Buck-Boost Converter Topologies

    Directory of Open Access Journals (Sweden)

    Jaw-Kuen Shiau

    2014-08-01

    Full Text Available The power converter is one of the essential elements for effective use of renewable power sources. This paper focuses on the development of a circuit simulation model for maximum power point tracking (MPPT evaluation of solar power that involves using different buck-boost power converter topologies; including SEPIC, Zeta, and four-switch type buck-boost DC/DC converters. The circuit simulation model mainly includes three subsystems: a PV model; a buck-boost converter-based MPPT system; and a fuzzy logic MPPT controller. Dynamic analyses of the current-fed buck-boost converter systems are conducted and results are presented in the paper. The maximum power point tracking function is achieved through appropriate control of the power switches of the power converter. A fuzzy logic controller is developed to perform the MPPT function for obtaining maximum power from the PV panel. The MATLAB-based Simulink piecewise linear electric circuit simulation tool is used to verify the complete circuit simulation model.

  8. Distance relay performance in future converter dominated power systems

    OpenAIRE

    Sarkar, Moumita; Jia, Jundi; Yang, Guangya

    2017-01-01

    Increasing penetration of converter-based generations in power system has led to new system challenges. Short circuit power response from converter-based generations is different from that of traditional synchronous generators. Power electronic converters can be designed for over-current only up to 1.1-1.25 times of its nominal value. Low availability of short circuit power can cause many challenges such as misoperation of distance relays. The aim of this paper is to investigate the effect of...

  9. Analysis and Design of Embedded Controlled Parallel Resonant Converter

    Directory of Open Access Journals (Sweden)

    P. CHANDRASEKHAR

    2009-07-01

    Full Text Available Microcontroller based constant frequency controlled full bridge LC parallel resonant converter is presented in this paper for electrolyser application. An electrolyser is a part of renewable energy system which generates hydrogen from water electrolysis. The DC power required by the electrolyser system is supplied by the DC-DC converter. Owing to operation under constant frequency, the filter designs are simplified and utilization of magnetic components is improved. This converter has advantages like high power density, low EMI and reduced switching stresses. DC-DC converter system is simulated using MATLAB, Simulink. Detailed simulation results are presented. The simulation results are compared with the experimental results.

  10. A study of Schwarz converters for nuclear powered spacecraft

    Science.gov (United States)

    Stuart, Thomas A.; Schwarze, Gene E.

    1987-01-01

    High power space systems which use low dc voltage, high current sources such as thermoelectric generators, will most likely require high voltage conversion for transmission purposes. This study considers the use of the Schwarz resonant converter for use as the basic building block to accomplish this low-to-high voltage conversion for either a dc or an ac spacecraft bus. The Schwarz converter has the important assets of both inherent fault tolerance and resonant operation; parallel operation in modular form is possible. A regulated dc spacecraft bus requires only a single stage converter while a constant frequency ac bus requires a cascaded Schwarz converter configuration. If the power system requires constant output power from the dc generator, then a second converter is required to route unneeded power to a ballast load.

  11. Thermal analysis of multi-MW two-level wind power converter

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Mogens, Lau

    2012-01-01

    In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature...... in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generator-side converter will have higher mean junction temperature and larger junction temperature...... fluctuation compared to grid-side converter at the rated wind speed. Moreover, the thermal performance of the generator-side converter in the partial-scale power converter becomes crucial around the synchronous operating point and should be considered carefully....

  12. Technologies for converter topologies

    Science.gov (United States)

    Zhou, Yan; Zhang, Haiyu

    2017-02-28

    In some embodiments of the disclosed inverter topologies, an inverter may include a full bridge LLC resonant converter, a first boost converter, and a second boost converter. In such embodiments, the first and second boost converters operate in an interleaved manner. In other disclosed embodiments, the inverter may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, and a transformer.

  13. Liquid Nitrogen Temperature Operation of a Switching Power Converter

    Science.gov (United States)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The performance of a 42/28 V, 175 W, 50 kHz pulse-width modulated buck dc/dc switching power converter at liquid nitrogen temperature (LNT) is compared with room temperature operation. The power circuit as well as the control circuit of the converter, designed with commercially available components, were operated at LNT and resulted in a slight improvement in converter efficiency. The improvement in power MOSFET operation was offset by deteriorating performance of the output diode rectifier at LNT. Performance of the converter could be further improved at low temperatures by using only power MOSFET's as switches. The use of a resonant topology will further improve the circuit performance by reducing the switching noise and loss.

  14. Four-quadrant flyback converter for direct audio power amplification

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a bidirectional, four-quadrant flyback converter for use in direct audio power amplification. When compared to the standard Class-D switching audio power amplifier with a separate power supply, the proposed four-quadrant flyback converter provides simple solution with better...

  15. High Current, Low Voltage Power Converter [20kA, 6V] LHC Converter Prototype

    CERN Document Server

    Jørgensen, H E; Dupaquier, A; Fernqvist, G

    1998-01-01

    The superconducting LHC accelerator requires high currents (~12.5kA) and relatively low voltages (~10 V) for its magnets. The need to install the power converters underground is the driving force for reduced volume and high efficiency. Moreover, the LHC machine will require a very high level of performance from the power converters, particularly in terms of DC stability, dynamic response and also in matters of EMC. To meet these requirements soft-switching techniques will be used. This paper describes the development of a [20kA,6V] power converter intended as a stable high-current source for D CCT calibration and an evaluation prototype for the future LHC converters. The converter is made with a modular concept with five current sources [4kA,6V] in parallel. The 4kA sources are built as plu g-in modules: a diode rectifier on the AC mains with a damped L-C passive filter, a Zero Voltage Switching inverter working at 20 kHz and an output stage (high frequency transformers, Schottky rectifi ers and output filter...

  16. Artificial neural network control of sab dc/dc converter

    International Nuclear Information System (INIS)

    Mahar, M.A.; Abro, M.R.; Larik, A.S.

    2009-01-01

    The latest development of power semiconductor devices enable the modern power electronic converters to withstand high voltage and high power applications. Power electronic converters are mostly periodic variable structure systems due to their switched operations. The main drawback of these converters is the generation of oscillations which are developed during the operation of the converters under nonlinear situations. To handle these nonlinearities, various researchers have proposed different control techniques. Power electronic designers are devoting in the further development of converter topologies and their control techniques. SAB (Single Active Bridge) DC/DC converter is a new topology recently introduced by Demetriades. This topology is used in high voltage and high power applications. Because of its smart features, SAB converter has recently drawn attention of many researchers. However, during the operation of SAB converter severe oscillations are generated. In this research work, a novel NNC (Neural Network Controller) model is developed for SAB converter to minimize oscillations generated during its operation. NNC is believed to be an advanced nonlinear and robust controller which has the ability to map the nonlinear behaviour in a negligible response time. The performance of SAB converter with NNC is tested under dynamic region by considering the reference voltage variation and duty ratio variation. The SAB converter is implemented and simulated in MATLAB/Simulink. The simulated results are presented. (author)

  17. Ac-dc converter firing error detection

    International Nuclear Information System (INIS)

    Gould, O.L.

    1996-01-01

    Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal

  18. Investigation of a matrix converter for contactless power transmission systems; Untersuchung eines Matrixumrichters fuer kontaktlose Energieuebertragungssysteme

    Energy Technology Data Exchange (ETDEWEB)

    Ecklebe, Andreas

    2009-05-22

    The publication discusses a three- to two-phase matrix converter for contactless power transmission systems. Based on relevant publications, possible resonance setups for contactless power transmission systems are investigated to begin with. An analysis of relevant parameters shows the differences between the various setups, but it also shows that for an investigation focusing on the feeding converter, simple modelling of the three investigated resonance setups is possible with the aid of a serial oscillating circuit. In consequence, it should be possible to apply the results also to the matrix converter with other serially resonant loads. The second part of the investigation focuses on the matrix converter. After a theoretical description, a combination von high-frequency control - e.g. bulk pulsing - and low-frequency pulsing patterns for setting the harmonics level of the grid currents is presented. The similarity to a conventional H bridge circuit enables an assessment of commutation and the identification of the necessary inverter states. These are characterized in that a bidirectional connection between the input system and each output phase is available at any time. The functioning of the commutation and of the inverter as a whole is proved by simulation in a first step, in which also the dynamic switching characteristics of the power semiconductors is taken into account. Finally, the results of laboratory measurements are presented and compared with the theoretical results. The laboratory setup consists of the power section of the matrix converter with input filters and modular gate drivers, a DSP/FPGA control system, and a contactless power transmission system with a current inverter and load on the secondary side. The investigation thus provides information on the use of the three-to-two phase matrix converter as an interesting alternative for feeding of contactless power transmission systems and other serially resonant loads. (orig.) [German] Diese

  19. A soft switching with reduced voltage stress ZVT-PWM full-bridge converter

    Science.gov (United States)

    Sahin, Yakup; Ting, Naim Suleyman; Acar, Fatih

    2018-04-01

    This paper introduces a novel active snubber cell for soft switching pulse width modulation DC-DC converters. In the proposed converter, the main switch is turned on under zero voltage transition and turned off under zero voltage switching (ZVS). The auxiliary switch is turned on under zero current switching (ZCS) and turned off under zero current transition. The main diode is turned on under ZVS and turned off under ZCS. All of the other semiconductors in the converter are turned on and off with soft switching. There is no extra voltage stress on the semiconductor devices. Besides, the proposed converter has simple structure and ease of control due to common ground. The detailed theoretical analysis of the proposed converter is presented and also verified with both simulation and experimental study at 100 kHz switching frequency and 600 W output power. Furthermore, the efficiency of the proposed converter is 95.7% at nominal power.

  20. Analysis, Design, Modeling, and Control of an Interleaved-Boost Full-Bridge Three-Port Converter for Hybrid Renewable Energy Systems

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Zhang, Zhe; Knott, Arnold

    2017-01-01

    This paper presents the design, modeling, and control of an isolated dc-dc three-port converter (TPC) based on an interleaved-boost full-bridge converter with pulsewidth modulation (PWM) and phase-shift control for hybrid renewable energy systems. In the proposed topology, the switches are driven...

  1. Thermal Loading and Lifetime Estimation for Power Device Considering Mission Profiles in Wind Power Converter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2015-01-01

    for the reliability improvement and also for cost reduction of wind power technology. Unfortunately, the existing lifetime estimation methods for the power electronic converter are not yet suitable in the wind power application, because the comprehensive mission profiles are not well specified and included......As a key component in the wind turbine system, the power electronic converter and its power semiconductors suffer from complicated power loadings related to environment, and are proven to have high failure rates. Therefore, correct lifetime estimation of wind power converter is crucial...... devices, more detailed information of the lifetime-related performance in wind power converter can be obtained. Some experimental results are also included to validate the thermal behavior of power device under different mission profiles....

  2. H- ion production from different converter materials

    International Nuclear Information System (INIS)

    Leung, K.N.; Ehlers, K.W.

    1984-10-01

    For heating plasmas and for current drive in some fusion reactors, high energy neutral beams may be required. The high neutralization efficiency of H - or D - ions makes them favorable to form neutral atoms with energies in excess of 160 keV. It has been shown that a steady-state H - ion beam with current greater than 1 A can be generated by a surface conversion type source with Mo being used as the converter material. In order to achieve the proper cesium coverage and thereby increasing the H - ion yield, the application of porous cesium-dispensing converters is being investigated. It is also possible to optimize the H - production by choosing the proper converter material. In this paper, we compare the negative ion yield generated by different materials (such as Mo, Ti, V, Nb, Pt, Pd, Rh, Cu, Ta, Al, Au, LaB 6 and stainless-steel) in the pure hydrogen and cesium-hydrogen modes of operation

  3. Simulating and Testing a DC-DC Half-Bridge SLR Converter

    Science.gov (United States)

    2013-06-01

    future pulse power demands with ship power, a large bank of capacitors or similar rapid discharge source is required. If capacitors are charged...Single Pulsed Avalanche Energy (j) I" Avalanche Current (i) E,, Repetilive Avalanche Energy (i) dv/dt Peak Diode Recovery dv/dt ® Po Total Power...SLR), battery charging, DC-DC, pulse power, power electronics, SLR converter 15. NUMBER OF PAGES 119 16. PRICE CODE 17. SECURITY CLASSIFICATION

  4. Four-quadrant flyback converter for direct audio power amplification

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper presents a bidirectional, four-quadrant yback converter for use in direct audio power amplication. When compared to the standard Class-D switching-mode audio power amplier with separate power supply, the proposed four-quadrant flyback converter provides simple and compact solution with high efciency, higher level of integration, lower component count, less board space and eventually lower cost. Both peak and average current-mode control for use with 4Q flyback power converters are described and compared. Integrated magnetics is presented which simplies the construction of the auxiliary power supplies for control biasing and isolated gate drives. The feasibility of the approach is proven on audio power amplier prototype for subwoofer applications. (au)

  5. A new digital pulse power supply in heavy ion research facility in Lanzhou

    Science.gov (United States)

    Wang, Rongkun; Chen, Youxin; Huang, Yuzhen; Gao, Daqing; Zhou, Zhongzu; Yan, Huaihai; Zhao, Jiang; Shi, Chunfeng; Wu, Fengjun; Yan, Hongbin; Xia, Jiawen; Yuan, Youjin

    2013-11-01

    To meet the increasing requirements of the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), a new digital pulse power supply, which employs multi-level converter, was designed. This power supply was applied with a multi H-bridge converters series-parallel connection topology. A new control model named digital power supply regulator system (DPSRS) was proposed, and a pulse power supply prototype based on DPSRS has been built and tested. The experimental results indicate that tracking error and ripple current meet the requirements of this design. The achievement of prototype provides a perfect model for HIRFL-CSR power supply system.

  6. Power flow controller with a fractionally rated back-to-back converter

    Science.gov (United States)

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  7. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability. ...

  8. Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2017-03-01

    Full Text Available A high-power reversible converter can achieve a variety of functions, such as recovering regenerative braking energy, expanding traction power capacity, and improving an alternating current (AC grid power factor. A new hybrid traction power supply scheme, which consists of a high-power reversible converter and two 12-pulse diode rectifiers, is proposed. A droop control method based on load current feed-forward is adopted to realize the load distribution between the reversible converter and the existing 12-pulse diode rectifiers. The direct current (DC short-circuit characteristics of the reversible converter is studied, then the relationship between the peak fault current and the circuit parameters is obtained from theoretical calculations and validated by computer simulation. The first two sets of 2 MW reversible converters have been successfully applied in Beijing Metro Line 10, the proposed hybrid application scheme and coordinated control strategy are verified, and 11.15% of average energy-savings is reached.

  9. Regenerating method for thyristor converter used in AC inverter rolling stock; Koryu inverter sharyoyo thyristor converter no kaisei hoshiki no kento

    Energy Technology Data Exchange (ETDEWEB)

    Inarida, S.; Ito, S.; Nakamura, K. [Hitachi, Ltd., Tokyo (Japan)

    1995-09-20

    A thyristor converter is superior to GTO converter from a view point of weight and efficiency. Therefore, the thyristor converter is the best answer for AC inverter rolling stock, especially for commuter and interurban trains, in the next several years. For a thyristor converter, it is very important to prevent the commutative failure even when the category voltage decreases, in order to continue regenerating operation to sustain the brake torque. In a conventional system, a series resistance is inserted between the thyristor bridge and LC filter where the DC stage voltage is decreased enough to keep the regenerating power. The conventional thyristor enables regenerating braking in the whole operational region, but result in low power factor and efficiency. This paper proposes a new regenerating method to improve the power factor and efficiency, which keep regenerating power with no series resistance and higher DC stage voltage. Simulation results show the effectiveness of the method. 4 refs., 14 figs., 1 tab.

  10. Multifunctional Converter Drive for Automotive Electric Power Steering Systems

    NARCIS (Netherlands)

    Hackner, T.J.

    2013-01-01

    In this thesis it is shown that in the case of an automotive electric power steering system, critical pulse power loads can be decoupled from the power net with a storage element and a multifunctional converter. A multifunctional converter system is proposed because it uses the motor drive system as

  11. A NOVEL THREE PHASE UNITY POWER FACTOR CONVERTER

    Directory of Open Access Journals (Sweden)

    Bekir Sami SAZAK

    1998-03-01

    Full Text Available The proposed unity power factor converter system which is able to operate from a 150V three-phase supply whilst delivering the required 200V DC voltage has been built and tested. This circuit functions as a high power factor low harmonic rectifier based on the concept that the peak capacitor voltages are proportional to the line input currents. Hence the low frequency components of the capacitor voltages are also approximately proportional to the line input currents. The system can be designed to achieve nearly sinusoidal supply input currents, when operated with discontinuous resonant capacitor voltages Output power control is achieved by variations of the IGBTs switching frequency. The converter is therefore able to compensate for any changes in the load resistance. The proposed topology offers advantages, including: a relatively simple power, control and protection circuits, high power capability, and high converter efficiencies.

  12. Digital control of high-frequency switched-mode power converters

    CERN Document Server

    Corradini, Luca; Mattavelli, Paolo; Zane, Regan

    This book is focused on the fundamental aspects of analysis, modeling and design of digital control loops around high-frequency switched-mode power converters in a systematic and rigorous manner Comprehensive treatment of digital control theory for power converters Verilog and VHDL sample codes are provided Enables readers to successfully analyze, model, design, and implement voltage, current, or multi-loop digital feedback loops around switched-mode power converters Practical examples are used throughout the book to illustrate applications of the techniques developed Matlab examples are also

  13. CO-Bridged H-Cluster Intermediates in the Catalytic Mechanism of [FeFe]-Hydrogenase CaI.

    Science.gov (United States)

    Ratzloff, Michael W; Artz, Jacob H; Mulder, David W; Collins, Reuben T; Furtak, Thomas E; King, Paul W

    2018-06-20

    The [FeFe]-hydrogenases ([FeFe] H 2 ases) catalyze reversible H 2 activation at the H-cluster, which is composed of a [4Fe-4S] H subsite linked by a cysteine thiolate to a bridged, organometallic [2Fe-2S] ([2Fe] H ) subsite. Profoundly different geometric models of the H-cluster redox states that orchestrate the electron/proton transfer steps of H 2 bond activation have been proposed. We have examined this question in the [FeFe] H 2 ase I from Clostridium acetobutylicum (CaI) by Fourier-transform infrared (FTIR) spectroscopy with temperature annealing and H/D isotope exchange to identify the relevant redox states and define catalytic transitions. One-electron reduction of H ox led to formation of H red H + ([4Fe-4S] H 2+ -Fe I -Fe I ) and H red ' ([4Fe-4S] H 1+ -Fe II -Fe I ), with both states characterized by low frequency μ-CO IR modes consistent with a fully bridged [2Fe] H . Similar μ-CO IR modes were also identified for H red H + of the [FeFe] H 2 ase from Chlamydomonas reinhardtii (CrHydA1). The CaI proton-transfer variant C298S showed enrichment of an H/D isotope-sensitive μ-CO mode, a component of the hydride bound H-cluster IR signal, H hyd . Equilibrating CaI with increasing amounts of NaDT, and probed at cryogenic temperatures, showed H red H + was converted to H hyd . Over an increasing temperature range from 10 to 260 K catalytic turnover led to loss of H hyd and appearance of H ox , consistent with enzymatic turnover and H 2 formation. The results show for CaI that the μ-CO of [2Fe] H remains bridging for all of the "H red " states and that H red H + is on pathway to H hyd and H 2 evolution in the catalytic mechanism. These results provide a blueprint for designing small molecule catalytic analogs.

  14. Four-quadrant flyback converter for direct audio power amplification

    OpenAIRE

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a bidirectional, four-quadrant flyback converter for use in direct audio power amplification. When compared to the standard Class-D switching audio power amplifier with a separate power supply, the proposed four-quadrant flyback converter provides simple solution with better efficiency, higher level of integration and lower component count.

  15. Passivity-based harmonic control through series/parallel damping of an H-bridge rectifier

    NARCIS (Netherlands)

    De Vries, M. M. J.; Kransse, M. J.; Liserre, M.; Monopoli, V. G.; Scherpen, J. M. A.

    2007-01-01

    Nowadays the H-bridge is one of the preferred solutions to connect DC loads or distributed sources to the single-phase grid. The control aims are: sinusoidal grid current with unity power factor and optimal DC voltage regulation capability. These objectives should be satisfied, regardless the

  16. On and off controlled resonant dc-dc power converter

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter comprising an input side circuit comprising a positive and a negative input terminal for receipt of an input voltage or current and an output side circuit comprising positive and negative output terminals for supply of a converter...... output voltage and connection to a converter load. The resonant DC-DC power converter further comprises a rectification circuit connected between an output of a resonant network and the output side circuit. The resonant network is configured for alternatingly being charged from the input voltage...... or current and discharged through the rectification circuit by a first controllable switch arrangement in accordance with a first switch control signal. A second controllable switch arrangement of the resonant DC-DC power converter is configured to select a first impedance characteristic of the resonant...

  17. Three port converters used as interface in photovoltaic energy systems

    Directory of Open Access Journals (Sweden)

    Sarab Al-Chlaihawi

    2018-04-01

    Full Text Available The aim of this paper is to derive and study a full-bridge three-port converter. Based on the standard design of full-bridge converter, we have modeled and derived a three port converter. The three port converter can be used in renewable energy scenarios, such as solar cells or wind turbines connected to the input port. The input can be taken from two-ports simultaneously or from one port at a time. In order to balance the power mismatch between the input port and load port, the batteries are attached to the third port, to ensure there are no discrepancies in the power generated at the input and power demand at the load. In order to ensure isolation and reduced voltage stress on the switches, a high frequency transformer is also used in the design. The overall design contains four switches, and four diodes. MOSFETs are the strongest candidate for the switches owing to their high switching speed, lower losses and high resistance to higher voltage. Moreover, a buck-boost structure is modeled in order to ensure that it can work for a wide variety of different applications by adjusting the duty cycle of the switches properly. To minimize the switching losses in the converter, Zero-Voltage Switching (ZVS is also achievable in the modeled system.

  18. Unified Digital Periodic Signal Filters for Power Converter Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Xin, Zhen; Zhou, Keliang

    2017-01-01

    Periodic signal controllers like repetitive and resonant controllers have demonstrated much potential in the control of power electronic converters, where periodic signals (e.g., ac voltages and currents) can be precisely regulated to follow references. Beyond the control of periodic signals, ac...... signal processing (e.g., in synchronization and pre-filtering) is also very important for power converter systems. Hence, this paper serves to unify digital periodic signal filters so as to maximize their roles in power converter systems (e.g., enhance the control of ac signals). The unified digital...... periodic signal filters behave like a comb filter, but it can also be configured to selectively filter out the harmonics of interest (e.g., the odd-order harmonics in single-phase power converter systems). Moreover, a virtual variable-sampling-frequency unit delay that enables frequency adaptive periodic...

  19. Grid converters for photovoltaic and wind power systems

    CERN Document Server

    Teodorescu, Remus; Rodríguez, Pedro

    2011-01-01

    "Grid Converters for Photovoltaic and Wind Power Systems provides a comprehensive description of the control of grid converters for photovoltaic and wind power systems. The authors present a range of control methods for meeting the latest application, power quality and power conversion requirements and standards, as well as looking towards potential future control functions. Practical examples, exercises, and an accompanying website with simulation models using Matlab and Simulink environments, and PSIM software make this text a pragmatic resource for electrical engineers as well as students taking related courses"--

  20. Faults and Diagnosis Systems in Power Converters

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Choi, Uimin

    2014-01-01

    A power converter is needed in almost all kinds of renewable energy systems and drive systems. It is used both for controlling the renewable source and for interfacing with the load, which can be grid-connected or working in standalone mode. Further, it drives the motors efficiently. Increasing...... efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most...... frequently. Therefore, it is important to monitor the power device and capacitor fault to increase the reliability of power electronics. In this chapter, the diagnosis methods for power device fault will be discussed by dividing into open- and short-circuit faults. Then, the condition monitoring methods...

  1. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  2. High-power converters and AC drives

    CERN Document Server

    Wu, Bin

    2017-01-01

    This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods.

  3. Power converters for ITER

    CERN Document Server

    Benfatto, I

    2006-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a thermonuclear fusion experiment designed to provide long deuterium– tritium burning plasma operation. After a short description of ITER objectives, the main design parameters and the construction schedule, the paper describes the electrical characteristics of the French 400 kV grid at Cadarache: the European site proposed for ITER. Moreover, the paper describes the main requirements and features of the power converters designed for the ITER coil and additional heating power supplies, characterized by a total installed power of about 1.8 GVA, modular design with basic units up to 90 MVA continuous duty, dc currents up to 68 kA, and voltages from 1 kV to 1 MV dc.

  4. Design and evaluation of cellular power converter architectures

    Science.gov (United States)

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed

  5. High-frequency high-voltage high-power DC-to-DC converters

    Science.gov (United States)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  6. The 77 K operation of a multi-resonant power converter

    Science.gov (United States)

    Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

    1995-01-01

    The liquid-nitrogen temperature (77 K) operation of a 55 W, 200 kHz, 48/28 V zero-voltage switching multi-resonant dc/dc converter designed with commercially available components is reported. Upon dipping the complete converter (power and control circuits) into liquid-nitrogen, the converter performance improved as compared to the room-temperature operation. The switching frequency, resonant frequency, and the characteristic impedance did not change significantly. Accordingly, the zero-voltage switching was maintained from no-load to full-load for the specified line variations. Cryoelectronics can provide high density power converters, especially for high power applications.

  7. Modular Power Converters for PV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need

  8. Triple Line-Voltage Cascaded VIENNA Converter Applied as the Medium-Voltage AC Drive

    Directory of Open Access Journals (Sweden)

    Jia Zou

    2018-04-01

    Full Text Available A novel rectifier based on a triple line-voltage cascaded VIENNA converter (LVC-VC was proposed. Compared to the conventional cascaded H-bridge converters, the switch voltage stress is lower, and the numbers of switches and dc capacitors are fewer under similar operating conditions in the proposed new multilevel converter. The modeling and control for the LVC-VC ware presented. Based on the analysis of the operation principle of the new converter, the power factor correction of the proposed converter was realized by employing a traditional one-cycle control strategy. The minimum average value and maximum harmonic components of the dc-link voltages of the three VIENNA rectifier modules ware calculated. Three VIENNA dc-link voltages were unbalanced under the unbalanced load conditions, so the zero sequence current was injected to the three inner currents for balancing three VIENNA dc-link voltages. Simulation and the results of the experiment verified the availability of the new proposed multilevel converter and the effectiveness of the corresponding control strategy applied.

  9. A new converter for improving efficiency of multi-actuators fluid power system

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yong; Shang, JianZhong; Yang, JunHong; Wang Zhuo [National University of Defense Technology, Changsha (China)

    2016-05-15

    This paper is concerned with the application of energy efficient fluid power in mobile robots system and proposes a new fluid power converter system which is analogous to a boost converter in power electronics. The fluid power converter system is based on the principle of pulse-width modulation. The fluid power converter has an effect akin to an electrical switched inductance transformer, wherein the output pressure or flow rate can be stepped up or down. Using an inductive reactance device (an inertia mass-block), the output flow and pressure can be varied to meet the load by a means that does not rely on dissipation of power (the resistance control). The simulation model based on the mathematics models of the components is built to analyse the performance of the fluid power converter. It is clearly shown that the fluid power converter has higher energy efficiency than conventional resistance control manners.

  10. A 25-kW Series-Resonant Power Converter

    Science.gov (United States)

    Frye, R. J.; Robson, R. R.

    1986-01-01

    Prototype exhibited efficiency of 93.9 percent. 25-kW resonant dc/dc power converter designed, developed, fabricated, and tested, using Westinghouse D7ST transistors as high-power switches. D7ST transistor characterized for use as switch in series-resonant converters, and refined base-drive circuit developed. Technical base includes advanced switching magnetic, and filter components, mathematical circuit models, control philosophies, and switch-drive strategies. Power-system benefits such as lower losses when used for high-voltage distribution, and reduced magnetics and filter mass realized.

  11. Power electronic converters and systems frontiers and applications

    CERN Document Server

    Trzynadlowski, Andrzej M

    2016-01-01

    Power electronics is a branch of electrical engineering dealing with conversion and control of electric power using semiconductor power switches. This book provides an overview of modern power electronic converters and systems, and their applications.

  12. Radiated EMI from power converters

    Directory of Open Access Journals (Sweden)

    Arnautovski-Toševa Vesna

    2005-01-01

    Full Text Available With the continuous increase of switching frequency together with the ongoing trend to higher complexity and functionality, power converters as a part of electronic systems have raised more and more electromagnetic energy pollution to the local system environment. In the same time, stringent demands are imposed on the designers of new circuits that electromagnetic interference (EMI has to be suppressed at its source before it is allowed to propagate into other circuits and systems. In this paper, the authors present a full-wave numerical method for calculation and simulation of electromagnetic field radiated by power converter circuitry. The main objective is to analyze the layout geometry in order to obtain competitive PCB layout that will enable suitably attenuated level of the radiated electric field to safe level. By this it would be possible to ensure reliable operation of the sensitive electronic components in the proximity.

  13. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... converter components. Wide bandgap power semiconductors are introduced due to their superior performance in comparison to traditional silicon power devices. The analysis presents a study based on switching loss measurements performed on Si IGBTs, SiC JFETs, SiC MOSFETs and their respective gate drivers...

  14. High frequency Soft Switching Half Bridge Series-Resonant DC-DC Converter Utilizing Gallium Nitride FETs

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Petersen, Lars Press

    2017-01-01

    The need for efficient, smaller, lighter and cheaper power supply units drive the investigation of using high switching frequency soft switching resonant converters. This work presents an 88% efficient 48V nominal input converter switching at 6 MHz and output power of 21 Watts achieving power...... density of 7 W/cm3 for Power-over-Ethernet LED lighting applications. The switching frequency is used to control the output current delivered to the load resistance. The converter was tested using a constant resistance load. The performance and thermal behavior were investigated and reported in this work....

  15. Isolated step-down DC -DC converter for electric vehicles

    Science.gov (United States)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  16. A Back-to-Back 2L-3L Grid Integration of a Marine Current Energy Converter

    Directory of Open Access Journals (Sweden)

    Senad Apelfröjd

    2015-01-01

    Full Text Available The paper proposes a back-to-back 2L-3L grid connection topology for a marine current energy converter. A prototype marine current energy converter has been deployed by a research group at Uppsala University. The concept behind the prototype revolves around a fixed pitch vertical axis turbine directly connected to a permanent magnet synchronous generator (PMSG. The proposed grid connection system utilizes a well known and proven two level voltage source converter generator-side combined with a three-level cascaded H-bridge (CHB multilevel converter grid-side. The multilevel converter brings benefits in terms of efficiency, power quality and DC-link utilization. The system is here presented for a single marine current energy converter but can easily be scaled up for clusters of marine current energy converters. Control schemes for both grid-side and generator-side voltage source converters are presented. The start-up, steady state and dynamic performance of the marine current energy converter are investigated and simulation results are presented in this paper.

  17. Benefits and Drawbacks of A High Frequency Gan Zvzcps Converter

    Directory of Open Access Journals (Sweden)

    Blanes J. M.

    2017-01-01

    Full Text Available This paper presents the benefits and drawbacks of replacing the traditional Si Mosfets transistors with enhancement mode GaN transistors in a Half-Bridge Zero Voltage and Zero Current Switching Power Switching (ZVZCPS converter. This type of converters is usually used as Electronic Power Converters (EPC for telecommunication satellites travelling-wave tube amplifiers (TWTAs. In this study, firstly the converter is theoretically analysed, obtaining its operation, losses and efficiency equations. From these equations, optimizations maps based on the main system parameters are obtained. These optimization maps are the key to quantify the potential benefits of GaN transistors in this type of converters. Theoretical results show that using GaN transistors, the frequency of the converter can be pushed from 125kHz to 830kHz without sacrificing the converter efficiency. This frequency increase is directly related to reduction on the EPC size and weight.

  18. Status of NASA's Stirling Space Power Converter Program

    International Nuclear Information System (INIS)

    Dudenhoefer, J.E.; Winter, J.M.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Program. This work is being conducted under NASA's Civil Space Technology Initiative. The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss Stirling experience in Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing and predictive methodologies. This paper provides an update of progress in some of these technologies leading off with a discussion of free-piston Stirling experience in space

  19. The New Modular Control System for Power Converters at CERN

    CERN Document Server

    Di Cosmo, Matteo

    2015-01-01

    The CERN accelerator complex consists of several generations of particle accelerators, with around 5000 power converters supplying regulated current and voltage to normal and superconducting magnet circuits. Today around 12 generations of converter control platforms can be found in the accelerator complex, ranging in age and technology. The diversity of these platforms has a significant impact on operability, maintenance and support of power converters. Over the past few years a new generation of modular controls called RegFGC3 has been developed by CERN’s power conversion group, with a goal to provide a standardised control platform, supporting a wide variety of converter topologies. The aim of this project is to reduce maintenance costs by decreasing the variety and diversity of control systems whilst simultaneously improving the operability and reliability of power converters and their controls. This paper describes the state of the on-going design and realization of the RegFGC3 platform, focusing on fun...

  20. Open-circuit fault detection and tolerant operation for a parallel-connected SAB DC-DC converter

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2014-01-01

    This paper presents an open-circuit fault detection method and its tolerant control strategy for a Parallel-Connected Single Active Bridge (PCSAB) dc-dc converter. The structural and operational characteristics of the PCSAB converter lead to several advantages especially for high power applicatio...

  1. Analysis and integration of multilevel inverter configuration with boost converters in a photovoltaic system

    International Nuclear Information System (INIS)

    Prabaharan, N.; Palanisamy, K.

    2016-01-01

    Highlights: • Integration of MLI with boost converters in photovoltaic system including MPPT. • Results are taken for different irradiations and different temperature condition. • Proposed system is tested with sudden step changes from standard test condition. • Analysis of switching losses and conduction loss is discussed. • Theoretical calculation of % THD using asymptotic formula is discussed. - Abstract: This paper proposes a single phase multilevel inverter configuration that conjoins three series connected full bridge inverter and a single half bridge inverter for renewable energy application especially photo-voltaic system. This configuration of multilevel inverter reduces the value of total harmonic distortion. The half bridge inverter utilized in the proposed configuration increases the output voltage level to nearly twice the output voltage level of a conventional cascaded H-bridge multilevel inverter. This higher output voltage level is generated with lesser number of power semiconductor switches compared to conventional configuration, thus reducing the total harmonic distortion and switching losses. The effectiveness of the proposed configuration is illustrated by replacing the isolated DC sources in multilevel inverter with individual photo-voltaic panels using separate perturb and observer based maximum power point tracking and boost converters. The verification of the proposed system is demonstrated successfully using MATLAB/Simulink based simulation with different irradiation and temperature conditions. Also, the transient operation of the system is verified with results depicted using step change in standard test condition. In the proposed system, total harmonic distortion of the output voltage is 9.85% without using passive filters and 3.91% with filter inductance. Theoretical calculation of the power losses and total harmonic distortion with mathematical equations are discussed. Selective experimental results are presented to prove the

  2. Wide Input Range Power Converters Using a Variable Turns Ratio Transformer

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    A new integrated transformer with variable turns ratio is proposed to enable dc-dc converters operating over a wide input voltage range. The integrated transformer employs a new geometry of magnetic core with “four legs”, two primary windings with orthogonal arrangement, and “8” shape connection...... of diagonal secondary windings, in order to make the transformer turns ratio adjustable by controlling the phase between the two current excitations subjected to the two primary windings. Full-bridge boost dc-dc converter is employed with the proposed transformer to demonstrate the feasibility of the variable...

  3. Power electronic converters PWM strategies and current control techniques

    CERN Document Server

    Monmasson, Eric

    2013-01-01

    A voltage converter changes the voltage of an electrical power source and is usually combined with other components to create a power supply. This title is devoted to the control of static converters, which deals with pulse-width modulation (PWM) techniques, and also discusses methods for current control. Various application cases are treated. The book is ideal for professionals in power engineering, power electronics, and electric drives industries, as well as practicing engineers, university professors, postdoctoral fellows, and graduate students.

  4. Reliability-cost models for the power switching devices of wind power converters

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    In order to satisfy the growing reliability requirements for the wind power converters with more cost-effective solution, the target of this paper is to establish a new reliability-cost model which can connect the relationship between reliability performances and corresponding semiconductor cost...... temperature mean value Tm and fluctuation amplitude ΔTj of power devices, are presented. With the proposed reliability-cost model, it is possible to enable future reliability-oriented design of the power switching devices for wind power converters, and also an evaluation benchmark for different wind power...... for power switching devices. First the conduction loss, switching loss as well as thermal impedance models of power switching devices (IGBT module) are related to the semiconductor chip number information respectively. Afterwards simplified analytical solutions, which can directly extract the junction...

  5. Resonant power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2012-01-01

    This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them wit

  6. Generalized Switched-Inductor Based Buck-Boost Z-H Converter

    Directory of Open Access Journals (Sweden)

    E. Babaei

    2017-12-01

    Full Text Available In this paper, a generalized buck-boost Z-H converter based on switched inductors is proposed. This structure consists of a set of series connected switched-inductor cells. The voltage conversion ratio of the proposed structure is adjusted by changing the number of cells and the duty cycle. Like the conventional Z-H converter, the shoot-through switching state and the diode before LC network are eliminated. The proposed converter can provide high voltage gain in low duty cycles. Considering different values for duty cycle, the proposed structure works in two operating zones. In the first operating zone, it works as a buck-boost converter and in the second operating zone, it works as a boost converter. In this paper, a complete analysis of the proposed converter is presented. In order to confirm the accuracy of mathematic calculations, the simulations results by using PSCAD/EMTDC software are given.

  7. RESONANT STEP-DOWN DC-DC POWER CONVERTERS

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant step-down DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage...... charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier by a semiconductor switch arrangement in accordance with a switch control signal to produce the converter output voltage. The resonant step-down DC-DC power converter comprises an electrical short......-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal...

  8. Reliability metrics extraction for power electronics converter stressed by thermal cycles

    DEFF Research Database (Denmark)

    Ma, Ke; Choi, Uimin; Blaabjerg, Frede

    2017-01-01

    Due to the continuous demands for highly reliable and cost-effective power conversion, the quantified reliability performances of the power electronics converter are becoming emerging needs. The existing reliability modelling approaches for the power electronics converter mainly focuses on the pr...... performance of power electronics system. The final predicted results showed good accuracy with much more reliability information compared to the existing approaches, and the quantified reliability correlation to the mission profiles of converter is mathematically established....

  9. Comparison of multi-MW converters considering the determining factors in wind power application

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    converters are normally targeted to the industrial drive applications, and they did not take into account the special requirements in the case of wind power. This paper tries to unify and compare several promising wind power converters by a series new model and perspective. The evaluation criteria...... will mainly focus on the costeffectiveness of power semiconductors and the converter performances when complying with grid codes - which are more crucial for the wind power converters. It is concluded that the power converters with various voltage levels, topologies, and paralleling structures are possible...... to be unified for comparison. And the two-level low-voltage converter solution still shows cost advantage regarding power semiconductors, while some multi-level medium-voltage converter solutions can show better performance when complying with the grid codes....

  10. DC to DC power converters and methods of controlling the same

    Science.gov (United States)

    Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed

    2012-12-11

    A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.

  11. Design and Construction of Power System for Induction Heating (IH) Cooker Using Resonant Converter

    International Nuclear Information System (INIS)

    Soe Thiri Thandar; Clement Saldanah; Win Khaing Moe

    2008-06-01

    Induction Heating (IH) systems using electromagnetic induction are developed in many industrial applications in Myanmar. Many industries have benefited from this new breakthrough by implementing induction heating for melting, hardening, and heating. Induction heating cooker is based on high frequency induction heating,electrical and electronic technologies. From the electronic point of view, induction heating cooker is composed of four parts.They are rectifier, filter, high frequency inverter, and resonant load. The purpose of this research is mainly objected to developed an induction heating cooker. The rectifier module is considered as full-bridge rectifier. The second protion of the system is a capacitive filter. The ripple components are minimized by this filter. The third is a high frequency converter to convert the constant DC to high frequency AC by switching the devices alternately. In this research, the Insulated Gate Bipolar Transistor (IGBT) will be used as a power source, and can be driven by the pulse signals from the pulse transformer circuit. In the resonant load, the power consumption is about 500W. Construction and testing has been carried out. The merits of this research work is that IH cooker can be developed because of having less energy consumption, safe, efficient, quick heating, and having efficiency of 90% or more

  12. High-precision performance testing of the LHC power converters

    CERN Document Server

    Bastos, M; Dreesen, P; Fernqvist, G; Fournier, O; Hudson, G

    2007-01-01

    The magnet power converters for LHC were procured in three parts, power part, current transducers and control electronics, to enable a maximum of industrial participation in the manufacturing and still guarantee the very high precision (a few parts in 10-6) required by LHC. One consequence of this approach was several stages of system tests: factory reception tests, CERN reception tests, integration tests , short-circuit tests and commissioning on the final load in the LHC tunnel. The majority of the power converters for LHC have now been delivered, integrated into complete converter and high-precision performance testing is well advanced. This paper presents the techniques used for high-precision testing and the results obtained.

  13. Research & Implementation of AC - DC Converter with High Power Factor & High Efficiency

    Directory of Open Access Journals (Sweden)

    Hsiou-Hsian Nien

    2014-05-01

    Full Text Available In this paper, we design and develop a high power factor, high efficiency two-stage AC - DC power converter. This paper proposes a two-stage AC - DC power converter. The first stage is boost active power factor correction circuit. The latter stage is near constant frequency LLC resonant converter. In addition to traditional LLC high efficiency advantages, light-load conversion efficiency of this power converter can be improved. And it possesses high power factor and near constant frequency operating characteristics, can significantly reduce the electromagnetic interference. This paper first discusses the main structure and control manner of power factor correction circuit. And then by the LLC resonant converter equivalent model proceed to circuit analysis to determine the important parameters of the converter circuit elements. Then design a variable frequency resonant tank. The resonant frequency can change automatically on the basis of the load to reach near constant frequency operation and a purpose of high efficiency. Finally, actually design and produce an AC – DC power converter with output of 190W to verify the characteristics and feasibility of this converter. The experimental results show that in a very light load (9.5 W the efficiency is as high as 81%, the highest efficiency of 88% (90 W. Full load efficiency is 87%. At 19 W ~ 190 W power changes, the operating frequency change is only 0.4 kHz (AC 110 V and 0.3 kHz (AC 220 V.

  14. Reliability of power electronic converter systems

    CERN Document Server

    Chung, Henry Shu-hung; Blaabjerg, Frede; Pecht, Michael

    2016-01-01

    This book outlines current research into the scientific modeling, experimentation, and remedial measures for advancing the reliability, availability, system robustness, and maintainability of Power Electronic Converter Systems (PECS) at different levels of complexity.

  15. Passivity-Based Control by Series/Parallel Damping of Single-Phase PWM Voltage Source Converter

    NARCIS (Netherlands)

    del Puerto Flores, Dunstano; Scherpen, Jacqueline; Liserre, Marco; de Vries, Martijn M. J.; Kransse, Marco J.; Monopoli, Vito Giuseppe

    This paper describes a detailed design procedure for passivity-based controllers developed using the Brayton-Moser (BM) framework. Several passivity-based feedback designs are presented for the voltage-source converter, specifically for the H-bridge converter, since nowadays it is one of the

  16. A Two-stage DC-DC Converter for the Fuel Cell-Supercapacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2009-01-01

    A wide input range multi-stage converter is proposed with the fuel cells and supercapacitors as a hybrid system. The front-end two-phase boost converter is used to optimize the output power and to reduce the current ripple of fuel cells. The supercapacitor power module is connected by push...... and designed. A 1kW prototype controlled by TMS320F2808 DSP is built in the lab. Simulation and experimental results confirm the feasibility of the proposed two stage dc-dc converter system.......-pull-forward half bridge (PPFHB) converter with coupled inductors in the second stage to handle the slow transient response of the fuel cells and realize the bidirectional power flow control. Moreover, this cascaded structure simplifies the power management. The control strategy for the whole system is analyzed...

  17. Pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2008-01-01

    This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,

  18. Special Tests for the Power Electronic Converters of Wind Turbine Generators

    DEFF Research Database (Denmark)

    Helle, Lars; Senturk, Osman Selcuk; Teodorescu, Remus

    2011-01-01

    -level medium-voltage source converter topologies, of the 3L-ANPC-VSC and 3L-HB-VSC type, are considered in the paper. Both converters employ press-pack IGBT-diode pairs and interface a 6 MW wind turbine to a medium voltage grid. The power loss and thermal model data applicable for both grid and generator......Power electronic converters for wind turbines are characterized by high specific power density and high reliability. Special tests for such converters are performed in order to determine the power loss and thermal models, which are dependent of the load profile and converter structure. Two multi......-side VSCs is used to estimate the switch junction temperatures through the simulation of wind turbine grid interface operation. A discussion of the power density and reliability of the grid-side VSCs with respect to press-pack switches, gate driver, and cooling plate is included. A test set-up for a single...

  19. Review of the Initial Phases of the LHC Power Converter Commissioning

    CERN Document Server

    Nisbet, D

    2008-01-01

    The LHC requires more than 1700 power converter systems that supply between 60A and 13kA of precisely regulated current to the superconducting magnets. For the first time at CERN these converters have been installed underground in close proximity to many other accelerator systems. In addition to the power converters themselves, many utilities such as air and water cooling, electrical power, communication networks and magnet safety systems needed to be installed and commissioned as a single system. Due to the complexity of installing and commissioning such a large infrastructure, with inevitable interaction between the different systems, a three phase test strategy was developed. The first phase comprised the manufacture, integration and reception tests of all converter sub-systems necessary for powering. The second phase covered the commissioning of all the power converters installed in their final environment with the utilities. The third phase will add the superconducting magnets and will not be covered by ...

  20. Inherent overload protection for the series resonant converter

    Science.gov (United States)

    King, R. J.; Stuart, T. A.

    1983-01-01

    The overload characteristics of the full bridge series resonant power converter are considered. This includes analyses of the two most common control methods presently in use. The first of these uses a current zero crossing detector to synchronize the control signals and is referred to as the alpha controller. The second is driven by a voltage controlled oscillator and is referred to as the gamma controller. It is shown that the gamma controller has certain reliability advantages in that it can be designed with inherent short circuit protection. Experimental results are included for an 86 kHz converter using power metal-oxide-semiconductor field-effect transistors (MOSFETs).

  1. Practical Design Guidelines of qZSI Based Step-Up DC/DC Converter

    Science.gov (United States)

    Zakis, Janis; Vinnikov, Dmitri; Roasto, Indrek; Jalakas, Tanel

    2010-01-01

    This paper presents some design guidelines for a new voltage fed step-up DC/DC isolated converter. The most significant advantage of proposed converter is voltage buck-boost operation on single stage. The most promising application for proposed converter is in the field of distributed power generation e.g. fuel cells or photovoltaic. The most sensitive issues - such as power losses caused by high currents in the input side of converter and high transient overvoltages across the inverter bridge caused by stray inductances were discussed and solved. The proposals and recommendations to overcome these issues are given in the paper. The Selection and design guidelines of converter elements are proposed and explained. The prototype of proposed converter was built and experimentally tested. Some results are presented and evaluated.

  2. Power factor correction (PFC) converters feeding brushless DC ...

    African Journals Online (AJOL)

    This paper presents a comprehensive study of power factor correction (PFC) converters for feeding brushless DC (BLDC) motor drive. This work explores various configurations of PFC converters which are classified into five different categories of non-isolated, bridgeless (BL) non-isolated, isolated, BL-isolated PFC ...

  3. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    Science.gov (United States)

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  4. Swirling Combustor Energy Converter: H2/Air Simulations of Separated Chambers

    Directory of Open Access Journals (Sweden)

    Angelo Minotti

    2015-09-01

    Full Text Available This work reports results related to the “EU-FP7-HRC-Power” project aiming at developing micro-meso hybrid sources of power. One of the goals of the project is to achieve surface temperatures up to more than 1000 K, with a ∆T ≤ 100 K, in order to be compatible with a thermal/electrical conversion by thermo-photovoltaic cells. The authors investigate how to reach that goal adopting swirling chambers integrated in a thermally-conductive and emitting element. The converter consists of a small parallelepiped brick inside two separated swirling meso-combustion chambers, which heat up the parallelepiped, emitting material by the combustion of H2 and air at ambient pressure. The overall dimension is of the order of cm. Nine combustion simulations have been carried out assuming detailed chemistry, several length/diameter ratios (Z/D = 3, 5 and 11 and equivalence ratios (0.4, 0.7 and 1; all are at 400 W of injected chemical power. Among the most important results are the converter surfaces temperatures, the heat loads, provided to the environment, and the chemical efficiency. The high chemical efficiency, h > 99.9%, is due to the relatively long average gas residence time coupled with the fairly good mixing due to the swirl motion and the impinging air/fuel jets that provide heat and radicals to the flame.

  5. CAS course on Power Converters in Baden, Switzerland

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN Accelerator School (CAS) and the Paul Scherrer Institute (PSI) recently organised a specialised course on Power Converters, which was held at the Hotel du Parc in Baden, Switzerland from 7 to 14 May 2014.   Photo courtesy of Markus Fischer, Paul Scherrer Institut. Following some recapitulation lectures on accelerators and the requirements on power converters, the course covered a wide range of topics related to the different types of power converters needed for particle accelerators. Topical seminars completed the programme. The course was very successful, attended by 84 students representing 21 nationalities, mostly from European countries but also from America, Brazil, Canada, China, Iran, Jordan and Thailand. Feedback from the participants was very positive, reflecting the high standard of the lectures and teaching. In addition to the academic programme, the participants also had an opportunity to take part in a full-day site visit to ABB and PSI and an excursion to the Rhine Fall...

  6. Resonant power converter comprising adaptive dead-time control

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates in a first aspect to a resonant power converter comprising: a first power supply rail for receipt of a positive DC supply voltage and a second power supply rail for receipt of a negative DC supply voltage. The resonant power converter comprises a resonant network with an input...... terminal for receipt of a resonant input voltage from a driver circuit. The driver circuit is configured for alternatingly pulling the resonant input voltage towards the positive and negative DC supply voltages via first and second semiconductor switches, respectively, separated by intervening dead......-time periods in accordance with one or more driver control signals. A dead-time controller is configured to adaptively adjusting the dead-time periods based on the resonant input voltage....

  7. Light weight, high power, high voltage dc/dc converter technologies

    Science.gov (United States)

    Kraus, Robert; Myers, Ira; Baumann, Eric

    1990-01-01

    Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.

  8. Efficiency limits of laser power converters for optical power transfer applications

    International Nuclear Information System (INIS)

    Mukherjee, J; Jarvis, S; Sweeney, S J; Perren, M

    2013-01-01

    We have developed III–V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m −2 ) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m −2 . (paper)

  9. Efficiency limits of laser power converters for optical power transfer applications

    Science.gov (United States)

    Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.

    2013-07-01

    We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.

  10. Comparison of VSC and Z-Source Converter: Power System Application Approach

    Directory of Open Access Journals (Sweden)

    Masoud Jokar Kouhanjani

    2017-01-01

    Full Text Available Application of equipment with power electronic converter interface such as distributed generation, FACTS and HVDC, is growing up intensively. On the other hand, various types of topologies have been proposed and each of them has some advantages. Therefore, appropriateness of each converter regarding to the application is a main question for designers and engineers. In this paper, a part of this challenge is responded by comparing a typical Voltage-Source Converter (VSC and Z-Source Converter (ZSC, through high power electronic-based equipment used in power systems. Dynamic response, stability margin, Total Harmonic Distortion (THD of grid current and fault tolerant are considered as assessment criteria. In order to meet this evaluation, dynamic models of two converters are presented, a proper control system is designed, a small signal stability method is applied and responses of converters to small and large perturbations are obtained and analysed by PSCAD/EMTDC.

  11. High-power three-port three-phase bidirectional DC-DC converter

    NARCIS (Netherlands)

    Tao, H.; Duarte, J.L.; Hendrix, M.A.M.

    2007-01-01

    This paper proposes a three-port three-phase bidirectional dc-dc converter suitable for high-power applications. The converter combines a slow primary source and a fast storage to power a common load (e.g., an inverter). Since this type of system is gaining popularity in sustainable energy

  12. Maximum generation power evaluation of variable frequency offshore wind farms when connected to a single power converter

    Energy Technology Data Exchange (ETDEWEB)

    Gomis-Bellmunt, Oriol; Sumper, Andreas [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain); IREC Catalonia Institute for Energy Research, Barcelona (Spain); Junyent-Ferre, Adria; Galceran-Arellano, Samuel [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Universitat Politecnica de Catalunya UPC, Av. Diagonal, 647, Pl. 2, 08028 Barcelona (Spain)

    2010-10-15

    The paper deals with the evaluation of power generated by variable and constant frequency offshore wind farms connected to a single large power converter. A methodology to analyze different wind speed scenarios and system electrical frequencies is presented and applied to a case study, where it is shown that the variable frequency wind farm concept (VF) with a single power converter obtains 92% of the total available power, obtained with individual power converters in each wind turbine (PC). The PC scheme needs multiple power converters implying drawbacks in terms of cost, maintenance and reliability. The VF scheme is also compared to a constant frequency scheme CF, and it is shown that a significant power increase of more than 20% can be obtained with VF. The case study considers a wind farm composed of four wind turbines based on synchronous generators. (author)

  13. Multi-Port High Voltage Gain Modular Power Converter for Offshore Wind Farms

    Directory of Open Access Journals (Sweden)

    Sen Song

    2018-06-01

    Full Text Available In high voltage direct current (HVDC power transmission of offshore wind power systems, DC/DC converters are applied to transfer power from wind generators to HVDC terminals, and they play a crucial role in providing a high voltage gain, high efficiency, and high fault tolerance. This paper introduces an innovative multi-port DC/DC converter with multiple modules connected in a scalable matrix configuration, presenting an ultra-high voltage step-up ratio and low voltage/current rating of components simultaneously. Additionally, thanks to the adoption of active clamping current-fed push–pull (CFPP converters as sub-modules (SMs, soft-switching is obtained for all power switches, and the currents of series-connected CFPP converters are auto-balanced, which significantly reduce switching losses and control complexity. Furthermore, owing to the expandable matrix structure, the output voltage and power of a modular converter can be controlled by those of a single SM, or by adjusting the column and row numbers of the matrix. High control flexibility improves fault tolerance. Moreover, due to the flexible control, the proposed converter can transfer power directly from multiple ports to HVDC terminals without bus cable. In this paper, the design of the proposed converter is introduced, and its functions are illustrated by simulation results.

  14. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    Science.gov (United States)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  15. A control strategy for multi-functional converter to improve grid power quality

    DEFF Research Database (Denmark)

    Li, Fei; Wang, Xiongfei; Chen, Zhe

    2011-01-01

    The extensive use of converter-interfacing distributed energy resources (DER), combined with a large amount of nonlinear and unbalanced loads connected to the distribution power system, has led to power quality problem. This paper proposes a control strategy for a three-phase four-leg multi-funct......) for multi-functional converter is described. Simulation and hardware in the loop real time test results carried on a three-phase four-wire distributed generation system illustrate the effectiveness of the proposed control strategy.......The extensive use of converter-interfacing distributed energy resources (DER), combined with a large amount of nonlinear and unbalanced loads connected to the distribution power system, has led to power quality problem. This paper proposes a control strategy for a three-phase four-leg multi......-functional converter which can compensate reactive power, harmonic currents, unbalance, and neutral current simultaneously under distorted voltage conditions, besides the active power exchange. The capacity of the converter is taken into account. The proposed control strategy based on synchronous reference frame (SRF...

  16. A review on DC/DC converter architectures for power fuel cell applications

    International Nuclear Information System (INIS)

    Kolli, Abdelfatah; Gaillard, Arnaud; De Bernardinis, Alexandre; Bethoux, Olivier; Hissel, Daniel; Khatir, Zoubir

    2015-01-01

    Highlights: • Different DC/DC power converter topologies for Fuel Cell systems are presented. • Advantages and drawbacks of the DC/DC power converter topologies are detailed. • Wide-BandGap semiconductors are attractive candidates for design of converters. • Wide-BandGap semiconductors improve efficiency and thermal limits of converters. • Different semiconductor technologies are assessed. - Abstract: Fuel cell-based power sources are attractive devices. Through multi-stack architecture, they offer flexibility, reliability, and efficiency. Keys to accessing the market are simplifying its architecture and each components. These include, among others, the power converter enabling the output voltage regulation. This article focuses on this specific component. The present paper gives a comprehensive overview of the power converter interfaces potentially favorable for the automotive, railways, aircrafts and small stationary domains. First, with respect to the strategic development of a modular design, it defines the specifications of a basic interface. Second, it inventories the best architecture opportunities with respect to these requirements. Based on this study, it fully designs a basic module and points out the outstanding contribution of the new developed silicon carbide switch technology. In conclusion, this review article exhibits the importance of choosing the right power converter architecture and the related technology. In this context it is highlighted that the output power interface can be efficient, compact and modular. In addition, its features enable a thermal compatibility with many ways of integrating this component in the global fuel cell based power source.

  17. Complex-Vector Time-Delay Control of Power Converters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P. C.; Tang, Y.

    2008-01-01

    Precise controlling of current produced by power converters is an important topic that has attracted interests over the last few decades. With the recent proliferation of grid-tied converters where the control of power flow is indirectly governed by the accuracy of current tracking, motivation...... since only a small amount of memory space for storing time-delayed values and simple arithmetic computations are needed for its physical realization. In addition to that, other advantages of the scheme include its abilities to compensate for negative-sequence, load and grid harmonic components using...

  18. Modular Power Electronic Converters in the Power Range 1 to 10 kW

    DEFF Research Database (Denmark)

    Klimczak, Pawel

    Thanks to CO2 emission reduction policies and increasing prices of fossil fuels a significant growth in field of sustainable energy sources (SES) is being observed during last decade. A government support and take-off projects in Europe and US shall ensure an increasing trend in future too. Some...... of SES based plants , like hydro-, geothermal-, biofuel-plants, use synchronous generators directly connected to the grid. But some other SES technologies, like fuel cell or photovoltaic, require a power electronic converter between the energy source and the load or the grid. Work presented...... in this thesis concentrates on dc-dc non-isolated converters suitable for high voltage gain applications, like uninterruptible power supply (UPS) and some of sustainable energy sources. A special attention is on reduction of power losses and efficiency improvements in non-isolated dc-dc step-up converters...

  19. Converter Monitoring Unit for Retrofit of Wind Power Converters

    DEFF Research Database (Denmark)

    Rannestad, Bjorn; Maarbjerg, Anders Eggert; Frederiksen, Kristian

    2018-01-01

    A Converter Monitoring Unit (CMU), which will enable condition monitoring of wind turbine converters is presented in this paper. Reducing the cost of corrective maintenance by means of condition monitoring is a way of lowering Operation & Maintenance (O&M) costs for wind turbine systems....... The CMU must be able to detect a broad range of failure modes related to Insulated Gate Bipolar Transistor (IGBT) power modules and associated gate drives. IGBT collector-emitter on-state voltage (vceon) and current (ic) is sampled in the CMU and used for detection of emerging failures. A new method...... for compensation of unwanted inductive voltage drop in the vceon measurement path is presented, enabling retrofitting of CMUs in existing wind turbines. Finally, experimental results obtained on a prototype CMU are presented. Experimentally the vceon dependency to IGBT junction temperature and deterioration...

  20. PV power system using hybrid converter for LED indictor applications

    International Nuclear Information System (INIS)

    Tseng, Sheng-Yu; Wang, Hung-Yuan; Chen, Chien-Chih

    2013-01-01

    Highlights: • This paper presents a LED indictor driving circuit with a PV arrays as its power source. • The perturb-and-observe method is adopted to extract the maximum power of PV arrays. • The proposed circuit structure has a less component counts and higher conversion efficiency. • A prototype of LED indictor driving circuit has been implemented to verify its feasibility. • The proposed hybrid converter is suitable for LED inductor applications. - Abstract: This paper presents a LED indictor driving circuit with a PV arrays as its power source. The LED indictor driving circuit includes battery charger and discharger (LED driving circuit). In this research, buck converter is used as a charger, and forward converter with active clamp circuit is adopted as a discharger to drive the LED indictor. Their circuit structures use switch integration technique to simplify them and to form the proposed hybrid converter, which has a less component counts, lighter weight, smaller size, and higher conversion efficiency. Moreover, the proposed hybrid converter uses a perturb-and-observe method to extract the maximum power from PV arrays. Finally, a prototype of an LED indictor driving circuit with output voltage of 10 V and output power of 20 W has been implemented to verify its feasibility. It is suitable for the LED inductor applications

  1. Analytical Comparison of Dual-Input Isolated dc-dc Converter with an ac or dc Inductor for Renewable Energy Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mira Albert, Maria del Carmen; Andersen, Michael A. E.

    2017-01-01

    This paper presents two configurations of dualinput (DI) or three-port (TPC) isolated dc-dc converters for hybrid renewable energy systems such as photovoltaics and batteries. These two converters are derived by integrating an interleaved boost converter and a single-active bridge converter...... and control perspective, distinct in operation principles, voltage/power transfer functions, loss distributions, soft-switching constraints, and power efficiency under the same operating conditions. Moreover, the inductor design differs greatly between these two cases. In this paper, a comprehensive...

  2. Power converter with maximum power point tracking MPPT for small wind-electric pumping systems

    International Nuclear Information System (INIS)

    Lara, David; Merino, Gabriel; Salazar, Lautaro

    2015-01-01

    Highlights: • We implement a wind electric pumping system of small power. • The power converter allowed to change the operating point of the electro pump. • Two control techniques were implemented in the power converter. • The control V/f variable allowed to increase the power generated by the permanent magnet generator. - Abstract: In this work, an AC–DC–AC direct-drive power converter was implemented for a wind electric pumping system consisting of a permanent magnet generator (PMG) of 1.3 kW and a peripheral single phase pump of 0.74 kW. In addition, the inverter linear V/f control scheme and the maximum power point tracking (MPPT) algorithm with variable V/f were developed. MPPT algorithm seeks to extract water in a wide range of power input using the maximum amount of wind power available. Experimental trials at different pump pressures were conducted. With a MPPT tracking system with variable V/f, a power value of 1.3 kW was obtained at a speed of 350 rpm and a maximum operating hydraulic head of 50 m. At lower operating heads pressures (between 10 and 40 m), variable V/f control increases the power generated by the PMG compared to the linear V/f control. This increase ranged between 4% and 23% depending on the operating pressure, with an average of 13%, getting close to the maximum electrical power curve of the PMG. The pump was driven at variable frequency reaching a minimum speed of 0.5 times the rated speed. Efficiency of the power converter ranges between 70% and 95% with a power factor between 0.4 and 0.85, depending on the operating pressure

  3. Active energy recovery clamping circuit to improve the performance of power converters

    Science.gov (United States)

    Whitaker, Bret; Barkley, Adam

    2017-05-09

    A regenerative clamping circuit for a power converter using clamping diodes to transfer charge to a clamping capacitor and a regenerative converter to transfer charge out of the clamping capacitor back to the power supply input connection. The regenerative converter uses a switch connected to the midpoint of a series connected inductor and capacitor. The ends of the inductor and capacitor series are connected across the terminals of the power supply to be in parallel with the power supply.

  4. Real-Time Model and Simulation Architecture for Half- and Full-Bridge Modular Multilevel Converters

    Science.gov (United States)

    Ashourloo, Mojtaba

    This work presents an equivalent model and simulation architecture for real-time electromagnetic transient analysis of either half-bridge or full-bridge modular multilevel converter (MMC) with 400 sub-modules (SMs) per arm. The proposed CPU/FPGA-based architecture is optimized for the parallel implementation of the presented MMC model on the FPGA and is beneficiary of a high-throughput floating-point computational engine. The developed real-time simulation architecture is capable of simulating MMCs with 400 SMs per arm at 825 nanoseconds. To address the difficulties of the sorting process implementation, a modified Odd-Even Bubble sorting is presented in this work. The comparison of the results under various test scenarios reveals that the proposed real-time simulator is representing the system responses in the same way of its corresponding off-line counterpart obtained from the PSCAD/EMTDC program.

  5. Isolated Full Bridge Boost DC-DC Converter Designed for Bidirectional Operation of Fuel Cells/Electrolyzer Cells in Grid-Tie Applications

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    Energy production from renewable energy sources is continuously varying, for this reason energy storage is becoming more and more important as the percentage of green energy increases. Newly developed fuel cells can operate in reverse mode as electrolyzer cells; therefore, they are becoming...... current. Dc-dc converter efficiency plays a fundamental role in the overall system efficiency since processed energy is always flowing through the converter; for this reason, loss analysis and optimization are a key component of the converter design. The paper presents an isolated full bridge boost dc...

  6. Power factor correction (PFC) converters feeding brushless DC ...

    African Journals Online (AJOL)

    DR OKE

    1Department of Electrical Engineering, Indian Institute of Technology Delhi, INDIA ... Hence, power factor correction (PFC) converters are used for achieving a unity ...... He is currently working as a Systems Engineer (Power IC) in AvantGarde ...

  7. Study on a Novel High-Efficiency Bridgeless PFC Converter

    Directory of Open Access Journals (Sweden)

    Cao Taiqiang

    2014-01-01

    Full Text Available In order to implement a high-efficiency bridgeless power factor correction converter, a new topology and operation principles of continuous conduction mode (CCM and DC steady-state character of the converter are analyzed, which show that the converter not only has bipolar-gain characteristic but also has the same characteristic as the traditional Boost converter, while the voltage transfer ratio is not related with the resonant branch parameters and switching frequency. Based on the above topology, a novel bridgeless Bipolar-Gain Pseudo-Boost PFC converter is proposed. With this converter, the diode rectifier bridge of traditional AC-DC converter is eliminated, and zero-current switching of fast recovery diode is achieved. Thus, the efficiency is improved. Next, we also propose the one-cycle control policy of this converter. Finally, experiments are provided to verify the accuracy and feasibility of the proposed converter.

  8. Development of a current-type PWM converter with high power factor. 1

    International Nuclear Information System (INIS)

    Miura, Yushi; Matsukawa, Makoto; Miyachi, Kengo; Kimura, Toyoaki

    1998-01-01

    A power supply system for superconducting poloidal field coils of a next generation tokamak-type fusion device can be operated on the relatively low voltage for the duration of discharge except the plasma initiation. In the case of the conventional phase-controlled thyristor converters are adopted in such a system, the input power factor would be low in average, and a reactive power fluctuation caused by the change of DC output voltage may produce serious effects on the commercial transmission line. From the above viewpoint, a current-type PWM (Pulse Width Modulation) converter, which can work with the power factor of unity for the input power, is regarded as one of the promising candidates of the converters for the power supplies of next generation fusion devices. Hence, a 100kW-class current-type PWM converter has been developed by using IGBT (Insulated Gate Bipolar Transistor) as switching devices. In this development, the basic performance has been preliminary investigated whether this converter is applicable to the power supply for the next generation fusion device. In addition, two different PWM control methods were examined whether these methods can realize a unit power factor and suppress the transient oscillation of converter input current at the same time in case that the reference of DC output current is changed rapidly. (author)

  9. Power density investigation on the press-pack IGBT 3L-HB-VSCs applied to large wind turbine

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk; Munk-Nielsen, Stig; Teodorescu, Remus

    2011-01-01

    capabilities, DC capacitor sizes, converter cabinet volumes of the three 3LHB- VSCs utilizing press-pack IGBTs are investigated in order to quantify and compare the power densities of the 3L-HB-VSCs employed as grid-side converters. Also, the suitable transformer types for the 3L-HB-VSCs are determined......With three different DC-side and AC-side connections, the three-level H-bridge voltage source converters (3L-HB-VSCs) are alternatives to 3L neutral-point-clamped VSCs (3L-NPC-VSCs) for interfacing large wind turbines with electricity grids. In order to assess their feasibility for large wind...... turbines, they should be investigated in terms of power density, which is one of the most important design criteria for wind turbine converters due to turbine nacelle space limitation. In this study, by means of the converter electro-thermal models based on the converter characteristics, the power...

  10. Grid-connected Photovoltaic Micro-inverter with New Hybrid Control LLC Resonant Converter

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Qingbo, Ke

    2016-01-01

    A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse-frequency modulat......A high-efficiency photovoltaic (PV) micro-inverter consisting of two power stages i.e. a LLC resonant converter with a new hybrid control scheme and a dc-ac inverter is proposed, studied and designed in this paper. In the first power stage, the new hybrid control combining pulse......-frequency modulation (PFM) and phase-shift pulse-width modulation (PS-PWM) is employed on a full-bridge LLC dc-dc converter, in order to achieve high efficiency when PV output voltage varies in a wide range. Moreover, a maximum power point tracking (MPPT) method based on power perturbation is implemented in the dc...

  11. Converter Power Density Increase using Low Inductive Integrated DC-link Capacitor/Bus

    DEFF Research Database (Denmark)

    Trintis, Ionut; Franke, Toke; Rannested, Bjørn

    2015-01-01

    The power losses in switching devices have a direct effect on the maximum converter power. For a voltage source converter, the DC-link bus has a major influence on the power loss and safe operating area of the power devices. The Power Ring Film CapacitorTM integrated with an optimized bus structu...

  12. Zero-Voltage Switching PWM Strategy Based Capacitor Current-Balancing Control for Half-Bridge Three-Level DC/DC Converter

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The current imbalance among the two input capacitors is one of the important issues of the half-bridge threelevel (HBTL) DC/DC converter, which would affect system performance and reliability. In this paper, a zero-voltage switching (ZVS) pulse-wide modulation (PWM) strategy including two operation...

  13. Modeling generalized interline power-flow controller (GIPFC using 48-pulse voltage source converters

    Directory of Open Access Journals (Sweden)

    Amir Ghorbani

    2018-05-01

    Full Text Available Generalized interline power-flow controller (GIPFC is one of the voltage-source controller (VSC-based flexible AC transmission system (FACTS controllers that can independently regulate the power-flow over each transmission line of a multiline system. This paper presents the modeling and performance analysis of GIPFC based on 48-pulsed voltage-source converters. This paper deals with a cascaded multilevel converter model, which is a 48-pulse (three levels voltage source converter. The voltage source converter described in this paper is a harmonic neutralized, 48-pulse GTO converter. The GIPFC controller is based on d-q orthogonal coordinates. The algorithm is verified using simulations in MATLAB/Simulink environment. Comparisons between unified power flow controller (UPFC and GIPFC are also included. Keywords: Generalized interline power-flow controller (GIPFC, Voltage source converter (VCS, 48-pulse GTO converter

  14. Switching transients in high-frequency high-power converters using power MOSFET's

    Science.gov (United States)

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.

    1979-01-01

    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  15. Laboratory manual for pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2015-01-01

    Designed to complement a range of power electronics study resources, this unique lab manual helps students to gain a deep understanding of the operation, modeling, analysis, design, and performance of pulse-width modulated (PWM) DC-DC power converters.  Exercises focus on three essential areas of power electronics: open-loop power stages; small-signal modeling, design of feedback loops and PWM DC-DC converter control schemes; and semiconductor devices such as silicon, silicon carbide and gallium nitride. Meeting the standards required by industrial employers, the lab manual combines program

  16. Dual-Input Isolated Full-Bridge Boost DC-DC Converter Based on the Distributed Transformers

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a new two-input isolated boost dc-dc converter based on a distributed multi-transformer structure which is suitable for hybrid renewable energy systems is investigated and designed. With a novel transformer winding-connecting strategy, the two input ports can be decoupled completely...... and the single-input mode, respectively. The main advantage of the proposed topology is that the four transformers and the secondary rectifiers are fully utilized whether the converter is connected with two input power sources or only one input. Although the four transformers are employed, the nominal powers...... of each transformer and rectifier are both reduced by four times. Furthermore, some special issues on converter design, such as increasing number of the input ports, the magnetic integration and the ground loop decoupling are discussed. A 2 kW prototype was built and tested. Experiments on the converter...

  17. Non-isolated DC-AC converter with high voltage gain for autonomous systems of electric power; Conversor CC-CA nao isolado com alto ganho de tensao para aplicacao em sistemas autonomos de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, George Cajazeiras [Centro Federal de Educacao Tecnologica do Ceara (CEFET/CE), Fortaleza, CE (Brazil); Torrico-Bascope, Rene P. [Universidade Federal do Ceara (PPGEE/UFC), Fortaleza, CE (Brazil). Programa de Pos Graduacao em Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET-PET), PE (Brazil)

    2008-07-01

    A non-isolated DC-AC converter with high voltage gain with two output sinusoidal voltage - 110 V and 220 V - and frequency 60 Hz for application in autonomous systems of electric power is proposed in this work. This topology consists of a boost converter with high voltage gain, based on three-state switching cell combined with a double half bridge inverter. This configuration type the size and the cost are reduced and the efficiency is gotten better, due to the reduced number of switches. The converters that compose this topology operate with high frequency, reducing the volume of the magnetic materials. can be mention as important characteristics: the voltage stress across the switches of the boost converter are low, due they be naturally clamped by one output filter capacitor, which allows the utilization of switches with lower conduction resistances, and the waveforms of the output voltage of the double half bridge inverter supplies for the load it is sinusoidal and it possesses low harmonic content. (author)

  18. A Novel Choice Procedure of Magnetic Component Values for Phase Shifted Full Bridge Converters with a Variable Dead-Time Control Method

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    2015-09-01

    Full Text Available Magnetic components are important parts of the phase shifted full bridge (PSFB converter. During the dead-time of switches located in the same leg, the converter can achieve zero-voltage-switching (ZVS by using the energies stored in magnetic components to discharge or charge the output capacitances of switches. Dead-time is usually calculated under a given set of pre-defined load condition which results in that the available energies are insufficient and ZVS capability is lost at light loads. In this paper, the PSFB converter is controlled by variable dead-time method and thus full advantage can be taken of the energies stored in magnetic components. Considering that dead-time has a great effect on ZVS, the relationship between available energies and magnetic component values is formulated by analyzing the equivalent circuits during dead-time intervals. Magnetic component values are chosen based on such relationship. The proposed choice procedure can make the available energies greater than the required energies for ZVS operation over a wide range of load conditions. Moreover, the burst mode control is adopted in order to reduce the standby power loss. Experimental results coincide with the theoretical analysis. The proposed method is a simple and practical solution to extend the ZVS range.

  19. Investigation of a metallic photonic crystal high power microwave mode converter

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-02-01

    Full Text Available It is demonstrated that an L band metallic photonic crystal TEM-TE11 mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawatt level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE11 mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.

  20. Application of digital control techniques for satellite medium power DC-DC converters

    Science.gov (United States)

    Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman

    2010-09-01

    The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.

  1. Advanced Receiver/Converter Experiments for Laser Wireless Power Transmission

    Science.gov (United States)

    Howell, Joe T.; ONeill, Mark; Fork, Richard

    2004-01-01

    For several years NASA Marshall Space Flight Center, UAH and ENTECH have been working on various aspects of space solar power systems. The current activity was just begun in January 2004 to further develop this new photovoltaic concentrator laser receiver/converter technology. During the next few months, an improved prototype will be designed, fabricated, and thoroughly tested under laser illumination. The final paper will describe the new concept, present its advantages over other laser receiver/converter approaches (including planar photovoltaic arrays), and provide the latest experiment results on prototype hardware (including the effects of laser irradiance level and cell temperature). With NASA's new human exploration plans to first return to the Moon, and then to proceed to Mars, the new photovoltaic concentrator laser receiver/converter technology could prove to be extremely useful in providing power to the landing sites and other phases of the missions. For example, to explore the scientifically interesting and likely resource-rich poles of the Moon (which may contain water) or the poles of Mars (which definitely contain water and carbon dioxide), laser power beaming could represent the simplest means of providing power to these regions, which receive little or no sunlight, making solar arrays useless there. In summary, the authors propose a paper on definition and experimental results of a novel photovoltaic concentrator approach for collecting and converting laser radiation to electrical power. The new advanced photovoltaic concentrator laser receiver/converter offers higher performance, lighter weight, and lower cost than competing concepts, and early experimental results are confirming the expected excellent Performance levels. After the small prototypes are successfully demonstrated, a larger array with even better performance is planned for the next phase experiments and demonstrations. Thereafter, a near-term flight experiment of the new technology

  2. Power Controllability of Three-phase Converter with Unbalanced AC Source

    DEFF Research Database (Denmark)

    Ma, Ke; Chen, Wenjie; Liserre, Marco

    2015-01-01

    Three-phase DC-AC power converters suffer from power oscillation and overcurrent problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... currents. In this work a new series of control strategies which utilize the zerosequence components are proposed to enhance the power control ability under this adverse condition. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC voltage....

  3. Optimal trajectory control of a CLCC resonant power converter

    NARCIS (Netherlands)

    Huisman, H.; Visser, de I.; Duarte, J.L.

    2015-01-01

    A CLCC resonant converter to be used in an isolated power supply is operated using optimal trajectory control (OTC). As a consequence, the converter's inner loop behavior is changed to that of a controlled current source. The controller is implemented in an FPGA. Simulation results and recorded

  4. Hybrid switch for resonant power converters

    Science.gov (United States)

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  5. Modeling of H- surface conversion sources; binary (H-Ba) and ternary (H-Cs/W) converter arrangements

    International Nuclear Information System (INIS)

    van Os, C.F.A.; Kunkel, W.B.; Leguijt, C.; Los, J.

    1991-01-01

    The production process for the formation of H - ions in a surface conversion source is sputtering of hydrogen atoms from the converter surface layers by incident positive ions, followed by electron attachment via resonant charge exchange with the converter surface. The sputtering process is in direct relation to the converter surface composition. New experimental data led us to identify two different classes of converters: metallic converters, like solid barium(binary) and adlayer converters, like cesium on tungsten (ternary). For a binary converter the hydrogen in the surface layers is directly sputtered by the incoming ions. Consequently, the negative ion yield scales with the hydrogen concentration in the surface layers. In the cesium/tungsten system (ternary) the hydrogen at the surface is believed to be sandwiched between the cesium adlayer and the tungsten surface. Hence, the negative ion yield scales with the sputter coefficient of hydrogen on adsorbed cesium. This is experimentally confirmed

  6. Multi-timescale modelling for the loading behaviours of power electronics converter

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2015-01-01

    The thermal dynamics of power device, referred as “thermal cycling”, are closely related to the reliability as well as the cost of the power electronics converter. However, the device loading is disturbed by many factors of the converter system which present at various times-constants from micro...

  7. Large-signal stability analysis of two power converters solutions for DC shipboard microgrid

    NARCIS (Netherlands)

    Bosich, Daniele; Gibescu, Madeleine; Sulligoi, Giorgio

    2017-01-01

    Bus voltage stability is an essential requirement in DC shipboard microgrids. In presence of Constant Power Loads, voltage instability is strictly dependent on RLC filters. This paper evaluates two power converter solutions (Thyristor Converters, TCs, and diode rectifiers + DC-DC Converters, DCs)

  8. Real Time In-circuit Condition Monitoring of MOSFET in Power Converters

    Directory of Open Access Journals (Sweden)

    Shakeb A. Khan

    2015-03-01

    Full Text Available Abstract:This paper presents simple and low-cost, real time in-circuit condition monitoring of MOSFET in power electronic converters. Design metrics requirements like low cost, small size, high power factor, low percentage of total harmonic distortion etc. requires the power electronic systems to operate at high frequencies and at high power density. Failures of power converters are attributed largely by aging of power MOSFETs at high switching frequencies. Therefore, real time in-circuit prognostic of MOSFET needs to be done before their selection for power system design. Accelerated aging tests are performed in different circuits to determine the wear out failure of critical components based on their parametric degradation. In this paper, the simple and low-cost test beds are designed for real time in-circuit prognostics of power MOSFETs. The proposed condition monitoring scheme helps in estimating the condition of MOSFETs at their maximum rated operating condition and will aid the system designers to test their reliability and benchmark them before selecting in power converters.

  9. Thermal analysis of two-level wind power converter under symmetrical grid fault

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    In this paper, the case of symmetrical grid fault when using the multi-MW wind turbine of partial-scale and full-scale two-level power converter are designed and investigated. Firstly, the different operation behaviors of the relevant power converters under the voltage dip will be described......) condition as well as the junction temperature. For the full-scale wind turbine system, the most thermal stressed power device in the grid-side converter will appear at the grid voltage below 0.5 pu, and for the partial-scale wind turbine system, the most thermal stressed power device in the rotor...

  10. Control of the DC-DC Converter used into Energy Generation System

    International Nuclear Information System (INIS)

    Bizon, Nicu; Oproescu, Mihai

    2006-01-01

    This paper presents an investigation of the DC-DC Converter controller used into Energy Generation System. The full bridge is used into an Energy Generation System (EGS) as second power interface between the energy source and the high DC bus. The simulation results show that the DC-DC Converter behavior can be improved using a well designed PI control surface. The used Simulink models for the EGS blocks and some design considerations are presented, too. (authors)

  11. Lifetime Estimation of DC-link Capacitors in a Single-phase Converter with an Integrated Active Power Decoupling Module

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Tang, Junchaojie

    2016-01-01

    In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC-link capa......In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC......-link capacitor capacitance can be decreased. However, few research is about the effect of DC side and AC side decoupling on the DC-link capacitor reliability considering its electro-thermal stresses. This paper presents a quantitative analysis on the lifetime of capacitors with power decoupling circuits...... at the DC side and AC side, respectively. The ripple current spectrum of the capacitors is obtained by double Fourier analysis of a H-bridge inverter with natural sampling PWM modulation. A study case is demonstrated by a 2,000 W H-bridge inverter with 400 V DC-link voltage....

  12. A GRID-CONNECTED HYBRID WIND-SOLAR POWER SYSTEM

    Directory of Open Access Journals (Sweden)

    MAAMAR TALEB

    2017-06-01

    Full Text Available A hybrid renewable energy system consisting of a photovoltaic generator and a wind driven DC machine is interconnected with the power utilities grid. The interconnection is done through the use of two separate single phase full wave controlled bridge converters. The bridge converters are operated in the “inverter mode of operation”. That is to guaranty the extraction of the real powers from the wind driven generator as well as from the photovoltaic generator and inject them into the power utilities grid. At any pretended surrounding weather conditions, maximum extraction of powers from both renewable energy sources is targeted. This is done through the realization of self-adjusted firing angle controllers responsible of triggering the semiconductor elements of the controlled converters. An active power filter is shunted with the proposed setup to guaranty the sinusoid quality of the power utilities line current. The overall performance of the proposed system has been simulated in MATLAB/SIMULINK environment. Quite satisfactory and encouraging results have been obtained.

  13. Design and simulation of front end power converter for a microgrid with fuel cells and solar power sources

    Science.gov (United States)

    Jeevargi, Chetankumar; Lodhi, Anuj; Sateeshkumar, Allu; Elangovan, D.; Arunkumar, G.

    2017-11-01

    The need for Renewable Energy Sources (RES) is increasing due to increased demand for the supply of power and it is also environment friendly.In the recent few years, the cost of generation of the power from the RES has been decreased. This paper aims to design the front end power converter which is required for integrating the fuel cells and solar power sources to the micro grid. The simulation of the designed front end converter is carried out in the PSIM 9.1.1 software. The results show that the designed front end power converter is sufficient for integrating the micro grid with fuel cells and solar power sources.

  14. Nonlinear control of voltage source converters in AC-DC power system.

    Science.gov (United States)

    Dash, P K; Nayak, N

    2014-07-01

    This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Performance testing of self-powered detector signal converters at Dukovany nuclear power plant - stage 1

    International Nuclear Information System (INIS)

    Erben, O.; Hajek, P.; Zerola, L.; Karsulin, M.

    1990-11-01

    The converters were manufactured at the Institute of Nuclear Research, Rez. Dynamic functions of the converters were tested during the start-up of reactor unit 4, Dukovany nuclear power plant, and their stability during its normal operation. The results and evaluation of the measurements show a good performance of converters. They have a low offset, good stability and the values of current are in a good agreement with the values obtained using other methods. The values of insulation resistance are in a good agreement with the values obtained manually using the method of additional resistance. These converters are planned to be used in the upgraded in-service inspection system in WWER-440 nuclear power plants. (Z.S.) 9 tabs., 22 figs., 1 ref

  16. Solar fed DC-DC single ended primary inductance converter for low power applications

    Science.gov (United States)

    Narendranath, K. V.; Viswanath, Y.; Babu, K. Suresh; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This paper presents 34 to 36 volts. SEPIC converter for solar fed applications. Now days, there has been tremendous increase in the usage of solar energy and this solar energy is most valuable energy source available all around the world. The solar energy system require a Dc-Dc converter in order to modulate and govern the changing output of the panel. In this paper, a system comprising of Single Ended Primary Inductance Converter [SEPIC] integrated with solar panel is proposed. This paper proposes SEPIC power converter design that will secure high performance and cost efficiency while powering up a LAMP load. This power converter designed with low output ripple voltage, higher efficiency and less electrical pressure on the power switching elements. The simulation and prototype hardware results are presented in this paper.

  17. Power Controllability of Three-phase Converter with Unbalanced AC Source

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    Three-phase DC-AC power converters suffer from power oscillation and overcurrentt problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... currents. In this work a new series of control strategies which utilize the zero-sequence components are proposed to enhance the power control ability under this adverse conditions. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC sources....

  18. Maximum wind energy extraction strategies using power electronic converters

    Science.gov (United States)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through

  19. Analysis of bi-directional piezoelectric-based converters for zero-voltage switching operation

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Zhang, Zhe; Andersen, Michael A. E.

    2016-01-01

    This paper deals with a thorough analysis of zerovoltage switching especially for bi-directional, inductorless, piezoelectric transformer-based switch-mode power supplies with a half-bridge topology. Practically, obtaining zero-voltage switching for all of the switches in a bi-directional piezoel......This paper deals with a thorough analysis of zerovoltage switching especially for bi-directional, inductorless, piezoelectric transformer-based switch-mode power supplies with a half-bridge topology. Practically, obtaining zero-voltage switching for all of the switches in a bi......-directional piezoelectric power converter is a difficult task. However, the analysis in this work will be convenient for overcoming this challenge. The analysis defines the zero-voltage region indicating the operating points whether or not soft switching can be met over the switching frequency and load range. For the first...... time, a comprehensive analysis is provided, which can be used as a design guideline for applying control techniques in order to drive switches in piezoelectric transformer-based converters. This study further conveys the proposed method to the region where all the switches can obtain soft switching...

  20. CCLIBS: The CERN Power Converter Control Libraries

    CERN Document Server

    AUTHOR|(SzGeCERN)404953; Lebioda, Krzysztof Tomasz; Magrans De Abril, Marc; Martino, Michele; Murillo Garcia, Raul; Nicoletti, Achille

    2015-01-01

    Accurate control of power converters is a vital activity in large physics projects. Several different control scenarios may coexist, including regulation of a circuit’s voltage, current, or field strength within a magnet. Depending on the type of facility, a circuit’s reference value may be changed asynchronously or synchronously with other circuits. Synchronous changes may be on demand or under the control of a cyclic timing system. In other cases, the reference may be calculated in real-time by an outer regulation loop of some other quantity, such as the tune of the beam in a synchrotron. The power stage may be unipolar or bipolar in voltage and current. If it is unipolar in current, it may be used with a polarity switch. Depending on the design, the power stage may be controlled by a firing angle or PWM duty-cycle reference, or a voltage or current reference. All these cases are supported by the CERN Converter Control Libraries (CCLIBS). These open-source C libraries include advanced reference generati...

  1. High-Repeatable Data Acquisition Systems for Pulsed Power Converters in Particle Accelerator Structures

    CERN Document Server

    AUTHOR|(CDS)2087245; Martino, Michele; Zinno, Raffaele

    In this Ph.D. thesis, the issues related to the metrological characterization of high-performance pulsed power converters are addressed. Initially, a background and a state of the art on the measurement systems needed to correctly operate a high-performance power converter are presented. As a matter of fact, power converters usually exploits digital control loops to enhance their performance. In this context the final performance of a power converter has to be validated by a reference instrument with higher metrological characteristics. In addition, an on-line measurement systemis also needed to digitize the quantity to be controlled with high accuracy. Then, in industrial applications of power converters metrology, specifications are given in terms of Worst-Case Uncertainty (WCU). Therefore, an analytical model for predicting the Worst-Case Uncertainty (WCU) of a measurement system is discussed and detailed for an instrument affected by Gaussian noise. Furthermore, the study and the design of a Reference Acq...

  2. An isolated bridgeless AC-DC PFC converter using a LC resonant voltage doubler rectifier

    Science.gov (United States)

    Lee, Sin-woo; Do, Hyun-Lark

    2016-12-01

    This paper proposed an isolated bridgeless AC-DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input-output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.

  3. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    OpenAIRE

    Pan, Liwen; Zhang, Chengning

    2015-01-01

    This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge cir...

  4. Determination of input/output characteristics of full-bridge AC/DC/DC converter for arc welding

    OpenAIRE

    Stefanov, Goce; Karadzinov, Ljupco; Sarac, Vasilija; Cingoski, Vlatko; Gelev, Saso

    2016-01-01

    This paper describes the design and practical implementation of AC/DC/DC converter in mode of arc welding. An analysis of the operation of AC/DC/DC converter and its input/output characteristics are determined with computer simulations. The practical part is consisted of AC/DC/DC converter prototype for arc welding with output power of 3 kW and switching frequency of 64 kHz. The operation of AC/DC/DC converter is validated with experimental measurements.

  5. A Review on Direct Power Control for Applications to Grid Connected PWM Converters

    Directory of Open Access Journals (Sweden)

    T. A. Trivedi

    2015-08-01

    Full Text Available The Direct Power Control strategy has become popular as an alternative to the conventional vector oriented control strategy for grid connected PWM converters. In this paper, Direct Power Control as applied to various applications of grid connected converters is reviewed. The Direct Power Control for PWM rectifiers, Grid Connected DC/AC inverters applications such as renewable energy sources interface, Active Power Filters, Doubly Fed Induction Generators and AC-DC-AC converters are discussed. Control strategies such as Look-Up table based control, predictive control, Virtual Flux DPC, Model based DPC and DPC-Space Vector Modulation are critically reviewed. The effects of various key parameters such as selection of switching vector, sampling time, hysteresis band and grid interfacing on performance of direct power controlled converters are presented.

  6. Short term braking capability during power interruptions for integrated matrix converter

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2004-01-01

    attractive. Sinusoidal input currents and bi-directional power flow are other advantages of the matrix converter, but it is less immune to power grid disturbances compared to a standard ASD. In hoisting applications, short-term braking capability during a power outage is needed until the mechanical brake...... engages or to perform more effective a combined braking. This paper proposes a new method to provide short-term braking capability during a power outage for matrix converters. A braking chopper is needed in the clamp circuit, which allows for a drastically reduction of the capacitor size. The power flow...

  7. Stirling converters for space dynamic power concepts with 2 to 130 We output

    International Nuclear Information System (INIS)

    Ross, B.A.

    1995-01-01

    Three innovative Stirling converter concepts are described. Two concepts are based on Pluto Fast Flyby (PFF) mission requirements, where two General Purpose Heat Source (GPHS) modules provide the thermal input. The first concept (PFF2) considers a power system with two opposed Stirling converters; the second concept (PFF4) considers four opposed Stirling converters. For both concepts the Stirling converters are designed to vary their power production capability to compensate for the failure of one Stirling converter. While the net thermal efficiency of PFF4 is a few percentage points lower than PFF2, the total Stirling converter mass of PFF4 is half that for PFF2. The third concept (ITTI) is designed to supply 2 watts of power for weather stations on the Martian surface. The predicted thermal performance of the ITTI is low compared to PFF2 and PFF4, yet the ITTI concept offers significant advantages compared to currently available power systems at the 2-watt power level. All three concepts are based on long-life technology demonstrated by an 11-watt output Stirling generator that as of March 1995 has accumulated over 15,000 operating hours without maintenance

  8. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-08-01

    Full Text Available It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  9. Performance of arrays of direct-driven wave energy converters under optimal power take-off damping

    Science.gov (United States)

    Wang, Liguo; Engström, Jens; Leijon, Mats; Isberg, Jan

    2016-08-01

    It is well known that the total power converted by a wave energy farm is influenced by the hydrodynamic interactions between wave energy converters, especially when they are close to each other. Therefore, to improve the performance of a wave energy farm, the hydrodynamic interaction between converters must be considered, which can be influenced by the power take-off damping of individual converters. In this paper, the performance of arrays of wave energy converters under optimal hydrodynamic interaction and power take-off damping is investigated. This is achieved by coordinating the power take-off damping of individual converters, resulting in optimal hydrodynamic interaction as well as higher production of time-averaged power converted by the farm. Physical constraints on motion amplitudes are considered in the solution, which is required for the practical implementation of wave energy converters. Results indicate that the natural frequency of a wave energy converter under optimal damping will not vary with sea states, but the production performance of a wave energy farm can be improved significantly while satisfying the motion constraints.

  10. A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; de Vega, Angel Ruiz

    2014-01-01

    This paper presents a real time measurement of on-state forward voltage and estimating the junction temperature for a high power IGBT module during a power converter operation. The power converter is realized as it can be used for a wind turbine system. The peak of the junction temperature is dec...

  11. Tests Of A Stirling-Engine Power Converter

    Science.gov (United States)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  12. Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R.; Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-10-15

    This paper presents new integrated model for variable-speed wind energy conversion systems, considering a more accurate dynamic of the wind turbine, rotor, generator, power converter and filter. Pulse width modulation by space vector modulation associated with sliding mode is used for controlling the power converters. Also, power factor control is introduced at the output of the power converters. Comprehensive performance simulation studies are carried out with matrix, two-level and multilevel power converter topologies in order to adequately assert the system performance. Conclusions are duly drawn. (author)

  13. Grid-Forming-Mode Operation of Boost-Power-Stage Converter in PV-Generator-Interfacing Applications

    Directory of Open Access Journals (Sweden)

    Jukka Viinamäki

    2017-07-01

    Full Text Available The application of constant power control and inclusion of energy storage in grid-connected photovoltaic (PV energy systems may increase the use of two-stage system structures composed of DC–DC-converter-interfaced PV generator and grid-connected inverter connected in cascade. A typical PV-generator-interfacing DC–DC converter is a boost-power-stage converter. The renewable energy system may operate in three different operation modes—grid-forming, grid-feeding, and grid-supporting modes. In the last two operation modes, the outmost feedback loops are taken from the input terminal of the associated power electronic converters, which usually does not pose stability problems in terms of their input sources. In the grid-forming operation mode, the outmost feedback loops have to be connected to the output terminal of the associated power electronic converters, and hence the input terminal will behave as a negative incremental resistor at low frequencies. This property will limit the operation of the PV interfacing converter in either the constant voltage or constant current region of the PV generator for ensuring stable operation. The boost-power-stage converter can be applied as a voltage or current-fed converter limiting the stable operation region accordingly. The investigations of this paper show explicitly that only the voltage-fed mode would provide feasible dynamic and stability properties as a viable interfacing converter.

  14. Mission-profile based multi-objective optimization of power electronics converter for wind turbines

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh; Teodorescu, Remus; Kerekes, Tamas

    2017-01-01

    -objective optimization approach for designing power converter is presented. The objective is to minimize the energy loss for a given load profile as against the conventional approach of minimizing power loss at specific loading conditions. The proposed approach is illustrated by designing a grid-side power converter...

  15. Wind-driven SEIG supplying DC microgrid through a single-stage power converter

    Directory of Open Access Journals (Sweden)

    Vellapatchi Nayanar

    2016-09-01

    Full Text Available Nowadays, there is an increased emphasis on utilizing the renewable energy sources and selection of suitable power converters for supplying dc microgrid. Among the various renewable energy sources, wind energy stands first in terms of installed capacity. So, an attempt is made in this paper for supplying dc microgrid utilizing wind energy. A self-excited induction generator has been used in the proposed wind energy conversion system (WECS. A single-stage power converter, namely, semi-converter is connected between the SEIG and dc grid terminals for closed-loop control of the proposed system. A perturb and observe (P&O based maximum power point tracking (MPPT algorithm has been developed and implemented using a dsPIC30F4011 digital controller. In this MPPT algorithm, the firing angle of the converter is adjusted by continuously monitoring the dc grid current for a given wind velocity. For analyzing the proposed system, a MATLAB/Simulink model has been developed by selecting the various components starting from wind-turbine model to the power converter supplying dc microgrid. Successful working of the proposed WECS has also been shown through experimental results obtained on a prototype model developed in the laboratory.

  16. A High-Efficient Low-Cost Converter for Capacitive Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Il-Oun Lee

    2017-09-01

    Full Text Available Growth of the Internet of Things (IoT spurs need for new ways of delivering power. Wireless power transfer (WPT has come into the spotlight from both academia and industry as a promising way to power the IoT devices. As one of the well-known WPT techniques, the capacitive power transfer (CPT has the merit of low electromagnetic radiation and amenability of combined power and data transfer over a capacitive interface. However, applying the CPT to the IoT devices is still challenging in reality. One of the major issues is due to the small capacitance of the capacitive interface, which results in low efficiency of the power transfer. To tackle this problem, we present a new step-up single-switch quasi-resonant (SSQR converter for the CPT system. To enhance the CPT efficiency, the proposed converter is designed to operate at low frequency and drive small current into the capacitive interfaces. In addition, by eliminating resistor-capacitor-diode (RCD snubber in the converter, we reduce the implementation cost of the CPT system. Based on intensive experimental work with a CPT system prototype that supports maximum 50 W (100 V/0.5 A power transfer, we demonstrate the functional correctness of the converter that achieves up to 93% efficiency.

  17. A 380 V High Efficiency and High Power Density Switched-Capacitor Power Converter using Wide Band Gap Semiconductors

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    . This paper presents such a high voltage low power switched-capacitor DC-DC converter with an input voltage upto 380 V (compatible with rectified European mains) and an output power experimentally validated up to 21.3 W. The wideband gap semiconductor devices of GaN switches and SiC diodes are combined...... to compose the proposed power stage. Their switching and loss characteristics are analyzed with transient waveforms and thermal images. Different isolated driving circuits are compared and a compact isolated halfbridge driving circuit is proposed. The full-load efficiencies of 98.3% and 97.6% are achieved......State-of-the-art switched-capacitor DC-DC power converters mainly focus on low voltage and/or high power applications. However, at high voltage and low power levels, new designs are anticipated to emerge and a power converter that has both high efficiency and high power density is highly desirable...

  18. Soft switching resonant converter with duty-cycle control in DC micro-grid system

    Science.gov (United States)

    Lin, Bor-Ren

    2018-01-01

    Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.

  19. Grid-Connection Half-Bridge PV Inverter System for Power Flow Controlling and Active Power Filtering

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2012-01-01

    Full Text Available A half-bridge photovoltaic (PV system is proposed, which can not only deal with bidirectional power flowing but also improve power quality. According to varying insolation, the system conditions real power for dc and ac loads to accommodate different amounts of PV power. Furthermore, the system eliminates current harmonics and improves power factor simultaneously. As compared with conventional PV inverter, the total number of active switches and current sensors can be reduced so that its cost is lower significantly. For current command determination, a linear-approximation method (LAM is applied to avoid the complicated calculation and achieve the maximum power point tracking (MPPT feature. For current controlling, a direct-source-current-shaping (DSCS algorithm is presented to shape the waveform of line current. Simulation results and practical measurements also demonstrate the feasibility of the proposed half-bridge PV system.

  20. A Two-Phase Buck Converter with Optimum Phase Selection for Low Power Applications

    OpenAIRE

    Yeago, Taylor Craig

    2015-01-01

    Power consumption of smart cameras varies significantly between sleep mode and active mode, and a smart camera operates in sleep mode for 80 ��" 90% of time for typical use. To prolong the battery life of smart cameras, it is essential to increase the power converter efficiency for light load, while being able to manage heavy load. The power stage of traditional buck converter is optimized for maximum load, at the cost of light-load efficiency. Wei proposed a multiphase buck converter incorpo...

  1. A highly efficient Micro-Power Converter between a Solar Cell and a Rechargable Lithium-ion Battery

    NARCIS (Netherlands)

    Woerd, van der A.C.; Bais, M.A.; Jong, de L.P.; Roermund, van A.H.M.; Varandan, V.K.; Singer, R.A.; Vellekoop, M.J.

    1998-01-01

    This paper describes the design of a low-power photo-voltaic power converter which will be used in a directional hearing aid. It is argued, that the use of a switched-capacitor converter is needed when integration on a chip is demanded. This converter combined with a parallel power converter has an

  2. Multi-megawatt inverter/converter technology for space power applications

    Science.gov (United States)

    Myers, Ira T.; Baumann, Eric D.; Kraus, Robert; Hammoud, Ahmad N.

    1992-01-01

    Large power conditioning mass reductions will be required to enable megawatt power systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. Phase 1 of a proposed two phase interagency program has been completed to develop an 0.1 kg/kW DC/DC converter technology base for these future space applications. Three contractors, Hughes, General Electric (GE), and Maxwell were Phase 1 contractors in a competitive program to develop a megawatt lightweight DC/DC converter. Researchers at NASA Lewis Research Center and the University of Wisconsin also investigated technology in topology and control. All three contractors, as well as the University of Wisconsin, concluded at the end of the Phase 1 study, which included some critical laboratory work, that 0.1-kg/kW megawatt DC/DC converters can be built. This is an order of magnitude lower specific weight than is presently available. A brief description of each of the concepts used to meet the ambitious goals of this program are presented.

  3. A Design Methodology for Power-efficient Continuous-time Sigma-Delta A/D Converters

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Bruun, Erik

    2003-01-01

    In this paper we present a design methodology for optimizing the power consumption of continuous-time (CT) ΣΔ A/D converters. A method for performance prediction for ΣΔ A/D converters is presented. Estimation of analog and digital power consumption is derived and employed to predict the most power...... bits performance. Expected power consumption for the prototype is approx. 170 μW....

  4. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    Science.gov (United States)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  5. Optimization of Modulation Waveforms for Improved EMI Attenuation in Switching Frequency Modulated Power Converters

    Directory of Open Access Journals (Sweden)

    Deniss Stepins

    2015-01-01

    Full Text Available Electromagnetic interference (EMI is one of the major problems of switching power converters. This paper is devoted to switching frequency modulation used for conducted EMI suppression in switching power converters. Comprehensive theoretical analysis of switching power converter conducted EMI spectrum and EMI attenuation due the use of traditional ramp and multislope ramp modulation waveforms is presented. Expressions to calculate EMI spectrum and attenuation are derived. Optimization procedure of the multislope ramp modulation waveform is proposed to get maximum benefits from switching frequency modulation for EMI reduction. Experimental verification is also performed to prove that the optimized multislope ramp modulation waveform is very useful solution for effective EMI reduction in switching power converters.

  6. Free-piston Stirling component test power converter test results and potential Stirling applications

    Science.gov (United States)

    Dochat, G. R.

    1992-01-01

    As the principal contractor to NASA-Lewis Research Center, Mechanical Technology Incorporated is under contract to develop free-piston Stirling power converters in the context of the competitive multiyear Space Stirling Technology Program. The first generation Stirling power converter, the component test power converter (CTPC) initiated cold end testing in 1991, with hot testing scheduled for summer of 1992. This paper reviews the test progress of the CTPC and discusses the potential of Stirling technology for various potential missions at given point designs of 250 watts, 2500 watts, and 25,000 watts.

  7. Thermoelectric converter for SP-100 space reactor power system

    Science.gov (United States)

    Terrill, W. R.; Haley, V. F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested.

  8. Results of test operation of the thyristor power supply for the BU-70 proton synchrotron ring electromagnet

    International Nuclear Information System (INIS)

    Vasil'ev, S.N.; Gusev, G.I.; Dan'shin, V.P.; Eliseenko, A.I.

    1985-01-01

    The thyristor converter put into operation in the course of reconstruction of the power supply of the BU-70 synchrotron ring electromagnet is described. The converter is designed for maximum current I=5 kA and voltage 2x10 kV and consists of four three-phase bridge rectifiers connected in parallel in the equivalent twelve-phase circuit. The total number of thyristors - 2304. The thyristor power supply operated over 7000 h. The conclusion is drawn that the use of thyristors allows one to sharply reduce the time of system tuning for nominal operation mode, reduce water consumption for convertercooling and considerably improve the working conditions ofthe maintenance personnel

  9. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    . For these VSCs, high power density is required due to limited turbine nacelle space. Also, high reliability is required since maintenance cost of these remotely located wind turbines is quite high and these turbines operate under harsh operating conditions. In order to select a high power density and reliability......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... VSC solution for wind turbines, first, the VSC topology and the switch technology to be employed should be specified such that the highest possible power density and reliability are to be attained. Then, this qualitative approach should be complemented with the power density and reliability...

  10. The Impact of a Power Electronics Converter in Phase Failure Work on the Power System Network

    Directory of Open Access Journals (Sweden)

    Dariusz Zieliński

    2016-09-01

    Full Text Available The paper presents the impact of phase failure work on power converters. The study includes a three-level NPC inverter (Neutral Point Clamped, controlled by Voltage Oriented Control (VOC. The NPC converter integrates renewable energy sources with the power grid. The article includes a discussion about the causes of phase failure work and an analysis of the converter’s failure and its impact on the power grid. The simulations were performed in MATLAB/Simulink. The study also includes the concept of an integrated protection for IGBTs, controlled by the DSP microprocessor system.

  11. A Single-Stage High-Power-Factor Light-Emitting Diode (LED Driver with Coupled Inductors for Streetlight Applications

    Directory of Open Access Journals (Sweden)

    Chun-An Cheng

    2017-02-01

    Full Text Available This paper presents and implements a single-stage high-power-factor light-emitting diode (LED driver with coupled inductors, suitable for streetlight applications. The presented LED driver integrates an interleaved buck-boost power factor correction (PFC converter with coupled inductors and a half-bridge-type series-resonant converter cascaded with a full-bridge rectifier into a single-stage power conversion circuit. Coupled inductors inside the interleaved buck-boost PFC converter sub-circuit are designed to operate in discontinuous conduction mode (DCM for achieving input-current shaping, and the half-bridge-type series resonant converter cascaded with a full-bridge rectifier is designed for obtaining zero-voltage switching (ZVS on two power switches to reduce their switching losses. Analysis of operational modes and design equations for the presented LED driver are described and included. In addition, the presented driver features a high power factor, low total harmonic distortion (THD of input current, and soft switching. Finally, a prototype driver is developed and implemented to supply a 165-W-rated LED streetlight module with utility-line input voltages ranging from 210 to 230 V. Experimental results demonstrate that high power factor (>0.99, low utility-line current THD (<7%, low-output voltage ripples (<1%, low-output current ripples (<10%, and high circuit efficiency (>90% are obtained in the presented single-stage driver for LED streetlight applications.

  12. CAS CERN Accelerator School: Power converters for particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1990-01-01

    This volume presents the proceedings of the fifth specialized course organized by the CERN Accelerator School, the subject on this occasion being power converters for particle accelerators. The course started with lectures on the classification and topologies of converters and on the guidelines for achieving high performance. It then went on to cover the more detailed aspects of feedback theory, simulation, measurements, components, remote control, fault diagnosis and equipment protection as well as systems and grid-related problems. The important topics of converter specification, procurement contract management and the likely future developments in semiconductor components were also covered. Although the course was principally directed towards DC and slow-pulsed supplies, lectures were added on fast converters and resonant excitation. Finally the programme was rounded off with three seminars on the related fields of Tokamak converters, battery energy storage for electric vehicles, and the control of shaft generators in ships. (orig.)

  13. Remote Power Control Injection of Grid-Connected Power Converters Based on Virtual Flux

    Directory of Open Access Journals (Sweden)

    Nurul Fazlin Roslan

    2018-02-01

    Full Text Available Renewable Energy Source (RES-based power plants need to control the active and reactive power at the Point of Common Connection (PCC with the grid, in order to comply with the requirements of the Transmission System Operators (TSOs. This point is normally far away from the power converter station, and the cables and step-up transformers have a non-neglectable influence on the delivered power. In order to overcome this drawback, this paper presents a control algorithm that permits one to control remotely the power injected at the PCC, by adjusting the local controller of the Voltage Source Converters (VSCs. In this work, the synchronization with the grid is done based on the Virtual Flux (VF concept. The results reveals that the VF estimation is able to produce a reliable estimation of the grid voltage in any point of the network, and makes it possible to calculate the necessary current reference for injecting a desired active and reactive power at a point that can be some kilometres away. In this paper the main principle for this remote power control is presented. Likewise, the simulation and experimental results will be shown in order to analyse the effectiveness of the proposed system.

  14. Selection of DC/DC converter for offshore wind farms with MVDC power collection

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2017-01-01

    Four DC/DC converters are analyzed and compared with respects to availability, efficiency, ratings, repair costs and power density. Intended application is offshore wind farms with MVDC power collection. The selected topology is a new series resonant converter, which offers 99% efficiency across...

  15. From mains frequency to converter power supply in foundry melting operations; Von der Netzfrequenz- zur Umrichter-Stromversorgung im Schmelzbetrieb der Eisengiesserei

    Energy Technology Data Exchange (ETDEWEB)

    Doetsch, Erwin; Yildir, Yilmaz [ABP Induction Systems GmbH, Dortmund (Germany); Koch, Frank [Gusstec Weiherhammer GmbH, Weiherhammer (Germany)

    2010-06-15

    As is well known, converter-based power feed has now largely superseded line-frequency technology as state-of-the-art in supply of induction melting facilities. Replacement of LF power supply systems with converters is therefore the main priority in the context of projects for modernization of existing induction installations. The objective is generally to leave the crucible furnace and its peripherals effectively as they are, and match the output and frequency of the converter to their needs. The following article states the criteria that need to be taken into account in this context and examines a specific modernization project, using the example of Gusstec Weiherhammer GmbH's iron melting installation. (orig.)

  16. Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System

    Directory of Open Access Journals (Sweden)

    Anders Hedegaard Hansen

    2018-03-01

    Full Text Available Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how the inclusion of a loss model may increase the energy output. Based on the presented results it is concluded that power extraction algorithms based on model predictive control principles are both feasible and favorable for use in a discrete fluid power power take-off system for point absorber wave energy converters.

  17. A Hamiltonian viewpoint in the modeling of switching power converters : A systematic modeling procedure of a large class of switching power converters using the Hamiltonian approach

    NARCIS (Netherlands)

    Escobar, Gerardo; Schaft, Arjan J. van der; Ortega, Romeo

    1999-01-01

    In this paper we show how, using the Hamiltonian formalism, we can systematically derive mathematical models that describe the behaviour of a large class of switching power converters, including the "Boost", "Buck", "Buck-Boost", "Čuk" and "Flyback" converters. We follow the approach earlier

  18. Design of the Trap Filter for the High Power Converters with Parallel Interleaved VSCs

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2014-01-01

    The power handling capability of the state-of-the-art semiconductor devices is limited. Therefore, the Voltage Source Converters (VSCs) are often connected in parallel to realize high power converter. The switching frequency semiconductor devices, used in the high power VSCs, is also limited...

  19. A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Gimara Rajapakse

    2017-10-01

    Full Text Available Despite the predictability and availability at large scale, wave energy conversion (WEC has still not become a mainstream renewable energy technology. One of the main reasons is the large variations in the extracted power which could lead to instabilities in the power grid. In addition, maintaining the speed of the turbine within optimal range under changing wave conditions is another control challenge, especially in oscillating water column (OWC type WEC systems. As a solution to the first issue, this paper proposes the direct connection of a battery bank into the dc-link of the back-to-back power converter system, thereby smoothening the power delivered to the grid. For the second issue, model predictive controllers (MPCs are developed for the rectifier and the inverter of the back-to-back converter system aiming to maintain the turbine speed within its optimum range. In addition, MPC controllers are designed to control the battery current as well, in both charging and discharging conditions. Operations of the proposed battery direct integration scheme and control solutions are verified through computer simulations. Simulation results show that the proposed integrated energy storage and control solutions are capable of delivering smooth power to the grid while maintaining the turbine speed within its optimum range under varying wave conditions.

  20. An overview of power electronics applications in fuel cell systems: DC and AC converters.

    Science.gov (United States)

    Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A

    2014-01-01

    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.

  1. Diode rectifier bridge-based structure for DFIG-based wind turbine

    DEFF Research Database (Denmark)

    Zhu, Rongwu; Chen, Zhe; Wu, Xiaojie

    2015-01-01

    This paper proposes a new structure for the doubly-fed induction generator (DFIG)-based wind turbine. The proposed structure consists of a DFIG controlled by a partial rated power converter in the rotor side, a three-phase diode rectifier bridge (DRB) connected to the stator, and a DC/AC full rated...

  2. An Efficiency-Optimized Isolated Bidirectional DC-DC Converter with Extended Power Range for Energy Storage Systems in Microgrids

    Directory of Open Access Journals (Sweden)

    Xiaolong Shi

    2012-12-01

    Full Text Available This paper proposes a novel extended-single-phase shift (ESPS control strategy of isolated bidirectional full-bridge DC-DC converters (IBDCs which are a promising alternative as a power electronic interface in microgrids with an additional function of galvanic isolation. Based on the mathematical models of ESPS control under steady-state conditions, detailed theoretical and experimental analyses of IBDC under ESPS control are presented. Compared with conventional single-phase-shift (CSPS control, ESPS control can greatly improve the efficiency of IBDCs in microgrids through decreasing current stress and backflow power considerably over a wide input and output voltage range under light and medium loads. In addition, ESPS control only needs to adjust one single phase-shift angel to control transmission power, thus it retains implementation simplicity in comparison with dual-phase-shift (DPS control for microgrid applications. Furthermore, an efficiency-optimized modulation scheme based on ESPS and CSPS control is developed in the whole power range of IBDC for power distribution in microgrids. A 10 kW IBDC prototype is constructed and the experimental results validate the effectiveness of the proposed control strategy, showing that the proposed strategy can enhance the overall efficiency up to 30%.

  3. Reconfiguring grid-interfacing converters for power quality improvement

    NARCIS (Netherlands)

    Wang, F.; Duarte, J.L.; Hendrix, M.A.M.; Encica, L.; Gysen, B.L.J.; Jansen, J.W.; Krop, D.C.J.

    2008-01-01

    In this paper reconfiguration of grid-interfacing converters is proposed for power quality improvement. In addition to the traditional function of delivering energy between distributed sources and the utility grid, more flexible ancillary functions can be integrated into the control of

  4. The Impact of Power Switching Devices on the Thermal Performance of a 10 MW Wind Power NPC Converter

    Directory of Open Access Journals (Sweden)

    Ke Ma

    2012-07-01

    Full Text Available Power semiconductor switching devices play an important role in the performance of high power wind energy generation systems. The state-of-the-art device choices in the wind power application as reported in the industry include IGBT modules, IGBT press-pack and IGCT press-pack. Because of significant deviation in the packaging structure, electrical characteristics, as well as thermal impedance, these available power switching devices may have various thermal cycling behaviors, which will lead to converter solutions with very different cost, size and reliability performance. As a result, this paper aimed to investigate the thermal related characteristics of some important power switching devices. Their impact on the thermal cycling of a 10 MW three-level Neutral-Point-Clamped wind power converter is then evaluated under various operating conditions; the main focus will be on the grid connected inverter. It is concluded that the thermal performances of the 3L-NPC wind power converter can be significantly changed by the power device technology as well as their parallel configurations.

  5. Digital control of grid connected converters for distributed power generation

    Energy Technology Data Exchange (ETDEWEB)

    Skjellnes, Tore

    2008-07-01

    Pulse width modulated converters are becoming increasingly popular as their cost decreases and power rating increases. The new trend of small scale power producers, often using renewable energy sources, has created new demands for delivery of energy to the grid. A major advantage of the pulse width modulated converter is the ability to control the output voltage at any point in the voltage period. This enables rapid response to load changes and non-linear loads. In addition it can shape the voltage in response to the output current to create an outward appearance of a source impedance. This is called a virtual impedance. This thesis presents a controller for a voltage controlled three phase pulse width modulated converter. This controller enables operation in standalone mode, in parallel with other converters in a micro grid, and in parallel with a strong main grid. A time varying virtual impedance is presented which mainly attenuates reactive currents. A method of investigating the overall impedance including the virtual impedance is presented. New net standards have been introduced, requiring the converter to operate even during severe dips in the grid voltage. Experiments are presented verifying the operation of the controller during voltage dips. (Author). 37 refs., 65 figs., 10 tabs

  6. Optimized Reactive Power Flow of DFIG Power Converters for Better Reliability Performance Considering Grid Codes

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens

    2015-01-01

    . In order to fulfill the modern grid codes, over-excited reactive power injection will further reduce the lifetime of the rotor-side converter. In this paper, the additional stress of the power semiconductor due to the reactive power injection is firstly evaluated in terms of modulation index...

  7. PEP-II Large Power Supplies Rebuild Program at SLAC

    CERN Document Server

    de Lira, Antonio C; Lipari, James J; da Silva Rafael, Fernando

    2005-01-01

    At PEP-II, seven large power supplies (LGPS) are used to power quad magnets in the electron-positron collider region. The LGPS ratings range from 72kW to 270kW, and were installed in 1997. They are unipolar off-line switch mode supplies, with a 6 pulse bridge rectifying 480VAC, 3-phase input power to yield 650VDC unregulated. This unregulated 650VDC is then input into one (or two) IGBT H-bridges, which convert the DC into PWM 16 kHz square wave AC. This high frequency AC drives the primary side of a step-down transformer followed by rectifiers and low pass filters. Over the years, these LGPS have presented many problems mainly in their control circuits, making it difficult to troubleshoot and affecting the overall accelerator availability. A redesign/rebuilding program for these power supplies was established under the coordination of the Power Conversion Department at SLAC. During the 2004 accelerator summer shutdown all the control circuits in these supplies were redesigned and replaced. A new PWM control b...

  8. Power Quality Control and Design of Power Converter for Variable-Speed Wind Energy Conversion System with Permanent-Magnet Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Yüksel Oğuz

    2013-01-01

    Full Text Available The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  9. Power quality control and design of power converter for variable-speed wind energy conversion system with permanent-magnet synchronous generator.

    Science.gov (United States)

    Oğuz, Yüksel; Güney, İrfan; Çalık, Hüseyin

    2013-01-01

    The control strategy and design of an AC/DC/AC IGBT-PMW power converter for PMSG-based variable-speed wind energy conversion systems (VSWECS) operation in grid/load-connected mode are presented. VSWECS consists of a PMSG connected to a AC-DC IGBT-based PWM rectifier and a DC/AC IGBT-based PWM inverter with LCL filter. In VSWECS, AC/DC/AC power converter is employed to convert the variable frequency variable speed generator output to the fixed frequency fixed voltage grid. The DC/AC power conversion has been managed out using adaptive neurofuzzy controlled inverter located at the output of controlled AC/DC IGBT-based PWM rectifier. In this study, the dynamic performance and power quality of the proposed power converter connected to the grid/load by output LCL filter is focused on. Dynamic modeling and control of the VSWECS with the proposed power converter is performed by using MATLAB/Simulink. Simulation results show that the output voltage, power, and frequency of VSWECS reach to desirable operation values in a very short time. In addition, when PMSG based VSWECS works continuously with the 4.5 kHz switching frequency, the THD rate of voltage in the load terminal is 0.00672%.

  10. Self-oscillating loop based piezoelectric power converter

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output......- oscillation loop within a zero-voltage-switching (ZVS) operation range of the piezoelectric transformer....

  11. Design of a high efficiency 30 kW boost composite converter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeokjin [Univ. of Colorado, Boulder, CO (United States); Chen, Hua [Univ. of Colorado, Boulder, CO (United States); Maksimovic, Dragan [Univ. of Colorado, Boulder, CO (United States); Erickson, Robert W. [Univ. of Colorado, Boulder, CO (United States)

    2015-09-20

    An experimental 30 kW boost composite converter is described in this paper. The composite converter architecture, which consists of a buck module, a boost module, and a dual active bridge module that operates as a DC transformer (DCX), leads to substantial reductions in losses at partial power points, and to significant improvements in weighted efficiency in applications that require wide variations in power and conversion ratio. A comprehensive loss model is developed, accounting for semiconductor conduction and switching losses, capacitor losses, as well as dc and ac losses in magnetic components. Based on the developed loss model, the module and system designs are optimized to maximize efficiency at a 50% power point. Experimental results for the 30 kW prototype demonstrate 98.5%peak efficiency, very high efficiency over wide ranges of power and voltage conversion ratios, as well as excellent agreements between model predictions and measured efficiency curves.

  12. Basis set effects on the energy of intramolecular O-H...halogen hydrogen bridges in ortho-halophenols and 2,4-dihalo-malonaldehyde

    International Nuclear Information System (INIS)

    Buemi, Giuseppe

    2004-01-01

    Ab initio calculations of hydrogen bridge energies (E HB ) of 2-halophenols were carried out at various levels of sophistication using a variety of basis sets in order to verify their ability in reproducing the experimentally-determined gas phase ordering, and the related experimental frequencies of the O-H vibration stretching mode. The semiempirical AM1 and PM3 approaches were adopted, too. Calculations were extended to the O-H...X bridge of a particular conformation of 2,4-dihalo-malonaldehyde. The results and their trend with respect to the electronegativity of the halogen series are highly dependant on the basis set. The less sophisticated 3-21G, CEP121G and LANL2DZ basis sets (with and without correlation energy inclusion) predict E HB decreasing on decreasing the electronegativity power whilst the opposite is generally found when more extended bases are used. However, all high level calculations confirm the nearly negligible energy differences between the examined O-H...X bridges

  13. Model predictive control for Z-source power converter

    DEFF Research Database (Denmark)

    Mo, W.; Loh, P.C.; Blaabjerg, Frede

    2011-01-01

    This paper presents Model Predictive Control (MPC) of impedance-source (commonly known as Z-source) power converter. Output voltage control and current control for Z-source inverter are analyzed and simulated. With MPC's ability of multi- system variables regulation, load current and voltage...

  14. Implementation of Power Efficient Flash Analogue-to-Digital Converter

    Directory of Open Access Journals (Sweden)

    Taninki Sai Lakshmi

    2014-01-01

    Full Text Available An efficient low power high speed 5-bit 5-GS/s flash analogue-to-digital converter (ADC is proposed in this paper. The designing of a thermometer code to binary code is one of the exacting issues of low power flash ADC. The embodiment consists of two main blocks, a comparator and a digital encoder. To reduce the metastability and the effect of bubble errors, the thermometer code is converted into the gray code and there after translated to binary code through encoder. The proposed encoder is thus implemented by using differential cascade voltage switch logic (DCVSL to maintain high speed and low power dissipation. The proposed 5-bit flash ADC is designed using Cadence 180 nm CMOS technology with a supply rail voltage typically ±0.85 V. The simulation results include a total power dissipation of 46.69 mW, integral nonlinearity (INL value of −0.30 LSB and differential nonlinearity (DNL value of −0.24 LSB, of the flash ADC.

  15. Design of a high power, resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    This paper presents a design procedure and loss estimation for a high power, medium voltage series resonant converter (entitled SRC#), intended for application in megawatt medium-voltage DC wind turbines. The converter is operated with a novel method of operation, entitled pulse removal technique...

  16. Progress update of NASA's free-piston Stirling space power converter technology project

    Science.gov (United States)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  17. An overview of power electronic converter technology for renewable energy systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    This chapter presents power electronic technology which is an enabling tool for modern wind and marine energy conversion systems. In this chapter, the main power electronic devices are described. Various power electronic converter topologies are represented, and commonly used modulation schemes...

  18. Evolution of the SPS Power Converter Controls towards the LHC Era

    CERN Document Server

    Brazier, J.C.L.; Semanaz, P.

    2001-01-01

    By the end of the nineties, the power converter control system (Mugef) of the CERN proton accelerator (SPS) had undergone a complete modernization. This resulted in newly developed hardware for function generation, measurement and I/O in a VME environment, under the LynxOS real-time operating system. This has provided a platform on which extensions can be developed for future operation in the Large Hadron Collider (LHC) era. This paper describes some of these extensions, in particular a fast Surveillance and Interlock system for monitoring the power converter output currents. This will be mandatory for the safe operation of the SPS transfer lines TI2 & TI8 to LHC and for similar applications in the future. The strategies employed to cope with various failure modes of the power converters and the timely activation of the interlock are outlined. The new SPS controls infrastructure now under development, will give rise to new modes of operation for the Mugef systems. Integration with the proposed middleware ...

  19. Mission profile resolution effects on lifetime estimation of doubly-fed induction generator power converter

    DEFF Research Database (Denmark)

    Zhang, Guanguan; Zhou, Dao; Blaabjerg, Frede

    2017-01-01

    , and the corresponding thermal modeling of power semiconductors are discussed. Accordingly, effects of different mission profiles on the consumed lifetime of the power converter are evaluated. In the above three thermal cycles, the IGBT of the grid-side converter and the diode of the rotor-side converter are more...... fragile, and the total consumed lifetimes are higher. Moreover, the short-term thermal cycles with milliseconds resolution induce the unbalance of the lifetime between the diode and IGBT of the grid-side converter, while thermal cycles with hour, second, and millisecond resolution consumes the similar......In the wind energy generation system, mission profiles are complicated, which range from seconds to years. In order to estimate the consumed lifetime of the power converter, wind speed profiles with the time resolution of 1 hour, 1 second and 0.5 millisecond are studied in this paper...

  20. A Transformer-less Partial Power Boost Converter for PV Applications Using a Three-Level Switching Cell

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed; Harfman-Todorovic, Maja; Elasser, Ahmed; Essakiappan, Somasundaram

    2013-03-01

    Photovoltaic architectures with distributed power electronics provide many advantages in terms of energy yield as well as system level optimization. As the power level of the solar farm increases it becomes more beneficial to increase the dc collection network voltage, which requires the use of power devices with higher voltage ratings, and thus making the design of efficient, low cost, distributed power converters more challenging. In this paper a simple partial power converter topology is proposed. The topology is implemented using a three-level switching cell, which allows the use of semiconductor devices with lower voltage rating; thus improving design and performance and reducing converter cost. This makes the converters suitable for use for medium to high power applications where dc-link voltages of 600V~1kV may be needed without the need for high voltage devices. Converter operation and experimental results are presented for two partial power circuit variants using three-level switching cells.

  1. A New Concept of Two-Stage Multi-Element Resonant-/Cyclo-Converter for Two-Phase IM/SM Motor

    Directory of Open Access Journals (Sweden)

    Mahmud Ali Rzig Abdalmula

    2013-01-01

    Full Text Available The paper deals with a new concept of power electronic two-phase system with two-stage DC/AC/AC converter and two-phase IM/PMSM motor. The proposed system consisting of two-stage converter comprises: input resonant boost converter with AC output, two-phase half-bridge cyclo-converter commutated by HF AC input voltage, and induction or synchronous motor. Such a system with AC interlink, as a whole unit, has better properties as a 3-phase reference VSI inverter: higher efficiency due to soft switching of both converter stages, higher switching frequency, smaller dimensions and weight with lesser number of power semiconductor switches and better price. In comparison with currently used conventional system configurations the proposed system features a good efficiency of electronic converters and also has a good torque overloading of two-phase AC induction or synchronous motors. Design of two-stage multi-element resonant converter and results of simulation experiments are presented in the paper.

  2. Power converter for raindrop energy harvesting application: Half-wave rectifier

    Science.gov (United States)

    Izrin, Izhab Muhammad; Dahari, Zuraini

    2017-10-01

    Harvesting raindrop energy by capturing vibration from impact of raindrop have been explored extensively. Basically, raindrop energy is generated by converting the kinetic energy of raindrop into electrical energy by using polyvinylidene fluoride (PVDF) piezoelectric. In this paper, a power converter using half-wave rectifier for raindrop harvesting energy application is designed and proposed to convert damping alternating current (AC) generated by PVDF into direct current (DC). This research presents parameter analysis of raindrop simulation used in the experiment and resistive load effect on half-wave rectifier converter. The experiment is conducted by using artificial raindrop from the height of 1.3 m to simulate the effect of different resistive load on the output of half-wave rectifier converter. The results of the 0.68 MΩ resistive load showed the best performance of the half-wave rectifier converter used in raindrop harvesting energy system, which generated 3.18 Vaverage. The peak instantaneous output generated from this experiment is 15.36 µW.

  3. Modular Multi-level converter based HVDC System for Grid Connection of Offshore Wind Power Plant

    DEFF Research Database (Denmark)

    Gnanarathna, U.N.; Chaudhary, Sanjay Kumar; Gole, A.M.

    2010-01-01

    This paper explores the application of modular multi-level converters (MMC) as a means for harnessing the power from off-shore wind power plants. The MMC consists of a large number of simple voltage sourced converter (VSC) submodules that can be easily assembled into a converter for high......-voltage and high power. The paper shows that the MMC converter has a fast response and low harmonic content in comparison with a two-level VSC option. The paper discusses the modeling approach used, including a solution to the modeling challenge imposed by the very large number of switching devices in the MMC....

  4. Resonant converter topologies for constant-current power supplies and their applications

    International Nuclear Information System (INIS)

    Borage, Mangesh

    2013-01-01

    Power electronics, in general, and power supplies, in particular, is an important field of accelerator technology due to its widespread use, for instance in dc, ramp or pulse magnet power supplies, high voltage power supplies for electrostatic accelerators and RF amplifies, power supplies for vacuum pumps, vacuum gauges, beam diagnostic devices etc. It has been possible to meet stringent performance requirements with the continuing advancement in the field of power electronics. Resonant converters have been an active area of research in power electronics field due to variety of topologies, diverse, peculiar and useful characteristics. While the majority of the previous work on resonant converters has been directed towards developing methods of analysis and control techniques for the mentioned applications, very little has been done to explore their suitability for application as a constant-current power supply, which is either inherently required or can be advantageously applied in power supplies for various accelerator subsystems and other industrial applications such as electric arc welding, laser diode drivers, magnet illumination systems, battery charging, electrochemical processes etc.

  5. Half Bridge Inductive Heater

    Directory of Open Access Journals (Sweden)

    Zoltán GERMÁN-SALLÓ

    2015-12-01

    Full Text Available Induction heating performs contactless, efficient and fast heating of conductive materials, therefore became one of the preferred heating procedure in industrial, domestic and medical applications. During induction heating the high-frequency alternating currents that heat the material are induced by means of electromagnetic induction. The material to be heated is placed inside the time-varying magnetic field generated by applying a highfrequency alternating current to an induction coil. The alternating electromagnetic field induces eddy currents in the workpiece, resulting resistive losses, which then heat the material. This paper describes the design of a power electronic converter circuit for induction heating equipment and presents the obtained results. The realized circuit is a low power half bridge resonant inverter which uses power MOS transistors and adequate driver circuits.

  6. Power converters for medium voltage networks

    CERN Document Server

    Islam, Md Rabiul; Zhu, Jianguo

    2014-01-01

    This book examines a number of topics, mainly in connection with advances in semiconductor devices and magnetic materials and developments in medium and large-scale renewable power plant technologies, grid integration techniques and new converter topologies, including advanced digital control systems for medium-voltage networks. The book's individual chapters provide an extensive compilation of fundamental theories and in-depth information on current research and development trends, while also exploring new approaches to overcoming some critical limitations of conventional grid integration te

  7. Simulation of wind power with front-end converter into interconnected grid system

    Directory of Open Access Journals (Sweden)

    Sharad W. Mohod

    2009-09-01

    Full Text Available In the growing electricity supply industry and open access market for electricity worldwide, renewable sources are getting added into the grid system. This affects the grid power quality. To assess the impact on grid due to wind energy integration, the knowledge of electrical characteristic of wind turbine and associated control equipments are required. The paper presents a simulation set-up for wind turbine in MATLAB / SIMULINK, with front end converter and interconnected system. The presented control scheme provides the wind power flow to the grid through a converter. The injected power in the system at the point of common coupling is ensured within the power quality norms.

  8. Design and experiment of a cross-shaped mode converter for high-power microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shengren, E-mail: 785751053@qq.com; Yuan, Chengwei; Zhong, Huihuang; Fan, Yuwei [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2013-12-15

    A compact mode converter, which is capable of converting a TM{sub 01} mode into a circularly polarized TE{sub 11} mode, was developed and experimentally studied with high-power microwaves. The converter, consisting of two turnstile junctions, is very short along the wave propagation direction, and therefore is suitable for designing compact and axially aligned high-power microwave radiation systems. In this paper, the principle of a converter working at 1.75 GHz is demonstrated, as well as the experimental results. The experimental and simulation results are in good agreement. At the center frequency, the conversion efficiency is more than 95%, the measured axial ratio is about 0.4 dB, and the power-handing capacity is excess of 1.9 GW.

  9. Dynamic bounds for power and efficiency of non-ideal energy converters under nonlinear transfer laws

    International Nuclear Information System (INIS)

    Sieniutycz, Stanislaw

    2009-01-01

    We present a thermodynamic approach to simulation and modeling of nonlinear energy converters, in particular radiation engines. Novel results are obtained especially for dynamical engines when the temperature of the propelling medium decreases in time due to a continual decrease of the medium's internal energy caused by the power production. Basic thermodynamic principles determine the converter's efficiency and work limits in terms of the entropy production. The real work is a cumulative effect obtained in a system of a resource fluid, a sequence of engines, and an infinite bath. Nonlinear modeling involves dynamic optimization in which the classical expression for efficiency at maximum power is generalized to endoirreversible machines and nonlinear transfer laws. The primary result is a finite-rate generalization of the classical, reversible work potential (exergy). The generalized work function depends on thermal coordinates and a dissipation index, h, i.e. a Hamiltonian of the minimum entropy production problem. This generalized work function implies stronger bounds on work delivered or supplied than the reversible work potential. The role of the nonlinear analyses and dynamic optimization is shown especially for radiation engines. As an example of the kinetic work limit, generalized exergy of radiation fluid is estimated in terms of finite rates, quantified by the Hamiltonian h

  10. Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance

    Directory of Open Access Journals (Sweden)

    Jaime Wladimir Zapata

    2018-02-01

    Full Text Available This work presents a partial power converter allowing us to obtain, with a single DC-DC converter, the same feature as the classical interleaved operation of two converters. More precisely, the proposed topology performs similarly as the input-parallel output-series (IPOS configuration reducing the current ripple at the input of the system and dividing the individual converters power rating, compared to a single converter. The proposed topology consists of a partial DC-DC converter processing only a fraction of the total power, thus allowing high efficiency. Experimental results are provided to validate the proposed converter topology with a Flyback-based 100 W test bench with a transformer turns ratio n 1 = n 2 . Experimental results show high performances reducing the input current ripple around 30 % , further increasing the conversion efficiency.

  11. Grid Converters for Photovoltaic and Wind Power Systems

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Liserre, Marco; Rodriguez, Pedro

    power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition...... to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: Modern grid...... inverter topologies for photovoltaic and wind turbines Islanding detection methods for photovoltaic systems Synchronization techniques based on second order generalized integrators (SOGI) Advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active...

  12. Piezoelectric transformer based power converters; design and control

    DEFF Research Database (Denmark)

    Rødgaard, Martin Schøler

    The last two decades of research into piezoelectric transformer (PT) based power converters have led to some extensive improvements of the technology, but it still struggles to get its commercial success. This calls for further research and has been the subject of this work, in order to enable...

  13. Topology and Technology Survey on Medium Voltage Power Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Sztykiel, Michal; Teodorescu, Remus; Munk-Nielsen, Stig

    2011-01-01

    Based on state-of-the-art within generator and power converter designs, this paper presents and justifies the most promising converter circuitries and concepts for future 10 MW wind turbines. In order to reduce losses and increase efficiency of the turbine, it is assumed that the bulky step...... by various circuit configurations of previously defined power modules....

  14. Short term Braking Capability during Power Interruptions for Integrated Matrix Converter-Motor Drives

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2002-01-01

    attractive. Sinusoidal input currents and bi-directional power flow are other advantages of the matrix converter but it is less immune to power grid disturbances compared to a standard ASD. In hoisting applications, short-term braking capability during a power outage is needed until the mechanical brake...... engages or to perform more effective a combined braking.This paper proposes a new method to provide short-term braking capability during a power outage for matrix converters. A braking chopper is needed in the clamp circuit, which allows for a drastically reduction of the capacitor size. The power flow...

  15. Powering the Future Data Centre

    DEFF Research Database (Denmark)

    Zhang, Zhe

    2010-01-01

    of the characteristics of these two power sources: long warm-up stage and low dynamics for fuel cell, and variable terminal voltage for supercapacitors. The motivation for this project was to find ways which can overcome those limitations to integrate fuel cells and supercapcitors to the system with high efficiency......The extended run Uninterruptible Power Supply system (UPSs) which powered by fuel cells and supercapcitors, is a promising solution for future data centre to obtain environmentfriendly energy efficient and cost effective. There are many challenges in power electronic interface circuits, because......: • Optimized design method for dual active bridge (DAB) converter and its derived circuits; • A novel hybrid dc-dc converter and its corresponding optimal design method are proposed; • An improved dual input current-fed DC-DC converter with bidirectional power conversion ability is investigated; • Extend...

  16. Robust sigma delta converters : and their application in low-power highly-digitized flexible receivers

    NARCIS (Netherlands)

    Veldhoven, van R.H.M.; Roermund, van A.H.M.

    2011-01-01

    Sigma Delta converters are a very popular choice for the A/D converter in multi-standard, mobile and cellular receivers. Key A/D converter specifications are high dynamic range, robustness, scalability, low-power and low EMI. Robust Sigma Delta Converters presents a requirement derivation of a Sigma

  17. Design of power converter in DFIG wind turbine with enhanced system-level reliability

    DEFF Research Database (Denmark)

    Zhou, Dao; Zhang, Guanguan; Blaabjerg, Frede

    2017-01-01

    With the increasing penetration of wind power, reliable and cost-effective wind energy production are of more and more importance. As one of the promising configurations, the doubly-fed induction generator based partial-scale wind power converter is still dominating in the existing wind farms...... margin. It can be seen that the B1 lifetime of the grid-side converter and the rotor-side converter deviates a lot by considering the electrical stresses, while they become more balanced by using an optimized reliable design. The system-level lifetime significantly increases with an appropriate design...

  18. Characterization of a High-Power, High-Frequency, Soft-Switching Power Converter for EMC Considerations

    National Research Council Canada - National Science Library

    Li, S

    2001-01-01

    This report presents the setup, experimental techniques, and results of the radiated emissions tests on the PCM-3 soft-switching power converter using the Gigahertz Transverse Electromagnetic (GTEM) facility...

  19. Efficiency Improvement of Three-Phase Cascaded H-Bridge Multilevel Inverters for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Nuntawat Thitichaiworakorn

    2016-01-01

    Full Text Available Medium-scale photovoltaic (PV systems using cascaded H-bridge multilevel inverters have a capability to perform individual maximum power point tracking (MPPT for each PV panel or each small group of panels, resulting in minimization of both power losses from panel mismatch and effect of partial shading. They also provide high power quality, modularity, and possibility of eliminating dc-dc boost stage and line-frequency transformer. However, each PV panel in the system is subjected to a double-line-frequency voltage ripple at the dc-link which reduces the MPPT efficiency. This paper proposes a dc-link voltage ripple reduction by third-harmonic zero-sequence voltage injection for improving the MPPT efficiency. Moreover, a control method to achieve individual MPPT control of each inverter cell is also presented. The validity and effectiveness of the proposed methods were verified by computer simulation.

  20. Ancillary Frequency Control of Direct Drive Full-Scale Converter Based Wind Power Plants

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Fang, Jiakun

    2013-01-01

    This paper presents a simulation model of a wind power plant based on a MW-level variable speed wind turbine with a full-scale back-to-back power converter developed in the simulation tool of DIgSILENT Power Factory. Three different kinds of ancillary frequency control strategies, namely inertia...... control strategies are effective means for providing ancillary frequency control of variable speed wind turbines with full-scale back-to-back power converters....... emulation, primary frequency control and secondary frequency control, are proposed in order to improve the frequency stability of power systems. The modified IEEE 39-bus test system with a large-scale wind power penetration is chosen as the studied power system. Simulation results show that the proposed...

  1. A study of the high frequency limitations of series resonant converters

    Science.gov (United States)

    Stuart, T. A.; King, R. J.

    1982-01-01

    A transformer induced oscillation in series resonant (SR) converters is studied. It may occur in the discontinuous current mode. The source of the oscillation is an unexpected resonant circuit formed by normal resonance components in series with the magnetizing inductance of the output transformers. The methods for achieving cyclic stability are: to use a half bridge SR converter where q0.5. Q should be as close to 1.0 as possible. If 0.5q1.0, the instability will be avoided if psi2/3q-1/3. The second objective was to investigate a power field effect transistor (FET) version of the SR converter capable of operating at frequencies above 100 KHz, to study component stress and losses at various frequencies.

  2. Design and performance study of a DC-DC flyback converter based on wide bandgap power devices for photovoltaic applications

    Science.gov (United States)

    Alharbi, Salah S.; Alharbi, Saleh S.; Al-bayati, Ali M. S.; Matin, Mohammad

    2017-08-01

    This paper presents a high-performance dc-dc flyback converter design based on wide bandgap (WBG) semiconductor devices for photovoltaic (PV) applications. Two different power devices, a gallium nitride (GaN)-transistor and a silicon (Si)-MOSFET, are implemented individually in the flyback converter to examine their impact on converter performance. The total power loss of the converter with different power devices is analyzed for various switching frequencies. Converter efficiency is evaluated at different switching frequencies, input voltages, and output power levels. The results reveal that the converter with the GaN-transistor has lower total power loss and better efficiency compared to the converter with the conventional Si-MOSFET.

  3. State-plane analysis of zero-voltage-switching resonant dc/dc power converters

    Science.gov (United States)

    Kazimierczuk, Marian K.; Morse, William D.

    The state-plane analysis technique for the zero-voltage-switching resonant dc/dc power converter family of topologies, namely the buck, boost, buck-boost, and Cuk converters is established. The state plane provides a compression of information that allows the designer to uniquely examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, resonant converter modes of operation are examined and the switching frequencies are derived for the boundaries between these modes, including the boundary of energy conversion.

  4. Variable frequency iteration MPPT for resonant power converters

    Science.gov (United States)

    Zhang, Qian; Bataresh, Issa; Chen, Lin

    2015-06-30

    A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.

  5. H-Bridge Transformerless Inverter with Common Ground for Single-Phase Solar-Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2017-01-01

    This paper proposes a new single-phase H-Bridge transformerless inverter with common ground for grid-connected photovoltaic systems (hereafter it is called ‘Siwakoti-H’ inverter). The inverter works on the principle of flying capacitor and consists of only four power switches (two reverse blocking...... IGBT's (RB-IGBT) and two MOSFET's), a capacitor and a small filter at the output stage. The proposed topology share a common ground with the grid and the PV source. A Unipolar Sinusoidal Pulse-Width Modulation (SPWM) technique is used to modulate the inverter to minimize switching loss, output current...

  6. Study of matrix converter as a current-controlled power supply in QUEST tokamak

    International Nuclear Information System (INIS)

    Liu, Xiaolong; Jiang, Yi; Nakamura, Kazuo

    2011-01-01

    Because QUEST tokamak has a divertor configuration with a higher κ and a negative n-index, a precise power supply with a rapid response is needed to control the vertical position of the plasma. A matrix converter is a direct power conversion device that uses an array of controlled bidirectional switches as the main power elements for creating a variable-output current system. This paper presents a novel three-phase to two-phase topological matrix converter as a proposed power supply that stabilizes the plasma vertical position and achieves unity input power factor. An indirect control strategy in which the matrix converter is split into a virtual rectifier stage and a virtual inverter stage is adopted. In the virtual rectifier stage, the instantaneous active power and reactive power are decoupled on the basis of system equations derived from the DQ transformation; hence, unity power factor is achieved. Space vector pulse width modulation is adopted to determine the switching time of each switch in the virtual rectifier; the output voltage of the virtual rectifier is adjusted by the virtual inverter stage to obtain the desired load current. Theoretical analyses and simulation results are provided to verify its feasibility. (author)

  7. Thermoelectric converter for SP-100 space reactor power system

    International Nuclear Information System (INIS)

    Terrill, W.R.; Haley, V.F.

    1986-01-01

    Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested. The manufacturing plan showed that the chosen materials and processes are compatible with today's production techniques, that the production volume can readily be achieved and that the costs are reasonable

  8. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    Science.gov (United States)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  9. Optimizing the design of very high power, high performance converters

    International Nuclear Information System (INIS)

    Edwards, R.J.; Tiagha, E.A.; Ganetis, G.; Nawrocky, R.J.

    1980-01-01

    This paper describes how various technologies are used to achieve the desired performance in a high current magnet power converter system. It is hoped that the discussions of the design approaches taken will be applicable to other power supply systems where stringent requirements in stability, accuracy and reliability must be met

  10. A vibration powered wireless mote on the Forth Road Bridge

    International Nuclear Information System (INIS)

    Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A

    2015-01-01

    The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm 3 , was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent. (paper)

  11. A vibration powered wireless mote on the Forth Road Bridge

    Science.gov (United States)

    Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A.

    2015-12-01

    The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm3, was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent.

  12. Investigation on Fuzzy Logic Based Centralized Control in Four-Port SEPIC/ZETA Bidirectional Converter for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    VENMATHI, M.

    2016-02-01

    Full Text Available In this paper, a new four-port DC-DC converter topology is proposed to interface renewable energy sources and the load along with the energy storage device. The proposed four-port SEPIC/ZETA bidirectional converter (FP-SEPIC/ZETA BDC converter comprises an isolated output port with two unidirectional and one bidirectional input ports. This converter topology is obtained by the fusion of SEPIC/ZETA BDC and full-bridge converter. This converter topology ensures the non-reversal of output voltage hence it is preferred mostly for battery charging applications. In this work, photovoltaic (PV source is considered and the power balance in the system is achieved by means of distributed maximum power point tracking (DMPPT in the PV ports. The centralized controller is implemented using fuzzy logic controller (FLC and the performance is compared with conventional proportional integral (PI controller. The results offer useful information to obtain the desired output under line and load regulations. Experimental results are also provided to validate the simulation results.

  13. Self-Excited Single-Stage Power Factor Correction Driving Circuit for LED Lighting

    Directory of Open Access Journals (Sweden)

    Yong-Nong Chang

    2014-01-01

    Full Text Available This pa\tper proposes a self-excited single-stage high power factor LED lighting driving circuit. Being featured with power factor correction capability without needing any control devices, the proposed circuit structure is with low cost and suitable for commercial production. The power factor correction function is accomplished by using inductor in combination with a half-bridge quasi resonant converter to achieve active switching and yield out voltage regulation according to load requirement. Furthermore, the zero-voltage switching in the half-bridge converter can be attained to promote the overall performance efficiency of the proposed circuit. Finally, the validity and production availability of the proposed circuit will be verified as well.

  14. Design of resonant converter based DC power supply for RF amplifier

    International Nuclear Information System (INIS)

    Mohan, Kartik; Suthar, Gajendra; Dalicha, Hrushikesh; Agarwal, Rohit; Trivedi, R.G.; Mukherjee, Aparajita

    2017-01-01

    ITER require 20 MW of RF power to a large variety of plasmas in the Ion Cyclotron frequency range for heating and driving plasma current. Nine RF sources of 2.5MW RF power level each collectively will accomplish the above requirement. Each RF source consists of SSPA, driver and end stage, above which driver and end stage amplifier are tube (Tetrode/Diacrode) based which requires auxiliary DC power source viz. filament, screen grid and control grid DC power supply. DC power supply has some stringent requirements like low stored energy, fast turn off, and low ripple value, etc. This paper will focus only on Zero Current Switching (ZCS) resonant converter based buck converter. This can serve the purpose of control grid and screen grid DC power supply for above requirement. IGBT switch will be used at 20 kHz so as to lower the filter requirement hence low stored energy and ripple in the output voltage. ZCS operation will also assist us in reducing EMI/EMC effect. Design of resonant tank circuit is important aspect of the converter as it forms the backbone of the complete system and basis of selection of other important parameters as well hence mathematical model analysis with the help of circuit equations for various modes have been shown as a part of selection criteria. Peak current through the switch, duty cycle, switching frequency will be the design parameters for selecting resonant tank circuit

  15. SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS

    DEFF Research Database (Denmark)

    2009-01-01

    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end....... The first electronic circuit comprises terminals (AO, A1) for connecting a source or a load, at least one energy storage inductor (L) coupled in series with at least one of the first windings (T1a, T2a) of the power transformers (T1, T2), and for each power transformer (T1, T2), an arrangement of switches...

  16. Computer-aided analysis of power-electronic systems simulation of a high-voltage power converter

    International Nuclear Information System (INIS)

    Bordry, F.; Isch, H.W.; Proudlock, P.

    1987-01-01

    In the study of semiconductor devices, simulation methods play an important role in both the design of systems and the analysis of their operation. The authors describe a new and efficient computer-aided package program for general power-electronic systems. The main difficulty when taking into account non-linear elements, such as semiconductors, lies in determining the existence and the relations of the elementary sequences defined by the conduction or nonconduction of these components. The method does not require a priori knowledge of the state sequences of the semiconductor nor of the commutation instants, but only the circuit structure, its parameters and the commands to the controlled switches. The simulation program computes automatically both transient and steady-state waveforms for any circuit configuration. The simulation of a high-voltage power converter is presented, both for its steady-state and transient overload conditions. This 100 kV power converter (4 MW) will feed two klystrons in parallel

  17. Module-Integrated Power Converters Based on Universal Dock

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Patrick; Rodriguez, Fernando

    2015-03-13

    Solar power installations using alternating current photovoltaic (ACPV) modules have significant cost and performance advantages over systems using conventional solar modules and string inverters. ACPV modules have improved energy harvest due to module-level power point tracking and redundancy. More importantly, ACPV modules are easier and cheaper to install, lowering the total installed cost, indirect costs, and barriers to market entry. Furthermore, ACPV modules have communications and data logging capability, yielding module-level telemetry data that is useful in site diagnostics and other data applications. The products of these efforts were threefold. First, an advanced microinverter power topology was developed, modeled, simulated, and tested. Second, new microinverter enclosure concepts were developed and tested. Third, a new ACPV module prototype was constructed, combining the power topology and the enclosure concepts. SolarBridge filed for patents in each of these areas and is transitioning the project from a concept phase to full development.

  18. Four-junction AlGaAs/GaAs laser power converter

    Science.gov (United States)

    Huang, Jie; Sun, Yurun; Zhao, Yongming; Yu, Shuzhen; Dong, Jianrong; Xue, Jiping; Xue, Chi; Wang, Jin; Lu, Yunqing; Ding, Yanwen

    2018-04-01

    Four-junction AlGaAs/GaAs laser power converters (LPCs) with n+-GaAs/p+-Al0.37Ga0.63As heterostructure tunnel junctions (TJs) have been designed and grown by metal-organic chemical vapor deposition (MOCVD) for converting the power of 808 nm lasers. A maximum conversion efficiency η c of 56.9% ± 4% is obtained for cells with an aperture of 3.14 mm2 at an input laser power of 0.2 W, while dropping to 43.3% at 1.5 W. Measured current–voltage (I–V) characteristics indicate that the performance of the LPC can be further improved by increasing the tunneling current density of TJs and optimizing the thicknesses of sub-cells to achieve current matching in LPC. Project financially supported by the National Natural Science Foundation of China (No. 61376065) and Zhongtian Technology Group Co. Ltd.

  19. Observer design for DC/DC power converters with bilinear averaged model

    NARCIS (Netherlands)

    Spinu, V.; Dam, M.C.A.; Lazar, M.

    2012-01-01

    Increased demand for high bandwidth and high efficiency made full state-feedback control solutions very attractive to power-electronics community. However, full state measurement is economically prohibitive for a large range of applications. Moreover, state measurements in switching power converters

  20. Multiple second order generalized integrators for harmonic synchronization of power converters

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Luna, Alvaro; Etxeberría, Ion

    2009-01-01

    This paper presents a new frequency-adaptive synchronization method for grid-connected power converters which allows estimating not only the positive- and negativesequence components of the power signal at the fundamental frequency, but also other sequence components at multiple frequencies. The ...

  1. Soft switching buck-boost converter for photovoltaic power generation; Taiyoko hatsuden no tame no soft switching shokoatsu converter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. [Kyungnam University (Korea, Republic of)

    1996-10-27

    A soft switching method with small switching loss was proposed for the purpose of increasing the efficiency of a DC-DC boost converter which converted a DC current generated by solar cells to a variable DC current. Existing current converters are supplemented by using a snubber circuit around the switch so as to protect the switch by a hard switching action. However, with an increase of the output current, snubber loss is increased, reducing the efficiency. In order to solve this problem, the partial resonant switch method was applied to the converter; with this method of partially forming a resonant circuit only at the time of turning on/off of the switch, the switching loss was reduced through the soft switching, thereby making the proposed converter operate with high efficiency. Moreover, the resonant element of the partial resonant circuit using a snubber condenser, the energy accumulated in the condenser was regenerated on the power supply side without loss of snubber. With the regenerated energy, the proposed converter was provided with a smaller ratio of switching to use than the conventional converter. 4 refs., 7 figs., 1 tab.

  2. Proposal for the Award of a Contract for the Supply of the Power Units for LHC Thyristor Power Converters

    CERN Document Server

    2003-01-01

    This document concerns the award of a contract for the supply of 12 power units of thyristor power converters rated from 365 to 770 kW for the LHC. Following a market survey carried out among 98 firms in nineteen Member States, a call for tenders (IT-3003/SL/LHC) was sent on 25 October 2002 to six firms in four Member States. By the closing date, CERN had received five tenders from five firms in four Member States. The Finance Committee is invited to agree to the negotiation of a contract with OCEM (IT), the lowest bidder, for the supply of 12 power units of thyristor power converters for a total amount of 981 484 Swiss francs not subject to revision, with options for three additional units of the power part of thyristor power converters, for an additional amount of 249 681 Swiss francs, subject to revision for inflation from 1 August 2006, bringing the total amount to 1 231 165 Swiss francs. The firm has indicated the following distribution by country of the contract value covered by this adjudication propos...

  3. DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter

    Science.gov (United States)

    Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi

    2013-06-01

    Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.

  4. Direct switching control of DC-DC power electronic converters using hybrid system theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Lin, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wang, C. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wayne State Univ., Detroit, MI (United States). Div. of Engineering Technology

    2010-07-01

    A direct switching control (DSC) scheme for power electronics converters was described. The system was designed for use in both traditional and renewable energy applications as well as in electric drive vehicles. The proposed control scheme was based on a detailed hybrid system converter model that used model predictive control (MPC), piecewise affine (PWA) approximations and constrained optimal control methods. A DC-DC converter was modelled as a hybrid machine. Switching among different modes of the DC-DC converter were modelled as discrete events controlled by the hybrid controller. The modelling scheme was applied to a Buck converter. The DSC was used to control the switch of the power converter based on a hybrid machine model. Results of the study showed that the method can be used to regulate output voltage and inductor currents. The method also provides fast transient responses and effectively regulates both currents and voltage. The controller can be used to provide immediate responses to dynamic disturbances and output voltage fluctuations. 23 refs., 7 figs.

  5. The Application of Stationary VOC-PR with PLL for Grid side Converter-based Wind Power Generation System

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Li, Lijuan

    2010-01-01

    Voltage oriented control PR is combined with space vector modulation and phase locked loop to control the grid side converter in wind power generation system in this paper. First the mathematical models of grid side converter and LCL filter as well as grid are given. Then the control strategy...... of grid side converter-based wind power generation system is given in detail. Finally the simulation model consisting of the grid side converter wind power generation system is set up. The simulation results have verified that the control strategy is feasible to be used for control of gird currents......, active power, reactive power and DC-link voltage in wind power generation system. It has laid a good basis for the real system development....

  6. Grid Synchronization of Power Converters using Multiple Second Order Generalized Integrators

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Teodorescu, Remus; Candela, Ignacio

    2008-01-01

    This paper presents a new frequency-adaptive synchronization method for grid-connected power converters which allows estimating not only the positive- and negative- sequence components of the power signal at the fundamental frequency, but also other sequence components at higher frequencies. The ...

  7. Series Resonant Power Converter for Contactless Energy Transfer with Improved Efficiency

    NARCIS (Netherlands)

    Valtchev, S.S.

    2008-01-01

    The development of more efficient power converters is the most important and challenging task for Power Electronics specialists. In the same time, many currently existing or yet to appear future applications require full mechanical independence between the transmitter and receiver of the electrical

  8. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  9. Thermal loading of wind power converter considering dynamics of wind speed

    DEFF Research Database (Denmark)

    Baygildina, Elvira; Peltoniemi, Pasi; Pyrhönen, Olli

    2013-01-01

    The thermal loading of power semiconductors is a crucial performance related to the reliability and cost of the wind power converter. However, the thermal loading impacts by the variation of wind speeds have not yet been clarified, especially when considering the aerodynamic behavior of the wind...... turbines. In this paper, the junction temperatures in the wind power converter are studied under not only steady state, but also turbulent wind speed conditions. The study is based on a 1.5 MW direct-driven turbine system with aerodynamic model described by Unsteady Blade Element Momentum Method (BEMM......), and the thermal stress of power devices is investigated from the frequency spectrum point of view of wind speed. It is concluded that because of the strong inertia effects by the aerodynamic behavior of wind turbines, thermal stress of the semiconductors is relatively more stable and only influenced by the low...

  10. An analytical inductor design procedure for three-phase PWM converters in power factor correction applications

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Niroumand, Farideh Javidi; Haase, Frerk

    2015-01-01

    This paper presents an analytical method for designing the inductor of three-phase power factor correction converters (PFCs). The complex behavior of the inductor current complicates the inductor design procedure as well as the core loss and copper loss calculations. Therefore, this paper analyze...... to calculate the core loss in the PFC application. To investigate the impact of the dc link voltage level, two inductors for different dc voltage levels are designed and the results are compared.......This paper presents an analytical method for designing the inductor of three-phase power factor correction converters (PFCs). The complex behavior of the inductor current complicates the inductor design procedure as well as the core loss and copper loss calculations. Therefore, this paper analyzes...... circuit is used to provide the inductor current harmonic spectrum. Therefore, using the harmonic spectrum, the low and high frequency copper losses are calculated. The high frequency minor B-H loops in one switching cycle are also analyzed. Then, the loss map provided by the measurement setup is used...

  11. Shallow water effects on wave energy converters with hydraulic power take-off system

    Directory of Open Access Journals (Sweden)

    Ashank Sinha

    2016-12-01

    Full Text Available The effect of water depth on the power absorption by a single heaving point absorber wave energy converter, attached to a hydraulic power take-off system, is simulated and analysed. The wave energy flux for changing water depths is presented and the study is carried out at a location in the north-west Portuguese coast, favourable for wave power generation. This analysis is based on a procedure to modify the wave spectrum as the water depth reduces, namely, the TMA spectrum (Transformation spectrum. The present study deals with the effect of water depth on the spectral shape and significant wave heights. The reactive control strategy, which includes an external damping coefficient and a negative spring term, is used to maximize power absorption by the wave energy converter. The presented work can be used for making decisions regarding the best water depth for the installation of point absorber wave energy converters in the Portuguese nearshore.

  12. Low power very high frequency resonant converter with high step down ratio

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...

  13. Single Phase Passive Rectification Versus Active Rectification Applied to High Power Stirling Engines

    Science.gov (United States)

    Santiago, Walter; Birchenough, Arthur G.

    2006-01-01

    Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.

  14. Space Vector Modulation for an Indirect Matrix Converter with Improved Input Power Factor

    Directory of Open Access Journals (Sweden)

    Nguyen Dinh Tuyen

    2017-04-01

    Full Text Available Pulse width modulation strategies have been developed for indirect matrix converters (IMCs in order to improve their performance. In indirect matrix converters, the LC input filter is used to remove input current harmonics and electromagnetic interference problems. Unfortunately, due to the existence of the input filter, the input power factor is diminished, especially during operation at low voltage outputs. In this paper, a new space vector modulation (SVM is proposed to compensate for the input power factor of the indirect matrix converter. Both computer simulation and experimental studies through hardware implementation were performed to verify the effectiveness of the proposed modulation strategy.

  15. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    Science.gov (United States)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  16. Three-phase electronic power converter for photovoltaic system connected to power line; Conversor eletronico de potencia trifasico para sistema fotovoltaico conectado a rede eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Villalva, Marcelo Gradella

    2010-10-15

    This work is a contribution to the study of power converters for photovoltaic distributed generation systems. The main objective is to present the development and results of a three phase power converter for a grid-connected photovoltaic plant. The work presents experimental results and theoretical studies on the modeling and simulation of photovoltaic devices, regulation of the photovoltaic voltage, maximum power point tracking, and the modeling and control of a two-stage grid-connected power converter. (author)

  17. Multi-Input Converter with MPPT Feature for Wind-PV Power Generation System

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2013-01-01

    Full Text Available A multi-input converter (MIC to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.

  18. Method and system for a gas tube-based current source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  19. Design and development of microcontroller based programmable ramp generator for AC-DC converter for simulating decay power transient in experimental facility for nuclear power plants

    International Nuclear Information System (INIS)

    Srivastava, Gaurava Deep; Kulkarni, R.D.

    2015-01-01

    In nuclear power plants, fuel is subjected to a wide range of power and temperature transients during normal and abnormal conditions. The reactor setback and step-back power pattern, fast temperature profile occurred during Loss of Coolant Accident and decay power followed by shutdown of power plant are the typical transients in nuclear power plant. For a variety of reactor engineering and reactor safety related study, one needs to simulate these transients in experimental facility. In experimental facilities, high response AC-DC converters are used to handle these power and temperature transients safely in a controlled manner for generating a database which is utilized for design of thermal hydraulic system, development of computer codes, study of reliability of reactor safety system, etc. for nuclear power plants. The paper presents the methodology developed for simulating the typical reactor decay power transient in an experimental facility. The design and simulation of AC-DC power electronic converter of 3 MW capacity is also presented. The microcontroller based programmable ramp generator is designed and hardware implemented for feeding reference voltage to the closed loop control system of AC-DC converter for obtaining the decay power profile at the converter output. The typical decay power transient of the nuclear power plant is divided into several small power ramps for simulating the transient. The signal corresponding to each power ramp is generated by programmable ramp generator and fed to the comparator for generating control signal for the converter. The actual decay power transient obtained from the converter is compared with the theoretical decay power transient. (author)

  20. Performance evaluation of a high power DC-DC boost converter for PV applications using SiC power devices

    Science.gov (United States)

    Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad

    2016-09-01

    The development of Wide band gap (WBG) power devices has been attracted by many commercial companies to be available in the market because of their enormous advantages over the traditional Si power devices. An example of WBG material is SiC, which offers a number of advantages over Si material. For example, SiC has the ability of blocking higher voltages, reducing switching and conduction losses and supports high switching frequency. Consequently, SiC power devices have become the affordable choice for high frequency and power application. The goal of this paper is to study the performance of 4.5 kW, 200 kHz, 600V DC-DC boost converter operating in continuous conduction mode (CCM) for PV applications. The switching behavior and turn on and turn off losses of different switching power devices such as SiC MOSFET, SiC normally ON JFET and Si MOSFET are investigated and analyzed. Moreover, a detailed comparison is provided to show the overall efficiency of the DC-DC boost converter with different switching power devices. It is found that the efficiency of SiC power switching devices are higher than the efficiency of Si-based switching devices due to low switching and conduction losses when operating at high frequencies. According to the result, the performance of SiC switching power devices dominate the conventional Si power devices in terms of low losses, high efficiency and high power density. Accordingly, SiC power switching devices are more appropriate for PV applications where a converter of smaller size with high efficiency, and cost effective is required.

  1. Operation and thermal loading of three-level Neutral-Point-Clamped wind power converter under various grid faults

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Liserre, Marco

    2012-01-01

    In order to fulfill the continuous growing grid-side demands, the full-scale power converters are becoming more and more popular in the wind power application. Nevertheless, the more severe loading of the power semiconductor devices in the full-scale power converters, especially during Low Voltage...... Ride Through (LVRT) operation under grid faults, may compromise the reliability of the system and consequently further increase its cost. In this paper, the impact of various grid faults on a three-level Neutral-Point-Clamped (3L-NPC) grid-converter in terms of thermal loading of power semiconductor...

  2. Flicker Mitigation by Active Power Control of Variable-Speed Wind Turbines With Full-Scale Back-to-Back Power Converters

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Wang, Zhaoan

    2009-01-01

    /EMTDC. Flicker emission of this system is investigated. Reactive power compensation is mostly adopted for flicker mitigation. However, the flicker mitigation technique shows its limits, when the grid impedance angle is low in some distribution networks. A new method of flicker mitigation by controlling active...... power is proposed. It smoothes the 3p active power oscillations from wind shear and tower shadow effects of the wind turbine by varying the dc-link voltage of the full-scale converter. Simulation results show that damping the 3p active power oscillation by using the flicker mitigation controller...... is an effective means for flicker mitigation of variable-speed wind turbines with full-scale back-to-back power converters during continuous operation....

  3. A Five-Level H-Bridge STATCOM for an Off-Grid PV Solar Farm under Two Controllers PI and PIλ-MPC Hybrid

    OpenAIRE

    Mengi, Onur Ozdal

    2018-01-01

    Investigations were presented in order to eliminate the reactive power on microgrid loads fed by an off-grid and mid-power photovoltaic solar energy system (PVSES) with a static synchronous compensator (STATCOM) device. The electric network is specifically characterized by P-Q loads, ambient temperature, and widely variable solar radiation levels. Two main innovations are developed. Firstly, the STATCOM apparatus is a 5-level H-bridge inverter with capacitances as load and must totally compen...

  4. Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads

    Science.gov (United States)

    Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique

    Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.

  5. Hybrid Modulation Scheme for Cascaded H-Bridge Inverter Cells ...

    African Journals Online (AJOL)

    This work proposes a switching technique for cascaded H-Bridge (CHB) cells. Single carrier Sinusoidal PWM (SCSPWM) scheme is employed in the generation of the gating signals. A sequential switching and base PWM circulation schemes are presented for this fundamental cascaded multilevel inverter topology.

  6. Research on Two-channel Interleaved Two-stage Paralleled Buck DC-DC Converter for Plasma Cutting Power Supply

    DEFF Research Database (Denmark)

    Yang, Xi-jun; Qu, Hao; Yao, Chen

    2014-01-01

    As for high power plasma power supply, due to high efficiency and flexibility, multi-channel interleaved multi-stage paralleled Buck DC-DC Converter becomes the first choice. In the paper, two-channel interleaved two- stage paralleled Buck DC-DC Converter powered by three-phase AC power supply...

  7. Design of six pulse bridge multiplication converter model for current harmonic elimination of three phase ac-dc converter

    International Nuclear Information System (INIS)

    Soomro, M.A.; Helepoto, I.A.

    2014-01-01

    The recent development of semiconductor technology and wide spread use of power electronic devices in power system have open the era of the power system harmonics due to increasing penetration of non-linear loads. Harmonics are widely admitted as most important issues of power quality which must be eliminated to maintain power system reliability. The tolerable THD (Total Harmonic Distortion) values must be bounded in well-defined limits recognized by IEEE-519 standard. In this work, in order to eliminate the current harmonics produced by non-linear loads, six pulse multiplication converter technique in conjunction with STSSHPE (Single Tuned Shunt Harmonic Passive Filter) is proposed. The proposed model has the capacity of harmonic cancellation of the dominant 3rd order harmonics. Besides that, the 5th and 7th order harmonics are also reduced to a diminishing level. The hardware model has been experimentally tested by PQA (Power Quality Analyzer) and simulation model is designed using MATLAB software. The acquired results have been measured by considering THD values in terms of current and voltage. Furthermore, they have been compared against IEEE-519 performance standards. The prosed model, successfully bounds the total harmonic distortion under defined limits by IEEE-519 standard. (author)

  8. Gas supply triggers development at Connaught Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Jeffs, E.

    Malaysia aims to become a fully developed country by the year 2020, which means a steady 20% annual rate of growth of electricity demand to the end of the century. Much of this growth is centered in the area around Kuala Lumpur so that Tenaga Nasional Bhd (Tenaga) urgently needs to bring new generating capacity into the capital area. Access to gas on the west coast of the malay peninsula has given Tenaga Nasional Berhad the opportunity to convert their Connaught Bridge power station to a combined cycle and to install four open-cycle gas turbines. The expansion of Connaught Bridge is the first of several projects which are being developed. In early 1991, as site preparation was getting under way for the combined cycle, Tenaga ordered eight gas turbines for peak load duty from NEI-ABB Gas Turbines. Four of these are the 150 MW Type GT13E with water injection for NOx control which have been installed in parallel with the construction of the steam cycle on the Connaught Bridge site. At sea level and 32[degrees]C site ambient, these gas turbines are rated 130MW on gas for a total 520MW of peak load capacity. The last of these was synchronized on 12 October last year. There are no plans to convert these to combined cycles.

  9. A Control Method of Current Type Matrix Converter for Plasma Control Coil Power Supply

    International Nuclear Information System (INIS)

    Shimada, K.; Matsukawa, M.; Kurihara, K.; Jun-ichi Itoh

    2006-01-01

    In exploration to a tokamak fusion reactor, the control of plasma instabilities of high β plasma such as neoclassical tearing mode (NTM), resistive wall mode (RWM) etc., is the key issue for steady-state sustainment. One of the proposed methods to avoid suppressing RWM is that AC current having a phase to work for reduction the RWM growth is generated in a coil (sector coil) equipped spirally on the plasma vacuum vessel. To stabilize RWM, precise and fast real-time feedback control of magnetic field with proper amplitude and frequency is necessary. This implies that an appropriate power supply dedicated for such an application is expected to be developed. A matrix converter as one of power supply candidates for this purpose could provide a solution The matrix converter, categorized in an AC/AC direct converter composed of nine bi-directional current switches, has a great feature that a large energy storage element is unnecessary in comparison with a standard existing AC/AC indirect converter, which is composed of an AC/DC converter and a DC/AC inverter. It is also advantageous in cost and size of its applications. Fortunately, a voltage type matrix converter has come to be available at the market recently, while a current type matrix converter, which is advantageous for fast control of the large-inductance coil current, has been unavailable. On the background above mentioned, we proposed a new current type matrix converter and its control method applicable to a power supply with fast response for suppressing plasma instabilities. Since this converter is required with high accuracy control, the gate control method is adopted to three-phase switching method using middle phase to reduce voltage and current waveforms distortion. The control system is composed of VME-bus board with DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) for high speed calculation and control. This paper describes the control method of a current type matrix converter

  10. Power Generation Using Mechanical Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Srinivasan Chandrasekaran

    2012-03-01

    Full Text Available Ocean wave energy plays a significant role in meeting the growing demand of electric power. Economic, environmental, and technical advantages of wave energy set it apart from other renewable energy resources. Present study describes a newly proposed Mechanical Wave Energy Converter (MEWC that is employed to harness heave motion of floating buoy to generate power. Focus is on the conceptual development of the device, illustrating details of component level analysis. Employed methodology has many advantages such as i simple and easy fabrication; ii easy to control the operations during rough weather; and iii low failure rate during normal sea conditions. Experimental investigations carried out on the scaled model of MWEC show better performance and its capability to generate power at higher efficiency in regular wave fields. Design Failure Mode and Effect Analysis (FMEA shows rare failure rates for all components except the floating buoy.

  11. Power loss benchmark of nine-switch converters in three-phase online-UPS application

    DEFF Research Database (Denmark)

    Qin, Zian; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    Three-phase online-UPS is an appropriate application for the nine-switch converter, where its high voltage stress of the power device caused by the reduced switch feature can be relieved significantly. Its power loss and loss distribution still have the flexibility from the control point of view...... as parameters like modulation index and phase angle of the load are taken into account. The benchmark of power loss will become a guidance for the users to make best use of the advantages and bypass the disadvantages of nine-switch converters. The results are finally verified on a 1.5 kW prototype....

  12. Electric converters of electromagnetic strike machine with battery power

    Science.gov (United States)

    Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.

    2018-03-01

    At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.

  13. A Reconfigurable Series Resonant DC-DC Converter for Wide-Input and Wide-Output Voltages

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Qin, Zian

    2017-01-01

    This paper proposes a dual-bridge based LC series resonant dc-dc converter. The input inverter unit incorporates two bridge structures, i.e., a full-bridge inverter and a half-bridge inverter. For the output rectifier, it can be a full-bridge rectifier or an asymmetric half-bridge rectifier....... Different from the conventional resonant converter, a fixed-frequency PWM control is employed which makes the optimization of magnetic components easier. The primary-side switches can achieve ZVS and the secondary-side diodes turn off with ZCS. In addition, the root-mean-square (RMS) values...... of the transformer currents do not significantly vary with respect to the voltage variation. Therefore, this converter can maintain high efficiency over a wide voltage range. The topology and operating principle are firstly described. Then the dc voltage gain and the RMS current characteristics are detailed. Finally...

  14. Fractional-order control and simulation of wind energy systems with PMSG/full-power converter topology

    International Nuclear Information System (INIS)

    Melicio, R.; Mendes, V.M.F.; Catalao, J.P.S.

    2010-01-01

    This paper presents a new integrated model for the simulation of wind energy systems. The proposed model is more realistic and accurate, considering a variable-speed wind turbine, two-mass rotor, permanent magnet synchronous generator (PMSG), different power converter topologies, and filters. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with PMSG/full-power converter topology, based on fractional-order controllers. Comprehensive simulation studies are carried out with matrix and multilevel power converter topologies, in order to adequately assert the system performance in what regards the quality of the energy injected into the electric grid. Finally, conclusions are duly drawn.

  15. Fractional-order control and simulation of wind energy systems with PMSG/full-power converter topology

    Energy Technology Data Exchange (ETDEWEB)

    Melicio, R.; Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-06-15

    This paper presents a new integrated model for the simulation of wind energy systems. The proposed model is more realistic and accurate, considering a variable-speed wind turbine, two-mass rotor, permanent magnet synchronous generator (PMSG), different power converter topologies, and filters. Additionally, a new control strategy is proposed for the variable-speed operation of wind turbines with PMSG/full-power converter topology, based on fractional-order controllers. Comprehensive simulation studies are carried out with matrix and multilevel power converter topologies, in order to adequately assert the system performance in what regards the quality of the energy injected into the electric grid. Finally, conclusions are duly drawn. (author)

  16. Investigating Enhancement Mode Gallium Nitride Power FETs in High Voltage, High Frequency Soft Switching Converters

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    An increased attention has been detected to develop smaller and lighter high voltage power converters in the range of 50V to 400V domain. The main applications for these converters are mainly focused for Power over Ethernet (PoE), LED lighting and AC adapters. This work will discuss a study...

  17. Parallel combination of FC and UC for vehicular power systems using a multi-input converter-based power interface

    Energy Technology Data Exchange (ETDEWEB)

    Vural, B.; Erdinc, O.; Uzunoglu, M. [Department of Electrical Engineering, Yildiz Technical University, Istanbul 34349 (Turkey)

    2010-12-15

    Fuel cells (FC) are widely recognized as one of the most promising technologies to meet future power requirements of vehicular applications. However, a FC system combined with an energy storage system (ESS) can perform better for vehicle propulsion as considering several points. As the additional ESS can fulfill the transient power demand fluctuations, the FC system can be downsized to fit the base power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. Interfacing of traction drive requirements with characteristics and modes of operation of on-board generation units and ESSs calls for suitable power electronic converter configuration. In this paper, a FC/UC hybrid vehicular power system using a multi-input converter-based power interface is proposed. The applied power interface topology ensures the active power sharing and DC link voltage stabilization for the hybrid vehicular system. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB registered, Simulink registered and SimPowerSystems registered environments. (author)

  18. Parallel combination of FC and UC for vehicular power systems using a multi-input converter-based power interface

    International Nuclear Information System (INIS)

    Vural, B.; Erdinc, O.; Uzunoglu, M.

    2010-01-01

    Fuel cells (FC) are widely recognized as one of the most promising technologies to meet future power requirements of vehicular applications. However, a FC system combined with an energy storage system (ESS) can perform better for vehicle propulsion as considering several points. As the additional ESS can fulfill the transient power demand fluctuations, the FC system can be downsized to fit the base power demand without facing peak loads. Besides, braking energy can be recovered by the ESS. Interfacing of traction drive requirements with characteristics and modes of operation of on-board generation units and ESSs calls for suitable power electronic converter configuration. In this paper, a FC/UC hybrid vehicular power system using a multi-input converter-based power interface is proposed. The applied power interface topology ensures the active power sharing and DC link voltage stabilization for the hybrid vehicular system. The mathematical and electrical models of the hybrid vehicular system are developed in detail and simulated using MATLAB (registered) , Simulink (registered) and SimPowerSystems (registered) environments.

  19. Performance Comparison between ĆUK and SEPIC Converters for Maximum Power Point Tracking Using Incremental Conductance Technique in Solar Power Applications

    OpenAIRE

    James Dunia; Bakari M. M. Mwinyiwiwa

    2013-01-01

    Photovoltaic (PV) energy is one of the most important energy resources since it is clean, pollution free, and endless. Maximum Power Point Tracking (MPPT) is used in photovoltaic (PV) systems to maximize the photovoltaic output power, irrespective the variations of temperature and radiation conditions. This paper presents a comparison between Ćuk and SEPIC converter in maximum power point tracking (MPPT) of photovoltaic (PV) system. In the paper, advantages and disadvantages of both converter...

  20. Distributed Generation Using Indirect Matrix Converter in Reverse Power Mode

    DEFF Research Database (Denmark)

    Liu, Xiong; Chiang Loh, Poh; Wang, Peng

    2013-01-01

    Indirect matrix converter (IMC) is an alternative for ac/ac energy conversion, usually operated with a voltage stepped-down gain of only 0.866. For applications like distribution generation where voltage-boost functionality is required, the traditional style of operating the IMC is therefore...... not appropriate. Like most power converters, the operation of the IMC can surely be reversed to produce a boosted gain, but so far its relevant control principles have not been discussed. These challenges are now addressed in this paper with distributed generation suggested as a potential application. Simulation...

  1. Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Asmussen, Magnus Færing; Bech, Michael Møller

    2018-01-01

    Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how...... the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how...

  2. Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Enrique Vidal

    2013-08-01

    Full Text Available The Wavestar Wave Energy Converter (WEC is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.

  3. Design, operation and control of series-connected power converters for offshore wind parks

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Alejandro Garces

    2012-07-01

    Offshore wind farms need to develop technologies that fulfill three main objectives:Efficiency, power density and reliability. The purpose of this thesis is to study an HVDC transmission system based on series connection of the turbines which theoretically meet these three objectives. A new topology of matrix converter operated at high frequency is proposed. This converter is studied using different modulation algorithms. Simulation and experimental results demonstrated that the converter can be operated as a current source converter with high efficiency. An optimal control based on a linear quadratic regulator is propose dto control the matrix converter as well as the converter placed on shore. Results demonstrated the high performance of this type of control and its simplicity for implementation. An stationary state study based on non-linear programming and Montecarlo simulation was carried out to determine the performance of the concept for long-term operation. Series connection is an efficient technology if and only if the differences in the effective wind velocity are small. This aspect limits the number of wind turbines that can be connected in series, since a numerous number of turbines will lead to high covariances in the distribution of the wind. A complementary study about active filter and reactive power compensation was carried out using an optimization-based algorithm. (Author)

  4. Grid Connected Power Supplies for Particle Accelerator Magnets

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup

    Power supplies play a large role in particle accelerators, for creating, accelerating, steering and shaping the beam. This thesis covers the power supplies for steering and shaping the beam, namely the magnet power supplies. These power supplies have a special set of requirements regarding output...... on this topology is constructed using a single power module on the grid side of the transformer, consisting of a boost rectifier and a dual half-bridge isolated DC/DC converter. It is shown that it is possible to create a power supply using a single module and that this approach can lead to improved layout...... and smaller converter size. A high efficiency converter based on Silicon Carbide switching devices is also presented exhibiting above 96 % efficiency for the entire power range. Finally reliability issues are considered as the reliability of a particle accelerator supply is of utmost importance. Particle...

  5. Using mathematical software to design power electronic converters

    Science.gov (United States)

    Hinov, Nikolay; Hranov, Tsveti

    2017-12-01

    In the paper is presented mathematical software, which was used for design of power electronic devices. Examined to different example, which are applied to designing electronic converters. In this way, it is possible to play different combinations of the circuit elements by simple means, thus optimizing according to certain criteria and limitations. Free software with a simple and intuitive interface is selected. No special user training is required to work with it and no further training is required. The use of mathematical software greatly facilitates the design, assists and makes it attractive and accessible to a wider range of students and specialists in power electronics training.

  6. Lifetime Estimation of Electrolytic Capacitors in Fuel Cell Power Converter at Various Confidence Levels

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    DC capacitors in power electronic converters are a major constraint on improvement of the power density and the reliability. In this paper, according to the degradation data of tested capacitors, the lifetime model of the component is analyzed at various confidence levels. Then, the mission profile...... based lifetime expectancy of the individual capacitor and the capacitor bank is estimated in a fuel cell backup power converter operating in both standby mode and operation mode. The lifetime prediction of the capacitor banks at different confidence levels is also obtained....

  7. Advanced structures for grid Synchronization of power converters in distributed generation applications

    DEFF Research Database (Denmark)

    Luna, A.; Rocabert, J.; Candela, I.

    2012-01-01

    The Transmission System Operators are specially concerned about the Low Voltage Ride Through requirements of distributed generation power plants. Solutions based on the installation of STATCOMs and DVRs, as well as on advanced control functionalities for the existing power converters have contrib...

  8. A Multicell Converter Model of DBD Plasma Discharges

    International Nuclear Information System (INIS)

    Flores-Fuentes, A. A.; Piedad-Beneitez, A. de la; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia A, R.; Barocio, S. R.; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.

    2006-01-01

    A compact Matlab model of plasma discharges in a DBD reactor consisting of two parallel electrode plates with a small gap and a thin dielectric sheet between them is reported. Its DBD plasma is modelled as a voltage controlled current-source switched on when the voltage across the gap exceeds the breakdown voltage. A three cell voltage-source inverter, configured in half-bridge, has been used as a power supply. This configuration has an excellent performance when operating as an open-loop. The distribution of total energy between a large number of low power converters proofs to be advantageous, allowing an efficient high power drive. Simulation results show that the current source and its output current tend to follow an exponential behaviour. A phenomenological characteristic of the voltage-current behaviour of DBD is then described by power laws with different voltage exponent function values

  9. Electrical performance characteristics of high power converters for space power applications. Final report, 1 January 1988-30 September 1989

    International Nuclear Information System (INIS)

    Stuart, T.A.; King, R.J.

    1989-09-01

    The first goal of this project was to investigate various converters that would be suitable for processing electric power derived from a nuclear reactor. The implementation is indicated of a 20 kHz system that includes a source converter, a ballast converter, and a fixed frequency converter for generating the 20 kHz output. This system can be converted to dc simply by removing the fixed frequency converter. This present study emphasized the design and testing of the source and ballast converters. A push-pull current-fed (PPCF) design was selected for the source converter, and a 2.7 kW version of this was implemented using three 900 watt modules in parallel. The characteristic equation for two converters in parallel was derived, but this analysis did not yield any experimental methods for measuring relative stability. The three source modules were first tested individually and then in parallel as a 2.7 kW system. All tests proved to be satisfactory; the system was stable; efficiency and regulation were acceptable; and the system was fault tolerant. The design of a ballast-load converter, which was operated as a shunt regulator, was investigated. The proposed power circuit is suitable for use with BJTs because proportional base drive is easily implemented. A control circuit which minimizes switching frequency ripple and automatically bypasses a faulty shunt section was developed. A nonlinear state-space-averaged model of the shunt regulator was developed and shown to produce an accurate incremental (small-signal) dynamic model, even though the usual state-space-averaging assumptions were not met. The nonlinear model was also shown to be useful for large-signal dynamic simulation using PSpice

  10. Reliability of Capacitors for DC-Link Applications in Power Electronic Converters

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede

    2014-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of dc link in power electronic converters...... from two aspects: 1) reliability-oriented dc-link design solutions; 2) conditioning monitoring of dc-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capacitors suitable for the applications are also discussed as a basis to understand the physics......-of-failure. This review serves to provide a clear picture of the state-of-the-art research in this area and to identify the corresponding challenges and future research directions for capacitors and their dc-link applications....

  11. Impact of Converter Interfaced Generation and Load on Grid Performance

    Science.gov (United States)

    Ramasubramanian, Deepak

    Alternate sources of energy such as wind, solar photovoltaic and fuel cells are coupled to the power grid with the help of solid state converters. Continued deregulation of the power sector coupled with favorable government incentives has resulted in the rapid growth of renewable energy sources connected to the distribution system at a voltage level of 34.5kV or below. Of late, many utilities are also investing in these alternate sources of energy with the point of interconnection with the power grid being at the transmission level. These converter interfaced generation along with their associated control have the ability to provide the advantage of fast control of frequency, voltage, active, and reactive power. However, their ability to provide stability in a large system is yet to be investigated in detail. This is the primary objective of this research. In the future, along with an increase in the percentage of converter interfaced renewable energy sources connected to the transmission network, there exists a possibility of even connecting synchronous machines to the grid through converters. Thus, all sources of energy can be expected to be coupled to the grid through converters. The control and operation of such a grid will be unlike anything that has been encountered till now. In this dissertation, the operation and behavior of such a grid will be investigated. The first step in such an analysis will be to build an accurate and simple mathematical model to represent the corresponding components in commercial software. Once this bridge has been crossed, conventional machines will be replaced with their solid state interfaced counterparts in a phased manner. At each stage, attention will be devoted to the control of these sources and also on the stability performance of the large power system. This dissertation addresses various concerns regarding the control and operation of a futuristic power grid. In addition, this dissertation also aims to address the issue

  12. A Simple and Universal Resistive-Bridge Sensors Interface

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2011-02-01

    Full Text Available Resistive-bridge sensors are widely used in various sensor systems. There are many sensor signal conditioners from different manufacturers for such sensing elements. However, no one existing on the modern market integrated converter for resistive bridge sensors can work with both: resistive-bridge sensing elements and resistive-to-frequency and -duty-cycle converters’ outputs. A proposed and described in the article universal interface for resistive-bridge sensing elements and bridge-output-to-frequency and/or duty cycle converters based on the designed Universal Sensors and Transducers Interface (USTI integrated. It is based on a simple, cost effective three-point measuring technique and does not require any additional active components. The USTI IC is realized in a standard CMOS technology. The active supply current at operating voltage +4.5 V and clock frequency 20 MHz is not more than 9.5 mA This paper reports experimental results with a strain gauges bridge emulator and differential pressure resistive bridge sensor SX30GD2.

  13. Tuning of Passivity-Preserving Controllers for Switched-Mode Power Converters

    NARCIS (Netherlands)

    Jeltsema, Dimitri; Scherpen, Jacquelien M.A.

    2004-01-01

    Nonlinear passivity-based control (PBC) algorithms for power converters have proved to be an interesting alternative to other, mostly linear, control techniques. The control objective is usually achieved through an energy reshaping process and by injecting damping to modify the dissipation structure

  14. Is the east-west power bridge economic?

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    At the latest conference of the East-West Energy Bridge project in Warsaw on October 24-25, 1995, the majority opinion concluded that the vast trans-European hvdc network proposed for operation in 2010 could be economically financed and operated in spite of reservations by some German utilities. Anatoliy Dyakov, president of the Russian UPS (Unified Power System), recently said that Russia would shortly start building the line from Smolensk to Kaliningrad as the first stage of this project. (author)

  15. A novel wireless power and data transmission AC to DC converter for an implantable device.

    Science.gov (United States)

    Liu, Jhao-Yan; Tang, Kea-Tiong

    2013-01-01

    This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz.

  16. Model based design of efficient power take-off systems for wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.

    2011-01-01

    The Power Take-Off (PTO) is the core of a Wave Energy Converter (WECs), being the technology converting wave induced oscillations from mechanical energy to electricity. The induced oscillations are characterized by being slow with varying frequency and amplitude. Resultantly, fluid power is often...... an essential part of the PTO, being the only technology having the required force densities. The focus of this paper is to show the achievable efficiency of a PTO system based on a conventional hydro-static transmission topology. The design is performed using a model based approach. Generic component models...

  17. Catastrophic Failure and Fault-Tolerant Design of IGBT Power Electronic Converters - An Overview

    DEFF Research Database (Denmark)

    Wu, Rui; Blaabjerg, Frede; Wang, Huai

    2013-01-01

    Reliability is one of the key issues for the application of Insulated Gate Bipolar Transistors (IGBTs) in power electronic converters. Many efforts have been devoted to the reduction of IGBT wear out failure induced by accumulated degradation and catastrophic failure triggered by single-event ove......Reliability is one of the key issues for the application of Insulated Gate Bipolar Transistors (IGBTs) in power electronic converters. Many efforts have been devoted to the reduction of IGBT wear out failure induced by accumulated degradation and catastrophic failure triggered by single...

  18. Fault Ride-through Capability Enhancement of Voltage Source Converter-High Voltage Direct Current Systems with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    Md Shafiul Alam

    2017-11-01

    Full Text Available This paper proposes the use of bridge type fault current limiters (BFCLs as a potential solution to reduce the impact of fault disturbance on voltage source converter-based high voltage DC (VSC-HVDC systems. Since VSC-HVDC systems are vulnerable to faults, it is essential to enhance the fault ride-through (FRT capability with auxiliary control devices like BFCLs. BFCL controllers have been developed to limit the fault current during the inception of system disturbances. Real and reactive power controllers for the VSC-HVDC have been developed based on current control mode. DC link voltage control has been achieved by a feedback mechanism such that net power exchange with DC link capacitor is zero. A grid-connected VSC-HVDC system and a wind farm integrated VSC-HVDC system along with the proposed BFCL and associated controllers have been implemented in a real time digital simulator (RTDS. Symmetrical three phase as well as different types of unsymmetrical faults have been applied in the systems in order to show the effectiveness of the proposed BFCL solution. DC link voltage fluctuation, machine speed and active power oscillation have been greatly suppressed with the proposed BFCL. Another significant feature of this work is that the performance of the proposed BFCL in VSC-HVDC systems is compared to that of series dynamic braking resistor (SDBR. Comparative results show that the proposed BFCL is superior over SDBR in limiting fault current as well as improving system fault ride through (FRT capability.

  19. Tidal Energy Conversion Installation at an Estuarine Bridge Site: Resource Evaluation and Energy Production Estimate

    Science.gov (United States)

    Wosnik, M.; Gagnon, I.; Baldwin, K.; Bell, E.

    2015-12-01

    The "Living Bridge" project aims to create a self-diagnosing, self-reporting "smart bridge" powered by a local renewable energy source, tidal energy - transforming Memorial Bridge, a vertical lift bridge over the tidal Piscataqua River connecting Portsmouth, NH and Kittery, ME, into a living laboratory for researchers, engineers, scientists, and the community. The Living Bridge project includes the installation of a tidal turbine at the Memorial Bridge. The energy converted by the turbine will power structural health monitoring, environmental and underwater instrumentation. Utilizing locally available tidal energy can make bridge operation more sustainable, can "harden" transportation infrastructure against prolonged grid outages and can demonstrate a prototype of an "estuarine bridge of the future". A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers (ADCP) at two locations: near the planned deployment location in 2013-14 for 123 days and mid-channel in 2007 for 35 days. Data were evaluated to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. The target deployment site exhibited significantly more energetic ebb tides than flood tides, which can be explained by the local bathymetry of the tidal estuary. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP "bin" vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin

  20. 1 GHz GaAs Buck Converter for High Power Amplifier Modulation Applications

    NARCIS (Netherlands)

    Busking, E.B.; Hek, A.P. de; Vliet, F.E. van

    2012-01-01

    A fully integrated 1 GHz buck converter output stage, including on-chip inductor and DC output filtering has been realized, in a standard high-voltage breakdown GaAs MMIC technology. This is a significant step forward in designing highspeed power control of supply-modulated HPAs (high power

  1. Loss Performance Analysis of an Isolated Power Supply for Ultrafast Tracking Converters

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the loss performance analysis of an isolated power supply that is designed for ultra-fast tracking converters. The results of the analysis provide insights into the operation of the proposed power supply, how each physical component contributes to the total loss, and how its...

  2. Design and control of a class of multiphase series-resonant power converters

    NARCIS (Netherlands)

    Huisman, H.

    1992-01-01

    Starting in the early sixties, resonant power converters have been developed in order to overcome the restrictions caused by switching losses in power semiconductors. Due to the presence of a resonant circuit, values for the di/dt applied to the semiconductors can be limited. Consequently, switching

  3. Shear Behavior of Corrugated Steel Webs in H Shape Bridge Girders

    Directory of Open Access Journals (Sweden)

    Qi Cao

    2015-01-01

    Full Text Available In bridge engineering, girders with corrugated steel webs have shown good mechanical properties. With the promotion of composite bridge with corrugated steel webs, in particular steel-concrete composite girder bridge with corrugated steel webs, it is necessary to study the shear performance and buckling of the corrugated webs. In this research, by conducting experiment incorporated with finite element analysis, the stability of H shape beam welded with corrugated webs was tested and three failure modes were observed. Structural data including load-deflection, load-strain, and shear capacity of tested beam specimens were collected and compared with FEM analytical results by ANSYS software. The effects of web thickness, corrugation, and stiffening on shear capacity of corrugated webs were further discussed.

  4. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    Science.gov (United States)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  5. The rotating converter GKN II starts operation

    International Nuclear Information System (INIS)

    Jergas, E.

    1989-01-01

    At the beginning of 1989 the energy supply and consumption of the 110-kV-railway mains has changed considerably with starting the rotating converter of the German Federal Railways (DB) in the joint nuclear power station Neckar GmbH (GKN) block II. A description is given of the planned utilization of the rotating converters at baseload operation and possibilities for optimal energy use are shown. (orig.) [de

  6. Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies

    Energy Technology Data Exchange (ETDEWEB)

    Enrique, J.M.; Duran, E.; Andujar, J.M. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain); Sidrach-de-Cardona, M. [Departamento de Fisica Aplicada, II, Universidad de Malaga (Spain)

    2007-01-15

    The operating point of a photovoltaic generator that is connected to a load is determined by the intersection point of its characteristic curves. In general, this point is not the same as the generator's maximum power point. This difference means losses in the system performance. DC/DC converters together with maximum power point tracking systems (MPPT) are used to avoid these losses. Different algorithms have been proposed for maximum power point tracking. Nevertheless, the choice of the configuration of the right converter has not been studied so widely, although this choice, as demonstrated in this work, has an important influence in the optimum performance of the photovoltaic system. In this article, we conduct a study of the three basic topologies of DC/DC converters with resistive load connected to photovoltaic modules. This article demonstrates that there is a limitation in the system's performance according to the type of converter used. Two fundamental conclusions are derived from this study: (1) the buck-boost DC/DC converter topology is the only one which allows the follow-up of the PV module maximum power point regardless of temperature, irradiance and connected load and (2) the connection of a buck-boost DC/DC converter in a photovoltaic facility to the panel output could be a good practice to improve performance. (author)

  7. Rf-to-dc power converters for wireless powering

    KAUST Repository

    Ouda, Mahmoud Hamdy

    2016-12-01

    Various examples are provided related to radio frequency (RF) to direct current (DC) power conversion. In one example, a RF-to-DC converter includes a fully cross-coupled rectification circuit including a pair of forward rectifying transistors and a feedback circuit configured to provide feedback bias signals to gates of the pair of forward rectifying transistors via feedback branch elements. In another example, a method includes receiving a radio frequency (RF) signal; rectifying the RF signal via a fully cross-coupled rectification circuit including a pair of forward rectifying transistors; and providing a DC output voltage from an output connection of the fully cross-coupled rectification circuit, where gating of the pair of forward rectifying transistors is controlled by feedback bias signals provided to gates of the pair of forward rectifying transistors via feedback branch elements.

  8. Analysis and Mitigation of Dead Time Harmonics in the Single-Phase Full-Bridge PWM Converters with Repetitive Controllers

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Wang, Huai

    2018-01-01

    In order to prevent the power switching devices (e.g., the Insulated-Gate-Bipolar-Transistor, IGBT) from shoot-through in voltage source converters during a switching period, the dead time is added either in the hardware driver circuits of the IGBTs or implemented in software in Pulse-Width Modul......In order to prevent the power switching devices (e.g., the Insulated-Gate-Bipolar-Transistor, IGBT) from shoot-through in voltage source converters during a switching period, the dead time is added either in the hardware driver circuits of the IGBTs or implemented in software in Pulse...

  9. Structural Reliability Methods for Wind Power Converter System Component Reliability Assessment

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Wind power converter systems are essential subsystems in both off-shore and on-shore wind turbines. It is the main interface between generator and grid connection. This system is affected by numerous stresses where the main contributors might be defined as vibration and temperature loadings....... The temperature variations induce time-varying stresses and thereby fatigue loads. A probabilistic model is used to model fatigue failure for an electrical component in the power converter system. This model is based on a linear damage accumulation and physics of failure approaches, where a failure criterion...... is defined by the threshold model. The attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Structural Reliability approaches are used to incorporate model, physical and statistical uncertainties. Reliability estimation by means of structural...

  10. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    Science.gov (United States)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  11. A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range

    Directory of Open Access Journals (Sweden)

    Wenzheng Xu

    2017-10-01

    Full Text Available Phase-shifted converters are practically important to provide high conversion efficiencies through soft-switching techniques. However, the limitation on a resonant inductor current in the converters often leads to a non-fulfillment of the requirement of minimum load current. This paper presents a new power electronics control technique to enable the dual features of bi-directional power flow and an extended load range for soft-switching in phase-shift-controlled DC-DC converters. The proposed technique utilizes two identical full bridge converters and inverters in conjunction with a new control logic for gate-driving signals to facilitate both Zero Current Switching (ZCS and Zero Voltage Switching (ZVS in a single phase-shift-controlled DC-DC converter. The additional ZCS is designed for light load conditions at which the minimum load current cannot be attained. The bi-directional phase-shift-controlled DC-DC converter can implement the function of synchronous rectification. Its fast dynamic response allows for quick energy recovery during the regenerative braking of traction systems in electrified trains.

  12. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    Science.gov (United States)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  13. An active trap filter for high-power voltage source converters

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Loh, Poh Chiang

    2015-01-01

    This paper proposes a power electronic based device to actively trap the switching current ripples for highpower converters. Control principle and system design of the active trap filter are discussed first. Comparisons of the active trap filter with LCL and LLCL filters are then carried out...

  14. Guest Editorial Special Section on Systems of Power Converters: Design, Modeling, Control, and Implementation

    DEFF Research Database (Denmark)

    Liu, Wenxin; Guerrero, Josep M.; Kim, Jang Mok

    2017-01-01

    In this Special Section on Systems of Power Converters: Design, Modeling, Control, and Implementation, we have 11 high-quality papers approved for publication that cover the following three topics. 1) Converter Design and Operation. 2) Subsystem-Level Applications. 3) System-Level Applications...

  15. A Standalone Solar Photovoltaic Power Generation using Cuk Converter and Single Phase Inverter

    Science.gov (United States)

    Verma, A. K.; Singh, B.; Kaushika, S. C.

    2013-03-01

    In this paper, a standalone solar photovoltaic (SPV) power generating system is designed and modeled using a Cuk dc-dc converter and a single phase voltage source inverter (VSI). In this system, a dc-dc boost converter boosts a low voltage of a PV array to charge a battery at 24 V using a maximum power point tracking control algorithm. To step up a 24 V battery voltage to 360 V dc, a high frequency transformer based isolated dc-dc Cuk converter is used to reduce size, weight and losses. The dc voltage of 360 V is fed to a single phase VSI with unipolar switching to achieve a 230 Vrms, 50 Hz ac. The main objectives of this investigation are on efficiency improvement, reduction in cost, weight and size of the system and to provide an uninterruptible power to remotely located consumers. The complete SPV system is designed and it is modeled in MATLAB/Simulink. The simulated results are presented to demonstrate its satisfactory performance for validating the proposed design and control algorithm.

  16. Ultra-Low-Power Analog-to-Digital Converters for Medical Applications

    OpenAIRE

    Zhang, Dai

    2014-01-01

    Biomedical systems are commonly attached to or implanted into human bodies, and powered by harvested energy or small batteries. In these systems, analog-to-digital converters (ADCs) are key components as the interface between the analog world and the digital domain. Conversion of the low frequency bioelectric signals does not require high speed, but ultralow- power operation. This combined with the required conversion accuracy makes the design of such ADCs a major challenge. Among prevalent A...

  17. A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2015-01-01

    Full Text Available This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge circuit suffers from ripple power pulsating at second-order line frequency, and a scheme of active ripple compensation circuit has been explored to solve this second-order ripple problem, in which a pair of power switches shared traction mode, a ripple energy storage capacitor, and an energy transfer inductor. Simulation results in MATLAB/Simulink validated the eligibility of the proposed topology. The integrated charger can work as a 70 kW motor drive circuit or a converter with an active ripple compensation circuit for 3 kW charging the battery. The impact of the proposed topology and control strategy on the integrated charger power losses, efficiency, power density, and thermal performance has also been analysed and simulated.

  18. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    Science.gov (United States)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  19. Effect of full converter wind turbines on inter-area oscillation of power systems

    DEFF Research Database (Denmark)

    Askari, Hanieh Hajizadeh; Hashemi Toghroljerdi, Seyedmostafa; Eriksson, Robert

    2015-01-01

    By increasing in the penetration level of wind turbines, the influence of these new added generation units on the power system oscillations specifically inter-area oscillations has to be thoroughly investigated. In this paper, the impact of increasing in the penetration of full rate converter wind...... turbines (FRC-WTs) on the inter-area oscillations of power system is examined. In order to have a comprehensive evaluation of the effects of FRC-WT on the inter-area oscillations, different scenarios associated with the wind power penetration levels, wind farm locations, strength of interconnection line......, and different operating conditions of synchronous generators are investigated. The synchronous generators, exciter systems and power system stabilizers (PSSs) as well as the FRC-WT grid-side converter and its related controllers are modelled in detail in Matlab in order to evaluate the effects of FRC...

  20. A single-phase PWM controlled AC to DC converter based on control of unity displacement power factor

    OpenAIRE

    Funabiki, Shigeyuki

    1990-01-01

    A modified pulse-width modulation (PWM) technique that improves the displacement power factor and the input power factor of a single-phase AC to DC converter is discussed. The modified converter is shown to have a high input power factor and allows the of DC voltage from zero to more than the maximum value of the source voltage. The displacement power factor is unity, and the input power factor is almost unity in the wide range of current command

  1. Method of controlling switching of a multiphase inductor-converter bridge. [Patent application

    Science.gov (United States)

    Kustom, R.L.; Fuja, R.E.

    In an inductor-convertor circuit for transferring electrical energy between a storage coil and a load coil through a storage thyristor bridge, a load thyristor bridge, and a set of commutating capacitors, operation is improved by a method of changing the rate of delivery of energy in a given direction. The change in rate corresponds to a predetermined change in phase angle between the load bridge and the storage bridge, and comprises changing the phase of the bridge by two steps, each equal to half the predetermined change and occurring 180/sup 0/ apart. The method assures commutation and minimizes imbalances that lead otherwise to overvoltages. 11 figures.

  2. Synchronous Buck Converter with Perturb and Observe Maximum Power Point Tracking Implemented on a Low-Cost Arduino-microcontroller

    Directory of Open Access Journals (Sweden)

    Emad Talib Hashim

    2018-02-01

    Full Text Available Maximum power point tracking (MPPT is used in photovoltaic (PV systems to enhance efficiency and maximize the output power of PV module, regardless the variation of temperature, irradiation, and the electrical characteristics of the load. A new MPPT system has been presented in this research, consisting of a synchronous DC-DC step-down Buck converter controlled by an Arduino microcontroller based unit. The MPPT process with Perturb and Observe method is performed with a DC-DC converter circuit to overcome the problem of voltage mismatch between the PV modules and the loads. The proposing system has high efficiency, lower cost and can be easily modified to handle more energy sources. The test results indicate that the use of the proposed MPPT control with the designed synchronous Buck converter increases the PV output power; hence increases the overall solar system efficiency. The synchronous Buck converter test results used in this design showed high converter efficiency up to 95% of the power produced from the solar module, leading to reduce power loss caused by the power transfer process from PV module to the loads.

  3. Advanced Control Strategy of Back-to-Back PWM Converters in PMSG Wind Power System

    Directory of Open Access Journals (Sweden)

    Tan Luong Van

    2015-01-01

    Full Text Available This paper proposes a control scheme of back-to-back PWM converters for the permanent magnet synchronous generator (PMSG wind turbine system. The DC-link voltage can be controlled at the machine-side converter (MSC, while the grid-side converter (GSC controls the grid active power for a maximum power point tracking (MPPT. At the grid fault condition, the DC-link voltage controller is designed using a feedback linearization (FL theory. For the MPPT, a proportional control loop is added to the torque control to reduce the influence of the inertia moment in the wind turbines, which can improve its dynamic performance. The validity of this control algorithm has been verified by the simulation of the 2-MW PMSG wind turbine system.

  4. New method for designing serial resonant power converters

    Science.gov (United States)

    Hinov, Nikolay

    2017-12-01

    In current work is presented one comprehensive method for design of serial resonant energy converters. The method is based on new simplified approach in analysis of such kind power electronic devices. It is grounded on supposing resonant mode of operation when finding relation between input and output voltage regardless of other operational modes (when controlling frequency is below or above resonant frequency). This approach is named `quasiresonant method of analysis', because it is based on assuming that all operational modes are `sort of' resonant modes. An estimation of error was made because of the a.m. hypothesis and is compared to the classic analysis. The `quasiresonant method' of analysis gains two main advantages: speed and easiness in designing of presented power circuits. Hence it is very useful in practice and in teaching Power Electronics. Its applicability is proven with mathematic modelling and computer simulation.

  5. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...

  6. Simplified Thermal Modeling for IGBT Modules with Periodic Power Loss Profiles in Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Zhang, Yi; Wang, Huai; Wang, Zhongxu

    2018-01-01

    One of the future challenges in Modular Multilevel Converters (MMCs) is how to size key components with compromised costs and design margins while fulfilling specific reliability targets. It demands better thermal modeling compared to the state-of-the-art in terms of both accuracy and simplicity....... Different from two-level power converters, MMCs have inherent dc-bias in arm currents and the power device conduction time is affected by operational parameters. A time-wise thermal modeling for the power devices in MMCs is, therefore, an iteration process and time-consuming. This paper thus proposes...

  7. Thermal Modelling and Design of On-board DC-DC Power Converter using Finite Element Method

    DEFF Research Database (Denmark)

    Staliulionis, Z.; Zhang, Z.; Pittini, R.

    2014-01-01

    Power electronic converters are widely used and play a pivotal role in electronics area. The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined...... by numerical modelling techniques. Therefore, thermal design through thermal modelling and simulation is becoming an integral part of the design process as less expensive compared to the experimental cut-and-try approach. Here the investigation is performed using finite element method-based modelling, and also...

  8. Thermal Modeling and Design of On-board DC-DC Power Converter using Finite Element Method

    DEFF Research Database (Denmark)

    Staliulionis, Zygimantas; Zhang, Zhe; Pittini, Riccardo

    2014-01-01

    Power electronic converters are widely used and play a pivotal role in electronics area . The temperature causes around 54 % of all power converters failures. Thermal loads are nowadays one of the bottlenecks in the power system design and the cooling efficiency of a system is primarily determined...... by numerical modeling techniques. Therefore, thermal design through thermal modeling and simulation is becoming an integral part of the design process as less expensive compared to the experimenta l cut - and - try approach. Here the investigation is performed using finite element method - based modeling...

  9. A novel method for predicting the power outputs of wave energy converters

    Science.gov (United States)

    Wang, Yingguang

    2018-03-01

    This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. A heaving two-body point absorber is utilized as a specific calculation example, and the generated power of the point absorber has been predicted by using a novel method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and consequently, more accurate generated power can be predicted by subsequently solving the nonlinear dynamic filter equation with the nonlinearly simulated second order waves as inputs. The research findings demonstrate that the novel nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.

  10. Analysis and Design of an Energy Regenerative Snubber for Magnetically Coupled Impedance Source Converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Abdelhakim, Ahmed; Siwakoti, Yam

    2018-01-01

    Magnetically coupled impedance source (MCIS) converters are prone to high voltage spikes across the inverter bridge (or dc-link) due to the presence of leakage and stray inductances in the high frequency loop. The problem manifolds because of a shoot-through state in impedance source converters......, but the solutions are not generic (i.e. structure-oriented) and they are quite lossy with intuitive modification in the circuit itself, resulting in significant changes in the performance of the power converter (e.g. increase in components stresses). To address this concern, a general passive regenerative inductor......-capacitor-diode (L-C-D) snubber is presented in this paper for all MCIS converters without any modification in the original circuit. The proposed circuit rechannel the leakage energy of the coupled magnetics and feedback it to input or network itself, which does not only avoid extreme voltage spikes across...

  11. The Three-Phase Power Router and Its Operation with Matrix Converter toward Smart-Grid Applications

    Directory of Open Access Journals (Sweden)

    Alexandros Kordonis

    2015-04-01

    Full Text Available A power router has been recently developed for both AC and DC applications that has the potential for smart-grid applications. This study focuses on three-phase power switching through the development of an experimental setup which consists of a three-phase direct AC/AC matrix converter with a power router attached to its output. Various experimental switching scenarios with the loads connected to different input sources were investigated. The crescent introduction of decentralized power generators throughout the power-grid obligates us to take measurements for a better distribution and management of the power. Power routers and matrix converters have great potential to succeed this goal with the help of power electronics devices. In this paper, a novel experimental three-phase power switching was achieved and the advantages of this operation are presented, such as on-demand and constant power supply at the desired loads.

  12. Control of a Two-Stage Direct Power Converter with a Single Voltage Sensor Mounted in the Intermediary Circuit

    DEFF Research Database (Denmark)

    Klumpner, Christian; Wheeler, P.; Blaabjerg, Frede

    2004-01-01

    Controlling a converter requires not only a powerful processors but also accurate voltage and current sensors and fast and precise analogue-digital converters, which increase the cost per kW of the assembly, especially in the low power range. A matrix converter requires less transducers than a back...... converters but in two stages (AC/DC/AC) without using energy storage in the intermediary circuit. They also offer the possibility to reduce the number of switches compared to the standard single-stage matrix converter. This paper presents a new method to control a two-stage DPC providing sine-wave in sine...

  13. A DC-DC Converter with Wide Input Voltage Range for Fuel Cell and Supercapacitor Application

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.

    2009-01-01

    This paper proposes a novel phase-shift plus duty cycle controlled hybrid bi-directional DC-DC converter based on fuel cells and supercapacitors. The described converter employs two high frequency transformers to couple the half-bridge and full-bridge circuits together in the primary side...

  14. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  15. Isolated battery charger with unit power factor; Carregador de baterias isolado com fator de potencia unitario

    Energy Technology Data Exchange (ETDEWEB)

    Co, Marcio Almeida

    1993-05-01

    This work presents a single phase, isolated AC/DC converter (Battery Charger) with active power factor correction in a single stage of power processing. the topology studied is the fed-current full-bridge, in boost mode operation, at fixed switching frequency. After a complete design of converter and simulations, the results of a 1.500 W e 50 kHz prototype are shown. a Unit Power Factor and Total Harmonic Distortion less than 5% were obtained. (author)

  16. CMOS single-stage input-powered bridge rectifier with boost switch and duty cycle control

    Science.gov (United States)

    Radzuan, Roskhatijah; Mohd Salleh, Mohd Khairul; Hamzah, Mustafar Kamal; Ab Wahab, Norfishah

    2017-06-01

    This paper presents a single-stage input-powered bridge rectifier with boost switch for wireless-powered devices such as biomedical implants and wireless sensor nodes. Realised using CMOS process technology, it employs a duty cycle switch control to achieve high output voltage using boost technique, leading to a high output power conversion. It has only six external connections with the boost inductance. The input frequency of the bridge rectifier is set at 50 Hz, while the switching frequency is 100 kHz. The proposed circuit is fabricated on a single 0.18-micron CMOS die with a space area of 0.024 mm2. The simulated and measured results show good agreement.

  17. Research on Single-Phase PWM Converter with Reverse Conducting IGBT Based on Loss Threshold Desaturation Control

    Directory of Open Access Journals (Sweden)

    Xianjin Huang

    2017-11-01

    Full Text Available In the application of vehicle power supply and distributed power generation, there are strict requirements for the pulse width modulation (PWM converter regarding power density and reliability. When compared with the conventional insulated gate bipolar transistor (IGBT module, the Reverse Conducting-Insulated Gate Bipolar Transistor (RC-IGBT with the same package has a lower thermal resistance and higher current tolerance. By applying the gate desaturation control, the reverse recovery loss of the RC-IGBT diode may be reduced. In this paper, a loss threshold desaturation control method is studied to improve the output characteristics of the single-phase PWM converter with a low switching frequency. The gate desaturation control characteristics of the RC-IGBT’s diode are studied. A proper current limit is set to avoid the ineffective infliction of the desaturation pulse, while the bridge arm current crosses zero. The expectation of optimized loss decrease is obtained, and the better performance for the RC-IGBTs of the single-phase PWM converter is achieved through the optimized desaturation pulse distribution. Finally, the improved predictive current control algorithm that is applied to the PWM converter with RC-IGBTs is simulated, and is operated and tested on the scaled reduced power platform. The results prove that the gate desaturation control with the improved predictive current algorithm may effectively improve the RC-IGBT’s characteristics, and realize the stable output of the PWM converter.

  18. Reliability Models Applied to a System of Power Converters in Particle Accelerators

    OpenAIRE

    Siemaszko, D; Speiser, M; Pittet, S

    2012-01-01

    Several reliability models are studied when applied to a power system containing a large number of power converters. A methodology is proposed and illustrated in the case study of a novel linear particle accelerator designed for reaching high energies. The proposed methods result in the prediction of both reliability and availability of the considered system for optimisation purposes.

  19. Novel Frequency Swapping Technique for Conducted Electromagnetic Interference Suppression in Power Converter Applications

    Directory of Open Access Journals (Sweden)

    Ming-Tse Kuo

    2016-12-01

    Full Text Available Quasi-resonant flyback (QRF converters have been widely applied as the main circuit topology in power converters because of their low cost and high efficiency. Conventional QRF converters tend to generate higher average conducted electromagnetic interference (EMI in the low-frequency domain due to the switching noise generated by power switches, resulting in the fact they can exceed the EMI standards of the European Standard 55022 Class-B emission requirements. The presented paper develops a novel frequency swapping control method that spreads spectral energy to reduce the amplitude of sub-harmonics, thereby lowering average conducted EMI in the low-frequency domain. The proposed method is implemented in a control chip, which requires no extra circuit components and adds zero cost. The proposed control method is verified using a 24 W QRF converter. Experimental results reveals that conducted EMI has been reduced by approximately 13.24 dBμV at 498 kHz compared with a control method without the novel frequency swapping technique. Thus, the proposed method can effectively improve the flyback system to easily meet the CISPR 22/EN55022 standards.

  20. Study and Handling Methods of Power IGBT Module Failures in Power Electronic Converter Systems

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Lee, Kyo-Beum

    2015-01-01

    Power electronics plays an important role in a wide range of applications in order to achieve high efficiency and performance. Increasing efforts are being made to improve the reliability of power electronics systems to ensure compliance with more stringent constraints on cost, safety......, and availability in different applications. This paper presents an overview of the major failure mechanisms of IGBT modules and their handling methods in power converter systems improving reliability. The major failure mechanisms of IGBT modules are presented first, and methods for predicting lifetime...... and estimating the junction temperature of IGBT modules are then discussed. Subsequently, different methods for detecting open- and short-circuit faults are presented. Finally, fault-tolerant strategies for improving the reliability of power electronic systems under field operation are explained and compared...