WorldWideScience

Sample records for gyrus ca3 ca1

  1. Synaptic Remodeling in the Dentate Gyrus, CA3, CA1, Subiculum, and Entorhinal Cortex of Mice: Effects of Deprived Rearing and Voluntary Running

    Directory of Open Access Journals (Sweden)

    Andrea T. U. Schaefers

    2010-01-01

    Full Text Available Hippocampal cell proliferation is strongly increased and synaptic turnover decreased after rearing under social and physical deprivation in gerbils (Meriones unguiculatus. We examined if a similar epigenetic effect of rearing environment on adult neuroplastic responses can be found in mice (Mus musculus. We examined synaptic turnover rates in the dentate gyrus, CA3, CA1, subiculum, and entorhinal cortex. No direct effects of deprived rearing on rates of synaptic turnover were found in any of the studied regions. However, adult wheel running had the effect of leveling layer-specific differences in synaptic remodeling in the dentate gyrus, CA3, and CA1, but not in the entorhinal cortex and subiculum of animals of both rearing treatments. Epigenetic effects during juvenile development affected adult neural plasticity in mice, but seemed to be less pronounced than in gerbils.

  2. Prenatal nicotine and maternal deprivation stress de-regulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC, postnatal maternal deprivation (MD or the combination of the two (NIC+MD to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14 pups, MD increased pyramidal neurons, however, in dentate gyrus (DG, decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.

  3. Behavior-driven arc expression is reduced in all ventral hippocampal subfields compared to CA1, CA3, and dentate gyrus in rat dorsal hippocampus.

    Science.gov (United States)

    Chawla, M K; Sutherland, V L; Olson, K; McNaughton, B L; Barnes, C A

    2018-02-01

    Anatomical connectivity and lesion studies reveal distinct functional heterogeneity along the dorsal-ventral axis of the hippocampus. The immediate early gene Arc is known to be involved in neural plasticity and memory and can be used as a marker for cell activity that occurs, for example, when hippocampal place cells fire. We report here, that Arc is expressed in a greater proportion of cells in dorsal CA1, CA3, and dentate gyrus (DG), following spatial behavioral experiences compared to ventral hippocampal subregions (dorsal CA1 = 33%; ventral CA1 = 13%; dorsal CA3 = 23%; ventral CA3 = 8%; and dorsal DG = 2.5%; ventral DG = 1.2%). The technique used here to obtain estimates of numbers of behavior-driven cells across the dorsal-ventral axis, however, corresponds quite well with samples from available single unit recording studies. Several explanations for the two- to-threefold reduction in spatial behavior-driven cell activity in the ventral hippocampus can be offered. These include anatomical connectivity differences, differential gain of the self-motion signals that appear to alter the scale of place fields and the proportion of active cells, and possibly variations in the neuronal responses to non-spatial information within the hippocampus along its dorso-ventral axis. © 2017 Wiley Periodicals, Inc.

  4. Ensemble place codes in hippocampus: CA1, CA3, and dentate gyrus place cells have multiple place fields in large environments.

    Directory of Open Access Journals (Sweden)

    Eunhye Park

    Full Text Available Previously we reported that the hippocampus place code must be an ensemble code because place cells in the CA1 region of hippocampus have multiple place fields in a more natural, larger-than-standard enclosure with stairs that permitted movements in 3-D. Here, we further investigated the nature of hippocampal place codes by characterizing the spatial firing properties of place cells in the CA1, CA3, and dentate gyrus (DG hippocampal subdivisions as rats foraged in a standard 76-cm cylinder as well as a larger-than-standard box (1.8 m×1.4 m that did not have stairs or any internal structure to permit movements in 3-D. The rats were trained to forage continuously for 1 hour using computer-controlled food delivery. We confirmed that most place cells have single place fields in the standard cylinder and that the positional firing pattern remapped between the cylinder and the large enclosure. Importantly, place cells in the CA1, CA3 and DG areas all characteristically had multiple place fields that were irregularly spaced, as we had reported previously for CA1. We conclude that multiple place fields are a fundamental characteristic of hippocampal place cells that simplifies to a single field in sufficiently small spaces. An ensemble place code is compatible with these observations, which contradict any dedicated coding scheme.

  5. Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3

    DEFF Research Database (Denmark)

    Benveniste, H; Jørgensen, M B; Sandberg, M

    1989-01-01

    The removal of glutamatergic afferents to CA1 by destruction of the CA3 region is known to protect CA1 pyramidal cells against 10 min of transient global ischemia. To investigate further the pathogenetic significance of glutamate, we measured the release of glutamate in intact and CA3-lesioned CA...

  6. Cannabinoids disrupt memory encoding by functionally isolating hippocampal CA1 from CA3.

    Directory of Open Access Journals (Sweden)

    Roman A Sandler

    2017-07-01

    Full Text Available Much of the research on cannabinoids (CBs has focused on their effects at the molecular and synaptic level. However, the effects of CBs on the dynamics of neural circuits remains poorly understood. This study aims to disentangle the effects of CBs on the functional dynamics of the hippocampal Schaffer collateral synapse by using data-driven nonparametric modeling. Multi-unit activity was recorded from rats doing an working memory task in control sessions and under the influence of exogenously administered tetrahydrocannabinol (THC, the primary CB found in marijuana. It was found that THC left firing rate unaltered and only slightly reduced theta oscillations. Multivariate autoregressive models, estimated from spontaneous spiking activity, were then used to describe the dynamical transformation from CA3 to CA1. They revealed that THC served to functionally isolate CA1 from CA3 by reducing feedforward excitation and theta information flow. The functional isolation was compensated by increased feedback excitation within CA1, thus leading to unaltered firing rates. Finally, both of these effects were shown to be correlated with memory impairments in the working memory task. By elucidating the circuit mechanisms of CBs, these results help close the gap in knowledge between the cellular and behavioral effects of CBs.

  7. Hippocampal CA3-dentate gyrus volume uniquely linked to improvement in associative memory from childhood to adulthood.

    Science.gov (United States)

    Daugherty, Ana M; Flinn, Robert; Ofen, Noa

    2017-06-01

    Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution images in a sample of healthy participants (age 8-25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Hippocampal CA3-dentate gyrus volume uniquely linked to improvement in associative memory from childhood to adulthood

    Science.gov (United States)

    Daugherty, Ana M.; Flinn, Robert; Ofen, Noa

    2017-01-01

    Associative memory develops into adulthood and critically depends on the hippocampus. The hippocampus is a complex structure composed of subfields that are functionally-distinct, and anterior-posterior divisions along the length of the hippocampal horizontal axis that may also differ by cognitive correlates. Although each of these aspects has been considered independently, here we evaluate their relative contributions as correlates of age-related improvement in memory. Volumes of hippocampal subfields (subiculum, CA1-2, CA3-dentate gyrus) and anterior-posterior divisions (hippocampal head, body, tail) were manually segmented from high-resolution proton density-weighted images in a sample of healthy participants (age 8–25 years). Adults had smaller CA3-dentate gyrus volume as compared to children, which accounted for 67% of the indirect effect of age predicting better associative memory via hippocampal volumes. Whereas hippocampal body volume demonstrated non-linear age differences, larger hippocampal body volume was weakly related to better associative memory only when accounting for the mutual correlation with subfields measured within that region. Thus, typical development of associative memory was largely explained by age-related differences in CA3-dentate gyrus. PMID:28342999

  9. How informative are spatial CA3 representations established by the dentate gyrus?

    Directory of Open Access Journals (Sweden)

    Erika Cerasti

    2010-04-01

    Full Text Available In the mammalian hippocampus, the dentate gyrus (DG is characterized by sparse and powerful unidirectional projections to CA3 pyramidal cells, the so-called mossy fibers. Mossy fiber synapses appear to duplicate, in terms of the information they convey, what CA3 cells already receive from entorhinal cortex layer II cells, which project both to the dentate gyrus and to CA3. Computational models of episodic memory have hypothesized that the function of the mossy fibers is to enforce a new, well-separated pattern of activity onto CA3 cells, to represent a new memory, prevailing over the interference produced by the traces of older memories already stored on CA3 recurrent collateral connections. Can this hypothesis apply also to spatial representations, as described by recent neurophysiological recordings in rats? To address this issue quantitatively, we estimate the amount of information DG can impart on a new CA3 pattern of spatial activity, using both mathematical analysis and computer simulations of a simplified model. We confirm that, also in the spatial case, the observed sparse connectivity and level of activity are most appropriate for driving memory storage-and not to initiate retrieval. Surprisingly, the model also indicates that even when DG codes just for space, much of the information it passes on to CA3 acquires a non-spatial and episodic character, akin to that of a random number generator. It is suggested that further hippocampal processing is required to make full spatial use of DG inputs.

  10. Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Fujita, Satoshi; Toyoda, Izumi; Thamattoor, Ajoy K; Buckmaster, Paul S

    2014-12-10

    Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2-4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41-57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate. Copyright © 2014 the authors 0270-6474/14/3416671-17$15.00/0.

  11. Regional hippocampal vulnerability in early multiple sclerosis: Dynamic pathological spreading from dentate gyrus to CA1.

    Science.gov (United States)

    Planche, Vincent; Koubiyr, Ismail; Romero, José E; Manjon, José V; Coupé, Pierrick; Deloire, Mathilde; Dousset, Vincent; Brochet, Bruno; Ruet, Aurélie; Tourdias, Thomas

    2018-04-01

    Whether hippocampal subfields are differentially vulnerable at the earliest stages of multiple sclerosis (MS) and how this impacts memory performance is a current topic of debate. We prospectively included 56 persons with clinically isolated syndrome (CIS) suggestive of MS in a 1-year longitudinal study, together with 55 matched healthy controls at baseline. Participants were tested for memory performance and scanned with 3 T MRI to assess the volume of 5 distinct hippocampal subfields using automatic segmentation techniques. At baseline, CA4/dentate gyrus was the only hippocampal subfield with a volume significantly smaller than controls (p < .01). After one year, CA4/dentate gyrus atrophy worsened (-6.4%, p < .0001) and significant CA1 atrophy appeared (both in the stratum-pyramidale and the stratum radiatum-lacunosum-moleculare, -5.6%, p < .001 and -6.2%, p < .01, respectively). CA4/dentate gyrus volume at baseline predicted CA1 volume one year after CIS (R 2  = 0.44 to 0.47, p < .001, with age, T2 lesion-load, and global brain atrophy as covariates). The volume of CA4/dentate gyrus at baseline was associated with MS diagnosis during follow-up, independently of T2-lesion load and demographic variables (p < .05). Whereas CA4/dentate gyrus volume was not correlated with memory scores at baseline, CA1 atrophy was an independent correlate of episodic verbal memory performance one year after CIS (ß = 0.87, p < .05). The hippocampal degenerative process spread from dentate gyrus to CA1 at the earliest stage of MS. This dynamic vulnerability is associated with MS diagnosis after CIS and will ultimately impact hippocampal-dependent memory performance. © 2018 Wiley Periodicals, Inc.

  12. Insomnia severity is associated with a decreased volume of the CA3/Dentate Gyrus Hippocampal Subfield

    Science.gov (United States)

    Neylan, Thomas C.; Mueller, Susanne G.; Wang, Zhen; Metzler, Thomas J.; Lenoci, Maryann; Truran, Diana; Marmar, Charles R.; Weiner, Michael W.; Schuff, Norbert

    2010-01-01

    Background Prolonged disruption of sleep in animal studies is associated with decreased neurogenesis in the dentate gyrus. Our objective was to determine if insomnia severity in a sample of PTSD and controls was associated with decreased volume in the CA3/dentate hippocampal subfield. Methods Volumes of hippocampal subfields in seventeen veteran males positive for PTSD (41 ±12 years) and nineteen age-matched male veterans negative for PTSD were measured using 4 Tesla MRI. Subjective sleep quality was measured by the Insomnia Severity Index (ISI) and the Pittsburgh Sleep Quality Index (PSQI). Results Higher scores on the ISI, indicating worse insomnia, were associated with smaller volumes of the CA3/dentate subfields (r= −.48, p < 0.01) in the combined sample. Adding the ISI score as a predictor for CA3/dentate volume to a hierarchical linear regression model after first controlling for age and PTSD symptoms accounted for a 13 % increase in incremental variance (t= −2.47, p= 0.02). Conclusions The findings indicate for the first time in humans that insomnia severity is associated with volume loss of the CA3/dentate subfields. This is consistent with animal studies showing that chronic sleep disruption is associated with decreased neurogenesis and dendritic branching in these structures. PMID:20598672

  13. The functional genome of CA1 and CA3 neurons under native conditions and in response to ischemia

    Directory of Open Access Journals (Sweden)

    Rossner Moritz

    2007-10-01

    Full Text Available Abstract Background The different physiological repertoire of CA3 and CA1 neurons in the hippocampus, as well as their differing behaviour after noxious stimuli are ultimately based upon differences in the expressed genome. We have compared CA3 and CA1 gene expression in the uninjured brain, and after cerebral ischemia using laser microdissection (LMD, RNA amplification, and array hybridization. Results Profiling in CA1 vs. CA3 under normoxic conditions detected more than 1000 differentially expressed genes that belong to different, physiologically relevant gene ontology groups in both cell types. The comparison of each region under normoxic and ischemic conditions revealed more than 5000 ischemia-regulated genes for each individual cell type. Surprisingly, there was a high co-regulation in both regions. In the ischemic state, only about 100 genes were found to be differentially expressed in CA3 and CA1. The majority of these genes were also different in the native state. A minority of interesting genes (e.g. inhibinbetaA displayed divergent expression preference under native and ischemic conditions with partially opposing directions of regulation in both cell types. Conclusion The differences found in two morphologically very similar cell types situated next to each other in the CNS are large providing a rational basis for physiological differences. Unexpectedly, the genomic response to ischemia is highly similar in these two neuron types, leading to a substantial attenuation of functional genomic differences in these two cell types. Also, the majority of changes that exist in the ischemic state are not generated de novo by the ischemic stimulus, but are preexistant from the genomic repertoire in the native situation. This unexpected influence of a strong noxious stimulus on cell-specific gene expression differences can be explained by the activation of a cell-type independent conserved gene-expression program. Our data generate both novel

  14. Transition Dynamics of a Dentate Gyrus-CA3 Neuronal Network during Temporal Lobe Epilepsy

    Directory of Open Access Journals (Sweden)

    Liyuan Zhang

    2017-07-01

    Full Text Available In temporal lobe epilepsy (TLE, the variation of chemical receptor expression underlies the basis of neural network activity shifts, resulting in neuronal hyperexcitability and epileptiform discharges. However, dynamical mechanisms involved in the transitions of TLE are not fully understood, because of the neuronal diversity and the indeterminacy of network connection. Hence, based on Hodgkin–Huxley (HH type neurons and Pinsky–Rinzel (PR type neurons coupling with glutamatergic and GABAergic synaptic connections respectively, we propose a computational framework which contains dentate gyrus (DG region and CA3 region. By regulating the concentration range of N-methyl-D-aspartate-type glutamate receptor (NMDAR, we demonstrate the pyramidal neuron can generate transitions from interictal to seizure discharges. This suggests that enhanced endogenous activity of NMDAR contributes to excitability in pyramidal neuron. Moreover, we conclude that excitatory discharges in CA3 region vary considerably on account of the excitatory currents produced by the excitatory pyramidal neuron. Interestingly, by changing the backprojection connection, we find that glutamatergic type backprojection can promote the dominant frequency of firings and further motivate excitatory counterpropagation from CA3 region to DG region. However, GABAergic type backprojection can reduce firing rate and block morbid counterpropagation, which may be factored into the terminations of TLE. In addition, neuronal diversity dominated network shows weak correlation with different backprojections. Our modeling and simulation studies provide new insights into the mechanisms of seizures generation and connectionism in local hippocampus, along with the synaptic mechanisms of this disease.

  15. Transition Dynamics of a Dentate Gyrus-CA3 Neuronal Network during Temporal Lobe Epilepsy.

    Science.gov (United States)

    Zhang, Liyuan; Fan, Denggui; Wang, Qingyun

    2017-01-01

    In temporal lobe epilepsy (TLE), the variation of chemical receptor expression underlies the basis of neural network activity shifts, resulting in neuronal hyperexcitability and epileptiform discharges. However, dynamical mechanisms involved in the transitions of TLE are not fully understood, because of the neuronal diversity and the indeterminacy of network connection. Hence, based on Hodgkin-Huxley (HH) type neurons and Pinsky-Rinzel (PR) type neurons coupling with glutamatergic and GABAergic synaptic connections respectively, we propose a computational framework which contains dentate gyrus (DG) region and CA3 region. By regulating the concentration range of N-methyl-D-aspartate-type glutamate receptor (NMDAR), we demonstrate the pyramidal neuron can generate transitions from interictal to seizure discharges. This suggests that enhanced endogenous activity of NMDAR contributes to excitability in pyramidal neuron. Moreover, we conclude that excitatory discharges in CA3 region vary considerably on account of the excitatory currents produced by the excitatory pyramidal neuron. Interestingly, by changing the backprojection connection, we find that glutamatergic type backprojection can promote the dominant frequency of firings and further motivate excitatory counterpropagation from CA3 region to DG region. However, GABAergic type backprojection can reduce firing rate and block morbid counterpropagation, which may be factored into the terminations of TLE. In addition, neuronal diversity dominated network shows weak correlation with different backprojections. Our modeling and simulation studies provide new insights into the mechanisms of seizures generation and connectionism in local hippocampus, along with the synaptic mechanisms of this disease.

  16. Diminished Dentate Gyrus Filtering of Cortical Input Leads to Enhanced Area Ca3 Excitability after Mild Traumatic Brain Injury.

    Science.gov (United States)

    Folweiler, Kaitlin A; Samuel, Sandy; Metheny, Hannah E; Cohen, Akiva S

    2018-04-06

    Mild traumatic brain injury (mTBI) disrupts hippocampal function and can lead to long-lasting episodic memory impairments. The encoding of episodic memories relies on spatial information processing within the hippocampus. As the primary entry point for spatial information into the hippocampus, the dentate gyrus is thought to function as a physiological gate, or filter, of afferent excitation before reaching downstream area Cornu Ammonis (CA3). Although injury has previously been shown to alter dentate gyrus network excitability, it is unknown whether mTBI affects dentate gyrus output to area CA3. In this study, we assessed hippocampal function, specifically the interaction between the dentate gyrus and CA3, using behavioral and electrophysiological techniques in ex vivo brain slices 1 week following mild lateral fluid percussion injury (LFPI). Behaviorally, LFPI mice were found to be impaired in an object-place recognition task, indicating that spatial information processing in the hippocampus is disrupted. Extracellular recordings and voltage-sensitive dye imaging demonstrated that perforant path activation leads to the aberrant spread of excitation from the dentate gyrus into area CA3 along the mossy fiber pathway. These results suggest that after mTBI, the dentate gyrus has a diminished capacity to regulate cortical input into the hippocampus, leading to increased CA3 network excitability. The loss of the dentate filtering efficacy reveals a potential mechanism by which hippocampal-dependent spatial information processing is disrupted, and may contribute to memory dysfunction after mTBI.

  17. Size and receptor density of glutamatergic synapses: a viewpoint from left-right asymmetry of CA3-CA1 connections

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shinohara

    2009-07-01

    Full Text Available Synaptic plasticity is considered to be the main mechanism for learning and memory. Excitatory synapses in the cerebral cortex and hippocampus undergo plastic changes during development and in response to electric stimulation. It is widely accepted that this process is mediated by insertion and elimination of various glutamate receptors. In a series of recent investigations on left-right asymmetry of hippocampal CA3-CA1 synapses, glutamate receptor subunits have been found to have distinctive expression patterns that depend on the postsynaptic density (PSD area. Particularly notable are the GluR1 AMPA receptor subunit and NR2B NMDA receptor subunit, where receptor density has either a supra-linear (GluR1 AMPA or inverse (NR2B NMDAR relationship to the PSD area. We review current understanding of structural and physiological synaptic plasticity and propose a scheme to classify receptor subtypes by their expression pattern with respect to PSD area.

  18. Ventral tegmental area disruption selectively affects CA1/CA2 but not CA3 place fields during a differential reward working memory task.

    Science.gov (United States)

    Martig, Adria K; Mizumori, Sheri J Y

    2011-02-01

    Hippocampus (HPC) receives dopaminergic (DA) projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences HPC dependent behaviors and place fields. We examined how efferent projections from VTA to HPC influence spatial working memory and place fields when the reward context changes. CA1 and CA3 process environmental context changes differently and VTA preferentially innervates CA1. Given these anatomical data and electrophysiological evidence that implicate DA in reward processing, we predicted that CA1 place fields would respond more strongly to both VTA disruption and changes in the reward context than CA3 place fields. Rats (N = 9) were implanted with infusion cannula targeting VTA and recording tetrodes aimed at HPC. Then they were tested on a differential reward, win-shift working memory task. One recording session consisted of 5 baseline and 5 manipulation trials during which place cells in CA1/CA2 (N = 167) and CA3 (N = 94) were recorded. Prior to manipulation trials rats were infused with either baclofen or saline and then subjected to control or reward conditions during which the learned locations of large and small reward quantities were reversed. VTA disruption resulted in an increase in errors, and in CA1/CA2 place field reorganization. There were no changes in any measures of CA3 place field stability during VTA disruption. Reward manipulations did not affect performance or place field stability in CA1/CA2 or CA3; however, changes in the reward locations "rescued" performance and place field stability in CA1/CA2 when VTA activity was compromised, perhaps by trigging compensatory mechanisms. These data support the hypothesis that VTA contributes to spatial working memory performance perhaps by maintaining place field stability selectively in CA1/CA2. Copyright © 2009 Wiley-Liss, Inc.

  19. Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long term potentiation in vivo

    Directory of Open Access Journals (Sweden)

    Oscar eHerreras

    2012-10-01

    Full Text Available Long term potentiation (LTP is commonly used to study synaptic plasticity but the associated changes in the spontaneous activity of individual neurons or the computational properties of neural networks in vivo remain largely unclear. The multisynaptic origin of spontaneous spikes makes difficult estimating the impact of a particular potentiated input. Accordingly, we adopted an approach that isolates pathway-specific postsynaptic activity from raw local field potentials (LFPs in the rat hippocampus in order to study the effects of LTP on ongoing spike transfer between cell pairs in the CA3-CA1 pathway. CA1 Schaffer-specific LFPs elicited by spontaneous clustered firing of CA3 pyramidal cells involved a regular succession of elementary micro-field-EPSPs (gamma-frequency that fired spikes in CA1 units. LTP increased the amplitude but not the frequency of these ongoing excitatory quanta. Also, the proportion of Schaffer-driven spikes in both CA1 pyramidal cells and interneurons increased in a cell-specific manner only in previously connected CA3-CA1 cell pairs, i.e., when the CA3 pyramidal cell had shown pre-LTP significant correlation with firing of a CA1 unit and potentiated spike-triggered average of Schaffer LFPs following LTP. Moreover, LTP produced subtle reorganization of presynaptic CA3 cell assemblies. These findings show effective enhancement of pathway specific ongoing activity which leads to increased spike transfer in potentiated segments of a network. These indicate that plastic phenomena induced by external protocols may intensify spontaneous information flow across specific channels as proposed in transsynaptic propagation of plasticity and synfire chain hypotheses that may be the substrate for different types of memory involving multiple brain structures.

  20. Encoding, Consolidation, and Retrieval of Contextual Memory: Differential Involvement of Dorsal CA3 and CA1 Hippocampal Subregions

    Science.gov (United States)

    Daumas, Stephanie; Halley, Helene; Frances, Bernard; Lassalle, Jean-Michel

    2005-01-01

    Studies on human and animals shed light on the unique hippocampus contributions to relational memory. However, the particular role of each hippocampal subregion in memory processing is still not clear. Hippocampal computational models and theories have emphasized a unique function in memory for each hippocampal subregion, with the CA3 area acting…

  1. Perirhinal cortical inactivation impairs object-in-place memory and disrupts task-dependent firing in hippocampal CA1, but not in CA3.

    Science.gov (United States)

    Lee, Inah; Park, Seong-Beom

    2013-01-01

    Objects and their locations can associatively define an event and a conjoint representation of object-place can form an event memory. Remembering how to respond to a certain object in a spatial context is dependent on both hippocampus and perirhinal cortex (PER). However, the relative functional contributions of the two regions are largely unknown in object-place associative memory. We investigated the PER influence on hippocampal firing in a goal-directed object-place memory task by comparing the firing patterns of CA1 and CA3 of the dorsal hippocampus between conditions of PER muscimol inactivation and vehicle control infusions. Rats were required to choose one of the two objects in a specific spatial context (regardless of the object positions in the context), which was shown to be dependent on both hippocampus and PER. Inactivation of PER with muscimol (MUS) severely disrupted performance of well-trained rats, resulting in response bias (i.e., choosing any object on a particular side). MUS did not significantly alter the baseline firing rates of hippocampal neurons. We measured the similarity in firing patterns between two trial conditions in which the same target objects were chosen on opposite sides within the same arm [object-in-place (O-P) strategy] and compared the results with the similarity in firing between two trial conditions in which the rat chose any object encountered on a particular side [response-in-place (R-P) strategy]. We found that the similarity in firing patterns for O-P trials was significantly reduced with MUS compared to control conditions (CTs). Importantly, this was largely because MUS injections affected the O-P firing patterns in CA1 neurons, but not in CA3. The results suggest that PER is critical for goal-directed organization of object-place associative memory in the hippocampus presumably by influencing how object information is associated with spatial information in CA1 according to task demand.

  2. Perirhinal cortical inactivation impairs object-in-place memory and disrupts task-dependent firing in hippocampal CA1, but not in CA3

    Directory of Open Access Journals (Sweden)

    Inah eLee

    2013-08-01

    Full Text Available Objects and their locations can associatively define an event and a conjoint representation of object-place can form an event memory. Remembering how to respond to a certain object in a spatial context is dependent on both hippocampus and perirhinal cortex (PER. However, the relative functional contributions of the two regions are largely unknown in object-place associative memory. We investigated the PER influence on hippocampal firing in a goal-directed object-place memory task by comparing the firing patterns of CA1 and CA3 of the dorsal hippocampus between conditions of PER muscimol inactivation and vehicle control infusions. Rats were required to choose one of the two objects in a specific spatial context (regardless of the object positions in the context, which was shown to be dependent on both hippocampus and PER. Inactivation of PER with muscimol (MUS severely disrupted performance of well-trained rats, resulting in response bias (i.e., choosing any object on a particular side. MUS did not significantly alter the baseline firing rates of hippocampal neurons. We measured the similarity in firing patterns between two trial conditions in which the same target objects were chosen on opposite sides within the same arm (object-in-place strategy and compared the results with the similarity in firing between two trial conditions in which the rat chose any object encountered on a particular side (response-in-place strategy. We found that the similarity in firing patterns for object-in-place trials was significantly reduced with MUS compared to control conditions. Importantly, this was largely because MUS injections affected the object-in-place firing patterns in CA1 neurons, but not in CA3. The results suggest that PER is critical for goal-directed organization of object-place associative memory in the hippocampus presumably by influencing how object information is associated with spatial information in CA1 according to task demand.

  3. Removal of area CA3 from hippocampal slices induces postsynaptic plasticity at Schaffer collateral synapses that normalizes CA1 pyramidal cell discharge.

    Science.gov (United States)

    Dumas, Theodore C; Uttaro, Michael R; Barriga, Carolina; Brinkley, Tiffany; Halavi, Maryam; Wright, Susan N; Ferrante, Michele; Evans, Rebekah C; Hawes, Sarah L; Sanders, Erin M

    2018-05-05

    Neural networks that undergo acute insults display remarkable reorganization. This injury related plasticity is thought to permit recovery of function in the face of damage that cannot be reversed. Previously, an increase in the transmission strength at Schaffer collateral to CA1 pyramidal cell synapses was observed after long-term activity reduction in organotypic hippocampal slices. Here we report that, following acute preparation of adult rat hippocampal slices and surgical removal of area CA3, input to area CA1 was reduced and Schaffer collateral synapses underwent functional strengthening. This increase in synaptic strength was limited to Schaffer collateral inputs (no alteration to temporoammonic synapses) and acted to normalize postsynaptic discharge, supporting a homeostatic or compensatory response. Short-term plasticity was not altered, but an increase in immunohistochemical labeling of GluA1 subunits was observed in the stratum radiatum (but not stratum moleculare), suggesting increased numbers of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and a postsynaptic locus of expression. Combined, these data support the idea that, in response to the reduction in presynaptic activity caused by removal of area CA3, Schaffer collateral synapses undergo a relatively rapid increase in functional efficacy likely supported by insertion of more AMPARs, which maintains postsynaptic excitability in CA1 pyramidal neurons. This novel fast compensatory plasticity exhibits properties that would allow it to maintain optimal network activity levels in the hippocampus, a brain structure lauded for its ongoing experience-dependent malleability. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Different patterns of amygdala priming differentially affect dentate gyrus plasticity and corticosterone, but not CA1 plasticity.

    Directory of Open Access Journals (Sweden)

    Rose-Marie eVouimba

    2013-05-01

    Full Text Available Stress-induced activation of the amygdala is involved in the modulation of memory processes in the hippocampus. However, stress effects on amygdala and memory remain complex. The activation of the basolateral amygdala (BLA was found to modulate plasticity in other brain areas, including the hippocampus. We previously demonstrated a differential effect of BLA priming on LTP in the CA1 and the dentate gyrus (DG. While BLA priming suppressed long term potentiation (LTP in CA1, it was found to enhance it in the DG. However, since the amygdala itself is amenable to experience-induced plasticity it is thus conceivable that when activity within the amygdala is modified this will have impact on the way the amygdala modulates activity and plasticity in other brain areas. In the current study we examined the effects of different patterns of BLA activation on the modulation of LTP in the DG and CA1, as well as on serum corticosterone (CORT. In CA1, BLA priming impaired LTP induction as was reported before. In contrast, in the DG, varying BLA stimulation intensity and frequency resulted in differential effects on LTP, ranging from no effect to strong impairment or enhancement. Varying BLA stimulation patterns resulted in also differential alterations in Serum CORT, leading to higher CORT levels being positively correlated with LTP magnitude in DG but not in CA1.The results support the notion of a differential role for the DG in aspects of memory, and add to this view the possibility that DG-associated aspects of memory will be enhanced under more emotional or stressful conditions. It is interesting to think of BLA patterns of activation and the differential levels of circulating CORT as two arms of the emotional and stress response that attempt to synchronize brain activity to best meet the challenge. It is foreseeable to think of abnormal such synchronization under extreme conditions, which would lead to the development of maladaptive behavior.

  5. Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats.

    Science.gov (United States)

    Li, Ying; Ji, Yong-juan; Jiang, Hong; Liu, De-xiang; Zhang, Qian; Fan, Shu-jian; Pan, Fang

    2009-07-05

    Brain-derived neurotrophic factor (BDNF) is a stress-responsive intercellular messenger modifying hypothalamic-pituitary-adrenal (HPA) axis activity. The interaction between stress and age in BDNF expression is currently not fully understood. This study was conducted to observe unpredictable stress effect on behavior and BDNF expression in CA3 subfield (CA3) and dentate gyrus of hippocampus in different aged rats. Forty-eight Wistar rats of two different ages (2 months and 15 months) were randomly assigned to six groups: two control groups and four stress groups. The rats in the stress group received three weeks of unpredictable mild stress. The depression state and the stress level of the animals were determined by sucrose preference test and observation of exploratory behavior in an open field (OF) test. The expressions of BDNF in CA3 and dentate gyrus of the hippocampus were measured using immunohistochemistry. Age and stress had different effects on the behavior of different aged animals (age: F = 6.173, P BDNF expression in the CA3 and dentate gyrus regions of the hippocampus following stress in both age groups (P BDNF (F = 9.408, P BDNF expression compared to the young stressed group at every testing time point. Stress has age-dependent effects on behavioral responses and hippocampal BDNF expression in rats.

  6. Repeating Spatial-Temporal Motifs of CA3 Activity Dependent on Engineered Inputs from Dentate Gyrus Neurons in Live Hippocampal Networks.

    Science.gov (United States)

    Bhattacharya, Aparajita; Desai, Harsh; DeMarse, Thomas B; Wheeler, Bruce C; Brewer, Gregory J

    2016-01-01

    Anatomical and behavioral studies, and in vivo and slice electrophysiology of the hippocampus suggest specific functions of the dentate gyrus (DG) and the CA3 subregions, but the underlying activity dynamics and repeatability of information processing remains poorly understood. To approach this problem, we engineered separate living networks of the DG and CA3 neurons that develop connections through 51 tunnels for axonal communication. Growing these networks on top of an electrode array enabled us to determine whether the subregion dynamics were separable and repeatable. We found spontaneous development of polarized propagation of 80% of the activity in the native direction from DG to CA3 and different spike and burst dynamics for these subregions. Spatial-temporal differences emerged when the relationships of target CA3 activity were categorized with to the number and timing of inputs from the apposing network. Compared to times of CA3 activity when there was no recorded tunnel input, DG input led to CA3 activity bursts that were 7× more frequent, increased in amplitude and extended in temporal envelope. Logistic regression indicated that a high number of tunnel inputs predict CA3 activity with 90% sensitivity and 70% specificity. Compared to no tunnel input, patterns of >80% tunnel inputs from DG specified different patterns of first-to-fire neurons in the CA3 target well. Clustering dendrograms revealed repeating motifs of three or more patterns at up to 17 sites in CA3 that were importantly associated with specific spatial-temporal patterns of tunnel activity. The number of these motifs recorded in 3 min was significantly higher than shuffled spike activity and not seen above chance in control networks in which CA3 was apposed to CA3 or DG to DG. Together, these results demonstrate spontaneous input-dependent repeatable coding of distributed activity in CA3 networks driven by engineered inputs from DG networks. These functional configurations at measured times

  7. Changes in the content of fatty acids in CA1 and CA3 areas of the hippocampus of Krushinsky-Molodkina rats after single and fivefold audiogenic seizures.

    Science.gov (United States)

    Savina, Tatyana; Aripovsky, Alexander; Kulagina, Tatyana

    2017-09-01

    Audiogenic seizures (AS) are generalized seizures evoked by high frequency sounds. Since the hippocampus is involved in the generation and maintenance of seizures, the effect of AS on the composition and content of fatty acids in the CA1 and CA3 hippocampal areas of AS-susceptible Krushinsky-Molodkina (KM) rats on days 1, 3, and 14 after single and fivefold seizures were examined. The total content of all fatty acids in field СА1 was found to be lower compared with the control at all times of observation after both a single seizure or fivefold seizures. The total content of fatty acids in field СА3 decreased at all times of examination after a single seizure, whereas it remained unchanged on days 3 and 14 following five AS. The content of omega-3 fatty acids in both fields at all times of observation after a single seizure and fivefold AS did not significantly differ from that in intact animals. The absence of significant changes in the content of stearic and α-linolenic acids and a considerable decrease in the levels of palmitic, oleic, and eicosapentaenoic acids were common to both fields at all times after both a single seizure or fivefold AS. The changes in the content of fatty acids in the СА3 and СА1 fields of the brain of AS-susceptible rats indicate that fatty acids are involved in both the development of seizure activity and neuroprotective anticonvulsive processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Smaller Dentate Gyrus and CA2 and CA3 Volumes Are Associated with Kynurenine Metabolites in Collegiate Football Athletes.

    Science.gov (United States)

    Meier, Timothy B; Savitz, Jonathan; Singh, Rashmi; Teague, T Kent; Bellgowan, Patrick S F

    2016-07-15

    An imbalance in kynurenine pathway metabolism is hypothesized to be associated with dysregulated glutamatergic neurotransmission, which has been proposed as a mechanism underlying the hippocampal volume loss observed in a variety of neurological disorders. Pre-clinical models suggest that the CA2-3 and dentate gyrus hippocampal subfields are particularly susceptible to excitotoxicity after experimental traumatic brain injury. We tested the hypothesis that smaller hippocampal volumes in collegiate football athletes with (n = 25) and without (n = 24) a concussion history would be most evident in the dentate gyrus and CA2-3 subfields relative to nonfootball healthy controls (n = 27). Further, we investigated whether the concentration of peripheral levels of kynurenine metabolites are altered in football athletes. Football athletes with and without a self-reported concussion history had smaller dentate gyrus (p Football athletes with and without a concussion history had a trend toward lower (p history had greater levels of quinolinic acid compared with athletes without a concussion history (p football athletes with a concussion history (p football athletes without a concussion history (p < 0.05). Our results raise the possibility that abnormalities of the kynurenine metabolic pathway constitute a mechanism for hippocampal volume differences in the context of sports-related brain injury.

  9. Neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress in rats with streptozotocin-induced type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Sang Gun Lee

    2015-01-01

    Full Text Available In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxidant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental parameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7-21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.

  10. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    Science.gov (United States)

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats

  11. Control theory-based regulation of hippocampal CA1 nonlinear dynamics.

    Science.gov (United States)

    Hsiao, Min-Chi; Song, Dong; Berger, Theodore W

    2008-01-01

    We are developing a biomimetic electronic neural prosthesis to replace regions of the hippocampal brain area that have been damaged by disease or insult. Our previous study has shown that the VLSI implementation of a CA3 nonlinear dynamic model can functionally replace the CA3 subregion of the hippocampal slice. As a result, the propagation of temporal patterns of activity from DG-->VLSI-->CA1 reproduces the activity observed experimentally in the biological DG-->CA3-->CA1 circuit. In this project, we incorporate an open-loop controller to optimize the output (CA1) response. Specifically, we seek to optimize the stimulation signal to CA1 using a predictive dentate gyrus (DG)-CA1 nonlinear model (i.e., DG-CA1 trajectory model) and a CA1 input-output model (i.e., CA1 plant model), such that the ultimate CA1 response (i.e., desired output) can be first predicted by the DG-CA1 trajectory model and then transformed to the desired stimulation through the inversed CA1 plant model. Lastly, the desired CA1 output is evoked by the estimated optimal stimulation. This study will be the first stage of formulating an integrated modeling-control strategy for the hippocampal neural prosthetic system.

  12. A process analysis of the CA3 subregion of the hippocampus

    Directory of Open Access Journals (Sweden)

    Raymond PIERRE Kesner

    2013-05-01

    Full Text Available AbstractFrom a behavioral perspective the CA3a,b subregion of the hippocampus plays an important role in the encoding of new spatial information within short-term memory with a duration of seconds and minutes. This can easily be observed in tasks that require rapid encoding, novelty detection, 1-trial short- term or working memory, and 1-trial cued recall primarily for spatial information. These are tasks that have been assumed to reflect the operations of episodic memory and require interactions between CA3a,b and the dentate gyrus via mossy fiber inputs into the CA3a,b. The CA3a,b is also important for encoding of spatial information requiring the acquisition of arbitrary and relational associations. All these tasks are assumed to operate within an autoassociative network function of the CA3 region. The CA3a,b also supports retrieval of short-term memory information based on a spatial pattern completion process. Based on afferent inputs into CA3a,b from the dentate gyrus (DG via mossy fibers and afferents from the entorhinal cortex into CA3a,b as well as reciprocal connections with the septum, CA3a,b can bias the process of encoding utilizing the operation of spatial pattern separation and the process of retrieval utilizing the operation of pattern completion. The CA3a,b also supports sequential processing of information in cooperation with CA1 based on the Schaffer collateral output from CA3a,b to CA1. The CA3c function is in part based on modulation of the DG in supporting pattern separation processes.

  13. Spatial information is preferentially processed by the distal part of CA3: implication for memory retrieval.

    Science.gov (United States)

    Flasbeck, Vera; Atucha, Erika; Nakamura, Nozomu H; Yoshida, Motoharu; Sauvage, Magdalena M

    2018-07-16

    For the past decades, CA3 was considered as a single functional entity. However, strong differences between the proximal (close to the dentate gyrus) and the distal (close to CA2) parts of CA3 in terms of connectivity patterns, gene expression and electrophysiological properties suggest that it is not the case. We recently showed that proximal CA3 (together with distal CA1) preferentially deals with non-spatial information [1]. In contrast to proximal CA3, distal CA3 mainly receives and predominantly projects to spatially tuned areas. Here, we tested if distal CA3 preferentially processes spatial information, which would suggest a segregation of the spatial information along the proximodistal axis of CA3. We used a high-resolution imaging technique based on the detection of the expression of the immediate-early gene Arc, commonly used to map activity in the medial temporal lobe. We showed that distal CA3 is strongly recruited in a newly designed delayed nonmatching-to-location task with high memory demands in rats, while proximal CA3 is not. These results indicate a functional segregation of CA3 that mirrors the one reported in CA1, and suggest the existence of a distal CA3- proximal CA1 spatial subnetwork. These findings bring further evidence for the existence of 'specialized' spatial and non-spatial subnetworks segregated along the proximodistal axis of the hippocampus and put forward the 'segregated' view of information processing in the hippocampus as a reasonable alternative to the well-accepted 'integrated' view, according to which spatial and non-spatial information are systematically integrated in the hippocampus to form episodic memory. Copyright © 2018. Published by Elsevier B.V.

  14. Extended Interneuronal Network of the Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Gergely G. Szabo

    2017-08-01

    Full Text Available Local interneurons control principal cells within individual brain areas, but anecdotal observations indicate that interneuronal axons sometimes extend beyond strict anatomical boundaries. Here, we use the case of the dentate gyrus (DG to show that boundary-crossing interneurons with cell bodies in CA3 and CA1 constitute a numerically significant and diverse population that relays patterns of activity generated within the CA regions back to granule cells. These results reveal the existence of a sophisticated retrograde GABAergic circuit that fundamentally extends the canonical interneuronal network.

  15. The race to learn: spike timing and STDP can coordinate learning and recall in CA3.

    Science.gov (United States)

    Nolan, Christopher R; Wyeth, Gordon; Milford, Michael; Wiles, Janet

    2011-06-01

    The CA3 region of the hippocampus has long been proposed as an autoassociative network performing pattern completion on known inputs. The dentate gyrus (DG) region is often proposed as a network performing the complementary function of pattern separation. Neural models of pattern completion and separation generally designate explicit learning phases to encode new information and assume an ideal fixed threshold at which to stop learning new patterns and begin recalling known patterns. Memory systems are significantly more complex in practice, with the degree of memory recall depending on context-specific goals. Here, we present our spike-timing separation and completion (STSC) model of the entorhinal cortex (EC), DG, and CA3 network, ascribing to each region a role similar to that in existing models but adding a temporal dimension by using a spiking neural network. Simulation results demonstrate that (a) spike-timing dependent plasticity in the EC-CA3 synapses provides a pattern completion ability without recurrent CA3 connections, (b) the race between activation of CA3 cells via EC-CA3 synapses and activation of the same cells via DG-CA3 synapses distinguishes novel from known inputs, and (c) modulation of the EC-CA3 synapses adjusts the learned versus test input similarity required to evoke a direct CA3 response prior to any DG activity, thereby adjusting the pattern completion threshold. These mechanisms suggest that spike timing can arbitrate between learning and recall based on the novelty of each individual input, ensuring control of the learn-recall decision resides in the same subsystem as the learned memories themselves. The proposed modulatory signal does not override this decision but biases the system toward either learning or recall. The model provides an explanation for empirical observations that a reduction in novelty produces a corresponding reduction in the latency of responses in CA3 and CA1. Copyright © 2010 Wiley-Liss, Inc.

  16. Status Epilepticus Induced Spontaneous Dentate Gyrus Spikes: In Vivo Current Source Density Analysis.

    Directory of Open Access Journals (Sweden)

    Sean P Flynn

    Full Text Available The dentate gyrus is considered to function as an inhibitory gate limiting excitatory input to the hippocampus. Following status epilepticus (SE, this gating function is reduced and granule cells become hyper-excitable. Dentate spikes (DS are large amplitude potentials observed in the dentate gyrus (DG of normal animals. DS are associated with membrane depolarization of granule cells, increased activity of hilar interneurons and suppression of CA3 and CA1 pyramidal cell firing. Therefore, DS could act as an anti-excitatory mechanism. Because of the altered gating function of the dentate gyrus following SE, we sought to investigate how DS are affected following pilocarpine-induced SE. Two weeks following lithium-pilocarpine SE induction, hippocampal EEG was recorded in male Sprague-Dawley rats with 16-channel silicon probes under urethane anesthesia. Probes were placed dorso-ventrally to encompass either CA1-CA3 or CA1-DG layers. Large amplitude spikes were detected from EEG recordings and subject to current source density analysis. Probe placement was verified histologically to evaluate the anatomical localization of current sinks and the origin of DS. In 9 of 11 pilocarpine-treated animals and two controls, DS were confirmed with large current sinks in the molecular layer of the dentate gyrus. DS frequency was significantly increased in pilocarpine-treated animals compared to controls. Additionally, in pilocarpine-treated animals, DS displayed current sinks in the outer, middle and/or inner molecular layers. However, there was no difference in the frequency of events when comparing between layers. This suggests that following SE, DS can be generated by input from medial and lateral entorhinal cortex, or within the dentate gyrus. DS were associated with an increase in multiunit activity in the granule cell layer, but no change in CA1. These results suggest that following SE there is an increase in DS activity, potentially arising from

  17. Functional optical probing of the hippocampal trisynaptic circuit in vitro: network dynamics, filter properties, and polysynaptic induction of CA1 LTP.

    Science.gov (United States)

    Stepan, Jens; Dine, Julien; Eder, Matthias

    2015-01-01

    Decades of brain research have identified various parallel loops linking the hippocampus with neocortical areas, enabling the acquisition of spatial and episodic memories. Especially the hippocampal trisynaptic circuit [entorhinal cortex layer II → dentate gyrus (DG) → cornu ammonis (CA)-3CA1] was studied in great detail because of its seemingly simple connectivity and characteristic structures that are experimentally well accessible. While numerous researchers focused on functional aspects, obtained from a limited number of cells in distinct hippocampal subregions, little is known about the neuronal network dynamics which drive information across multiple synapses for subsequent long-term storage. Fast voltage-sensitive dye imaging in vitro allows real-time recording of activity patterns in large/meso-scale neuronal networks with high spatial resolution. In this way, we recently found that entorhinal theta-frequency input to the DG most effectively passes filter mechanisms of the trisynaptic circuit network, generating activity waves which propagate across the entire DG-CA axis. These "trisynaptic circuit waves" involve high-frequency firing of CA3 pyramidal neurons, leading to a rapid induction of classical NMDA receptor-dependent long-term potentiation (LTP) at CA3-CA1 synapses (CA1 LTP). CA1 LTP has been substantially evidenced to be essential for some forms of explicit learning in mammals. Here, we review data with particular reference to whole network-level approaches, illustrating how activity propagation can take place within the trisynaptic circuit to drive formation of CA1 LTP.

  18. Long term delivery of pulsed magnetic fields does not alter visual discrimination learning or dendritic spine density in the mouse CA1 pyramidal or dentate gyrus neurons [v2; ref status: indexed, http://f1000r.es/2gk

    Directory of Open Access Journals (Sweden)

    Matthew Sykes

    2013-12-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is thought to facilitate brain plasticity. However, few studies address anatomical changes following rTMS in relation to behaviour. We delivered 5 weeks of daily pulsed rTMS stimulation to adult ephrin-A2-/- and wildtype (C57BI/6j mice (n=10 per genotype undergoing a visual learning task and analysed learning performance, as well as spine density, in the dentate gyrus molecular and CA1 pyramidal cell layers in Golgi-stained brain sections. We found that neither learning behaviour, nor hippocampal spine density was affected by long term rTMS. Our negative results highlight the lack of deleterious side effects in normal subjects and are consistent with previous studies suggesting that rTMS has a bigger effect on abnormal or injured brain substrates than on normal/control structures.

  19. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area.

    Science.gov (United States)

    Joshi, Abhilasha; Salib, Minas; Viney, Tim James; Dupret, David; Somogyi, Peter

    2017-12-20

    Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Dentate Gyrus

    OpenAIRE

    Allen Institute for Brain Science; Rachel A. Dalley; Lydia L. Ng; Angela L. Guillozet-Bongaarts

    2008-01-01

    This report contains a gene expression summary of the dentate gyrus (DG), derived from the Allen Brain Atlas (ABA) _in situ_ hybridization mouse data set. The structure's location and morphological characteristics in the mouse brain are described using the Nissl data found in the Allen Reference Atlas. Using an established algorithm, the expression values of the dentate gyrus were compared to the values of the macro/parent-structure, in this case the hippocampal region, for the purpose o...

  1. A brief period of sleep deprivation causes spine loss in the dentate gyrus of mice.

    Science.gov (United States)

    Raven, Frank; Meerlo, Peter; Van der Zee, Eddy A; Abel, Ted; Havekes, Robbert

    2018-03-24

    Sleep and sleep loss have a profound impact on hippocampal function, leading to memory impairments. Modifications in the strength of synaptic connections directly influences neuronal communication, which is vital for normal brain function, as well as the processing and storage of information. In a recently published study, we found that as little as five hours of sleep deprivation impaired hippocampus-dependent memory consolidation, which was accompanied by a reduction in dendritic spine numbers in hippocampal area CA1. Surprisingly, loss of sleep did not alter the spine density of CA3 neurons. Although sleep deprivation has been reported to affect the function of the dentate gyrus, it is unclear whether a brief period of sleep deprivation impacts spine density in this region. Here, we investigated the impact of a brief period of sleep deprivation on dendritic structure in the dentate gyrus of the dorsal hippocampus. We found that five hours of sleep loss reduces spine density in the dentate gyrus with a prominent effect on branched spines. Interestingly, the inferior blade of the dentate gyrus seems to be more vulnerable in terms of spine loss than the superior blade. This decrease in spine density predominantly in the inferior blade of the dentate gyrus may contribute to the memory deficits observed after sleep loss, as structural reorganization of synaptic networks in this subregion is fundamental for cognitive processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Impaired expression of GABA transporters in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Science.gov (United States)

    Fuhrer, Tessa E; Palpagama, Thulani H; Waldvogel, Henry J; Synek, Beth J L; Turner, Clinton; Faull, Richard L; Kwakowsky, Andrea

    2017-05-20

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and plays an important role in regulating neuronal excitability. GABA reuptake from the synapse is dependent on specific transporters - mainly GAT-1, GAT-3 and BGT-1 (GATs). This study is the first to show alterations in the expression of the GATs in the Alzheimer's disease (AD) hippocampus, entorhinal cortex and superior temporal gyrus. We found a significant increase in BGT-1 expression associated with AD in all layers of the dentate gyrus, in the stratum oriens of the CA2 and CA3 and the superior temporal gyrus. In AD there was a significant decrease in GAT-1 expression in the entorhinal cortex and superior temporal gyrus. We also found a significant decrease in GAT-3 immunoreactivity in the stratum pyramidale of the CA1 and CA3, the subiculum and entorhinal cortex. These observations indicate that the expression of the GATs shows brain-region- and layer-specific alterations in AD, suggesting a complex activation pattern of different GATs during the course of the disease. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. SNAP-25 in hippocampal CA3 region is required for long-term memory formation

    International Nuclear Information System (INIS)

    Hou Qiuling; Gao Xiang; Lu Qi; Zhang Xuehan; Tu Yanyang; Jin Meilei; Zhao Guoping; Yu Lei; Jing Naihe; Li Baoming

    2006-01-01

    SNAP-25 is a synaptosomal protein of 25 kDa, a key component of synaptic vesicle-docking/fusion machinery, and plays a critical role in exocytosis and neurotransmitter release. We previously reported that SNAP-25 in the hippocampal CA1 region is involved in consolidation of contextual fear memory and water-maze spatial memory (Hou et al. European J Neuroscience, 20: 1593-1603, 2004). SNAP-25 is expressed not only in the CA1 region, but also in the CA3 region, and the SNAP-25 mRNA level in the CA3 region is higher than in the CA1 region. Here, we provide evidence that SNAP-25 in the CA3 region is also involved in learning/memory. Intra-CA3 infusion of SNAP-25 antisense oligonucleotide impaired both long-term contextual fear memory and water-maze spatial memory, with short-term memory intact. Furthermore, the SNAP-25 antisense oligonucleotide suppressed the long-term potentiation (LTP) of field excitatory post-synaptic potential (fEPSP) in the mossy-fiber pathway (DG-CA3 pathway), with no effect on paired-pulse facilitation of the fEPSP. These results are consistent with the notion that SNAP-25 in the hippocampal CA3 region is required for long-term memory formation

  4. Perforant path lesioning induces sprouting of CA3-associated fibre systems in mouse hippocampal formation

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Hegelund, Iørn V; Poulsen, Frantz R

    2002-01-01

    mice. We found that lesioning led to translaminar sprouting of Timm stained regio inferior hippocampus (CA3)-associated fibre systems into the denervated termination zones of the CA3 and dentate gyrus, from the adjacent non-denervated stratum radiatum of CA3. Differences were seen in the Timm staining...... pattern of the two strains of mice, while the response to lesioning appeared similar albeit less pronounced than that observed in the rat. We also observed an intensified acetylcholine esterase staining reflective of cholinergic sprouting in the denervated perforant path termination zones, which...... was particularly prominent in areas with sprouting of Timm stained CA3-associated fibres. Finally, we showed that some of the sprouting fibres within the CA3 were myelinated, due to an increased density of silver impregnated myelinated fibres in this region after lesioning. These results show that the basic...

  5. Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters.

    Science.gov (United States)

    Bedrosian, Tracy A; Fonken, Laura K; Walton, James C; Haim, Abraham; Nelson, Randy J

    2011-08-01

    The prevalence of major depression has increased in recent decades; however, the underlying causes of this phenomenon remain unspecified. One environmental change that has coincided with elevated rates of depression is increased exposure to artificial light at night. Shift workers and others chronically exposed to light at night are at increased risk of mood disorders, suggesting that nighttime illumination may influence brain mechanisms mediating affect. We tested the hypothesis that exposure to dim light at night may impact affective responses and alter morphology of hippocampal neurons. Ovariectomized adult female Siberian hamsters (Phodopus sungorus) were housed for 8 weeks in either a light/dark cycle (LD) or a light/dim light cycle (DM), and then behavior was assayed. DM-hamsters displayed more depression-like responses in the forced swim and the sucrose anhedonia tests compared with LD-hamsters. Conversely, in the elevated plus maze DM-hamsters reduced anxiety-like behaviors. Brains from the same animals were processed using the Golgi-Cox method and hippocampal neurons within CA1, CA3, and the dentate gyrus were analyzed for morphological characteristics. In CA1, DM-hamsters significantly reduced dendritic spine density on both apical and basilar dendrites, an effect which was not mediated by baseline cortisol, as concentrations were equivalent between groups. These results demonstrate dim light at night is sufficient to reduce synaptic spine connections to CA1. Importantly, the present results suggest that night-time low level illumination, comparable to levels that are pervasive in North America and Europe, may contribute to the increasing prevalence of mood disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A role for CA3 in social recognition memory.

    Science.gov (United States)

    Chiang, Ming-Ching; Huang, Arthur J Y; Wintzer, Marie E; Ohshima, Toshio; McHugh, Thomas J

    2018-02-02

    Social recognition memory is crucial for survival across species, underlying the need to correctly identify conspecifics, mates and potential enemies. In humans the hippocampus is engaged in social and episodic memory, however the circuit mechanisms of social memory in rodent models has only recently come under scrutiny. Work in mice has established that the dorsal CA2 and ventral CA1 regions play critical roles, however a more comprehensive comparative analyses of the circuits and mechanisms required has not been reported. Here we employ conditional genetics to examine the differential contributions of the hippocampal subfields to social memory. We find that the deletion of NMDA receptor subunit 1 gene (NR1), which abolishes NMDA receptor synaptic plasticity, in CA3 pyramidal cells led to deficits in social memory; however, mice lacking the same gene in DG granule cells performed indistinguishable from controls. Further, we use conditional pharmacogenetic inhibition to demonstrate that activity in ventral, but not dorsal, CA3 is necessary for the encoding of a social memory. These findings demonstrated CA3 pyramidal cell plasticity and transmission contribute to the encoding of social stimuli and help further identify the distinct circuits underlying the role of the hippocampus in social memory. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells.

    Science.gov (United States)

    Villanueva-Castillo, Cindy; Tecuatl, Carolina; Herrera-López, Gabriel; Galván, Emilio J

    2017-01-01

    The network interaction between the dentate gyrus and area CA3 of the hippocampus is responsible for pattern separation, a process that underlies the formation of new memories, and which is naturally diminished in the aged brain. At the cellular level, aging is accompanied by a progression of biochemical modifications that ultimately affects its ability to generate and consolidate long-term potentiation. Although the synapse between dentate gyrus via the mossy fibers (MFs) onto CA3 neurons has been subject of extensive studies, the question of how aging affects the MF-CA3 synapse is still unsolved. Extracellular and whole-cell recordings from acute hippocampal slices of aged Wistar rats (34 ± 2 months old) show that aging is accompanied by a reduction in the interneuron-mediated inhibitory mechanisms of area CA3. Several MF-mediated forms of short-term plasticity, MF long-term potentiation and at least one of the critical signaling cascades necessary for potentiation are also compromised in the aged brain. An analysis of the spontaneous glutamatergic and gamma-aminobutyric acid-mediated currents on CA3 cells reveal a dramatic alteration in amplitude and frequency of the nonevoked events. CA3 cells also exhibited increased intrinsic excitability. Together, these results demonstrate that aging is accompanied by a decrease in the GABAergic inhibition, reduced expression of short- and long-term forms of synaptic plasticity, and increased intrinsic excitability. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Simultaneous recording of the field-EPSP as well as the population spike in the CA1 region in freely moving rats by using a fixed "double"-recording electrode.

    Science.gov (United States)

    Scherf, Thomas; Frey, Julietta U; Frey, Sabine

    2010-04-30

    The recording of field potentials in freely moving rats is a very appropriate and commonly used method to describe changes in cellular mechanisms underlying synaptic plasticity. Recently, we introduced a method for the simultaneous recording of both the field-EPSP as well as the population spike in the dentate gyrus of freely moving rats. We used self-made "double"-recording electrodes, consisting of two wires straighten together with a constant distance between both tips. This method was now further developed to obtain stable long-term recordings of CA1 field potentials. Rats were chronically implanted with a bipolar recording electrode; one tip of which reached the stratum radiatum to record the field-EPSP, the other tip was lowered into the stratum pyramidale of the same neuron population to record the population spike by stimulation of the contralateral CA3 (cCA3). In such prepared rats, simultaneously recorded field-EPSP as well as the population spike where thus obtained from their places of generation in a very reliable manner. This kind of preparation allowed a better standardization of stimulation intensities between different animals and stable electrophysiological recordings of both CA1-potentials over a time period of at least 24h in freely behaving animals. Furthermore, primed burst stimulation of the cCA3 (a single biphasic priming pulse was followed by a burst of 10 pulses (frequency of 100 Hz) 190 ms later; pulse duration per half-wave: 0.1 ms) resulted in an early-LTP of both measured parameters, the field-EPSP and the population spike in the CA1 region of freely moving rats. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Long term potentiation, but not depression, in interlamellar hippocampus CA1.

    Science.gov (United States)

    Sun, Duk-Gyu; Kang, Hyeri; Tetteh, Hannah; Su, Junfeng; Lee, Jihwan; Park, Sung-Won; He, Jufang; Jo, Jihoon; Yang, Sungchil; Yang, Sunggu

    2018-03-26

    Synaptic plasticity in the lamellar CA3 to CA1 circuitry has been extensively studied while interlamellar CA1 to CA1 connections have not yet received much attention. One of our earlier studies demonstrated that axons of CA1 pyramidal neurons project to neighboring CA1 neurons, implicating information transfer along a longitudinal interlamellar network. Still, it remains unclear whether long-term synaptic plasticity is present within this longitudinal CA1 network. Here, we investigate long-term synaptic plasticity between CA1 pyramidal cells, using in vitro and in vivo extracellular recordings and 3D holography glutamate uncaging. We found that the CA1-CA1 network exhibits NMDA receptor-dependent long-term potentiation (LTP) without direction or layer selectivity. By contrast, we find no significant long-term depression (LTD) under various LTD induction protocols. These results implicate unique synaptic properties in the longitudinal projection suggesting that the interlamellar CA1 network could be a promising structure for hippocampus-related information processing and brain diseases.

  10. Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons.

    Science.gov (United States)

    Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K

    2018-02-01

    Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.

  11. NMDA Signaling in CA1 Mediates Selectively the Spatial Component of Episodic Memory

    Science.gov (United States)

    Place, Ryan; Lykken, Christy; Beer, Zachery; Suh, Junghyup; McHugh, Thomas J.; Tonegawa, Susumu; Eichenbaum, Howard; Sauvage, Magdalena M.

    2012-01-01

    Recent studies focusing on the memory for temporal order have reported that CA1 plays a critical role in the memory for the sequences of events, in addition to its well-described role in spatial navigation. In contrast, CA3 was found to principally contribute to the memory for the association of items with spatial or contextual information in…

  12. GABAA receptor subunit expression changes in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Science.gov (United States)

    Kwakowsky, Andrea; Calvo-Flores Guzmán, Beatriz; Pandya, Madhavi; Turner, Clinton; Waldvogel, Henry J; Faull, Richard L

    2018-02-27

    Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABA type A receptors (GABA A Rs) are severely affected in Alzheimer's disease (AD). However, the distribution and subunit composition of GABA A Rs in the AD brain are not well understood. This is the first comprehensive study to show brain region- and cell layer-specific alterations in the expression of the GABA A R subunits α1-3, α5, β1-3 and γ2 in the human AD hippocampus, entorhinal cortex and superior temporal gyrus (STG). In late-stage AD tissue samples using immunohistochemistry we found significant alteration of all investigated GABA A Rs subunits except for α3 and β1 that were well preserved. The most prominent changes include an increase in GABA A R α1 expression associated with AD in all layers of the CA3 region, in the stratum (str.) granulare and hilus of the dentate gyrus (DG). We found a significant increase in GABA A R α2 expression in the str. oriens of the CA1-3, str. radiatum of the CA2,3 and decrease in the str. pyramidale of the CA1 region in AD cases. In AD there was a significant increase in GABA A R α5 subunit expression in str. pyramidale, str. oriens of the CA1 region and decrease in the STG. We also found a significant decrease in the GABA A R β3 subunit immunoreactivity in the str. oriens of the CA2, str. granulare and str. moleculare of the DG. In conclusion, these findings indicate that the expression of the GABA A R subunits shows brain region- and layer-specific alterations in AD, and these changes could significantly influence and alter GABA A R function in the disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. P2X7 receptor activation ameliorates CA3 neuronal damage via a tumor necrosis factor-α-mediated pathway in the rat hippocampus following status epilepticus

    Directory of Open Access Journals (Sweden)

    Ryu Hea Jin

    2011-06-01

    Full Text Available Abstract Background The release of tumor necrosis factor-α (TNF-α appears depend on the P2X7 receptor, a purinergic receptor. In the present study, we addressed the question of whether P2X7 receptor-mediated TNF-α regulation is involved in pathogenesis and outcome of status epilepticus (SE. Methods SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline-, 2',3'-O-(4-benzoylbenzoyl-adenosine 5'-triphosphate (BzATP, adenosine 5'-triphosphate-2',3'-dialdehyde (OxATP, A-438079, or A-740003 prior to SE induction. Thereafter, we performed Fluoro-Jade B staining and immunohistochemical studies for TNF-α and NF-κB subunit phosphorylations. Results Following SE, P2X7 receptor agonist (BzATP infusion increased TNF-α immunoreactivity in dentate granule cells as compared with that in saline-infused animals. In addition, TNF-α immunoreactivity was readily apparent in the mossy fibers, while TNF-α immunoreactivity in CA1-3 pyramidal cells was unaltered. However, P2X7 receptor antagonist (OxATP-, A-438079, and A-740003 infusion reduced SE-induced TNF-α expression in dentate granule cells. In the CA3 region, BzATP infusion attenuated SE-induced neuronal damage, accompanied by enhancement of p65-Ser276 and p65-Ser311 NF-κB subunit phosphorylations. In contrast, OxATP-, A-438079, and A-740003 infusions increased SE-induced neuronal death. Soluble TNF p55 receptor (sTNFp55R, and cotreatment with BzATP and sTNFp55R infusion also increased SE-induced neuronal damage in CA3 region. However, OxATP-, sTNFp55R or BzATP+sTNFp55R infusions could not exacerbate SE-induced neuronal damages in the dentate gyrus and the CA1 region, as compared to BzATP infusion. Conclusions These findings suggest that TNF-α induction by P2X7 receptor activation may ameliorate SE-induced CA3 neuronal damage via enhancing NF-κB p65-Ser276 and p65-Ser311 phosphorylations.

  14. A signature of attractor dynamics in the CA3 region of the hippocampus.

    Directory of Open Access Journals (Sweden)

    César Rennó-Costa

    2014-05-01

    Full Text Available The notion of attractor networks is the leading hypothesis for how associative memories are stored and recalled. A defining anatomical feature of such networks is excitatory recurrent connections. These "attract" the firing pattern of the network to a stored pattern, even when the external input is incomplete (pattern completion. The CA3 region of the hippocampus has been postulated to be such an attractor network; however, the experimental evidence has been ambiguous, leading to the suggestion that CA3 is not an attractor network. In order to resolve this controversy and to better understand how CA3 functions, we simulated CA3 and its input structures. In our simulation, we could reproduce critical experimental results and establish the criteria for identifying attractor properties. Notably, under conditions in which there is continuous input, the output should be "attracted" to a stored pattern. However, contrary to previous expectations, as a pattern is gradually "morphed" from one stored pattern to another, a sharp transition between output patterns is not expected. The observed firing patterns of CA3 meet these criteria and can be quantitatively accounted for by our model. Notably, as morphing proceeds, the activity pattern in the dentate gyrus changes; in contrast, the activity pattern in the downstream CA3 network is attracted to a stored pattern and thus undergoes little change. We furthermore show that other aspects of the observed firing patterns can be explained by learning that occurs during behavioral testing. The CA3 thus displays both the learning and recall signatures of an attractor network. These observations, taken together with existing anatomical and behavioral evidence, make the strong case that CA3 constructs associative memories based on attractor dynamics.

  15. Contextual Learning Requires Functional Diversity at Excitatory and Inhibitory Synapses onto CA1 Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Dai Mitsushima

    2015-01-01

    Full Text Available Although the hippocampus is processing temporal and spatial information in particular context, the encoding rule creating memory is completely unknown. To examine the mechanism, we trained rats on an inhibitory avoidance (IA task, a hippocampus-dependent rapid one-trial contextual learning paradigm. By combining Herpes virus-mediated in vivo gene delivery with in vitro patch-clamp recordings, I reported contextual learning drives GluR1-containing AMPA receptors into CA3-CA1 synapses. The molecular event is required for contextual memory, since bilateral expression of delivery blocker in CA1 successfully blocked IA learning. Moreover, I found a logarithmic correlation between the number of delivery blocking cells and learning performance. Considering that one all-or-none device can process 1-bit of data per clock (Nobert Wiener 1961, the logarithmic correlation may provides evidence that CA1 neurons transmit essential data of contextual information. Further, I recently reported critical role of acetylcholine as an intrinsic trigger of learning-dependent synaptic plasticity. IA training induced ACh release in CA1 that strengthened not only AMPA receptor-mediated excitatory synapses, but also GABAA receptor-mediated inhibitory synapses on each CA1 neuron. More importantly, IA-trained rats showed individually different excitatory and inhibitory synaptic inputs with wide variation on each CA1 neuron. Here I propose a new hypothesis that the diversity of synaptic inputs on CA1 neurons may depict cell-specific outputs processing experienced episodes after training.

  16. DEVELOPMENTAL HYPOTHYROIDISM ALTERS SYNAPTIC TRANSMISSION IN DENTATE GYRUS AND AREA CA1 OF HIPPOCAMPUS.

    Science.gov (United States)

    Hypothyroidism during critical periods of brain developmental leads to learning deficits and alterations in hippocampal structure. Neurophysiological properties of the hippocampus, however, have not been well characterized. The present study examined field potentials evoked in...

  17. Reactivation of Rate Remapping in CA3.

    Science.gov (United States)

    Schwindel, C Daniela; Navratilova, Zaneta; Ali, Karim; Tatsuno, Masami; McNaughton, Bruce L

    2016-09-07

    The hippocampus is thought to contribute to episodic memory by creating, storing, and reactivating patterns that are unique to each experience, including different experiences that happen at the same location. Hippocampus can combine spatial and contextual/episodic information using a dual coding scheme known as "global" and "rate" remapping. Global remapping selects which set of neurons can activate at a given location. Rate remapping readjusts the firing rates of this set depending on current experience, thus expressing experience-unique patterns at each location. But can the experience-unique component be retrieved spontaneously? Whereas reactivation of recent, spatially selective patterns in hippocampus is well established, it is never perfect, raising the issue of whether the experiential component might be absent. This question is key to the hypothesis that hippocampus can assist memory consolidation by reactivating and broadcasting experience-specific "index codes" to neocortex. In CA3, global remapping exhibits attractor-like dynamics, whereas rate remapping apparently does not, leading to the hypothesis that only the former can be retrieved associatively and casting doubt on the general consolidation hypothesis. Therefore, we studied whether the rate component is reactivated spontaneously during sleep. We conducted neural ensemble recordings from CA3 while rats ran on a circular track in different directions (in different sessions) and while they slept. It was shown previously that the two directions of running result in strong rate remapping. During sleep, the most recent rate distribution was reactivated preferentially. Therefore, CA3 can retrieve patterns spontaneously that are unique to both the location and the content of recent experience. The hippocampus is required for memory of events and their spatial contexts. The primary correlate of hippocampal activity is location in space, but multiple memories can occur in the same location. To be useful

  18. Survival of mossy cells of the hippocampal dentate gyrus in humans with mesial temporal lobe epilepsy.

    Science.gov (United States)

    Seress, László; Abrahám, Hajnalka; Horváth, Zsolt; Dóczi, Tamás; Janszky, József; Klemm, Joyce; Byrne, Richard; Bakay, Roy A E

    2009-12-01

    Hippocampal sclerosis can be identified in most patients with mesial temporal lobe epilepsy (TLE). Surgical removal of the sclerotic hippocampus is widely performed to treat patients with drug-resistant mesial TLE. In general, both epilepsy-prone and epilepsy-resistant neurons are believed to be in the hippocampal formation. The hilar mossy cells of the hippocampal dentate gyrus are usually considered one of the most vulnerable types of neurons. The aim of this study was to clarify the fate of mossy cells in the hippocampus in epileptic humans. Of the 19 patients included in this study, 15 underwent temporal lobe resection because of drug-resistant TLE. Four patients were used as controls because they harbored tumors that had not invaded the hippocampus and they had experienced no seizures. Histological evaluation of resected hippocampal tissues was performed using immunohistochemistry. Mossy cells were identified in the control as well as the epileptic hippocampi by using cocaine- and amphetamine-regulated transcript peptide immunohistochemistry. In most cases the number of mossy cells was reduced and thorny excrescences were smaller in the epileptic hippocampi than in controls; however, there was a significant loss of pyramidal cells and a partial loss of granule cells in the same epileptic hippocampi in which mossy cell loss was apparent. The loss of mossy cells could be correlated with the extent of hippocampal sclerosis, patient age at seizure onset, duration of epilepsy, and frequency of seizures. In many cases large numbers of mossy cells were present in the hilus of the dentate gyrus when most pyramidal neurons of the CA1 and CA3 areas of the Ammon's horn were lost, suggesting that mossy cells may not be more vulnerable to epileptic seizures than the hippocampal pyramidal neurons.

  19. Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit.

    Directory of Open Access Journals (Sweden)

    Atsushi Takeda

    Full Text Available The translocation of synaptic Zn(2+ to the cytosolic compartment has been studied to understand Zn(2+ neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn(2+ in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn(2+ in the hippocampus was induced with clioquinol (CQ, a zinc ionophore. Zn(2+ delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn(2+ levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl(2 into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn(2+ in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn(2+ and/or the preferential vulnerability to Zn(2+ in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn(2+ in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn(2+. The present study indicates that the transient increase in cytosolic Zn(2+ in CA1 pyramidal neurons reversibly impairs object recognition memory.

  20. Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit.

    Science.gov (United States)

    Takeda, Atsushi; Takada, Shunsuke; Nakamura, Masatoshi; Suzuki, Miki; Tamano, Haruna; Ando, Masaki; Oku, Naoto

    2011-01-01

    The translocation of synaptic Zn(2+) to the cytosolic compartment has been studied to understand Zn(2+) neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn(2+) in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn(2+) in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn(2+) delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn(2+) levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl(2) into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn(2+) in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn(2+) and/or the preferential vulnerability to Zn(2+) in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn(2+) in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn(2+). The present study indicates that the transient increase in cytosolic Zn(2+) in CA1 pyramidal neurons reversibly impairs object recognition memory.

  1. Hippocampal CA3 transcriptome signature correlates with initial precipitating injury in refractory mesial temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Silvia Y Bando

    Full Text Available BACKGROUND: Prolonged febrile seizures constitute an initial precipitating injury (IPI commonly associated with refractory mesial temporal lobe epilepsy (RMTLE. In order to investigate IPI influence on the transcriptional phenotype underlying RMTLE we comparatively analyzed the transcriptomic signatures of CA3 explants surgically obtained from RMTLE patients with (FS or without (NFS febrile seizure history. Texture analyses on MRI images of dentate gyrus were conducted in a subset of surgically removed sclerotic hippocampi for identifying IPI-associated histo-radiological alterations. METHODOLOGY/PRINCIPAL FINDINGS: DNA microarray analysis revealed that CA3 global gene expression differed significantly between FS and NFS subgroups. An integrative functional genomics methodology was used for characterizing the relations between GO biological processes themes and constructing transcriptional interaction networks defining the FS and NFS transcriptomic signatures and its major gene-gene links (hubs. Co-expression network analysis showed that: i CA3 transcriptomic profiles differ according to the IPI; ii FS distinctive hubs are mostly linked to glutamatergic signalization while NFS hubs predominantly involve GABAergic pathways and neurotransmission modulation. Both networks have relevant hubs related to nervous system development, what is consistent with cell genesis activity in the hippocampus of RMTLE patients. Moreover, two candidate genes for therapeutic targeting came out from this analysis: SSTR1, a relevant common hub in febrile and afebrile transcriptomes, and CHRM3, due to its putative role in epilepsy susceptibility development. MRI texture analysis allowed an overall accuracy of 90% for pixels correctly classified as belonging to FS or NFS groups. Histological examination revealed that granule cell loss was significantly higher in FS hippocampi. CONCLUSIONS/SIGNIFICANCE: CA3 transcriptional signatures and dentate gyrus morphology fairly

  2. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies).

    OpenAIRE

    Amaral David G; Scharfman Helen E; Lavenex Pierre

    2007-01-01

    The dentate gyrus is a simple cortical region that is an integral portion of the larger functional brain system called the hippocampal formation. In this review, the fundamental neuroanatomical organization of the dentate gyrus is described, including principal cell types and their connectivity, and a summary of the major extrinsic inputs of the dentate gyrus is provided. Together, this information provides essential information that can serve as an introduction to the dentate gyrus — a “dent...

  3. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis.

    Science.gov (United States)

    Miller, Thomas D; Chong, Trevor T-J; Aimola Davies, Anne M; Ng, Tammy W C; Johnson, Michael R; Irani, Sarosh R; Vincent, Angela; Husain, Masud; Jacob, Saiju; Maddison, Paul; Kennard, Christopher; Gowland, Penny A; Rosenthal, Clive R

    2017-05-01

    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P 3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  4. The Coexpression of Reelin and Neuronal Nitric Oxide Synthase in a Subpopulation of Dentate Gyrus Neurons Is Downregulated in Heterozygous Reeler Mice

    Directory of Open Access Journals (Sweden)

    Raquel Romay-Tallón

    2010-01-01

    Full Text Available Reelin is an extracellular matrix protein expressed in several interneuron subtypes in the hippocampus and dentate gyrus. Neuronal nitric oxide synthase (nNOS is also expressed by interneurons in these areas. We investigated whether reelin and nNOS are co-localized in the same population of hippocampal interneurons, and whether this colocalization is altered in the heterozygous reeler mouse. We found colocalization of nNOS in reelin-positive cells in the CA1 stratum radiatum and lacunosum moleculare, the CA3 stratum radiatum, and the dentate gyrus subgranular zone, molecular layer, and hilus. In heterozygous reeler mice, the colocalization of nNOS in reelin-positive cells was significantly decreased only in the subgranular zone and molecular layer. The coexpression of reelin and nNOS in several hippocampal regions suggests that reelin and nNOS may work synergistically to promote glutamatergic function, and the loss of this coexpression in heterozygous reeler mice may underlie some of the behavioral deficits observed in these animals.

  5. Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling.

    Science.gov (United States)

    Fernández-Ruiz, Antonio; Oliva, Azahara; Nagy, Gergő A; Maurer, Andrew P; Berényi, Antal; Buzsáki, György

    2017-03-08

    Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Cell-Type-Specific Circuit Connectivity of Hippocampal CA1 Revealed through Cre-Dependent Rabies Tracing

    Directory of Open Access Journals (Sweden)

    Yanjun Sun

    2014-04-01

    Full Text Available We developed and applied a Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to specific CA1 neuron types in the mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, the entorhinal cortex (EC, the medial septum (MS, and, unexpectedly, the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons, whereas inhibitory neurons receive a great majority of inputs from GABAergic MS neurons. Both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons received much stronger input than SOM+ neurons from CA3, the EC, and the MS. Thus, rabies tracing identifies hippocampal circuit connections and maps how the different input sources to CA1 are distributed with different strengths on each of its constituent cell types.

  7. Corruption of the dentate gyrus by "dominant" granule cells: Implications for dentate gyrus function in health and disease.

    Science.gov (United States)

    Scharfman, Helen E; Myers, Catherine E

    2016-03-01

    The dentate gyrus (DG) and area CA3 of the hippocampus are highly organized lamellar structures which have been implicated in specific cognitive functions such as pattern separation and pattern completion. Here we describe how the anatomical organization and physiology of the DG and CA3 are consistent with structures that perform pattern separation and completion. We then raise a new idea related to the complex circuitry of the DG and CA3 where CA3 pyramidal cell 'backprojections' play a potentially important role in the sparse firing of granule cells (GCs), considered important in pattern separation. We also propose that GC axons, the mossy fibers, already known for their highly specialized structure, have a dynamic function that imparts variance--'mossy fiber variance'--which is important to pattern separation and completion. Computational modeling is used to show that when a subset of GCs become 'dominant,' one consequence is loss of variance in the activity of mossy fiber axons and a reduction in pattern separation and completion in the model. Empirical data are then provided using an example of 'dominant' GCs--subsets of GCs that develop abnormally and have increased excitability. Notably, these abnormal GCs have been identified in animal models of disease where DG-dependent behaviors are impaired. Together these data provide insight into pattern separation and completion, and suggest that behavioral impairment could arise from dominance of a subset of GCs in the DG-CA3 network. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Enhancement of synchronized activity between hippocampal CA1 neurons during initial storage of associative fear memory.

    Science.gov (United States)

    Liu, Yu-Zhang; Wang, Yao; Shen, Weida; Wang, Zhiru

    2017-08-01

    Learning and memory storage requires neuronal plasticity induced in the hippocampus and other related brain areas, and this process is thought to rely on synchronized activity in neural networks. We used paired whole-cell recording in vivo to examine the synchronized activity that was induced in hippocampal CA1 neurons by associative fear learning. We found that both membrane potential synchronization and spike synchronization of CA1 neurons could be transiently enhanced after task learning, as observed on day 1 but not day 5. On day 1 after learning, CA1 neurons showed a decrease in firing threshold and rise times of suprathreshold membrane potential changes as well as an increase in spontaneous firing rates, possibly contributing to the enhancement of spike synchronization. The transient enhancement of CA1 neuronal synchronization may play important roles in the induction of neuronal plasticity for initial storage and consolidation of associative memory. The hippocampus is critical for memory acquisition and consolidation. This function requires activity- and experience-induced neuronal plasticity. It is known that neuronal plasticity is largely dependent on synchronized activity. As has been well characterized, repetitive correlated activity of presynaptic and postsynaptic neurons can lead to long-term modifications at their synapses. Studies on network activity have also suggested that memory processing in the hippocampus may involve learning-induced changes of neuronal synchronization, as observed in vivo between hippocampal CA3 and CA1 networks as well as between the rhinal cortex and the hippocampus. However, further investigation of learning-induced synchronized activity in the hippocampus is needed for a full understanding of hippocampal memory processing. In this study, by performing paired whole-cell recording in vivo on CA1 pyramidal cells (PCs) in anaesthetized adult rats, we examined CA1 neuronal synchronization before and after associative fear

  9. Schaffer collateral inputs to CA1 excitatory and inhibitory neurons follow different connectivity rules.

    Science.gov (United States)

    Kwon, Osung; Feng, Linqing; Druckmann, Shaul; Kim, Jinhyun

    2018-05-04

    Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information processing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3-CA1 pyramidal cells (PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably, application of Peters' Rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organizations of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the development and functions of neural networks. SIGNIFICANCE STATEMENT Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here, using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presynaptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons follow

  10. Disinhibition mediates a form of hippocampal long-term potentiation in area CA1.

    Directory of Open Access Journals (Sweden)

    Jake Ormond

    Full Text Available The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs followed rapidly by feedforward (disynaptic inhibitory postsynaptic potentials (IPSPs. Long-term potentiation (LTP of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs, required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain.

  11. Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells.

    Science.gov (United States)

    Craig, Michael T; McBain, Chris J

    2015-02-25

    Information processing in neuronal networks relies on the precise synchronization of ensembles of neurons, coordinated by the diverse family of inhibitory interneurons. Cortical interneurons can be usefully parsed by embryonic origin, with the vast majority arising from either the caudal or medial ganglionic eminences (CGE and MGE). Here, we examine the activity of hippocampal interneurons during gamma oscillations in mouse CA1, using an in vitro model where brief epochs of rhythmic activity were evoked by local application of kainate. We found that this CA1 KA-evoked gamma oscillation was faster than that in CA3 and, crucially, did not appear to require the involvement of fast-spiking basket cells. In contrast to CA3, we also found that optogenetic inhibition of pyramidal cells in CA1 did not significantly affect the power of the oscillation, suggesting that excitation may not be essential for gamma genesis in this region. We found that MGE-derived interneurons were generally more active than CGE interneurons during CA1 gamma, although a group of CGE-derived interneurons, putative trilaminar cells, were strongly phase-locked with gamma oscillations and, together with MGE-derived axo-axonic and bistratified cells, provide attractive candidates for being the driver of this locally generated, predominantly interneuron-driven model of gamma oscillations. Copyright © 2015 the authors 0270-6474/15/353616-09$15.00/0.

  12. The role of the ventral dentate gyrus in olfactory pattern separation.

    Science.gov (United States)

    Weeden, Christy S S; Hu, Nathan J; Ho, Liana U N; Kesner, Raymond P

    2014-05-01

    Dorsoventral lesion studies of the hippocampus have indicated that the dorsal axis of the hippocampus is important for spatial processing and the ventral axis of the hippocampus is important for olfactory learning and memory and anxiety. There is some evidence to suggest that the ventral CA3 and ventral CA1 conduct parallel processes for pattern completion and temporal processing, respectively. Studies have indicated that the dorsal dentate gyrus (DG) is importantly involved in processes reflecting underlying pattern separation activity for spatial information. However, the ventral DG is less understood. The current study investigated the less-understood role of the ventral DG in olfactory pattern separation. A series of odor stimuli that varied on only one level, number of carbon chains (methyl groups), was used in a matching-to-sample paradigm in order to investigate ventral DG involvement in working memory for similar and less similar odors. Rats with ventral DG lesions were impaired at delays of 60 sec, but not at delays of 15 sec. A memory-based pattern separation effect was observed performance was poorest with only one carbon chain separation between trial odors and was highest for trials with four separations. The present study indicates that the ventral DG plays an important role in olfactory learning and memory processes for highly similar odors. The results also indicate a role for the ventral DG in pattern separation for odor information, which may have further implications for parallel processing across the dorsoventral axis for the DG in spatial (dorsal) and olfactory (ventral) pattern separation. Copyright © 2014 Wiley Periodicals, Inc.

  13. Long-term potentiation in hilar circuitry modulates gating by the dentate gyrus.

    Science.gov (United States)

    Wright, Brandon J; Jackson, Meyer B

    2014-07-16

    The dentate gyrus serves as a gateway to the hippocampus, filtering and processing sensory inputs as an animal explores its environment. The hilus occupies a strategic position within the dentate gyrus from which it can play a pivotal role in these functions. Inputs from dentate granule cells converge on the hilus, and excitatory hilar mossy cells redistribute these signals back to granule cells to transform a pattern of cortical input into a new pattern of output to the hippocampal CA3 region. Using voltage-sensitive dye to image electrical activity in rat hippocampal slices, we explored how long-term potentiation (LTP) of different excitatory synapses modifies the flow of information. Theta burst stimulation of the perforant path potentiated responses throughout the molecular layer, but left responses in the CA3 region unchanged. By contrast, theta burst stimulation of the granule cell layer potentiated responses throughout the molecular layer, as well as in the CA3 region. Theta burst stimulation of the granule cell layer potentiated CA3 responses not only to granule cell layer stimulation but also to perforant path stimulation. Potentiation of responses in the CA3 region reflected NMDA receptor-dependent LTP of upstream synapses between granule cells and mossy cells, with no detectable contribution from NMDA receptor-independent LTP of local CA3 mossy fiber synapses. Potentiation of transmission to the CA3 region required LTP in both granule cell→mossy cell and mossy cell→granule cell synapses. This bidirectional plasticity enables hilar circuitry to regulate the flow of information through the dentate gyrus and on to the hippocampus. Copyright © 2014 the authors 0270-6474/14/349743-11$15.00/0.

  14. Neuronal migration and its disorders affecting the CA3 region

    Directory of Open Access Journals (Sweden)

    Richard eBelvindrah

    2014-03-01

    Full Text Available In this review, we focus on CA3 neuronal migration disorders in the rodent. We begin by introducing the main steps of hippocampal development, and we summarize characteristic hippocampal malformations in human. We then describe various mouse mutants showing structural hippocampal defects. Notably, genes identified in human cortical neuronal migration disorders consistently give rise to a CA3 phenotype when mutated in the mouse. We successively describe their molecular, physiological and behavioral phenotypes that together contribute to a better understanding of CA3-dependent functions. We finally discuss potential factors underlying the CA3 vulnerability revealed by these mouse mutants and that may also contribute to other human neurological and psychiatric disorders.

  15. Adolescent mice show anxiety- and aggressive-like behavior and the reduction of long-term potentiation in mossy fiber-CA3 synapses after neonatal maternal separation.

    Science.gov (United States)

    Shin, S Y; Han, S H; Woo, R-S; Jang, S H; Min, S S

    2016-03-01

    Exposure to maternal separation (MS) during early life is an identified risk factor for emotional disorders such as anxiety and depression later in life. This study investigated the effects of neonatal MS on the behavior and long-term potentiation (LTP) as well as basic synaptic transmission at hippocampal CA3-CA1 and mossy fiber (MF)-CA3 synapses in adolescent mice for 19days. When mice were adolescents, we measured depression, learning, memory, anxious and aggressive behavior using the forced swimming test (FST), Y-maze, Morris water maze (MWM), elevated plus maze (EPM), three consecutive days of the open field test, the social interaction test, the tube-dominance test and the resident-intruder test. The results showed that there was no difference in FST, Y-maze, and MWM performance. However, MS mice showed more anxiety-like behavior in the EPM test and aggressive-like behavior in the tube-dominance and resident-intruder tests. In addition, the magnitude of LTP and release probability in the MF-CA3 synapses was reduced in the MS group but not in the CA3-CA1 synapse. Our results indicate that early life stress due to MS may induce anxiety- and aggressive-like behavior during adolescence, and these effects are associated with synaptic plasticity at the hippocampal MF-CA3 synapses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Acute systemic MK-801 induced functional uncoupling between hippocampal areas CA3 and CA1 with distant effect in the retrosplenial cortex

    Czech Academy of Sciences Publication Activity Database

    Buchtová, Helena; Fajnerová, Iveta; Stuchlík, Aleš; Kubík, Štěpán

    2017-01-01

    Roč. 27, č. 2 (2017), s. 134-144 ISSN 1050-9631 R&D Projects: GA ČR(CZ) GA14-03627S Institutional support: RVO:67985823 Keywords : Arc * Homer1a * ensemble coding * cognitive control * hypersynchrony * hyperassociation * psychosis * NMDA antagonist * schizophrenia * animal model Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 3.945, year: 2016

  17. Place cell rate remapping by CA3 recurrent collaterals.

    Directory of Open Access Journals (Sweden)

    Trygve Solstad

    2014-06-01

    Full Text Available Episodic-like memory is thought to be supported by attractor dynamics in the hippocampus. A possible neural substrate for this memory mechanism is rate remapping, in which the spatial map of place cells encodes contextual information through firing rate variability. To test whether memories are stored as multimodal attractors in populations of place cells, recent experiments morphed one familiar context into another while observing the responses of CA3 cell ensembles. Average population activity in CA3 was reported to transition gradually rather than abruptly from one familiar context to the next, suggesting a lack of attractive forces associated with the two stored representations. On the other hand, individual CA3 cells showed a mix of gradual and abrupt transitions at different points along the morph sequence, and some displayed hysteresis which is a signature of attractor dynamics. To understand whether these seemingly conflicting results are commensurate with attractor network theory, we developed a neural network model of the CA3 with attractors for both position and discrete contexts. We found that for memories stored in overlapping neural ensembles within a single spatial map, position-dependent context attractors made transitions at different points along the morph sequence. Smooth transition curves arose from averaging across the population, while a heterogeneous set of responses was observed on the single unit level. In contrast, orthogonal memories led to abrupt and coherent transitions on both population and single unit levels as experimentally observed when remapping between two independent spatial maps. Strong recurrent feedback entailed a hysteretic effect on the network which diminished with the amount of overlap in the stored memories. These results suggest that context-dependent memory can be supported by overlapping local attractors within a spatial map of CA3 place cells. Similar mechanisms for context-dependent memory may

  18. Hippocampal deletion of BDNF gene attenuates gamma oscillations in area CA1 by up-regulating 5-HT3 receptor.

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2011-01-01

    Full Text Available Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown.Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this receptor partially restored power of gamma oscillations in slices from KO mice, but had no effect in slices from WT mice.These data suggest that BDNF facilitates gamma oscillations in the hippocampus by attenuating signaling through 5-HT3 receptor. Thus, BDNF modulates hippocampal oscillations through serotonergic system.

  19. Bilateral reorganization of the dentate gyrus in hippocampal sclerosis

    Science.gov (United States)

    Thom, M; Martinian, L; Catarino, C; Yogarajah, M; Koepp, M J.; Caboclo, L; Sisodiya, S M.

    2009-01-01

    Background: Hippocampal sclerosis (HS) is the most common surgical pathology associated with mesial temporal lobe epilepsy (MTLE). HS is typically characterized by mossy fiber sprouting (MFS) and reorganization of neuropeptide Y (NPY) fiber networks in the dentate gyrus. One potential cause of postoperative seizure recurrence following temporal lobe surgery may be the presence of seizure-associated bilateral hippocampal damage. We aimed to investigate patterns of hippocampal abnormalities in a postmortem series as identified by NPY and dynorphin immunohistochemistry. Methods: Analysis of dentate gyrus fiber reorganization, using dynorphin (to demonstrate MFS) and NPY immunohistochemistry, was carried out in a postmortem epilepsy series of 25 cases (age range 21–96 years). In 9 patients, previously refractory seizures had become well controlled for up to 34 years prior to death. Results: Bilateral MFS or abnormal NPY patterns were seen in 15 patients including those with bilateral symmetric, asymmetric, and unilateral HS by conventional histologic criteria. MFS and NPY reorganization was present in all classical HS cases, more variably in atypical HS, present in both MTLE and non-MTLE syndromes and with seizure histories of up to 92 years, despite seizure remission in some patients. Conclusion: Synaptic reorganization in the dentate gyrus may be a bilateral, persistent process in epilepsy. It is unlikely to be sufficient to generate seizures and more likely to represent a seizure-induced phenomenon. GLOSSARY AED = antiepileptic drug; CA1p = CA1-predominant hippocampal sclerosis; CHS = classical hippocampal sclerosis; EFG = end folium gliosis; EFS = end folium sclerosis; GCD = granule cell dispersion; GCL = granule cell layer; HS = hippocampal sclerosis; MFS = mossy fiber sprouting; MTLE = mesial temporal lobe epilepsy; NPY = neuropeptide Y; ROI = region of interest; SE = status epilepticus; TLE = temporal lobe epilepsy. PMID:19710404

  20. Interaction between the medial prefrontal cortex and hippocampal CA1 area is essential for episodic-like memory in rats.

    Science.gov (United States)

    Chao, Owen Y; Nikolaus, Susanne; Lira Brandão, Marcus; Huston, Joseph P; de Souza Silva, Maria A

    2017-05-01

    The interplay between medial prefrontal cortex (mPFC) and hippocampus, particularly the hippocampal CA3 area, is critical for episodic memory. To what extent the mPFC also interacts with the hippocampus CA1 subregion still requires elucidation. To investigate this issue, male rats received unilateral N-methyl- D -aspartate lesions of the mPFC together with unilateral lesions of the hippocampal CA1 area, either in the same (control) or in the opposite hemispheres (disconnection). They underwent an episodic-like memory test, combining what-where-when information, and separate tests for novel object preference (what), object place preference (where) and temporal order memory (when). Compared to controls, the disconnected mPFC-CA1 rats exhibited disrupted episodic-like memory with an impaired integration of the what-where-when elements. Both groups showed intact memories for what and when, while only the control group showed intact memory for where. These findings suggest that the functional interaction of the mPFC-CA1 circuit is crucial for the processing of episodic memory and, in particular, for the integration of the spatial memory component. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Endocannabinoids in the Dentate Gyrus

    OpenAIRE

    Frazier, Charles J.

    2007-01-01

    Recent years have produced rapid and enormous growth in our understanding of endocannabinoid-mediated signalling in the CNS. While much of the recent progress has focused on other areas of the brain, a significant body of evidence has developed that indicates the presence of a robust system for endocannabinoid-mediated signalling in the dentate gyrus. This chapter will provide an overview of our current understanding of that system based on available anatomical and physiological data.

  2. Region-specific roles of the prelimbic cortex, the dorsal CA1, the ventral DG and ventral CA1 of the hippocampus in the fear return evoked by a sub-conditioning procedure in rats.

    Science.gov (United States)

    Fu, Juan; Xing, Xiaoli; Han, Mengfi; Xu, Na; Piao, Chengji; Zhang, Yue; Zheng, Xigeng

    2016-02-01

    The return of learned fear is an important issue in anxiety disorder research since an analogous process may contribute to long-term fear maintenance or clinical relapse. A number of studies demonstrate that mPFC and hippocampus are important in the modulation of post-extinction re-expression of fear memory. However, the region-specific role of these structures in the fear return evoked by a sub-threshold conditioning (SC) is not known. In the present experiments, we first examined specific roles of the prelimbic cortex (PL), the dorsal hippocampus (DH, the dorsal CA1 area in particular), the ventral hippocampus (the ventral dentate gyrus (vDG) and the ventral CA1 area in particular) in this fear return process. Then we examined the role of connections between PL and vCA1 with this behavioral approach. Rats were subjected to five tone-shock pairings (1.0-mA shock) to induce conditioned fear (freezing), followed by three fear extinction sessions (25 tone-alone trials each session). After a post-test for extinction memory, some rats were retrained with the SC procedure to reinstate tone-evoked freezing. Rat groups were injected with low doses of the GABAA agonist muscimol to selectively inactivate PL, DH, vDG, or vCA1 120 min before the fear return test. A disconnection paradigm with ipsilateral or contralateral muscimol injection of the PL and the vCA1 was used to examine the role of this pathway in the fear return. We found that transient inactivation of these areas significantly impaired fear return (freezing): inactivation of the prelimbic cortex blocked SC-evoked fear return in particular but did not influence fear expression in general; inactivation of the DH area impaired fear return, but had no effect on the extinction retrieval process; both ventral DG and ventral CA1 are required for the return of extinguished fear whereas only ventral DG is required for the extinction retrieval. These findings suggest that PL, DH, vDG, and vCA1 all contribute to the fear

  3. Selective dentate gyrus disruption causes memory impairment at the early stage of experimental multiple sclerosis.

    Science.gov (United States)

    Planche, Vincent; Panatier, Aude; Hiba, Bassem; Ducourneau, Eva-Gunnel; Raffard, Gerard; Dubourdieu, Nadège; Maitre, Marlène; Lesté-Lasserre, Thierry; Brochet, Bruno; Dousset, Vincent; Desmedt, Aline; Oliet, Stéphane H; Tourdias, Thomas

    2017-02-01

    Memory impairment is an early and disabling manifestation of multiple sclerosis whose anatomical and biological substrates are still poorly understood. We thus investigated whether memory impairment encountered at the early stage of the disease could be explained by a differential vulnerability of particular hippocampal subfields. By using experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, we identified that early memory impairment was associated with selective alteration of the dentate gyrus as pinpointed in vivo with diffusion-tensor-imaging (DTI). Neuromorphometric analyses and electrophysiological recordings confirmed dendritic degeneration, alteration in glutamatergic synaptic transmission and impaired long-term synaptic potentiation selectively in the dentate gyrus, but not in CA1, together with a more severe pattern of microglial activation in this subfield. Systemic injections of the microglial inhibitor minocycline prevented DTI, morphological, electrophysiological and behavioral impairments in EAE-mice. Furthermore, daily infusions of minocycline specifically within the dentate gyrus were sufficient to prevent memory impairment in EAE-mice while infusions of minocycline within CA1 were inefficient. We conclude that early memory impairment in EAE is due to a selective disruption of the dentate gyrus associated with microglia activation. These results open new pathophysiological, imaging, and therapeutic perspectives for memory impairment in multiple sclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Electrophysiological and Morphological Characterization of Chrna2 Cells in the Subiculum and CA1 of the Hippocampus: An Optogenetic Investigation

    Directory of Open Access Journals (Sweden)

    Heather Nichol

    2018-02-01

    Full Text Available The nicotinic acetylcholine receptor alpha2 subunit (Chrna2 is a specific marker for oriens lacunosum-moleculare (OLM interneurons in the dorsal CA1 region of the hippocampus. It was recently shown using a Chrna2-cre mice line that OLM interneurons can modulate entorhinal cortex and CA3 inputs and may therefore have an important role in gating, encoding, and recall of memory. In this study, we have used a combination of electrophysiology and optogenetics using Chrna2-cre mice to determine the role of Chrna2 interneurons in the subiculum area, the main output region of the hippocampus. We aimed to assess the similarities between Chrna2 subiculum and CA1 neurons in terms of the expression of interneuron markers, their membrane properties, and their inhibitory input to pyramidal neurons. We found that subiculum and CA1 dorsal Chrna2 cells similarly expressed the marker somatostatin and had comparable membrane and firing properties. The somas of Chrna2 cells in both regions were found in the deepest layer with axons projecting superficially. However, subiculum Chrna2 cells displayed more extensive projections with dendrites which occupied a significantly larger area than in CA1. The post-synaptic responses elicited by Chrna2 cells in pyramidal cells of both regions revealed comparable inhibitory responses elicited by GABAA receptors and, interestingly, GABAB receptor mediated components. This study provides the first in-depth characterization of Chrna2 cells in the subiculum, and suggests that subiculum and CA1 Chrna2 cells are generally similar and may play comparable roles in both sub-regions.

  5. Imaging a memory trace over half a life-time in the medial temporal lobe reveals a time-limited role of CA3 neurons in retrieval

    Science.gov (United States)

    Lux, Vanessa; Atucha, Erika; Kitsukawa, Takashi; Sauvage, Magdalena M

    2016-01-01

    Whether retrieval still depends on the hippocampus as memories age or relies then on cortical areas remains a major controversy. Despite evidence for a functional segregation between CA1, CA3 and parahippocampal areas, their specific role within this frame is unclear. Especially, the contribution of CA3 is questionable as very remote memories might be too degraded to be used for pattern completion. To identify the specific role of these areas, we imaged brain activity in mice during retrieval of recent, early remote and very remote fear memories by detecting the immediate-early gene Arc. Investigating correlates of the memory trace over an extended period allowed us to report that, in contrast to CA1, CA3 is no longer recruited in very remote retrieval. Conversely, we showed that parahippocampal areas are then maximally engaged. These results suggest a shift from a greater contribution of the trisynaptic loop to the temporoammonic pathway for retrieval. DOI: http://dx.doi.org/10.7554/eLife.11862.001 PMID:26880561

  6. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area.

    Science.gov (United States)

    Racca, C; Stephenson, F A; Streit, P; Roberts, J D; Somogyi, P

    2000-04-01

    Glutamate receptors activated by NMDA (NMDARs) or AMPA (AMPARs) are clustered on dendritic spines of pyramidal cells. Both the AMPAR-mediated postsynaptic responses and the synaptic AMPAR immunoreactivity show a large intersynapse variability. Postsynaptic responses mediated by NMDARs show less variability. To assess the variability in NMDAR content and the extent of their coexistence with AMPARs in Schaffer collateral-commissural synapses of adult rat CA1 pyramidal cells, electron microscopic immunogold localization of receptors has been used. Immunoreactivity of NMDARs was detected in virtually all synapses on spines, but AMPARs were undetectable, on average, in 12% of synapses. A proportion of synapses had a very high AMPAR content relative to the mean content, resulting in a distribution more skewed toward larger values than that of NMDARs. The variability of synaptic NMDAR content [coefficient of variation (CV), 0.64-0.70] was much lower than that of the AMPAR content (CV, 1.17-1.45). Unlike the AMPAR content, the NMDAR content showed only a weak correlation with synapse size. As reported previously for AMPARs, the immunoreactivity of NMDARs was also associated with the spine apparatus within spines. The results demonstrate that the majority of the synapses made by CA3 pyramidal cells onto spines of CA1 pyramids express both NMDARs and AMPARs, but with variable ratios. A less-variable NMDAR content is accompanied by a wide variability of AMPAR content, indicating that the regulation of expression of the two receptors is not closely linked. These findings support reports that fast excitatory transmission at some of these synapses is mediated by activation mainly of NMDARs.

  7. Changes in rat hippocampal CA1 synapses following imipramine treatment

    DEFF Research Database (Denmark)

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers

    2008-01-01

    Neuronal plasticity in hippocampus is hypothesized to play an important role in both the pathophysiology of depressive disorders and the treatment. In this study, we investigated the consequences of imipramine treatment on neuroplasticity (including neurogenesis, synaptogenesis, and remodelling...... and number of neurons of hippocampal subregions following imipramine treatment were found. However, the number and percentage of CA1 asymmetric spine synapses increased significantly and, conversely, the percentage of asymmetric shaft synapses significantly decreased in the imipramine treated group. Our...

  8. Ablation of NMDA receptors enhances the excitability of hippocampal CA3 neurons.

    Directory of Open Access Journals (Sweden)

    Fumiaki Fukushima

    Full Text Available Synchronized discharges in the hippocampal CA3 recurrent network are supposed to underlie network oscillations, memory formation and seizure generation. In the hippocampal CA3 network, NMDA receptors are abundant at the recurrent synapses but scarce at the mossy fiber synapses. We generated mutant mice in which NMDA receptors were abolished in hippocampal CA3 pyramidal neurons by postnatal day 14. The histological and cytological organizations of the hippocampal CA3 region were indistinguishable between control and mutant mice. We found that mutant mice lacking NMDA receptors selectively in CA3 pyramidal neurons became more susceptible to kainate-induced seizures. Consistently, mutant mice showed characteristic large EEG spikes associated with multiple unit activities (MUA, suggesting enhanced synchronous firing of CA3 neurons. The electrophysiological balance between fast excitatory and inhibitory synaptic transmission was comparable between control and mutant pyramidal neurons in the hippocampal CA3 region, while the NMDA receptor-slow AHP coupling was diminished in the mutant neurons. In the adult brain, inducible ablation of NMDA receptors in the hippocampal CA3 region by the viral expression vector for Cre recombinase also induced similar large EEG spikes. Furthermore, pharmacological blockade of CA3 NMDA receptors enhanced the susceptibility to kainate-induced seizures. These results raise an intriguing possibility that hippocampal CA3 NMDA receptors may suppress the excitability of the recurrent network as a whole in vivo by restricting synchronous firing of CA3 neurons.

  9. Acetylcholine release and inhibitory interneuron activity in hippocampal CA1

    Directory of Open Access Journals (Sweden)

    A. Rory McQuiston

    2014-09-01

    Full Text Available Acetylcholine release in the central nervous system (CNS has an important role in attention, recall and memory formation. One region influenced by acetylcholine is the hippocampus, which receives inputs from the medial septum and diagonal band of Broca complex (MS/DBB. Release of acetylcholine from the MS/DBB can directly affect several elements of the hippocampus including glutamatergic and GABAergic neurons, presynaptic terminals, postsynaptic receptors and astrocytes. A significant portion of acetylcholine’s effect likely results from the modulation of GABAergic inhibitory interneurons, which have crucial roles in controlling excitatory inputs, synaptic integration, rhythmic coordination of principal neurons and outputs in the hippocampus. Acetylcholine affects interneuron function in large part by altering their membrane potential via muscarinic and nicotinic receptor activation. This minireview describes recent data from mouse hippocampus that investigated changes in CA1 interneuron membrane potentials following acetylcholine release. The interneuron subtypes affected, the receptor subtypes activated, and the potential outcome on hippocampal CA1 network function is discussed.

  10. Long-term potentiation expands information content of hippocampal dentate gyrus synapses.

    Science.gov (United States)

    Bromer, Cailey; Bartol, Thomas M; Bowden, Jared B; Hubbard, Dusten D; Hanka, Dakota C; Gonzalez, Paola V; Kuwajima, Masaaki; Mendenhall, John M; Parker, Patrick H; Abraham, Wickliffe C; Sejnowski, Terrence J; Harris, Kristen M

    2018-03-06

    An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.

  11. Proteomic profiling of the epileptic dentate gyrus

    OpenAIRE

    Li, Aiqing; Choi, Yun-Sik; Dziema, Heather; Cao, Ruifeng; Cho, Hee-Yeon; Jung, Yeon Joo; Obrietan, Karl

    2010-01-01

    The development of epilepsy is often associated with marked changes in central nervous system cell structure and function. Along these lines, reactive gliosis and granule cell axonal sprouting within the dentate gyrus of the hippocampus are commonly observed in individuals with temporal lobe epilepsy. Here we used the pilocarpine model of temporal lobe epilepsy in mice to screen the proteome and phosphoproteome of the dentate gyrus to identify molecular events that are altered as part of the ...

  12. Molecular analysis of ivy cells of the hippocampal CA1 stratum radiatum using spectral identification of immunofluorophores

    Directory of Open Access Journals (Sweden)

    Jozsef eSomogyi

    2012-05-01

    Full Text Available Nitric oxide synthase-expressing (NOS+ GABAergic interneurons are common in hippocampal stratum radiatum, but these cells are less well characterised than NOS+ ivy cells in stratum pyramidale or neurogliaform cells in stratum lacunosum-moleculare. Here we have studied the laminar distribution of the axons and dendrites, and the immunoreactivity of these neurons recorded in rat hippocampal slices. We have used spectral analysis of antibody- or streptavidin conjugated fluorophores to improve recognition of genuine signals in reactions for molecules such as NOS and neuropeptide-Y, when immunolabelling was low in the recorded cell. We found that most NOS+ cells with soma in the CA1 area stratum radiatum exhibit characteristic properties of ivy cells; all tested cells were positive for NPY and negative for reelin. However, laminar distributions of their neurites differ from original characterization of ivy cells with the soma close to stratum pyramidale. Both their dendrites and axon are mainly in stratum radiatum and to a lesser extent in stratum oriens. In addition, both the dendrites and axons often extend to stratum lacunosum-moleculare. We conclude that ivy cells in stratum radiatum are predominantly feedforward inhibitory interneurons in the CA1 area, and their axonal output delivering GABA, NPY and NO can influence both the entorhinal cortex innervated and the CA3 innervated zones pre- and postsynaptically. Spectral analysis of fluorophores provides an objective algorithm to analyze signals in immunoreactions for neurochemical markers.

  13. Alterations in the Interplay between Neurons, Astrocytes and Microglia in the Rat Dentate Gyrus in Experimental Models of Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Daniele Lana

    2017-09-01

    the different susceptibility of the DG in comparison to the CA1 and CA3 hippocampal areas to neurodegeneration during aging and inflammation.

  14. Observation of microstructure of hydrated Ca3SiO5

    International Nuclear Information System (INIS)

    Mori, Kazuhiro; Sato, Takashi; Fukunaga, Toshiharu; Oishi, Koji; Kimura, Katsuhiko; Iwase, Kenji; Sugiyama, Masaaki; Itoh, Keiji; Shikanai, Fumihito; Wuernisha, Tuerxun; Yonemura, Masao; Sulistyanintyas, Dyah; Tsukushi, Itaru; Takata, Shinich; Otomo, Toshiya; Kamiyma, Takashi; Kawai, Masayoshi

    2006-01-01

    Quasi-elastic neutron scattering experiments were carried out to evaluate the hydration rate of tricalcium silicate (Ca 3 SiO 5 ). Furthermore, in the early hydration period, a variation in surface roughness of Ca 3 SiO 5 was observed in nano-scale by the small-angle neutron scattering. From these results, it was found that the hydration rate of Ca 3 SiO 5 is suppressed when the surface of Ca 3 SiO 5 becomes rough through the creation of hydration products C-S-H gel and Ca(OH) 2 , and this roughness is associated with changes in the Ca 3 SiO 5 hydration rate

  15. Herniation of uncus and parahippocampal gyrus

    DEFF Research Database (Denmark)

    Yavarian, Yousef; Bayat, Michael; Brøndum Frøkjær, Jens

    2015-01-01

    Idiopathic herniation of uncus and parahippocampal gyrus into the ambient cistern is a very rare entity, which could be mistaken for other pathology such as tumor. To the best of our knowledge, two prior cases of this kind of herniation have been described. One of these cases was with associated...... symptomatology and other abnormalities, and the other was characterized as idiopathic. In this case report, we report a case of accidental finding of a herniation of uncus and parahippocampal gyrus into the ambient cistern, without any other accompanying abnormalities, well depicted by magnetic resonance imaging...

  16. Electrophysiological characterization of granule cells in the dentate gyrus immediately after birth

    Directory of Open Access Journals (Sweden)

    Andrea ePedroni

    2014-02-01

    Full Text Available Granule cells (GCs in the dentate gyrus are generated mainly postnatally. Between embryonic day 10 and 14, neural precursors migrate from the primary dentate matrix to the dentate gyrus where they differentiate into neurons. Neurogenesis reaches a peak at the end of the first postnatal week and it is completed at the end of the first postnatal month. This process continues at a reduced rate throughout life. Interestingly, immediately after birth, GCs exhibit a clear GABAergic phenotype. Only later they integrate the classical glutamatergic trisynaptic hippocampal circuit. Here, whole patch clamp recordings, in current clamp mode, were performed from immature GCs, intracellularly loaded with biocytin (in hippocampal slices from P0-P3 old rats in order to compare their morphological characteristics with their electrophysiological properties. The vast majority of GCs were very immature with small somata, few dendritic branches terminating with small varicosities and growth cones. In spite of their immaturity their axons reached often the CA3 area. Immature GCs generated, upon membrane depolarization, either rudimentary sodium spikes or more clear overshooting action potentials that fired repetitively. They exhibited also low threshold calcium spikes. In addition, most spiking neurons showed spontaneous synchronized network activity, reminiscent of giant depolarizing potentials (GDPs generated in the hippocampus by the synergistic action of glutamate and GABA, both depolarizing and excitatory. This early synchronized activity, absent during adult neurogenesis, may play a crucial role in the refinement of local neuronal circuits within the developing dentate gyrus.

  17. The interhemispheric CA1 circuit governs rapid generalisation but not fear memory.

    Science.gov (United States)

    Zhou, Heng; Xiong, Gui-Jing; Jing, Liang; Song, Ning-Ning; Pu, De-Lin; Tang, Xun; He, Xiao-Bing; Xu, Fu-Qiang; Huang, Jing-Fei; Li, Ling-Jiang; Richter-Levin, Gal; Mao, Rong-Rong; Zhou, Qi-Xin; Ding, Yu-Qiang; Xu, Lin

    2017-12-19

    Encoding specificity theory predicts most effective recall by the original conditions at encoding, while generalization endows recall flexibly under circumstances which deviate from the originals. The CA1 regions have been implicated in memory and generalization but whether and which locally separated mechanisms are involved is not clear. We report here that fear memory is quickly formed, but generalization develops gradually over 24 h. Generalization but not fear memory is impaired by inhibiting ipsilateral (ips) or contralateral (con) CA1, and by optogenetic silencing of the ipsCA1 projections onto conCA1. By contrast, in vivo fEPSP recordings reveal that ipsCA1-conCA1 synaptic efficacy is increased with delay over 24 h when generalization is formed but it is unchanged if generalization is disrupted. Direct excitation of ipsCA1-conCA1 synapses using chemogenetic hM3Dq facilitates generalization formation. Thus, rapid generalization is an active process dependent on bilateral CA1 regions, and encoded by gradual synaptic learning in ipsCA1-conCA1 circuit.

  18. Thermodynamic, electronic, and magnetic properties of intrinsic vacancy defects in antiperovskite Ca3SnO

    Science.gov (United States)

    Batool, Javaria; Alay-e-Abbas, Syed Muhammad; Amin, Nasir

    2018-04-01

    The density functional theory based total energy calculations are performed to examine the effect of charge neutral and fully charged intrinsic vacancy defects on the thermodynamic, electronic, and magnetic properties of Ca3SnO antiperovskite. The chemical stability of Ca3SnO is evaluated with respect to binary compounds CaO, CaSn, and Ca2Sn, and the limits of atomic chemical potentials of Ca, Sn, and O atoms for stable synthesis of Ca3SnO are determined within the generalized gradient approximation parametrization scheme. The electronic properties of the pristine and the non-stoichiometric forms of this compound have been explored and the influence of isolated intrinsic vacancy defects (Ca, Sn, and O) on the structural, bonding, and electronic properties of non-stoichiometric Ca3SnO are analyzed. We also predict the possibility of achieving stable ferromagnetism in non-stoichiometric Ca3SnO by means of charge neutral tin vacancies. From the calculated total energies and the valid ranges of atomic chemical potentials, the formation energetics of intrinsic vacancy defects in Ca3SnO are evaluated for various growth conditions. Our results indicate that the fully charged calcium vacancies are thermodynamically stable under the permissible Sn-rich condition of stable synthesis of Ca3SnO, while tin and oxygen vacancies are found to be stable under the extreme Ca-rich condition.

  19. Heteromodal conceptual processing in the angular gyrus.

    Science.gov (United States)

    Bonner, Michael F; Peelle, Jonathan E; Cook, Philip A; Grossman, Murray

    2013-05-01

    Concepts bind together the features commonly associated with objects and events to form networks in long-term semantic memory. These conceptual networks are the basis of human knowledge and underlie perception, imagination, and the ability to communicate about experiences and the contents of the environment. Although it is often assumed that this distributed semantic information is integrated in higher-level heteromodal association cortices, open questions remain about the role and anatomic basis of heteromodal representations in semantic memory. Here we used combined neuroimaging evidence from functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to characterize the cortical networks underlying concept representation. Using a lexical decision task, we examined the processing of concepts in four semantic categories that varied on their sensory-motor feature associations (sight, sound, manipulation, and abstract). We found that the angular gyrus was activated across all categories regardless of their modality-specific feature associations, consistent with a heteromodal account for the angular gyrus. Exploratory analyses suggested that categories with weighted sensory-motor features additionally recruited modality-specific association cortices. Furthermore, DTI tractography identified white matter tracts connecting these regions of modality-specific functional activation with the angular gyrus. These findings are consistent with a distributed semantic network that includes a heteromodal, integrative component in the angular gyrus in combination with sensory-motor feature representations in modality-specific association cortices. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat - histological validation with Fourier-based analysis.

    Science.gov (United States)

    Salo, Raimo A; Miettinen, Tuukka; Laitinen, Teemu; Gröhn, Olli; Sierra, Alejandra

    2017-05-15

    Imaging markers for monitoring disease progression, recovery, and treatment efficacy are a major unmet need for many neurological diseases, including epilepsy. Recent evidence suggests that diffusion tensor imaging (DTI) provides high microstructural contrast even outside major white matter tracts. We hypothesized that in vivo DTI could detect progressive microstructural changes in the dentate gyrus and the hippocampal CA3bc in the rat brain after status epilepticus (SE). To test this hypothesis, we induced SE with systemic kainic acid or pilocarpine in adult male Wistar rats and subsequently scanned them using in vivo DTI at five time-points: prior to SE, and 10, 20, 34, and 79 days post SE. In order to tie the DTI findings to changes in the tissue microstructure, myelin- and glial fibrillary acidic protein (GFAP)-stained sections from the same animals underwent Fourier analysis. We compared the Fourier analysis parameters, anisotropy index and angle of myelinated axons or astrocyte processes, to corresponding DTI parameters, fractional anisotropy (FA) and the orientation angle of the principal eigenvector. We found progressive detectable changes in DTI parameters in both the dentate gyrus (FA, axial diffusivity [D || ], linear anisotropy [CL] and spherical anisotropy [CS], pFourier analysis revealed that both myelinated axons and astrocyte processes played a role in the water diffusion anisotropy changes detected by DTI in individual portions of the dentate gyrus (suprapyramidal blade, mid-portion, and infrapyramidal blade). In the whole dentate gyrus, myelinated axons markedly contributed to the water diffusion changes. In CA3bc as well as in CA3b and CA3c, both myelinated axons and astrocyte processes contributed to water diffusion anisotropy and orientation. Our study revealed that DTI is a promising method for noninvasive detection of microstructural alterations in the hippocampus proper. These alterations may be potential imaging markers for epileptogenesis

  1. Local and Long-Range Circuit Connections to Hilar Mossy Cells in the Dentate Gyrus

    Science.gov (United States)

    Sun, Yanjun; Grieco, Steven F.; Holmes, Todd C.

    2017-01-01

    Abstract Hilar mossy cells are the prominent glutamatergic cell type in the dentate hilus of the dentate gyrus (DG); they have been proposed to have critical roles in the DG network. To better understand how mossy cells contribute to DG function, we have applied new viral genetic and functional circuit mapping approaches to quantitatively map and compare local and long-range circuit connections of mossy cells and dentate granule cells in the mouse. The great majority of inputs to mossy cells consist of two parallel inputs from within the DG: an excitatory input pathway from dentate granule cells and an inhibitory input pathway from local DG inhibitory neurons. Mossy cells also receive a moderate degree of excitatory and inhibitory CA3 input from proximal CA3 subfields. Long range inputs to mossy cells are numerically sparse, and they are only identified readily from the medial septum and the septofimbrial nucleus. In comparison, dentate granule cells receive most of their inputs from the entorhinal cortex. The granule cells receive significant synaptic inputs from the hilus and the medial septum, and they also receive direct inputs from both distal and proximal CA3 subfields, which has been underdescribed in the existing literature. Our slice-based physiological mapping studies further supported the identified circuit connections of mossy cells and granule cells. Together, our data suggest that hilar mossy cells are major local circuit integrators and they exert modulation of the activity of dentate granule cells as well as the CA3 region through “back-projection” pathways. PMID:28451637

  2. Loss of protohaem IX farnesyltransferase in mature dentate granule cells impairs short-term facilitation at mossy fibre to CA3 pyramidal cell synapses.

    Science.gov (United States)

    Booker, Sam A; Campbell, Graham R; Mysiak, Karolina S; Brophy, Peter J; Kind, Peter C; Mahad, Don J; Wyllie, David J A

    2017-03-15

    Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity. Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low-frequency dentate to CA3 glutamatergic synaptic transmission. High-frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase-deficient mice. Intact presynaptic mitochondrial function is critical for the short-term dynamics of mossy fibre to CA3 synaptic function. Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole-cell patch-clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV-deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy-fibre synapse because the amplitude, input-output relationship and 50 ms paired-pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short-term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired-pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect observed was not restricted to synapses

  3. Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network.

    Directory of Open Access Journals (Sweden)

    Richard eMiles

    2014-01-01

    Full Text Available In the CA3 region of the hippocampus, pyramidal cells excite other pyramidal cells and interneurons. The axons of CA3 pyramidal cells spread throughout most of the region to form an associative network. These connections were first drawn by Cajal and Lorente de No. Their physiological properties were explored to understand epileptiform discharges generated in the region. Synapses between pairs of pyramidal cells involve one or few release sites and are weaker than connections made by mossy fibres on CA3 pyramidal cells. Synapses with interneurons are rather effective, as needed to control unchecked excitation. We examine contributions of recurrent synapses to epileptiform synchrony, to the genesis of sharp waves in the CA3 region and to population oscillations at theta and gamma frequencies. Recurrent connections in CA3, as other associative cortices, have a lower connectivity spread over a larger area than in primary sensory cortices. This sparse, but wide-ranging connectivity serves the functions of an associative network, including acquisition of neuronal representations as activity in groups of CA3 cells and completion involving the recall from partial cues of these ensemble firing patterns.

  4. Adult neurogenesis modifies excitability of the dentate gyrus

    Directory of Open Access Journals (Sweden)

    Taruna eIkrar

    2013-12-01

    Full Text Available Adult-born dentate granule neurons contribute to memory encoding functions of the dentate gyrus (DG such as pattern separation. However, local circuit-mechanisms by which adult-born neurons partake in this process are poorly understood. Computational, neuroanatomical and electrophysiological studies suggest that sparseness of activation in the granule cell layer (GCL is conducive for pattern separation. A sparse coding scheme is thought to facilitate the distribution of similar entorhinal inputs across the GCL to decorrelate overlapping representations and minimize interference. Here we used fast voltage-sensitive dye (VSD imaging combined with laser photostimulation and electrical stimulation to examine how selectively increasing adult DG neurogenesis influences local circuit activity and excitability. We show that DG of mice with more adult-born neurons exhibits decreased strength of neuronal activation and more restricted excitation spread in GCL while maintaining effective output to CA3c. Conversely, blockade of adult hippocampal neurogenesis changed excitability of the DG in the opposite direction. Analysis of GABAergic inhibition onto mature dentate granule neurons in the DG of mice with more adult-born neurons shows a modest readjustment of perisomatic inhibitory synaptic gain without changes in overall inhibitory tone, presynaptic properties or GABAergic innervation pattern. Retroviral labeling of connectivity in mice with more adult-born neurons showed increased number of excitatory synaptic contacts of adult-born neurons onto hilar interneurons. Together, these studies demonstrate that adult hippocampal neurogenesis modifies excitability of mature dentate granule neurons and that this non-cell autonomous effect may be mediated by local circuit mechanisms such as excitatory drive onto hilar interneurons. Modulation of DG excitability by adult-born dentate granule neurons may enhance sparse coding in the GCL to influence pattern

  5. Correction to: Comparison of the Effect of Exercise on Late-Phase LTP of the Dentate Gyrus and CA1 of Alzheimer's Disease Model.

    Science.gov (United States)

    Dao, An T; Zagaar, Munder A; Levine, Amber T; Alkadhi, Karim A

    2018-01-01

    The original version of this article unfortunately does not include the second affiliating institution of Dr. Munder A. Zagaar. "Department of Pharmacy Pracce and Clinical Health Sciences, Texas Southern University, Houston, TX 77004" should have been included on the paper.

  6. Pre- and posttreatment with edaravone protects CA1 hippocampus and enhances neurogenesis in the subgranular zone of dentate gyrus after transient global cerebral ischemia in rats.

    Science.gov (United States)

    Lei, Shan; Zhang, Pengbo; Li, Weisong; Gao, Ming; He, Xijing; Zheng, Juan; Li, Xu; Wang, Xiao; Wang, Ning; Zhang, Junfeng; Qi, Cunfang; Lu, Haixia; Chen, Xinlin; Liu, Yong

    2014-01-01

    Edaravone is clinically used for treatment of patients with acute cerebral infarction. However, the effect of double application of edaravone on neurogenesis in the hippocampus following ischemia remains unknown. In the present study, we explored whether pre- and posttreatment of edaravone had any effect on neural stem/progenitor cells (NSPCs) in the subgranular zone of hippocampus in a rat model of transient global cerebral ischemia and elucidated the potential mechanism of its effects. Male Sprague-Dawley rats were divided into three groups: sham-operated (n = 15), control (n = 15), and edaravone-treated (n = 15) groups. Newly generated cells were labeled by 5-bromo-2-deoxyuridine. Immunohistochemistry was used to detect neurogenesis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling was used to detect cell apoptosis. Reactive oxygen species (ROS) were detected by 2,7-dichlorofluorescien diacetate assay in NSPCs in vitro. Hypoxia-inducible factor-1α (HIF-1α) and cleaved caspase-3 proteins were quantified by western blot analysis. Treatment with edaravone significantly increased the number of NSPCs and newly generated neurons in the subgranular zone (p edaravone also decreased apoptosis of NSPCs (p edaravone significantly decreased ROS generation and inhibited HIF-1α and cleaved caspase-3 protein expressions. These findings indicate that pre- and posttreatment with edaravone enhances neurogenesis by protecting NSPCs from apoptosis in the hippocampus, which is probably mediated by decreasing ROS generation and inhibiting protein expressions of HIF-1α and cleaved caspase-3 after cerebral ischemia. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Pre- and Posttreatment With Edaravone Protects CA1 Hippocampus and Enhances Neurogenesis in the Subgranular Zone of Dentate Gyrus After Transient Global Cerebral Ischemia in Rats

    Directory of Open Access Journals (Sweden)

    Shan Lei

    2014-11-01

    Full Text Available Edaravone is clinically used for treatment of patients with acute cerebral infarction. However, the effect of double application of edaravone on neurogenesis in the hippocampus following ischemia remains unknown. In the present study, we explored whether pre- and posttreatment of edaravone had any effect on neural stem/progenitor cells (NSPCs in the subgranular zone of hippocampus in a rat model of transient global cerebral ischemia and elucidated the potential mechanism of its effects. Male Sprague-Dawley rats were divided into three groups: sham-operated (n = 15, control (n = 15, and edaravone-treated (n = 15 groups. Newly generated cells were labeled by 5-bromo-2-deoxyuridine. Immunohistochemistry was used to detect neurogenesis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling was used to detect cell apoptosis. Reactive oxygen species (ROS were detected by 2,7-dichlorofluorescien diacetate assay in NSPCs in vitro. Hypoxia-inducible factor-1α (HIF-1α and cleaved caspase-3 proteins were quantified by western blot analysis. Treatment with edaravone significantly increased the number of NSPCs and newly generated neurons in the subgranular zone (p < .05. Treatment with edaravone also decreased apoptosis of NSPCs (p < .01. Furthermore, treatment with edaravone significantly decreased ROS generation and inhibited HIF-1α and cleaved caspase-3 protein expressions. These findings indicate that pre- and posttreatment with edaravone enhances neurogenesis by protecting NSPCs from apoptosis in the hippocampus, which is probably mediated by decreasing ROS generation and inhibiting protein expressions of HIF-1α and cleaved caspase-3 after cerebral ischemia.

  8. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory.

    Science.gov (United States)

    Lee, Vallent; MacKenzie, Georgina; Hooper, Andrew; Maguire, Jamie

    2016-10-01

    It is well established that stress impacts the underlying processes of learning and memory. The effects of stress on memory are thought to involve, at least in part, effects on the hippocampus, which is particularly vulnerable to stress. Chronic stress induces hippocampal alterations, including but not limited to dendritic atrophy and decreased neurogenesis, which are thought to contribute to chronic stress-induced hippocampal dysfunction and deficits in learning and memory. Changes in synaptic transmission, including changes in GABAergic inhibition, have been documented following chronic stress. Recently, our laboratory demonstrated shifts in EGABA in CA1 pyramidal neurons following chronic stress, compromising GABAergic transmission and increasing excitability of these neurons. Interestingly, here we demonstrate that these alterations are unique to CA1 pyramidal neurons, since we do not observe shifts in EGABA following chronic stress in dentate gyrus granule cells. Following chronic stress, there is a decrease in the expression of the GABAA receptor (GABAA R) δ subunit and tonic GABAergic inhibition in dentate gyrus granule cells, whereas there is an increase in the phasic component of GABAergic inhibition, evident by an increase in the peak amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the numerous changes observed in the hippocampus following stress, it is difficult to pinpoint the pertinent contributing pathophysiological factors. Here we directly assess the impact of a reduction in tonic GABAergic inhibition of dentate gyrus granule cells on learning and memory using a mouse model with a decrease in GABAA R δ subunit expression specifically in dentate gyrus granule cells (Gabrd/Pomc mice). Reduced GABAA R δ subunit expression and function in dentate gyrus granule cells is sufficient to induce deficits in learning and memory. Collectively, these findings suggest that the reduction in GABAA R δ subunit-mediated tonic inhibition

  9. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory

    Science.gov (United States)

    Hooper, Andrew; Maguire, Jamie

    2016-01-01

    It is well established that stress impacts the underlying processes of learning and memory. The effects of stress on memory are thought to involve, at least in part, effects on the hippocampus, which is particularly vulnerable to stress. Chronic stress induces hippocampal alterations, including but not limited to dendritic atrophy and decreased neurogenesis, which are thought to contribute to chronic stress-induced hippocampal dysfunction and deficits in learning and memory. Changes in synaptic transmission, including changes in GABAergic inhibition, have been documented following chronic stress. Recently, our laboratory demonstrated shifts in EGABA in CA1 pyramidal neurons following chronic stress, compromising GABAergic transmission and increasing excitability of these neurons. Interestingly, here we demonstrate that these alterations are unique to CA1 pyramidal neurons, since we do not observe shifts in EGABA following chronic stress in dentate gyrus granule cells. Following chronic stress, there is a decrease in the expression of the GABAA receptor (GABAAR) δ subunit and tonic GABAergic inhibition in dentate gyrus granule cells; whereas, there is an increase in the phasic component of GABAergic inhibition, evident by an increase in the peak amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the numerous changes observed in the hippocampus following stress, it is difficult to pinpoint the pertinent contributing pathophysiological factors. Here we directly assess the impact of a reduction in tonic GABAergic inhibition of dentate gyrus granule cells on learning and memory using a mouse model with a decrease in GABAAR δ subunit expression specifically in dentate gyrus granule cells (Gabrd/Pomc mice). Reduced GABAAR δ subunit expression and function in dentate gyrus granule cells is sufficient to induce deficits in learning and memory. Collectively, these findings suggest that the reduction in GABAAR δ subunit-mediated tonic inhibition in

  10. Naloxone injections into CA3 disrupt pattern completion associated with relapse from cocaine seeking

    Science.gov (United States)

    Kirk, Ryan A.; Clark, Jascha K.; Moore, Angela; Keefe, Kristen

    2016-01-01

    The goal of the present research was to assess the degree to which a pattern completion process operates in cue-induced relapse to cocaine-seeking behavior. Using a novel cue-preference version of the place preference task, rats were administered cocaine or saline, which resulted in a preference for the cocaine-paired cues. After 21 days of abstinence and prior to the preference test, for one group, PBS or naloxone was injected into the CA3 subregion of the hippocampus and for a second group, saline or naloxone was injected systemically. The results indicated that infusions of naloxone into CA3 or systemic injections produced a marked disruption for one and two cues, but had minimal disruptive effect for three or four cues, suggesting that naloxone injections disrupt CA3 function and trigger a deficit in a pattern completion process. Thus, it appears that cue-based activation of the dorsal CA3 might be a critical trigger via a pattern completion process. Based on additional analyses it appears that there is a disruption primarily for object touches for one cue naloxone injections into the CA3 or systemic injections, but no effect on time (spatial context). PMID:26815290

  11. Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity.

    Science.gov (United States)

    Bezaire, Marianne J; Soltesz, Ivan

    2013-09-01

    In this work, through a detailed literature review, data-mining, and extensive calculations, we provide a current, quantitative estimate of the cellular and synaptic constituents of the CA1 region of the rat hippocampus. Beyond estimating the cell numbers of GABAergic interneuron types, we calculate their convergence onto CA1 pyramidal cells and compare it with the known input synapses on CA1 pyramidal cells. The convergence calculation and comparison are also made for excitatory inputs to CA1 pyramidal cells. In addition, we provide a summary of the excitatory and inhibitory convergence onto interneurons. The quantitative knowledge base assembled and synthesized here forms the basis for data-driven, large-scale computational modeling efforts. Additionally, this work highlights specific instances where the available data are incomplete, which should inspire targeted experimental projects toward a more complete quantification of the CA1 neurons and their connectivity. Copyright © 2013 Wiley Periodicals, Inc.

  12. Bi4Sr3Ca3Cu4O16 galss and superconducting glass ceramics

    International Nuclear Information System (INIS)

    Zheng, H.; Mackenzie, J.D.

    1988-01-01

    Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass has been successfully fabricated by the melting process. Glass transition temperature, crystallization temperature, and liquid temperature of the glass are 434, 478, and 833 0 C, respectively. After the glass is heat treated at 800 0 C, a glass ceramic is formed. A comparison of the x-ray-diffraction pattern of the superconducting Bi 4 Sr 3 Ca 3 Cu 4 O/sub 16+//sub x/ ceramic to the Bi 4 Sr 3 Ca 3 Cu 4 O 16 glass ceramic revealed preferred orientation in the glass ceramic crystals. The superconducting transition temperatures T/sub c//sub (onset)/ and T/sub c//sub (zero)/ of the glass ceramics are 100 and 45 K, respectively

  13. Thermal conductivity of Ca3Co2O6 single crystals

    Science.gov (United States)

    Che, H. L.; Shi, J.; Wu, J. C.; Rao, X.; Liu, X. G.; Zhao, X.; Sun, X. F.

    2018-05-01

    Ca3Co2O6 is a rare example of one-dimensional Ising spin-chain material with the moments preferentially aligned along the c axis. In this work, we study the c-axis thermal conductivity (κc) of Ca3Co2O6 single crystal at low temperatures down to 0.3 K and in magnetic fields up to 14 T. The zero-field κc(T) shows a large phonon peak and can be well fitted by using the classical Debye model, which indicates that the heat transport is purely phononic. Moreover, the low-T κc(H) isotherms with H || c display a field-independent behavior. These results indicate that there is no contribution of magnetic excitations to the thermal conductivity in Ca3Co2O6, neither carrying heat nor scattering phonons, which can be attributed to the Ising-like spin anisotropy.

  14. Sampling the Mouse Hippocampal Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Lisa Basler

    2017-12-01

    Full Text Available Sampling is a critical step in procedures that generate quantitative morphological data in the neurosciences. Samples need to be representative to allow statistical evaluations, and samples need to deliver a precision that makes statistical evaluations not only possible but also meaningful. Sampling generated variability should, e.g., not be able to hide significant group differences from statistical detection if they are present. Estimators of the coefficient of error (CE have been developed to provide tentative answers to the question if sampling has been “good enough” to provide meaningful statistical outcomes. We tested the performance of the commonly used Gundersen-Jensen CE estimator, using the layers of the mouse hippocampal dentate gyrus as an example (molecular layer, granule cell layer and hilus. We found that this estimator provided useful estimates of the precision that can be expected from samples of different sizes. For all layers, we found that a smoothness factor (m of 0 generally provided better estimates than an m of 1. Only for the combined layers, i.e., the entire dentate gyrus, better CE estimates could be obtained using an m of 1. The orientation of the sections impacted on CE sizes. Frontal (coronal sections are typically most efficient by providing the smallest CEs for a given amount of work. Applying the estimator to 3D-reconstructed layers and using very intense sampling, we observed CE size plots with m = 0 to m = 1 transitions that should also be expected but are not often observed in real section series. The data we present also allows the reader to approximate the sampling intervals in frontal, horizontal or sagittal sections that provide CEs of specified sizes for the layers of the mouse dentate gyrus.

  15. GABAergic system impairment in the hippocampus and superior temporal gyrus of patients with paranoid schizophrenia: A post-mortem study.

    Science.gov (United States)

    Steiner, Johann; Brisch, Ralf; Schiltz, Kolja; Dobrowolny, Henrik; Mawrin, Christian; Krzyżanowska, Marta; Bernstein, Hans-Gert; Jankowski, Zbigniew; Braun, Katharina; Schmitt, Andrea; Bogerts, Bernhard; Gos, Tomasz

    2016-11-01

    Glutamic acid decarboxylase (GAD) is a key enzyme in GABA synthesis and alterations in GABAergic neurotransmission related to glial abnormalities are thought to play a crucial role in the pathophysiology of schizophrenia. This study aimed to identify potential differences regarding the neuropil expression of GAD between paranoid and residual schizophrenia. GAD65/67 immunostained histological sections were evaluated by quantitative densitometric analysis of GAD-immunoreactive (ir) neuropil. Regions of interest were the hippocampal formation (CA1 field and dentate gyrus [DG]), superior temporal gyrus (STG), and laterodorsal thalamic nucleus (LD). Data from 16 post-mortem schizophrenia patient samples (10 paranoid and 6 residual schizophrenia cases) were compared with those from 16 matched controls. Overall, schizophrenia patients showed a lower GAD-ir neuropil density (P=0.014), particularly in the right CA1 (P=0.033). However, the diagnostic subgroups differed significantly (Pparanoid versus residual patients (P=0.036) and controls (Pparanoid versus residual schizophrenia cases (P=0.042). GAD-ir neuropil density correlated positively with antipsychotic dosage, particularly in CA1 (right: r=0.850, P=0.004; left: r=0.800, P=0.010). Our finding of decreased relative density of GAD-ir neuropil suggests hypofunction of the GABAergic system, particularly in hippocampal CA1 field and STG layer V of patients with paranoid schizophrenia. The finding that antipsychotic medication seems to counterbalance GABAergic hypofunction in schizophrenia patients suggests the possibility of exploring new treatment avenues which target this system. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Photoluminescence and thermoluminescence characterization of Eu3+- and Dy3+ -activated Ca3(PO4)2 phosphor

    International Nuclear Information System (INIS)

    Nagpure, I.M.; Saha, Subhajit; Dhoble, S.J.

    2009-01-01

    Rare-earth-doped polycrystalline Ca 3 (PO 4 ) 2 :Eu, Ca 3 (PO 4 ) 2 :Dy and Ca 3 (PO 4 ) 2 :Eu,Dy phosphors prepared by a modified solid-state synthesis has been studied for its X-ray diffraction, thermoluminescence (TL) and photoluminescence (PL) characteristics. The PL emission spectra of the phosphor suggest the presence of Eu 3+ ion in Ca 3 (PO 4 ) 2 :Eu and Dy 3+ ion in Ca 3 (PO 4 ) 2 :Dy lattice sites. The TL glow curve of the Ca 3 (PO 4 ) 2 :Eu compounds has a simple structure with a prominent peak at 228 deg. C, while Ca 3 (PO 4 ) 2 :Dy peaking at 146 and 230 deg. C. TL sensitivity of phosphors are compared with CaSO 4 : Dy and found 1.52 and 1.20 times less in Ca 3 (PO 4 ) 2 :Eu and Ca 3 (PO 4 ) 2 :Dy phosphors, respectively. The Ca 3 (PO 4 ) 2 :Eu,Dy phosphors shows switching behavior under two different excitation wavelengths and enhancement in PL intensity of Dy 3+ ions were reported. The paper discusses the photoluminescence and thermoluminescence behavior of Eu 3+ and Dy 3+ ion in Ca 3 (PO 4 ) 2 hosts, it may be applicable to solid-state lighting as well as thermoluminescence dosimetry applications.

  17. Precentral gyrus functional connectivity signatures of autism

    Directory of Open Access Journals (Sweden)

    Mary Beth eNebel

    2014-05-01

    Full Text Available Motor impairments are prevalent in children with autism spectrum disorders (ASD and are perhaps the earliest symptoms to develop. In addition, motor skills relate to the communicative/social deficits at the core of ASD diagnosis, and these behavioral deficits may reflect abnormal connectivity within brain networks underlying motor control and learning. Despite the fact that motor abnormalities in ASD are well-characterized, there remains a fundamental disconnect between the complexity of the clinical presentation of ASD and the underlying neurobiological mechanisms. In this study, we examined connectivity within and between functional subregions of a key component of the motor control network, the precentral gyrus, using resting state functional Magnetic Resonance Imaging data collected from a large, heterogeneous sample of individuals with ASD as well as neurotypical controls. We found that the strength of connectivity within and between distinct functional subregions of the precentral gyrus was related to ASD diagnosis and to the severity of ASD traits. In particular, connectivity involving the dorsomedial (lower limb/trunk subregion was abnormal in ASD individuals as predicted by models using a dichotomous variable coding for the presence of ASD, as well as models using symptom severity ratings. These findings provide further support for a link between motor and social/communicative abilities in ASD.

  18. Rapamycin inhibits mTOR/p70S6K activation in CA3 region of the hippocampus of the rat and impairs long term memory.

    Science.gov (United States)

    Lana, D; Di Russo, J; Mello, T; Wenk, G L; Giovannini, M G

    2017-01-01

    The present study was aimed at establishing whether the mTOR pathway and its downstream effector p70S6K in CA3 pyramidal neurons are under the modulation of the cholinergic input to trigger the formation of long term memories, similar to what we demonstrated in CA1 hippocampus. We performed in vivo behavioral experiments using the step down inhibitory avoidance test in adult Wistar rats to evaluate memory formation under different conditions. We examined the effects of rapamycin, an inhibitor of mTORC1 formation, scopolamine, a muscarinic receptor antagonist or mecamylamine, a nicotinic receptor antagonist, on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition was conducted 30min after i.c.v. injection of rapamycin. Recall testing was performed 1h, 4h or 24h after acquisition. We found that (1) mTOR and p70S6K activation in CA3 pyramidal neurons were involved in long term memory formation; (2) rapamycin significantly inhibited mTOR and of p70S6K activation at 4h, and long term memory impairment 24h after acquisition; (3) scopolamine impaired short but not long term memory, with an early increase of mTOR/p70S6K activation at 1h followed by stabilization at longer times; (4) mecamylamine and scopolamine co-administration impaired short term memory at 1h and 4h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1h and 4h; (5) mecamylamine and scopolamine treatment did not impair long term memory formation; (6) unexpectedly, rapamycin increased mTORC2 activation in microglial cells. Our results demonstrate that in CA3 pyramidal neurons the mTOR/p70S6K pathway is under the modulation of the cholinergic system and is involved in long-term memory encoding, and are consistent with the hypothesis that the CA3 region of the hippocampus is involved in memory mechanisms based on rapid, one-trial object-place learning and recall. Furthermore, our results are in accordance with previous reports that selective

  19. Lovastatin reduces neuronal cell death in hippocampal CA1 subfield after pilocarpine-induced status epilepticus: preliminary results Lovastatina reduz a lesão celular na região CA1 do hipocampo após o status epilepticus induzido pela pilocarpina: resultados preliminares

    Directory of Open Access Journals (Sweden)

    Pauline Rangel

    2005-12-01

    Full Text Available OBJECTIVE: To further characterize the capacity of lovastatin to prevent hippocampal neuronal loss after pilocarpine-induced status epilepticus (SE METHOD: Adult male Wistar rats were divided into four groups: (A control rats, received neither pilocarpine nor lovastatin (n=5; (B control rats, received just lovastatin (n=5; (C rats that received just pilocarpine (n=5; (D rats that received pilocarpine and lovastatin (n=5. After pilocarpine injection (350mg/kg, i.p., only rats that displayed continuous, convulsive seizure activity were included in our study. Seizure activity was monitored behaviorally and terminated with an injection of diazepam (10 mg/kg, i.p. after 4 h of convulsive SE. The rats treated with lovastatin received two doses of 20mg/kg via an oesophagic probe immediately and 24 hours after SE induction. Seven days after pilocarpine-induced SE, all the animals were perfused and their brains were processed for histological analysis through Nissl method. RESULTS: The cell counts in the Nissl-stained sections performed within the hippocampal formation showed a significant cell loss in rats that received pilocarpine and presented SE (CA1= 26.8 ± 13.67; CA3= 38.1 ± 7.2; hilus= 43.8 ± 3.95 when compared with control group animals (Group A: CA1= 53.2 ± 9.63; CA3= 63.5 ± 13.35; hilus= 59.08 ± 10.24; Group B: CA1= 74.3 ± 8.16; CA3= 70.1 ± 3.83; hilus= 70.6 ± 5.10. The average neuronal cell number of CA1 subfield of rats that present SE and received lovastatin (44.4 ± 17.88 was statically significant increased when compared with animals that just presented SE. CONCLUSION: Lovastatin exert a neuroprotective role in the attenuation of brain damage after SE.OBJETIVO: Capacidade da lovastatina em prevenir a perda de neurônios hipocampais após o status epilepticus (SE induzido pela pilocarpina. MÉTODO: Ratos adultos Wistar foram divididos em 4 grupos: (A ratos controles que não receberam pilocarpina nem lovastatina (n=5; (B ratos

  20. Characterization, scaling, and partial representation of diffuse and discrete input junctions to CA3 hippocampus.

    Science.gov (United States)

    Ascarrunz, F G; Kisley, M A; Flach, K A; Hamilton, R W; MacGregor, R J

    1995-07-01

    This paper applies a general mathematical system for characterizing and scaling functional connectivity and information flow across the diffuse (EC) and discrete (DG) input junctions to the CA3 hippocampus. Both gross connectivity and coordinated multiunit informational firing patterns are quantitatively characterized in terms of 32 defining parameters interrelated by 17 equations, and then scaled down according to rules for uniformly proportional scaling and for partial representation. The diffuse EC-CA3 junction is shown to be uniformly scalable with realistic representation of both essential spatiotemporal cooperativity and coordinated firing patterns down to populations of a few hundred neurons. Scaling of the discrete DG-CA3 junction can be effected with a two-step process, which necessarily deviates from uniform proportionality but nonetheless produces a valuable and readily interpretable reduced model, also utilizing a few hundred neurons in the receiving population. Partial representation produces a reduced model of only a portion of the full network where each model neuron corresponds directly to a biological neuron. The mathematical analysis illustrated here shows that although omissions and distortions are inescapable in such an application, satisfactorily complete and accurate models the size of pattern modules are possible. Finally, the mathematical characterization of these junctions generates a theory which sees the DG as a definer of the fine structure of embedded traces in the hippocampus and entire coordinated patterns of sequences of 14-cell links in CA3 as triggered by the firing of sequences of individual neurons in DG.

  1. Electronic Structure and Thermoelectric Properties of Ca3 Co4O9

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The relation among electronic structure, chemical bond and thermoelectric property of Ca3 Co4 O9 was studied using density function and discrete variation method (DFT-DVM).The gap between the highest valence band (HVB) and the lowest conduction band (LCB) shows a semiconducting property.Ca3 Co4 O9 colsists of CoO2 and Ca2 CoO3 two layers.The HVB and LCB near Fermi level are only mainly from O(2) 2p and Co(2) 3d in Ca2 CoO3 layer. Therefore, the semiconducting or thermoelectric property of Ca3 Co4 O9 should be mainly from Ca2 CoO3 layer, but it seems to have no direct relation to the CoO2 layer,which is consistent with that binary oxides hardly have a thermoelectric property, but trinary oxide compounds have quite a good thermoelectric property.The covalent and ionic bonds of Ca2 CoO3 layer are both weaker than those of CoO2 layer.Ca plays the role of connections between CoO2 and Ca2 CoO3 layers in Ca3 Co4 O9, decrease the ionic and covalent bond strength, and improve the thermoelectric property.

  2. Homeostatic maintenance in excitability of tree shrew hippocampal CA3 pyramidal neurons after chronic stress

    NARCIS (Netherlands)

    Kole, MHP; Czeh, B; Fuchs, E

    2004-01-01

    The experience of chronic stress induces a reversible regression of hippocampal CA3 apical neuron dendrites. Although such postsynaptic membrane reduction will obviously diminish the possibility of synaptic input, the consequences for the functional membrane properties of these cells are not well

  3. Human limbic encephalitis serum enhances hippocampal mossy fiber-CA3 pyramidal cell synaptic transmission.

    Science.gov (United States)

    Lalic, Tatjana; Pettingill, Philippa; Vincent, Angela; Capogna, Marco

    2011-01-01

    Limbic encephalitis (LE) is a central nervous system (CNS) disease characterized by subacute onset of memory loss and epileptic seizures. A well-recognized form of LE is associated with voltage-gated potassium channel complex antibodies (VGKC-Abs) in the patients' sera. We aimed to test the hypothesis that purified immunoglobulin G (IgG) from a VGKC-Ab LE serum would excite hippocampal CA3 pyramidal cells by reducing VGKC function at mossy-fiber (MF)-CA3 pyramidal cell synapses. We compared the effects of LE and healthy control IgG by whole-cell patch-clamp and extracellular recordings from CA3 pyramidal cells of rat hippocampal acute slices. We found that the LE IgG induced epileptiform activity at a population level, since synaptic stimulation elicited multiple population spikes extracellularly recorded in the CA3 area. Moreover, the LE IgG increased the rate of tonic firing and strengthened the MF-evoked synaptic responses. The synaptic failure of evoked excitatory postsynaptic currents (EPSCs) was significantly lower in the presence of the LE IgG compared to the control IgG. This suggests that the LE IgG increased the release probability on MF-CA3 pyramidal cell synapses compared to the control IgG. Interestingly, α-dendrotoxin (120 nm), a selective Kv1.1, 1.2, and 1.6 subunit antagonist of VGKC, mimicked the LE IgG-mediated effects. This is the first functional demonstration that LE IgGs reduce VGKC function at CNS synapses and increase cell excitability. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  4. Local-moment formation and metal–nonmetal transition in Ca1 ...

    Indian Academy of Sciences (India)

    Abstract. Electron-doped metallic states of Ca1−x Yx VO3 and Ca1−x Yx TiO3 change into non- metallic states around x ∼ 0.4 and 0.6, respectively. The residual resistivity in the metallic states increases with increasing effective magnetic moment or coefficient of T2 term of resistivity. The effective moment reaches ∼ 0.5 ...

  5. Dissection of Hippocampal Dentate Gyrus from Adult Mouse

    Science.gov (United States)

    Hagihara, Hideo; Toyama, Keiko; Yamasaki, Nobuyuki; Miyakawa, Tsuyoshi

    2009-01-01

    The hippocampus is one of the most widely studied areas in the brain because of its important functional role in memory processing and learning, its remarkable neuronal cell plasticity, and its involvement in epilepsy, neurodegenerative diseases, and psychiatric disorders. The hippocampus is composed of distinct regions; the dentate gyrus, which comprises mainly granule neurons, and Ammon's horn, which comprises mainly pyramidal neurons, and the two regions are connected by both anatomic and functional circuits. Many different mRNAs and proteins are selectively expressed in the dentate gyrus, and the dentate gyrus is a site of adult neurogenesis; that is, new neurons are continually generated in the adult dentate gyrus. To investigate mRNA and protein expression specific to the dentate gyrus, laser capture microdissection is often used. This method has some limitations, however, such as the need for special apparatuses and complicated handling procedures. In this video-recorded protocol, we demonstrate a dissection technique for removing the dentate gyrus from adult mouse under a stereomicroscope. Dentate gyrus samples prepared using this technique are suitable for any assay, including transcriptomic, proteomic, and cell biology analyses. We confirmed that the dissected tissue is dentate gyrus by conducting real-time PCR of dentate gyrus-specific genes, tryptophan 2,3-dioxygenase (TDO2) and desmoplakin (Dsp), and Ammon's horn enriched genes, Meis-related gene 1b (Mrg1b) and TYRO3 protein tyrosine kinase 3 (Tyro3). The mRNA expressions of TDO2 and Dsp in the dentate gyrus samples were detected at obviously higher levels, whereas Mrg1b and Tyro3 were lower levels, than those in the Ammon's horn samples. To demonstrate the advantage of this method, we performed DNA microarray analysis using samples of whole hippocampus and dentate gyrus. The mRNA expression of TDO2 and Dsp, which are expressed selectively in the dentate gyrus, in the whole hippocampus of alpha

  6. Endocannabinoid Release Modulates Electrical Coupling between CCK Cells Connected via Chemical and Electrical Synapses in CA1

    Science.gov (United States)

    Iball, Jonathan; Ali, Afia B.

    2011-01-01

    Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholecystokinin (CCK) interneurons which co-express cannabinoid type-1 (CB1) receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labeling in acute slices of rat hippocampus at P18–20 days. CA1 stratum radiatum CCK Schaffer collateral-associated cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released inhibitory postsynaptic potential (IPSPs) that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5 μM) resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI), maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization. PMID

  7. Endocannabinoid release modulates electrical coupling between CCK cells connected via chemical and electrical synapses in CA1

    Directory of Open Access Journals (Sweden)

    Jonathan eIball

    2011-11-01

    Full Text Available Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholesystokinin (CCK interneurons which co-express cannbinoid type-1 (CB1 receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labelling in acute slices of rat hippocampus at P18-20 days. CA1 stratum radiatum CCK Schaffer collateral associated (SCA cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released IPSPs that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5M resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI, maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization.

  8. NMDA-dependent phase synchronization between septal and temporal CA3 hippocampal networks.

    Science.gov (United States)

    Gu, Ning; Jackson, Jesse; Goutagny, Romain; Lowe, Germaine; Manseau, Frédéric; Williams, Sylvain

    2013-05-08

    Increasing evidence suggests that synchronization between brain regions is essential for information exchange and memory processes. However, it remains incompletely known which synaptic mechanisms contribute to the process of synchronization. Here, we investigated whether NMDA receptor-mediated synaptic plasticity was an important player in synchronization between septal and temporal CA3 areas of the rat hippocampus. We found that both the septal and temporal CA3 regions intrinsically generate weakly synchronized δ frequency oscillations in the complete hippocampus in vitro. Septal and temporal oscillators differed in frequency, power, and rhythmicity, but both required GABAA and AMPA receptors. NMDA receptor activation, and most particularly the NR2B subunit, contributed considerably more to rhythm generation at the temporal than the septal region. Brief activation of NMDA receptors by application of extracellular calcium dramatically potentiated the septal-temporal coherence for long durations (>40 min), an effect blocked by the NMDA antagonist AP-5. This long-lasting NMDA-receptor-dependent increase in coherence was also associated with an elevated phase locking of spikes locally and across regions. Changes in coherence between oscillators were associated with increases in phase locking between oscillators independent of oscillator amplitude. Finally, although the septal CA3 rhythm preceded the oscillations in temporal regions in control conditions, this was reversed during the NMDA-dependent enhancement in coherence, suggesting that NMDA receptor activation can change the direction of information flow along the septotemporal CA3 axis. These data demonstrate that plastic changes in communication between septal and temporal hippocampal regions can arise from the NMDA-dependent phase locking of neural oscillators.

  9. Hydrothermal synthesis of Ca3Bi8O15 rods and their visible light photocatalytic properties

    International Nuclear Information System (INIS)

    Li, Wenjuan; Kong, Desheng; Cui, Xiaoli; Du, Dandan; Yan, Tingjiang; You, Jinmao

    2014-01-01

    Graphical abstract: The novel Ca 3 Bi 8 O 15 rods can utilize the sunlight efficiently with the small band-gap. Using methyl orange (MO) as a model organic pollutant, the photocatalysts exhibited good photocatalytic activity, with the photodegradation conversion ratio of MO being up to 90% after 2 h of visible light (420 nm < λ < 800 nm) irradiation. - Highlights: • Ca 3 Bi 8 O 15 rods were synthesized by a hydrothermal method. • They can utilize the sunlight efficiently with the small band-gap. • They showed good photocatalytic activities in the degradation of MO, RhB and 4-CP. • The conversion ratio of MO was up to 90% after 2 h of visible light irradiation. - Abstract: High efficient visible light Ca 3 Bi 8 O 15 photocatalysts were synthesized by a hydrothermal method. Characterized by X-ray diffractometer, transmission electron microscopy, and the UV–vis diffuse reflectance spectroscopy, the results showed that the novel Ca 3 Bi 8 O 15 rods can utilize the sunlight efficiently with the small band-gap. Using methyl orange (MO) as a model organic pollutant, the photocatalysts exhibited good photocatalytic activity, with the photodegradation conversion ratio of MO being up to 90% after 2 h of visible light (420 nm < λ < 800 nm) irradiation. Furthermore, they also showed good photocatalytic activities in the degradation of rhodamine B and p-chlorophenol. Through the investigation of the degraded mechanism, the main active species played important roles in the degradation process were holes, O 2 · − and ·OH

  10. Transport and NMR characteristics of the skutterudite-related compound Ca3Rh4Sn13

    Science.gov (United States)

    Tseng, C. W.; Kuo, C. N.; Li, B. S.; Wang, L. M.; Gippius, A. A.; Kuo, Y. K.; Lue, C. S.

    2018-02-01

    We report the electronic properties of the Yb3Rh4Sn13-type single crystalline Ca3Rh4Sn13 by means of the electrical resistivity, Hall coefficient, Seebeck coefficient, thermal conductivity, as well as 119Sn nuclear magnetic resonance (NMR) measurements. The negative sign of the Hall coefficient and Seebeck coefficient at low temperatures suggests that the n-type carriers dominate the electrical transport in Ca3Rh4Sn13, in contrast to the observations in Sr3Rh4Sn13 which has a p-type conduction. Such a finding indicates a significant difference in the electronic features between these two stannides. Furthermore, we analyzed the temperature-dependent 119Sn NMR spin-lattice relaxation rate for Ca3Rh4Sn13, (Sr0.7Ca0.3)3Rh4Sn13, and Sr3Rh4Sn13 to examine the change of the electronic Fermi-level density of states (DOS) in (Sr1-xCax)3Rh4Sn13. It indicates that the Sn 5s partial Fermi-level DOS enhances with increasing the Ca content, being consistent with the trend of the superconducting temperature. Since the total Fermi-level DOS usually obeys the same trend of the partial Fermi-level DOS, the NMR analysis provides microscopic evidence for the correlation between the electronic DOS and superconductivity of the (Sr1-xCax)3Rh4Sn13 system.

  11. Heteroassociative storage of hippocampal pattern sequences in the CA3 subregion

    Directory of Open Access Journals (Sweden)

    Raphael Y. de Camargo

    2018-01-01

    Full Text Available Background Recent research suggests that the CA3 subregion of the hippocampus has properties of both autoassociative network, due to its ability to complete partial cues, tolerate noise, and store associations between memories, and heteroassociative one, due to its ability to store and retrieve sequences of patterns. Although there are several computational models of the CA3 as an autoassociative network, more detailed evaluations of its heteroassociative properties are missing. Methods We developed a model of the CA3 subregion containing 10,000 integrate-and-fire neurons with both recurrent excitatory and inhibitory connections, and which exhibits coupled oscillations in the gamma and theta ranges. We stored thousands of pattern sequences using a heteroassociative learning rule with competitive synaptic scaling. Results We showed that a purely heteroassociative network model can (i retrieve pattern sequences from partial cues with external noise and incomplete connectivity, (ii achieve homeostasis regarding the number of connections per neuron when many patterns are stored when using synaptic scaling, (iii continuously update the set of retrievable patterns, guaranteeing that the last stored patterns can be retrieved and older ones can be forgotten. Discussion Heteroassociative networks with synaptic scaling rules seem sufficient to achieve many desirable features regarding connectivity homeostasis, pattern sequence retrieval, noise tolerance and updating of the set of retrievable patterns.

  12. The cumulative analgesic effect of repeated electroacupuncture involves synaptic remodeling in the hippocampal CA3 region☆

    Science.gov (United States)

    Xu, Qiuling; Liu, Tao; Chen, Shuping; Gao, Yonghui; Wang, Junying; Qiao, Lina; Liu, Junling

    2012-01-01

    In the present study, we examined the analgesic effect of repeated electroacupuncture at bilateral Zusanli (ST36) and Yanglingquan (GB34) once a day for 14 consecutive days in a rat model of chronic sciatic nerve constriction injury-induced neuropathic pain. In addition, concomitant changes in calcium/calmodulin-dependent protein kinase II expression and synaptic ultrastructure of neurons in the hippocampal CA3 region were examined. The thermal pain threshold (paw withdrawal latency) was increased significantly in both groups at 2 weeks after electroacupuncture intervention compared with 2 days of electroacupuncture. In ovariectomized rats with chronic constriction injury, the analgesic effect was significantly reduced. Electroacupuncture for 2 weeks significantly diminished the injury-induced increase in synaptic cleft width and thinning of the postsynaptic density, and it significantly suppressed the down-regulation of intracellular calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. Repeated electroacupuncture intervention had a cumulative analgesic effect on injury-induced neuropathic pain reactions, and it led to synaptic remodeling of hippocampal neurons and upregulated calcium/calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. PMID:25657670

  13. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo

    Science.gov (United States)

    Tukker, John J; Klausberger, Thomas; Somogyi, Peter

    2015-01-01

    Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation. PMID:24141313

  14. The effect of CA1 dopaminergic system on amnesia induced by harmane in mice.

    Science.gov (United States)

    Nasehi, Mohammad; Hasanvand, Simin; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2018-05-16

    In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmane-induced amnesia were examined in mice. We used a single-trial step-down inhibitory avoidance task for the assessment of memory acquisition in adult male mice. Our data indicated that pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) impaired memory acquisition. Moreover, intra-CA1 administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/mouse), dopamine D1 receptor antagonist, SCH23390 (0.25 µg/mouse), dopamine D2 receptor agonist, quinpirole (0.125 and 0.25 µg/mouse) and dopamine D2 receptor antagonist, sulpiride (0.2 and 0.4 µg/mouse) decreased the learning of a single-trial inhibitory avoidance task. Furthermore, pre-training intra-CA1 injection of sub-threshold doses of SKF38393 (0.0625 µg/mouse) or sulpiride (0.1 µg/mouse) increased pre-training harmane (4 and 8 mg/kg, i.p.)-induced amnesia. On the other hand, pre-training intra-CA1 injection of a sub-threshold dose of SCH23390 (0.0625 µg/mouse) reversed amnesia induced by an effective dose of harmane (12 mg/kg; i.p.). In addition, Pre-training intra-CA1 injection of quinpirole (0.0625 µg/mouse) had no effect on memory impairment induced by harmane. These findings indicate the involvement of CA1 dopaminergic system on harmane-induced impairment of memory acquisition.

  15. Involvement of nitrergic system of CA1in harmane induced learning and memory deficits.

    Science.gov (United States)

    Nasehi, Mohammad; Piri, Morteza; Abdollahian, Mojgan; Zarrindast, Mohammad Reza

    2013-01-17

    Harmane (HA) is a β-carboline alkaloid derived from the Peganum harmala plant which induces memory impairment. On the other hand some of the investigations showed that β-carboline alkaloids inhibit NO production. Thus, the aim of the present study was to investigate the role of nitrergic system of the dorsal hippocampus (CA1) in HA-induced amnesia in male adult mice. One-trial step-down passive avoidance and hole-board apparatuses were used for the assessment of memory retrieval and exploratory behaviors respectively. The data indicated that pre-training intraperitoneal (i.p.) administration of HA (12 and 16 mg/kg) decreased memory acquisition. Sole pre-training or pre-testing administration of L-NAME, a nitric oxide synthesis inhibitor (5, 10 and 15 μg/mice, intra-CA1) did not alter memory retrieval. On the other hand, pre-training (10 and 15 μg/mice, intra-CA1) and pre-testing (5, 10 μg/mice, intra-CA1) injections of L-NAME restored HA-induced amnesia (16 mg/kg, i.p.). Furthermore, neither sole pre-training nor pre-testing administration of l-arginine, a NO precursor (3, 6 and 9 μg/mice, intra-CA1), altered memory retrieval. In addition, pre-testing (6 and 9 μg/mice, intra-CA1), but not pre-training, injection of l-arginine increased HA-induced amnesia (16 mg/kg, i.p.). These results suggest that the nitrergic system of CA1 is involved in HA-induced amnesia. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis

    OpenAIRE

    Miller, T; Chong, T; Aimola Davies, A; Ng, T; Johnson, M; Irani, S; Vincent, A; Husain, M; Jacob, S; Maddison, P; Kennard, C; Gowland, P; Rosenthal, C

    2017-01-01

    Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0....

  17. Failure of Neuronal Maturation in Alzheimer Disease Dentate Gyrus

    Science.gov (United States)

    Li, Bin; Yamamori, Hidenaga; Tatebayashi, Yoshitaka; Shafit-Zagardo, Bridget; Tanimukai, Hitoshi; Chen, She; Iqbal, Khalid; Grundke-Iqbal, Inge

    2011-01-01

    The dentate gyrus, an important anatomic structure of the hippocampal formation, is one of the major areas in which neurogenesis takes place in the adult mammalian brain. Neurogenesis in the dentate gyrus is thought to play an important role in hippocampus-dependent learning and memory. Neurogenesis has been reported to be increased in the dentate gyrus of patients with Alzheimer disease, but it is not known whether the newly generated neurons differentiate into mature neurons. In this study, the expression of the mature neuronal marker high molecular weight microtubule-associated protein (MAP) isoforms MAP2a and b was found to be dramatically decreased in Alzheimer disease dentate gyrus, as determined by immunohistochemistry and in situ hybridization. The total MAP2, including expression of the immature neuronal marker, the MAP2c isoform, was less affected. These findings suggest that newly generated neurons in Alzheimer disease dentate gyrus do not become mature neurons, although neuroproliferation is increased. PMID:18091557

  18. Stimulating the Brain's Language Network: Syntactic Ambiguity Resolution after TMS to the Inferior Frontal Gyrus and Middle Temporal Gyrus

    NARCIS (Netherlands)

    Acheson, D.J.; Hagoort, P.

    2013-01-01

    The posterior middle temporal gyrus (MTG) and inferior frontal gyrus (IFG) are two critical nodes of the brain's language network. Previous neuroimaging evidence has supported a dissociation in language comprehension in which parts of the MTG are involved in the retrieval of lexical syntactic

  19. Reduced volume of Heschl's gyrus in tinnitus.

    Science.gov (United States)

    Schneider, Peter; Andermann, Martin; Wengenroth, Martina; Goebel, Rainer; Flor, Herta; Rupp, André; Diesch, Eugen

    2009-04-15

    The neural basis of tinnitus is unknown. Recent neuroimaging studies point towards involvement of several cortical and subcortical regions. Here we demonstrate that tinnitus may be associated with structural changes in the auditory cortex. Using individual morphological segmentation, the medial partition of Heschl's gyrus (mHG) was studied in individuals with and without chronic tinnitus using magnetic resonance imaging. Both the tinnitus and the non-tinnitus group included musicians and non-musicians. Patients exhibited significantly smaller mHG gray matter volumes than controls. In unilateral tinnitus, this effect was almost exclusively seen in the hemisphere ipsilateral to the affected ear. In bilateral tinnitus, mHG volume was substantially reduced in both hemispheres. The tinnitus-related volume reduction was found across the full extent of mHG, not only in the high-frequency part usually most affected by hearing loss-induced deafferentation. However, there was also evidence for a relationship between volume reduction and hearing loss. Correlations between volume and hearing level depended on the subject group as well as the asymmetry of the hearing loss. The volume changes observed may represent antecedents or consequences of tinnitus and tinnitus-associated hearing loss and also raise the possibility that small cortical volume constitutes a vulnerability factor.

  20. Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region.

    Science.gov (United States)

    Luo, Pan; Lu, Yun; Li, Changjun; Zhou, Mei; Chen, Cheng; Lu, Qing; Xu, Xulin; He, Zhi; Guo, Lianjun

    2015-09-01

    Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12weeks group although neuronal loss only occurred after 4weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4weeks ischemia but neither 8 nor 12weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Interrelation between domain structures and polarization switching in hybrid improper ferroelectric Ca3(Mn,Ti)2O7

    Science.gov (United States)

    Gao, Bin; Huang, Fei-Ting; Wang, Yazhong; Kim, Jae-Wook; Wang, Lihai; Lim, Seong-Joon; Cheong, Sang-Wook

    2017-05-01

    Ca3Mn2O7 and Ca3Ti2O7 have been proposed as the prototypical hybrid improper ferroelectrics (HIFs), and a significant magnetoelectric (ME) coupling in magnetic Ca3Mn2O7 is, in fact, reported theoretically and experimentally. Although the switchability of polarization is confirmed in Ca3Ti2O7 and other non-magnetic HIFs, there is no report of switchable polarization in the isostructural Ca3Mn2O7. We constructed the phase diagram of Ca3Mn2-xTixO7 through our systematic study of a series of single crystalline Ca3Mn2-xTixO7 (x = 0, 0.1, 1, 1.5, and 2). Using transmission electron microscopy, we have unveiled the unique domain structure of Ca3Mn2O7: the high-density 90° stacking of a- and b-domains along the c-axis due to the phase transition through an intermediate Acca phase and the in-plane irregular wavy ferroelastic twin domains. The interrelation between domain structures and physical properties is unprecedented: the stacking along the c-axis prevents the switching of polarization and causes the irregular in-plane ferroelastic domain pattern. In addition, we have determined the magnetic phase diagram and found complex magnetism of Ca3Mn2O7 with isotropic canted moments. These results lead to negligible observable ME coupling in Ca3Mn2O7 and guide us to explore multiferroics with large ME coupling.

  2. Deficits in synaptic function occur at medial perforant path-dentate granule cell synapses prior to Schaffer collateral-CA1 pyramidal cell synapses in the novel TgF344-Alzheimer's Disease Rat Model.

    Science.gov (United States)

    Smith, Lindsey A; McMahon, Lori L

    2018-02-01

    Alzheimer's disease (AD) pathology begins decades prior to onset of clinical symptoms, and the entorhinal cortex and hippocampus are among the first and most extensively impacted brain regions. The TgF344-AD rat model, which more fully recapitulates human AD pathology in an age-dependent manner, is a next generation preclinical rodent model for understanding pathophysiological processes underlying the earliest stages of AD (Cohen et al., 2013). Whether synaptic alterations occur in hippocampus prior to reported learning and memory deficit is not known. Furthermore, it is not known if specific hippocampal synapses are differentially affected by progressing AD pathology, or if synaptic deficits begin to appear at the same age in males and females in this preclinical model. Here, we investigated the time-course of synaptic changes in basal transmission, paired-pulse ratio, as an indirect measure of presynaptic release probability, long-term potentiation (LTP), and dendritic spine density at two hippocampal synapses in male and ovariectomized female TgF344-AD rats and wildtype littermates, prior to reported behavioral deficits. Decreased basal synaptic transmission begins at medial perforant path-dentate granule cell (MPP-DGC) synapses prior to Schaffer-collateral-CA1 (CA3-CA1) synapses, in the absence of a change in paired-pulse ratio (PPR) or dendritic spine density. N-methyl-d-aspartate receptor (NMDAR)-dependent LTP magnitude is unaffected at CA3-CA1 synapses at 6, 9, and 12months of age, but is significantly increased at MPP-DGC synapses in TgF344-AD rats at 6months only. Sex differences were only observed at CA3-CA1 synapses where the decrease in basal transmission occurs at a younger age in males versus females. These are the first studies to define presymptomatic alterations in hippocampal synaptic transmission in the TgF344-AD rat model. The time course of altered synaptic transmission mimics the spread of pathology through hippocampus in human AD and provides

  3. Changes in inhibitory CA1 network in dual pathology model of epilepsy.

    Science.gov (United States)

    Ouardouz, Mohamed; Carmant, Lionel

    2012-01-01

    The combination of two precipitating factors appears to be more and more recognized in patients with temporal lobe epilepsy. Using a two-hit rat model, with a neonatal freeze lesion mimicking a focal cortical malformation combined with hyperthermia-induced seizures mimicking febrile seizures, we have previously reported an increase of inhibition in CA1 pyramidal cells at P20. Here, we investigated the changes affecting excitatory and inhibitory drive onto CA1 interneurons to better define the changes in CA1 inhibitory networks and their paradoxical role in epileptogenesis, using electrophysiological recordings in CA1 hippocampus from rat pups (16-20 d old). We investigated interneurons in CA1 hippocampal area located in stratum oriens (Or) and at the border of strata lacunosum and moleculare (L-M). Our results revealed an increase of the excitatory drive to both types of interneurons with no change in the inhibitory drive. The mechanisms underlying the increase of excitatory synaptic currents (EPSCs) in both types of interneurons are different. In Or interneurons, the amplitude of spontaneous and miniature EPSCs increased, while their frequency was not affected suggesting changes at the post-synaptic level. In L-M interneurons, the frequency of spontaneous EPSCs increases, but the amplitude is not affected. Analyses of miniature EPSCs showed no changes in both their frequency and amplitude. We concluded that L-M interneurons increase in excitatory drive is due to a change in Shaffer collateral axon excitability. The changes described here in CA1 inhibitory network may actually contribute to the epileptogenicity observed in this dual pathology model by increasing pyramidal cell synchronization.

  4. Novel nootropic dipeptide Noopept increases inhibitory synaptic transmission in CA1 pyramidal cells.

    Science.gov (United States)

    Kondratenko, Rodion V; Derevyagin, Vladimir I; Skrebitsky, Vladimir G

    2010-05-31

    Effects of newly synthesized nootropic and anxiolytic dipeptide Noopept on inhibitory synaptic transmission in hippocampal CA1 pyramidal cells were investigated using patch-clamp technique in whole-cell configuration. Bath application of Noopept (1 microM) significantly increased the frequency of spike-dependant spontaneous IPSCs whereas spike-independent mIPSCs remained unchanged. It was suggested that Noopept mediates its effect due to the activation of inhibitory interneurons terminating on CA1 pyramidal cells. Results of current clamp recording of inhibitory interneurons residing in stratum radiatum confirmed this suggestion. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Herniated gyrus rectus causing idiopathic compression of the optic chiasm.

    Science.gov (United States)

    Smith, Jacob; Jack, Megan M; Peterson, Jeremy C; Chamoun, Roukoz B

    2017-02-01

    Anomalies in the frontal lobe can interfere with visual function by compression of the optic chiasm and nerve. The gyrus rectus is located at the anterior cranial fossa floor superior to the intracranial optic nerves and chiasm. Compression of these structures by the gyrus rectus is often caused by neoplastic or dysplastic growth in the area. We report a rare case of a herniated gyrus rectus impinged on the optic chiasm and nerve without a clear pathological cause for the herniation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. High-temperature resistivity and thermoelectric properties of coupled substituted Ca3Co2O6

    Directory of Open Access Journals (Sweden)

    Meenakshisundaram Senthilkumar and Rajagopalan Vijayaraghavan

    2009-01-01

    Full Text Available Polycrystalline samples of Ca3−xNaxCo2−xMnxO6 (x=0.0–0.5 have been prepared by the sol-gel cum combustion method using sucrose in order to investigate the effects of the coupled substitution of Na and Mn on Ca and Co sites on the transport properties of Ca3Co2O6(Co326. The products were characterized by Fourier transform infrared spectroscopy, powder x-ray diffraction (XRD, thermogravimetry (TGA, differential thermal analysis and scanning electron microscopy. XRD patterns reveal the formation of single-phase products up to x=0.5. Coupled substitution increases the solubility of both Na and Mn on Ca and Co sites, respectively, in contrast to the limited solubility of Na and Mn (x=0.2 when separately substituted. TGA confirms the formation of the Ca3Co2O6 phase at temperatures ~720 °C. The grain size of the parent and substituted products is in the range 150–250 nm. Electrical resistivity and Seebeck coefficient were measured in the temperature range 300–800 K. Resistivity shows semiconducting behavior for all the compositions, particularly in the low-temperature regime. The Seebeck coefficient increases with temperature throughout the measured temperature range for all compositions. The maximum Seebeck coefficient (200 μV K−1 is observed for x=0.5 at 825 K, and this composition may be optimal for high-temperature thermoelectric applications.

  7. Regulation of phenylacetic acid uptake is sigma54 dependent in Pseudomonas putida CA-3.

    LENUS (Irish Health Repository)

    O' Leary, Niall D

    2011-10-13

    Abstract Background Styrene is a toxic and potentially carcinogenic alkenylbenzene used extensively in the polymer processing industry. Significant quantities of contaminated liquid waste are generated annually as a consequence. However, styrene is not a true xenobiotic and microbial pathways for its aerobic assimilation, via an intermediate, phenylacetic acid, have been identified in a diverse range of environmental isolates. The potential for microbial bioremediation of styrene waste has received considerable research attention over the last number of years. As a result the structure, organisation and encoded function of the genes responsible for styrene and phenylacetic acid sensing, uptake and catabolism have been elucidated. However, a limited understanding persists in relation to host specific regulatory molecules which may impart additional control over these pathways. In this study the styrene degrader Pseudomonas putida CA-3 was subjected to random mini-Tn5 mutagenesis and mutants screened for altered styrene\\/phenylacetic acid utilisation profiles potentially linked to non-catabolon encoded regulatory influences. Results One mutant, D7, capable of growth on styrene, but not on phenylacetic acid, harboured a Tn5 insertion in the rpoN gene encoding σ54. Complementation of the D7 mutant with the wild type rpoN gene restored the ability of this strain to utilise phenylacetic acid as a sole carbon source. Subsequent RT-PCR analyses revealed that a phenylacetate permease, PaaL, was expressed in wild type P. putida CA-3 cells utilising styrene or phenylacetic acid, but could not be detected in the disrupted D7 mutant. Expression of plasmid borne paaL in mutant D7 was found to fully restore the phenylacetic acid utilisation capacity of the strain to wild type levels. Bioinformatic analysis of the paaL promoter from P. putida CA-3 revealed two σ54 consensus binding sites in a non-archetypal configuration, with the transcriptional start site being resolved by

  8. Somal and dendritic development of human CA3 pyramidal neurons from midgestation to middle childhood: a quantitative Golgi study.

    Science.gov (United States)

    Lu, Dahua; He, Lixin; Xiang, Wei; Ai, Wei-Min; Cao, Ye; Wang, Xiao-Sheng; Pan, Aihua; Luo, Xue-Gang; Li, Zhiyuan; Yan, Xiao-Xin

    2013-01-01

    The CA3 area serves a key relay on the tri-synaptic loop of the hippocampal formation which supports multiple forms of mnemonic processing, especially spatial learning and memory. To date, morphometric data about human CA3 pyramidal neurons are relatively rare, with little information available for their pre- and postnatal development. Herein, we report a set of developmental trajectory data, including somal growth, dendritic elongation and branching, and spine formation, of human CA3 pyramidal neurons from midgestation stage to middle childhood. Golgi-impregnated CA3 pyramidal neurons in fetuses at 19, 20, 26, 35, and 38 weeks of gestation (GW) and a child at 8 years of age (Y) were analyzed by Neurolucida morphometry. Somal size of the impregnated CA3 cells increased age-dependently among the cases. The length of the apical and basal dendrites of these neurons increased between 26 GW to 38 GW, and appeared to remain stable afterward until 8 Y. Dendritic branching points increased from 26 GW to 38 GW, with that on the apical dendrites slightly reduced at 8 Y. Spine density on the apical and basal dendrites increased progressively from 26 GW to 8 Y. These data suggest that somal growth and dendritic arborization of human CA3 pyramidal neurons occur largely during the second to third trimester. Spine development and likely synaptogenesis on CA3 pyramidal cells progress during the third prenatal trimester and may continue throughout childhood. Copyright © 2012 Wiley Periodicals, Inc.

  9. High-pressure crystal growth and electromagnetic properties of 5d double-perovskite Ca3OsO6

    International Nuclear Information System (INIS)

    Feng, Hai Luke; Shi, Youguo; Guo, Yanfeng; Li, Jun; Sato, Akira; Sun, Ying; Wang, Xia; Yu, Shan; Sathish, Clastin I.; Yamaura, Kazunari

    2013-01-01

    Single crystals of the osmium-containing compound Ca 3 OsO 6 have been successfully grown under high-pressure conditions, for the first time. The crystal structure of Ca 3 OsO 6 were characterized as an ordered double-perovskite structure of space group P2 1 /n with the Ca and Os atoms being fully ordered at the perovskite B-site. The electromagnetic analysis shows that the crystal exhibits a semiconductor-like behavior below 300 K and undergoes an antiferromagnetic transition at 50 K. - Graphical Abstract: Schematic image of crystal structure of Ca 3 OsO 6 as determined by X-ray diffraction, where the gray and black octahedrons are occupied by Ca and Os, respectively. Top inset reveals an optic image of a typical Ca 3 OsO 6 single crystal. Highlights: ► Single crystals of Ca 3 OsO 6 have been successfully grown under high-pressure. ► Ca 3 OsO 6 crystalizes into an ordered double-perovskite structure. ► The Ca 3 OsO 6 undergoes an antiferromagnetic transition at 50 K

  10. Distinguishing linear vs. nonlinear integration in CA1 radial oblique dendrites: it’s about time

    Directory of Open Access Journals (Sweden)

    José Francisco eGómez González

    2011-11-01

    Full Text Available It was recently shown that multiple excitatory inputs to CA1 pyramidal neuron dendrites must be activated nearly simultaneously to generate local dendritic spikes and superlinear responses at the soma; even slight input desynchronization prevented local spike initiation (Gasparini, 2006;Losonczy, 2006. This led to the conjecture that CA1 pyramidal neurons may only express their nonlinear integrative capabilities during the highly synchronized sharp waves and ripples that occur during slow wave sleep and resting/consummatory behavior, whereas during active exploration and REM sleep (theta rhythm, inadequate synchronization of excitation would lead CA1 pyramidal cells to function as essentially linear devices. Using a detailed single neuron model, we replicated the experimentally observed synchronization effect for brief inputs mimicking single synaptic release events. When synapses were driven instead by double pulses, more representative of the bursty inputs that occur in vivo, we found that the tolerance for input desynchronization was increased by more than an order of magnitude. The effect depended mainly on paired pulse facilitation of NMDA receptor-mediated responses at Schaffer collateral synapses. Our results suggest that CA1 pyramidal cells could function as nonlinear integrative units in all major hippocampal states.

  11. Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats.

    Science.gov (United States)

    Li, Jay-Shake; Chao, Yuen-Shin

    2008-02-01

    Episodic memory is the ability to recollect one's past experiences occurring in an unique spatial and temporal context. In non-human animals, it is expressed in the ability to combine "what", "where" and "when" factors to form an integrated memory system. During the search for its neural substrates, the hippocampus has attracted a lot of attentions. Yet, it is not yet possible to induce a pure episodic-like memory deficit in animal studies without being confounded by impairments in the spatial cognition. Here, we present a lesion study evidencing direct links between the hippocampus CA3 region and the episodic-like memory in rats. In a spontaneous object exploration task, lesioned rats showed no interaction between the temporal and spatial elements in their memory associated with the objects. In separate tests carried out subsequently, the same animals still expressed abilities to process spatial, temporal, and object recognition memory. In conclusions, our results support the idea that the hippocampus CA3 has a particular status in the neural mechanism of the episodic-like memory system. It is responsible for combining information from different modules of cognitive processes.

  12. Optimal recall from bounded metaplastic synapses: predicting functional adaptations in hippocampal area CA3.

    Directory of Open Access Journals (Sweden)

    Cristina Savin

    2014-02-01

    Full Text Available A venerable history of classical work on autoassociative memory has significantly shaped our understanding of several features of the hippocampus, and most prominently of its CA3 area, in relation to memory storage and retrieval. However, existing theories of hippocampal memory processing ignore a key biological constraint affecting memory storage in neural circuits: the bounded dynamical range of synapses. Recent treatments based on the notion of metaplasticity provide a powerful model for individual bounded synapses; however, their implications for the ability of the hippocampus to retrieve memories well and the dynamics of neurons associated with that retrieval are both unknown. Here, we develop a theoretical framework for memory storage and recall with bounded synapses. We formulate the recall of a previously stored pattern from a noisy recall cue and limited-capacity (and therefore lossy synapses as a probabilistic inference problem, and derive neural dynamics that implement approximate inference algorithms to solve this problem efficiently. In particular, for binary synapses with metaplastic states, we demonstrate for the first time that memories can be efficiently read out with biologically plausible network dynamics that are completely constrained by the synaptic plasticity rule, and the statistics of the stored patterns and of the recall cue. Our theory organises into a coherent framework a wide range of existing data about the regulation of excitability, feedback inhibition, and network oscillations in area CA3, and makes novel and directly testable predictions that can guide future experiments.

  13. Suggesting a possible role of CA1 histaminergic system in harmane-induced amnesia.

    Science.gov (United States)

    Nasehi, Mohammad; Mashaghi, Elham; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2013-11-27

    A number of tremorogenic β-carboline alkaloids such as harmane are naturally present in the human food chain. They are derived from medicinal plants such as Peganum harmala that have been used as folk medicine in anticancer therapy. In the present study, effects of the histaminergic system of the dorsal hippocampus (CA1) on harmane-induced amnesia were examined. One-trial step-down was used to assess memory retention in adult male mice. The results showed that pre-training intra-CA1 administration of histamine (5μg/mouse), ranitidine (H2 receptor antagonist; at the doses of 0.25 and 0.5μg/mouse) and pyrilamine (H1 receptor antagonist; at the dose of 5μg/mouse) decreased memory formation. Pre-training intraperitoneal (i.p.) administration of harmane (12mg/kg) also decreased memory formation. Moreover, pre-training intra-CA1 injection of a sub-threshold dose of histamine (2.5μg/mouse) could reverse harmane (12mg/kg, i.p.)-induced impairment of memory. On the other hand, pre-training intra-CA1 injection of sub-threshold doses of ranitidine (0.0625μg/mouse) and pyrilamine (2.5μg/mouse) increased harmane-induced impairment of memory. In conclusion, the present findings suggest the involvement of the CA1 histaminergic system in harmane-induced impairment of memory formation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Orexin-A increases the firing activity of hippocampal CA1 neurons through orexin-1 receptors.

    Science.gov (United States)

    Chen, Xin-Yi; Chen, Lei; Du, Yi-Feng

    2017-07-01

    Orexins including two peptides, orexin-A and orexin-B, are produced in the posterior lateral hypothalamus. Much evidence has indicated that central orexinergic systems play numerous functions including energy metabolism, feeding behavior, sleep/wakefulness, and neuroendocrine and sympathetic activation. Morphological studies have shown that the hippocampal CA1 regions receive orexinergic innervation originating from the hypothalamus. Positive orexin-1 (OX 1 ) receptors are detected in the CA1 regions. Previous behavioral studies have shown that microinjection of OX 1 receptor antagonist into the hippocampus impairs acquisition and consolidation of spatial memory. However, up to now, little has been known about the direct electrophysiological effects of orexin-A on hippocampal CA1 neurons. Employing multibarrel single-unit extracellular recordings, the present study showed that micropressure administration of orexin-A significantly increased the spontaneous firing rate from 2.96 ± 0.85 to 8.45 ± 1.86 Hz (P neurons in male rats. Furthermore, application of the specific OX 1 receptor antagonist SB-334867 alone significantly decreased the firing rate from 4.02 ± 1.08 to 2.11 ± 0.58 Hz in 7 out of the 17 neurons (P neurons. Coapplication of SB-334867 completely blocked orexin-A-induced excitation of hippocampal CA1 neurons. The PLC pathway may be involved in activation of OX 1 receptor-induced excitation of CA1 neurons. Taken together, the present study's results suggest that orexin-A produces excitatory effects on hippocampal neurons via OX 1 receptors. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels

    Directory of Open Access Journals (Sweden)

    Stephan eKratzer

    2013-07-01

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS and field excitatory postsynaptic potentials (fEPSP were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean  Standard error of the mean; 231.8  31.2% of control; n=10 while neither affecting fEPSPs (104.3 ± 4.2%; n=10 nor long-term potentiation (LTP. However, when Schaffer-collaterals were excited via action potentials (APs generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n=8 and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1 expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca2+-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

  16. Disruption of hippocampal CA3 network: effects on episodic-like memory processing in C57BL/6J mice.

    Science.gov (United States)

    Daumas, Stéphanie; Halley, Hélène; Lassalle, Jean-Michel

    2004-07-01

    Lesion studies have demonstrated the prominent role of the hippocampus in spatial and contextual learning. To better understand how contextual information is processed in the CA3 region during learning, we focused on the CA3 autoassociative network hypothesis. We took advantage of a particularity of the mossy fibre (MF) synapses, i.e. their high zinc concentration, to reversibly disrupt the afferent MF pathway by microinfusions of an intracellular (DEDTC) or an extracellular (CaEDTA) zinc chelator into the CA3 area of the dorsal hippocampus of mice. Disruption of the CA3 network significantly impaired the acquisition and the consolidation of contextual fear conditioning, whereas contextual retrieval was unaffected. These results also suggest a heterogeneity between the cognitive processes underlying spatial and contextual memory that might be linked to the specific involvement of free zinc in contextual information processing.

  17. 3β-Methyl-Neurosteroid Analogs are Preferential Positive Allosteric Modulators and Direct Activators of Extrasynaptic δGABA-A Receptors in the Hippocampus Dentate Gyrus Subfield.

    Science.gov (United States)

    Chuang, Shu-Hui; Reddy, Doodipala Samba

    2018-03-30

    Neurosteroids are powerful modulators of GABA-A receptors. Ganaxolone (3α-hydroxy-3β-methyl-5α-pregnan-20-one, GX) and synthetic analogs of the neurosteroid allopregnanolone (AP) are designed to treat epilepsy and related conditions. However, their precise mechanism of action in native neurons remains unclear. Here, we sought to determine the mode of action of GX and its analogs at GABA-A receptors in native hippocampal neurons by analyzing extrasynaptic receptor-mediated tonic currents and synaptic receptor-mediated phasic currents. Concentration-response profiles of GX were determined in two cell types: δ-containing dentate gyrus granule cells (DGGCs) and γ2-containing CA1 pyramidal cells (CA1PCs). GX produced significantly greater potentiation of the GABA-A receptor-activated chloride currents in DGGCs (500%) than CA1PCs (200%). In the absence of GABA, GX evoked 2-fold greater inward currents in DGGCs than CA1PCs, which were 2-fold greater than AP within DGGCs. In hippocampus slices, GX potentiated and directly activated tonic currents in DGGCs. These responses were significantly diminished in DGGCs from δ-subunit knockout (δKO) mice, confirming GX's selectivity for δGABA-A receptors. Like AP, GX potentiation of tonic currents was prevented by protein kinase C inhibition. Furthermore, GX's protection against hippocampus kindled seizures was significantly diminished in δKO mice. GX analogs exhibited greater potency and efficacy than GX on δGABA-A receptor-mediated tonic inhibition. In summary, these results provide strong evidence that GX and its analogs are preferential allosteric modulators and direct activators of extrasynaptic δGABA-A receptors regulating network inhibition and seizures in the dentate gyrus. Therefore, these findings provide a mechanistic rationale for the clinical use of synthetic neurosteroids in epilepsy and seizure disorders. The American Society for Pharmacology and Experimental Therapeutics.

  18. Enhanced electrochemical performance of the solid oxide fuel cell cathode using Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Van Nong, Ngo

    2011-01-01

    This paper reports on the electrochemical performance of an SOFC cathode for potential use in intermediate-temperature solid oxide fuel cells (IT-SOFCs) using the oxygen non-stoichiometric misfit-layered cobaltite Ca3Co4O9+δ or composites of Ca3Co4O9+δ with Ce0.9Gd0.1O1.95 (CGO/Ca3Co4O9+δ......). Electrochemical impedance spectroscopy revealed that symmetric cells with an electrode of pure Ca3Co4O9+δ exhibit a cathode polarization resistance (Rp) of 12.4 Ω cm2, at 600 °C in air. Strikingly, Rp of the composite CGO/Ca3Co4O9+δ with 50 vol.% CGO was reduced by a factor of 19 (i.e. Rp = 0.64 Ω cm2......), the lowest value reported so far for the Ca3Co4O9 family of compounds. These findings together with the reported thermal expansion coefficient, good compatibility with CGO and chemical durability of this material suggest that it is a promising candidate cathode for IT-SOFCs....

  19. Thermoelectric Properties of the Chemically Doped Ca3Co4O9 System: A Structural Perspective

    Science.gov (United States)

    Wu, Tao; Tyson, Trevor; Wang, Hsin; Li, Qiang

    2010-03-01

    Cu doped and Y doped [Ca2CoO3][CoO2]1.61 (referred to as Ca3Co4O9) were prepared by solid state reaction. Temperature dependent thermoelectric properties, resistivity (ρ), Seeback coefficient (S) and thermal conductivity (κ), were measured. As seen before, it is found that doping by Cu and Y significantly enhances the thermoelectric properties. In order to understand the origin of these changes in properties in terms of the atomic structure, synchrotron x-ray diffraction and x-ray absorption spectroscopy were applied to probe the change in the average structure and the location of the dopants. The details of the location and coordination of Co and Y in the host lattice and the effect on the figure of merit are discussed. This work is supported by DOE Grant DE-FG02-07ER46402.

  20. Scintillation characteristics of Tm3+ in Ca3(BO3)2 crystals

    International Nuclear Information System (INIS)

    Fujimoto, Yutaka; Yanagida, Takayuki; Yokota, Yuui; Kawaguchi, Noriaki; Fukuda, Kentaro; Totsuka, Daisuke; Watanabe, Kenichi; Yamazaki, Atsushi; Yoshikawa, Akira

    2011-01-01

    Basic optical properties and radiation responses of undoped, Tm 3+ 1.0% and 2.0% activated Ca 3 (BO 3 ) 2 (CBO) crystalline scintillator prepared by the micro-pulling down (μ-PD) method are reported. Tm 3+ : CBO crystals showed three weak absorption bands around 190, 260 and 350 nm, owing to the Tm 3+ 4f–4f transition. Strong blue luminescence peaks at 360 and 460 nm which are ascribed to the 1 D 2 – 3 H 6 and 1 D 2 – 3 F 4 transitions of Tm 3+ respectively were observed under 241 Am 5.5 MeV α-ray excitation. The scintillation light yield of 2.0% Tm 3+ -doped CBO crystal was evaluated to be about 250 ph/n from the 252 Cf excited pulse height spectrum.

  1. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Rose, Marie E. [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurology, University of Pittsburgh School of Medicine, PA (United States); Culver, Sherman; Ma, Xiecheng; Dixon, C. Edward [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurosurgery, University of Pittsburgh, PA 15216 (United States); Department of Critical Care Medicine, University of Pittsburgh, PA 15216 (United States); Graham, Steven H., E-mail: Steven.Graham@va.gov [Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, PA (United States); Department of Neurology, University of Pittsburgh School of Medicine, PA (United States)

    2016-04-15

    Rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1–5 d, 14–20 d post injury, respectively). Compared with the vehicle-treated group, rosiglitazone treatment suppressed production of TNFα at 24 h after TBI, attenuated activation of microglia/macrophages and increased survival of CA3 neurons but had no effect on lesion volume at 21 d after TBI. Rosiglitazone-treated animals had improved performance on beam balance testing, but there was no difference in spatial memory function as determined by Morris water maze. In summary, this study indicates that rosiglitazone treatment in the first 24 h after TBI has limited anti-inflammatory and neuroprotective effects in rat traumatic injury. Further study using an alternative dosage paradigm and more sensitive behavioral testing may be warranted. - Highlights: • Effects of rosiglitazone after CCI were evaluated using a rat TBI model. • Rosiglitazone suppressed production of TNFα at 24 h after CCI. • Rosiglitazone inhibited microglial activation at 21 d after CCI. • Rosiglitazone increased survival of CA3 neurons at 21 d after CCI. • Rosiglitazone-treated animals had improved performance in beam balance testing.

  2. THE QUADRUPLE PRE-MAIN-SEQUENCE SYSTEM LkCa 3: IMPLICATIONS FOR STELLAR EVOLUTION MODELS

    International Nuclear Information System (INIS)

    Torres, Guillermo; Latham, David W.; Ruíz-Rodríguez, Dary; Prato, L.; Wasserman, Lawrence H.; Badenas, Mariona; Schaefer, G. H.; Mathieu, Robert D.

    2013-01-01

    We report the discovery that the pre-main-sequence (PMS) object LkCa 3 in the Taurus-Auriga star-forming region is a hierarchical quadruple system of M stars. It was previously known to be a close (∼0.''5) visual pair, with one component being a moderately eccentric 12.94 day single-lined spectroscopic binary. A re-analysis of archival optical spectra complemented by new near-infrared (NIR) spectroscopy shows both visual components to be double lined; the second one has a period of 4.06 days and a circular orbit. In addition to the orbital elements, we determine optical and NIR flux ratios, effective temperatures, and projected rotational velocities for all four stars. Using existing photometric monitoring observations of the system that had previously revealed the rotational period of the primary in the longer-period binary, we also detect the rotational signal of the primary in the 4.06 day binary, which is synchronized with the orbital motion. With only the assumption of coevality, a comparison of all of these constraints with current stellar evolution models from the Dartmouth series points to an age of 1.4 Myr and a distance of 133 pc, consistent with previous estimates for the region and suggesting that the system is on the near side of the Taurus complex. Similar comparisons of the properties of LkCa 3 and the well-known quadruple PMS system GG Tau with the widely used models from the Lyon series for a mixing length parameter of α ML = 1.0 strongly favor the Dartmouth models

  3. Rosiglitazone attenuates inflammation and CA3 neuronal loss following traumatic brain injury in rats

    International Nuclear Information System (INIS)

    Liu, Hao; Rose, Marie E.; Culver, Sherman; Ma, Xiecheng; Dixon, C. Edward; Graham, Steven H.

    2016-01-01

    Rosiglitazone, a potent peroxisome proliferator-activated receptor (PPAR)-γ agonist, has been shown to confer neuroprotective effects in stroke and spinal cord injury, but its role in the traumatic brain injury (TBI) is still controversial. Using a controlled cortical impact model in rats, the current study was designed to determine the effects of rosiglitazone treatment (6 mg/kg at 5 min, 6 h and 24 h post injury) upon inflammation and histological outcome at 21 d after TBI. In addition, the effects of rosiglitazone upon inflammatory cytokine transcription, vestibulomotor behavior and spatial memory function were determined at earlier time points (24 h, 1–5 d, 14–20 d post injury, respectively). Compared with the vehicle-treated group, rosiglitazone treatment suppressed production of TNFα at 24 h after TBI, attenuated activation of microglia/macrophages and increased survival of CA3 neurons but had no effect on lesion volume at 21 d after TBI. Rosiglitazone-treated animals had improved performance on beam balance testing, but there was no difference in spatial memory function as determined by Morris water maze. In summary, this study indicates that rosiglitazone treatment in the first 24 h after TBI has limited anti-inflammatory and neuroprotective effects in rat traumatic injury. Further study using an alternative dosage paradigm and more sensitive behavioral testing may be warranted. - Highlights: • Effects of rosiglitazone after CCI were evaluated using a rat TBI model. • Rosiglitazone suppressed production of TNFα at 24 h after CCI. • Rosiglitazone inhibited microglial activation at 21 d after CCI. • Rosiglitazone increased survival of CA3 neurons at 21 d after CCI. • Rosiglitazone-treated animals had improved performance in beam balance testing.

  4. Enhanced sensitivity to ethanol-induced inhibition of LTP in CA1 pyramidal neurons of socially isolated C57BL/6J mice: role of neurosteroids

    Directory of Open Access Journals (Sweden)

    Giuseppe eTalani

    2011-10-01

    Full Text Available Ethanol (EtOH–induced impairment of long-term potentiation (LTP in the rat hippocampus is prevented by the 5α-reductase inhibitor finasteride, suggesting that this effect of EtOH is dependent on the increased local release of neurosteroids such as 3α,5α-THP that promote GABA–mediated transmission. Given that social isolation (SI in rodents is associated with altered plasma and brain levels of such neurosteroids as well as with an enhanced neurosteroidogenic action of EtOH, we examined whether the inhibitory effect of EtOH on LTP at CA3-CA1 hippocampal excitatory synapses is altered in C57BL/6J mice subjected to SI for 6 weeks in comparison with group-housed (GH animals. Extracellular recording of fEPSPs as well as patch-clamp analysis were performed in hippocampal slices prepared from both SI and GH mice. Consistent with previous observations, recording of fEPSPs revealed that the extent of LTP induced in the CA1 region of SI mice was significantly reduced compared with that in GH animals. EtOH (40 mM inhibited LTP in slices from SI mice but not in those from GH mice, and this effect of EtOH was abolished by co-application of 1 µM finasteride. Current-clamp analysis of CA1 pyramidal neurons revealed a decrease in action potential frequency and an increase in the intensity of injected current required to evoke the first action potential in SI mice compared with GH mice, indicative of a decrease in neuronal excitability associated with SI. Together, our data suggest that SI results in reduced levels of neuronal excitability and synaptic plasticity in the hippocampus. Furthermore, the increased sensitivity to the neurosteroidogenic effect of EtOH associated with SI likely accounts for the greater inhibitory effect of EtOH on LTP in SI mice. The increase in EtOH sensitivity induced by SI may be important for the changes in the effects of EtOH on anxiety and on learning and memory associated with the prolonged stress attributable to social

  5. Highly expressed genes within hippocampal sector CA1: implications for the physiology of memory

    Directory of Open Access Journals (Sweden)

    Michael A. Meyer

    2014-06-01

    Full Text Available As the CA1 sector has been implicated to play a key role in memory formation, a dedicated search for highly expressed genes within this region was made from an on-line atlas of gene expression within the mouse brain (GENSAT. From a data base of 1013 genes, 16 were identified that had selective localization of gene expression within the CA1 region, and included Angpt2, ARHGEF6, CCK, Cntnap1, DRD3, EMP1, Epha2, Itm2b, Lrrtm2, Mdk, PNMT, Ppm1e, Ppp2r2d, RASGRP1, Slitrk5, and Sstr4. Of the 16 identified, the most selective and intense localization for both adult and post-natal day 7 was noted for ARHGEF6, which is known to be linked to non-syndromic mental retardation, and has also been localized to dendritic spines. Further research on the role played by ARHGEF6 in memory formation is strongly advocated.

  6. Highly Expressed Genes within Hippocampal Sector CA1: Implications for the Physiology of Memory.

    Science.gov (United States)

    Meyer, Michael A

    2014-04-22

    As the CA1 sector has been implicated to play a key role in memory formation, a dedicated search for highly expressed genes within this region was made from an on-line atlas of gene expression within the mouse brain (GENSAT). From a data base of 1013 genes, 16 were identified that had selective localization of gene expression within the CA1 region, and included Angpt2, ARHGEF6, CCK, Cntnap1, DRD3, EMP1, Epha2, Itm2b, Lrrtm2, Mdk, PNMT, Ppm1e, Ppp2r2d, RASGRP1, Slitrk5, and Sstr4. Of the 16 identified, the most selective and intense localization for both adult and post-natal day 7 was noted for ARHGEF6, which is known to be linked to non-syndromic mental retardation, and has also been localized to dendritic spines. Further research on the role played by ARHGEF6 in memory formation is strongly advocated.

  7. Caffeine and REM sleep deprivation: Effect on basal levels of signaling molecules in area CA1.

    Science.gov (United States)

    Alkadhi, Karim A; Alhaider, Ibrahim A

    2016-03-01

    We have investigated the neuroprotective effect of chronic caffeine treatment on basal levels of memory-related signaling molecules in area CA1 of sleep-deprived rats. Animals in the caffeine groups were treated with caffeine in drinking water (0.3g/l) for four weeks before they were REM sleep-deprived for 24h in the Modified Multiple Platforms paradigm. Western blot analysis of basal protein levels of plasticity- and memory-related signaling molecules in hippocampal area CA1 showed significant down regulation of the basal levels of phosphorylated- and total-CaMKII, phosphorylated- and total-CREB as well as those of BDNF and CaMKIV in sleep deprived rats. All these changes were completely prevented in rats that chronically consumed caffeine. The present findings suggest an important neuroprotective property of caffeine in sleep deprivation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Age-related Changes in Lateral Entorhinal and CA3 Neuron Allocation Predict Poor Performance on Object Discrimination

    Directory of Open Access Journals (Sweden)

    Andrew P. Maurer

    2017-06-01

    Full Text Available Age-related memory deficits correlate with dysfunction in the CA3 subregion of the hippocampus, which includes both hyperactivity and overly rigid activity patterns. While changes in intrinsic membrane currents and interneuron alterations are involved in this process, it is not known whether alterations in afferent input to CA3 also contribute. Neurons in layer II of the lateral entorhinal cortex (LEC project directly to CA3 through the perforant path, but no data are available regarding the effects of advanced age on LEC activity and whether these activity patterns update in response to environmental change. Furthermore, it is not known the extent to which age-related deficits in sensory discrimination relate to the inability of aged CA3 neurons to update in response to new environments. Young and aged rats were pre-characterized on a LEGO© object discrimination task, comparable to behavioral tests in humans in which CA3 hyperactivity has been linked to impairments. The cellular compartment analysis of temporal activity with fluorescence in situ hybridization for the immediate-early gene Arc was then used to identify the principal cell populations that were active during two distinct epochs of random foraging in different environments. This approach enabled the extent to which rats could discriminate two similar objects to be related to the ability of CA3 neurons to update across different environments. In both young and aged rats, there were animals that performed poorly on the LEGO object discrimination task. In the aged rats only, however, the poor performers had a higher percent of CA3 neurons that were active during random foraging in a novel environment, but this is not related to the ability of CA3 neurons to remap when the environment changed. Afferent neurons to CA3 in LEC, as identified with the retrograde tracer choleratoxin B (CTB, also showed a higher percentage of cells that were positive for Arc mRNA in aged poor performing rats

  9. Temporal dynamics of distinct CA1 cell populations during unconscious state induced by ketamine.

    Directory of Open Access Journals (Sweden)

    Hui Kuang

    2010-12-01

    Full Text Available Ketamine is a widely used dissociative anesthetic which can induce some psychotic-like symptoms and memory deficits in some patients during the post-operative period. To understand its effects on neural population dynamics in the brain, we employed large-scale in vivo ensemble recording techniques to monitor the activity patterns of simultaneously recorded hippocampal CA1 pyramidal cells and various interneurons during several conscious and unconscious states such as awake rest, running, slow wave sleep, and ketamine-induced anesthesia. Our analyses reveal that ketamine induces distinct oscillatory dynamics not only in pyramidal cells but also in at least seven different types of CA1 interneurons including putative basket cells, chandelier cells, bistratified cells, and O-LM cells. These emergent unique oscillatory dynamics may very well reflect the intrinsic temporal relationships within the CA1 circuit. It is conceivable that systematic characterization of network dynamics may eventually lead to better understanding of how ketamine induces unconsciousness and consequently alters the conscious mind.

  10. Dorsal-CA1 Hippocampal Neuronal Ensembles Encode Nicotine-Reward Contextual Associations.

    Science.gov (United States)

    Xia, Li; Nygard, Stephanie K; Sobczak, Gabe G; Hourguettes, Nicholas J; Bruchas, Michael R

    2017-06-06

    Natural and drug rewards increase the motivational valence of stimuli in the environment that, through Pavlovian learning mechanisms, become conditioned stimuli that directly motivate behavior in the absence of the original unconditioned stimulus. While the hippocampus has received extensive attention for its role in learning and memory processes, less is known regarding its role in drug-reward associations. We used in vivo Ca 2+ imaging in freely moving mice during the formation of nicotine preference behavior to examine the role of the dorsal-CA1 region of the hippocampus in encoding contextual reward-seeking behavior. We show the development of specific neuronal ensembles whose activity encodes nicotine-reward contextual memories and that are necessary for the expression of place preference. Our findings increase our understanding of CA1 hippocampal function in general and as it relates to reward processing by identifying a critical role for CA1 neuronal ensembles in nicotine place preference. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Synaptic plasticity in the hippocampal area CA1-subiculum projection: implications for theories of memory.

    Science.gov (United States)

    O'Mara, S M; Commins, S; Anderson, M

    2000-01-01

    This paper reviews investigations of synaptic plasticity in the major, and underexplored, pathway from hippocampal area CA1 to the subiculum. This brain area is the major synaptic relay for the majority of hippocampal area CA1 neurons, making the subiculum the last relay of the hippocampal formation prior to the cortex. The subiculum thus has a very major role in mediating hippocampal-cortical interactions. We demonstrate that the projection from hippocampal area CA1 to the subiculum sustains plasticity on a number of levels. We show that this pathway is capable of undergoing both long-term potentiation (LTP) and paired-pulse facilitation (PPF, a short-term plastic effect). Although we failed to induce long-term depression (LTD) of this pathway with low-frequency stimulation (LFS) and two-pulse stimulation (TPS), both protocols can induce a "late-developing" potentiation of synaptic transmission. We further demonstrate that baseline synaptic transmission can be dissociated from paired-pulse stimulation of the same pathway; we also show that it is possible, using appropriate protocols, to change PPF to paired-pulse depression, thus revealing subtle and previously undescribed mechanisms which regulate short-term synaptic plasticity. Finally, we successfully recorded from individual subicular units in the freely-moving animal, and provide a description of the characteristics of such neurons in a pellet-chasing task. We discuss the implications of these findings in relation to theories of the biological consolidation of memory.

  12. Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites.

    Science.gov (United States)

    Znamensky, Vladimir; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A

    2003-03-15

    In addition to genomic pathways, estrogens may regulate gene expression by activating specific signal transduction pathways, such as that involving phosphatidylinositol 3-kinase (PI3-K) and the subsequent phosphorylation of Akt (protein kinase B). The Akt pathway regulates various cellular events, including the initiation of protein synthesis. Our previous studies showed that synaptogenesis in hippocampal CA1 pyramidal cell dendritic spines is highest when brain estrogen levels are highest. To address the role of Akt in this process, the subcellular distribution of phosphorylated Akt immunoreactivity (pAkt-I) in the hippocampus of female rats across the estrous cycle and male rats was analyzed by light microscopy (LM) and electron microscopy (EM). By LM, the density of pAkt-I in stratum radiatum of CA1 was significantly higher in proestrus rats (or in estrogen-supplemented ovariectomized females) compared with diestrus, estrus, or male rats. By EM, pAkt-I was found throughout the shafts and in select spines of stratum radiatum dendrites. Quantitative ultrastructural analysis identifying pAkt-I with immunogold particles revealed that proestrus rats compared with diestrus, estrus, and male rats contained significantly higher pAkt-I associated with (1) dendritic spines (both cytoplasm and plasmalemma), (2) spine apparati located within 0.1 microm of dendritic spine bases, (3) endoplasmic reticula and polyribosomes in the cytoplasm of dendritic shafts, and (4) the plasmalemma of dendritic shafts. These findings suggest that estrogens may regulate spine formation in CA1 pyramidal neurons via Akt-mediated signaling events.

  13. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Nabi Shamsaei; Mehdi Khaksari; Sohaila Erfani; Hamid Rajabi; Nahid Aboutaleb

    2015-01-01

    Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral isch-emic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule (5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction th rough occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic ex-ercise signiifcantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.

  14. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun [Seoul National University Bundang Hospital, Department of Radiology, Seoul National University College of Medicine, Seongnam-si (Korea); Lee, Jung Seok; Kim, Sang Yun [Seoul National University Bundang Hospital, Department of Neurology, Seoul National University College of Medicine, Seongnam-si (Korea)

    2007-06-15

    Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)

  15. Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus

    International Nuclear Information System (INIS)

    Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun; Lee, Jung Seok; Kim, Sang Yun

    2007-01-01

    Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)

  16. Magnetic phase diagram of the Ca1-xMnxO systems

    International Nuclear Information System (INIS)

    Masrour, R.; Hamedoun, M.

    2008-01-01

    The magnetic properties of the Ca 1-x Mn x O systems in the range 0≤x≤1 have been studied by mean field theory and high-temperature series expansions (HTSEs). By using the first theory, we have evaluated the nearest neighbour and the next-neighbour super-exchange interaction J 1 (x) and J 2 (x) respectively, in the range 0.45≤x≤1. The corresponding classical exchange energy for magnetic structure is obtained for the Ca 1-x Mn x O systems. The HTSEs combined with the Pade approximants (PA) method is applied to the Ca 1-x Mn x O systems; we have obtained the magnetic phase diagrams (T N or T SG versus dilution x) in the range 0≤x≤1. The obtained theoretical results are in agreement with experimental ones obtained by magnetic measurements. The critical exponents associated with the magnetic susceptibility (γ) and the correlation lengths (ν) are deduced in the range 0≤x≤1

  17. Identification and two-photon imaging of oligodendrocyte in CA1 region of hippocampal slices

    International Nuclear Information System (INIS)

    Zhou Wei; Ge Wooping; Zeng Shaoqun; Duan Shumin; Luo Qingming

    2007-01-01

    Oligodendrocyte (OL) plays a critical role in myelination and axon maintenance in central nervous system. Recent studies show that OL can also express NMDA receptors in development and pathological situations in white matter. There is still lack of studies about OL properties and function in gray matter of brain. Here we reported that some glial cells in CA1 region of rat hippocampal slices (P15-23) had distinct electrophysiological characteristics from the other glia cells in this region, while they displayed uniform properties with OL from white matter in previous report; therefore, they were considered as OL in hippocampus. By loading dye in recording pipette and imaging with two-photon laser scanning microscopy, we acquired the high spatial resolution, three-dimension images of these special cells in live slices. The OL in hippocampus shows a complex process-bearing shape and the distribution of several processes is parallel to Schaffer fiber in CA1 region. When stimulating Schaffer fiber, OL displays a long duration depolarization mediated by inward rectifier potassium channel. This suggested that the OL in CA1 region could sense the neuronal activity and contribute to potassium clearance

  18. Salicylate-induced changes in immediate-early genes in the hippocampal CA1 area.

    Science.gov (United States)

    Wu, Hao; Xu, Feng-Lei; Yin, Yong; Da, Peng; You, Xiao-Dong; Xu, Hui-Min; Tang, Yan

    2015-08-01

    Studies have suggested that salicylate affects neuronal function via interactions with specific membrane channels/receptors. However, the effect of salicylate on activity and synaptic morphology of the hippocampal Cornu Ammonis (CA) 1 area remains to be elucidated. The activation of immediate-early genes (IEGs) was reported to correlate with neuronal activity, in particular activity-regulated cytoskeleton-associated protein and early growth response gene 1. The aim of the present study was to evaluate the expression of these IEGs, as well that of N-methyl D-aspartate (NMDA) receptor subunit 2B in rats following acute and chronic salicylate treatment. Protein and messenger RNA levels of all three genes were increased in rats following chronic administration of salicylate (300 mg/kg for 10 days), returning to baseline levels 14 days post-cessation of treatment. The transient upregulation of gene expression following treatment was accompanied by ultrastructural alterations in hippocampal CA1 area synapses. An increase in synaptic interface curvature was observed as well as an increased number of presynaptic vesicles; in addition, postsynaptic densities thickened and lengthened. In conclusion, the results of the present study indicated that chronic exposure to salicylate may lead to structural alteration of hippocampal CA1 neurons, and it was suggested that this process occurs through induced expression of IEGs via NMDA receptor activation.

  19. Dopamine D1-like receptor in lateral habenula nucleus affects contextual fear memory and long-term potentiation in hippocampal CA1 in rats.

    Science.gov (United States)

    Chan, Jiangping; Guan, Xin; Ni, Yiling; Luo, Lilu; Yang, Liqiang; Zhang, Pengyue; Zhang, Jichuan; Chen, Yanmei

    2017-03-15

    The Lateral Habenula (LHb) plays an important role in emotion and cognition. Recent experiments suggest that LHb has functional interaction with the hippocampus and plays an important role in spatial learning. LHb is reciprocally connected with midbrain monoaminergic brain areas such as the ventral tegmental area (VTA). However, the role of dopamine type 1 receptor (D1R) in LHb in learning and memory is not clear yet. In the present study, D1R agonist or antagonist were administered bilaterally into the LHb in rats. We found that both D1R agonist and antagonist impaired the acquisition of contextual fear memory in rats. D1R agonist or antagonist also impaired long term potentiation (LTP) in hippocampal CA3-CA1 synapses in freely moving rats and attenuated learning induced phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunit 1 (GluA1) at Ser831 and Ser845 in hippocampus. Taken together, our results suggested that dysfunction of D1R in LHb affected the function of hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. PlexinA2 Forward Signaling through Rap1 GTPases Regulates Dentate Gyrus Development and Schizophrenia-like Behaviors

    Directory of Open Access Journals (Sweden)

    Xiao-Feng Zhao

    2018-01-01

    Full Text Available Summary: Dentate gyrus (DG development requires specification of granule cell (GC progenitors in the hippocampal neuroepithelium, as well as their proliferation and migration into the primordial DG. We identify the Plexin family members Plxna2 and Plxna4 as important regulators of DG development. Distribution of immature GCs is regulated by Sema5A signaling through PlxnA2 and requires a functional PlxnA2 GTPase-activating protein (GAP domain and Rap1 small GTPases. In adult Plxna2−/− but not Plxna2-GAP-deficient mice, the dentate GC layer is severely malformed, neurogenesis is compromised, and mossy fibers form aberrant synaptic boutons within CA3. Behavioral studies with Plxna2−/− mice revealed deficits in associative learning, sociability, and sensorimotor gating—traits commonly observed in neuropsychiatric disorder. Remarkably, while morphological defects are minimal in Plxna2-GAP-deficient brains, defects in fear memory and sensorimotor gating persist. Since allelic variants of human PLXNA2 and RAP1 associate with schizophrenia, our studies identify a biochemical pathway important for brain development and mental health. : Zhao et al. find that Sema5A-PlexinA2 forward signaling through Rap1 GTPases is required for progenitor distribution in the developing mouse dentate gyrus. Adult Plxna2−/−, but not Plxna2-GAP-deficient, mice show defects in dentate morphology, neurogenesis, and mossy fiber connectivity. Plxna2−/− and Plxna2-GAP mice exhibit behavioral defects suggestive of neuropsychiatric illness. Keywords: PlexinA2, semaphoring, Rap1, GAP, dentate gyrus, adult neurogenesis, mossy fiber, fear memory, sensorimotor gating, schizophrenia

  1. Breast cancer 1 (BrCa1 may be behind decreased lipogenesis in adipose tissue from obese subjects.

    Directory of Open Access Journals (Sweden)

    Francisco J Ortega

    Full Text Available CONTEXT: Expression and activity of the main lipogenic enzymes is paradoxically decreased in obesity, but the mechanisms behind these findings are poorly known. Breast Cancer 1 (BrCa1 interacts with acetyl-CoA carboxylase (ACC reducing the rate of fatty acid biosynthesis. In this study, we aimed to evaluate BrCa1 in human adipose tissue according to obesity and insulin resistance, and in vitro cultured adipocytes. RESEARCH DESIGN AND METHODS: BrCa1 gene expression, total and phosphorylated (P- BrCa1, and ACC were analyzed in adipose tissue samples obtained from a total sample of 133 subjects. BrCa1 expression was also evaluated during in vitro differentiation of human adipocytes and 3T3-L1 cells. RESULTS: BrCa1 gene expression was significantly up-regulated in both omental (OM; 1.36-fold, p = 0.002 and subcutaneous (SC; 1.49-fold, p = 0.001 adipose tissue from obese subjects. In parallel with increased BrCa1 mRNA, P-ACC was also up-regulated in SC (p = 0.007 as well as in OM (p = 0.010 fat from obese subjects. Consistent with its role limiting fatty acid biosynthesis, both BrCa1 mRNA (3.5-fold, p<0.0001 and protein (1.2-fold, p = 0.001 were increased in pre-adipocytes, and decreased during in vitro adipogenesis, while P-ACC decreased during differentiation of human adipocytes (p = 0.005 allowing lipid biosynthesis. Interestingly, BrCa1 gene expression in mature adipocytes was restored by inflammatory stimuli (macrophage conditioned medium, whereas lipogenic genes significantly decreased. CONCLUSIONS: The specular findings of BrCa1 and lipogenic enzymes in adipose tissue and adipocytes reported here suggest that BrCa1 might help to control fatty acid biosynthesis in adipocytes and adipose tissue from obese subjects.

  2. [Effect of electromagnetic radiation on discharge activity of neurons in the hippocampus CA1 in rats].

    Science.gov (United States)

    Tong, Jun; Chen, Su; Liu, Xiang-Ming; Hao, Dong-Mei

    2013-09-01

    In order to explore effect of electromagnetic radiation on learning and memory ability of hippocampus neuron in rats, the changes in discharge patterns and overall electrical activity of hippocampus neuron after electromagnetic radiation were observed. Rat neurons discharge was recorded with glass electrode extracellular recording technology and a polygraph respectively. Radiation frequency of electromagnetic wave was 900 MHZ and the power was 10 W/m2. In glass electrode extracellular recording, the rats were separately irradiated for 10, 20, 30, 40, 50 and 60 min, every points repeated 10 times and updated interval of 1h, observing the changes in neuron discharge and spontaneous discharge patterns after electromagnetic radiation. In polygraph recording experiments, irradiation group rats for five days a week, 6 hours per day, repeatedly for 10 weeks, memory electrical changes in control group and irradiation group rats when they were feeding were repeatedly monitored by the implanted electrodes, observing the changes in peak electric digits and the largest amplitude in hippocampal CA1 area, and taking some electromagnetic radiation sampling sequence for correlation analysis. (1) Electromagnetic radiation had an inhibitory role on discharge frequency of the hippocampus CA1 region neurons. After electromagnetic radiation, discharge frequency of the hippocampus CA1 region neurons was reduced, but the changes in scale was not obvious. (2) Electromagnetic radiation might change the spontaneous discharge patterns of hippocampus CA1 region neurons, which made the explosive discharge pattern increased obviously. (3) Peak potential total number within 5 min in irradiation group was significantly reduced, the largest amplitude was less than that of control group. (4) Using mathematical method to make the correlation analysis of the electromagnetic radiation sampling sequence, that of irradiation group was less than that of control group, indicating that there was a tending

  3. Middle and Inferior Temporal Gyrus Gray Matter Volume Abnormalities in Chronic Schizophrenia: An MRI Study

    OpenAIRE

    Onitsuka, Toshiaki; Shenton, Martha E.; Salisbury, Dean F.; Dickey, Chandlee C.; Kasai, Kiyoto; Toner, Sarah K.; Frumin, Melissa; Kikinis, Ron; Jolesz, Ferenc A.; McCarley, Robert W.

    2004-01-01

    Objective: The middle temporal gyrus and inferior temporal gyrus subserve language and semantic memory processing, visual perception, and multimodal sensory integration. Functional deficits in these cognitive processes have been well documented in patients with schizophrenia. However, there have been few in vivo structural magnetic resonance imaging (MRI) studies of the middle temporal gyrus and inferior temporal gyrus in schizophrenia. Method: Middle temporal gyrus and inferior temporal gyru...

  4. INFLUENCE OF ELECTROACUPUNCTURE ON THE ULTRASTRUCTURE OF CA3 REGION OF THE HIPPOCAMPUS IN VD RATS

    Institute of Scientific and Technical Information of China (English)

    YAN Bing; XU Neng-gui; HE Li-lei; TANG Chun-zhi; SHAO Ying

    2006-01-01

    Objective: To observe the effect of electroacupuncture (EA) on learning and memory abilities and ultrastructure of synapses in CA3 region of the hippocampus in vascular dementia (VD) rats. Methods: A total of 32 SD rats were randomized into control (sham-operation, n = 7), model (n = 7), EA (n = 9) and medication (n=9) groups. VD model was established by occlusion of the bilateral vertebral arteries (electrocoagulation) and bilateral common carotid arteries (occlusion for 5 min and reperfusion for 10 min, repeated the procedure for 3 times to induce global ischemia). EA (150 Hz, 1 mA) was applied to "Baihui"(百会GV 20), "Geshu"(膈俞 BL 17), "Pishu"(脾俞 BL 20) and "Shenshu"(肾俞 BL 23) for 20 min, once daily and continuously for 15 days. In medication group, the rats were fed with Nimotong (12 mg/kg), once daily and continuously for 15 days. Morris water maze method was used to test the animals' learning and memory abilities (latencies to find the hidden platform determined by place navigation trials, and latencies to cross on the location of the removed platform determined by spatial probe trials) after the treatment. Ultrastructural changes (numerical density, NA,surface density, Sv and volume density, Vv) of Gray type 1 synapses in CA3 region of the hippocampus were observed by using transmission electronic microscope and automatic image analysis system. Results: 1 ) Place navigation test showed that in comparison with control group, the average escape latency of VD group was significantly longer (P<0.01), while in comparison with VD group, the latencies of both EA and medication groups decreased significantly ( P<0.01 ). No significant difference was found between EA and medication groups in the escape latency (P>0.05). 2) Spatial probe-test displayed that in comparison with control group, the times which the animals crossed the target platform in VD group decreased significantly (P<0.01), while compared with VD group, those of both EA and

  5. Opposite monosynaptic scaling of BLP-vCA1 inputs governs hopefulness- and helplessness-modulated spatial learning and memory.

    Science.gov (United States)

    Yang, Ying; Wang, Zhi-Hao; Jin, Sen; Gao, Di; Liu, Nan; Chen, Shan-Ping; Zhang, Sinan; Liu, Qing; Liu, Enjie; Wang, Xin; Liang, Xiao; Wei, Pengfei; Li, Xiaoguang; Li, Yin; Yue, Chenyu; Li, Hong-Lian; Wang, Ya-Li; Wang, Qun; Ke, Dan; Xie, Qingguo; Xu, Fuqiang; Wang, Liping; Wang, Jian-Zhi

    2016-07-14

    Different emotional states lead to distinct behavioural consequences even when faced with the same challenging events. Emotions affect learning and memory capacities, but the underlying neurobiological mechanisms remain elusive. Here we establish models of learned helplessness (LHL) and learned hopefulness (LHF) by exposing animals to inescapable foot shocks or with anticipated avoidance trainings. The LHF animals show spatial memory potentiation with excitatory monosynaptic upscaling between posterior basolateral amygdale (BLP) and ventral hippocampal CA1 (vCA1), whereas the LHL show memory deficits with an attenuated BLP-vCA1 connection. Optogenetic disruption of BLP-vCA1 inputs abolishes the effects of LHF and impairs synaptic plasticity. By contrast, targeted BLP-vCA1 stimulation rescues the LHL-induced memory deficits and mimics the effects of LHF. BLP-vCA1 stimulation increases synaptic transmission and dendritic plasticity with the upregulation of CREB and intrasynaptic AMPA receptors in CA1. These findings indicate that opposite excitatory monosynaptic scaling of BLP-vCA1 controls LHF- and LHL-modulated spatial memory, revealing circuit-specific mechanisms linking emotions to memory.

  6. Opposite monosynaptic scaling of BLP–vCA1 inputs governs hopefulness- and helplessness-modulated spatial learning and memory

    Science.gov (United States)

    Yang, Ying; Wang, Zhi-Hao; Jin, Sen; Gao, Di; Liu, Nan; Chen, Shan-Ping; Zhang, Sinan; Liu, Qing; Liu, Enjie; Wang, Xin; Liang, Xiao; Wei, Pengfei; Li, Xiaoguang; Li, Yin; Yue, Chenyu; Li, Hong-lian; Wang, Ya-Li; Wang, Qun; Ke, Dan; Xie, Qingguo; Xu, Fuqiang; Wang, Liping; Wang, Jian-Zhi

    2016-01-01

    Different emotional states lead to distinct behavioural consequences even when faced with the same challenging events. Emotions affect learning and memory capacities, but the underlying neurobiological mechanisms remain elusive. Here we establish models of learned helplessness (LHL) and learned hopefulness (LHF) by exposing animals to inescapable foot shocks or with anticipated avoidance trainings. The LHF animals show spatial memory potentiation with excitatory monosynaptic upscaling between posterior basolateral amygdale (BLP) and ventral hippocampal CA1 (vCA1), whereas the LHL show memory deficits with an attenuated BLP–vCA1 connection. Optogenetic disruption of BLP–vCA1 inputs abolishes the effects of LHF and impairs synaptic plasticity. By contrast, targeted BLP–vCA1 stimulation rescues the LHL-induced memory deficits and mimics the effects of LHF. BLP–vCA1 stimulation increases synaptic transmission and dendritic plasticity with the upregulation of CREB and intrasynaptic AMPA receptors in CA1. These findings indicate that opposite excitatory monosynaptic scaling of BLP–vCA1 controls LHF- and LHL-modulated spatial memory, revealing circuit-specific mechanisms linking emotions to memory. PMID:27411738

  7. Phase transition and multicolor luminescence of Eu2+/Mn2+-activated Ca3(PO4)2 phosphors

    International Nuclear Information System (INIS)

    Li, Kai; Chen, Daqin; Xu, Ju; Zhang, Rui; Yu, Yunlong; Wang, Yuansheng

    2014-01-01

    Graphical abstract: We have synthesized Eu 2+ doped and Eu 2+ /Mn 2+ co-doped Ca 3 (PO 4 ) 2 phosphors. The emitting color varies from blue to green with increasing of Eu 2+ content for the Eu 2+ -doped phosphor, and the quantum yield of the 0.05Eu 2+ : Ca 2.95 (PO 4 ) 2 sample reaches 56.7%. Interestingly, Mn 2+ co-doping into Eu 2+ : Ca 3 (PO 4 ) 2 leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu 2+ → Mn 2+ energy transfer. - Highlights: • A series of novel Eu 2+ : Ca 3 (PO 4 ) 2 phosphors were successfully synthesized. • Phase transition of Ca 3 (PO 4 ) 2 from orthorhombic to rhombohedral occurred when Mn 2+ ions were doped. • The phosphors exhibited tunable multi-color luminescence. • The quantum yield of 0.05Eu 2+ : Ca 2.95 (PO 4 ) 2 phosphor can reach 56.7%. • The analyses of phosphors were carried out by many measurements. - Abstract: Intense blue-green-emitting Eu 2+ : Ca 3 (PO 4 ) 2 and tunable multicolor-emitting Eu 2+ /Mn 2+ : Ca 3 (PO 4 ) 2 phosphors are prepared via a solid-state reaction route. Eu 2+ -doped orthorhombic Ca 3 (PO 4 ) 2 phosphor exhibits a broad emission band in the wavelength range of 400–700 nm with a maximum quantum yield of 56.7%, and the emission peak red-shifts gradually from 479 to 520 nm with increase of Eu 2+ doping content. Broad excitation spectrum (250–420 nm) of Eu 2+ : Ca 3 (PO 4 ) 2 matches well with the near-ultraviolet LED chip, indicating its potential applications as tri-color phosphors in white LEDs. Interestingly, Mn 2+ co-doping into Eu 2+ : Ca 3 (PO 4 ) 2 leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu 2+ → Mn 2+ energy transfer, under 365 nm UV lamp excitation

  8. Control of CA3 output by feedforward inhibition despite developmental changes in the excitation-inhibition balance.

    Science.gov (United States)

    Torborg, Christine L; Nakashiba, Toshiaki; Tonegawa, Susumu; McBain, Chris J

    2010-11-17

    In somatosensory cortex, the relative balance of excitation and inhibition determines how effectively feedforward inhibition enforces the temporal fidelity of action potentials. Within the CA3 region of the hippocampus, glutamatergic mossy fiber (MF) synapses onto CA3 pyramidal cells (PCs) provide strong monosynaptic excitation that exhibit prominent facilitation during repetitive activity. We demonstrate in the juvenile CA3 that MF-driven polysynaptic IPSCs facilitate to maintain a fixed EPSC-IPSC ratio during short-term plasticity. In contrast, in young adult mice this MF-driven polysynaptic inhibitory input can facilitate or depress in response to short trains of activity. Transgenic mice lacking the feedback inhibitory loop continue to exhibit both facilitating and depressing polysynaptic IPSCs, indicating that this robust inhibition is not caused by the secondary engagement of feedback inhibition. Surprisingly, eliminating MF-driven inhibition onto CA3 pyramidal cells by blockade of GABA(A) receptors did not lead to a loss of temporal precision of the first action potential observed after a stimulus but triggered in many cases a long excitatory plateau potential capable of triggering repetitive action potential firing. These observations indicate that, unlike other regions of the brain, the temporal precision of single MF-driven action potentials is dictated primarily by the kinetics of MF EPSPs, not feedforward inhibition. Instead, feedforward inhibition provides a robust regulation of CA3 PC excitability across development to prevent excessive depolarization by the monosynaptic EPSP and multiple action potential firings.

  9. A computational simulation of long-term synaptic potentiation inducing protocol processes with model of CA3 hippocampal microcircuit.

    Science.gov (United States)

    Świetlik, D; Białowąs, J; Kusiak, A; Cichońska, D

    2018-01-01

    An experimental study of computational model of the CA3 region presents cog-nitive and behavioural functions the hippocampus. The main property of the CA3 region is plastic recurrent connectivity, where the connections allow it to behave as an auto-associative memory. The computer simulations showed that CA3 model performs efficient long-term synaptic potentiation (LTP) induction and high rate of sub-millisecond coincidence detection. Average frequency of the CA3 pyramidal cells model was substantially higher in simulations with LTP induction protocol than without the LTP. The entropy of pyramidal cells with LTP seemed to be significantly higher than without LTP induction protocol (p = 0.0001). There was depression of entropy, which was caused by an increase of forgetting coefficient in pyramidal cells simulations without LTP (R = -0.88, p = 0.0008), whereas such correlation did not appear in LTP simulation (p = 0.4458). Our model of CA3 hippocampal formation microcircuit biologically inspired lets you understand neurophysiologic data. (Folia Morphol 2018; 77, 2: 210-220).

  10. Crystal structure and magnetic properties of the solid-solution phase Ca3Co2-v Sc v O6

    International Nuclear Information System (INIS)

    Hervoches, Charles H.; Fredenborg, Vivian Miksch; Kjekshus, Arne; Fjellvag, Helmer; Hauback, Bjorn C.

    2007-01-01

    The two crystallographically non-equivalent Co atoms of the quasi-one-dimensional crystal structure of Ca 3 Co 2 O 6 form chains with alternating, face-sharing polyhedra of Co2O 6 trigonal prisms and Co1O 6 octahedra. This compound forms a substitutional solid-solution phase with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca 3 Co 2- v Sc v O 6 (more specifically Ca 3 Co1Co2 1- v Sc v O 6 ) extends up to v∼0.55. The crystal structure belongs to space group R3-barc with lattice parameters (in hexagonal setting): 9.0846(3)≤a≤9.1300(2) A and 10.3885(4)≤c≤10.4677(4) A. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice. - Graphical abstract: The quasi-one-dimensional Ca 3 Co 2 O 6 phase forms a substitutional solid-solution system with Sc, in which the Sc atoms enter the Co2 sublattice exclusively. The homogeneity range of Ca 3 Co 2- v Sc v O 6 extends up to v∼0.55. The magnetic moment decreases rapidly with increasing amount of the non-magnetic Sc solute in the lattice

  11. Selective amygdalohippocampectomy via trans-superior temporal gyrus keyhole approach.

    Science.gov (United States)

    Mathon, Bertrand; Clemenceau, Stéphane

    2016-04-01

    Hippocampal sclerosis is the most common cause of drug-resistant epilepsy amenable for surgical treatment and seizure control. The rationale of the selective amygdalohippocampectomy is to spare cerebral tissue not included in the seizure generator. Describe the selective amygdalohippocampectomy through the trans-superior temporal gyrus keyhole approach. Selective amygdalohippocampectomy for temporal lobe epilepsy is performed when the data (semiology, neuroimaging, electroencephalography) point to the mesial temporal structures. The trans-superior temporal gyrus keyhole approach is a minimally invasive and safe technique that allows disconnection of the temporal stem and resection of temporomesial structures.

  12. Synthesis of Ca_3CO_4O_9 via solid state reaction

    International Nuclear Information System (INIS)

    Melo, K.P.; Dutra, R.P.S.; Marques, K.A.; Junior, S.M.S.; Brasileiro, C.T.; Coutinho, S.V.C.R.; Souza, T.; Chagas, T.F.; Silva, R.M.; Macedo, D.A.

    2016-01-01

    Solid oxide fuel cells (SOFCs) stand out as the most promising today's energy conversion technologies. In the development of cathode materials for SOFC, calcium cobaltate (Ca3Co4O9, C349) appears as a potential alternative to traditional lanthanum manganites. In this work, C349 was prepared via solid state reaction of stoichiometric mixtures containing CaCO3 from mollusk shells, in natura (M1) and heat treated at 550 ° C (M2), and Co3O4 obtained by citrate method. The M1 and M2 mixtures were calcined at 800 (powder) and 900 ° C (tablets) for 12 h. The crystal structure and phase composition of the powder and the reaction products were studied by X-ray diffraction Rietveld refinement of the diffraction data. The results showed the formation of free C349 secondary stages, showing a good alternative to use waste from seafood shells as raw material for obtaining high-value ceramics.(author)

  13. Neuroprotective effect of olive oil in the hippocampus CA1 neurons following ischemia: Reperfusion in mice

    Directory of Open Access Journals (Sweden)

    M Zamani

    2013-01-01

    Full Text Available Introduction: Transient global ischemia induces selective, delayed neuronal death of pyramidal neurons in the hippocampal CA1. Oxidative Stress is considered to be involved in a number of human diseases including ischemia. Preliminary studies confirmed reduction of cell death in brain following treatment with antioxidants. Aim: According to this finding, we study the relationship between consumption of olive oil on cell death and memory disorder in brain ischemia. We studied the protective effect of olive oil against ischemia-reperfusion. Material and Methods: Experimental design includes three groups: Intact (n = 8, ischemic control (n = 8 and treatment groups with olive oil (n = 8. The mice treated with olive oil as pre-treatment for a week. Then, ischemia induced by common carotid artery ligation and following the reduction of inflammation [a week after ischemia], the mice post-treated with olive oil. Nissl staining applied for counting necrotic cells in hippocampus CA1. Tunnel kit was used to quantify apoptotic cell death while to short term memory scale, we apply y-maze and shuttle box tests and for detection the rate of apoptotic and treated cell, we used western blotting test for bax and bcl2 proteins. Results: High rate of apoptosis was seen in ischemic group that significantly associated with short-term memory loss. Cell death was significantly lower when mice treated with olive oil. The memory test results were adjusted with cell death results and bax and bcl2 expression in all groups′ comparison. Ischemia for 15 min induced cell death in hippocampus with more potent effect on CA1. Conclusion: Olive oil intake significantly reduced cell death and decreased memory loss.

  14. Motor skill learning and offline-changes in TGA patients with acute hippocampal CA1 lesions.

    Science.gov (United States)

    Döhring, Juliane; Stoldt, Anne; Witt, Karsten; Schönfeld, Robby; Deuschl, Günther; Born, Jan; Bartsch, Thorsten

    2017-04-01

    Learning and the formation of memory are reflected in various memory systems in the human brain such as the hippocampus based declarative memory system and the striatum-cortex based system involved in motor sequence learning. It is a matter of debate how both memory systems interact in humans during learning and consolidation and how this interaction is influenced by sleep. We studied the effect of an acute dysfunction of hippocampal CA1 neurons on the acquisition (on-line condition) and off-line changes of a motor skill in patients with a transient global amnesia (TGA). Sixteen patients (68 ± 4.4 yrs) were studied in the acute phase and during follow-up using a declarative and procedural test, and were compared to controls. Acute TGA patients displayed profound deficits in all declarative memory functions. During the acute amnestic phase, patients were able to acquire the motor skill task reflected by increasing finger tapping speed across the on-line condition, albeit to a lesser degree than during follow-up or compared to controls. Retrieval two days later indicated a greater off-line gain in motor speed in patients than controls. Moreover, this gain in motor skill performance was negatively correlated to the declarative learning deficit. Our results suggest a differential interaction between procedural and declarative memory systems during acquisition and consolidation of motor sequences in older humans. During acquisition, hippocampal dysfunction attenuates fast learning and thus unmasks the slow and rigid learning curve of striatum-based procedural learning. The stronger gains in the post-consolidation condition in motor skill in CA1 lesioned patients indicate a facilitated consolidation process probably occurring during sleep, and suggest a competitive interaction between the memory systems. These findings might be a reflection of network reorganization and plasticity in older humans and in the presence of CA1 hippocampal pathology. Copyright © 2016

  15. Memory Dysfunction in Type 2 Diabetes Mellitus Correlates with Reduced Hippocampal CA1 and Subiculum Volumes

    Directory of Open Access Journals (Sweden)

    Yan-Wei Zhang

    2015-01-01

    Full Text Available Background: Little attention has been paid to the role of subcortical deep gray matter (SDGM structures in type 2 diabetes mellitus (T2DM-induced cognitive impairment, especially hippocampal subfields. Our aims were to assess the in vivo volumes of SDGM structures and hippocampal subfields using magnetic resonance imaging (MRI and to test their associations with cognitive performance in T2DM. Methods: A total of 80 T2DM patients and 80 neurologically unimpaired healthy controls matched by age, sex and education level was enrolled in this study. We assessed the volumes of the SDGM structures and seven hippocampal subfields on MRI using a novel technique that enabled automated volumetry. We used Mini-Mental State Examination and Montreal Cognitive Assessment (MoCA scores as measures of cognitive performance. The association of glycosylated hemoglobin (HbA1c with SDGM structures and neuropsychological tests and correlations between hippocampal subfields and neuropsychological tests were assessed by partial correlation analysis in T2DM. Results: Bilaterally, the hippocampal volumes were smaller in T2DM patients, mainly in the CA1 and subiculum subfields. Partial correlation analysis showed that the MoCA scores, particularly those regarding delayed memory, were significantly positively correlated with reduced hippocampal CA1 and subiculum volumes in T2DM patients. Additionally, higher HbA1c levels were significantly associated with poor memory performance and hippocampal atrophy among T2DM patients. Conclusions: These data indicate that the hippocampus might be the main affected region among the SDGM structures in T2DM. These structural changes in the hippocampal CA1 and subiculum areas might be at the core of underlying neurobiological mechanisms of hippocampal dysfunction, suggesting that degeneration in these regions could be responsible for memory impairments in T2DM patients.

  16. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation.

    Science.gov (United States)

    Suh, Sang Won

    2009-02-15

    Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.

  17. Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1.

    Science.gov (United States)

    Park, Kellie A; Ribic, Adema; Laage Gaupp, Fabian M; Coman, Daniel; Huang, Yuegao; Dulla, Chris G; Hyder, Fahmeed; Biederer, Thomas

    2016-07-13

    Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly

  18. Effects of Synthesis and Spark Plasma Sintering Conditions on the Thermoelectric Properties of Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo

    2013-01-01

    Ca3Co4O9+δ samples were synthesized by solid-state (SS) and sol–gel (SG) reactions, followed by spark plasma sintering under different processing conditions. The synthesis process was optimized and the resulting materials characterized with respect to their microstructure, bulk density, and therm......Ca3Co4O9+δ samples were synthesized by solid-state (SS) and sol–gel (SG) reactions, followed by spark plasma sintering under different processing conditions. The synthesis process was optimized and the resulting materials characterized with respect to their microstructure, bulk density...

  19. High-pressure crystal growth and electromagnetic properties of 5d double-perovskite Ca3OsO6

    Science.gov (United States)

    Feng, Hai Luke; Shi, Youguo; Guo, Yanfeng; Li, Jun; Sato, Akira; Sun, Ying; Wang, Xia; Yu, Shan; Sathish, Clastin I.; Yamaura, Kazunari

    2013-05-01

    Single crystals of the osmium-containing compound Ca3OsO6 have been successfully grown under high-pressure conditions, for the first time. The crystal structure of Ca3OsO6 were characterized as an ordered double-perovskite structure of space group P21/n with the Ca and Os atoms being fully ordered at the perovskite B-site. The electromagnetic analysis shows that the crystal exhibits a semiconductor-like behavior below 300 K and undergoes an antiferromagnetic transition at 50 K.

  20. Adult Neurogenesis in the Mammalian Hippocampus: Why the Dentate Gyrus?

    Science.gov (United States)

    Drew, Liam J.; Fusi, Stefano; Hen, René

    2013-01-01

    In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity…

  1. The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing

    Directory of Open Access Journals (Sweden)

    Ayla eAksoy Aksel

    2013-08-01

    Full Text Available In terms of its sub-regional differentiation, the hippocampal CA1 region receives cortical information directly via the perforant (temporoammonic path (pp-CA1 synapse and indirectly via the tri-synaptic pathway where the last relay station is the Schaffer collateral-CA1 synapse (Sc-CA1 synapse. Research to date on pp-CA1 synapses has been conducted predominantly in vitro and never in awake animals, but these studies hint that information processing at this synapse might be distinct to processing at the Sc-CA1 synapse. Here, we characterized synaptic properties and synaptic plasticity at the pp-CA1 synapse of freely behaving adult rats. We established that field excitatory postsynaptic potentials at the pp-CA1 have longer onset latencies and a shorter time-to-peak compared to the Sc-CA1 synapse. LTP (> 24h was successfully evoked by tetanic afferent stimulation of pp-CA1 synapses. Low frequency stimulation evoked synaptic depression at Sc-CA1 synapses, but did not elicit LTD at pp-CA1 synapses unless the Schaffer collateral afferents to the CA1 region had been severed. Paired-pulse responses also showed significant differences. Our data suggest that synaptic plasticity at the pp-CA1 synapse is distinct from the Sc-CA1 synapse and that this may reflect its specific role in hippocampal information processing.

  2. Continuous theta burst stimulation of angular gyrus reduces subjective recollection.

    Directory of Open Access Journals (Sweden)

    Yasemin Yazar

    Full Text Available The contribution of lateral parietal regions such as the angular gyrus to human episodic memory has been the subject of much debate following widespread observations of left parietal activity in healthy volunteers during functional neuroimaging studies of memory retrieval. Patients with lateral parietal lesions are not amnesic, but recent evidence indicates that their memory abilities may not be entirely preserved. Whereas recollection appears intact when objective measures such as source accuracy are used, patients often exhibit reduced subjective confidence in their accurate recollections. When asked to recall autobiographical memories, they may produce spontaneous narratives that lack richness and specificity, but can remember specific details when prompted. Two distinct theoretical accounts have been proposed to explain these results: that the patients have a deficit in the bottom-up capturing of attention by retrieval output, or that they have an impairment in the subjective experience of recollection. The present study aimed to differentiate between these accounts using continuous theta burst stimulation (cTBS in healthy participants to disrupt function of specific left parietal subregions, including angular gyrus. Inconsistent with predictions of the attentional theory, angular gyrus cTBS did not result in greater impairment of free recall than cued recall. Supporting predictions of the subjective recollection account, temporary disruption of angular gyrus was associated with highly accurate source recollection accuracy but a selective reduction in participants' rated source confidence. The findings are consistent with a role for angular gyrus in the integration of memory features into a conscious representation that enables the subjective experience of remembering.

  3. Space and time sequence and mosaicism of neurogenesis in hippocampal area CA1 in mice

    International Nuclear Information System (INIS)

    Nazarevskaya, G.D.; Reznikov, K. Yu.

    1986-01-01

    The study of the times and sequence of neuron formation in various structures of the mammalian brain has made substantial progress thanks to the use of autoradiographic techniques, by which the germinative precursors of neurons can be tagged with tritium-thymidine and the subsequent fate of the labeled cells can be followed. The authors study the space and time sequence of neuron formation and look for the presence of mosaicism of neurogenesis in area CA1 of Ammon's horn of the mouse hippocampus, one of the most regularly arranged hippocampal areas. An analysis of the distribution of intensively labeled neurons in areas CA1 showed the presence of groups of intensively labeled neurons alternating with unlabeled and weakly labeled cells.. Mice receiving tritium-thymidine on the 13th-16th day of embryogenesis were most marked when the isotope was injected on the 14th-15th day of embroygeneisis. The investigation showed that a mosaic pattern of neurogenesis exists in the hippocampus, just as in the neocortex, and it can be regarded as the result of asynchronous production of neurons by local areas of the germinative zone, each of which constructs a radial segment of cortex

  4. Control of recollection by slow gamma dominating mid-frequency gamma in hippocampus CA1

    Science.gov (United States)

    Dvorak, Dino; Radwan, Basma; Sparks, Fraser T.; Talbot, Zoe Nicole

    2018-01-01

    Behavior is used to assess memory and cognitive deficits in animals like Fmr1-null mice that model Fragile X Syndrome, but behavior is a proxy for unknown neural events that define cognitive variables like recollection. We identified an electrophysiological signature of recollection in mouse dorsal Cornu Ammonis 1 (CA1) hippocampus. During a shocked-place avoidance task, slow gamma (SG) (30–50 Hz) dominates mid-frequency gamma (MG) (70–90 Hz) oscillations 2–3 s before successful avoidance, but not failures. Wild-type (WT) but not Fmr1-null mice rapidly adapt to relocating the shock; concurrently, SG/MG maxima (SGdom) decrease in WT but not in cognitively inflexible Fmr1-null mice. During SGdom, putative pyramidal cell ensembles represent distant locations; during place avoidance, these are avoided places. During shock relocation, WT ensembles represent distant locations near the currently correct shock zone, but Fmr1-null ensembles represent the formerly correct zone. These findings indicate that recollection occurs when CA1 SG dominates MG and that accurate recollection of inappropriate memories explains Fmr1-null cognitive inflexibility. PMID:29346381

  5. Segregated populations of hippocampal principal CA1 neurons mediating conditioning and extinction of contextual fear.

    Science.gov (United States)

    Tronson, Natalie C; Schrick, Christina; Guzman, Yomayra F; Huh, Kyu Hwan; Srivastava, Deepak P; Penzes, Peter; Guedea, Anita L; Gao, Can; Radulovic, Jelena

    2009-03-18

    Learning processes mediating conditioning and extinction of contextual fear require activation of several key signaling pathways in the hippocampus. Principal hippocampal CA1 neurons respond to fear conditioning by a coordinated activation of multiple protein kinases and immediate early genes, such as cFos, enabling rapid and lasting consolidation of contextual fear memory. The extracellular signal-regulated kinase (Erk) additionally acts as a central mediator of fear extinction. It is not known however, whether these molecular events take place in overlapping or nonoverlapping neuronal populations. By using mouse models of conditioning and extinction of fear, we set out to determine the time course of cFos and Erk activity, their cellular overlap, and regulation by afferent cholinergic input from the medial septum. Analyses of cFos(+) and pErk(+) cells by immunofluorescence revealed predominant nuclear activation of either protein during conditioning and extinction of fear, respectively. Transgenic cFos-LacZ mice were further used to label in vivo Fos(+) hippocampal cells during conditioning followed by pErk immunostaining after extinction. The results showed that these signaling molecules were activated in segregated populations of hippocampal principal neurons. Furthermore, immunotoxin-induced lesions of medial septal neurons, providing cholinergic input into the hippocampus, selectively abolished Erk activation and extinction of fear without affecting cFos responses and conditioning. These results demonstrate that extinction mechanisms based on Erk signaling involve a specific population of CA1 principal neurons distinctively regulated by afferent cholinergic input from the medial septum.

  6. Cytomorphometric changes in hippocampal CA1 neurons exposed to simulated microgravity using rats as model

    Directory of Open Access Journals (Sweden)

    Amit eRanjan

    2014-05-01

    Full Text Available Microgravity and sleep loss lead to cognitive and learning deficits. These behavioral alterations are likely to be associated with cytomorphological changes and loss of neurons. To understand the phenomenon, we exposed rats (225-275g to 14 days simulated microgravity (SMg and compared its effects on CA1 hippocampal neuronal plasticity, with that of normal cage control rats. We observed that the mean area, perimeter, synaptic cleft and length of active zone of CA1 hippocampal neurons significantly decreased while dendritic arborization and number of spines significantly increased in SMg group as compared with controls. The mean thickness of the post synaptic density and total dendritic length remained unaltered. The changes may be a compensatory effect induced by exposure to microgravity; however, the effects may be transient or permanent, which need further study. These findings may be useful for designing effective prevention for those, including the astronauts, exposed to microgravity. Further, subject to confirmation we propose that SMg exposure might be useful for recovery of stroke patients.

  7. Temporal binding function of dorsal CA1 is critical for declarative memory formation.

    Science.gov (United States)

    Sellami, Azza; Al Abed, Alice Shaam; Brayda-Bruno, Laurent; Etchamendy, Nicole; Valério, Stéphane; Oulé, Marie; Pantaléon, Laura; Lamothe, Valérie; Potier, Mylène; Bernard, Katy; Jabourian, Maritza; Herry, Cyril; Mons, Nicole; Piazza, Pier-Vincenzo; Eichenbaum, Howard; Marighetto, Aline

    2017-09-19

    Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment.

  8. Evidence of the Current Collector Effect: Study of the SOFC Cathode Material Ca3Co4O9+d

    NARCIS (Netherlands)

    Rolle, A.; Thoréton, V.; Rozier, P.; Capoen, E.; Mentré, O.; Boukamp, Bernard A.; Daviero-Minaud, S.

    2012-01-01

    In the study of the performance of solid oxide fuel cell (SOFC) electrodes, the possible influence of the applied current collector is often not mentioned or recognized. In this article, as part of an optimization study of the potentially attractive Ca3Co4O9+δ cathode material (Ca349), special

  9. Mechanical and thermal-expansion characteristics of Ca10(PO46(OH2-Ca3(PO42 composites

    Directory of Open Access Journals (Sweden)

    Ruseska G.

    2006-01-01

    Full Text Available Three types of composites consisting of Ca10(PO46(OH2 and Ca3(PO42 with composition: 75% (wt Ca10(PO46(OH2: 25%(wt Ca3(PO42; 50%(wt Ca10(PO46(OH2: 50%(wtCa3(PO42 and 25 %(wt Ca10(PO46(OH2: 75%(wt Ca3(PO42 were the subject of our investigation. Sintered compacts were in thermal equilibrium, which was proved by the absence of hysteresis effect of the dependence ΔL/L=f(T during heating /cooling in the temperature interval 20-1000-200C. Sintered compacts with the previously mentioned composition possess 26-50% higher values of the E-modulus, G-modulus and K-modulus indicating the presence of a synergism effect. Several proposed model equations for predicting the thermal expansion coefficient in dependence of the thermal and elastic properties of the constitutive phases and their volume fractions, given by: Turner, Kerner, Tummala and Friedberg, Thomas and Taya, were used for making correlations between mechanical and thermal-expansion characteristics of the Ca10(PO46(OH2 - Ca3(PO42 composites. Application of the previously mentioned model equations to all kinds of composites leads to the conclusion that the experimentally obtained results for the thermal expansion coefficient are in an excellent agreement with the theoretical calculated values on account of the volume fraction of each constitutive phase and with all applied model equations, with a coefficient of correlation from 98.16-99.86 %.

  10. Transient cerebral ischemia induces albumin expression in microglia only in the CA1 region of the gerbil hippocampus.

    Science.gov (United States)

    Park, Joon Ha; Park, Jin-A; Ahn, Ji Hyeon; Kim, Yang Hee; Kang, Il Jun; Won, Moo-Ho; Lee, Choong-Hyun

    2017-07-01

    Albumin, the most abundant plasma protein, is known to exhibit a neuroprotective effect in animal models of focal and global cerebral ischemia. In the present study, the expression and immunoreactivity of albumin was examined in the hippocampus following 5 min of transient cerebral ischemia in gerbils. Albumin immunoreactivity was observed in microglia of the CA1 hippocampal region 2 days post‑ischemic insult, and it was significantly increased at 4 days following ischemia-reperfusion. In addition, at 4 days post‑ischemic insult, albumin‑immunoreactive microglia were abundant in the stratum pyramidale of the CA1 region. The present results demonstrated that albumin was newly expressed post‑injury in microglia in the CA1 region, suggesting ischemia‑induced neuronal loss. Albumin expression may therefore be associated with ischemia‑induced delayed neuronal death in the CA1 region following transient cerebral ischemia.

  11. A Change in Igneous Activity of the Jack Hills Zircon Sources ca. 3.9 Ga

    Science.gov (United States)

    Bell, E. A.; Harrison, T. M.

    2010-12-01

    New Ti-in-zircon crystallization temperature (Txlln) data for Jack Hills zircons reveal that the tight clustering of Hadean grains around a Txlln of 680°C, possibly indicative of felsic-to-intermediate minimum melting conditions, continues to ~3.92 Ga. Between 3.92-3.82 Ga the 680°C clustering ceases and most concordant grains cluster around an apparent Txlln of 610°C. A small group of zircons with higher Txlln (~750°C), present during the Hadean, is also observed during this period. After 3.82 Ga a Hadean-like distribution resumes for ~100 Ma. This large, concordant, low-Ti group at ~3.9 Ga is statistically distinct from the Hadean distribution and appears to be unique in the Jack Hills zircon record. The existence of coeval high- and low-Ti groups suggests that two distinct zircon-forming processes are distinguishable ~3.9 Ga, unlike during the Hadean. The significant numbers of zircons with apparent Txlln below 600°C may be suggestive of subsolidus formation, since igneous units with solidii below 600°C are relatively rare. The higher-Ti group is more consistent with an intermediate to mafic igneous origin but metamorphic overprinting or subsolidus formation at granulite grade cannot be ruled out by Txlln alone. A substantial proportion of the high-Ti group display oscillatory and disrupted oscillatory zoning in cathodoluminescence images, usually indicative of igneous origins and later metamorphism, respectively; most low-Ti grains are homogeneous. Several of each group display patchy zonation indicative of metamorphic overprinting. Although several grains with apparent Txlln >600°C display oscillatory zonation, the majority of the low-Ti group do not show textural evidence for igneous origins. We interpret these results to indicate the transition from a mechanism(s) that produced dominantly 680°C apparent zircon temperatures at ca. 3.9 Ga to include a new zircon-forming process in the sediment source(s), likely a protracted period of metamorphism

  12. Flux line patterns in Bi2Sr2Ca1Cu2Ox

    International Nuclear Information System (INIS)

    Weiss, F.; Hardy, V.; Provost, J.; Ruyter, A.; Simon, C.

    1994-01-01

    Results of the defect influence on the flux line lattice in Bi 2 Sr 2 Ca 1 Cu 2 O x single crystals are presented. These crystals, non irradiated or irradiated at GANIL with heavy ions (Pb 56+ , 6 GeV) have been decorated with Ni particles in the superconducting state using the Bitter technique. The defects involved are columnar defects. Resulting decorated flux line patterns have been characterized using scanning electron microscopy and computer image analysis. Disorder of the decorated flux line networks has been found to be strongly dependent on the defect density, which results from the irradiation. In order to characterize this disorder, a method for determining elastic energy terms in the deformation of flux line patterns has been investigated. This method can be applied if Fourier transforms of the decorated flux line patterns exhibit distinct reflections. (orig.)

  13. Regulation of hippocampus-dependent memory by the zinc finger protein Zbtb20 in mature CA1 neurons.

    Science.gov (United States)

    Ren, Anjing; Zhang, Huan; Xie, Zhifang; Ma, Xianhua; Ji, Wenli; He, David Z Z; Yuan, Wenjun; Ding, Yu-Qiang; Zhang, Xiao-Hui; Zhang, Weiping J

    2012-10-01

    The mammalian hippocampus harbours neural circuitry that is crucial for associative learning and memory. The mechanisms that underlie the development and regulation of this complex circuitry are not fully understood. Our previous study established an essential role for the zinc finger protein Zbtb20 in the specification of CA1 field identity in the developing hippocampus. Here, we show that conditionally deleting Zbtb20 specifically in mature CA1 pyramidal neurons impaired hippocampus-dependent memory formation, without affecting hippocampal architecture or the survival, identity and basal excitatory synaptic activity of CA1 pyramidal neurons. We demonstrate that mature CA1-specific Zbtb20 knockout mice exhibited reductions in long-term potentiation (LTP) and NMDA receptor (NMDAR)-mediated excitatory post-synaptic currents. Furthermore, we show that activity-induced phosphorylation of ERK and CREB is impaired in the hippocampal CA1 of Zbtb20 mutant mice. Collectively, these results indicate that Zbtb20 in mature CA1 plays an important role in LTP and memory by regulating NMDAR activity, and activation of ERK and CREB.

  14. Involvement of intracellular Zn2+ signaling in LTP at perforant pathway-CA1 pyramidal cell synapse.

    Science.gov (United States)

    Tamano, Haruna; Nishio, Ryusuke; Takeda, Atsushi

    2017-07-01

    Physiological significance of synaptic Zn 2+ signaling was examined at perforant pathway-CA1 pyramidal cell synapses. In vivo long-term potentiation (LTP) at perforant pathway-CA1 pyramidal cell synapses was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. Perforant pathway LTP was not attenuated under perfusion with CaEDTA (10 mM), an extracellular Zn 2+ chelator, but attenuated under perfusion with ZnAF-2DA (50 μM), an intracellular Zn 2+ chelator, suggesting that intracellular Zn 2+ signaling is required for perforant pathway LTP. Even in rat brain slices bathed in CaEDTA in ACSF, intracellular Zn 2+ level, which was measured with intracellular ZnAF-2, was increased in the stratum lacunosum-moleculare where perforant pathway-CA1 pyramidal cell synapses were contained after tetanic stimulation. These results suggest that intracellular Zn 2+ signaling, which originates in internal stores/proteins, is involved in LTP at perforant pathway-CA1 pyramidal cell synapses. Because the influx of extracellular Zn 2+ , which originates in presynaptic Zn 2+ release, is involved in LTP at Schaffer collateral-CA1 pyramidal cell synapses, synapse-dependent Zn 2+ dynamics may be involved in plasticity of postsynaptic CA1 pyramidal cells. © 2017 Wiley Periodicals, Inc.

  15. Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress.

    Directory of Open Access Journals (Sweden)

    Nada M Porter

    Full Text Available Many aging changes seem similar to those elicited by sleep-deprivation and psychosocial stress. Further, sleep architecture changes with age suggest an age-related loss of sleep. Here, we hypothesized that sleep deprivation in young subjects would elicit both stress and aging-like transcriptional responses.F344 rats were divided into control and sleep deprivation groups. Body weight, adrenal weight, corticosterone level and hippocampal CA1 transcriptional profiles were measured. A second group of animals was exposed to novel environment stress (NES, and their hippocampal transcriptional profiles measured. A third cohort exposed to control or SD was used to validate transcriptional results with Western blots. Microarray results were statistically contrasted with prior transcriptional studies. Microarray results pointed to sleep pressure signaling and macromolecular synthesis disruptions in the hippocampal CA1 region. Animals exposed to NES recapitulated nearly one third of the SD transcriptional profile. However, the SD-aging relationship was more complex. Compared to aging, SD profiles influenced a significant subset of genes. mRNA associated with neurogenesis and energy pathways showed agreement between aging and SD, while immune, glial, and macromolecular synthesis pathways showed SD profiles that opposed those seen in aging.We conclude that although NES and SD exert similar transcriptional changes, selective presynaptic release machinery and Homer1 expression changes are seen in SD. Among other changes, the marked decrease in Homer1 expression with age may represent an important divergence between young and aged brain response to SD. Based on this, it seems reasonable to conclude that therapeutic strategies designed to promote sleep in young subjects may have off-target effects in the aged. Finally, this work identifies presynaptic vesicular release and intercellular adhesion molecular signatures as novel therapeutic targets to counter

  16. Computational modeling reveals dendritic origins of GABA(A-mediated excitation in CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Naomi Lewin

    Full Text Available GABA is the key inhibitory neurotransmitter in the adult central nervous system, but in some circumstances can lead to a paradoxical excitation that has been causally implicated in diverse pathologies from endocrine stress responses to diseases of excitability including neuropathic pain and temporal lobe epilepsy. We undertook a computational modeling approach to determine plausible ionic mechanisms of GABA(A-dependent excitation in isolated post-synaptic CA1 hippocampal neurons because it may constitute a trigger for pathological synchronous epileptiform discharge. In particular, the interplay intracellular chloride accumulation via the GABA(A receptor and extracellular potassium accumulation via the K/Cl co-transporter KCC2 in promoting GABA(A-mediated excitation is complex. Experimentally it is difficult to determine the ionic mechanisms of depolarizing current since potassium transients are challenging to isolate pharmacologically and much GABA signaling occurs in small, difficult to measure, dendritic compartments. To address this problem and determine plausible ionic mechanisms of GABA(A-mediated excitation, we built a detailed biophysically realistic model of the CA1 pyramidal neuron that includes processes critical for ion homeostasis. Our results suggest that in dendritic compartments, but not in the somatic compartments, chloride buildup is sufficient to cause dramatic depolarization of the GABA(A reversal potential and dominating bicarbonate currents that provide a substantial current source to drive whole-cell depolarization. The model simulations predict that extracellular K(+ transients can augment GABA(A-mediated excitation, but not cause it. Our model also suggests the potential for GABA(A-mediated excitation to promote network synchrony depending on interneuron synapse location - excitatory positive-feedback can occur when interneurons synapse onto distal dendritic compartments, while interneurons projecting to the perisomatic

  17. Spatial organization of NG2 glial cells and astrocytes in rat hippocampal CA1 region.

    Science.gov (United States)

    Xu, Guangjin; Wang, Wei; Zhou, Min

    2014-04-01

    Similar to astrocytes, NG2 glial cells are uniformly distributed in the central nervous system (CNS). However, little is known about the interspatial relationship, nor the functional interactions between these two star-shaped glial subtypes. Confocal morphometric analysis showed that NG2 immunostained cells are spatially organized as domains in rat hippocampal CA1 region and that each NG2 glial domain occupies a spatial volume of ∼178, 364 μm(3) . The processes of NG2 glia and astrocytes overlap extensively; each NG2 glial domain interlaces with the processes deriving from 5.8 ± 0.4 neighboring astrocytes, while each astrocytic domain accommodates processes stemming from 4.5 ± 0.3 abutting NG2 glia. In CA1 stratum radiatum, the cell bodies of morphologically identified glial cells often appear to make direct somatic-somata contact, termed as doublets. We used dual patch recording and postrecording NG2/GFAP double staining to determine the glial identities of these doublets. We show that among 44 doublets, 50% were NG2 glia-astrocyte pairs, while another 38.6% and 11.4% were astrocyte-astrocyte and NG2 glia-NG2 glia pairs, respectively. In dual patch recording, neither electrical coupling nor intercellular biocytin transfer was detected in astrocyte-NG2 glia or NG2 glia-NG2 glia doublets. Altogether, although NG2 glia and astrocytes are not gap junction coupled, their cell bodies and processes are interwoven extensively. The anatomical and physiological relationships revealed in this study should facilitate future studies to understand the metabolic coupling and functional communication between NG2 glia and astrocytes. Copyright © 2013 Wiley Periodicals, Inc.

  18. Long-term plasticity in identified hippocampal GABAergic interneurons in the CA1 area in vivo.

    Science.gov (United States)

    Lau, Petrina Yau-Pok; Katona, Linda; Saghy, Peter; Newton, Kathryn; Somogyi, Peter; Lamsa, Karri P

    2017-05-01

    Long-term plasticity is well documented in synapses between glutamatergic principal cells in the cortex both in vitro and in vivo. Long-term potentiation (LTP) and -depression (LTD) have also been reported in glutamatergic connections to hippocampal GABAergic interneurons expressing parvalbumin (PV+) or nitric oxide synthase (NOS+) in brain slices, but plasticity in these cells has not been tested in vivo. We investigated synaptically-evoked suprathreshold excitation of identified hippocampal neurons in the CA1 area of urethane-anaesthetized rats. Neurons were recorded extracellularly with glass microelectrodes, and labelled with neurobiotin for anatomical analyses. Single-shock electrical stimulation of afferents from the contralateral CA1 elicited postsynaptic action potentials with monosynaptic features showing short delay (9.95 ± 0.41 ms) and small jitter in 13 neurons through the commissural pathway. Theta-burst stimulation (TBS) generated LTP of the synaptically-evoked spike probability in pyramidal cells, and in a bistratified cell and two unidentified fast-spiking interneurons. On the contrary, PV+ basket cells and NOS+ ivy cells exhibited either LTD or LTP. An identified axo-axonic cell failed to show long-term change in its response to stimulation. Discharge of the cells did not explain whether LTP or LTD was generated. For the fast-spiking interneurons, as a group, no correlation was found between plasticity and local field potential oscillations (1-3 or 3-6 Hz components) recorded immediately prior to TBS. The results demonstrate activity-induced long-term plasticity in synaptic excitation of hippocampal PV+ and NOS+ interneurons in vivo. Physiological and pathological activity patterns in vivo may generate similar plasticity in these interneurons.

  19. Dentate Gyrus Neurogenesis, Integration, and microRNAs

    OpenAIRE

    Luikart, Bryan W; Perederiy, Julia V; Westbrook, Gary L

    2011-01-01

    Neurons are born and become a functional part of the synaptic circuitry in adult brains. The proliferative phase of neurogenesis has been extensively reviewed. We therefore focus this review on a few topics addressing the functional role of adult-generated newborn neurons in the dentate gyrus. We discuss the evidence for a link between neurogenesis and behavior. We then describe the steps in the integration of newborn neurons into a functioning mature synaptic circuit. Given the profound effe...

  20. Selective amygdalohippocampectomy via trans-superior temporal gyrus keyhole approach

    OpenAIRE

    Mathon , Bertrand; Clemenceau , Stéphane

    2016-01-01

    International audience; BackgroundHippocampal sclerosis is the most common cause of drug-resistant epilepsy amenable for surgical treatment and seizure control. The rationale of the selective amygdalohippocampectomy is to spare cerebral tissue not included in the seizure generator.MethodDescribe the selective amygdalohippocampectomy through the trans-superior temporal gyrus keyhole approach.ConclusionSelective amygdalohippocampectomy for temporal lobe epilepsy is performed when the data (semi...

  1. Postnatal development of the hippocampal dentate gyrus under normal and experimental conditions

    International Nuclear Information System (INIS)

    Altman, J.; Bayer, S.

    Studies on postnatal maturation of the dentate gyrus are reviewed. Some topics discussed are: normal development of the dentate gyrus, cytogenesis, morphogenesis, synaptogenesis, gleogenesis, myelogenesis, development of the gyrus under experimental conditions, and effects of x radiation on cytogenesis and morphogenesis

  2. Hilar mossy cells of the dentate gyrus: a historical perspective

    Directory of Open Access Journals (Sweden)

    Helen E Scharfman

    2013-01-01

    Full Text Available The circuitry of the dentate gyrus of the hippocampus is unique compared to other hippocampal subfields because there are two glutamatergic principal cells instead of one: granule cells, which are the vast majority of the cells in the dentate gyrus, and the so-called ‘mossy cells.’ The distinctive appearance of mossy cells, the extensive divergence of their axons, and their vulnerability to excitotoxicity relative to granule cells has led to a great deal of interest in mossy cells. Nevertheless, there is no consensus about the normal functions of mossy cells and the implications of their vulnerability. There even seems to be some ambiguity about exactly what mossy cells are. Here we review initial studies of mossy cells, characteristics that define them, and suggest a practical definition to allow investigators to distinguish mossy cells from other hilar neurons even if all morphological and physiological information is unavailable due to technical limitations of their experiments. In addition, hypotheses are discussed about the role of mossy cells in the dentate gyrus network, reasons for their vulnerability and their implications for disease.

  3. Interictal psychosis following temporal lobe surgery: dentate gyrus pathology.

    Science.gov (United States)

    Thom, M; Kensche, M; Maynard, J; Liu, J; Reeves, C; Goc, J; Marsdon, D; Fluegel, D; Foong, J

    2014-10-01

    De novo interictal psychosis, albeit uncommon, can develop in patients following temporal lobe surgery for epilepsy. Pathological alterations of the dentate gyrus, including cytoarchitectural changes, immaturity and axonal reorganization that occur in epilepsy, may also underpin co-morbid psychiatric disorders. Our aim was to study candidate pathways that may be associated with the development of interictal psychosis post-operatively in patients with hippocampal sclerosis (HS). A total of 11 patients with HS who developed interictal psychosis (HS-P) post-operatively were compared with a matched surgical HS group without psychosis (HS-NP). Resected tissues were investigated for the extent of granule cell dispersion, mossy fibre sprouting and calbindin expression in the granule cells. We quantified doublecortin, mini-chromosome maintenance protein 2 (MCM2) and reelin-expressing neuronal populations in the dentate gyrus as well as the distribution of cannabinoid type 1 receptor (CBR1). The patterns of neuronal loss and gliosis were similar in both groups. HS-P patients demonstrated less mossy fibre sprouting and granule cell dispersion (p gyrus pathology found in HS-P patients could indicate underlying differences in the cellular response to seizures. These mechanisms may predispose to the development of psychosis in epilepsy and warrant further investigation.

  4. Role of the NO/sGC/PKG signaling pathway of hippocampal CA1 in morphine-induced reward memory.

    Science.gov (United States)

    Shen, Fang; Li, Yi-Jing; Shou, Xiao-Jing; Cui, Cai-Lian

    2012-09-01

    Evidence suggests that the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP dependent protein kinase (PKG) signaling pathway plays a key role in memory processing, but the actual participation of this signaling cascade in the hippocampal CA1 during morphine-induced reward memory remains unknown. In this study, we investigated the role of the NO/sGC/PKG signaling pathway in the CA1 on morphine-induced reward memory using a conditioned place preference (CPP) paradigm. We found that rats receiving an intraperitoneal (i.p.) injection of 4mg/kg morphine exhibited CPP, whereas rats treated with only 0.2mg/kg morphine failed to produce CPP. Intra-CA1 injection of the neuronal NO synthase (nNOS) inhibitor 7-NI, the sGC inhibitor ODQ or the PKG inhibitor Rp-8-Br-PET-cGMPS had no effect on the acquisition of CPP by 4mg/kg morphine. Intra-CA1 injection of 7-NI blocked the consolidation of CPP induced by 4mg/kg morphine, and this amnesic effect of 7-NI was mimicked by ODQ and Rp-8-Br-PET-cGMPS. Intra-CA1 injection of the NOS substrate L-arg or the sGC activator YC-1 with an ineffective dose of morphine (0.2mg/kg, i.p.) elicited CPP. This response induced by L-arg or YC-1 was reversed by pre-microinjection of Rp-8-Br-PET-cGMPS in the CA1. These results indicated that the activation of the NO/sGC/PKG signaling pathway in the CA1 is necessary for the consolidation of morphine-related reward memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Estradiol pretreatment ameliorates impaired synaptic plasticity at synapses of insulted CA1 neurons after transient global ischemia

    Science.gov (United States)

    Takeuchi, Koichi; Yang, Yupeng; Takayasu, Yukihiro; Gertner, Michael; Hwang, Jee-Yeon; Aromolaran, Kelly; Bennett, Michael V.L.; Zukin, R. Suzanne

    2015-01-01

    Global ischemia in humans or induced experimentally in animals causes selective and delayed neuronal death in pyramidal neurons of the hippocampal CA1. The ovarian hormone estradiol administered before or immediately after insult affords histological protection in experimental models of focal and global ischemia and ameliorates the cognitive deficits associated with ischemic cell death. However, the impact of estradiol on the functional integrity of Schaffer collateral to CA1 (Sch-CA1) pyramidal cell synapses following global ischemia is not clear. Here we show that long term estradiol treatment initiated 14 days prior to global ischemia in ovariectomized female rats acts via the IGF-1 receptor to protect the functional integrity of CA1 neurons. Global ischemia impairs basal synaptic transmission, assessed by the input/output relation at Sch-CA1 synapses, and NMDA receptor (NMDAR)-dependent long term potentiation (LTP), assessed at 3 days after surgery. Presynaptic function, assessed by fiber volley and paired pulse facilitation, is unchanged. To our knowledge, our results are the first to demonstrate that estradiol at near physiological concentrations enhances basal excitatory synaptic transmission and ameliorates deficits in LTP at synapses onto CA1 neurons in a clinically-relevant model of global ischemia. Estradiol-induced rescue of LTP requires the IGF-1 receptor, but not the classical estrogen receptors (ER)-α or β. These findings support a model whereby estradiol acts via the IGF-1 receptor to maintain the functional integrity of hippocampal CA1 synapses in the face of global ischemia. PMID:25463028

  6. Spin texture of the surface state of three-dimensional Dirac material Ca3PbO

    Science.gov (United States)

    Kariyado, Toshikaze

    2015-04-01

    The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.

  7. Spin texture of the surface state of three-dimensional Dirac material Ca3PbO

    International Nuclear Information System (INIS)

    Kariyado, Toshikaze

    2015-01-01

    The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca 3 PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca 3 PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types. (paper)

  8. Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus

    International Nuclear Information System (INIS)

    Tsurugizawa, Tomokazu; Mukai, Hideo

    2005-01-01

    Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1 nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2 h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but not by MK-801 (NMDA receptor antagonist). ERα agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ERβ agonist DPN did not affect the density of thorns. Note that a 1 nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ERα was performed using purified RC-19 antibody. The localization of ERα (67 kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ERα and MAP kinase

  9. Corticosterone rapidly increases thorns of CA3 neurons via synaptic/extranuclear glucocorticoid receptor in rat hippocampus

    Directory of Open Access Journals (Sweden)

    Miyuki eYoshiya

    2013-11-01

    Full Text Available Modulation of synapses under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. We tried to test whether rapid CORT effects involve activation of essential kinases as non-genomic processes.We demonstrated rapid effects (~ 1 h of CORT on the density of thorns, by imaging Lucifer Yellow-injected neurons in adult male rat hippocampal slices. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. The application of CORT at 100, 500 and 1000 nM induced a rapid increase in the density of thorns in the stratum lucidum of CA3 pyramidal neurons. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR, abolished the effect of CORT. Blocking a single kinase, including MAPK, PKA or PKC, suppressed CORT-induced enhancement of thorn-genesis. On the other hand, GSK-3β was not involved in the signaling of thorn-genesis. Blocking AMPA receptors suppressed the CORT effect. Expression of CA3 synaptic/extranuclear GR was demonstrated by immunogold electron microscopic analysis. From these results, stress levels of CORT (100-1000 nM might drive the rapid thorn-genesis via synaptic/extranuclear GR and multiple kinase pathways, although a role of nuclear GRs cannot be completely excluded.

  10. Human neuroimaging studies on the hippocampal CA3 region – integrating evidence for pattern separation and completion

    Directory of Open Access Journals (Sweden)

    Lorena eDeuker

    2014-03-01

    Full Text Available Human functional magnetic imaging (fMRI studies have long investigated the hippocampus without differentiating between its subfields, even though theoretical models and rodent studies suggest that subfields support different and potentially even opposite functions. The CA3 region of the hippocampus has been ascribed a pivotal role both in initially forming associations during encoding and in reconstructing a memory representation based on partial cues during retrieval. These functions have been related to pattern separation and pattern completion, respectively. In recent years, studies using high-resolution fMRI in humans have begun to separate different hippocampal subregions and identify the role of the CA3 subregion relative to the other subregions. However, some of these findings have been inconsistent with theoretical models and findings from electrophysiology. In this review, we describe selected recent studies and highlight how their results might help to define different processes and functions that are presumably carried out by the CA3 region, in particular regarding the seemingly opposing functions of pattern separation and pattern completion. We also describe how these subfield-specific processes are related to behavioral, functional and structural alterations in patients with mild cognitive impairment and Alzheimer’s disease. We conclude with discussing limitations of functional imaging and briefly outline possible future developments of the field.

  11. Synaptically evoked Ca2+ release from intracellular stores is not influenced by vesicular zinc in CA3 hippocampal pyramidal neurones.

    Science.gov (United States)

    Evstratova, Alesya; Tóth, Katalin

    2011-12-01

    The co-release of neuromodulatory substances in combination with classic neurotransmitters such as glutamate and GABA from individual presynaptic nerve terminals has the capacity to dramatically influence synaptic efficacy and plasticity. At hippocampal mossy fibre synapses vesicular zinc is suggested to serve as a cotransmitter capable of regulating calcium release from internal stores in postsynaptic CA3 pyramidal cells. Here we investigated this possibility using combined intracellular ratiometric calcium imaging and patch-clamp recording techniques. In acute hippocampal slices a brief train of mossy fibre stimulation produced a large, delayed postsynaptic Ca(2+) wave that was spatially restricted to the proximal apical dendrites of CA3 pyramidal cells within stratum lucidum. This calcium increase was sensitive to intracellularly applied heparin indicating reliance upon release from internal stores and was triggered by activation of both group I metabotropic glutamate and NMDA receptors. Importantly, treatment of slices with the membrane-impermeant zinc chelator CaEDTA did not influence the synaptically evoked postsynaptic Ca(2+) waves. Moreover, mossy fibre stimulus evoked postsynaptic Ca(2+) signals were not significantly different between wild-type and zinc transporter 3 (ZnT3) knock-out animals. Considered together our data do not support a role for vesicular zinc in regulating mossy fibre evoked Ca(2+) release from CA3 pyramidal cell internal stores.

  12. Evidence for Long-Timescale Patterns of Synaptic Inputs in CA1 of Awake Behaving Mice.

    Science.gov (United States)

    Kolb, Ilya; Talei Franzesi, Giovanni; Wang, Michael; Kodandaramaiah, Suhasa B; Forest, Craig R; Boyden, Edward S; Singer, Annabelle C

    2018-02-14

    Repeated sequences of neural activity are a pervasive feature of neural networks in vivo and in vitro In the hippocampus, sequential firing of many neurons over periods of 100-300 ms reoccurs during behavior and during periods of quiescence. However, it is not known whether the hippocampus produces longer sequences of activity or whether such sequences are restricted to specific network states. Furthermore, whether long repeated patterns of activity are transmitted to single cells downstream is unclear. To answer these questions, we recorded intracellularly from hippocampal CA1 of awake, behaving male mice to examine both subthreshold activity and spiking output in single neurons. In eight of nine recordings, we discovered long (900 ms) reoccurring subthreshold fluctuations or "repeats." Repeats generally were high-amplitude, nonoscillatory events reoccurring with 10 ms precision. Using statistical controls, we determined that repeats occurred more often than would be expected from unstructured network activity (e.g., by chance). Most spikes occurred during a repeat, and when a repeat contained a spike, the spike reoccurred with precision on the order of ≤20 ms, showing that long repeated patterns of subthreshold activity are strongly connected to spike output. Unexpectedly, we found that repeats occurred independently of classic hippocampal network states like theta oscillations or sharp-wave ripples. Together, these results reveal surprisingly long patterns of repeated activity in the hippocampal network that occur nonstochastically, are transmitted to single downstream neurons, and strongly shape their output. This suggests that the timescale of information transmission in the hippocampal network is much longer than previously thought. SIGNIFICANCE STATEMENT We found long (≥900 ms), repeated, subthreshold patterns of activity in CA1 of awake, behaving mice. These repeated patterns ("repeats") occurred more often than expected by chance and with 10 ms

  13. Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death.

    Science.gov (United States)

    Calderone, Agata; Jover, Teresa; Mashiko, Toshihiro; Noh, Kyung-min; Tanaka, Hidenobu; Bennett, Michael V L; Zukin, R Suzanne

    2004-11-03

    Transient global ischemia induces a delayed rise in intracellular Zn2+, which may be mediated via glutamate receptor 2 (GluR2)-lacking AMPA receptors (AMPARs), and selective, delayed death of hippocampal CA1 neurons. The molecular mechanisms underlying Zn2+ toxicity in vivo are not well delineated. Here we show the striking finding that intraventricular injection of the high-affinity Zn2+ chelator calcium EDTA (CaEDTA) at 30 min before ischemia (early CaEDTA) or at 48-60 hr (late CaEDTA), but not 3-6 hr, after ischemia, afforded robust protection of CA1 neurons in approximately 50% (late CaEDTA) to 75% (early CaEDTA) of animals. We also show that Zn2+ acts via temporally distinct mechanisms to promote neuronal death. Early CaEDTA attenuated ischemia-induced GluR2 mRNA and protein downregulation (and, by inference, formation of Zn2+-permeable AMPARs), the delayed rise in Zn2+, and neuronal death. These findings suggest that Zn2+ acts at step(s) upstream from GluR2 gene downregulation and implicate Zn2+ in transcriptional regulation and/or GluR2 mRNA stability. Early CaEDTA also blocked mitochondrial release of cytochrome c and Smac/DIABLO (second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein-binding protein with low pI), caspase-3 activity (but not procaspase-3 cleavage), p75NTR induction, and DNA fragmentation. These findings indicate that CaEDTA preserves the functional integrity of the mitochondrial outer membrane and arrests the caspase death cascade. Late injection of CaEDTA at a time when GluR2 is downregulated and caspase is activated inhibited the delayed rise in Zn2+, p75NTR induction, DNA fragmentation, and cell death. The finding of neuroprotection by late CaEDTA administration has striking implications for intervention in the delayed neuronal death associated with global ischemia.

  14. Attenuation of hypoxic current by intracellular applications of ATP regenerating agents in hippocampal CA1 neurons of rat brain slices.

    Science.gov (United States)

    Chung, I; Zhang, Y; Eubanks, J H; Zhang, L

    1998-10-01

    Hypoxia-induced outward currents (hyperpolarization) were examined in hippocampal CA1 neurons of rat brain slices, using the whole-cell recording technique. Hypoxic episodes were induced by perfusing slices with an artificial cerebrospinal fluid aerated with 5% CO2/95% N2 rather than 5% CO2/95% O2, for about 3 min. The hypoxic current was consistently and reproducibly induced in CA1 neurons dialysed with an ATP-free patch pipette solution. This current manifested as an outward shift in the holding current in association with increased conductance, and it reversed at -78 +/- 2.5 mV, with a linear I-V relation in the range of -100 to -40 mV. To provide extra energy resources to individual neurons recorded, agents were added to the patch pipette solution, including MgATP alone, MgATP + phosphocreatine + creatine kinase, or MgATP + creatine. In CA1 neurons dialysed with patch solutions including these agents, hypoxia produced small outward currents in comparison with those observed in CA1 neurons dialysed with the ATP-free solution. Among the above agents examined, whole-cell dialysis with MgATP + creatine was the most effective at decreasing the hypoxic outward currents. We suggest that the hypoxic hyperpolarization is closely related to energy metabolism in individual CA1 neurons, and that the energy supply provided by phosphocreatine metabolism may play a critical role during transient metabolic stress.

  15. Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo

    Directory of Open Access Journals (Sweden)

    Ballesteros KA

    2012-11-01

    Full Text Available Kristen A Ballesteros,1 Angela Sikorski,2 James E Orfila,3 Joe L Martinez Jr41Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; 2Texas A&M University Texarkana, Texarkana, TX, USA; 3University of Colorado in Denver, Denver, CO, USA; 4University of Illinois in Chicago, Chicago, IL, USAAbstract: Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The major mechanism of action of isoflurane is modulation of the γ-amino butyric acid (GABAA receptor-chloride channel, mediating inhibitory synaptic transmission. Animal studies have shown that isoflurane does not cause cell death, but it does inhibit cell growth and causes long-term hippocampal learning deficits. As there are no studies characterizing the effects of isoflurane on electrophysiological aspects of long-term potentiation (LTP in the hippocampus, it is important to determine whether isoflurane alters the characteristic responses of hippocampal afferents to cornu ammonis region 3 (CA3. We investigated the effects of isoflurane on adult male rats during in vivo induction of LTP, using the mossy fiber pathway, the lateral perforant pathway, the medial perforant pathway, and the commissural CA3 (cCA3 to CA3, with intracranial administration of Ringer’s solution, naloxone, RS-aminoindan-1, 5-dicarboxylic acid (AIDA, or 3-[(R-2-carboxypiperazin-4-yl]-propo-2-enyl-1-phosphonic acid (CPP. Then, we compared these responses to published electrophysiological data, using sodium pentobarbital as an anesthetic, under similar experimental conditions. Our results showed that LTP was exhibited in animals anesthetized with isoflurane under vehicle conditions. With the exception of AIDA in the lateral perforant pathway, the defining characteristics of the four pathways appeared to remain intact, except for the observation that LTP was markedly reduced in animals

  16. Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons.

    Science.gov (United States)

    Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F

    2009-11-18

    Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.

  17. Structure and properties of electron-doped Ca1-xSmxMnO3 nanoparticles

    International Nuclear Information System (INIS)

    Sanmathi, C.S.; Retoux, R.; Singh, M.P.; Noudem, J.

    2009-01-01

    In this paper, we report the structural and magnetic properties of electron-doped Ca 1-x Sm x MnO 3 (CSM) nanoparticles. The samarium's composition 'x' was varied from 0 to 0.2 with the special attention up to 0.05. Spherical 60-70 nm polycrystalline CSM nanoparticles were synthesised by chemical co-precipitation technique. Doping of Sm 3+ in antiferromagnetic CaMnO 3 has drastically altered its magnetic behavior due to the formation of ferromagnetic clusters. For example, the CSM powder with x = 0.04 displays about 115 K magnetic Curie temperature and about 0.1 emu/mole saturation magnetization. Physical properties of our nano-CSM powders are also compared with identical bulk-samples. To understand the differences, we invoked the intra-grain and inter-grain magnetic coupling process that facilitates to enhance their ferromagnetic behaviors. Unlike the bulk samples, such magnetic couplings in nanoparticles are favored by the presence of low-level crystal and interfacial defects

  18. Neural 17β-estradiol facilitates long-term potentiation in the hippocampal CA1 region.

    Science.gov (United States)

    Grassi, S; Tozzi, A; Costa, C; Tantucci, M; Colcelli, E; Scarduzio, M; Calabresi, P; Pettorossi, V E

    2011-09-29

    In the hippocampal formation many neuromodulators are possibly implied in the synaptic plasticity such as the long-term potentiation (LTP) induced by high-frequency stimulation (HFS) of afferent fibers. We investigated the involvement of locally synthesized neural 17β-estradiol (nE(2)) in the induction of HFS-LTP in hippocampal slices from male rats by stimulating the Schaffer collateral fibers and recording the evoked field excitatory postsynaptic potential (fEPSP) in the CA1 region. We demonstrated that either the blockade of nE(2) synthesis by the aromatase inhibitor letrozole, or the antagonism of E(2) receptors (ERs) by ICI 182,780 did not prevent the induction of HFS-LTP, but reduced its amplitude by ∼60%, without influencing its maintenance. Moreover, letrozole and ICI 182,780 did not affect the first short-term post-tetanic component of LTP and the paired-pulse facilitation (PPF). These findings demonstrate that nE(2) plays an important role in the induction phase of HFS-dependent LTP. Since the basal responses were not affected by the blocking agents, we suggest that the synthesis of nE(2) is induced or enhanced by HFS through aromatase activation. In this context, the local production of nE(2) seems to be a very effective mechanism to modulate the amplitude of LTP. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Jarod Swant

    2010-06-01

    Full Text Available Methamphetamine (METH is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence suggests that psychostimulants alter synaptic plasticity in the brain--which may partly account for their adverse effects. While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP; an activity-induced increase in synaptic efficacy in CA1 sub-field in the hippocampus. Both the acute ex vivo application of METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application of METH at a concentration of 30 or 60 microM increased baseline synaptic transmission as well as decreased LTP. Pretreatment with eticlopride (D2-like receptor antagonist did not alter the effects of METH on synaptic transmission or LTP. In contrast, pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1 dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction.

  20. Synthesis and characterization of a powellite Ca1-x-yNaxREEyMoO4

    International Nuclear Information System (INIS)

    Moudir, Dalida; Kamel, Nour-el-hayet; Yahiaoui, Saliha; Mouheb, Yasmina; Kamariz, Soumia; Aouchiche, Fairouz

    2015-01-01

    Powellite is a Ca-molybdate ceramic, which forms in nuclear glasses. It may contain an actinide or a lanthanide in its structure, insuring a double containment of radioactivity. This study deals with the synthesis and characterization of powellites, with the general formula: Ca 1-x-y Na x REE y MoO 4 , 0.01≤y≤0.08, x+y≤ 0.20, with REE = Er, Yb and Y. The minerals are synthesized in two heating stages: a calcination at 800 C followed by a sintering at 1150 C. The materials final densities were all similar to the standard value of natural powellite (≅4250 kg/m 3 ), and do not vary significantly with the nature and amount of the lanthanide dopant. The materials microstructure was observed by scanning electron microscopy analysis, and the phase identification was performed by X-ray diffraction analysis. All powellites have a I41/a CaMoO 4 tetragonal structure. The variation of the lattice parameters and molar volumes as a function of the materials composition, calculated using CELREF software, show that they decrease from Yb to Er to Y, and quietly vary with the amount of dopant in the powellites; the materials crystallographic structure remaining preserved. (authors)

  1. Metaplasticity at CA1 Synapses by Homeostatic Control of Presynaptic Release Dynamics

    Directory of Open Access Journals (Sweden)

    Cary Soares

    2017-10-01

    Full Text Available Summary: Hebbian and homeostatic forms of plasticity operate on different timescales to regulate synaptic strength. The degree of mechanistic overlap between these processes and their mutual influence are still incompletely understood. Here, we report that homeostatic synaptic strengthening induced by prolonged network inactivity compromised the ability of CA1 synapses to exhibit LTP. This effect could not be accounted for by an obvious deficit in the postsynaptic capacity for LTP expression, since neither the fraction of silent synapses nor the ability to induce LTP by two-photon glutamate uncaging were reduced by the homeostatic process. Rather, optical quantal analysis reveals that homeostatically strengthened synapses display a reduced capacity to maintain glutamate release fidelity during repetitive stimulation, ultimately impeding the induction, and thus expression, of LTP. By regulating the short-term dynamics of glutamate release, the homeostatic process thus influences key aspects of dynamic network function and exhibits features of metaplasticity. : Several forms of synaptic plasticity operating over distinct spatiotemporal scales have been described at hippocampal synapses. Whether these distinct plasticity mechanisms interact and influence one another remains incompletely understood. Here, Soares et al. show that homeostatic plasticity induced by network silencing influences short-term release dynamics and Hebbian plasticity rules at hippocampal synapses. Keywords: synapse, LTP, homeostatic plasticity, metaplasticity, iGluSNFR

  2. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. DOI: http://dx.doi.org/10.7554/eLife.13424.001 PMID:27549340

  3. THE KINETICS OF MULTIBRANCH INTEGRATION ON THE DENDRITIC ARBOR OF CA1 PYRAMIDAL NEURONS

    Directory of Open Access Journals (Sweden)

    Sunggu eYang

    2014-05-01

    Full Text Available The process by which synaptic inputs separated in time and space are integrated by the dendritic arbor to produce a sequence of action potentials is among the most fundamental signal transformations that takes place within the central nervous system. Some aspects of this complex process, such as integration at the level of individual dendritic branches, have been extensively studied. But other aspects, such as how inputs from multiple branches are combined, and the kinetics of that integration have not been systematically examined. Using a 3D digital holographic photolysis technique to overcome the challenges posed by the complexities of the 3D anatomy of the dendritic arbor of CA1 pyramidal neurons for conventional photolysis, we show that integration on a single dendrite is fundamentally different from that on multiple dendrites. Multibranch integration occurring at oblique and basal dendrites allows somatic action potential firing of the cell to faithfully follow the driving stimuli over a significantly wider frequency range than what is possible with single branch integration. However, multibranch integration requires greater input strength to drive the somatic action potentials. This tradeoff between sensitivity and kinetics may explain the puzzling report of the predominance of multibranch, rather than single branch, integration from in vivo recordings during presentation of visual stimuli.

  4. Inhomogeneous ferrimagnetic-like behavior in Gd2/3Ca1/3MnO3 single crystals

    International Nuclear Information System (INIS)

    Haberkorn, N.; Larregola, S.; Franco, D.; Nieva, G.

    2009-01-01

    We present a study of the magnetic properties of Gd 2/3 Ca 1/3 MnO 3 single crystals at low temperatures, showing that this material behaves as an inhomogeneous ferrimagnet. In addition to small saturation magnetization at 5 K, we have found history dependent effects in the magnetization and the presence of exchange bias. These features are compatible with microscopic phase separation in the clean Gd 2/3 Ca 1/3 MnO 3 system studied

  5. Seizure induces activation of multiple subtypes of neural progenitors and growth factors in hippocampus with neuronal maturation confined to dentate gyrus

    Energy Technology Data Exchange (ETDEWEB)

    Indulekha, Chandrasekharan L.; Sanalkumar, Rajendran [Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala 695 014 (India); Thekkuveettil, Anoopkumar [Molecular Medicine, Biomedical Technology Wing, Sree Chitra Thirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala (India); James, Jackson, E-mail: jjames@rgcb.res.in [Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala 695 014 (India)

    2010-03-19

    Adult hippocampal neurogenesis is altered in response to different physiological and pathological stimuli. GFAP{sup +ve}/nestin{sup +ve} radial glial like Type-1 progenitors are considered to be the resident stem cell population in adult hippocampus. During neurogenesis these Type-1 progenitors matures to GFAP{sup -ve}/nestin{sup +ve} Type-2 progenitors and then to Type-3 neuroblasts and finally differentiates into granule cell neurons. In our study, using pilocarpine-induced seizure model, we showed that seizure initiated activation of multiple progenitors in the entire hippocampal area such as DG, CA1 and CA3. Seizure induction resulted in activation of two subtypes of Type-1 progenitors, Type-1a (GFAP{sup +ve}/nestin{sup +ve}/BrdU{sup +ve}) and Type-1b (GFAP{sup +ve}/nestin{sup +ve}/BrdU{sup -ve}). We showed that majority of Type-1b progenitors were undergoing only a transition from a state of dormancy to activated form immediately after seizures rather than proliferating, whereas Type-1a showed maximum proliferation by 3 days post-seizure induction. Type-2 (GFAP{sup -ve}/nestin{sup +ve}/BrdU{sup +ve}) progenitors were few compared to Type-1. Type-3 (DCX{sup +ve}) progenitors showed increased expression of immature neurons only in DG region by 3 days after seizure induction indicating maturation of progenitors happens only in microenvironment of DG even though progenitors are activated in CA1 and CA3 regions of hippocampus. Also parallel increase in growth factors expression after seizure induction suggests that microenvironmental niche has a profound effect on stimulation of adult neural progenitors.

  6. Protracted postnatal neurogenesis and radiosensitivity in the rabbit's dentate gyrus

    International Nuclear Information System (INIS)

    Gueneau, G.; Baille, V.; Dubos, M.; Court, L.

    1986-01-01

    In the hippocampal formation of a 3-month-old rabbit submitted to a 4.5 Gy gamma irradiation a cytologic study with light and electron microscopy allowed us to make clear the dentate gyrus particular radiosensitivity as soon as the first hours after irradiation. The pycnosis lesion observed in the subgranular zone has drawn our attention in particular. We apply ourselves to describe and precise the lesion and its evolution; thanks to an autoradiographic study, we have shown its link with late postnatal neurogenesis which goes on in this zone and at last we have used the subgranular cells 'radiosensitivity as a biological test allowing to compare the various rays' effects (gamma and neutron rays). In the brain of a one-month-old monkey submitted to a 4 Gy total irradiation the same pycnotic lesion is observed: 1) in the dentate gyrus's subgranular zone and 2) in the cerebellum's outer granular layer. These two postnatal proliferative zones remain particularly sensitive to ionizing radiations. (orig.)

  7. Schematic memory components converge within angular gyrus during retrieval

    Science.gov (United States)

    Wagner, Isabella C; van Buuren, Mariët; Kroes, Marijn CW; Gutteling, Tjerk P; van der Linden, Marieke; Morris, Richard G; Fernández, Guillén

    2015-01-01

    Mental schemas form associative knowledge structures that can promote the encoding and consolidation of new and related information. Schemas are facilitated by a distributed system that stores components separately, presumably in the form of inter-connected neocortical representations. During retrieval, these components need to be recombined into one representation, but where exactly such recombination takes place is unclear. Thus, we asked where different schema components are neuronally represented and converge during retrieval. Subjects acquired and retrieved two well-controlled, rule-based schema structures during fMRI on consecutive days. Schema retrieval was associated with midline, medial-temporal, and parietal processing. We identified the multi-voxel representations of different schema components, which converged within the angular gyrus during retrieval. Critically, convergence only happened after 24-hour-consolidation and during a transfer test where schema material was applied to novel but related trials. Therefore, the angular gyrus appears to recombine consolidated schema components into one memory representation. DOI: http://dx.doi.org/10.7554/eLife.09668.001 PMID:26575291

  8. Immature Dentate Gyrus: An Endophenotype of Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Hideo Hagihara

    2013-01-01

    Full Text Available Adequate maturation of neurons and their integration into the hippocampal circuit is crucial for normal cognitive function and emotional behavior, and disruption of this process could cause disturbances in mental health. Previous reports have shown that mice heterozygous for a null mutation in α-CaMKII, which encodes a key synaptic plasticity molecule, display abnormal behaviors related to schizophrenia and other psychiatric disorders. In these mutants, almost all neurons in the dentate gyrus are arrested at a pseudoimmature state at the molecular and electrophysiological levels, a phenomenon defined as “immature dentate gyrus (iDG.” To date, the iDG phenotype and shared behavioral abnormalities (including working memory deficit and hyperlocomotor activity have been discovered in Schnurri-2 knockout, mutant SNAP-25 knock-in, and forebrain-specific calcineurin knockout mice. In addition, both chronic fluoxetine treatment and pilocarpine-induced seizures reverse the neuronal maturation, resulting in the iDG phenotype in wild-type mice. Importantly, an iDG-like phenomenon was observed in post-mortem analysis of brains from patients with schizophrenia/bipolar disorder. Based on these observations, we proposed that the iDG is a potential endophenotype shared by certain types of neuropsychiatric disorders. This review summarizes recent data describing this phenotype and discusses the data’s potential implication in elucidating the pathophysiology of neuropsychiatric disorders.

  9. Complications after mesial temporal lobe surgery via inferiortemporal gyrus approach.

    Science.gov (United States)

    Vale, Fernando L; Reintjes, Stephen; Garcia, Hermes G

    2013-06-01

    The purpose of this study was to identify the complications associated with the inferior temporal gyrus approach to anterior mesial temporal lobe resection for temporal lobe epilepsy. This retrospective study examined complications experienced by 483 patients during the 3 months after surgery. All surgeries were performed during 1998-2012 by the senior author (F.L.V.). A total of 13 complications (2.7%) were reported. Complications were 8 delayed subdural hematomas (1.6%), 2 superficial wound infections (0.4%), 1 delayed intracranial hemorrhage (0.2%), 1 small lacunar stroke (0.2%), and 1 transient frontalis nerve palsy (0.2%). Three patients with subdural hematoma (0.6%) required readmission and surgical intervention. One patient (0.2%) with delayed intracranial hemorrhage required readmission to the neuroscience intensive care unit for observation. No deaths or severe neurological impairments were reported. Among the 8 patients with subdural hematoma, 7 were older than 40 years (87.5%); however, this finding was not statistically significant (p = 0.198). The inferior temporal gyrus approach to mesial temporal lobe resection is a safe and effective method for treating temporal lobe epilepsy. Morbidity and mortality rates associated with this procedure are lower than those associated with other neurosurgical procedures. The finding that surgical complications seem to be more common among older patients emphasizes the need for early surgical referral of patients with medically refractory epilepsy.

  10. Automatic and Controlled Semantic Retrieval: TMS Reveals Distinct Contributions of Posterior Middle Temporal Gyrus and Angular Gyrus.

    Science.gov (United States)

    Davey, James; Cornelissen, Piers L; Thompson, Hannah E; Sonkusare, Saurabh; Hallam, Glyn; Smallwood, Jonathan; Jefferies, Elizabeth

    2015-11-18

    Semantic retrieval involves both (1) automatic spreading activation between highly related concepts and (2) executive control processes that tailor this activation to suit the current context or goals. Two structures in left temporoparietal cortex, angular gyrus (AG) and posterior middle temporal gyrus (pMTG), are thought to be crucial to semantic retrieval and are often recruited together during semantic tasks; however, they show strikingly different patterns of functional connectivity at rest (coupling with the "default mode network" and "frontoparietal control system," respectively). Here, transcranial magnetic stimulation (TMS) was used to establish a causal yet dissociable role for these sites in semantic cognition in human volunteers. TMS to AG disrupted thematic judgments particularly when the link between probe and target was strong (e.g., a picture of an Alsatian with a bone), and impaired the identification of objects at a specific but not a superordinate level (for the verbal label "Alsatian" not "animal"). In contrast, TMS to pMTG disrupted thematic judgments for weak but not strong associations (e.g., a picture of an Alsatian with razor wire), and impaired identity matching for both superordinate and specific-level labels. Thus, stimulation to AG interfered with the automatic retrieval of specific concepts from the semantic store while stimulation of pMTG impaired semantic cognition when there was a requirement to flexibly shape conceptual activation in line with the task requirements. These results demonstrate that AG and pMTG make a dissociable contribution to automatic and controlled aspects of semantic retrieval. We demonstrate a novel functional dissociation between the angular gyrus (AG) and posterior middle temporal gyrus (pMTG) in conceptual processing. These sites are often coactivated during neuroimaging studies using semantic tasks, but their individual contributions are unclear. Using transcranial magnetic stimulation and tasks designed to

  11. ERK1/2 Activation Is Necessary for BDNF to Increase Dendritic Spine Density in Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Alonso, Mariana; Medina, Jorge H.; Pozzo-Miller, Lucas

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling…

  12. Pyramidal neurons in the septal and temporal CA1 field of the human and hedgehog tenrec hippocampus.

    Science.gov (United States)

    Liagkouras, Ioannis; Michaloudi, Helen; Batzios, Christos; Psaroulis, Dimitrios; Georgiadis, Marios; Künzle, Heinz; Papadopoulos, Georgios C

    2008-07-07

    The present study examines comparatively the cellular density of disector-counted/Nissl-stained CA1 pyramidal neurons and the morphometric characteristics (dendritic number/length, spine number/density and Sholl-counted dendritic branch points/20 microm) of the basal and apical dendritic systems of Golgi-impregnated CA1 neurons, in the septal and temporal hippocampus of the human and hedgehog tenrec brain. The obtained results indicate that in both hippocampal parts the cellular density of the CA1 pyramidal neurons is lower in human than in tenrec. However, while the human pyramidal cell density is higher in the septal hippocampal part than in the temporal one, in the tenrec the density of these cells is higher in the temporal part. The dendritic tree of the CA1 pyramidal cells, more developed in the septal than in temporal hippocampus in both species studied, is in general more complex in the human hippocampus. The basal and the apical dendritic systems exhibit species related morphometric differences, while dendrites of different orders exhibit differences in their number and length, and in their spine density. Finally, in both species, as well as hippocampal parts and dendritic systems, changes of dendritic morphometric features along ascending dendritic orders fluctuate in a similar way, as do the number of dendritic branch points in relation to the distance from the neuron soma.

  13. Opposite effects of glucocorticoid receptor activation on hippocampal CA1 dendritic complexity in chronically stressed and handled animals

    NARCIS (Netherlands)

    Alfarez, D.N.; Karst, H.; Velzing, E.H.; Joëls, M.; Krugers, H.J.

    2008-01-01

    Remodeling of synaptic networks is believed to contribute to synaptic plasticity and long-term memory performance, both of which are modulated by chronic stress. We here examined whether chronic stress modulates dendritic complexity of hippocampal CA1 pyramidal cells, under conditions of basal as

  14. Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation.

    Science.gov (United States)

    Weng, Feng-Ju; Garcia, Rodrigo I; Lutzu, Stefano; Alviña, Karina; Zhang, Yuxiang; Dushko, Margaret; Ku, Taeyun; Zemoura, Khaled; Rich, David; Garcia-Dominguez, Dario; Hung, Matthew; Yelhekar, Tushar D; Sørensen, Andreas Toft; Xu, Weifeng; Chung, Kwanghun; Castillo, Pablo E; Lin, Yingxi

    2018-03-07

    Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report that the activity-dependent transcription factor Npas4 selectively regulates the structure and strength of MF-CA3 synapses by restricting the number of their functional synaptic contacts without affecting the other synaptic inputs onto CA3 pyramidal neurons. Using an activity-dependent reporter, we identified CA3 pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling the expression of the polo-like kinase Plk2. Thus, Npas4 is a critical regulator of experience-dependent, structural, and functional plasticity at MF-CA3 synapses during contextual memory formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Dissociation between the activity of the right middle frontal gyrus and the middle temporal gyrus in processing semantic priming.

    Directory of Open Access Journals (Sweden)

    Ilan Laufer

    Full Text Available The aim of this event-related functional magnetic resonance imaging (fMRI study was to test whether the right middle frontal gyrus (MFG and middle temporal gyrus (MTG would show differential sensitivity to the effect of prime-target association strength on repetition priming. In the experimental condition (RP, the target occurred after repetitive presentation of the prime within an oddball design. In the control condition (CTR, the target followed a single presentation of the prime with equal probability of the target as in RP. To manipulate semantic overlap between the prime and the target both conditions (RP and CTR employed either the onomatopoeia "oink" as the prime and the referent "pig" as the target (OP or vice-versa (PO since semantic overlap was previously shown to be greater in OP. The results showed that the left MTG was sensitive to release of adaptation while both the right MTG and MFG were sensitive to sequence regularity extraction and its verification. However, dissociated activity between OP and PO was revealed in RP only in the right MFG. Specifically, target "pig" (OP and the physically equivalent target in CTR elicited comparable deactivations whereas target "oink" (PO elicited less inhibited response in RP than in CTR. This interaction in the right MFG was explained by integrating these effects into a competition model between perceptual and conceptual effects in priming processing.

  16. Dissociation between the activity of the right middle frontal gyrus and the middle temporal gyrus in processing semantic priming.

    Science.gov (United States)

    Laufer, Ilan; Negishi, Michiro; Lacadie, Cheryl M; Papademetris, Xenophon; Constable, R Todd

    2011-01-01

    The aim of this event-related functional magnetic resonance imaging (fMRI) study was to test whether the right middle frontal gyrus (MFG) and middle temporal gyrus (MTG) would show differential sensitivity to the effect of prime-target association strength on repetition priming. In the experimental condition (RP), the target occurred after repetitive presentation of the prime within an oddball design. In the control condition (CTR), the target followed a single presentation of the prime with equal probability of the target as in RP. To manipulate semantic overlap between the prime and the target both conditions (RP and CTR) employed either the onomatopoeia "oink" as the prime and the referent "pig" as the target (OP) or vice-versa (PO) since semantic overlap was previously shown to be greater in OP. The results showed that the left MTG was sensitive to release of adaptation while both the right MTG and MFG were sensitive to sequence regularity extraction and its verification. However, dissociated activity between OP and PO was revealed in RP only in the right MFG. Specifically, target "pig" (OP) and the physically equivalent target in CTR elicited comparable deactivations whereas target "oink" (PO) elicited less inhibited response in RP than in CTR. This interaction in the right MFG was explained by integrating these effects into a competition model between perceptual and conceptual effects in priming processing.

  17. Luminescent properties of Mg3Ca3(PO4)4: Eu2+ blue-emitting phosphor for white light emitting diodes

    International Nuclear Information System (INIS)

    Li Yinqun; Deng Degang; Wang Qian; Li Gaofeng; Hua Youjie; Jia Guohua; Huang Lihui; Zhao Shilong; Wang Huanping; Li Chenxia; Xu Shiqing

    2012-01-01

    A blue-emitting phosphor, Eu 2+ -activated Mg 3 Ca 3 (PO 4 ) 4 phosphor was synthesized by conventional solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the phase formation. Photoluminescence (PL) results showed that Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ could be efficiently excited by UV–visible light from 250 to 430 nm, which matched well with the emission wavelengths of near-UV and UV LED chips. The effects of the doped-Eu 2+ concentration in Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ on the PL were also investigated. The result reveals that Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ is a potential blue-emitting phosphor for white LEDs. - Graphical Abstract: The excitation spectra show a broad peak from 250 to 430 nm, which means Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ phosphor can be suitable for application in white LEDs excited by the near-UV and UV LEDs. The emission spectrum peaked at 456 nm with the full-width half-maximum (FWHM) of 102 nm is attributed to the 4f 6 5d 1 –4f 7 transition of the Eu 2+ ion. The asymmetric emission spectra show that Eu 2+ has more one emission center in Mg 3 Ca 3 (PO 4 ) 4 , which can be deconvoluted into at least four Gaussian components peaked at 423, 446, 483 and 510 nm. Highlights: ► Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ phosphor could be effectively excited by UV chips (360–430 nm). ► Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ phosphor is a potential blue-emitting phosphor for white LEDs. ► Mg 3 Ca 3 (PO 4 ) 4 : Eu 2+ phosphor shows a broadband emission.

  18. Inhibition of long-term potentiation in the schaffer-CA1 pathway by repetitive high-intensity sound stimulation.

    Science.gov (United States)

    Cunha, A O S; de Oliveira, J A C; Almeida, S S; Garcia-Cairasco, N; Leão, R M

    2015-12-03

    High-intensity sound can induce seizures in susceptible animals. After repeated acoustic stimuli changes in behavioural seizure repertoire and epileptic EEG activity might be seen in recruited limbic and forebrain structures, a phenomenon known as audiogenic kindling. It is postulated that audiogenic kindling can produce synaptic plasticity events leading to the spread of epileptogenic activity to the limbic system. In order to test this hypothesis, we investigated if long-term potentiation (LTP) of hippocampal Schaffer-CA1 synapses and spatial navigation memory are altered by a repeated high-intensity sound stimulation (HISS) protocol, consisting of one-minute 120 dB broadband noise applied twice a day for 10 days, in normal Wistar rats and in audiogenic seizure-prone rats (Wistar Audiogenic Rats - WARs). After HISS all WARs exhibited midbrain seizures and 50% of these animals developed limbic recruitment, while only 26% of Wistar rats presented midbrain seizures and none of them had limbic recruitment. In naïve animals, LTP in hippocampal CA1 neurons was induced by 50- or 100-Hz high-frequency stimulation of Schaffer fibres in slices from both Wistar and WAR animals similarly. Surprisingly, HISS suppressed LTP in CA1 neurons in slices from Wistar rats that did not present any seizure, and inhibited LTP in slices from Wistar rats with only midbrain seizures. However HISS had no effect on LTP in CA1 neurons from slices of WARs. Interestingly HISS did not alter spatial navigation and memory in both strains. These findings show that repeated high-intensity sound stimulation prevent LTP of Schaffer-CA1 synapses from Wistar rats, without affecting spatial memory. This effect was not seen in hippocampi from audiogenic seizure-prone WARs. In WARs the link between auditory stimulation and hippocampal LTP seems to be disrupted which could be relevant for the susceptibility to seizures in this strain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Involvement of glucocorticoid-mediated Zn2+ signaling in attenuation of hippocampal CA1 LTP by acute stress.

    Science.gov (United States)

    Takeda, Atsushi; Suzuki, Miki; Tamano, Haruna; Takada, Shunsuke; Ide, Kazuki; Oku, Naoto

    2012-03-01

    Glucocorticoid-glutamatergic interactions have been proposed as a potential model to explain stress-mediated impairment of cognition. However, it is unknown whether glucocorticoid-zincergic interactions are involved in this impairment. Histochemically reactive zinc (Zn(2+)) is co-released with glutamate from zincergic neurons. In the present study, involvement of synaptic Zn(2+) in stress-induced attenuation of CA1 LTP was examined in hippocampal slices from young rats after exposure to tail suspension stress for 30s, which significantly increased serum corticosterone. Stress-induced attenuation of CA1 LTP was ameliorated by administration of clioquinol, a membrane permeable zinc chelator, to rats prior to exposure to stress, implying that the reduction of synaptic Zn(2+) by clioquinol participates in this amelioration. To pursue the involvement of corticosterone-mediated Zn(2+) signal in the attenuated CA1 LTP by stress, dynamics of synaptic Zn(2+) was checked in hippocampal slices exposed to corticosterone. Corticosterone increased extracellular Zn(2+) levels measured with ZnAF-2 dose-dependently, as well as the intracellular Ca(2+) levels measured with calcium orange AM, suggesting that corticosterone excites zincergic neurons in the hippocampus and increases Zn(2+) release from the neuron terminals. Intracellular Zn(2+) levels measured with ZnAF-2DA were also increased dose-dependently, but not in the coexistence of CaEDTA, a membrane-impermeable zinc chelator, suggesting that intracellular Zn(2+) levels is increased by the influx of extracellular Zn(2+). Furthermore, corticosterone-induced attenuation of CA1 LTP was abolished in the coexistence of CaEDTA. The present study suggests that corticosterone-mediated increase in postsynaptic Zn(2+) signal in the cytosolic compartment is involved in the attenuation of CA1 LTP after exposure to acute stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. An MRI Study of Superior Temporal Gyrus Volume in Women With Schizotypal Personality Disorder

    OpenAIRE

    Dickey, Chandlee C.; McCarley, Robert William; Voglmaier, Martina M.; Niznikiewicz, Margaret A.; Seidman, Larry Joel; Demeo, Susan; Frumin, Melissa; Shenton, Martha Elizabeth

    2003-01-01

    Objective: An abnormal superior temporal gyrus has figured prominently in schizophrenia research, and left superior temporal gyrus volume has been shown to be smaller in male subjects with schizotypal personality disorder. This is the first structural magnetic resonance imaging study to examine a group of female subjects with schizotypal personality disorder. Method: The superior temporal gyrus was drawn on coronal images acquired from female subjects recruited from the community (schizotypal...

  1. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    Science.gov (United States)

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing

  2. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats.

    Science.gov (United States)

    Mucio-Ramírez, Samuel; Makeyev, Oleksandr

    2017-01-01

    Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats ( n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals ( p  = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses ( p  = 0.71) nor due to the delay after the last stimulation dose ( p  = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200  μ s, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain.

  3. Safety of the Transcranial Focal Electrical Stimulation via Tripolar Concentric Ring Electrodes for Hippocampal CA3 Subregion Neurons in Rats

    Directory of Open Access Journals (Sweden)

    Samuel Mucio-Ramírez

    2017-01-01

    Full Text Available Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats (n=36 due to the single dose or five doses (given every 24 hours of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals (p = 0.71. Moreover, it showed no statistically significant differences due to the number of stimulation doses (p = 0.71 nor due to the delay after the last stimulation dose (p = 0.96. Obtained results suggest that stimulation at current parameters (50 mA, 200 μs, 300 Hz, biphasic, charge-balanced pulses for 2 minutes does not induce neuronal damage in the hippocampal CA3 subregion of the brain.

  4. Effects of Synthesis and Processing on the Thermoelectric Properties of Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo

    In the present study, Ca3Co4O9+δ was synthesized by solid-state and sol-gel reactions followed by spark plasma sintering (SPS) under different conditions such as sintering temperatures, applied pressures and ramping rates. The materials were then characterized with respect to their microstructure......, phase purity and thermoelectric properties. With the identical optimal SPS process, the power factor of about 400 µW/m•K2 and 465 µW/m•K2 (at 800 °C) is measured from samples produced by solid-state and sol-gel reactions respectively, both of these values are higher than the value reported so far....... The thermoelectric performance improvement observed for the solid-state and sol-gel reactions suggests that the particle sizes may be a predominant key parameter of the Ca3Co4O9+δ thermoelectric properties. Smaller particle size (500 nm) as produced in this study by sol-gel synthesis method with optimal SPS process...

  5. Identification of Potentially Neuroprotective Genes Upregulated by Neurotrophin Treatment of CA3 Neurons in the Injured Brain

    Science.gov (United States)

    Malik, Saafan Z.; Motamedi, Shahab; Royo, Nicolas C.; LeBold, David

    2011-01-01

    Abstract Specific neurotrophic factors mediate histological and/or functional improvement in animal models of traumatic brain injury (TBI). In previous work, several lines of evidence indicated that the mammalian neurotrophin NT-4/5 is neuroprotective for hippocampal CA3 pyramidal neurons after experimental TBI. We hypothesized that NT-4/5 neuroprotection is mediated by changes in the expression of specific sets of genes, and that NT-4/5-regulated genes are potential therapeutic targets for blocking delayed neuronal death after TBI. In this study, we performed transcription profiling analysis of CA3 neurons to identify genes regulated by lateral fluid percussion injury, or by treatment with the trkB ligands NT-4/5 or brain-derived neurotrophic factor (BDNF). The results indicate extensive overlap between genes upregulated by neurotrophins and genes upregulated by injury, suggesting that the mechanism behind neurotrophin neuroprotection may mimic the brain's endogenous protective response. A subset of genes selected for further study in vitro exhibited neuroprotection against glutamate excitotoxicity. The neuroprotective genes identified in this study were upregulated at 30 h post-injury, and are thus expected to act during a clinically useful time frame of hours to days after injury. Modulation of these factors and pathways by genetic manipulation or small molecules may confer hippocampal neuroprotection in vivo in preclinical models of TBI. PMID:21083427

  6. Housing under the pyramid reduces susceptibility of hippocampal CA3 pyramidal neurons to prenatal stress in the developing rat offspring.

    Science.gov (United States)

    Murthy, Krishna Dilip; George, Mitchel Constance; Ramasamy, Perumal; Mustapha, Zainal Arifin

    2013-12-01

    Mother-offspring interaction begins before birth. The foetus is particularly vulnerable to environmental insults and stress. The body responds by releasing excess of the stress hormone cortisol, which acts on glucocorticoid receptors. Hippocampus in the brain is rich in glucocorticoid receptors and therefore susceptible to stress. The stress effects are reduced when the animals are placed under a model wooden pyramid. The present study was to first explore the effects of prenatal restraint-stress on the plasma corticosterone levels and the dendritic arborisation of CA3 pyramidal neurons in the hippocampus of the offspring. Further, to test whether the pyramid environment would alter these effects, as housing under a pyramid is known to reduce the stress effects, pregnant Sprague Dawley rats were restrained for 9 h per day from gestation day 7 until parturition in a wire-mesh restrainer. Plasma corticosterone levels were found to be significantly increased. In addition, there was a significant reduction in the apical and the basal total dendritic branching points and intersections of the CA3 hippocampal pyramidal neurons. The results thus suggest that, housing in the pyramid dramatically reduces prenatal stress effects in rats.

  7. Depleting adult dentate gyrus neurogenesis increases cocaine-seeking behavior.

    Science.gov (United States)

    Deroche-Gamonet, Véronique; Revest, Jean-Michel; Fiancette, Jean-François; Balado, Eric; Koehl, Muriel; Grosjean, Noëlle; Abrous, Djoher Nora; Piazza, Pier-Vincenzo

    2018-03-05

    The hippocampus is the main locus for adult dentate gyrus (DG) neurogenesis. A number of studies have shown that aberrant DG neurogenesis correlates with many neuropsychiatric disorders, including drug addiction. Although clear causal relationships have been established between DG neurogenesis and memory dysfunction or mood-related disorders, evidence of the causal role of DG neurogenesis in drug-seeking behaviors has not been established. Here we assessed the role of new DG neurons in cocaine self-administration using an inducible transgenic approach that selectively depletes adult DG neurogenesis. Our results show that transgenic mice with decreased adult DG neurogenesis exhibit increased motivation to self-administer cocaine and a higher seeking response to cocaine-related cues. These results identify adult hippocampal neurogenesis as a key factor in vulnerability to cocaine addiction.

  8. Functional circuits of new neurons in the dentate gyrus

    Directory of Open Access Journals (Sweden)

    Carmen eVivar

    2013-02-01

    Full Text Available The hippocampus is crucial for memory formation. New neurons are added throughout life to the hippocampal dentate gyrus (DG, a brain area considered important for differential storage of similar experiences and contexts. To better understand the functional contribution of adult neurogenesis to pattern separation processes, we recently used a novel synapse specific trans-neuronal tracing approach to identify the (sub cortical inputs to new dentate granule cells. It was observed that newly born neurons receive sequential innervation from structures important for memory function. Initially, septal-hippocampal cells provide input to new neurons, followed after about one month by perirhinal and lateral entorhinal cortex. These cortical areas are deemed relevant to encoding of novel environmental information and may enable pattern separation. Here, we review the developmental time-course and proposed functional relevance of new neurons, within the context of their unique neural circuitry.  

  9. Subregions of the human superior frontal gyrus and their connections.

    Science.gov (United States)

    Li, Wei; Qin, Wen; Liu, Huaigui; Fan, Lingzhong; Wang, Jiaojian; Jiang, Tianzi; Yu, Chunshui

    2013-09-01

    The superior frontal gyrus (SFG) is located at the superior part of the prefrontal cortex and is involved in a variety of functions, suggesting the existence of functional subregions. However, parcellation schemes of the human SFG and the connection patterns of each subregion remain unclear. We firstly parcellated the human SFG into the anteromedial (SFGam), dorsolateral (SFGdl), and posterior (SFGp) subregions based on diffusion tensor tractography. The SFGam was anatomically connected with the anterior and mid-cingulate cortices, which are critical nodes of the cognitive control network and the default mode network (DMN). The SFGdl was connected with the middle and inferior frontal gyri, which are involved in the cognitive execution network. The SFGp was connected with the precentral gyrus, caudate, thalamus, and frontal operculum, which are nodes of the motor control network. Resting-state functional connectivity analysis further revealed that the SFGam was mainly correlated with the cognitive control network and the DMN; the SFGdl was correlated with the cognitive execution network and the DMN; and the SFGp was correlated with the sensorimotor-related brain regions. The SFGam and SFGdl were further parcellated into three and two subclusters that are well corresponding to Brodmann areas. These findings suggest that the human SFG consists of multiple dissociable subregions that have distinct connection patterns and that these subregions are involved in different functional networks and serve different functions. These results may improve our understanding on the functional complexity of the SFG and provide us an approach to investigate the SFG at the subregional level. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Neutron investigation of Ru-doped Nd1/2Ca1/2MnO3. Comparison with Cr-doped Nd1/2Ca1/2MnO3

    International Nuclear Information System (INIS)

    Moritomo, Yutaka; Nonobe, Toshihiko; Machida, Akihiko; Ohoyama, Kenji

    2002-01-01

    Lattice and magnetic properties are investigated for 3% Ru- and Cr-doped Nd 1/2 Ca 1/2 MnO 3 . The parent Nd 1/2 Ca 1/2 MnO 3 is a charge-ordered insulator (T CO =250K). With decreasing temperature below ≅210K, these compounds are separated into two perovskite phases, that is, the long-c and short-c phases. The long-c region shows a ferromagnetic transition at T C ≅210K for the Ru-doped compound and ≅130K for the Cr-doped compound, while the short-c region shows antiferromagnetic transition at T N ≅150K for Ru and ≅110K for Cr. We discuss the origin of the enhanced T C for the Ru-doped compound in terms of the effective one-electron bandwidth W of the e g -band. (author)

  11. Influx of extracellular Zn(2+) into the hippocampal CA1 neurons is required for cognitive performance via long-term potentiation.

    Science.gov (United States)

    Takeda, A; Suzuki, M; Tempaku, M; Ohashi, K; Tamano, H

    2015-09-24

    Physiological significance of synaptic Zn(2+) signaling was examined in the CA1 of young rats. In vivo CA1 long-term potentiation (LTP) was induced using a recording electrode attached to a microdialysis probe and the recording region was locally perfused with artificial cerebrospinal fluid (ACSF) via the microdialysis probe. In vivo CA1 LTP was inhibited under perfusion with CaEDTA and ZnAF-2DA, extracellular and intracellular Zn(2+) chelators, respectively, suggesting that the influx of extracellular Zn(2+) is required for in vivo CA1 LTP induction. The increase in intracellular Zn(2+) was chelated with intracellular ZnAF-2 in the CA1 1h after local injection of ZnAF-2DA into the CA1, suggesting that intracellular Zn(2+) signaling induced during learning is blocked with intracellular ZnAF-2 when the learning was performed 1h after ZnAF-2DA injection. Object recognition was affected when training of object recognition test was performed 1h after ZnAF-2DA injection. These data suggest that intracellular Zn(2+) signaling in the CA1 is required for object recognition memory via LTP. Surprisingly, in vivo CA1 LTP was affected under perfusion with 0.1-1μM ZnCl2, unlike the previous data that in vitro CA1 LTP was enhanced in the presence of 1-5μM ZnCl2. The influx of extracellular Zn(2+) into CA1 pyramidal cells has bidirectional action in CA1 LTP. The present study indicates that the degree of extracellular Zn(2+) influx into CA1 neurons is critical for LTP and cognitive performance. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation

    DEFF Research Database (Denmark)

    Weng, Feng-Ju; Garcia, Rodrigo I; Lutzu, Stefano

    2018-01-01

    Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report...... pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling...... the expression of the polo-like kinase Plk2. Thus, Npas4 is a critical regulator of experience-dependent, structural, and functional plasticity at MF-CA3 synapses during contextual memory formation....

  13. Effective connectivity between superior temporal gyrus and Heschl's gyrus during white noise listening: linear versus non-linear models.

    Science.gov (United States)

    Hamid, Ka; Yusoff, An; Rahman, Mza; Mohamad, M; Hamid, Aia

    2012-04-01

    This fMRI study is about modelling the effective connectivity between Heschl's gyrus (HG) and the superior temporal gyrus (STG) in human primary auditory cortices. MATERIALS #ENTITYSTARTX00026; Ten healthy male participants were required to listen to white noise stimuli during functional magnetic resonance imaging (fMRI) scans. Statistical parametric mapping (SPM) was used to generate individual and group brain activation maps. For input region determination, two intrinsic connectivity models comprising bilateral HG and STG were constructed using dynamic causal modelling (DCM). The models were estimated and inferred using DCM while Bayesian Model Selection (BMS) for group studies was used for model comparison and selection. Based on the winning model, six linear and six non-linear causal models were derived and were again estimated, inferred, and compared to obtain a model that best represents the effective connectivity between HG and the STG, balancing accuracy and complexity. Group results indicated significant asymmetrical activation (p(uncorr) Model comparison results showed strong evidence of STG as the input centre. The winning model is preferred by 6 out of 10 participants. The results were supported by BMS results for group studies with the expected posterior probability, r = 0.7830 and exceedance probability, ϕ = 0.9823. One-sample t-tests performed on connection values obtained from the winning model indicated that the valid connections for the winning model are the unidirectional parallel connections from STG to bilateral HG (p model comparison between linear and non-linear models using BMS prefers non-linear connection (r = 0.9160, ϕ = 1.000) from which the connectivity between STG and the ipsi- and contralateral HG is gated by the activity in STG itself. We are able to demonstrate that the effective connectivity between HG and STG while listening to white noise for the respective participants can be explained by a non-linear dynamic causal model with

  14. Neuropeptide Y and nestin expression in the hippocampal CA3 region following restrained and inverted stress in rats

    Institute of Scientific and Technical Information of China (English)

    Guogang Sun; Ailing Li; Bo Chen; Guangbi Fan; Hongwen Xiao; Yue Chen; Jie Xu; Ye Nie; Bing Zhang; Lin Gong

    2011-01-01

    Our preliminary study demonstrated that neuropeptide Y (NPY)/nestin-positive cells exhibit a consistent spatial distribution in the hippocampus of normal adult rats. However, following severe acute and chronic stress-induced impaired learning and memory, synchronous decreased expression of nestin and NPY takes place in the hippocampus, and the underlying mechanisms remain unclear. In the present study, acute and chronic stress rat models were established using combined restrained and inverted stress. Results showed that learning and memory significantly decreased in acute and chronic stress rats. In addition, hippocampal cells were damaged, in particular in the acute stress rats, and nestin and NPY expression, as well as the number of NPY/nestin-positive cells in the CA3 region, significantly decreased. Furthermore, mature neurofilament 200-positive neurons were absent in the chronic stress rats. The NPY and cytoskeletal protein system equally contributed to stress-induced early learning and memory deficits, as well as sustained cerebral injury in the adult hippocampus.

  15. X-ray spectra and electronic structure of the Ca3Ga2Ge3О12 compound

    Science.gov (United States)

    Shcherba, I. D.; Kostyk, L. V.; Noga, H.; Bekenov, L. V.; Uskokovich, D.; Jatsyk, B. M.

    2017-09-01

    The band structure of Ca3Ga2Ge3О12 with the garnet structure has been determined for the first time by X-ray emission and photoelectron spectroscopy. It has been established that the bottom of the valence band is formed by Ge d states, which are not dominant in the chemical bonding. Strong hybridization of oxygen 2s states with 4p states of Ga and Ge revealed by the presence of an extra structure in the X-ray emission spectra has been found. The middle of the valence band has been demonstrated to be occupied by d states of Ga, while Ga and Ge 4рstates with a considerable admixture of oxygen 2p states form the top of the valence band.

  16. Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model.

    Directory of Open Access Journals (Sweden)

    Samuel A Neymotin

    Full Text Available Ih channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4-12 Hz and gamma (25 Hz oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells, contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases.

  17. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons.

    Science.gov (United States)

    Noble, Emily E; Mavanji, Vijayakumar; Little, Morgan R; Billington, Charles J; Kotz, Catherine M; Wang, ChuanFeng

    2014-10-01

    Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for 7 weeks of exercise intervention. Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (pdiet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. Published by Elsevier Inc.

  18. Microarray profile of seizure damage-refractory hippocampal CA3 in a mouse model of epileptic preconditioning.

    Science.gov (United States)

    Hatazaki, S; Bellver-Estelles, C; Jimenez-Mateos, E M; Meller, R; Bonner, C; Murphy, N; Matsushima, S; Taki, W; Prehn, J H M; Simon, R P; Henshall, D C

    2007-12-05

    A neuroprotected state can be acquired by preconditioning brain with a stimulus that is subthreshold for damage (tolerance). Acquisition of tolerance involves coordinate, bi-directional changes to gene expression levels and the re-programmed phenotype is determined by the preconditioning stimulus. While best studied in ischemic brain there is evidence brief seizures can confer tolerance against prolonged seizures (status epilepticus). Presently, we developed a model of epileptic preconditioning in mice and used microarrays to gain insight into the transcriptional phenotype within the target hippocampus at the time tolerance had been acquired. Epileptic tolerance was induced by an episode of non-damaging seizures in adult C57Bl/6 mice using a systemic injection of kainic acid. Neuron and DNA damage-positive cell counts 24 h after status epilepticus induced by intraamygdala microinjection of kainic acid revealed preconditioning given 24 h prior reduced CA3 neuronal death by approximately 45% compared with non-tolerant seizure mice. Microarray analysis of over 39,000 transcripts (Affymetrix 430 2.0 chip) from microdissected CA3 subfields was undertaken at the point at which tolerance was acquired. Results revealed a unique profile of small numbers of equivalently up- and down-regulated genes with biological functions that included transport and localization, ubiquitin metabolism, apoptosis and cell cycle control. Select microarray findings were validated post hoc by real-time polymerase chain reaction and Western blotting. The present study defines a paradigm for inducing epileptic preconditioning in mice and first insight into the global transcriptome of the seizure-damage refractory brain.

  19. Growth of nucleation sites on Pb-doped Bi2Sr2Ca1Cu2O8+δ

    International Nuclear Information System (INIS)

    Finnemore, D.K.; Xu, M.; Kouzoudis, D.; Bloomer, T.; Kramer, M.J.; McKernan, S.; Balachandran, U.; Haldar, P.

    1996-01-01

    In the growth of Bi 2 Sr 2 Ca 2 Cu 3 O 10+δ from mixed powders of Pb-doped Bi 2 Sr 2 Ca 1 Cu 2 O 8+δ and other oxides, it has been discovered that a dense array of hillocks or mesas grow at the interface between a Ag overlay and Pb-doped Bi 2 Sr 2 Ca 1 Cu 2 O 8+δ grains during the ramp up to the reaction temperature. As viewed in an environmental scanning electron microscope, the Ag coated grains develop a texture that looks like open-quote open-quote chicken pox close-quote close-quote growing on the grains at about 700 degree C. These hillocks are about 100 nm across and are spaced at about 500 to 1000 nm. If there is no Ag, this texture does not develop. Preliminary measurements indicate that the hillocks are a recrystallization of (Bi,Pb) 2 Sr 2 Ca 1 Cu 2 O 8+δ , and are definitely not a Pb rich phase. copyright 1996 American Institute of Physics

  20. Acupuncture attenuates cognitive deficits and increases pyramidal neuron number in hippocampal CA1 area of vascular dementia rats.

    Science.gov (United States)

    Li, Fang; Yan, Chao-Qun; Lin, Li-Ting; Li, Hui; Zeng, Xiang-Hong; Liu, Yi; Du, Si-Qi; Zhu, Wen; Liu, Cun-Zhi

    2015-04-28

    Decreased cognition is recognized as one of the most severe and consistent behavioral impairments in dementia. Experimental studies have reported that acupuncture may improve cognitive deficits, relieve vascular dementia (VD) symptoms, and increase cerebral perfusion and electrical activity. Multi-infarction dementia was modeled in rats with 3% microemboli saline suspension. Two weeks after acupuncture at Zusanli (ST36), all rats were subjected to a hidden platform trial to test their 3-day spatial memory using the Morris water maze test. To estimate the numbers of pyramidal neuron, astrocytes, and synaptic boutons in hippocampal CA1 area, we adopted an unbiased stereology method to accurately sample and measure the size of cells. We found that acupuncture at ST36 significantly decreased the escape latency of VD rats. In addition, acupuncture significantly increased the pyramidal neuron number in hippocampal CA1 area (P area in any of the groups (P > 0.05). These findings suggest that acupuncture may improve cognitive deficits and increase pyramidal neuron number of hippocampal CA1 area in VD rats.

  1. Effects of FK506 on Hippocampal CA1 Cells Following Transient Global Ischemia/Reperfusion in Wistar Rat

    Directory of Open Access Journals (Sweden)

    Zahra-Nadia Sharifi

    2012-01-01

    Full Text Available Transient global cerebral ischemia causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the neurotrophic effect of the immunosuppressant agent FK506 in rat after global cerebral ischemia. Both common carotid arteries were occluded for 20 minutes followed by reperfusion. In experimental group 1, FK506 (6 mg/kg was given as a single dose exactly at the time of reperfusion. In the second group, FK506 was administered at the beginning of reperfusion, followed by its administration intraperitoneally (IP 6, 24, 48, and 72 hours after reperfusion. FK506 failed to show neurotrophic effects on CA1 region when applied as a single dose of 6 mg/kg. The cell number and size of the CA1 pyramidal cells were increased, also the number of cell death decreased in this region when FK506 was administrated 48 h after reperfusion. This work supports the possible use of FK506 in treatment of ischemic brain damage.

  2. Serotonin-mediated modulation of Na+/K+ pump current in rat hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Zhang, Li Nan; Su, Su Wen; Guo, Fang; Guo, Hui Cai; Shi, Xiao Lu; Li, Wen Ya; Liu, Xu; Wang, Yong Li

    2012-01-19

    The aim of this study was to investigate whether serotonin (5-hydroxytryptamine, 5-HT) can modulate Na+/K+ pump in rat hippocampal CA1 pyramidal neurons. 5-HT (0.1, 1 mM) showed Na+/K+ pump current (Ip) densities of 0.40 ± 0.04, 0.34 ± 0.03 pA/pF contrast to 0.63 ± 0.04 pA/pF of the control of 0.5 mM strophanthidin (Str), demonstrating 5-HT-induced inhibition of Ip in a dose-dependent manner in hippocampal CA1 pyramidal neurons. The effect was partly attenuated by ondasetron, a 5-HT3 receptor (5-HT3R) antagonist, not by WAY100635, a 5-HT1AR antagonist, while 1-(3-Chlorophenyl) biguanide hydrochloride (m-CPBG), a 5-HT3R specific agonist, mimicked the effect of 5-HT on Ip. 5-HT inhibits neuronal Na+/K+ pump activity via 5-HT3R in rat hippocampal CA1 pyramidal neurons. This discloses novel mechanisms for the function of 5-HT in learning and memory, which may be a useful target to benefit these patients with cognitive disorder.

  3. Nature of potential barrier in (Ca 1/4,Cu 3/4)TiO 3 polycrystalline perovskite

    Science.gov (United States)

    Marques, V. P. B.; Bueno, P. R.; Simões, A. Z.; Cilense, M.; Varela, J. A.; Longo, E.; Leite, E. R.

    2006-04-01

    The nonohmic electrical features of (Ca 1/4,Cu 3/4)TiO 3 perovskite ceramics, which have very strong gigantic dielectric is believed originate from potential barriers at the grain boundaries. In the present study, we used the admittance and impedance spectroscopy technique to investigate (Ca 1/4,Cu 3/4)TiO 3 perovskite ceramics with low nonohmic electrical properties. The study was conducted under two different conditions: on as-sintered ceramics and on ceramics thermally treated in an oxygen-rich atmosphere. The results confirm that thermal treatment in oxygen-rich atmospheres influence the nonohmic properties. Annealing at oxygen-rich atmospheres improve the nonohmic behavior and annealing at oxygen-poor atmospheres decrease the nonohmic properties, a behavior already reported for common metal oxide nonohmic devices and here firstly evidenced for the (Ca 1/4,Cu 3/4)TiO 3 perovskite related materials. The results show that oxygen also influences the capacitance values at low frequencies, a behavior that is indicative of the Schottky-type nature of the potential barrier.

  4. Dentate Gyrus Contributes to Retrieval as well as Encoding: Evidence from Context Fear Conditioning, Recall, and Extinction.

    Science.gov (United States)

    Bernier, Brian E; Lacagnina, Anthony F; Ayoub, Adam; Shue, Francis; Zemelman, Boris V; Krasne, Franklin B; Drew, Michael R

    2017-06-28

    Dentate gyrus (DG) is widely thought to provide a teaching signal that enables hippocampal encoding of memories, but its role during retrieval is poorly understood. Some data and models suggest that DG plays no role in retrieval; others encourage the opposite conclusion. To resolve this controversy, we evaluated the effects of optogenetic inhibition of dorsal DG during context fear conditioning, recall, generalization, and extinction in male mice. We found that (1) inhibition during training impaired context fear acquisition; (2) inhibition during recall did not impair fear expression in the training context, unless mice had to distinguish between similar feared and neutral contexts; (3) inhibition increased generalization of fear to an unfamiliar context that was similar to a feared one and impaired fear expression in the conditioned context when it was similar to a neutral one; and (4) inhibition impaired fear extinction. These effects, as well as several seemingly contradictory published findings, could be reproduced by BACON (Bayesian Context Fear Algorithm), a physiologically realistic hippocampal model positing that acquisition and retrieval both involve coordinated activity in DG and CA3. Our findings thus suggest that DG contributes to retrieval and extinction, as well as to the initial establishment of context fear. SIGNIFICANCE STATEMENT Despite abundant evidence that the hippocampal dentate gyrus (DG) plays a critical role in memory, it remains unclear whether the role of DG relates to memory acquisition or retrieval. Using contextual fear conditioning and optogenetic inhibition, we show that DG contributes to both of these processes. Using computational simulations, we identify specific mechanisms through which the suppression of DG affects memory performance. Finally, we show that DG contributes to fear extinction learning, a process in which learned fear is attenuated through exposures to a fearful context in the absence of threat. Our data resolve a

  5. Dentate Gyrus circuitry features improve performance of sparse approximation algorithms.

    Directory of Open Access Journals (Sweden)

    Panagiotis C Petrantonakis

    Full Text Available Memory-related activity in the Dentate Gyrus (DG is characterized by sparsity. Memory representations are seen as activated neuronal populations of granule cells, the main encoding cells in DG, which are estimated to engage 2-4% of the total population. This sparsity is assumed to enhance the ability of DG to perform pattern separation, one of the most valuable contributions of DG during memory formation. In this work, we investigate how features of the DG such as its excitatory and inhibitory connectivity diagram can be used to develop theoretical algorithms performing Sparse Approximation, a widely used strategy in the Signal Processing field. Sparse approximation stands for the algorithmic identification of few components from a dictionary that approximate a certain signal. The ability of DG to achieve pattern separation by sparsifing its representations is exploited here to improve the performance of the state of the art sparse approximation algorithm "Iterative Soft Thresholding" (IST by adding new algorithmic features inspired by the DG circuitry. Lateral inhibition of granule cells, either direct or indirect, via mossy cells, is shown to enhance the performance of the IST. Apart from revealing the potential of DG-inspired theoretical algorithms, this work presents new insights regarding the function of particular cell types in the pattern separation task of the DG.

  6. Hilar mossy cells of the dentate gyrus: a historical perspective

    Science.gov (United States)

    Scharfman, Helen E.; Myers, Catherine E.

    2013-01-01

    The circuitry of the dentate gyrus (DG) of the hippocampus is unique compared to other hippocampal subfields because there are two glutamatergic principal cells instead of one: granule cells, which are the vast majority of the cells in the DG, and the so-called “mossy cells.” The distinctive appearance of mossy cells, the extensive divergence of their axons, and their vulnerability to excitotoxicity relative to granule cells has led to a great deal of interest in mossy cells. Nevertheless, there is no consensus about the normal functions of mossy cells and the implications of their vulnerability. There even seems to be some ambiguity about exactly what mossy cells are. Here we review initial studies of mossy cells, characteristics that define them, and suggest a practical definition to allow investigators to distinguish mossy cells from other hilar neurons even if all morphological and physiological information is unavailable due to technical limitations of their experiments. In addition, hypotheses are discussed about the role of mossy cells in the DG network, reasons for their vulnerability and their implications for disease. PMID:23420672

  7. Effect of dentate gyrus disruption on remembering what happened where

    Directory of Open Access Journals (Sweden)

    Min W Jung

    2015-06-01

    Full Text Available Our previous studies using Bax knockout (Bax-KO mice, in which newly generated granule cells continue to accumulate, disrupting neural circuitry specifically in the dentate gyrus (DG, suggest the involvement of the DG in binding the internally-generated spatial map with sensory information on external landmarks (spatial map-object association in forming a distinct spatial context for each environment. In order to test whether the DG is also involved in binding the internal spatial map with sensory information on external events (spatial map-event association, we tested the behavior of Bax-KO mice in a delayed-non-match-to-place task. Performance of Bax-KO mice was indistinguishable from that of wild-type mice as long as there was no interruption during the delay period (tested up to 5 min, suggesting that on-line maintenance of working memory is intact in Bax-KO mice. However, Bax-KO mice showed profound performance deficits when they were removed from the maze during the delay period (interruption condition with a sufficiently long (65 s delay, suggesting that episodic memory was impaired in Bax-KO mice. Together with previous findings, these results suggest the role of the DG in binding spatial information derived from dead reckoning and nonspatial information, such as external objects and events, in the process of encoding episodic memory.

  8. Smaller superior temporal gyrus volume specificity in schizotypal personality disorder

    Science.gov (United States)

    Goldstein, Kim E.; Hazlett, Erin A.; New, Antonia S.; Haznedar, M. Mehmet; Newmark, Randall E.; Zelmanova, Yuliya; Passarelli, Vincent; Weinstein, Shauna R.; Canfield, Emily L.; Meyerson, David A.; Tang, Cheuk Y.; Buchsbaum, Monte S.; Siever, Larry J.

    2009-01-01

    Background Superior temporal gyrus (STG/BA22) volume is reduced in schizophrenia and to a milder degree in schizotypal personality disorder (SPD), representing a less severe disorder in the schizophrenia-spectrum. SPD and Borderline personality disorder (BPD) are severe personality disorders characterized by social and cognitive dysfunction. However, while SPD is characterized by social withdrawal/anhedonia, BPD is marked by hyper-reactivity to interpersonal stimuli and hyper-emotionality. This is the first morphometric study to directly compare SPD and BPD patients in temporal volume. Methods We compared three age-gender- and education-matched groups: 27 unmedicated SPD individuals with no BPD traits, 52 unmedicated BPD individuals with no SPD traits, and 45 healthy controls. We examined gray matter volume of frontal and temporal lobe Brodmann areas (BAs), and dorsal/ventral amygdala from 3T magnetic resonance imaging. Results In the STG, an auditory association area reported to be dysfunctional in SPD and BPD, the SPD patients had significantly smaller volume than healthy controls and BPD patients. No group differences were found between BPD patients and controls. Smaller BA22 volume was associated with greater symptom severity in SPD patients. Reduced STG volume may be an important endophenotype for schizophrenia-spectrum disorders. SPD is distinct from BPD in terms of STG volume abnormalities which may reflect different underlying pathophysiological mechanisms and could help discriminate between them. PMID:19473820

  9. Tractography-based Parcellation of the Human Middle Temporal Gyrus

    Science.gov (United States)

    Xu, Jinping; Wang, Jiaojian; Fan, Lingzhong; Li, Hai; Zhang, Wen; Hu, Qingmao; Jiang, Tianzi

    2015-01-01

    The middle temporal gyrus (MTG) participates in a variety of functions, suggesting the existence of distinct functional subregions. In order to further delineate the functions of this brain area, we parcellated the MTG based on its distinct anatomical connectivity profiles and identified four distinct subregions, including the anterior (aMTG), middle (mMTG), posterior (pMTG), and sulcus (sMTG). Both the anatomical connectivity patterns and the resting-state functional connectivity patterns revealed distinct connectivity profiles for each subregion. The aMTG was primarily involved in the default mode network, sound recognition, and semantic retrieval. The mMTG was predominantly involved in the semantic memory and semantic control networks. The pMTG seems to be a part of the traditional sensory language area. The sMTG appears to be associated with decoding gaze direction and intelligible speech. Interestingly, the functional connectivity with Brodmann’s Area (BA) 40, BA 44, and BA 45 gradually increased from the anterior to the posterior MTG, a finding which indicated functional topographical organization as well as implying that language processing is functionally segregated in the MTG. These proposed subdivisions of the MTG and its functions contribute to understanding the complex functions of the MTG at the subregional level. PMID:26689815

  10. Decoding rule search domain in the left inferior frontal gyrus

    Science.gov (United States)

    Babcock, Laura; Vallesi, Antonino

    2018-01-01

    Traditionally, the left hemisphere has been thought to extract mainly verbal patterns of information, but recent evidence has shown that the left Inferior Frontal Gyrus (IFG) is active during inductive reasoning in both the verbal and spatial domains. We aimed to understand whether the left IFG supports inductive reasoning in a domain-specific or domain-general fashion. To do this we used Multi-Voxel Pattern Analysis to decode the representation of domain during a rule search task. Thirteen participants were asked to extract the rule underlying streams of letters presented in different spatial locations. Each rule was either verbal (letters forming words) or spatial (positions forming geometric figures). Our results show that domain was decodable in the left prefrontal cortex, suggesting that this region represents domain-specific information, rather than processes common to the two domains. A replication study with the same participants tested two years later confirmed these findings, though the individual representations changed, providing evidence for the flexible nature of representations. This study extends our knowledge on the neural basis of goal-directed behaviors and on how information relevant for rule extraction is flexibly mapped in the prefrontal cortex. PMID:29547623

  11. Anatomy and white matter connections of the orbitofrontal gyrus.

    Science.gov (United States)

    Burks, Joshua D; Conner, Andrew K; Bonney, Phillip A; Glenn, Chad A; Baker, Cordell M; Boettcher, Lillian B; Briggs, Robert G; O'Donoghue, Daniel L; Wu, Dee H; Sughrue, Michael E

    2017-09-01

    OBJECTIVE The orbitofrontal cortex (OFC) is understood to have a role in outcome evaluation and risk assessment and is commonly involved with infiltrative tumors. A detailed understanding of the exact location and nature of associated white matter tracts could significantly improve postoperative morbidity related to declining capacity. Through diffusion tensor imaging-based fiber tracking validated by gross anatomical dissection as ground truth, the authors have characterized these connections based on relationships to other well-known structures. METHODS Diffusion imaging from the Human Connectome Project for 10 healthy adult controls was used for tractography analysis. The OFC was evaluated as a whole based on connectivity with other regions. All OFC tracts were mapped in both hemispheres, and a lateralization index was calculated with resultant tract volumes. Ten postmortem dissections were then performed using a modified Klingler technique to demonstrate the location of major tracts. RESULTS The authors identified 3 major connections of the OFC: a bundle to the thalamus and anterior cingulate gyrus, passing inferior to the caudate and medial to the vertical fibers of the thalamic projections; a bundle to the brainstem, traveling lateral to the caudate and medial to the internal capsule; and radiations to the parietal and occipital lobes traveling with the inferior fronto-occipital fasciculus. CONCLUSIONS The OFC is an important center for processing visual, spatial, and emotional information. Subtle differences in executive functioning following surgery for frontal lobe tumors may be better understood in the context of the fiber-bundle anatomy highlighted by this study.

  12. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats

    Directory of Open Access Journals (Sweden)

    Guan Zeng Li

    2015-07-01

    Full Text Available Objective(s:To determine the effect of acetylcholine (ACh, pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN and pain inhibited neurons (PIN in hippocampal CA3 region of morphine addicted rats. Materials and Methods:Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to the sciatic nerve were used as noxious stimulation and the evoked electrical activities of PEN or PIN in hippocampal CA3 area were recorded using extracellular electrophysiological recording techniques in hippocampal slices. The effect of acetylcholine receptor stimulation byACh, the muscarinic agonist pilocarpine, and the muscarinic antagonist atropine on the pain evoked responses of pain related electrical activities was analyzed in hippocampal CA3 area of morphine addicted rats. Results:Intra-CA3 microinjection of ACh (2 μg/1 μl or pilocarpine (2 μg/1 μl decreased the discharge frequency and prolonged the firing latency of PEN, but increased the discharge frequency and shortened the firing inhibitory duration (ID of PIN. The intra-CA3 administration of atropine (0.5 μg/1 μl produced opposite effect. The peak activity of cholinergic modulators was 2 to 4 min later in morphine addicted rats compared to peak activity previously observed in normal rats. Conclusion: ACh dependent modulation of noxious stimulation exists in hippocampal CA3 area of morphine addicted rats. Morphine treatment may shift the sensitivity of pain related neurons towards a delayed response to muscarinergic neurotransmission in hippocampal CA3 region.

  13. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats.

    Science.gov (United States)

    Li, Guan Zeng; Liu, Zhe Hui; Wei, XinYa; Zhao, Pan; Yang, Chun Xiao; Xu, Man Ying

    2015-07-01

    To determine the effect of acetylcholine (ACh), pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN) and pain inhibited neurons (PIN) in hippocampal CA3 region of morphine addicted rats. Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to the sciatic nerve were used as noxious stimulation and the evoked electrical activities of PEN or PIN in hippocampal CA3 area were recorded using extracellular electrophysiological recording techniques in hippocampal slices. The effect of acetylcholine receptor stimulation by ACh, the muscarinic agonist pilocarpine, and the muscarinic antagonist atropine on the pain evoked responses of pain related electrical activities was analyzed in hippocampal CA3 area of morphine addicted rats. Intra-CA3 microinjection of ACh (2 μg/1 μl) or pilocarpine (2 μg/1 μl) decreased the discharge frequency and prolonged the firing latency of PEN, but increased the discharge frequency and shortened the firing inhibitory duration (ID) of PIN. The intra-CA3 administration of atropine (0.5 μg/1 μl) produced opposite effect. The peak activity of cholinergic modulators was 2 to 4 min later in morphine addicted rats compared to peak activity previously observed in normal rats. ACh dependent modulation of noxious stimulation exists in hippocampal CA3 area of morphine addicted rats. Morphine treatment may shift the sensitivity of pain related neurons towards a delayed response to muscarinergic neurotransmission in hippocampal CA3 region.

  14. Effect of ischemic preconditioning on the expression of c-myb in the CA1 region of the gerbil hippocampus after ischemia/reperfusion injury

    Directory of Open Access Journals (Sweden)

    Hui Young Lee

    2016-06-01

    Conclusion: Our results show that a lethal transient ischemia significantly decreased c-myb immunoreactivity in the SP of the CA1 region and that IPC well preserved c-myb immunoreactivity in the SP of the CA1 region. We suggest that the maintenance of c-myb might be related with IPC-mediated neuroprotection after a lethal ischemic insult.

  15. Interleukin-1β increases neuronal death in the hippocampal dentate gyrus associated with status epilepticus in the developing rat.

    Science.gov (United States)

    Rincón-López, C; Tlapa-Pale, A; Medel-Matus, J-S; Martínez-Quiroz, J; Rodríguez-Landa, J F; López-Meraz, M-L

    Interleukin-1β (IL-1β) increases necrotic neuronal cell death in the CA1 area after induced status epilepticus (SE) in developing rats. However, it remains uncertain whether IL-1β has a similar effect on the hippocampal dentate gyrus (DG). In this study, we analysed the effects of IL-1β on 14-day-old Wistar rats experiencing DG neuronal death induced by SE. SE was induced with lithium-pilocarpine. Six hours after SE onset, a group of pups was injected with IL-1β (at 0, 0.3, 3, 30, or 300ng/μL) in the right ventricle; another group was injected with IL-1β receptor (IL-1R1) antagonist (IL-1Ra, at 30ng/μL) of IL-1RI antagonist (IL-1Ra) alone, and additional group with 30ng/μL of IL-1Ra plus 3ng/μL of IL-1β. Twenty-four hours after SE onset, neuronal cell death in the dentate gyrus of the dorsal hippocampus was assessed using haematoxylin-eosin staining. Dead cells showed eosinophilic cytoplasm and condensed and fragmented nuclei. We observed an increased number of eosinophilic cells in the hippocampal DG ipsilateral to the site of injection of 3ng/μL and 300ng/μL of IL-1β in comparison with the vehicle group. A similar effect was observed in the hippocampal DG contralateral to the site of injection of 3ng/μL of IL-1β. Administration of both of IL-1β and IL-1Ra failed to prevent an increase in the number of eosinophilic cells. Our data suggest that IL-1β increases apoptotic neuronal cell death caused by SE in the hippocampal GD, which is a mechanism independent of IL-1RI activation. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Evaluation of Ca3(Co,M2O6 (M=Co, Fe, Mn, Ni as new cathode materials for solid-oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Fushao Li

    2015-10-01

    Full Text Available Series compounds Ca3(Co0.9M0.12O6 (M=Co, Fe, Mn, Ni with hexagonal crystal structure were prepared by sol–gel route as the cathode materials for solid oxide fuel cells (SOFCs. Effects of the varied atomic compositions on the structure, electrical conductivity, thermal expansion and electrochemical performance were systematically evaluated. Experimental results showed that the lattice parameters of Ca3(Co0.9Fe0.12O6 and Ca3(Co0.9Mn0.12O6 were both expanded to certain degree. Electron-doping and hole-doping effects were expected in Ca3(Co0.9Mn0.12O6 and Ca3(Co0.9Ni0.12O6 respectively according to the chemical states of constituent elements and thermal-activated behavior of electrical conductivity. Thermal expansion coefficients (TEC of Ca3(Co0.9M0.12O6 were measured to be distributed around 16×10−6 K−1, and compositional elements of Fe, Mn, and Ni were especially beneficial for alleviation of the thermal expansion problem of cathode materials. By using Ca3(Co0.9M0.12O6 as the cathodes operated at 800 °C, the interfacial area-specific resistance varied in the order of M=CoCa3(Co0.9Fe0.12O6 showed the best electrochemical performance and the power density as high as ca. 500 mW cm−2 at 800 °C achieved in the single cell with La0.8Sr0.2Ga0.83Mg0.17O2.815 as electrolyte and Ni–Ce0.8Sm0.2O1.9 as anode. Ca3(Co0.9M0.12O6 (M=Co, Fe, Mn, Ni can be used as the cost-effective cathode materials for SOFCs.

  17. Superior temporal gyrus thickness correlates with cognitive performance in multiple sclerosis.

    Science.gov (United States)

    Achiron, Asaf; Chapman, Joab; Tal, Sigal; Bercovich, Eran; Gil, Hararai; Achiron, Anat

    2013-07-01

    Decreased cortical thickness that signifies gray matter pathology and its impact on cognitive performance is a research field with growing interest in relapsing-remitting multiple sclerosis (RRMS) and needs to be further elucidated. Using high-field 3.0 T MRI, three-dimensional T1-FSPGR (voxel size 1 × 1 × 1 mm) cortical thickness was measured in 82 regions in the left hemisphere (LH) and right hemisphere (RH) in 20 RRMS patients with low disease activity and in 20 age-matched healthy subjects that in parallel underwent comprehensive cognitive evaluation. The correlation between local cortical atrophy and cognitive performance was examined. We identified seven regions with cortical tissue loss that differed between RRMS and age-matched healthy controls. These regions were mainly located in the frontal and temporal lobes, specifically within the gyrus rectus, inferior frontal sulcus, orbital gyrus, parahippocampal gyrus, and superior temporal gyrus, with preferential left asymmetry. Increased cortical thickness was identified in two visual sensory regions, the LH inferior occipital gyrus, and the RH cuneus, implicating adaptive plasticity. Correlation analysis demonstrated that only the LH superior temporal gyrus thickness was associated with cognitive performance and its thickness correlated with motor skills (r = 0.65, p = 0.003), attention (r = 0.45, p = 0.042), and information processing speed (r = 0.50, p = 0.025). Our findings show that restricted cortical thinning occurs in RRMS patients with mild disease and that LH superior temporal gyrus atrophy is associated with cognitive dysfunction.

  18. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome.

    Science.gov (United States)

    Berkowitz, Bruce A; Lenning, Jacob; Khetarpal, Nikita; Tran, Catherine; Wu, Johnny Y; Berri, Ali M; Dernay, Kristin; Haacke, E Mark; Shafie-Khorassani, Fatema; Podolsky, Robert H; Gant, John C; Maimaiti, Shaniya; Thibault, Olivier; Murphy, Geoffrey G; Bennett, Brian M; Roberts, Robin

    2017-09-01

    Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greater-than-normal 1/ T 1 that is quenchable with antioxidant as measured by quench-assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proof-of-concept data in models of AD-like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. AD-like models showed an abnormal gradient along the CA1 dorsal-ventral axis of excessive free radical production as measured by Quest MRI, and redox-sensitive calcium dysregulation as measured by manganese-enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subfield oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.-Berkowitz, B. A., Lenning, J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafie-Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. © FASEB.

  19. Sleep loss disrupts Arc expression in dentate gyrus neurons.

    Science.gov (United States)

    Delorme, James E; Kodoth, Varna; Aton, Sara J

    2018-04-07

    Sleep loss affects many aspects of cognition, and memory consolidation processes occurring in the hippocampus seem particularly vulnerable to sleep loss. The immediate-early gene Arc plays an essential role in both synaptic plasticity and memory formation, and its expression is altered by sleep. Here, using a variety of techniques, we have characterized the effects of brief (3-h) periods of sleep vs. sleep deprivation (SD) on the expression of Arc mRNA and Arc protein in the mouse hippocampus and cortex. By comparing the relative abundance of mature Arc mRNA with unspliced pre-mRNA, we see evidence that during SD, increases in Arc across the cortex, but not hippocampus, reflect de novo transcription. Arc increases in the hippocampus during SD are not accompanied by changes in pre-mRNA levels, suggesting that increases in mRNA stability, not transcription, drives this change. Using in situ hybridization (together with behavioral observation to quantify sleep amounts), we find that in the dorsal hippocampus, SD minimally affects Arc mRNA expression, and decreases the number of dentate gyrus (DG) granule cells expressing Arc. This is in contrast to neighboring cortical areas, which show large increases in neuronal Arc expression after SD. Using immunohistochemistry, we find that Arc protein expression is also differentially affected in the cortex and DG with SD - while larger numbers of cortical neurons are Arc+, fewer DG granule cells are Arc+, relative to the same regions in sleeping mice. These data suggest that with regard to expression of plasticity-regulating genes, sleep (and SD) can have differential effects in hippocampal and cortical areas. This may provide a clue regarding the susceptibility of performance on hippocampus-dependent tasks to deficits following even brief periods of sleep loss. Copyright © 2018. Published by Elsevier Inc.

  20. Adiponectin modulates synaptic plasticity in hippocampal dentate gyrus.

    Science.gov (United States)

    Pousti, Farideh; Ahmadi, Ramesh; Mirahmadi, Fatemeh; Hosseinmardi, Narges; Rohampour, Kambiz

    2018-01-01

    Recent studies have suggested the involvement of some metabolic hormones in memory formation and synaptic plasticity. Insulin dysfunction is known as an essential process in the pathogenesis of sporadic Alzheimer's disease (AD). In this study we examined whether adiponectin (ADN), as an insulin-sensitizing adipokine, could affect hippocampal synaptic plasticity. Field potential recordings were performed on intracerebroventricular (icv) cannulated urethane anesthetized rats. After baseline recording from dentate gyrus (DG) and 10min prior to high/low frequency stimulation (HFS/LFS), 10μl icv ADN (600nm) were injected. The slope of field excitatory postsynaptic potentials (fEPSP) and the amplitude of population spikes (PS) were recorded in response to perforanth path (PP) stimulation. Paired pulse stimuli and ADN injection without any stimulation protocols were also evaluated. Application of ADN before HFS increased PS amplitude recorded in DG significantly (P≤0.05) in comparison to HFS only group. ADN suppressed the potency of LFS to induce long-term depression (LTD), causing a significant difference between fEPSP slope (P≤0.05) and PS amplitude (P≤0.01) between ADN+LFS and ADN group. Paired pulse stimuli applied at 20ms intervals showed more paired pulse facilitation (PPF), when applied after ADN (P≤0.05). ADN induced a chemical long-term potentiation (LTP) in which fEPSP slope and PS amplitude increased significantly (P≤0.01 and P≤0.05, respectively). It is concluded that ADN is able to potentiate the HFS-induced LTP and suppress LFS-induced LTD. ADN caused a chemical LTP, when applied without any tetanic protocol. ADN may enhance the presynaptic release probability. Copyright © 2017. Published by Elsevier B.V.

  1. Neutron diffraction studies on Ca1-xBaxZr4P6O24 solid solutions

    International Nuclear Information System (INIS)

    Achary, S.N.; Jayakumar, O.D.; Patwe, S.J.; Kulshreshtha, S.K.; Tyagi, A.K.; Shinde, A.B.; Krishna, P.S.R.

    2008-01-01

    Herein we report the results of detailed crystallographic studies of Ca 1-x Ba x Zr 4 P 6 O 24 compositions from combined Rietveld refinements of powder X-ray and neutron diffraction data. All the studied compositions crystallize in rhombohedral lattice (space group R-3 No. 148). A continuous solid solution is concluded from the systematic variation of unit cell parameters. The variation of unit cell parameters with the composition indicates decreasing trend in α parameter with increasing Ba 2+ concentration contrast to an increasing trend in c parameter. (author)

  2. Synthesis and Microstructure Properties of (Bi,Pb2Sr2Ca1Cu2Oy Ceramic Superconductor

    Directory of Open Access Journals (Sweden)

    nurmalita .

    2015-11-01

    Full Text Available Properties of (Bi, Pb2Sr2Ca1Cu2Oy ceramic superconductors were prepared by the melt textured growth methods in order to investigate the effects of the slow cooling time on the microstructur.  Phase analyses of the samples by X-ray diffraction (XRD has been carried out to assess the effects of the slow cooling time. From XRD analyses, the addition to the sample of  the slow cooling time degrades formation of the high-Tc Bi-2212 phase. The possible reasons for the observed degradation in the microstructure properties due to the slow cooling time addition were discussed.

  3. Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus.

    Science.gov (United States)

    Hillman, Kristin L; Doze, Van A; Porter, James E

    2005-08-01

    Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. Using cell-attached recordings, we tested the ability of ISO to increase pyramidal cell action potential (AP) frequency in the presence of subtype-selective beta-AR antagonists. ICI-118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] and butoxamine [alpha-[1-(t-butylamino)ethyl]-2,5-dimethoxybenzyl alcohol) hydrochloride], agents that selectively block the beta2-AR, produced significant parallel rightward shifts in the concentration-response curves for ISO. From these curves, apparent equilibrium dissociation constant (K(b)) values of 0.3 nM for ICI-118,551 and 355 nM for butoxamine were calculated using Schild regression analysis. Conversely, effective concentrations of the selective beta1-AR antagonists CGP 20712A [(+/-)-2-hydroxy-5-[2-([2-hydroxy-3-(4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy)propyl]amino)ethoxy]-benzamide methanesulfonate] and atenolol [4-[2'-hydroxy-3'-(isopropyl-amino)propoxy]phenylacetamide] did not significantly affect the pyramidal cell response to ISO. However, at higher concentrations, atenolol significantly decreased the potency for ISO-mediated AP frequencies. From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists

  4. The structure and piezoelectric properties of (Ca1-xSrx)Bi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Zheng Liaoying; Li Guorong; Zhang Wangzhong; Chen, Daren; Yin Qinrui

    2003-01-01

    In this paper, the structure and piezoelectric properties of (Ca 1-x Sr x )Bi 4 Ti 4 O 15 ceramics (x=0-1.0) are investigated. The formation of single orthorhombic phase is verified by XRD. The dependence of dielectric and piezoelectric properties on x is also determined. The results show that the excellent properties could be found in the composition of x=0.4. In that composition, d 33 =14.9, T C =677 deg. C and the DC resistivity is decuplely higher than that of BST (SrBi 4 Ti 4 O 15 ) and CBT (CaBi 4 Ti 4 O 15 )

  5. Growth and characterization of Nd-doped disordered Ca3Gd2(BO3)4 crystal

    Science.gov (United States)

    Pan, Z. B.; Zhang, H. J.; Yu, H. H.; Xu, M.; Zhang, Y. Y.; Sun, S. Q.; Wang, J. Y.; Wang, Q.; Wei, Z. Y.; Zhang, Z. G.

    2012-01-01

    A high-quality disordered Nd3+:Ca3Gd2(BO3)4 (Nd3+:CGB) laser crystal was grown by the Czochralski method. The space group and effective segregation coefficient of Nd3+ were determined to be Pnma and 1.06, respectively. The thermal properties, including the average linear thermal expansion coefficient, thermal diffusivity, specific heat, and thermal conductivity were systematically measured for the first time. It was found that the thermal conductivity increases with increasing temperature, indicating glasslike behavior. The polarized spectral properties of the crystal were investigated, including the polarized absorption spectra, polarized fluorescence spectra, and fluorescence decay. The spectroscopic parameters of Nd3+ ions in Nd3+:CGB crystal have been obtained based on Judd-Ofelt theory. The anisotropy of the spectral properties for different polarized directions was discussed. Additionally, the continuous-wave (CW) laser performance at 1.06 μm was demonstrated for the first time. The maximum output power of 603 mW was achieved with corresponding optical conversion efficiency of 8.33% and slope efficiency of 9.95%.

  6. HERC 1 ubiquitin ligase mutation affects neocortical, CA3 hippocampal and spinal cord projection neurons. An ultrastructural study

    Directory of Open Access Journals (Sweden)

    Rocío eRuiz

    2016-04-01

    Full Text Available The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and, hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity.

  7. Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse.

    Science.gov (United States)

    Huang, Yang Z; Pan, Enhui; Xiong, Zhi-Qi; McNamara, James O

    2008-02-28

    The receptor tyrosine kinase, TrkB, is critical to diverse functions of the mammalian nervous system in health and disease. Evidence of TrkB activation during epileptogenesis in vivo despite genetic deletion of its prototypic neurotrophin ligands led us to hypothesize that a non-neurotrophin, the divalent cation zinc, can transactivate TrkB. We found that zinc activates TrkB through increasing Src family kinase activity by an activity-regulated mechanism independent of neurotrophins. One subcellular locale at which zinc activates TrkB is the postsynaptic density of excitatory synapses. Exogenous zinc potentiates the efficacy of the hippocampal mossy fiber (mf)-CA3 pyramid synapse by a TrkB-requiring mechanism. Long-term potentiation of this synapse is impaired by deletion of TrkB, inhibition of TrkB kinase activity, and by CaEDTA, a selective chelator of zinc. The activity-dependent activation of synaptic TrkB in a neurotrophin-independent manner provides a mechanism by which this receptor can regulate synaptic plasticity.

  8. Polarized spectra calculation and continuous wave laser operation of Yb-doped disordered Ca3La2(BO3)4 crystal

    Science.gov (United States)

    Wang, Yeqing; Chen, Aixi; You, Zhenyu; Tu, Chaoyang

    2015-12-01

    A notable disorder crystal Yb:Ca3La2(BO3)4 crystal with Yb3+ ion doping concentration of 10 at.% was grown by the Czochralski method. The polarized absorption, polarized emission, and polarized gain cross sections were systematically calculated. The laser operations were investigated with Yb:Ca3La2(BO3)4 crystals cut along the a, b, and c crystallographic axes. The highest output power of 3.88 W was obtained by using the b-cut Yb:Ca3La2(BO3)4 crystal, with a slope efficiency of 62%. Additionally, it was confirmed that the output laser spectra were largely dependent on the output coupler.

  9. Polarized spectra calculation and continuous wave laser operation of Yb-doped disordered Ca3La2(BO3)4 crystal

    International Nuclear Information System (INIS)

    Wang, Yeqing; Chen, Aixi; You, Zhenyu; Tu, Chaoyang

    2015-01-01

    A notable disorder crystal Yb:Ca 3 La 2 (BO 3 ) 4 crystal with Yb 3+ ion doping concentration of 10 at.% was grown by the Czochralski method. The polarized absorption, polarized emission, and polarized gain cross sections were systematically calculated. The laser operations were investigated with Yb:Ca 3 La 2 (BO 3 ) 4 crystals cut along the a, b, and c crystallographic axes. The highest output power of 3.88 W was obtained by using the b-cut Yb:Ca 3 La 2 (BO 3 ) 4 crystal, with a slope efficiency of 62%. Additionally, it was confirmed that the output laser spectra were largely dependent on the output coupler. (paper)

  10. Strain-dependent variations in spatial learning and in hippocampal synaptic plasticity in the dentate gyrus of freely behaving rats

    Directory of Open Access Journals (Sweden)

    Denise eManahan-Vaughan

    2011-03-01

    Full Text Available Hippocampal synaptic plasticity is believed to comprise the cellular basis for spatial learning. Strain-dependent differences in synaptic plasticity in the CA1 region have been reported. However, it is not known whether these differences extend to other synapses within the trisynaptic circuit, although there is evidence for morphological variations within that path. We investigated whether Wistar and Hooded Lister (HL rat strains express differences in synaptic plasticity in the dentate gyrus in vivo. We also explored whether they exhibit differences in the ability to engage in spatial learning in an 8-arm radial maze. Basal synaptic transmission was stable over a 24h period in both rat strains, and the input-output relationship of both strains was not significantly different. Paired-pulse analysis revealed significantly less paired-pulse facilitation in the Hooded Lister strain when pulses were given 40-100 msec apart. Low frequency stimulation at 1Hz evoked long-term depression (>24h in Wistar and short-term depression (<2h in HL rats; 200Hz stimulation induced long-term potentiation (>24h in Wistar, and a transient, significantly smaller potentiation (<1h in HL rats, suggesting that HL rats have higher thresholds for expression of persistent synaptic plasticity. Training for 10d in an 8-arm radial maze revealed that HL rats master the working memory task faster than Wistar rats, although both strains show an equivalent performance by the end of the trial period. HL rats also perform more efficiently in a double working and reference memory task. On the other hand, Wistar rats show better reference memory performance on the final (8-10 days of training. Wistar rats were less active and more anxious than HL rats.These data suggest that strain-dependent variations in hippocampal synaptic plasticity occur in different hippocampal synapses. A clear correlation with differences in spatial learning is not evident however.

  11. Structure determinations for Ca3Ti2O7, Ca4Ti3O10, Ca3.6Sr0.4Ti3O10 and a refinement of Sr3Ti2O7

    International Nuclear Information System (INIS)

    Elcombe, M.M.; Kisi, E.H.; Hawkins, K.D.; White, T.J.; Goodman, P.; Matheson, S.

    1991-01-01

    The structures of the orthorhombic Ruddlesden-Popper (A n+1 B n X 3n+1 ) phases Ca 3 Ti 2 O 7 (n=2) refined from neutron powder diffraction data at λ=1.893 A. They consist of coherent intergrowths of perovskite (CaTiO 3 ) blocks, n TiO 6 octahedra thick, with single layers of CaO having a distorted NaCl configuration. TiO 6 octahedra are tilted and distorted in a very similar fashion to those in CaTiO 3 (n=∞). This fact was used to determine the space groups of the layered structures. Convergent-beam electron diffraction patterns are best matched by calculations in the above space groups which are thus confirmed. Octahedral tilt angles increase slightly in the sequence n=2, 3, ∞. Strontium addition reduces the octahedral tilt angles because of preferential substitution of Sr on the Ca sites within the perovskite blocks of Ca 4 Ti 3 O 10 . The algorithm used to produce starting models for structure refinements is thought to be generally applicable to Ruddlesden-Popper and possibly other layered perovskite structures. It furnishes the predictions: (a) all n-even compounds in the Ca n+1 Ti n O 3n+1 series will have space group Ccm2 1 , (b) all n-odd compounds in this series will have space group Pcab, (c) all A n+1 B n X 3n+1 series for which the n=∞ end member (ABX 3 ) is isostructural with CaTiO 3 will be isostructural with the compounds reported above (e.g. Ca n+1 Zr n O 3n+1 ). (orig./WL)

  12. Ternary phosphates in Ca3(PO4)2-Na3Ln(PO4)2 (Ln-Nd, Eu, Er) systems

    International Nuclear Information System (INIS)

    Lazoryak, B.I.; Ivanov, L.N.; Strunenkova, T.V.; Golubev, V.N.; Viting, B.N.

    1990-01-01

    Ternary phosphates, formed in Ca 3 (PO 4 ) 2 -Na 3 Ln(PO 4 ) 2 (Ln-Nd, Eu, Er) systems were investigated by the methods of X-ray phase, luminescent analyses and IR spectroscopy. 5 regions of homogeneity were found. Two of them (I and II) were distinguished for all systems. Samples in the region of up to 14.285 mol.% Na 3 Ln(PO 4 ) 2 crystallize on the basis of β-Ca 3 (PO 4 ) 2 structure, and in other homogeneity regions - on the basis of β-K 2 SO 4 structure

  13. Neuroprotective effects of oleuropein against cognitive dysfunction induced by colchicine in hippocampal CA1 area in rats.

    Science.gov (United States)

    Pourkhodadad, Soheila; Alirezaei, Masoud; Moghaddasi, Mehrnoush; Ahmadvand, Hassan; Karami, Manizheh; Delfan, Bahram; Khanipour, Zahra

    2016-09-01

    Alzheimer's disease is a progressive neurodegenerative disorder with decline in memory. The role of oxidative stress is well known in the pathogenesis of the disease. The purpose of this study was to evaluate pretreatment effects of oleuropein on oxidative status and cognitive dysfunction induced by colchicine in the hippocampal CA1 area. Male Wistar rats were pretreated orally once daily for 10 days with oleuropein at doses of 10, 15 and 20 mg/kg. Thereafter, colchicine (15 μg/rat) was administered into the CA1 area of the hippocampus to induce cognitive dysfunction. The Morris water maze was used to assess learning and memory. Biochemical parameters such as glutathione peroxidase and catalase activities, nitric oxide and malondialdehyde concentrations were measured to evaluate the antioxidant status in the rat hippocampus. Our results indicated that colchicine significantly impaired spatial memory and induced oxidative stress; in contrast, oleuropein pretreatment significantly improved learning and memory retention, and attenuated the oxidative damage. The results clearly indicate that oleuropein has neuroprotective effects against colchicine-induced cognitive dysfunction and oxidative damage in rats.

  14. Over-expression of TSPO in the hippocampal CA1 area alleviates cognitive dysfunction caused by lipopolysaccharide in mice.

    Science.gov (United States)

    Zhang, Hui; Ma, Li; Yin, Yan-Ling; Dong, Lian-Qiang; Cheng, Gang-Ge; Ma, Ya-Qun; Li, Yun-Feng; Xu, Bai-Nan

    2016-09-01

    The translocator protein 18kDa (TSPO) is closely related to regulation of immune/inflammatory response. However, the putative role and signaling mechanisms of TSPO in regulation of neuroinflammation remain unclear. GV287 lentiviral vectors mediating TSPO over-expression were injected into bilateral hippocampal CA1 areas to test whether TSPO over-expression was neuroprotective in lipopolysaccharide (LPS)-induced mice model. Finasteride, a blocker of allopregnanolone production, was used to test whether the protective effects were related to steroideogenesis. The results demonstrated that TSPO over-expression increased progesterone and allopregnanolone synthesis. TSPO over-expression in CA1 area improved LPS-induced cognitive deficiency in mice and this cognitive improvement was reversed by finasteride administration. These data suggest that up-regulation of TSPO level during neuroinflammation may be an adaptive response mechanism, a way to provide more neurosteroids. We confer that TSPO could be an attractive drug target for controlling neuroinflammation in the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Alterations of in vivo CA1 network activity in Dp(16)1Yey Down syndrome model mice.

    Science.gov (United States)

    Raveau, Matthieu; Polygalov, Denis; Boehringer, Roman; Amano, Kenji; Yamakawa, Kazuhiro; McHugh, Thomas J

    2018-02-27

    Down syndrome, the leading genetic cause of intellectual disability, results from an extra-copy of chromosome 21. Mice engineered to model this aneuploidy exhibit Down syndrome-like memory deficits in spatial and contextual tasks. While abnormal neuronal function has been identified in these models, most studies have relied on in vitro measures. Here, using in vivo recording in the Dp(16)1Yey model, we find alterations in the organization of spiking of hippocampal CA1 pyramidal neurons, including deficits in the generation of complex spikes. These changes lead to poorer spatial coding during exploration and less coordinated activity during sharp-wave ripples, events involved in memory consolidation. Further, the density of CA1 inhibitory neurons expressing neuropeptide Y, a population key for the generation of pyramidal cell bursts, were significantly increased in Dp(16)1Yey mice. Our data refine the 'over-suppression' theory of Down syndrome pathophysiology and suggest specific neuronal subtypes involved in hippocampal dysfunction in these model mice. © 2018, Raveau et al.

  16. Modulators of cytoskeletal reorganization in CA1 hippocampal neurons show increased expression in patients at mid-stage Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Patricia F Kao

    2010-10-01

    Full Text Available During the progression of Alzheimer's disease (AD, hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF receptor tyrosine kinase B (TrkB, mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression.

  17. Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas.

    Science.gov (United States)

    Hsiao, Chun-Jen; Lin, Ching-Lung; Lin, Tian-Yu; Wang, Sheue-Er; Wu, Chung-Hsin

    2016-04-13

    It has been reported that the decimation of honey bees was because of pesticides of imidacloprid. The imidacloprid is a wildly used neonicotinoid insecticide. However, whether imidacloprid toxicity interferes with the spatial memory of echolocation bats is still unclear. Thus, we compared the spatial memory of Formosan leaf-nosed bats, Hipposideros terasensis, before and after chronic treatment with a low dose of imidacloprid. We observed that stereotyped flight patterns of echolocation bats that received chronic imidacloprid treatment were quite different from their originally learned paths. We further found that neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas of echolocation bats that received imidacloprid treatment was significantly enhanced in comparison with echolocation bats that received sham treatment. Thus, we suggest that imidacloprid toxicity may interfere with the spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. The results provide direct evidence that pesticide toxicity causes a spatial memory disorder in echolocation bats. This implies that agricultural pesticides may pose severe threats to the survival of echolocation bats.

  18. Recent behavioral history modifies coupling between cell activity and Arc gene transcription in hippocampal CA1 neurons.

    Science.gov (United States)

    Guzowski, John F; Miyashita, Teiko; Chawla, Monica K; Sanderson, Jennifer; Maes, Levi I; Houston, Frank P; Lipa, Peter; McNaughton, Bruce L; Worley, Paul F; Barnes, Carol A

    2006-01-24

    The ability of neurons to alter their transcriptional programs in response to synaptic input is of fundamental importance to the neuroplastic mechanisms underlying learning and memory. Because of technical limitations of conventional gene detection methods, the current view of activity-dependent neural transcription derives from experiments in which neurons are assumed quiescent until a signaling stimulus is given. The present study was designed to move beyond this static model by examining how earlier episodes of neural activity influence transcription of the immediate-early gene Arc. Using a sensitive FISH method that detects primary transcript at genomic alleles, the proportion of hippocampal CA1 neurons that activate transcription of Arc RNA was constant at approximately 40% in response to both a single novel exploration session and daily sessions repeated over 9 days. This proportion is similar to the percentage of active neurons defined electrophysiologically. However, this close correspondence was disrupted in rats exposed briefly, but repeatedly, to the same environment within a single day. Arc transcription in CA1 neurons declined dramatically after as few as four 5-min sessions, despite stable electrophysiological activity during all sessions. Additional experiments indicate that the decrement in Arc transcription occurred at the cellular, rather than synaptic level, and was not simply linked to habituation to novelty. Thus, the neural genomic response is governed by recent, but not remote, cell firing history in the behaving animal. This state-dependence of neuronal transcriptional coupling provides a mechanism of metaplasticity and may regulate capacity for synaptic modification in neural networks.

  19. Epitaxial Growth of MgxCa1-xO on GaN by Atomic Layer Deposition.

    Science.gov (United States)

    Lou, Xiabing; Zhou, Hong; Kim, Sang Bok; Alghamdi, Sami; Gong, Xian; Feng, Jun; Wang, Xinwei; Ye, Peide D; Gordon, Roy G

    2016-12-14

    We demonstrate for the first time that a single-crystalline epitaxial Mg x Ca 1-x O film can be deposited on gallium nitride (GaN) by atomic layer deposition (ALD). By adjusting the ratio between the amounts of Mg and Ca in the film, a lattice matched Mg x Ca 1-x O/GaN(0001) interface can be achieved with low interfacial defect density. High-resolution X-ray diffraction (XRD) shows that the lattice parameter of this ternary oxide nearly obeys Vegard's law. An atomically sharp interface from cross-sectional transmission electron microscopy (TEM) confirmed the high quality of the epitaxy. High-temperature capacitance-voltage characterization showed that the film with composition Mg 0.25 Ca 0.75 O has the lowest interfacial defect density. With this optimal oxide composition, a Mg 0.25 Ca 0.75 O/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility (MOS-HEMT) device was fabricated. An ultrahigh on/off ratio of 10 12 and a near ideal SS of 62 mV/dec were achieved with this device.

  20. Enhancement of information transmission with stochastic resonance in hippocampal CA1 neuron models: effects of noise input location.

    Science.gov (United States)

    Kawaguchi, Minato; Mino, Hiroyuki; Durand, Dominique M

    2007-01-01

    Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we investigate the effects of the location of background noise input on information transmission in a hippocampal CA1 neuron model. In the computer simulation, random sub-threshold spike trains (signal) generated by a filtered homogeneous Poisson process were presented repeatedly to the middle point of the main apical branch, while the homogeneous Poisson shot noise (background noise) was applied to a location of the dendrite in the hippocampal CA1 model consisting of the soma with a sodium, a calcium, and five potassium channels. The location of the background noise input was varied along the dendrites to investigate the effects of background noise input location on information transmission. The computer simulation results show that the information rate reached a maximum value for an optimal amplitude of the background noise amplitude. It is also shown that this optimal amplitude of the background noise is independent of the distance between the soma and the noise input location. The results also show that the location of the background noise input does not significantly affect the maximum values of the information rates generated by stochastic resonance.

  1. The effect of propofol on CA1 pyramidal cell excitability and GABAA-mediated inhibition in the rat hippocampal slice.

    Science.gov (United States)

    Albertson, T E; Walby, W F; Stark, L G; Joy, R M

    1996-05-24

    An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of propofol on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid, and electrodes were placed in the CA1 region to record extracellular field population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. The major effect of propofol (7-28 microM) was a dose and time dependent increase in the intensity and duration of GABA-mediated inhibition. This propofol effect could be rapidly and completely reversed by exposure to known GABAA antagonists, including picrotoxin, bicuculline and pentylenetetrazol. It was also reversed by the chloride channel antagonist, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). It was not antagonized by central (flumazenil) or peripheral (PK11195) benzodiazepine antagonists. Reversal of endogenous inhibition was also noted with the antagonists picrotoxin and pentylenetetrazol. Input/output curves constructed using stimulus propofol caused only a small enhancement of EPSPs at higher stimulus intensities but had no effect on PS amplitudes. These studies are consistent with propofol having a GABAA-chloride channel mechanism causing its effect on recurrent collateral evoked inhibition in the rat hippocampal slice.

  2. Effect of parental morphine addiction on extracellular glutamate concentration of dentate gyrus in rat offsprings

    Directory of Open Access Journals (Sweden)

    rahele Assaee

    2004-01-01

    Findings: In male offsprings of sham control1, sham control2, test1 and test2 basal and electrical stimulated of extracellular glutamate concentration of dentate gyrus were: 0.67±0.04, 1.11±0.1, and in female offsprings were 0.47±0.06, 0.88±0.05 (n=5. The basal and stimulated extra cellular glutamate concentration of dentate gyrus was decreased in both test1 and test2 offsprings. It was less in test1 than test2 offsprings. The glutamate concentration of dentate gyrus in female offsprings of test1 group was less than that of the male offsprings. conclusion: The results suggest that parental morphine addiction may cause learning deficiency through reduction of extracellular glutamate concentration in dentate gyrus so the side effects of parental morphine addiction in offsprings must be considered.

  3. Apraxia of speech associated with an infarct in the precentral gyrus of the insula

    International Nuclear Information System (INIS)

    Nagao, M.; Komori, T.; Isozaki, E.; Hirai, S.; Takeda, K.

    1999-01-01

    It has been postulated that the precentral gyrus in the left insula is responsible for co-ordination of speech. We report a paitent with this disturbance who showed an acute infarct limited to this region. (orig.)

  4. Improvement of the mechanical properties and corrosion resistance of biodegradable β-Ca3(PO4)2/Mg-Zn composites prepared by powder metallurgy: the adding β-Ca3(PO4)2, hot extrusion and aging treatment.

    Science.gov (United States)

    Yan, Yang; Kang, Yijun; Li, Ding; Yu, Kun; Xiao, Tao; Deng, Youwen; Dai, Han; Dai, Yilong; Xiong, Hanqing; Fang, Hongjie

    2017-05-01

    In this study, 10%β-Ca 3 (PO 4 ) 2 /Mg-6%Zn (wt.%) composites with Mg-6%Zn alloy as control were prepared by powder metallurgy. After hot extrusion, the as-extruded composites were aged for 72h at 150°C. The effects of the adding β-Ca 3 (PO 4 ) 2 , hot extrusion and aging treatment on their microstructure, mechanical properties and corrosion resistance were investigated. The XRD results identified α-Mg, MgZn phase and β-Ca 3 (PO 4 ) 2 phase in these composites. After hot extrusion, grains were significantly refined, and the larger-sized β-Ca 3 (PO 4 ) 2 particles and coarse MgZn phases were broken into linear-distributed β-Ca 3 (PO 4 ) 2 and MgZn phases along the extrusion direction. After aging treatment, the elements of Zn, Ca, P and O presented a more homogeneous distribution. The compressive strengths of the β-Ca 3 (PO 4 ) 2 /Mg-Zn composites were approximately double those of natural bone, and their densities and elastic moduli matched those of natural bone. The immersion tests and electrochemical tests revealed that the adding β-Ca 3 (PO 4 ) 2 , hot extrusion and aging treatment could promote the formation of protective corrosion product layer on the sample surface in Ringer's solution, which improved corrosion resistance of the β-Ca 3 (PO 4 ) 2 /Mg-Zn composites. The XRD results indicated that the corrosion product layer contained Mg(OH) 2 , β-Ca 3 (PO 4 ) 2 and hydroxyapatite (HA). The cytotoxicity assessments showed the as-extruded β-Ca 3 (PO 4 ) 2 /Mg-Zn composite aged for 72h was harmless to L-929 cells. These results suggested that the β-Ca 3 (PO 4 ) 2 /Mg-Zn composites prepared by powder metallurgy were promising to be used for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Temporal changes in prosaposin expression in the rat dentate gyrus after birth.

    Directory of Open Access Journals (Sweden)

    Midori Morishita

    Full Text Available Neurogenesis in the hippocampal dentate gyrus occurs constitutively throughout postnatal life. Adult neurogenesis includes a multistep process that ends with the formation of a postmitotic and functionally integrated new neuron. During adult neurogenesis, various markers are expressed, including GFAP, nestin, Pax6, polysialic acid-neural cell adhesion molecule (PSA-NCAM, neuronal nuclei (NeuN, doublecortin, TUC-4, Tuj-1, and calretinin. Prosaposin is the precursor of saposins A-D; it is found in various organs and can be excreted. Strong prosaposin expression has been demonstrated in the developing brain including the hippocampus, and its neurotrophic activity has been proposed. This study investigated changes in prosaposin in the dentate gyrus of young and adult rats using double immunohistochemistry with antibodies to prosaposin, PSA-NCAM, and NeuN. Prosaposin immunoreactivity was intense in the dentate gyrus at postnatal day 3 (P3 and P7, but decreased gradually after P14. In the dentate gyrus at P28, immature PSA-NCAM-positive neurons localized exclusively in the subgranular zone were prosaposin-negative, whereas mature Neu-N-positive neurons were positive for prosaposin. Furthermore, these prosaposin-negative immature neurons were saposin B-positive, suggesting that the neurons take up and degrade prosaposin. In situ hybridization assays showed that prosaposin in the adult dentate gyrus is dominantly the Pro+9 type, a secreted type of prosaposin. These results imply that prosaposin secreted from mature neurons stimulates proliferation and maturation of immature neurons in the dentate gyrus.

  6. Temporal changes in prosaposin expression in the rat dentate gyrus after birth.

    Science.gov (United States)

    Morishita, Midori; Nabeka, Hiroaki; Shimokawa, Tetsuya; Miyawaki, Kyojy; Doihara, Takuya; Saito, Shouichiro; Kobayashi, Naoto; Matsuda, Seiji

    2014-01-01

    Neurogenesis in the hippocampal dentate gyrus occurs constitutively throughout postnatal life. Adult neurogenesis includes a multistep process that ends with the formation of a postmitotic and functionally integrated new neuron. During adult neurogenesis, various markers are expressed, including GFAP, nestin, Pax6, polysialic acid-neural cell adhesion molecule (PSA-NCAM), neuronal nuclei (NeuN), doublecortin, TUC-4, Tuj-1, and calretinin. Prosaposin is the precursor of saposins A-D; it is found in various organs and can be excreted. Strong prosaposin expression has been demonstrated in the developing brain including the hippocampus, and its neurotrophic activity has been proposed. This study investigated changes in prosaposin in the dentate gyrus of young and adult rats using double immunohistochemistry with antibodies to prosaposin, PSA-NCAM, and NeuN. Prosaposin immunoreactivity was intense in the dentate gyrus at postnatal day 3 (P3) and P7, but decreased gradually after P14. In the dentate gyrus at P28, immature PSA-NCAM-positive neurons localized exclusively in the subgranular zone were prosaposin-negative, whereas mature Neu-N-positive neurons were positive for prosaposin. Furthermore, these prosaposin-negative immature neurons were saposin B-positive, suggesting that the neurons take up and degrade prosaposin. In situ hybridization assays showed that prosaposin in the adult dentate gyrus is dominantly the Pro+9 type, a secreted type of prosaposin. These results imply that prosaposin secreted from mature neurons stimulates proliferation and maturation of immature neurons in the dentate gyrus.

  7. Intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna; Ogawa, Taisuke; Takada, Shunsuke; Nakamura, Masatoshi; Fujii, Hiroaki; Ando, Masaki

    2014-11-01

    The role of perforant pathway-dentate granule cell synapses in cognitive behavior was examined focusing on synaptic Zn(2+) signaling in the dentate gyrus. Object recognition memory was transiently impaired when extracellular Zn(2+) levels were decreased by injection of clioquinol and N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylendediamine. To pursue the effect of the loss and/or blockade of Zn(2+) signaling in dentate granule cells, ZnAF-2DA (100 pmol, 0.1 mM/1 µl), an intracellular Zn(2+) chelator, was locally injected into the dentate molecular layer of rats. ZnAF-2DA injection, which was estimated to chelate intracellular Zn(2+) signaling only in the dentate gyrus, affected object recognition memory 1 h after training without affecting intracellular Ca(2+) signaling in the dentate molecular layer. In vivo dentate gyrus long-term potentiation (LTP) was affected under the local perfusion of the recording region (the dentate granule cell layer) with 0.1 mM ZnAF-2DA, but not with 1-10 mM CaEDTA, an extracellular Zn(2+) chelator, suggesting that the blockade of intracellular Zn(2+) signaling in dentate granule cells affects dentate gyrus LTP. The present study demonstrates that intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory, probably via dentate gyrus LTP expression. Copyright © 2014 Wiley Periodicals, Inc.

  8. Middle Temporal Gyrus Versus Inferior Temporal Gyrus Transcortical Approaches to High-Grade Astrocytomas in the Mediobasal Temporal Lobe: A Comparison of Outcomes, Functional Restoration, and Surgical Considerations.

    Science.gov (United States)

    Quinones-Hinojosa, Alfredo; Raza, Shaan M; Ahmed, Ishrat; Rincon-Torroella, Jordina; Chaichana, Kaisorn; Olivi, Alessandro

    2017-01-01

    High-grade astrocytomas of the mesial temporal lobe may pose surgical challenges. Several approaches (trans-sylvian, subtemporal, and transcortical) have been designed to circumnavigate the critical neurovascular structures and white fiber tracts that surround this area. Considering the paucity of literature on the transcortical approach for these lesions, we describe our institutional experience with transcortical approaches to Grade III/IV astrocytomas in the mesial temporal lobe. Between 1999 and 2009, 23 patients underwent surgery at the Johns Hopkins Medical Institutions for Grade III/IV astrocytomas involving the mesial temporal lobe (without involvement of the temporal neocortex). Clinical notes, operative records, and imaging were reviewed. Thirteen patients had tumors in the dominant hemisphere. All patients underwent surgery via a transcortical approach (14 via the inferior temporal gyrus and 9 via the middle temporal gyrus). Gross total resection was obtained in 92 % of the cohort. Neurological outcomes were: clinically significant stroke (2 patients), new visual deficits (2 patients), new speech deficit (1 patient); seizure control (53 %). In comparison to reported results in the literature for the transylvian and subtemporal approaches, the transcortical approach may provide the access necessary for a gross total resection with minimal neurological consequences. In our series of patients, there was no statistically significant difference in outcomes between the middle temporal gyrus versus the inferior temporal gyrus trajectories.

  9. Anisomycin Injection in Area CA3 of the Hippocampus Impairs Both Short-Term and Long-Term Memories of Contextual Fear

    Science.gov (United States)

    Remaud, Jessica; Ceccom, Johnatan; Carponcy, Julien; Dugué, Laura; Menchon, Gregory; Pech, Stéphane; Halley, Helene; Francés, Bernard; Dahan, Lionel

    2014-01-01

    Protein synthesis is involved in the consolidation of short-term memory into long-term memory. Previous electrophysiological data concerning LTP in CA3 suggest that protein synthesis in that region might also be necessary for short-term memory. We tested this hypothesis by locally injecting the protein synthesis inhibitor anisomycin in hippocampal…

  10. Pharmacological Intervention of Hippocampal CA3 NMDA Receptors Impairs Acquisition and Long-Term Memory Retrieval of Spatial Pattern Completion Task

    Science.gov (United States)

    Fellini, Laetitia; Florian, Cedrick; Courtey, Julie; Roullet, Pascal

    2009-01-01

    Pattern completion is the ability to retrieve complete information on the basis of incomplete retrieval cues. Although it has been demonstrated that this cognitive capacity depends on the NMDA receptors (NMDA-Rs) of the hippocampal CA3 region, the role played by these glutamatergic receptors in the pattern completion process has not yet been…

  11. Photoluminescence Properties of Red-Emitting Ca3Sr3-x(PO4)4:xEu3+ Phosphors for White Light-Emitting Diodes.

    Science.gov (United States)

    Hakeem, D A; Park, K

    2015-07-01

    The photoluminescent properties of the Eu(3+)-activated Ca3Sr3(PO4)4 phosphors prepared by a solution combustion method were investigated. The excitation spectra of Ca3Sr3-x(PO4)4:xEu3+ (0.05 ≤ x ≤ 0.6) phosphors under 614 nm wavelength showed a broad band centered at 266 nm along with other peaks at 320, 362, 381, 394, 414, 464, and 534 nm. The emission spectra observed in the range of 450 to 750 nm under excitation at 394 nm were ascribed to the 5D0-7F1-4 transitions of Eu3+ ions. The Ca3Sr3-x(PO4)4:xEu3+ phosphors showed the strongest red emission at 614 nm due to the electric dipole 5DO -->7F2 transition of Eu3+. The strongest emission intensity was obtained for the Eu3+ ions of x = 0.5. The prepared Ca3Sr3-x(PO4)4:xEu3+ can be used as an efficient red phosphor for UV-based white LEDs.

  12. Involvement of N-methyl-D-aspartate receptor subunits in zinc-mediated modification of CA1 long-term potentiation in the developing hippocampus.

    Science.gov (United States)

    Takeda, Atsushi; Itagaki, Kosuke; Ando, Masaki; Oku, Naoto

    2012-03-01

    Zinc is an endogenous N-methyl-D-aspartate (NMDA) receptor blocker. It is possible that zinc-mediated modification of hippocampal CA1 long-term potentiation (LTP) is linked to the expression of NMDA receptor subunits, which varies with postnatal development. In the present study, the effect of ZnCl(2) and CaEDTA, a membrane-impermeable zinc chelator, on CA1 LTP induction was examined in hippocampal slices from immature (3-week-old) and young (6-week-old) rats. Tetanus (10-100 Hz, 1 sec)-induced CA1 LTP was more greatly enhanced in 3-week-old rats. CA1 LTP was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist, and CaEDTA in 3-week-old rats, as in the case of 6-week-old rats reported previously. In 3-week-old rats, on the other hand, 5 μM ZnCl(2) attenuated NMDA receptor-mediated EPSPs more than in 6-week-old rats and significantly attenuated CA1 LTP. Moreover, 5 μM ZnCl(2) significantly attenuated CA1 LTP in the presence of (2R,4S)-4-(3-phosphonopropyl)-2-piperidinecarboxylic acid (PPPA), an NR2A antagonist, in 3-week-old rats, but not that in the presence of ifenprodil, an NR2B antagonist, suggesting that zinc-mediated attenuation of CA1 LTP is associated with the preferential expression of NR2B subunit in 3-week-old rats. In 6-week-old rats, however, 5 μM ZnCl(2) significantly potentiated CA1 LTP and also CA1 LTP in the presence of PPPA. The present study demonstrates that endogenous zinc may participate in the induction of CA1 LTP. It is likely that the changes in expression of NMDA receptor subunits are involved in the zinc-mediated modification of CA1 LTP in the developing hippocampus. Copyright © 2011 Wiley Periodicals, Inc.

  13. Strain tolerance of Bi2Sr2Ca1Cu2O8-δ/Ag composites at high field

    International Nuclear Information System (INIS)

    Li, Q.; Ostenson, J.E.; Finnemore, D.K.

    1991-01-01

    Strain tolerance of Bi 2 Sr 2 Ca 1 Cu 2 O 8-δ /Ag composites have been studied at fields up to 20 T and bending strains up to 2.6% in order to determine the factors that control the critical current density. The goal is to find the best way to distribute Ag such as to give both high strain tolerance and high critical current density. Partial melt processed samples prepared from micromilled mixtures containing 30% Ag by volume show a gradually decreasing critical current all the way out to 2.6% strain. Samples typically show about 1000 A/cm 2 at 4.2 K, 20 T, and 0.75% strain. At 20 K, these values occur at 4 T and 0.75% strain

  14. Electron spin resonance analysis of magnetic structures in La2/3Ca1/3MnO3

    International Nuclear Information System (INIS)

    Ding Tao; Zheng Weitao; Zang Jianfeng; Tian Hongwei; Zheng Bing; Wang Xin; Yu Shansheng; Wang Yuming

    2005-01-01

    Measurements of electron spin resonance (ESR) of La 2/3 Ca 1/3 MnO 3 (LCMO) in the ferromagnetic and paramagnetic phases were carried out. Phase transition and temperature dependence of the peak-to-peak ESR linewidth were determined. The transition temperature between ferromagnetic and paramagnetic phases was observed at 265 K. A prominent increase of the peak-to-peak linewidth with decreasing temperature below T c was observed. Using the dynamic scale theory and block spin transformation in critical phenomenon, the quantitative calculation of peak-to-peak linewidth at near T c was made, which was in good agreement with the experimental data. It was believed that the long interactions between the ferromagnetic microregions for LCMO played a key role in determining the ESR linewidth

  15. Tricolor emission Ca3Si2O7:Ln (Ln=Ce, Tb, Eu) phosphors for near-UV white light-emitting-diode

    International Nuclear Information System (INIS)

    Mao, Zhi-yong; Zhu, Ying-chun; Gan, Lin; Zeng, Yi; Xu, Fang-fang; Wang, Yang; Tian, Hua; Li, Jian; Wang, Da-jian

    2013-01-01

    Tricolor emission in a same Ca 3 Si 2 O 7 host with independent Ln (Ln=Ce 3+ , Eu 2+ , Tb 3+ ) dopants is demonstrated to construct a near-UV white light emitting diode (LED). The luminescence properties and thermal quenching properties, as well as the applications in near-UV white LED are investigated. These phosphors show typical blue, red, and green, three-basal-color, luminescence in the CIE chromaticity diagram for Ce 3+ , Eu 2+ and Tb 3+ dopants, respectively. Thermal quenching properties show that the luminescence thermal stability strongly depends on the different dopant types; better thermal quenching property of Ce 3+ and Tb 3+ is recorded in comparison with that of Eu 2+ . The white LED prototype fabricated with near-UV chip and as-prepared tricolor phosphors exhibits acceptable CIE chromaticity coordinates (0.32, 0.30) with a CCT of 6000 K and a CRI of 87, indicating the potential application of Ca 3 Si 2 O 7 :Ln phosphors in near-UV white LED. - Highlights: ► Tricolor Ca 3 Si 2 O 7 : Ln phosphors were demonstrated to construct near-UV white LED. ► Eu 2+ doped Ca 3 Si 2 O 7 red-emitting phosphor was confirmed by this work once again. ► Thermal quenching properties for Ca 3 Si 2 O 7 :Ln phosphors were reported for the first time. ► Performances of fabricated white LED indicated the potential application of phosphors.

  16. Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide

    Science.gov (United States)

    Scullion, Sarah; Brown, Jon T.; Randall, Andrew D.

    2015-01-01

    ABSTRACT Accumulation of beta‐amyloid (Aβ) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aβ‐overexpressing transgenic mice indicates that increased brain Aβ levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2–5 h treatment with an oligomeric preparation of synthetic human Aβ 1–42 peptide. Whole cell current clamp recordings were compared between Aβ‐(500 nM) and vehicle‐(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aβ treatment did not produce alterations in sub‐threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated “sag”. Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra‐threshold stimuli. However, Aβ 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aβ at 500 nM depressed the after‐hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aβ oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:25515596

  17. Characterization of altered intrinsic excitability in hippocampal CA1 pyramidal cells of the Aβ-overproducing PDAPP mouse☆

    Science.gov (United States)

    Kerrigan, T.L.; Brown, J.T.; Randall, A.D.

    2014-01-01

    Transgenic mice that accumulate Aβ peptides in the CNS are commonly used to interrogate functional consequences of Alzheimer's disease-associated amyloidopathy. In addition to changes to synaptic function, there is also growing evidence that changes to intrinsic excitability of neurones can arise in these models of amyloidopathy. Furthermore, some of these alterations to intrinsic properties may occur relatively early within the age-related progression of experimental amyloidopathy. Here we report a detailed comparison between the intrinsic excitability properties of hippocampal CA1 pyramidal neurones in wild-type (WT) and PDAPP mice. The latter is a well-established model of Aβ accumulation which expresses human APP harbouring the Indiana (V717F) mutation. At the age employed in this study (9–10 months) CNS Abeta was elevated in PDAPP mice but significant plaque pathology was absent. PDAPP mice exhibited no differences in subthreshold intrinsic properties including resting potential, input resistance, membrane time constant and sag. When CA1 cells of PDAPP mice were given depolarizing stimuli of various amplitudes they initially fired at a higher frequency than WT cells. Commensurate with this, PDAPP cells exhibited a larger fast afterdepolarizing potential. PDAPP mice had narrower spikes but action potential threshold, rate of rise and peak were not different. Thus not all changes seen in our previous studies of amyloidopathy models were present in PDAPP mice; however, narrower spikes, larger ADPs and the propensity to fire at higher frequencies were consistent with our prior work and thus may represent robust, cross-model, indices of amyloidopathy. This article is part of a Special Issue entitled ‘Neurodevelopment Disorder’. PMID:24055500

  18. Effect of intrahippocampal CA1 injection of insulin on spatial learning and memory deficits in diabetic rats

    Directory of Open Access Journals (Sweden)

    Golbarg Ghiasi

    2011-03-01

    Full Text Available Background: Diabetes mellitus is one of the most important diseases in all over the world. Insulin and its receptor are found in specific area of CNS with a variety of regions-specific functions different from its role in direct glucose regulation in the periphery. The hippocampus and cerebral cortex distributed insulin and insulin receptor has been shown to be involved in brain cognitive functions. Previous studies about the effect of insulin on memory in diabetes are controversial and further investigation is necessary.Methods: Seventy male NMRI rats (250-300 g were randomly divided into control, diabetic, saline-saline, saline-insulin (12, 18 or 24 mU, diabetic-saline, diabetic-insulin (12, 18 or 24 mU groups. Diabetes was induced by streptozotocin (65 mg/kg, ip. Saline or insulin were injected bilaterally (1 µl/rat into CA1 region of hippocampus during 1 min. Thirty minutes later, water maze training was performed.Results: Insulin had a dose dependent effect. The spatial learning and memory were impaired with diabetes, and improved by insulin. Escape latency and swimming distance in a water maze in insulin treated animals were significantly lower (P<0.05 than control and diabetic groups. Percentage of time spent by animals in a target quarter in probe trial session showed a significant difference among groups. This difference was significant between insulin treated and the other groups (P<0.05.Conclusions: Our findings suggest that injection of insulin into hippocampal CA1 area may have a dose-dependent effect on spatial learning and memory in diabetic rats.

  19. Modulation of local field potentials by high-frequency stimulation of afferent axons in the hippocampal CA1 region.

    Science.gov (United States)

    Yu, Ying; Feng, Zhouyan; Cao, Jiayue; Guo, Zheshan; Wang, Zhaoxiang; Hu, Na; Wei, Xuefeng

    2016-03-01

    Modulation of the rhythmic activity of local field potentials (LFP) in neuronal networks could be a mechanism of deep brain stimulation (DBS). However, exact changes of LFP during the periods of high-frequency stimulation (HFS) of DBS are unclear because of the interference of dense stimulation artifacts with high amplitudes. In the present study, we investigated LFP changes induced by HFS of afferent axons in the hippocampal CA1 region of urethane-anesthetized rats by using a proper algorithm of artifact removal. Afterward, the LFP changes in the frequency bands of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] rhythms were studied by power spectrum analysis and coherence analysis for the recorded signals collected in the pyramidal layer and in the stratum radiatum of CA1 region before, during and after 1-min long 100 and 200[Formula: see text]Hz HFS. Results showed that the power of LFP rhythms in higher-frequency band ([Formula: see text] rhythm) increased in the pyramidal layer and the power of LFP rhythms in lower-frequency bands ([Formula: see text], [Formula: see text] and [Formula: see text] rhythms) decreased in the stratum radiatum during HFS. The synchronization of [Formula: see text] rhythm decreased and the synchronization of [Formula: see text] rhythm increased during HFS in the stratum radiatum. These results suggest that axonal HFS could modulate LFP rhythms in the downstream brain areas with a plausible underlying mechanism of partial axonal blockage induced by HFS. The study provides new evidence to support the mechanism of DBS modulating rhythmic activity of neuronal populations.

  20. Physiological properties of anatomically identified basket and bistratified cells in the CA1 area of the rat hippocampus in vitro.

    Science.gov (United States)

    Buhl, E H; Szilágyi, T; Halasy, K; Somogyi, P

    1996-01-01

    Basket and bistratified cells form two anatomically distinct classes of GABAergic local-circuit neurons in the CA1 region of the rat hippocampus. A physiological comparison was made of intracellularly recorded basket (n = 13) and bistratified neurons (n = 6), all of which had been anatomically defined by their efferent target profile (Halasy et al., 1996). Basket cells had an average resting membrane potential of -64.2 +/- 7.2 vs. -69.2 +/- 4.6 mV in bistratified cells. The latter had considerably higher mean input resistances (60.2 +/- 42.1 vs. 31.3 +/- 10.9 M Ohms) and longer membrane time constants (18.6 +/- 8.1 vs. 9.8 +/- 4.5 ms) than basket cells. Differences were also apparent in the duration of action potentials, those of basket cells being 364 +/- 77 and those of bistratified cells being 527 +/- 138 microseconds at half-amplitude. Action potentials were generally followed by prominent, fast after-hyperpolarizing potentials which in basket cells were 13.5 +/- 6.7 mV in amplitude vs. 10.5 +/- 5.1 in bistratified cells. The differences in membrane time constant, resting membrane potential, and action potential duration reached statistical significance (P D-aspartate (NMDA) receptors, whereas the remaining slow-rise EPSP could be abolished by an NMDA receptor antagonist. Increasing stimulation intensity elicited biphasic inhibitory postsynaptic potentials (IPSPs) in both basket and bistratified cells. In conclusion, basket and bistratified cells in the CA1 area show prominent differences in several of their membrane and firing properties. Both cell classes are activated by Schaffer collateral/commissural axons in a feedforward manner and receive inhibitory input from other, as yet unidentified, local-circuit neurons.

  1. Activation of functional α7-containing nAChRs in hippocampal CA1 pyramidal neurons by physiological levels of choline in the presence of PNU-120596.

    Directory of Open Access Journals (Sweden)

    Bopanna I Kalappa

    2010-11-01

    Full Text Available The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596.An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71% of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1-5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV the entire pyramidal neuron and occasionally

  2. Mid-life environmental enrichment increases synaptic density in CA1 in a mouse model of Aβ-associated pathology and positively influences synaptic and cognitive health in healthy ageing.

    Science.gov (United States)

    Stuart, Kimberley E; King, Anna E; Fernandez-Martos, Carmen M; Dittmann, Justin; Summers, Mathew J; Vickers, James C

    2017-06-01

    Early-life cognitive enrichment may reduce the risk of experiencing cognitive deterioration and dementia in later-life. However, an intervention to prevent or delay dementia is likely to be taken up in mid to later-life. Hence, we investigated the effects of environmental enrichment in wildtype mice and in a mouse model of Aβ neuropathology (APP SWE /PS1 dE9 ) from 6 months of age. After 6 months of housing in standard laboratory cages, APP SWE /PS1 dE9 (n = 27) and healthy wildtype (n = 21) mice were randomly assigned to either enriched or standard housing. At 12 months of age, wildtype mice showed altered synaptic protein levels and relatively superior cognitive performance afforded by environmental enrichment. Environmental enrichment was not associated with alterations to Aβ plaque pathology in the neocortex or hippocampus of APP SWE /PS1 dE9 mice. However, a significant increase in synaptophysin immunolabeled puncta in the hippocampal subregion, CA1, in APP SWE /PS1 dE9 mice was detected, with no significant synaptic density changes observed in CA3, or the Fr2 region of the prefrontal cortex. Moreover, a significant increase in hippocampal BDNF was detected in APP SWE /PS1 dE9 mice exposed to EE, however, no changes were detected in neocortex or between Wt animals. These results demonstrate that mid to later-life cognitive enrichment has the potential to promote synaptic and cognitive health in ageing, and to enhance compensatory capacity for synaptic connectivity in pathological ageing associated with Aβ deposition. © 2017 Wiley Periodicals, Inc.

  3. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress

    Science.gov (United States)

    Gould, Elizabeth; Tanapat, Patima; McEwen, Bruce S.; Flügge, Gabriele; Fuchs, Eberhard

    1998-01-01

    Although granule cells continue to be added to the dentate gyrus of adult rats and tree shrews, this phenomenon has not been demonstrated in the dentate gyrus of adult primates. To determine whether neurons are produced in the dentate gyrus of adult primates, adult marmoset monkeys (Callithrix jacchus) were injected with BrdU and perfused 2 hr or 3 weeks later. BrdU is a thymidine analog that is incorporated into proliferating cells during S phase. A substantial number of cells in the dentate gyrus of adult monkeys incorporated BrdU and ≈80% of these cells had morphological characteristics of granule neurons and expressed a neuronal marker by the 3-week time point. Previous studies suggest that the proliferation of granule cell precursors in the adult dentate gyrus can be inhibited by stress in rats and tree shrews. To test whether an aversive experience has a similar effect on cell proliferation in the primate brain, adult marmoset monkeys were exposed to a resident-intruder model of stress. After 1 hr in this condition, the intruder monkeys were injected with BrdU and perfused 2 hr later. The number of proliferating cells in the dentate gyrus of the intruder monkeys was compared with that of unstressed control monkeys. We found that a single exposure to this stressful experience resulted in a significant reduction in the number of these proliferating cells. Our results suggest that neurons are produced in the dentate gyrus of adult monkeys and that the rate of precursor cell proliferation can be affected by a stressful experience. PMID:9501234

  4. Internet Search Alters Intra- and Inter-regional Synchronization in the Temporal Gyrus

    Directory of Open Access Journals (Sweden)

    Xiaoyue Liu

    2018-03-01

    Full Text Available Internet search changed the way we store and recall information and possibly altered our brain functions. Previous studies suggested that Internet search facilitates the information-acquisition process. However, this process may cause individuals to lose the ability to store and recollect specific contents. Despite the numerous behavioral studies conducted in this field, little is known about the neural mechanisms underlying Internet searches. The present study explores potential brain activity changes induced by Internet search. The whole paradigm includes three phases, namely, pre-resting state fMRI (rs-fMRI scan, 6-day Internet search training, and post rs-fMRI scan. We detected the functional integrations induced by Internet search training by comparing post- with pre-scan. Regional homogeneity (ReHo and functional connectivity (FC were used to detect intra- and interregional synchronized activity in 42 university students. Compared with pre-scan, post-scan showed decreased ReHo in the temporal gyrus, the middle frontal gyrus, and the postcentral gyrus. Further seed-based FC analysis showed that the temporal gyrus exhibited decreased FC in the parahippocampal cortex and the temporal gyrus after training. Based on the features of current task and functions exhibited by these brain regions, results indicate that short-term Internet search training changed the brain regional activities involved in memory retrieval. In general, this study provides evidence that supports the idea that Internet search can affect our brain functions.

  5. [Left lateral gaze paresis due to subcortical hematoma in the right precentral gyrus].

    Science.gov (United States)

    Sato, K; Takamori, M

    1998-03-01

    We report a case of transient left lateral gaze paresis due to a hemorrhagic lesion restricted in the right precentral gyrus. A 74-year-old female experienced a sudden clumsiness of the left upper extremity. A neurological examination revealed a left central facial paresis, distal dominant muscle weakness in the left upper limb and left lateral gaze paresis. There were no other focal neurological signs. Laboratory data were all normal. Brain CTs and MRIs demonstrated a subcortical hematoma in the right precentral gyrus. The neurological symptoms and signs disappeared over seven days. A recent physiological study suggested that the human frontal eye field (FEF) is located in the posterior part of the middle frontal gyrus (Brodmann's area 8) and the precentral gyrus around the precentral sulcus. More recent studies stressed the role of the precentral sulcus and the precentral gyrus. Our case supports those physiological findings. The hematoma affected both the FEF and its underlying white matter in our case. We assume the lateral gaze paresis is attributable to the disruption of the fibers from the FEF. It is likely that fibers for motor control of the face, upper extremity, and lateral gaze lie adjacently in the subcortical area.

  6. Internet Search Alters Intra- and Inter-regional Synchronization in the Temporal Gyrus.

    Science.gov (United States)

    Liu, Xiaoyue; Lin, Xiao; Zheng, Ming; Hu, Yanbo; Wang, Yifan; Wang, Lingxiao; Du, Xiaoxia; Dong, Guangheng

    2018-01-01

    Internet search changed the way we store and recall information and possibly altered our brain functions. Previous studies suggested that Internet search facilitates the information-acquisition process. However, this process may cause individuals to lose the ability to store and recollect specific contents. Despite the numerous behavioral studies conducted in this field, little is known about the neural mechanisms underlying Internet searches. The present study explores potential brain activity changes induced by Internet search. The whole paradigm includes three phases, namely, pre-resting state fMRI (rs-fMRI) scan, 6-day Internet search training, and post rs-fMRI scan. We detected the functional integrations induced by Internet search training by comparing post- with pre-scan. Regional homogeneity (ReHo) and functional connectivity (FC) were used to detect intra- and interregional synchronized activity in 42 university students. Compared with pre-scan, post-scan showed decreased ReHo in the temporal gyrus, the middle frontal gyrus, and the postcentral gyrus. Further seed-based FC analysis showed that the temporal gyrus exhibited decreased FC in the parahippocampal cortex and the temporal gyrus after training. Based on the features of current task and functions exhibited by these brain regions, results indicate that short-term Internet search training changed the brain regional activities involved in memory retrieval. In general, this study provides evidence that supports the idea that Internet search can affect our brain functions.

  7. Difficulty identifying feelings and automatic activation in the fusiform gyrus in response to facial emotion.

    Science.gov (United States)

    Eichmann, Mischa; Kugel, Harald; Suslow, Thomas

    2008-12-01

    Difficulties in identifying and differentiating one's emotions are a central characteristic of alexithymia. In the present study, automatic activation of the fusiform gyrus to facial emotion was investigated as a function of alexithymia as assessed by the 20-item Toronto Alexithymia Scale. During 3 Tesla fMRI scanning, pictures of faces bearing sad, happy, and neutral expressions masked by neutral faces were presented to 22 healthy adults who also responded to the Toronto Alexithymia Scale. The fusiform gyrus was selected as the region of interest, and voxel values of this region were extracted, summarized as means, and tested among the different conditions (sad, happy, and neutral faces). Masked sad facial emotions were associated with greater bilateral activation of the fusiform gyrus than masked neutral faces. The subscale, Difficulty Identifying Feelings, was negatively correlated with the neural response of the fusiform gyrus to masked sad faces. The correlation results suggest that automatic hyporesponsiveness of the fusiform gyrus to negative emotion stimuli may reflect problems in recognizing one's emotions in everyday life.

  8. Right inferior frontal gyrus activation as a neural marker of successful lying.

    Science.gov (United States)

    Vartanian, Oshin; Kwantes, Peter J; Mandel, David R; Bouak, Fethi; Nakashima, Ann; Smith, Ingrid; Lam, Quan

    2013-01-01

    There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM) load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low) × 2 (Instruction: truth or lie) repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC), middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus-a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.

  9. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing.

    Science.gov (United States)

    Hochgerner, Hannah; Zeisel, Amit; Lönnerberg, Peter; Linnarsson, Sten

    2018-02-01

    The dentate gyrus of the hippocampus is a brain region in which neurogenesis persists into adulthood; however, the relationship between developmental and adult dentate gyrus neurogenesis has not been examined in detail. Here we used single-cell RNA sequencing to reveal the molecular dynamics and diversity of dentate gyrus cell types in perinatal, juvenile, and adult mice. We found distinct quiescent and proliferating progenitor cell types, linked by transient intermediate states to neuroblast stages and fully mature granule cells. We observed shifts in the molecular identity of quiescent and proliferating radial glia and granule cells during the postnatal period that were then maintained through adult stages. In contrast, intermediate progenitor cells, neuroblasts, and immature granule cells were nearly indistinguishable at all ages. These findings demonstrate the fundamental similarity of postnatal and adult neurogenesis in the hippocampus and pinpoint the early postnatal transformation of radial glia from embryonic progenitors to adult quiescent stem cells.

  10. Transient Global Amnesia Associated with an Acute Infarction at the Cingulate Gyrus

    Directory of Open Access Journals (Sweden)

    Alejandro Gallardo-Tur

    2014-01-01

    Full Text Available Background. Transient global amnesia (TGA is a syndrome of sudden, unexplained isolated short-term memory loss. In the majority of TGA cases, no causes can be identified and neuroimaging, CSF studies and EEG are usually normal. We present a patient with TGA associated with a small acute infarct at the cingulate gyrus. Case Report. The patient, a 62 year-old man, developed two episodes of TGA. He had hypertension and hypercholesterolemia. He was found to have an acute ischemic stroke of small size (15 mm of maximal diameter at the right cerebral cingulate gyrus diagnosed on brain magnetic resonance imaging. No lesions involving other limbic system structures such as thalamus, fornix, corpus callosum, or hippocampal structures were seen. The remainder of the examination was normal. Conclusion. Unilateral ischemic lesions of limbic system structures may result in TGA. We must bear in mind that TGA can be an associated clinical disorder of cingulate gyrus infarct.

  11. Gray Matter Volume of the Lingual Gyrus Mediates the Relationship between Inhibition Function and Divergent Thinking

    Directory of Open Access Journals (Sweden)

    Lijie Zhang

    2016-10-01

    Full Text Available Abstract: Although previous research provides converging evidence for the role of posterior regions of the brain (including temporal, occipital, and parietal regions involved in inhibition on creative thinking, it remains unclear as to how these regions influence individual differences in creative thinking. Thus, we explored the relationship between posterior regions (i.e., hippocampal, parahippocampal, lingual gyrus, precuneus, and cuneus , inhibition function, and divergent thinking in 128 healthy college students. The results revealed that lower inhibition was associated with larger gray matter volume (GMV in the lingual gyrus, which in turn was associated with higher divergent thinking. In addition, GMV in the lingual gyrus mediated the association between inhibition and divergent thinking. These results provide new evidence for the role of inhibition in creative thinking. Inhibition may affect the amount of information stored in long-term memory, which, in turn influences divergent thinking.

  12. Essential role of the NO signaling pathway in the hippocampal CA1 in morphine-associated memory depends on glutaminergic receptors.

    Science.gov (United States)

    Shen, Fang; Wang, Xue-Wei; Ge, Fei-Fei; Li, Yi-Jing; Cui, Cai-Lian

    2016-03-01

    The nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP-dependent protein kinase (PKG) signaling pathway has been reported to play a key role in memory processing. However, little is known about its role in drug-associated reward memory. Here, we report the following. 1) The NO pathway in the CA1 is critical for the retrieval of morphine-associated reward memory. Specifically, the nNOS, sGC and PKG protein levels in the CA1 were increased after the expression of morphine conditioned place preference (CPP). Intra-CA1 injection of an NOS, sGC or PKG inhibitor prevented morphine CPP expression. 2) The involvement of the NO pathway in morphine CPP requires NR2B-containing NMDA receptors (NR2B-NMDARs). NR2B-NMDAR expression was elevated in the CA1 following morphine CPP expression, and intra-CA1 injection of the NR2B-NMDAR antagonist Ro25-6981 not only blocked morphine CPP expression but also inhibited the up-regulation of nNOS, sGC and PKG. Moreover, the Ro25-6981-induced blockade of morphine CPP was abolished by intra-CA1 injection of a NOS substrate or an sGC activator. 3) The NR2B-NMDAR stimulated the NO pathway by up-regulating the phosphorylation of Akt(Ser473). Morphine CPP expression enhanced the pAkt(Ser473) level, which has been corroborated to regulate nNOS activity, and this effect was reversed by intra-CA1 injection of Ro25-6981. 4) GluR1 acted downstream of the NO pathway. The membrane level of GluR1 in the CA1 was increased after morphine CPP expression, and this effect was prevented by pre-injection of a PKG inhibitor into the CA1. Additionally, co-immunoprecipitation revealed an interaction between PKG and GluR1; this result further indicated a role of PKG in regulating GluR1 trafficking. Collectively, the results of our study demonstrated that the activation of the NR2B-NMDAR/NO/sGC/PKG signaling pathway is necessary for the retrieval of morphine-associated reward memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterization of the interface between an Fe–Cr alloy and the p-type thermoelectric oxide Ca3Co4O9

    DEFF Research Database (Denmark)

    Holgate, Tim; Han, Li; Wu, NingYu

    2014-01-01

    A customized Fe–Cr alloy that has been optimized for high temperature applications in oxidizing atmospheres has been interfaced via spark plasma sintering (SPS) with a p-type thermoelectric oxide material: calcium cobaltate (Ca3Co4O9). The properties of the alloy have been analyzed for its...... calcium and chromium in the interface that is highly resistive at room temperature, but conducting at the intended thermoelectric device hot-side operating temperature of 800 °C. As the alloy is well matched in terms of its thermal expansion and highly conducting compared to the Ca3Co4O9, it may...... be further considered as an interconnect material candidate at least with application on the hot-side of an oxide thermoelectric power generation module....

  14. Growth, thermal properties and laser operation of a novel disordered Yb:Ca3La2(BO3)4 laser crystal

    Science.gov (United States)

    Pan, Zhongben; Cai, Huaqiang; Huang, Hui; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-10-01

    A high quality disordered Yb:Ca3La2(BO3)4 laser crystal has been successfully grown by the Czochralski method. The complete set of anisotropic thermal properties were systematically measured for the first time. In addition, continuous-wave laser along the three crystallographic axis were obtained. Passively Q-switched by a Cr4+:YAG saturable absorber, the laser yielded an average output power of 0.47 W with a slope efficiency of 7.6% for the first time. The generated pulse energy, duration, and peak power were 94 μJ, 33 ns, and 2.85 KW, respectively. We believe that the reliability and stability of these lasers makes the disordered Yb:Ca3La2(BO3)4 crystal of considerable interest for future applications.

  15. Stability of the geometrically frustrated magnetic state of Ca3CoRhO6 to applications of positive and negative pressure

    International Nuclear Information System (INIS)

    Mohapatra, Niharika; Iyer, Kartik K; Jammalamadaka, S Narayana; Sampathkumaran, E V; Rayaprol, Sudhindra

    2008-01-01

    The influence of negative chemical pressure induced by gradual replacement of Ca by Sr as well as of external pressure (up to 10 kbar) on the magnetism of Ca 3 CoRhO 6 has been investigated by magnetization studies. It is found that the solid solution, Ca 3-x Sr x CoRhO 6 , exists at least until about x = 1.0 without any change in the crystal structure. Apart from insensitivity of the spin-chain feature to volume expansion, the characteristic features of geometrical frustration interestingly appear at the same temperatures for all compositions, in sharp contrast to the response to Y substitution for Ca (reported previously). Interestingly, the huge frequency dependence of ac susceptibility known for the parent compound persists for all compositions. We do not find a change in the properties under external pressure. The stability of the magnetic anomalies of this compound to volume change (about 4%) is puzzling

  16. Pseudohypacusis in childhood and adolescence is associated with increased gray matter volume in the medial frontal gyrus and superior temporal gyrus.

    Science.gov (United States)

    Tomoda, Akemi; Kinoshita, Sumihito; Korenaga, Yuki; Mabe, Hiroyo

    2012-04-01

    Pseudohypacusis is a somatoform disorder characterized by hearing loss with discrepancies between pure-tone audiometry and auditory brainstem response (ABR), but the underlying neuronal mechanisms remain unclear. Using voxel-based morphometry (VBM) with magnetic resonance (MR) imaging for 14 unmedicated, right-handed patients and 35 healthy control subjects, we investigated whether functional hearing loss was associated with discernible changes of brain morphology. Group differences in gray matter volume (GMV) were assessed using high-resolution, T1-weighted, volumetric MR imaging datasets (3T Trio scanner; Siemens AG) and analyzed with covariant factors of age, sex, socioeconomic status (SES), and total GMV, which was increased by 27.9% in the left medial frontal gyrus (MFG) (Brodmann area 10) (p=.001, corrected cluster level) and by 14.4% in the right superior temporal gyrus (STG) and the adjacent middle temporal gyrus (MTG) (BA42 to 21) (p=.009, corrected cluster level) in patients with pseudohypacusis. The GMV in the right STG (BA42) and verbal intelligence quotient (IQ) were correlated significantly with the Wechsler Intelligence Scale for Children - Third Edition (WISC-III) (ß=-.57, p<.0001) and level of SES (ß=-.55, p<.0001). The present findings suggest that the development of the auditory association cortex involved in language processing is affected, causing insufficient pruning during brain development. We therefore assert that differences in the neuroanatomical substrate of pseudohypacusis subjects result from a developmental disorder in auditory processing. Copyright © 2010 Elsevier Srl. All rights reserved.

  17. Progressive Decline in Hippocampal CA1 Volume in Individuals at Ultra-High-Risk for Psychosis Who Do Not Remit: Findings from the Longitudinal Youth at Risk Study.

    Science.gov (United States)

    Ho, New Fei; Holt, Daphne J; Cheung, Mike; Iglesias, Juan Eugenio; Goh, Alex; Wang, Mingyuan; Lim, Joseph Kw; de Souza, Joshua; Poh, Joann S; See, Yuen Mei; Adcock, Alison R; Wood, Stephen J; Chee, Michael Wl; Lee, Jimmy; Zhou, Juan

    2017-05-01

    Most individuals identified as ultra-high-risk (UHR) for psychosis do not develop frank psychosis. They continue to exhibit subthreshold symptoms, or go on to fully remit. Prior work has shown that the volume of CA1, a subfield of the hippocampus, is selectively reduced in the early stages of schizophrenia. Here we aimed to determine whether patterns of volume change of CA1 are different in UHR individuals who do or do not achieve symptomatic remission. Structural MRI scans were acquired at baseline and at 1-2 follow-up time points (at 12-month intervals) from 147 UHR and healthy control subjects. An automated method (based on an ex vivo atlas of ultra-high-resolution hippocampal tissue) was used to delineate the hippocampal subfields. Over time, a greater decline in bilateral CA1 subfield volumes was found in the subgroup of UHR subjects whose subthreshold symptoms persisted (n=40) and also those who developed clinical psychosis (n=12), compared with UHR subjects who remitted (n=41) and healthy controls (n=54). No baseline differences in volumes of the overall hippocampus or its subfields were found among the groups. Moreover, the rate of volume decline of CA1, but not of other hippocampal subfields, in the non-remitters was associated with increasing symptom severity over time. Thus, these findings indicate that there is deterioration of CA1 volume in persistently symptomatic UHR individuals in proportion to symptomatic progression.

  18. Conditions required for the appearance of double responses in hippocampal field CA1 to application of single stimuli to Shäffer collaterals in freely moving rats.

    Science.gov (United States)

    Zosimovskii, V A; Korshunov, V A; Markevich, V A

    2008-03-01

    Stimulation of Shäffer collaterals with single current impulses could evoke double responses in hippocampal field CA1 in freely moving rats. The late response - the population excitatory postsynaptic potential with a preceding transient potential, often biphasic - occurred only after an early population spike and was time-locked to it. The shape characteristics of the late response, its polarity, and its latent period relative to the early population spike suggest that stimulation of Shäffer collaterals gives rise, in CA1, to a wave of excitation which passes through the entorhinal cortex and returns to CA1 directly via fibers of the perforant path. In conscious rats, medium-strength stimulation of Shäffer collaterals, sufficient to evoke a quite early population spike in CA1, did not usually lead to the appearance of a late response; the same stimulation became effective after tetanization of Shäffer collaterals in conditions of long-term potentiation of the early population spike. Furthermore, the appearance of the late response was facilitated in rats falling asleep on the background of high-amplitude, low-frequency EEG oscillations in CA1 characteristic of slow-wave sleep, as well as in sleeping rats, regardless of the EEG pattern.

  19. [Conditions required for appearance of a double response to a single-shock stimulation of Schaffer collaterals in hippocampal field CA1 in freely moving rats].

    Science.gov (United States)

    Zosimovskiĭ, V A; Korshunov, V A; Markevich, V A

    2007-01-01

    Schaffer collateral stimulation with a single current impulse can evoke a double response in hippocampal field CA1 of freely moving rats. The late response appears as a population excitatory postsynaptic potential with a preceding short-term potential (frequently biphasic) only after the early population spike and is time-locked to it. The wave shape and polarity of the late response, its latency with respect to the peak of the early population spike suggest that the excitation wave produced in the CA1 field by the stimulation of Schaffer collaterals passes across the entorhinal cortex and returns to the CA1 directly via the perforant path fibers. In waking rat, the medium-intensity stimulation of Schaffer collaterals (able to evoke in the CA1 an early population spike of sufficiently high amplitude) usually does not result in the appearance of the late response. However, similar stimulation becomes efficient after the tetanization of Schaffer collaterals, under conditions of the long-term potentiation of the early population spike. Moreover, the late response occurrence is facilitated in a rat falling asleep after the development in the CA1 of high-amplitude low-frequency EEG oscillations typical for the slow-wave sleep and in a sleeping rat independently of the EEG pattern.

  20. Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis.

    Science.gov (United States)

    Takahashi, Tsutomu; Wood, Stephen J; Yung, Alison R; Soulsby, Bridget; McGorry, Patrick D; Suzuki, Michio; Kawasaki, Yasuhiro; Phillips, Lisa J; Velakoulis, Dennis; Pantelis, Christos

    2009-04-01

    Longitudinal magnetic resonance imaging studies have shown progressive gray matter reduction in the superior temporal gyrus during the earliest phases of schizophrenia. It is unknown whether these progressive processes predate the onset of psychosis. To examine gray matter reduction of the superior temporal gyrus over time in individuals at risk for psychosis and in patients with first-episode psychosis. Cross-sectional and longitudinal comparisons. Personal Assessment and Crisis Evaluation Clinic and Early Psychosis Preventions and Intervention Centre. Thirty-five ultrahigh-risk individuals (of whom 12 later developed psychosis [UHRP] and 23 did not [UHRNP]), 23 patients with first-episode psychosis (FEP), and 22 control subjects recruited from the community. Volumes of superior temporal subregions (planum polare, Heschl gyrus, planum temporale, and rostral and caudal regions) were measured at baseline and follow-up (mean, 1.8 years) and were compared across groups. In cross-sectional comparisons, only the FEP group had significantly smaller planum temporale and caudal superior temporal gyrus than other groups at baseline, whereas male UHRP subjects also had a smaller planum temporale than controls at follow-up. In longitudinal comparison, UHRP and FEP patients showed significant gray matter reduction (approximately 2%-6% per year) in the planum polare, planum temporale, and caudal region compared with controls and/or UHRNP subjects. The FEP patients also exhibited progressive gray matter loss in the left Heschl gyrus (3.0% per year) and rostral region (3.8% per year), which were correlated with the severity of delusions at follow-up. A progressive process in the superior temporal gyrus precedes the first expression of florid psychosis. These findings have important implications for underlying neurobiologic features of emerging psychotic disorders and emphasize the importance of early intervention during or before the first episode of psychosis.

  1. Ca3Co4O9+δ, a growing potential SOFC cathode material: impact of the layer composition and thickness on the electrochemical properties

    NARCIS (Netherlands)

    Rolle, A.; Abbas, H.A.A.; Huo, D.; Capoen, E.; Mentré, O.; Vannier, R.N.; Daviero-Minaud, S.; Boukamp, Bernard A.

    2016-01-01

    The thermoelectric material Ca3Co4O9 + δ (CCO), with an electronic conductivity of σe = 240 S·cm− 1 at 650 °C and a good chemical and mechanical compatibility with the standard Ce0.9Gd0.1O1.95 electrolyte (CGO, TEC: 9–10 · 10− 6 K− 1), was recently identified as a potential cathode material for

  2. Crystal and magnetic structure of the Ca3Mn2O7 Ruddlesden-Popper phase: neutron and synchrotron x-ray diffraction study

    International Nuclear Information System (INIS)

    Lobanov, Maxim V; Greenblatt, Martha; Caspi, El'ad N; Jorgensen, James D; Sheptyakov, Denis V; Toby, Brian H; Botez, Cristian E; Stephens, Peter W

    2004-01-01

    The crystallographic and magnetic structures of Ca 3 Mn 2 O 7 Ruddlesden-Popper phase have been determined by a combination of neutron and synchrotron x-ray diffraction. Two-phase behaviour observed at room temperature is attributed to an incomplete structural phase transition. The magnetic structure was solved in the Cm'c2 1 ' Shubnikov group with dominant G-type antiferromagnetic order in the perovskite bilayers. The temperature evolution of the structural and magnetic parameters is presented

  3. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats

    OpenAIRE

    Li, Guan Zeng; Liu, Zhe Hui; Wei, XinYa; Zhao, Pan; Yang, Chun Xiao; Xu, Man Ying

    2015-01-01

    Objective(s): To determine the effect of acetylcholine (ACh), pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN) and pain inhibited neurons (PIN) in hippocampal CA3 region of morphine addicted rats. Materials and Methods: Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to...

  4. Evidence for a Specific Integrative Mechanism for Episodic Memory Mediated by AMPA/kainate Receptors in a Circuit Involving Medial Prefrontal Cortex and Hippocampal CA3 Region.

    Science.gov (United States)

    de Souza Silva, Maria A; Huston, Joseph P; Wang, An-Li; Petri, David; Chao, Owen Yuan-Hsin

    2016-07-01

    We asked whether episodic-like memory requires neural mechanisms independent of those that mediate its component memories for "what," "when," and "where," and if neuronal connectivity between the medial prefrontal cortex (mPFC) and the hippocampus (HPC) CA3 subregion is essential for episodic-like memory. Unilateral lesion of the mPFC was combined with unilateral lesion of the CA3 in the ipsi- or contralateral hemispheres in rats. Episodic-like memory was tested using a task, which assesses the integration of memories for "what, where, and when" concomitantly. Tests for novel object recognition (what), object place (where), and temporal order memory (when) were also applied. Bilateral disconnection of the mPFC-CA3 circuit by N-methyl-d-aspartate (NMDA) lesions disrupted episodic-like memory, but left the component memories for object, place, and temporal order, per se, intact. Furthermore, unilateral NMDA lesion of the CA3 plus injection of (6-cyano-7-nitroquinoxaline-2,3-dione) (CNQX) (AMPA/kainate receptor antagonist), but not AP-5 (NMDA receptor antagonist), into the contralateral mPFC also disrupted episodic-like memory, indicating the mPFC AMPA/kainate receptors as critical for this circuit. These results argue for a selective neural system that specifically subserves episodic memory, as it is not critically involved in the control of its component memories for object, place, and time. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. The GLP-1 Receptor Agonist Exendin-4 and Diazepam Differentially Regulate GABAA Receptor-Mediated Tonic Currents in Rat Hippocampal CA3 Pyramidal Neurons.

    Directory of Open Access Journals (Sweden)

    Sergiy V Korol

    Full Text Available Glucagon-like peptide-1 (GLP-1 is a metabolic hormone that is secreted in a glucose-dependent manner and enhances insulin secretion. GLP-1 receptors are also found in the brain where their signalling affects neuronal activity. We have previously shown that the GLP-1 receptor agonists, GLP-1 and exendin-4 enhanced GABA-activated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. The hippocampus is the centre for memory and learning and is important for cognition. Here we examined if exendin-4 similarly enhanced the GABA-activated currents in the presence of the benzodiazepine diazepam. In whole-cell recordings in rat brain slices, diazepam (1 μM, an allosteric positive modulator of GABAA receptors, alone enhanced the spontaneous inhibitory postsynaptic current (sIPSC amplitude and frequency by a factor of 1.3 and 1.6, respectively, and doubled the tonic GABAA current normally recorded in the CA3 pyramidal cells. Importantly, in the presence of exendin-4 (10 nM plus diazepam (1 μM, only the tonic but not the sIPSC currents transiently increased as compared to currents recorded in the presence of diazepam alone. The results suggest that exendin-4 potentiates a subpopulation of extrasynaptic GABAA receptors in the CA3 pyramidal neurons.

  6. XAFS Analysis of Local Structure around Ce in Ca3Sc2Si3O12:Ce Phosphor for White LEDs

    International Nuclear Information System (INIS)

    Akai, Toshio; Shigeiwa, Motoyuki; Okamoto, Kaoru; Shimomura, Yasuo; Kijima, Naoto; Honma, Tetsuo

    2007-01-01

    We have studied the local structure around Ce atom in Ca3Sc2Si3O12 host crystal, which has been developed as a new green phosphor for white light emitting diodes (LEDs). As the local structure and chemical environment of the dopant atom are very important to improve the performance of the phosphor, we have used XAFS to get chemical and structural information around the Ce dopant. The XANES spectrum of the Ce LIII-edge reveals that the Ce atom is trivalent in Ca3Sc2Si3O12. There are two kinds of possible Ce substitution sites, Ca site and Sc site, in garnet type Ca3Sc2Si3O12 crystal structure. The Ce atom is found to be at the Ca site in the host crystal by the comparison of the Fourier transform of Ce K-edge EXAFS spectrum with those of Ca and Sc K-edge EXAFS spectra. The theoretical analysis with FEFF also clarified the Ce substitution at the Ca site. Furthermore, the result of the analysis indicates the structural disorder around Ca and Si atoms at 3.75 A. It is possible that there are some defects around the Ca and Si atoms at 3.75 A to compensate the excess positive charge by introduced Ce3+ at the Ca2+ site

  7. Revising the Subsystem Nurse’s A-Phase-Silicocarnotite within the System Ca3(PO42–Ca2SiO4

    Directory of Open Access Journals (Sweden)

    Patricia Ros-Tárraga

    2016-04-01

    Full Text Available The subsystem Nurse’s A-phase-silicocarnotite within the system Ca3(PO42–Ca2SiO4 was conducted as a preliminary step toward obtaining new biomaterials with controlled microstructures. Phase composition of the resulting ceramics was studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy with attached wavelength dispersive spectroscopy. The results showed that the sub-system presents an invariant eutectoid point at 1366 ± 4 °C with a composition of 59.5 wt % Ca3(PO42 and 40.5 wt % Ca2SiO4, and typical eutectoid microstructure of lamellae morphology. These results are in disagreement with the previous reported data, which locate the invariant eutectoid point at 1250 ± 20 °C with a composition of 55 wt % Ca3(PO42 and 45 wt % Ca2SiO4. In addition, cell attachment testing showed that the new eutectoid material supported the mesenchymal stem cell adhesion and spreading, and the cells established close contact with the ceramic after 28 days of culture. These findings indicate that the new ceramic material with eutectoid microstructure of lamellae morphology possesses good bioactivity and biocompatibility and might be a promising bone implant material.

  8. Pyramid-like basket cells in the granular layer of the dentate gyrus in the rat.

    Science.gov (United States)

    Seress, L

    1978-01-01

    Basket cells of the dentate gyrus were identified using Nissl (cresyl violet) staining. It has been found that the ratio between basket and granule cells is 1:150--210. Only a few glial cells, mainly astroglia, were found in the granular layer of the dentate gyrus. In accordance with earlier data it was found that the granule cells and glial cells originate mainly postnatally, but the basket cells, like the pyramidal cells of the hippocampus, originate prenatally. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:701192

  9. Prenatal alcohol exposure affects progenitor cell numbers in olfactory bulbs and dentate gyrus of vervet monkeys

    DEFF Research Database (Denmark)

    Burke, Mark W; Inyatkin, Alexey; Ptito, Maurice

    2016-01-01

    vervet monkey (Chlorocebus sabeus) to (1) investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2) determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years......). Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group...

  10. Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET

    DEFF Research Database (Denmark)

    Pedersen, Jane Rygaard; Johannsen, P; Bak, Christen Kjeldahl

    1998-01-01

    Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known as the Bereitschaftspotent......Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known...... sources subsequently to be active were mapped to the supplementary motor area, premotor cortex, and motor cortex (M1), all in the left hemisphere. (C) 1998 Academic Press....

  11. Over-activation in bilateral superior temporal gyrus correlated with subsequent forgetting effect of Chinese words.

    Science.gov (United States)

    Chen, Tzu-Ching; Kuo, Wen-Jui; Chiang, Ming-Chang; Tseng, Yi-Jhan; Lin, Yung-Yang

    2013-08-01

    We evaluated the subsequent memory and forgotten effects for Chinese using event-related fMRI. Sixteen normal subjects were recruited and performing incidental memory tasks where semantic decision was required during memory encoding. Consistent with previous studies, our results showed bilateral frontal regions as the main locus for the subsequent memory effect. However, contrast between miss and hit responses revealed larger activation in bilateral superior temporal gyrus. We proposed that larger activation in the superior temporal gyrus may reflect alteration of self-monitoring process which resulted in unsuccessful memory encoding for the miss items. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Biphasic somatic A-type K channel downregulation mediates intrinsic plasticity in hippocampal CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Sung-Cherl Jung

    2009-08-01

    Full Text Available Since its original description, the induction of synaptic long-term potentiation (LTP has been known to be accompanied by a lasting increase in the intrinsic excitability (intrinsic plasticity of hippocampal neurons. Recent evidence shows that dendritic excitability can be enhanced by an activity-dependent decrease in the activity of A-type K(+ channels. In the present manuscript, we examined the role of A-type K(+ channels in regulating intrinsic excitability of CA1 pyramidal neurons of the hippocampus after synapse-specific LTP induction. In electrophysiological recordings we found that LTP induced a potentiation of excitability which was accompanied by a two-phased change in A-type K(+ channel activity recorded in nucleated patches from organotypic slices of rat hippocampus. Induction of LTP resulted in an immediate but short lasting hyperpolarization of the voltage-dependence of steady-state A-type K(+ channel inactivation along with a progressive, long-lasting decrease in peak A-current density. Blocking clathrin-mediated endocytosis prevented the A-current decrease and most measures of intrinsic plasticity. These results suggest that two temporally distinct but overlapping mechanisms of A-channel downregulation together contribute to the plasticity of intrinsic excitability. Finally we show that intrinsic plasticity resulted in a global enhancement of EPSP-spike coupling.

  13. Hypoxia-Induced neonatal seizures diminish silent synapses and long-term potentiation in hippocampal CA1 neurons

    Science.gov (United States)

    Zhou, Chengwen; Bell, Jocelyn J. Lippman; Sun, Hongyu; Jensen, Frances E.

    2012-01-01

    Neonatal seizures can lead to epilepsy and long-term cognitive deficits in adulthood. Using a rodent model of the most common form of human neonatal seizures, hypoxia-induced seizures (HS), we aimed to determine whether these seizures modify long-term potentiation (LTP) and “silent” N-methyl-D-aspartate receptor (NMDAR)-only synapses in hippocampal CA1. At 48-72 hours (hrs) post-HS, electrophysiology and immunofluorescent confocal microscopy revealed a significant decrease in the incidence of silent synapses, and an increase in amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) at the synapses. Coincident with this decrease in silent synapses, there was an attenuation of LTP elicited by either tetanic stimulation of Schaffer collaterals or a pairing protocol, and persistent attenuation of LTP in slices removed in later adulthood after P10 HS. Furthermore, post-seizure treatment in vivo with the AMPAR antagonist 2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline (NBQX) protected against the HS-induced depletion of silent synapses and preserved LTP. Thus, this study demonstrates a novel mechanism by which early-life seizures could impair synaptic plasticity, suggesting a potential target for therapeutic strategies to prevent long-term cognitive deficits. PMID:22171027

  14. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons

    Science.gov (United States)

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals. PMID:27833531

  15. Hypertension impairs hippocampus-related adult neurogenesis, CA1 neuron dendritic arborization and long-term memory.

    Science.gov (United States)

    Shih, Y-H; Tsai, S-F; Huang, S-H; Chiang, Y-T; Hughes, M W; Wu, S-Y; Lee, C-W; Yang, T-T; Kuo, Y-M

    2016-05-13

    Hypertension is associated with neurodegenerative diseases and cognitive impairment. Several studies using spontaneous hypertensive rats to study the effect of hypertension on memory performance and adult hippocampal neurogenesis have reached inconsistent conclusions. The contradictory findings may be related to the genetic variability of spontaneous hypertensive rats due to the conventional breeding practices. The objective of this study is to examine the effect of hypertension on hippocampal structure and function in isogenic mice. Hypertension was induced by the '2 kidneys, 1 clip' method (2K1C) which constricted one of the two renal arteries. The blood pressures of 2K1C mice were higher than the sham group on post-operation day 7 and remained high up to day 28. Mice with 2K1C-induced hypertension had impaired long-term, but not short-term, memory. Dendritic complexity of CA1 neurons and hippocampal neurogenesis were reduced by 2K1C-induced hypertension on post-operation day 28. Furthermore, 2K1C decreased the levels of hippocampal brain-derived neurotrophic factor, while blood vessel density and activation status of astrocytes and microglia were not affected. In conclusion, hypertension impairs hippocampus-associated long-term memory, dendritic arborization and neurogenesis, which may be caused by down-regulation of brain-derived neurotrophic factor signaling pathways. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Grain boundary structures in La2/3Ca1/3MnO3 thin films

    International Nuclear Information System (INIS)

    Miller, D. J.; Lin, Y.-K.; Vlasko-Vlasov, V.; Welp, U.

    1999-01-01

    As with many other oxide-based compounds that exhibit electronic behavior, structural defects have a strong influence on the electronic properties of the CMR manganites. In this work, the authors have studied the effect of grain boundaries on the transport properties and on the local orientation of magnetization. Thin films of the perovskite-related La 2/3 Ca 1/3 MnO 3 compound were deposited onto bicrystal substrates using pulsed laser deposition. Transport measurements showed some enhancement of magnetoresistance across the grain boundary. The structure of the boundary was evaluated by electron microscopy. In contrast with the highly meandering boundaries typically observed in bicrystals of high temperature superconductors, the boundaries in these films are relatively straight and well defined. However, magneto-optical imaging showed that the local magnetization was oriented out of the plane at the grain boundary while it was oriented within the plane in the grains on either side. This coordinated reorientation of local magnetization near the grain boundary leads to enhanced magnetoresistance across the boundary in low fields

  17. Calcium current activation kinetics in isolated pyramidal neurones of the Ca1 region of the mature guinea-pig hippocampus.

    Science.gov (United States)

    Kay, A R; Wong, R K

    1987-11-01

    1. Neurones were isolated from the CA1 region of the guinea-pig hippocampus and subjected to the whole-cell mode of voltage clamping, to determine the kinetics of voltage-gated Ca2+ channel activation. 2. Isolated neurones had an abbreviated morphology, having lost most of the distal dendritic tree during the isolation procedure. The electrical compactness of the cells facilitates voltage clamp analysis. 3. Block of sodium and potassium currents revealed a persistent current activated on depolarization above -40 mV, which inactivated slowly when the intracellular medium contained EGTA. The current was blocked by Co2+ and Cd2+, augmented by increases in Ca2+ and could be carried by Ba2+, suggesting that the current is borne by Ca2+. 4. Steady-state activation of the Ca2+ current was found to be well described by the Boltzman equation raised to the second power. 5. The open channel's current-voltage (I-V) relationship rectified in the inward direction and was consistent with the constant-field equation. 6. The kinetics of Ca2+ current onset followed m2 kinetics throughout the range of its activation. Tail current kinetics were in accord with this model. A detailed Hodgkin-Huxley model was derived, defining the activation of this current. 7. The kinetics of the currents observed in this regionally and morphologically defined class of neurones were consistent with the existence of a single kinetic class of channels.

  18. Inhibiting the Activity of CA1 Hippocampal Neurons Prevents the Recall of Contextual Fear Memory in Inducible ArchT Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Masanori Sakaguchi

    Full Text Available The optogenetic manipulation of light-activated ion-channels/pumps (i.e., opsins can reversibly activate or suppress neuronal activity with precise temporal control. Therefore, optogenetic techniques hold great potential to establish causal relationships between specific neuronal circuits and their function in freely moving animals. Due to the critical role of the hippocampal CA1 region in memory function, we explored the possibility of targeting an inhibitory opsin, ArchT, to CA1 pyramidal neurons in mice. We established a transgenic mouse line in which tetracycline trans-activator induces ArchT expression. By crossing this line with a CaMKIIα-tTA transgenic line, the delivery of light via an implanted optrode inhibits the activity of excitatory CA1 neurons. We found that light delivery to the hippocampus inhibited the recall of a contextual fear memory. Our results demonstrate that this optogenetic mouse line can be used to investigate the neuronal circuits underlying behavior.

  19. Long-term fluoxetine treatment induces input-specific LTP and LTD impairment and structural plasticity in the CA1 hippocampal subfield.

    Directory of Open Access Journals (Sweden)

    Francisco J Rubio

    2013-05-01

    Full Text Available Antidepressant drugs are usually administered for long time for the treatment of major depressive disorder. However, they are also prescribed in several additional psychiatric conditions as well as during long term maintenance treatments. Antidepressants induce adaptive changes in several forebrain structures which include modifications at glutamatergic synapses. We recently found that repetitive administration of the selective serotonin reuptake inhibitor fluoxetine to naϊve adult male rats induced an increase of mature, mushroom-type dendritic spines in several forebrain regions. This was associated with an increase of GluA2-containing α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPA-Rs in telencephalic postsynaptic densities. To unravel the functional significance of such a synaptic re-arrangement, we focused on glutamate neurotransmission in the hippocampus. We evaluated the effect of four weeks of treatment with 0.7 mg/kg of fluoxetine on long-term potentiation (LTP and long-term depression (LTD in the Schaffer collateral-CA1 synapses and the perforant path-CA1 synapses. Recordings in hippocampal slices revealed profound deficits in LTP and LTD at Schaffer collateral-CA1 synapses associated to increased spine density and enhanced presence of mushroom-type spines, as revealed by Golgi staining. However, the same treatment had neither an effect on spine morphology, nor on LTP and LTD at perforant path-CA1 synapses. Cobalt staining experiments revealed decreased AMPA-R Ca2+ permeability in the stratum radiatum together with increased GluA2-containing, Ca2+-impermeable AMPA-Rs. Therefore, 4 weeks of fluoxetine treatment promoted structural and functional adaptations in CA1 neurons in a pathway-specific manner that were selectively associated with impairment of activity-dependent plasticity at Schaffer collateral-CA1 synapses.

  20. Two organizational effects of pubertal testosterone in male rats: transient social memory and a shift away from long-term potentiation following a tetanus in hippocampal CA1.

    Science.gov (United States)

    Hebbard, Pamela C; King, Rebecca R; Malsbury, Charles W; Harley, Carolyn W

    2003-08-01

    The organizational role of pubertal androgen receptor (AR) activation in synaptic plasticity in hippocampal CA1 and in social memory was assessed. Earlier data suggest pubertal testosterone reduces adult hippocampal synaptic plasticity. Four groups were created following gonadectomy at the onset of puberty: rats given testosterone; rats given testosterone but with the AR antagonist flutamide, present during puberty; rats given testosterone at the end of puberty; and rats given cholesterol at the end of puberty. A tetanus normally inducing long-term potentiation (LTP) was used to stimulate CA1 in the urethane-anesthetized adults during the dark phase of their cycle. Social memory was assessed prior to electrophysiology. Social memory for a juvenile rat at 120 min was seen only in rats not exposed to AR activation during puberty. Pubertal AR activation may induce the reduced social memory of male rats. Early CA1 LTP occurred following tetanus in rats with no pubertal testosterone. Short-term potentiation occurred in rats exposed to pubertal testosterone. Unexpectedly, rats with pubertal AR activation developed long-term depression (LTD). The same pattern was seen in normal male rats. Lack of LTP during the dark phase is consistent with other data on circadian modulation of CA1 LTP. No correlations were seen among social memory scores and CA1 plasticity measures. These data argue for two organizational effects of pubertal testosterone: (1) CA1 synaptic plasticity shifts away from potentiation toward depression; (2) social memory is reduced. Enduring effects of pubertal androgen on limbic circuits may contribute to reorganized behaviors in the postpubertal period.

  1. Interaction between harmane, a class of β-carboline alkaloids, and the CA1 serotonergic system in modulation of memory acquisition.

    Science.gov (United States)

    Nasehi, Mohammad; Ghadimi, Fatemeh; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2017-09-01

    This study set to assess the involvement of dorsal hippocampus (CA1) serotonergic system on harmane induced memory acquisition deficit. We used one trial step-down inhibitory avoidancetask to evaluate memory retention and then, open field test to evaluate locomotor activity in adult male NMRI mice. The results showed that pre-training intra-peritoneal (i.p.) administration of harmane (12mg/kg) induced impairment of memory acquisition. Pre-training intra-CA1 administration of 5-HT1B/1D receptor agonist (CP94253; 0.5 and 5ng/mouse) and 5-HT2A/2B/2C receptor agonist (α-methyl 5-HT; 50ng/mouse) impaired memory acquisition. Furthermore, intra-CA1 administration of 5-HT1B/1D receptor antagonist (GR127935; 0.5ng/mouse) and 5-HT2 receptor antagonist (cinancerine; 5ng/mouse) improved memory acquisition. In addition, pre-training intra-CA1 injection of sub-threshold dose of CP94253 (0.05ng/mouse) and α-methyl 5-HT (5ng/mouse) potentiated impairment of memory acquisition induced by harmane (12mg/kg, i.p.). On the other hand, pre-training intra-CA1 infusion of sub-threshold dose of GR127935 (0.05ng/mouse) and cinancerine (0.5ng/mouse) with the administration of harmane (12mg/kg, i.p.) weakened impairment of memory acquisition. Moreover, all above doses of drugs did not change locomotor activity. The present findings suggest that there is an interaction between harmane and the CA1 serotonergic system in modulation of memory acquisition. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  2. Influence of the particle size reduction on magnetic properties of electron-doped Ca1-xYxMnO3

    OpenAIRE

    Alqat Aboalqasim; Gebrel Zohra; Spasojević Vojislav; Kusigerski Vladan; Bošković Snežana; Blanuša Jovan

    2012-01-01

    The electron-doped magnetic nanoparticles of Ca1-xYxMnO3 (x = 0, 0.05, 0.10, 0.15, 0.20, and 0.30) manganite with an average particle size of 50 nm are analyzed and discussed in relation to their bulk counterparts. Nanoparticle samples show dominant anti-ferromagnetic ordering with a significant increase of coercivity, with the maximum value of 0.9 T for x = 0. Particle size reduction in Ca1-xYxMnO3 retains the bulk-like magnetic behavior of samples having up to 15% of Y3+, with the sma...

  3. Gene expression in the neuropeptide Y system during ethanol withdrawal kindling in rats

    DEFF Research Database (Denmark)

    Olling, Janne D; Ulrichsen, Jakob; Correll, Mette

    2010-01-01

    ), and an isocalorically fed control group. Gene expression of NPY and its receptors Y1, Y2, and Y5 was studied in the hippocampal dentate gyrus (DG) and CA3/CA1, as well as piriform cortex (PirCx), and neocortex (NeoCx). RESULTS: MW+/- as well as SW groups showed decreased NPY gene expression in all hippocampal areas...

  4. Complex plastic changes in the neuropeptide Y system during ethanol intoxication and withdrawal in the rat brain

    DEFF Research Database (Denmark)

    Olling, J D; Ulrichsen, J; Christensen, D Z

    2009-01-01

    and NPY-stimulated [(35)S]GTPgammaS functional binding. Rats received intragastric ethanol repeatedly for 4 days, and the NPY system was studied in the hippocampal dentate gyrus (DG), CA3, CA1, and piriform cortex (PirCx) and neocortex (NeoCx) during intoxication, peak withdrawal (16 hr), late withdrawal...

  5. GABAergic Neurons of the Rat Dorsal Hippocampus Express Muscarinic Acetylcholine Receptors

    NARCIS (Netherlands)

    van der Zee, E.A.; Luiten, P.G.M.

    1993-01-01

    The expression of muscarinic acetylcholine receptors (mAChRs) in glutamic acid decarboxylase (GAD)-positive cells in the different strata of CA1, CA3, and the dentate gyrus (DG) of the dorsal hippocampus is examined by way of quantitative immunofluorescent double labeling employing M35, the

  6. Structural plasticity in the dentate gyrus- revisiting a classic injury model.

    Directory of Open Access Journals (Sweden)

    Julia V. Perederiy

    2013-02-01

    Full Text Available The adult brain is in a continuous state of remodeling. This is nowhere more true than in the dentate gyrus, where competing forces such as neurodegeneration and neurogenesis dynamically modify neuronal connectivity, and can occur simultaneously. This plasticity of the adult nervous system is particularly important in the context of traumatic brain injury or deafferentation. In this review, we summarize a classic injury model, lesioning of the perforant path, which removes the main extrahippocampal input to the dentate gyrus. Early studies revealed that in response to deafferentation, axons of remaining fiber systems and dendrites of mature granule cells undergo lamina-specific changes, providing one of the first examples of structural plasticity in the adult brain. Given the increasing role of adult-generated new neurons in the function of the dentate gyrus, we also compare the response of newborn and mature granule cells following lesioning of the perforant path. These studies provide insights not only to plasticity in the dentate gyrus, but also to the response of neural circuits to brain injury.

  7. Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test

    NARCIS (Netherlands)

    Korte, S.M.; de Kloet, E.R.; Buwalda, B; Bouman, S.D.; Bohus, B

    1996-01-01

    Immobility time of rats in the forced swim test was reduced after bilateral infusion of an 18-mer antisense phosphorothioate oligodeoxynucleotide targeted to the glucocorticoid receptor mRNA into the dentate gyrus of the hippocampus. Vehicle-, sense- and scrambled sequence-treated animals spent

  8. Neurons in the Fusiform Gyrus are Fewer and Smaller in Autism

    Science.gov (United States)

    van Kooten, Imke A. J.; Palmen, Saskia J. M. C.; von Cappeln, Patricia; Steinbusch, Harry W. M.; Korr, Hubert; Heinsen, Helmut; Hof, Patrick R.; van Engeland, Herman; Schmitz, Christoph

    2008-01-01

    Abnormalities in face perception are a core feature of social disabilities in autism. Recent functional magnetic resonance imaging studies showed that patients with autism could perform face perception tasks. However, the fusiform gyrus (FG) and other cortical regions supporting face processing in controls are hypoactive in patients with autism.…

  9. Right Inferior Frontal Gyrus Activation as a Neural Marker of Successful Lying

    Directory of Open Access Journals (Sweden)

    Oshin eVartanian

    2013-10-01

    Full Text Available There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low × 2 (Instruction: truth or lie repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC, middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus—a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.

  10. Amygdala and fusiform gyrus temporal dynamics: Responses to negative facial expressions

    Directory of Open Access Journals (Sweden)

    Rauch Scott L

    2008-05-01

    Full Text Available Abstract Background The amygdala habituates in response to repeated human facial expressions; however, it is unclear whether this brain region habituates to schematic faces (i.e., simple line drawings or caricatures of faces. Using an fMRI block design, 16 healthy participants passively viewed repeated presentations of schematic and human neutral and negative facial expressions. Percent signal changes within anatomic regions-of-interest (amygdala and fusiform gyrus were calculated to examine the temporal dynamics of neural response and any response differences based on face type. Results The amygdala and fusiform gyrus had a within-run "U" response pattern of activity to facial expression blocks. The initial block within each run elicited the greatest activation (relative to baseline and the final block elicited greater activation than the preceding block. No significant differences between schematic and human faces were detected in the amygdala or fusiform gyrus. Conclusion The "U" pattern of response in the amygdala and fusiform gyrus to facial expressions suggests an initial orienting, habituation, and activation recovery in these regions. Furthermore, this study is the first to directly compare brain responses to schematic and human facial expressions, and the similarity in brain responses suggest that schematic faces may be useful in studying amygdala activation.

  11. Inferior Frontal Gyrus Activity Triggers Anterior Insula Response to Emotional Facial Expressions

    NARCIS (Netherlands)

    Jabbi, Mbemba; Keysers, Christian

    2008-01-01

    The observation of movies of facial expressions of others has been shown to recruit similar areas involved in experiencing one's own emotions: the inferior frontal gyrus (IFG). the anterior insula and adjacent frontal operculum (IFO). The Causal link bet between activity in these 2 regions,

  12. TMS over the Left Angular Gyrus Impairs the Ability to Discriminate Left from Right

    Science.gov (United States)

    Hirnstein, Marco; Bayer, Ulrike; Ellison, Amanda; Hausmann, Markus

    2011-01-01

    The underlying cognitive and neural mechanisms of the ability to discriminate left from right are hardly explored. Clinical studies from patients with impairments of left-right discrimination (LRD) and neuroimaging data suggest that the left angular gyrus is particularly involved in LRD. Moreover, it is argued that the often reported sex…

  13. The posterior parahippocampal gyrus is preferentially affected in age-related memory decline.

    NARCIS (Netherlands)

    Burgmans, S.; van Boxtel, M.P.J.; van den Berg, K.E.M.; Gronenschild, E.H.B.M.; Jacobs, H.I.L.; Jolles, J.; Uylings, H.B.M.

    2011-01-01

    Atrophy in the medial temporal lobe is generally considered to be highly associated with age-related memory decline. Volume loss in the hippocampus and entorhinal cortex has extensively been investigated, but the posterior parts of the parahippocampal gyrus have received little attention. The

  14. BOLD Response to Motion Verbs in Left Posterior Middle Temporal Gyrus during Story Comprehension

    Science.gov (United States)

    Wallentin, Mikkel; Nielsen, Andreas Hojlund; Vuust, Peter; Dohn, Anders; Roepstorff, Andreas; Lund, Torben Ellegaard

    2011-01-01

    A primary focus within neuroimaging research on language comprehension is on the distribution of semantic knowledge in the brain. Studies have shown that the left posterior middle temporal gyrus (LPMT), a region just anterior to area MT/V5, is important for the processing of complex action knowledge. It has also been found that motion verbs cause…

  15. Ex vivo study of dentate gyrus neurogenesis in human pharmacoresistant temporal lobe epilepsy.

    Science.gov (United States)

    Paradisi, M; Fernández, M; Del Vecchio, G; Lizzo, G; Marucci, G; Giulioni, M; Pozzati, E; Antonelli, T; Lanzoni, G; Bagnara, G P; Giardino, L; Calzà, L

    2010-10-01

    Neurogenesis in adult humans occurs in at least two areas of the brain, the subventricular zone of the telencephalon and the subgranular layer of the dentate gyrus in the hippocampal formation. We studied dentate gyrus subgranular layer neurogenesis in patients subjected to tailored antero-mesial temporal resection including amygdalohippocampectomy due to pharmacoresistant temporal lobe epilepsy (TLE) using the in vitro neurosphere assay. Sixteen patients were enrolled in the study; mesial temporal sclerosis (MTS) was present in eight patients. Neurogenesis was investigated by ex vivo neurosphere expansion in the presence of mitogens (epidermal growth factor + basic fibroblast growth factor) and spontaneous differentiation after mitogen withdrawal. Growth factor synthesis was investigated by qRT-PCR in neurospheres. We demonstrate that in vitro proliferation of cells derived from dentate gyrus of TLE patients is dependent on disease duration. Moreover, the presence of MTS impairs proliferation. As long as in vitro proliferation occurs, neurogenesis is maintained, and cells expressing a mature neurone phenotype (TuJ1, MAP2, GAD) are spontaneously formed after mitogen withdrawal. Finally, formed neurospheres express mRNAs encoding for growth (vascular endothelial growth factor) as well as neurotrophic factors (brain-derived neurotrophic factor, ciliary neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor). We demonstrated that residual neurogenesis in the subgranular layer of the dentate gyrus in TLE is dependent on diseases duration and absent in MTS. © 2010 The Authors. Neuropathology and Applied Neurobiology © 2010 British Neuropathological Society.

  16. The posterior parahippocampal gyrus is preferentially affected in age-related memory decline

    NARCIS (Netherlands)

    Burgmans, S.; van Boxtel, M.P.J.; van den Berg, K.E.M.; Gronenschild, E.H.; Jacobs, H.I.L.; Jolles, J.; Uylings, H.B.M.

    2009-01-01

    Atrophy in the medial temporal lobe is generally considered to be highly associated with age-related memory decline. Volume loss in the hippocampus and entorhinal cortex has extensively been investigated, but the posterior parts of the parahippocampal gyrus have received little attention. The

  17. Apraxia of speech associated with an infarct in the precentral gyrus of the insula

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M.; Komori, T.; Isozaki, E.; Hirai, S. [Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo (Japan); Takeda, K. [Department of Neuropsychology, Tokyo Metropolitan Institute for Neuroscience, Tokyo (Japan)

    1999-05-01

    It has been postulated that the precentral gyrus in the left insula is responsible for co-ordination of speech. We report a paitent with this disturbance who showed an acute infarct limited to this region. (orig.) With 1 fig., 3 refs.

  18. Superior temporal gyrus volume reduction and P300 in schizophrenia prior to treatment

    International Nuclear Information System (INIS)

    Hirayasu, Akira; Hokama, Hiroto; Ogura, Chikara; Ohta, Hirokazu; Arakaki, Hajime; Asato, Naohiko; Yamaguchi, Keiichiro

    1998-01-01

    Authors measured the superior temporal gyrus volume by 3D MRI imaging for the schizophrenics and simultaneously recorded the P300 component during the auditory odd-ball exercise. Subjects were 8 cases of schizophrenics and the sex- and age-matched healthy control adults. In schizophrenics, the superior temporal gyrus volume reduction was found. When the superior temporal gyrus was divided into two parts, the anterior part containing the primary auditory area, and the posterior part containing the planum temporale and the Wernicle speech area, the volume reduction of left side in the posterior part was remarkable. There was no difference in the latent time and the P300 amplitude between schizophrenics and healthy controls, suggesting that the superior temporal gyrus abnormalities will appear prior to P300 abnormalities. We could not find any correlation between findings of MRI and P300 and psychic symptoms. We discuss the possible contribution on the elucidation of the pathogenesis of the schizophrenia by simultaneous recordings of 3D MRI imaging and the event-related potentials. (K.H.)

  19. Inferior frontal gyrus activation predicts individual differences in perceptual learning of cochlear-implant simulations.

    Science.gov (United States)

    Eisner, Frank; McGettigan, Carolyn; Faulkner, Andrew; Rosen, Stuart; Scott, Sophie K

    2010-05-26

    This study investigated the neural plasticity associated with perceptual learning of a cochlear implant (CI) simulation. Normal-hearing listeners were trained with vocoded and spectrally shifted speech simulating a CI while cortical responses were measured with functional magnetic resonance imaging (fMRI). A condition in which the vocoded speech was spectrally inverted provided a control for learnability and adaptation. Behavioral measures showed considerable individual variability both in the ability to learn to understand the degraded speech, and in phonological working memory capacity. Neurally, left-lateralized regions in superior temporal sulcus and inferior frontal gyrus (IFG) were sensitive to the learnability of the simulations, but only the activity in prefrontal cortex correlated with interindividual variation in intelligibility scores and phonological working memory. A region in left angular gyrus (AG) showed an activation pattern that reflected learning over the course of the experiment, and covariation of activity in AG and IFG was modulated by the learnability of the stimuli. These results suggest that variation in listeners' ability to adjust to vocoded and spectrally shifted speech is partly reflected in differences in the recruitment of higher-level language processes in prefrontal cortex, and that this variability may further depend on functional links between the left inferior frontal gyrus and angular gyrus. Differences in the engagement of left inferior prefrontal cortex, and its covariation with posterior parietal areas, may thus underlie some of the variation in speech perception skills that have been observed in clinical populations of CI users.

  20. a-Band Oscillations in Intracellular Membrane Potentials of Dentate Gyrus Neurons in Awake Rodents

    Science.gov (United States)

    Anderson, Ross W.; Strowbridge, Ben W.

    2014-01-01

    The hippocampus and dentate gyrus play critical roles in processing declarative memories and spatial information. Dentate granule cells, the first relay in the trisynaptic circuit through the hippocampus, exhibit low spontaneous firing rates even during locomotion. Using intracellular recordings from dentate neurons in awake mice operating a…

  1. Rhynchophylline Protects Against the Amyloid β-Induced Increase of Spontaneous Discharges in the Hippocampal CA1 Region of Rats.

    Science.gov (United States)

    Shao, Hui; Mi, Ze; Ji, Wei-gang; Zhang, Cheng-huan; Zhang, Teng; Ren, Shuan-cheng; Zhu, Zhi-ru

    2015-11-01

    Accumulated soluble amyloid β (Aβ)-induced aberrant neuronal network activity has been recognized as a key causative factor leading to cognitive deficits which are the most outstanding characteristic of Alzheimer's disease (AD). As an important structure associated with learning and memory, the hippocampus is one of the brain regions that are impaired very early in AD, and the hippocampal CA1 region is selectively vulnerable to soluble Aβ oligomers. Our recent study showed that soluble Aβ1-42 oligomers induced hyperactivity and perturbed the firing patterns in hippocampal neurons. Rhynchophylline (RIN) is an important active tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla which is a traditional Chinese medicine and often used to treat central nervous system illnesses such as hypertension, convulsions, tremor, stroke etc. Previous evidence showed that RIN possessed neuroprotective effects of improving the cognitive function of mice with Alzheimer-like symptoms. In the present study, we aimed to investigate the protective effect of RIN against soluble Aβ1-42 oligomers-induced hippocampal hyperactivity. The results showed that (1) the mean frequency of spontaneous discharge was increased by the local application of 3 μM soluble Aβ1-42 oligomers; (2) 30 μM RIN did not exert any obvious effects on basal physiological discharges; and (3) treatment with RIN effectively inhibited the soluble Aβ1-42 oligomers-induced enhancement of spontaneous discharge, in a concentration-dependent manner with an IC50 = 9.0 μM. These in vivo electrophysiological results indicate that RIN can remold the spontaneous discharges disturbed by Aβ and counteract the deleterious effect of Aβ1-42 on neural circuit. The experimental findings provide further evidence to affirm the potential of RIN as a worthy candidate for further development into a therapeutic agent for AD.

  2. A Role for the Left Angular Gyrus in Episodic Simulation and Memory.

    Science.gov (United States)

    Thakral, Preston P; Madore, Kevin P; Schacter, Daniel L

    2017-08-23

    Functional magnetic resonance imaging (fMRI) studies indicate that episodic simulation (i.e., imagining specific future experiences) and episodic memory (i.e., remembering specific past experiences) are associated with enhanced activity in a common set of neural regions referred to as the core network. This network comprises the hippocampus, medial prefrontal cortex, and left angular gyrus, among other regions. Because fMRI data are correlational, it is unknown whether activity increases in core network regions are critical for episodic simulation and episodic memory. In the current study, we used MRI-guided transcranial magnetic stimulation (TMS) to assess whether temporary disruption of the left angular gyrus would impair both episodic simulation and memory (16 participants, 10 females). Relative to TMS to a control site (vertex), disruption of the left angular gyrus significantly reduced the number of internal (i.e., episodic) details produced during the simulation and memory tasks, with a concomitant increase in external detail production (i.e., semantic, repetitive, or off-topic information), reflected by a significant detail by TMS site interaction. Difficulty in the simulation and memory tasks also increased after TMS to the left angular gyrus relative to the vertex. In contrast, performance in a nonepisodic control task did not differ statistically as a function of TMS site (i.e., number of free associates produced or difficulty in performing the free associate task). Together, these results are the first to demonstrate that the left angular gyrus is critical for both episodic simulation and episodic memory. SIGNIFICANCE STATEMENT Humans have the ability to imagine future episodes (i.e., episodic simulation) and remember episodes from the past (i.e., episodic memory). A wealth of neuroimaging studies have revealed that these abilities are associated with enhanced activity in a core network of neural regions, including the hippocampus, medial prefrontal

  3. Enhanced activation of the left inferior frontal gyrus in deaf and dyslexic adults during rhyming.

    Science.gov (United States)

    MacSweeney, Mairéad; Brammer, Michael J; Waters, Dafydd; Goswami, Usha

    2009-07-01

    Hearing developmental dyslexics and profoundly deaf individuals both have difficulties processing the internal structure of words (phonological processing) and learning to read. In hearing non-impaired readers, the development of phonological representations depends on audition. In hearing dyslexics, many argue, auditory processes may be impaired. In congenitally profoundly deaf individuals, auditory speech processing is essentially absent. Two separate literatures have previously reported enhanced activation in the left inferior frontal gyrus in both deaf and dyslexic adults when contrasted with hearing non-dyslexics during reading or phonological tasks. Here, we used a rhyme judgement task to compare adults from these two special populations to a hearing non-dyslexic control group. All groups were matched on non-verbal intelligence quotient, reading age and rhyme performance. Picture stimuli were used since this requires participants to generate their own phonological representations, rather than have them partially provided via text. By testing well-matched groups of participants on the same task, we aimed to establish whether previous literatures reporting differences between individuals with and without phonological processing difficulties have identified the same regions of differential activation in these two distinct populations. The data indicate greater activation in the deaf and dyslexic groups than in the hearing non-dyslexic group across a large portion of the left inferior frontal gyrus. This includes the pars triangularis, extending superiorly into the middle frontal gyrus and posteriorly to include the pars opercularis, and the junction with the ventral precentral gyrus. Within the left inferior frontal gyrus, there was variability between the two groups with phonological processing difficulties. The superior posterior tip of the left pars opercularis, extending into the precentral gyrus, was activated to a greater extent by deaf than dyslexic

  4. Early natural stimulation through environmental enrichment accelerates neuronal development in the mouse dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Na Liu

    Full Text Available The dentate gyrus is the primary afferent into the hippocampal formation, with important functions in learning and memory. Granule cells, the principle neuronal type in the dentate gyrus, are mostly formed postnatally, in a process that continues into adulthood. External stimuli, including environmental enrichment, voluntary exercise and learning, have been shown to significantly accelerate the generation and maturation of dentate granule cells in adult rodents. Whether, and to what extent, such environmental stimuli regulate the development and maturation of dentate granule cells during early postnatal development is largely unknown. Furthermore, whether natural stimuli affect the synaptic properties of granule cells had been investigated neither in newborn neurons of the adult nor during early development. To examine the effect of natural sensory stimulation on the dentate gyrus, we reared newborn mice in an enriched environment (EE. Using immunohistochemistry, we showed that dentate granule cells from EE-reared mice exhibited earlier morphological maturation, manifested as faster peaking of doublecortin expression and elevated expression of mature neuronal markers (including NeuN, calbindin and MAP2 at the end of the second postnatal week. Also at the end of the second postnatal week, we found increased density of dendritic spines across the entire dentate gyrus, together with elevated levels of postsynaptic scaffold (post-synaptic density 95 and receptor proteins (GluR2 and GABA(ARγ2 of excitatory and inhibitory synapses. Furthermore, dentate granule cells of P14 EE-reared mice had lower input resistances and increased glutamatergic and GABAergic synaptic inputs. Together, our results demonstrate that EE-rearing promotes morphological and electrophysiological maturation of dentate granule cells, underscoring the importance of natural environmental stimulation on development of the dentate gyrus.

  5. Transcortical selective amygdalohippocampectomy technique through the middle temporal gyrus revisited: An anatomical study laboratory investigation.

    Science.gov (United States)

    Bozkurt, Baran; da Silva Centeno, Ricardo; Chaddad-Neto, Feres; da Costa, Marcos Devanir Silva; Goiri, Marcelo Augusto Acosta; Karadag, Ali; Tugcu, Bekir; Ovalioglu, Talat Cem; Tanriover, Necmettin; Kaya, Serdar; Yagmurlu, Kaan; Grande, Andrew

    2016-12-01

    The anterior temporal lobectomy (ATL) and selective amygdalohippocampectomy (SelAH) have been used for surgical treatment of mesial temporal lobe epilepsy. We examined the comprehensive white matter tract anatomy of the temporal lobe to gain an insight into the trans-middle temporal gyrus, a lateral approach which has been commonly used. The transmiddle temporal gyrus approach was performed in a stepwise manner on cadaveric human heads to examine the traversing white matter pathways through it and the structures located in the temporal horn. We reviewed the literature to compare the trans-middle temporal gyrus approach with other SelAH techniques based on surgical outcomes. There does not appear to be a significant difference in seizure outcome between SelAH and ATL. However, the SelAH provides a better neuropsychological outcomes than the ATL in selected patients. Each SelAH approach has individual advantages and disadvantages. Based on our anatomical study, in the transcortical amygdalohippocampectomy technique through the middle temporal gyrus the white matter pathways to be encountered. In the temporal horn, the collateral eminence, hippocampus, lateral ventricular sulcus, choroidal fissure, inferior choroidal point, choroid plexus, fimbria of the fornix, and amygdala are exposed. The subpial dissection is performed along the lateral ventricular sulcus from the collateral eminence on lateral side and from the choroidal fissure on medial side by microdissector for en bloc resection of the hippocampus proper. The trans-middle temporal gyrus approach is commonly used in treatment of mesial temporal lobe epilepsy patients. A better anatomical and functional understanding of the structures of the temporal lobe is crucial for safer and more accurate surgery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Specific marker of feigned memory impairment: The activation of left superior frontal gyrus.

    Science.gov (United States)

    Chen, Zi-Xiang; Xue, Li; Liang, Chun-Yu; Wang, Li-Li; Mei, Wei; Zhang, Qiang; Zhao, Hu

    2015-11-01

    Faking memory impairment means normal people complain lots of memory problems without organic damage in forensic assessments. Using alternative forced-choice paradigm, containing digital or autobiographical information, previous neuroimaging studies have indicated that faking memory impairment could cause the activation in the prefrontal and parietal regions, and might involve a fronto-parietal-subcortical circuit. However, it is still unclear whether different memory types have influence on faking or not. Since different memory types, such as long-term memory (LTM) and short-term memory (STM), were found supported by different brain areas, we hypothesized that feigned STM or LTM impairment had distinct neural activation mapping. Besides that, some common neural correlates may act as the general characteristic of feigned memory impairment. To verify this hypothesis, the functional magnetic resonance imaging (fMRI) combined with an alternative word forced-choice paradigm were used in this study. A total of 10 right-handed participants, in this study, had to perform both STW and LTM tasks respectively under answering correctly, answering randomly and feigned memory impairment conditions. Our results indicated that the activation of the left superior frontal gyrus and the left medial frontal gyrus was associated with feigned LTM impairment, whereas the left superior frontal gyrus, the left precuneus and the right anterior cingulate cortex (ACC) were highly activated while feigning STM impairment. Furthermore, an overlapping was found in the left superior frontal gyrus, and it suggested that the activity of the left superior frontal gyrus might be acting as a specific marker of feigned memory impairment. Copyright © 2015. Published by Elsevier Ltd.

  7. Spontaneous neural activity in the right superior temporal gyrus and left middle temporal gyrus is associated with insight level in obsessive-compulsive disorder.

    Science.gov (United States)

    Fan, Jie; Zhong, Mingtian; Gan, Jun; Liu, Wanting; Niu, Chaoyang; Liao, Haiyan; Zhang, Hongchun; Tan, Changlian; Yi, Jinyao; Zhu, Xiongzhao

    2017-01-01

    Insight into illness is an important issue for psychiatry disorder. Although the existence of a poor insight subtype of obsessive-compulsive disorder (OCD) was recognized in the DSM-IV, and the insight level in OCD was specified further in DSM-V, the neural underpinnings of insight in OCD have been rarely explored. The present study was designed to bridge this research gap by using resting-state functional magnetic resonance imaging (fMRI). Spontaneous neural activity were examined in 19 OCD patients with good insight (OCD-GI), 18 OCD patients with poor insight (OCD-PI), and 25 healthy controls (HC) by analyzing the amplitude of low-frequency fluctuation (ALFF) in the resting state. Pearson correlation analysis was performed between regional ALFFs and insight levels among OCD patients. OCD-GI and OCD-PI demonstrated overlapping and distinct brain alterations. Notably, compared with OCD-GI, tOCD-PI had reduced ALFF in left middle temporal gyrus (MTG) and right superior temporal gyrus (STG), as well as increased ALFF in right middle occipital gyrus. Further analysis revealed that ALFF values for the left MTG and right STG were correlated negatively with insight level in patients with OCD. Relatively small sample size and not all patients were un-medicated are our major limitations. Spontaneous brain activity in left MTG and right STG may be neural underpinnings of insight in OCD. Our results suggest the great role of human temporal brain regions in understanding insight, and further underscore the importance of considering insight presentation in understanding the clinical heterogeneity of OCD. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Temperature-dependent and anisotropic optical response of layered Pr0.5Ca1.5MnO4 probed by spectroscopic ellipsometry

    NARCIS (Netherlands)

    Majidi, M. A.; Thoeng, E.; Gogoi, P. K.; Wendt, F.; Wang, S. H.; Santoso, I.; Asmara, T. C.; Handayani, I. P.; van Loosdrecht, P. H. M.; Nugroho, A. A.; Ruebhausen, M.; Rusydi, A.; Rübhausen, M.

    2013-01-01

    We study the temperature dependence as well as anisotropy of optical conductivity (sigma(1)) in the pseudocubic single crystal Pr0.5Ca1.5MnO4 using spectrocopic ellipsometry. Three transition temperatures are observed and can be linked to charge-orbital (T-CO/OO similar to 320 K),

  9. Data on pharmacological applications and hypothermia protection against in vitro oxygen-glucose-deprivation-related neurodegeneration of adult rat CA1 region

    Directory of Open Access Journals (Sweden)

    Pınar Öz

    2017-02-01

    Here, the use CA1sp width measurements on Nissl-stained hippocampal slices is introduced as a valid and affordable method for detecting the level of neurodegeneration and neuroprotection on hippocampal slices. The protective effect of hypothermia was found to be more pronounced compared to other agents.

  10. A study on the positron annihilation of glassy Bi1Sr1Ca1Cu2Ox quenched from the molten liquid

    International Nuclear Information System (INIS)

    Hong Zhang; Xiao-Guang Wang; Le Luo; Shu-Hui Hu

    1989-01-01

    Some experimental results about the change of positron lifetime and Doppler broadening in glassy Bi 1 Sr 1 Ca 1 Cu 2 O x samples after post-annealing are reported. X-ray diffraction was used to examine the existing phases. Positron annihilation measurements indicate that there are two crystallization transformations from 20 0 to 830 0 C

  11. Crystal structures of CCa2CuO5 and CSr1.9Ca1.1Cu2O7 refined from single crystal data

    International Nuclear Information System (INIS)

    Kopnin, E.M.; Matveev, A.T.; Salamakha, P.S.; Sato, A.; Takayama-Muromachi, E.

    2003-01-01

    Single crystals were grown for new layered oxycarbonates CCa 2 CuO 5 and CSr 1.9 Ca 1.1 Cu 2 O 7 at 6 GPa using a belt-type apparatus. Their crystal structures were determined using single crystal X-ray diffraction data with R1(wR2)=0.0294(0.0659) and 0.0199(0.0457) for CCa 2 CuO 5 and CSr 1.9 Ca 1.1 Cu 2 O 7 , respectively. These phases crystallize in the space group P4/mmm (No. 123), Z=1 with a=3.8157(1) Angst, c=7.1426(3) Angst for CCa 2 CuO 5 and a=3.8753(1) Angst, c=10.6765(5) Angst for CSr 1.9 Ca 1.1 Cu 2 O 7 . In contrast to CSr 2 CuO 5 , no ordering in the orientation of the triangular CO 3 groups was revealed in CCa 2 CuO 5 and CSr 1.9 Ca 1.1 Cu 2 O 7

  12. Prior Activation of Inositol 1,4,5-Trisphosphate Receptors Suppresses the Subsequent Induction of Long-Term Potentiation in Hippocampal CA1 Neurons

    Science.gov (United States)

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-01-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…

  13. Effect of pertussis and cholera toxins administered supraspinally on CA3 hippocampal neuronal cell death and the blood glucose level induced by kainic acid in mice.

    Science.gov (United States)

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Sharma, Naveen; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-12-01

    The effect of cholera toxin (CTX) or pertussis toxin (PTX) administered supraspinally on hippocampal neuronal cell death in CA3 region induced by kainic acid (KA) was examined in mice. After the pretreatment with either PTX or CTX intracerebroventricularly (i.c.v.), mice were administered i.c.v. with KA. The i.c.v. treatment with KA caused a neuronal cell death in CA3 region and PTX, but not CTX, attenuated the KA-induced neuronal cell death. In addition, i.c.v. treatment with KA caused an elevation of the blood glucose level. The i.c.v. PTX pretreatment alone caused a hypoglycemia and inhibited KA-induced hyperglycemic effect. However, i.c.v. pretreatment with CTX did not affect the basal blood glucose level and KA-induced hyperglycemic effect. Moreover, KA administered i.c.v. caused an elevation of corticosterone level and reduction of the blood insulin level. Whereas, i.c.v. pretreatment with PTX further enhanced KA-induced up-regulation of corticosterone level. Furthermore, i.c.v. administration of PTX alone increased the insulin level and KA-induced hypoinsulinemic effect was reversed. In addition, PTX pretreatment reduces the KA-induced seizure activity. Our results suggest that supraspinally administered PTX, exerts neuroprotective effect against KA-induced neuronal cells death in CA3 region and neuroprotective effect of PTX is mediated by the reduction of KA-induced blood glucose level. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  14. Spontaneous release from mossy fiber terminals inhibits Ni2+-sensitive T-type Ca2+ channels of CA3 pyramidal neurons in the rat organotypic hippocampal slice.

    Science.gov (United States)

    Reid, Christopher A; Xu, Shenghong; Williams, David A

    2008-01-01

    Mossy fibers (axons arising from dentate granule cells) form large synaptic contacts exclusively onto the proximal apical dendrites of CA3 pyramidal neurons. They can generate large synaptic currents that occur in close proximity to the soma. These properties mean that active conductance in the proximal apical dendrite could have a disproportionate influence on CA3 pyramidal neuron excitability. Ni(2+)-sensitive T-type Ca(2+) channels are important modulators of dendritic excitability. Here, we use an optical approach to determine the contribution of Ni(2+) (100 microM)-sensitive Ca(2+) channels to action potential (AP) elicited Ca(2+) flux in the soma, proximal apical and distal apical dendrites. At resting membrane potentials Ni(2+)-sensitive Ca(2+) channels do not contribute to the Ca(2+) signal in the proximal apical dendrite, but do contribute in the other cell regions. Spontaneous release from mossy fiber terminals acting on 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive postsynaptic channels underlies a tonic inhibition of Ni(2+)-sensitive channels. Chelating Zn(2+) with CaEDTA blocks CNQX-sensitive changes in Ca(2+) flux implicating a mechanistic role of this ion in T-type Ca(2+) channel block. To test if this inhibition influenced excitability, progressively larger depolarizing pulses were delivered to CA3 pyramidal neurons. CNQX significantly reduced the size of the depolarizing step required to generate APs and increased the absolute number of APs per depolarizing step. This change in AP firing was completely reversed by the addition of Ni(2+). This mechanism may reduce the impact of T-type Ca(2+) channels in a region where large synaptic events are common.

  15. Effects of conducting oxide barrier layers on the stability of Crofer® 22 APU/Ca3Co4O9 interfaces

    DEFF Research Database (Denmark)

    Holgate, Tim C.; Han, Li; Wu, NingYu

    2014-01-01

    Practical implementation of oxide thermoelectrics on an industrial or commercial scale for waste heat energy conversion requires the development of chemically stable interfaces between metal interconnects and oxide thermoelements that exhibit low electrical contact resistances. A commercially...... available high-chrome iron alloy (i.e., Crofer® 22 APU) serving as the interconnect metal was spray coated with LaNi0.6Fe0.4O3 (LNFO) or (Mn,Co)3O4 spinel and then interfaced with a p-type thermoelectric material—calcium cobaltate (Ca3Co4O9)—using spark plasma sintering. The interfaces have been...

  16. Analyses of stable isotopes in camelids collagen bones from Tulan Ravine, Atacama Puna, early formative period (CA 3,1000-2,400BP)

    International Nuclear Information System (INIS)

    Lopez, Patricio; Cartajena, Isabel; Nunez, Lautaro

    2013-01-01

    This paper presents the results of isotope analysis (δ 13 C y δ 15 N) conducted on bone collagen found in Lama guanicoe and Lama glama remains from Tulan-85 and Tulan-54 archaeological sites. Both sites have been dated to the Early Formative Period (ca. 3,100-2,400 ap) and are located southeast of the Atacama Puna basin. Faunal samples were selected using anatomical and morphometric criteria. The results indicate divergences in the diets of both species, reflecting vegetation variation in the Tulan Quebrada caused by altitude differences and linked to hunting and herding areas [es

  17. Oriented thin films of Na0.6CoO2 and Ca3Co4O9 deposited by spin-coating method on polycrystalline substrate

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Soroka, Miroslav; Knížek, Karel; Hirschner, Jan; Levinský, Petr; Hejtmánek, Jiří

    2016-01-01

    Roč. 603, MAR (2016), s. 400-403 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-18392S; GA ČR(CZ) GA13-03708S Institutional support: RVO:61388980 ; RVO:68378271 Keywords : Cobaltates * Thermoelectrics * NaxCoO2 * Ca3Co4O9 * Thin film s * ZrO2 Subject RIV: CA - Inorganic Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.879, year: 2016

  18. Spin-polarized investigation of ferromagnetism on magnetic semiconductors MnxCa1−xS in the rock-salt phase

    International Nuclear Information System (INIS)

    Choutri, H.; Ghebouli, M.A.; Ghebouli, B.; Bouarissa, N.; Uçgun, E.; Ocak, H.Y.

    2014-01-01

    The structural, elastic, electronic and magnetic properties of the diluted magnetic semiconductors Mn x Ca 1−x S in the rock-salt phase have been investigated using first-principles calculations with both LDA and LDA + U functional. Features such as lattice constant, bulk modulus, elastic constants, spin-polarized band structure, total and local densities of states have been computed. We predict the values of the exchange constants and the band edge spin splitting of the valence and conduction bands. The hybridization between S-3p and Mn-3d produces small local magnetic moment on the nonmagnetic Ca and S sites. The ferromagnetism is induced due to the exchange splitting of S-3p and Mn-3d hybridized bands. The total magnetic moment per Mn of Mn x Ca 1−x S is 4.4μ B and 4.5μ B for LDA and LDA + U functional and is independent of the Mn concentration. The unfilled Mn-3d levels reduce the local magnetic moment of Mn from its free space charge value of 5μ B –4.4μ B and4.5μ B for LDA and LDA + U functional due to 3p–3d hybridization. - Highlights: • Fundamental properties of magnetic semiconductors Mn x Ca 1−x S. • Rock-salt phase of Mn x Ca 1−x S. • Magnetic properties of the diluted magnetic semiconductors Mn x Ca 1−x S. • The use of LDA + U functionals

  19. Exogenous hydrogen sulfide eliminates spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress via promoting glutamate uptake.

    Science.gov (United States)

    He, Jin; Guo, Ruixian; Qiu, Pengxin; Su, Xingwen; Yan, Guangmei; Feng, Jianqiang

    2017-05-14

    Acute stress impairs the hippocampus-dependent spatial memory retrieval, and its synaptic mechanisms are associated with hippocampal CA1 long-term depression (LTD) enhancement in the adult rats. Endogenous hydrogen sulfide (H 2 S) is recognized as a novel gasotransmitter and has the neural protective roles. However, very little attention has been paid to understanding the effects of H 2 S on spatial memory retrieval impairment. We observed the protective effects of NaHS (a donor of H 2 S) against spatial memory retrieval impairment caused by acute stress and its synaptic mechanisms. Our results showed that NaHS abolished spatial memory retrieval impairment and hippocampal CA1 LTD enhancement caused by acute stress, but not by glutamate transporter inhibitor l-trans-pyrrolidine-2,4-dicarboxylic (tPDC), indicating that the activation of glutamate transporters is necessary for exogenous H 2 S to exert its roles. Moreover, NaHS restored the decreased glutamate uptake in the hippocampal CA1 synaptosomal fraction caused by acute stress. Dithiothreitol (DTT, a disulfide reducing agent) abolished a decrease in the glutamate uptake caused by acute stress, and NaHS eradicated the decreased glutamate uptake caused by 5,5'-dithio-bis(2-nitrobenzoic)acid (DTNB, a thiol oxidizing agent), collectively, revealing that exogenous H 2 S increases glutamate uptake by reducing disulfide bonds of the glutamate transporters. Additionally, NaHS inhibited the increased expression level of phosphorylated c-Jun-N-terminal kinase (JNK) in the hippocampal CA1 region caused by acute stress. The JNK inhibitor SP600125 eliminated spatial memory retrieval impairment, hippocampal CA1 LTD enhancement and the decreased glutamate uptake caused by acute stress, indicating that exogenous H 2 S exerts these roles by inhibiting the activation of JNK signaling pathway. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Protective effects of glucose-6-phosphate dehydrogenase on neurotoxicity of aluminium applied into the CA1 sector of rat hippocampus

    Directory of Open Access Journals (Sweden)

    Marina D Jovanovic

    2014-01-01

    Full Text Available Background & objectives: Aluminum (Al toxicity is closely linked to the pathogenesis of Alzheimer′s disease (AD. This experimental study was aimed to investigate the active avoidance behaviour of rats after intrahippocampal injection of Al, and biochemical and immunohistochemical changes in three bilateral brain structures namely, forebrain cortex (FBCx, hippocampus and basal forebrain (BF. Methods: Seven days after intra-hippocampal (CA1 sector injection of AlCl 3 into adult male Wistar rats they were subjected to two-way active avoidance (AA tests over five consecutive days. Control rats were treated with 0.9% w/v saline. The animals were decapitated on the day 12 post-injection. The activities of acetylcholinesterase (AChE and glucose-6-phosphate dehydrogenase (G6PDH were measured in the FBCx, hippocampus and BF. Immunohistochemical staining was performed for transferrin receptors, amyloid β and tau protein. Results: The activities of both AChE and G6PDH were found to be decreased bilaterally in the FBCx, hippocampus and basal forebrain compared to those of control rats. The number of correct AA responses was reduced by AlCl 3 treatment. G6PDH administered prior to AlCl 3 resulted in a reversal of the effects of AlCl 3 on both biochemical and behavioural parameters. Strong immunohistochemical staining of transferrin receptors was found bilaterally in the FBCx and the hippocampus in all three study groups. In addition, very strong amyloid β staining was detected bilaterally in all structures in AlCl 3 -treated rats but was moderate in G6PDH/AlCl 3 -treated rats. Strong tau staining was noted bilaterally in AlCl 3 -treated rats. In contrast, tau staining was only moderate in G6PDH/AlCl 3 -treated rats. Interpretation & conclusions: Our findings indicated that the G6PDH alleviated the signs of behavioural and biochemical effects of AlCl 3 -treatment suggesting its involvement in the pathogenesis of Al neurotoxicity and its potential

  1. Context-dependent lexical ambiguity resolution: MEG evidence for the time-course of activity in left inferior frontal gyrus and posterior middle temporal gyrus.

    Science.gov (United States)

    Mollo, Giovanna; Jefferies, Elizabeth; Cornelissen, Piers; Gennari, Silvia P

    An MEG study investigated the role of context in semantic interpretation by examining the comprehension of ambiguous words in contexts leading to different interpretations. We compared high-ambiguity words in minimally different contexts (to bowl, the bowl) to low-ambiguity counterparts (the tray, to flog). Whole brain beamforming revealed the engagement of left inferior frontal gyrus (LIFG) and posterior middle temporal gyrus (LPMTG). Points of interest analyses showed that both these sites showed a stronger response to verb-contexts by 200 ms post-stimulus and displayed overlapping ambiguity effects that were sustained from 300 ms onwards. The effect of context was stronger for high-ambiguity words than for low-ambiguity words at several different time points, including within the first 100 ms post-stimulus. Unlike LIFG, LPMTG also showed stronger responses to verb than noun contexts in low-ambiguity trials. We argue that different functional roles previously attributed to LIFG and LPMTG are in fact played out at different periods during processing. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  2. TMS interferes with lexical-semantic retrieval in left inferior frontal gyrus and posterior middle temporal gyrus: Evidence from cyclical picture naming.

    Science.gov (United States)

    Krieger-Redwood, Katya; Jefferies, Elizabeth

    2014-11-01

    We used TMS to investigate the contribution of left inferior frontal gyrus (LIFG) and posterior middle temporal gyrus (pMTG) to lexical/semantic selection and retrieval processes using a cyclical naming paradigm. Participants named pictures that were presented repeatedly across six cycles, either in semantically related or unrelated sets. Previous research has suggested that selection demands are higher for related sets, especially after repetition, since participants experience competition from the activation of semantic neighbours. In contrast, retrieval demands are greater for unrelated sets in the absence of semantic priming, particularly on the first cycle when the target names have not been previously activated. Therefore, this paradigm can reveal independent effects of (i) retrieval demands (i.e., the ease of accessing picture names from visual input) and (ii) selection/competition. We found that rTMS to LIFG and pMTG produced similar behavioural effects: stimulation of both sites disrupted picture naming performance on early cycles (when participants were less practised at producing the picture names) and for semantically-related sets (when there was the potential for increased competition and yet also facilitation from semantic neighbours). There were no effects of TMS when either retrieval or selection requirements were maximal on their own. The data therefore support the view that both LIFG and pMTG contribute to picture name retrieval, with both sites playing a critical role in mediating the semantic facilitation of naming when retrieval demands are high. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. One-way traffic: The inferior frontal gyrus controls brain activation in the middle temporal gyrus and inferior parietal lobule during divergent thinking.

    Science.gov (United States)

    Vartanian, Oshin; Beatty, Erin L; Smith, Ingrid; Blackler, Kristen; Lam, Quan; Forbes, Sarah

    2018-02-23

    Contrary to earlier approaches that focused on the contributions of isolated brain regions to the emergence of creativity, there is now growing consensus that creative thought emerges from the interaction of multiple brain regions, often embedded within larger brain networks. Specifically, recent evidence from studies of divergent thinking suggests that kernel ideas emerge in posterior brain regions residing within the semantic system and/or the default mode network (DMN), and that the prefrontal cortex (PFC) regions within the executive control network (ECN) constrain those ideas for generating outputs that meet task demands. However, despite knowing that regions within these networks exhibit interaction, to date the direction of the relationship has not been tested directly. By applying Dynamic Causal Modeling (DCM) to fMRI data collected during a divergent thinking task, we tested the hypothesis that the PFC exerts unidirectional control over the middle temporal gyrus (MTG) and the inferior parietal lobule (IPL), vs. the hypothesis that these two sets of regions exert bidirectional control over each other (in the form of feedback loops). The data were consistent with the former model by demonstrating that the right inferior frontal gyrus (IFG) exerts unidirectional control over MTG and IPL, although the evidence was somewhat stronger in the case of the MTG than the IPL. Our findings highlight potential causal pathways that could underlie the neural bases of divergent thinking. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  4. Time course of gamma-band oscillation associated with face processing in the inferior occipital gyrus and fusiform gyrus: A combined fMRI and MEG study.

    Science.gov (United States)

    Uono, Shota; Sato, Wataru; Kochiyama, Takanori; Kubota, Yasutaka; Sawada, Reiko; Yoshimura, Sayaka; Toichi, Motomi

    2017-04-01

    Debate continues over whether the inferior occipital gyrus (IOG) or the fusiform gyrus (FG) represents the first stage of face processing and what role these brain regions play. We investigated this issue by combining functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in normal adults. Participants passively observed upright and inverted faces and houses. First, we identified the IOG and FG as face-specific regions using fMRI. We applied beamforming source reconstruction and time-frequency analysis to MEG source signals to reveal the time course of gamma-band activations in these regions. The results revealed that the right IOG showed higher gamma-band activation in response to upright faces than to upright houses at 100 ms from the stimulus onset. Subsequently, the right FG showed greater gamma-band response to upright faces versus upright houses at around 170 ms. The gamma-band activation in the right IOG and right FG was larger in response to inverted faces than to upright faces at the later time window. These results suggest that (1) the gamma-band activities occurs rapidly first in the IOG and next in the FG and (2) the gamma-band activity in the right IOG at later time stages is involved in configuration processing for faces. Hum Brain Mapp 38:2067-2079, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Discovery of novel solid solution Ca3Si3-x O3+x N4-2x : Eu2+ phosphors: structural evolution and photoluminescence tuning.

    Science.gov (United States)

    Wang, Baochen; Liu, Yan-Gai; Huang, Zhaohui; Fang, Minghao; Wu, Xiaowen

    2017-12-22

    Discovery of novel phosphors is one of the main issues for improving the color rendering index (CRI) and correlated color temperature (CCT) of white light-emitting diodes (w-LEDs). This study mainly presents a systematic research on the synthesis, crystal structure variation and photoluminescence tuning of novel (oxy)nitride solid solution Ca 3 Si 3-x O 3+x N 4-2x : Eu 2+ phosphors. XRD refinements show that lattice distortion occurs when x value diverges the optimum one (x = 1). The lattice distortion causes a widening of emission spectrum and an increase of Stokes shift (ΔSS), which leads to a bigger thermal quenching. With decrease of x value, the emission spectrum shows an obvious red-shift from 505.2 to 540.8 nm, which is attributed to the crystal field splitting. The enhanced crystal field splitting also broadens the excitation spectrum, making it possible to serve as the phosphor for near ultraviolet (n-UV) LEDs. A 3-phosphor-conversion w-LED lamp was fabricated with the as-prepared phosphor, which exhibits high CRI (Ra = 85.29) and suitable CCT (4903.35 K). All these results indicate that the Ca 3 Si 3-x O 3+x N 4-2x : Eu 2+ phosphor can serve as the green phosphor for n-UV w-LEDs, with a tunable spectrum by controlling the crystal structure and morphology.

  6. Critical current density of four-CuO2-layer T1Ba2Ca3Cu4O11-δ

    International Nuclear Information System (INIS)

    Zhang, L.; Liu, J.Z.; Shelton, R.N.

    1998-01-01

    Full text: A key requirement for technological application is to have superconductors with high critical current density at practical operating temperatures and magnetic fields. The critical current density is strongly related to underlying properties of high T c superconductors, such as layering, anisotropy and other intrinsic material structures. The thallium-based superconductors attracted much attention at early stage mainly due to their high superconducting transitions. Recent studies show that these materials appear to be a better choice for achieving higher critical current density because of a stronger interlayer coupling between superconducting layers. Single crystals of TlBa 2 Ca 3 Cu 4 O 11-δ were grown by a self-flux method. This material is a strong-layered superconductor with four-CuO 2 -planes in a unit cell and a superconducting transition temperature of 128K. Our experimental results show that TlBa 2 Ca 3 Cu 4 O 11-δ crystals have high irreversibility line, large critical current density and high upper critical field. The impact of layering and the number of Cu-O layers on flux pinning, critical current density and other magnetic properties will also be discussed

  7. Crystal growth and piezoelectric properties of Ca3Ta(Ga0.9Sc0.1)3Si2O14 bulk single crystal

    Science.gov (United States)

    Igarashi, Yu; Yokota, Yuui; Ohashi, Yuji; Inoue, Kenji; Yamaji, Akihiro; Shoji, Yasuhiro; Kamada, Kei; Kurosawa, Shunsuke; Yoshikawa, Akira

    2018-03-01

    Ca3Ta(Ga0.9Sc0.1)3Si2O14 langasite-type single crystal with a diameter of 1 in. was grown by Czochralski (Cz) method. Obtained crystal had good crystallinity and its lattice constants exceeded those of Ca3TaGa3Si2O14 (CTGS) according to the X-ray analysis. A crack-free specimen cut from the grown crystal was used for the measurements of dielectric constant ε11T/ε0, electromechanical coupling factor k12, and piezoelectric constant d11. The accuracies of these measurements were better than those for the crystal grown by micro-pulling-down (μ-PD) method. Substitution of Ga with Sc resulted modification of these constants in the directions opposite to those observed after partial substitution of Ga (of CTGS) with Al. This suggests that increase of |d14| was most probably associated with enlargement of average size of the Ga sites. The crystal reported here had greater dimensions as compared to analogous crystals grown by the μ-PD method. As a result, accuracy of determination of acoustic constants of this material may be improved.

  8. Luminescent Enhancement of Na+ and Sm3+ Co-doping Reddish Orange SrCa3Si2O8 Phosphors

    Science.gov (United States)

    Chun, Fengjun; Zhang, Binbin; Li, Wen; Liu, Honggang; Deng, Wen; Chu, Xiang; Osman, Hanan; Zhang, Haitao; Yang, Weiqing

    2018-04-01

    Reddish orange SrCa3Si2O8 phosphors, prepared by the facile solid state reaction method, are a luminescent enhancement of Na+ and Sm3+ co-doping luminescent material. Na+ was designed to compensate the charge imbalance of Sm3+ ion substituting for the Sr2+ ion of orthorhombic SrCa3Si2O8 crystals. The results suggest that Na+ can effectively enhance the luminescent intensity of the reddish orange light peaked at about 562 nm (4 G 5/2 → 6 H 5/2), 600 nm (4 G 5/2 → 6 H 7/2) and 645 nm (4 G 5/2 → 6 H 9/2) excited by the near ultraviolet excited light 404 nm (4 L 13/2 → 6 H 5/2). The energy transfer has been further verified by the florescence lifetime. Additionally, the luminescent lifetime τ of as-grown phosphors was separated into two parts, a rapid lifetime and a slow lifetime. The average lifetime results ranged from 2.098 to 1.329 ms which were influenced by the concentration of Sm3+ doping. The systematic researches of as-grown phosphors have clearly suggested a potential application for white-light-emitting diodes ( w-LEDs).

  9. Structural and optical properties of Tb and Na-Tb co-doped Ca3V2O8 phosphors prepared by sol-gel process

    Science.gov (United States)

    Parab, Shambhu S.; Salker, A. V.

    2018-01-01

    A malic acid assisted sol-gel route was successfully employed to prepare two distinct series of green emitting Ca3V2O8 phosphors. In the first series, Tb was solely doped whereas in the second series Na and Tb were doped simultaneously in the Ca3V2O8 crystal lattice. X-ray diffraction studies proved the utility of adopted preparative method by confirming the monophasic formation of all compounds from both the series. Spectral analysis like Raman spectroscopy, UV-DRS were undertaken to analyse the local structure, crystallinity and absorptive characteristics. XPS validated the presence of desired oxidation states of all the elements present. Finally, photoluminescence studies were done to elucidate the scope of prepared compounds as green emitting phosphors and also to understand the effect of both doping schemes on the luminescence. Intense green emission was observed in both the cases. Tb concentration of 0.08 was found to be optimum in case of Tb singly doped compounds whereas Tb = 0.12 showed highest intensity among the Na-Tb co-doped samples. Moreover, a red shift in the excitation wavelength was observed after Na doping signifying a change in the local electronic environment which in turn has affected the luminescence pattern. Local crystallinity and vacancy concentrations were found to have a major say on the emission intensities.

  10. Bluish-White Luminescence in Rare-Earth-Free Vanadate Garnet Phosphors: Structural Characterization of LiCa3MV3O12 (M = Zn and Mg).

    Science.gov (United States)

    Hasegawa, Takuya; Abe, Yusuke; Koizumi, Atsuya; Ueda, Tadaharu; Toda, Kenji; Sato, Mineo

    2018-01-16

    Extensive attention has been focused toward studies on inexpensive and rare-earth-free garnet-structure vanadate phosphors, which do not have a low optical absorption due to the luminescence color being easily controlled by its high composition flexibility. However, bluish emission phosphors with a high quantum efficiency have not been found until now. In this study, we successfully discovered bluish-white emitting, garnet structure-based LiCa 3 MV 3 O 12 (M = Zn and Mg) phosphors with a high quantum efficiency, and the detailed crystal structure was refined by the Rietveld analysis technique. These phosphors exhibit a broad-band emission spectra peak at 481 nm under near UV-light excitation at 341 nm, indicating no clear difference in the emission and excitation spectra. A very compact tetrahedral [VO 4 ] unit is observed in the LiCa 3 MV 3 O 12 (M = Zn and Mg) phosphors, which is not seen in other conventional garnet compounds, and generates a bluish-white emission. In addition, these phosphors exhibit high quantum efficiencies of 40.1% (M = Zn) and 44.0% (M = Mg), respectively. Therefore, these vanadate garnet phosphors can provide a new blue color source for LED devices.

  11. Hilar somatostatin interneuron loss reduces dentate gyrus inhibition in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Hofmann, Gabrielle; Balgooyen, Laura; Mattis, Joanna; Deisseroth, Karl; Buckmaster, Paul S

    2016-06-01

    In patients with temporal lobe epilepsy, seizures usually start in the hippocampus, and dentate granule cells are hyperexcitable. Somatostatin interneurons are a major subpopulation of inhibitory neurons in the dentate gyrus, and many are lost in patients and animal models. However, surviving somatostatin interneurons sprout axon collaterals and form new synapses, so the net effect on granule cell inhibition remains unclear. The present study uses optogenetics to activate hilar somatostatin interneurons and measure the inhibitory effect on dentate gyrus perforant path-evoked local field potential responses in a mouse model of temporal lobe epilepsy. In controls, light activation of hilar somatostatin interneurons inhibited evoked responses up to 40%. Epileptic pilocarpine-treated mice exhibited loss of hilar somatostatin interneurons and less light-induced inhibition of evoked responses. These findings suggest that severe epilepsy-related loss of hilar somatostatin interneurons can overwhelm the surviving interneurons' capacity to compensate by sprouting axon collaterals. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  12. [Surgical treatment of gliomas involving the supplementary motor area in the superior frontal gyrus].

    Science.gov (United States)

    Liu, Wei; Lai, Jian-jun; Qu, Yuan-ming

    2004-07-07

    To explore surgical treatment of gliomas involving the supplementary motor area (SMA) in the superior frontal gyrus. Clinical data and follow-up outcome of 16 patients with low graded astrocytomas involving the supplementary motor area were analyzed. SMA syndrome was developed in 6 patients in whom the posterior tumor resection line was at a distance of more than 1 cm from the precentral sulcus and resolved after 12 months. Hemiplegia occurred however in 8 patients in whom the resection line was less than 1 cm to precentral sulcus and only resolved in 3 patients during follow period 12 months. When the resection is performed at a distance of less than 1 cm from the precentral sulcus, surgery for gliomas of involving the supplementary motor area in the superior frontal gyrus may be result in permanent morbidity.

  13. Bereitschaftspotentials recorded from the lateral part of the superior frontal gyrus in humans.

    Science.gov (United States)

    Ohara, Shinji; Ikeda, Akio; Matsuhashi, Masao; Satow, Takeshi; Kunieda, Takeharu; Mikuni, Nobuhiro; Baba, Koichi; Mihara, Tadahiro; Miyamoto, Susumu; Shibasaki, Hiroshi

    2006-05-15

    To demonstrate the Bereitschaftspotentials (BPs) over the high lateral convexity in the superior frontal gyrus, movement-related cortical potentials with respect to the middle finger extension were recorded in seven patients with refractory epilepsy who underwent subdural implantation of platinum electrode grids and/or strips covering the high lateral frontal convexity. In two out of the seven patients, BPs were recorded from the electrodes placed on the superior frontal gyrus in the vicinity of the border between the medial and lateral frontal lobes, which were distinct from those recorded from the primary sensorimotor cortex. The results suggest the possible contribution of either the lateral dorsal non-primary motor area or the SMA to the generation of the BPs.

  14. Activation of the left inferior frontal gyrus in the first 200 ms of reading: evidence from magnetoencephalography (MEG).

    Science.gov (United States)

    Cornelissen, Piers L; Kringelbach, Morten L; Ellis, Andrew W; Whitney, Carol; Holliday, Ian E; Hansen, Peter C

    2009-01-01

    It is well established that the left inferior frontal gyrus plays a key role in the cerebral cortical network that supports reading and visual word recognition. Less clear is when in time this contribution begins. We used magnetoencephalography (MEG), which has both good spatial and excellent temporal resolution, to address this question. MEG data were recorded during a passive viewing paradigm, chosen to emphasize the stimulus-driven component of the cortical response, in which right-handed participants were presented words, consonant strings, and unfamiliar faces to central vision. Time-frequency analyses showed a left-lateralized inferior frontal gyrus (pars opercularis) response to words between 100-250 ms in the beta frequency band that was significantly stronger than the response to consonant strings or faces. The left inferior frontal gyrus response to words peaked at approximately 130 ms. This response was significantly later in time than the left middle occipital gyrus, which peaked at approximately 115 ms, but not significantly different from the peak response in the left mid fusiform gyrus, which peaked at approximately 140 ms, at a location coincident with the fMRI-defined visual word form area (VWFA). Significant responses were also detected to words in other parts of the reading network, including the anterior middle temporal gyrus, the left posterior middle temporal gyrus, the angular and supramarginal gyri, and the left superior temporal gyrus. These findings suggest very early interactions between the vision and language domains during visual word recognition, with speech motor areas being activated at the same time as the orthographic word-form is being resolved within the fusiform gyrus. This challenges the conventional view of a temporally serial processing sequence for visual word recognition in which letter forms are initially decoded, interact with their phonological and semantic representations, and only then gain access to a speech code.

  15. A Role for the Left Angular Gyrus in Episodic Simulation and Memory

    OpenAIRE

    Thakral, Preston P.; Madore, Kevin P.; Schacter, Daniel L.

    2017-01-01

    Functional magnetic resonance imaging (fMRI) studies indicate that episodic simulation (i.e., imagining specific future experiences) and episodic memory (i.e., remembering specific past experiences) are associated with enhanced activity in a common set of neural regions referred to as the core network. This network comprises the hippocampus, medial prefrontal cortex, and left angular gyrus, among other regions. Because fMRI data are correlational, it is unknown whether activity increases in c...

  16. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI. Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI.

  17. Surgical resection of grade II astrocytomas in the superior frontal gyrus.

    Science.gov (United States)

    Peraud, Aurelia; Meschede, Magnus; Eisner, Wilhelm; Ilmberger, Josef; Reulen, Hans-Jürgen

    2002-05-01

    Surgery in the superior frontal gyrus partially involving the supplementary motor area (SMA) may be followed by contralateral transient weakness and aphasia initially indistinguishable from damage to the primary motor cortex. However, recovery is different, and SMA deficits may resolve completely within days to weeks. No study has assessed the distinct postoperative deficits after tumor resection in the SMA on a homogeneous patient group. Twenty-four patients with World Health Organization Grade II astrocytomas in the superior frontal gyrus consecutively treated by surgery were studied. Degree and duration of postoperative deficits were evaluated according to tumor location and boundaries via magnetic resonance imaging scans, intraoperative neuromonitoring results, and extent of tumor resection. Postoperatively, motor deficits were evident in 21 of 24 and speech deficits in 9 of 12 patients. Motor function quickly recovered in 11 and speech function in 3 patients. None of the 12 patients in whom the posterior tumor resection line was at a distance of more than 0.5 cm from the precentral sulcus experienced persistent motor deficits. Eight of these patients developed typical SMA syndrome with transient initiation difficulties. Seven of 12 patients in whom the tumor extended to the precentral sulcus still had motor deficits at the 12-month follow-up assessment. Surgery for Grade II gliomas in the superior frontal gyrus is more likely to result in permanent morbidity when the resection is performed at a distance of less than 0.5 cm from the precentral gyrus or positive stimulation points. Therefore, cortical mapping of motor and speech function, in critical cases under local anesthesia with the patient as his or her own monitor, is recommended; resection should be tailored to obtain good functional outcome and maintain quality of life.

  18. Kindled seizures selectively reduce a subpopulation of (/sup 3/H)quinuclidinyl benzilate binding sites in rat dentate gyrus

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D.D.; McNamara, J.O.

    1982-09-01

    Amygdala-kindled seizures reduced significantly the total number of (/sup 3/H)quinuclidinyl benzilate binding sites in both dentate and hippocampal gyri compared to electrode implanted unstimulated controls. Both high and low affinity carbachol displaceable binding site populations were significantly reduced in hippocampal gyrus. By contrast, a selective decline of low affinity sites was found in dentate gyrus membranes. The selectivity of the decline in dentate but not hippocampus gyrus underscores the specificity of this molecular response to amygdala-kindled seizures. We suggest that these receptor alterations underlie adaptive mechanisms which antagonize kindled epileptogenesis.

  19. Radial glial cells in the adult dentate gyrus: what are they and where do they come from?

    Science.gov (United States)

    Berg, Daniel A; Bond, Allison M; Ming, Guo-Li; Song, Hongjun

    2018-01-01

    Adult neurogenesis occurs in the dentate gyrus in the mammalian hippocampus. These new neurons arise from neural precursor cells named radial glia-like cells, which are situated in the subgranular zone of the dentate gyrus. Here, we review the emerging topic of precursor heterogeneity in the adult subgranular zone. We also discuss how this heterogeneity may be established during development and focus on the embryonic origin of the dentate gyrus and radial glia-like stem cells. Finally, we discuss recently developed single-cell techniques, which we believe will be critical to comprehensively investigate adult neural stem cell origin and heterogeneity.

  20. Kindled seizures selectively reduce a subpopulation of [3H]quinuclidinyl benzilate binding sites in rat dentate gyrus

    International Nuclear Information System (INIS)

    Savage, D.D.; McNamara, J.O.

    1982-01-01

    Amygdala-kindled seizures reduced significantly the total number of [ 3 H]quinuclidinyl benzilate binding sites in both dentate and hippocampal gyri compared to electrode implanted unstimulated controls. Both high and low affinity carbachol displaceable binding site populations were significantly reduced in hippocampal gyrus. By contrast, a selective decline of low affinity sites was found in dentate gyrus membranes. The selectivity of the decline in dentate but not hippocampus gyrus underscores the specificity of this molecular response to amygdala-kindled seizures. We suggest that these receptor alterations underlie adaptive mechanisms which antagonize kindled epileptogenesis

  1. Prenatal Alcohol Exposure Affects Progenitor Cell Numbers in Olfactory Bulbs and Dentate Gyrus of Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Mark W. Burke

    2016-10-01

    Full Text Available Fetal alcohol exposure (FAE alters hippocampal cell numbers in rodents and primates, and this may be due, in part, to a reduction in the number or migration of neuronal progenitor cells. The olfactory bulb exhibits substantial postnatal cellular proliferation and a rapid turnover of newly formed cells in the rostral migratory pathway, while production and migration of postnatal neurons into the dentate gyrus may be more complex. The relatively small size of the olfactory bulb, compared to the hippocampus, potentially makes this structure ideal for a rapid analysis. This study used the St. Kitts vervet monkey (Chlorocebus sabeus to (1 investigate the normal developmental sequence of post-natal proliferation in the olfactory bulb and dentate gyrus and (2 determine the effects of naturalistic prenatal ethanol exposure on proliferation at three different ages (neonate, five months and two years. Using design-based stereology, we found an age-related decrease of actively proliferating cells in the olfactory bulb and dentate gyrus for both control and FAE groups. Furthermore, at the neonatal time point, the FAE group had fewer actively proliferating cells as compared to the control group. These data are unique with respect to fetal ethanol effects on progenitor proliferation in the primate brain and suggest that the olfactory bulb may be a useful structure for studies of cellular proliferation.

  2. Molecular and functional characterization of GAD67-expressing, newborn granule cells in mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Carolina eCabezas

    2013-04-01

    Full Text Available Dentate gyrus granule cells (GCs have been suggested to synthesize both GABA and glutamate immediately after birth and under pathological conditions in the adult. Expression of the GABA synthesizing enzyme GAD67 by GCs during the first few weeks of postnatal development may then allow for transient GABA synthesis and synaptic release from these cells. Here, using the GAD67-EGFP transgenic strain G42, we explored the phenotype of GAD67-expressing GCs in the mouse dentate gyrus. We report a transient, GAD67-driven EGFP expression in differentiating GCs throughout ontogenesis. EGFP expression correlates with the expression of GAD and molecular markers of GABA release and uptake in 2-4 weeks postmitotic GCs. These rather immature cells are able to fire action potentials and are synaptically integrated in the hippocampal network. Yet they show physiological properties that differentiate them from mature GCs. Finally, GAD67-expressing GCs express a specific complement of GABAA receptor subunits as well as distinctive features of synaptic and tonic GABA signaling. Our results reveal that GAD67 expression in dentate gyrus granule cells is a transient marker of late differentiation that persists throughout life and the G42 strain may be used to visualize newborn GCs at a specific, well-defined differentiation stage.

  3. Bilateral reorganization of the dentate gyrus in hippocampal sclerosis: a postmortem study.

    Science.gov (United States)

    Thom, M; Martinian, L; Catarino, C; Yogarajah, M; Koepp, M J; Caboclo, L; Sisodiya, S M

    2009-09-29

    Hippocampal sclerosis (HS) is the most common surgical pathology associated with mesial temporal lobe epilepsy (MTLE). HS is typically characterized by mossy fiber sprouting (MFS) and reorganization of neuropeptide Y (NPY) fiber networks in the dentate gyrus. One potential cause of postoperative seizure recurrence following temporal lobe surgery may be the presence of seizure-associated bilateral hippocampal damage. We aimed to investigate patterns of hippocampal abnormalities in a postmortem series as identified by NPY and dynorphin immunohistochemistry. Analysis of dentate gyrus fiber reorganization, using dynorphin (to demonstrate MFS) and NPY immunohistochemistry, was carried out in a postmortem epilepsy series of 25 cases (age range 21-96 years). In 9 patients, previously refractory seizures had become well controlled for up to 34 years prior to death. Bilateral MFS or abnormal NPY patterns were seen in 15 patients including those with bilateral symmetric, asymmetric, and unilateral HS by conventional histologic criteria. MFS and NPY reorganization was present in all classical HS cases, more variably in atypical HS, present in both MTLE and non-MTLE syndromes and with seizure histories of up to 92 years, despite seizure remission in some patients. Synaptic reorganization in the dentate gyrus may be a bilateral, persistent process in epilepsy. It is unlikely to be sufficient to generate seizures and more likely to represent a seizure-induced phenomenon.

  4. Differential Involvement of the Dentate Gyrus in Adaptive Forgetting in the Rat.

    Directory of Open Access Journals (Sweden)

    Mickaël Antoine Joseph

    Full Text Available How does the brain discriminate essential information aimed to be stored permanently from information required only temporarily, and that needs to be cleared away for not saturating our precious memory space? Reference Memory (RM refers to the long-term storage of invariable information whereas Working Memory (WM depends on the short-term storage of trial-unique information. Previous work has revealed that WM tasks are very sensitive to proactive interference. In order to prevent such interference, irrelevant old memories must be forgotten to give new ones the opportunity to be stabilized. However, unlike memory, physiological processes underlying this adaptive form of forgetting are still poorly understood. Here, we precisely ask what specific brain structure(s could be responsible for such process to occur. To answer this question, we trained rats in a radial maze using three paradigms, a RM task and two WM tasks involving or not the processing of interference but strictly identical in terms of locomotion or motivation. We showed that an inhibition of the expression of Zif268 and c-Fos, two indirect markers of neuronal activity and synaptic plasticity, was observed in the dentate gyrus of the dorsal hippocampus when processing such interfering previously stored information. Conversely, we showed that inactivating the dentate gyrus impairs both RM and WM, but improves the processing of interference. Altogether, these results strongly suggest for the first time that the dentate gyrus could be a key structure involved in adaptive forgetting.

  5. [Gelastic seizures as the presenting symptom of infarction of the cingulate gyrus].

    Science.gov (United States)

    Egea-Lucas, I; Martinez-Mondejar, E; Piqueres-Vidal, C F; Frutos-Alegria, M T

    2015-09-01

    Gelastic seizures are infrequent epileptic seizures in which the main manifestation is inappropriate laughter. They have a variety of causations. A search of the literature did not reveal any cases of pathological laughter that was clearly related with strokes, although there a numerous reports of non-epileptic pathological laughter as a prodromal symptom in stroke patients (fou rire prodromique). We report the case of a patient with infarcted cingulate gyrus who progressed with gelastic seizures at onset and during the course of the clinical process. An 81-year-old female who suddenly presented bouts of difficulties in verbal expression with disconnection from the milieu that were accompanied by fits of unmotivated and uncontrollable laughter that lasted less than five minutes. Following the attacks, her level of consciousness had dropped. In some of the attacks there were also involuntary movements of the upper limbs. Resonance imaging revealed the existence of an acute ischaemic lesion in the left territory of the cingulate gyrus and an electroencephalogram revealed the existence of epileptogenic activity in the left-hand anterior temporal and frontal regions. The clinical profile, the results of the complementary examinations and the response to the antiepileptic treatment allow us to state that in the episode reported in this patient we are dealing with gelastic seizures related to an acute ischaemic lesion in the left cingulate gyrus.

  6. Electrophysiological evidence during episodic prospection implicates medial prefrontal and bilateral middle temporal gyrus.

    Science.gov (United States)

    Hsu, Chia-Fen; Sonuga-Barke, Edmund J S

    2016-08-01

    fMRI studies have implicated the medial prefrontal cortex and medial temporal lobe, components of the default mode network (DMN), in episodic prospection. This study compared quantitative EEG localized to these DMN regions during prospection and during resting and while waiting for rewards. EEG was recorded in twenty-two adults while they were asked to (i) envision future monetary episodes; (ii) wait for rewards and (iii) rest. Activation sources were localized to core DMN regions. EEG power and phase coherence were compared across conditions. Prospection, compared to resting and waiting, was associated with reduced power in the medial prefrontal gyrus and increased power in the bilateral medial temporal gyrus across frequency bands as well as greater phase synchrony between these regions in the delta band. The current quantitative EEG analysis confirms prior fMRI research suggesting that medial prefrontal and medial temporal gyrus interactions are central to the capacity for episodic prospection. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats

    Directory of Open Access Journals (Sweden)

    Malihe Sadeghi

    2017-12-01

    Full Text Available Objective(s: Cholecystokinin (CCK has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Materials and Methods: Male Wistar rats were divided into 4 groups: the control, the control-CCK, the stress and the stress-CCK. Restraint stress was induced 6 hr per day, for 24 days. Cholecystokinin sulfated octapeptide (CCK-8S was injected (1.6 µg/kg, IP before each session of stress induction. Spatial memory was evaluated by Morris water maze test. Long term potentiation (LTP in Schaffer collateral-CA1 synapses was assessed (by 100 Hz tetanization in order to investigate synaptic plasticity. Results: Stress impaired spatial memory significantly (P

  8. Paleoproterozoic (ca. 1.8 Ga) arc magmatism in the Lützow-Holm Complex, East Antarctica: Implications for crustal growth and terrane assembly in erstwhile Gondwana fragments

    Science.gov (United States)

    Takahashi, Kazuki; Tsunogae, Toshiaki; Santosh, M.; Takamura, Yusuke; Tsutsumi, Yukiyasu

    2018-05-01

    The Lützow-Holm Complex (LHC) of East Antarctica forms a part of the latest Neoproterozoic-Cambrian high-grade metamorphic segment of the East African-Antarctic Orogen. Here we present new petrological, geochemical, and zircon U-Pb geochronological data on meta-igneous rocks from four localities (Austhovde, Telen, Skallevikshalsen, and Skallen) in the LHC, and evaluate the regional Paleoproterozoic (ca. 1.8 Ga) arc magmatism in this terrane for the first time. The geochemical features reveal a volcanic-arc affinity for most of the meta-igneous rocks from Austhovde and Telen, suggesting that the protoliths of these rocks were derived from felsic to mafic arc magmatic rocks. The protoliths of two mafic granulites from Austhovde are inferred as non-volcanic-arc basalt such as E-MORB, suggesting the accretion of remnant oceanic lithosphere together with the volcanic-arc components during the subduction-collision events. The weighted mean 206Pb/238U ages of the dominant population of magmatic zircons in felsic orthogneisses from Austhovde and Telen show 1819 ± 19 Ma and 1830 ± 10 Ma, respectively, corresponding to Paleoproterozoic magmatic event. The magmatic zircons in orthogneisses from other two localities yield upper intercept ages of 1837 ± 54 Ma (Skallevikshalsen), and 1856 ± 37 Ma and 1854 ± 45 Ma (Skallen), which also support Paleoproterozoic magmatism. The earlier thermal events during Neoarchean to Early Paleoproterozoic are also traced by 206Pb/238U ages of xenocrystic zircons in the felsic orthogneisses from Austhovde (2517 ± 17 Ma and 2495 ± 15 Ma) and Telen (2126 ± 16 Ma), suggesting partial reworking of the basement of a 2.5 Ga microcontinent during ca. 1.8 Ga continental-arc magmatism. The timing of peak metamorphism is inferred to be in the range of 645.6 ± 10.4 to 521.4 ± 12.0 Ma based on 206Pb/238U weighted mean ages of metamorphic zircon grains. The results of this study, together with the available magmatic ages as well as geophysical and

  9. Characteristics of neuronal lipofuscin in the superior temporal gyrus in Alzheimer's disease do not differ from non-diseased controls: a comparison with disease-related changes in the superior frontal gyrus.

    Science.gov (United States)

    Mountjoy, Christopher Q; Dowson, Jonathan H; Harrington, Charles; Cairns, Mary R; Wilton-Cox, Helen

    2005-05-01

    Neuronal lipofuscin characteristics in the superior temporal gyrus from 21 patients with Alzheimer's disease (AD) and from 18 age-matched non-diseased subjects were compared with previously reported findings from the superior frontal gyrus. A discriminant function analysis of lipofuscin characteristics in the superior temporal gyrus did not provide a significant predictive level for cases whose diagnoses were correctly classified (56.4%, P=0.63). In contrast, AD-related decrease in the number of smaller lipofuscin regions in the neurons of the frontal gyrus was confirmed, and the same analysis of lipofuscin characteristics in this region gave a significant predictive level for membership of the AD group of 86.6% (P<0.001). The findings indicate that changes in neuronal lipofuscin related to AD, which may reflect an increased rate of lipofuscin formation, show differences between neocortical regions. This study provides additional information on the distribution of neuropathological characteristics in AD.

  10. Plasma hormonal profiles and dendritic spine density and morphology in the hippocampal CA1 stratum radiatum, evidenced by light microscopy, of virgin and postpartum female rats.

    Science.gov (United States)

    Brusco, Janaína; Wittmann, Raul; de Azevedo, Márcia S; Lucion, Aldo B; Franci, Celso R; Giovenardi, Márcia; Rasia-Filho, Alberto A

    2008-06-27

    Successful reproduction requires that changes in plasma follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), oxytocin (OT), estrogen (E(2)) and progesterone (P(4)) occur together with the display of maternal behaviors. Ovarian steroids and environmental stimuli can affect the dendritic spines in the rat hippocampus. Here, studying Wistar rats, it is described: (a) the sequential and concomitant changes in the hormonal profile of females at postpartum days (PP) 4, 8, 12, 16, 20 and 24, comparing to estrous cycle referential values; (b) the dendritic spine density in the stratum radiatum of CA1 (CA1-SR) Golgi-impregnated neurons in virgin females across the estrous cycle and in multiparous age-matched ones; and (c) the proportion of different types of spines in the CA1-SR of virgin and postpartum females, both in diestrus. Plasma levels of gonadotrophins and ovarian hormones remained low along PP while LH increased and PRL decreased near the end of the lactating period. The lowest dendritic spine density was found in virgin females in estrus when compared to diestrus and proestrus phases or to postpartum females in diestrus (p0.4). There were no differences in the proportions of the different spine types in nulliparous and postpartum females (p>0.2). Results suggest that medium layer CA1-SR spines undergo rapid modifications in Wistar females across the estrous cycle (not quite comparable to Sprague-Dawley data or to hormonal substitutive therapy following ovariectomy), but persistent effects of motherhood on dendritic spine density and morphology were not found in this area.

  11. Involvement of the cholinergic system of CA1 on harmane-induced amnesia in the step-down passive avoidance test.

    Science.gov (United States)

    Nasehi, Mohammad; Sharifi, Shahrbano; Zarrindast, Mohammad Reza

    2012-08-01

    β-carboline alkaloids such as harmane (HA) are naturally present in the human food chain. They are derived from the plant Peganum harmala and have many cognitive effects. In the present study, effects of the nicotinic system of the dorsal hippocampus (CA1) on HA-induced amnesia and exploratory behaviors were examined. One-trial step-down and hole-board paradigms were used to assess memory retention and exploratory behaviors in adult male mice. Pre-training (15 mg/kg) but not pre-testing intraperitoneal (i.p.) administration of HA decreased memory formation but did not alter exploratory behaviors. Moreover, pre-testing administration of nicotine (0.5 µg/mouse, intra-CA1) decreased memory retrieval, but induced anxiogenic-like behaviors. On the other hand, pre-test intra-CA1 injection of ineffective doses of nicotine (0.1 and 0.25 µg/mouse) fully reversed HA-induced impairment of memory after pre-training injection of HA (15 mg/kg, i.p.) which did not alter exploratory behaviors. Furthermore, pre-testing administration of mecamylamine (0.5, 1 and 2 µg/mouse, intra-CA1) did not alter memory retrieval but fully reversed HA-induced impairment of memory after pre-training injection of HA (15 mg/kg, i.p.) which had no effect on exploratory behaviors. In conclusion, the present findings suggest the involvement of the nicotinic cholinergic system in the HA-induced impairment of memory formation.

  12. The Effect of Rosa Damascena Extract on Expression of Neurotrophic Factors in the CA1 Neurons of Adult Rat Hippocampus Following Ischemia

    Directory of Open Access Journals (Sweden)

    Seyedeh Farzaneh Moniri

    2018-01-01

    Full Text Available Ischemic stroke is an important cause of death and disability in the world. Brain ischemia causes damage to brain cell, and among brain neurons, pyramidal neurons of the hippocampal CA1 region are more susceptive to ischemic injury. Recent findings suggest that neurotrophic factors protect against ischemic cell death. A dietary component of Rosa damascene extract possibly is associated with expression of neurotrophic factors mRNA following ischemia, so it can have therapeutic effect on cerebral ischemia. The present study attempts to evaluate the neuroprotective effect of Rosa damascene extract on adult rat hippocampal neurons following ischemic brain injury. Forty-eight adult male Wistar rats (weighing 250±20 gr and ages 10-12 weeks used in this study, animals randomly were divided into 6 groups including Control, ischemia/ reperfusion (IR, vehicle and three treated groups (IR+0.5, 1, 2 mg/ml extract. Global ischemia was induced by bilateral common carotid arteries occlusion for 20 minutes. The treatment was done by different doses of Rosa damascena extract for 30 days. After 30 days cell death and gene expression in neurons of the CA1 region of the hippocampus were evaluated by Nissl staining and real time PCR assay. We found a significant decrease in NGF, BDNF and NT3 mRNA expression in neurons of CA1 region of the hippocampus in ischemia group compared to control group (P<0.0001. Our results also revealed that the number of dark neurons significantly increases in ischemia group compared to control group (P<0.0001. Following treatment with Rosa damascene extract reduced the number of dark neurons that was associated with NGF, NT3, and BDNF mRNA expression. All doses level had positive effects, but the most effective dose of Rosa damascena extract was 1 mg/ml. Our results suggest that neuroprotective activity of Rosa damascena can enhance hippocampal CA1 neuronal survival after global ischemia.

  13. Thermoelectric properties of Ca1-xYxMnO3 and Ca0.9Y0.1-yFeyMnO3 perovskite compounds

    DEFF Research Database (Denmark)

    Thuy, Nguyen Thi; Minh, Dang Le; Van Nong, Ngo

    2012-01-01

    Polycrystalline Ca1-xYxMnO3 (x = 0.0; 0.1; 0.3; 0.5; 0.7) and Ca0.9Y0.1-yFeyMnO3 (y = 0.00; 0.01; 0.03; 0.05) compounds were prepared by solid-state reaction. X-ray diffraction (XRD) analysis revealed all XRD peaks of all the samples as identical to the orthorhombic structure. The thermoelectric ...

  14. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  15. Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus.

    Directory of Open Access Journals (Sweden)

    Krisztián A Kovács

    Full Text Available During hippocampal sharp wave/ripple (SWR events, previously occurring, sensory input-driven neuronal firing patterns are replayed. Such replay is thought to be important for plasticity-related processes and consolidation of memory traces. It has previously been shown that the electrical stimulation-induced disruption of SWR events interferes with learning in rodents in different experimental paradigms. On the other hand, the cognitive map theory posits that the plastic changes of the firing of hippocampal place cells constitute the electrophysiological counterpart of the spatial learning, observable at the behavioral level. Therefore, we tested whether intact SWR events occurring during the sleep/rest session after the first exploration of a novel environment are needed for the stabilization of the CA1 code, which process requires plasticity. We found that the newly-formed representation in the CA1 has the same level of stability with optogenetic SWR blockade as with a control manipulation that delivered the same amount of light into the brain. Therefore our results suggest that at least in the case of passive exploratory behavior, SWR-related plasticity is dispensable for the stability of CA1 ensembles.

  16. Possible relationship between the stress-induced synaptic response and metaplasticity in the hippocampal CA1 field of freely moving rats.

    Science.gov (United States)

    Hirata, Riki; Matsumoto, Machiko; Judo, Chika; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro; Togashi, Hiroko

    2009-07-01

    Hippocampal long-term potentiation (LTP) is suppressed not only by stress paradigms but also by low frequency stimulation (LFS) prior to LTP-inducing high frequency stimulation (HFS; tetanus), termed metaplasticity. These synaptic responses are dependent on N-methyl-D-aspartate receptors, leading to speculations about the possible relationship between metaplasticity and stress-induced LTP impairment. However, the functional significance of metaplasticity has been unclear. The present study elucidated the electrophysiological and neurochemical profiles of metaplasticity in the hippocampal CA1 field, with a focus on the synaptic response induced by the emotional stress, contextual fear conditioning (CFC). The population spike amplitude in the CA1 field was decreased during exposure to CFC, and LTP induction was suppressed after CFC in conscious rats. The synaptic response induced by CFC was mimicked by LFS, i.e., LFS impaired the synaptic transmission and subsequent LTP. Plasma corticosterone levels were increased by both CFC and LFS. Extracellular levels of gamma-aminobutyric acid (GABA), but not glutamate, in the hippocampus increased during exposure to CFC or LFS. Furthermore, electrical stimulation of the medial prefrontal cortex (mPFC), which caused decreases in freezing behavior during exposure to CFC, counteracted the LTP impairment induced by LFS. These findings suggest that metaplasticity in the rat hippocampal CA1 field is related to the neural basis of stress experience-dependent fear memory, and that hippocampal synaptic response associated stress-related processes is under mPFC regulation.

  17. The Effect of N-acetyl-cysteine on Memory Retrieval and the Number of Intact Neurons of Hippocampal CA1 Area in Streptozotocin-induced Alzheimeric Male Rats

    Directory of Open Access Journals (Sweden)

    Niloufar Darbandi

    2018-01-01

    Full Text Available Abstract Background: Alzheimer is a neurodegenerative disease wich caused memory impairment, reduced cognitive functions, intellectual ability and behavior changes. In this study, the effect of N-acetyl-cysteine (NAC as a strong antioxidant on memory deficiency and number of CA1 pyramidal neurons in Streptozotocine (STZ - induced Alzheimeric rats were studied. Materials and Methods: 32 Male Wistar rats were divided into four groups: sham group, streptozotocin group, treated group with streptozotocin plus N-acetyl-cysteine, and treated group with N-acetyl-cysteine alone. Intracerebroventricular (ICV administration of STZ was done in the first and the third day of surgery and i.p injection of N-acetyl-cysteine was