WorldWideScience

Sample records for gyrokinetic momentum theorems

  1. Non-physical momentum sources in slab geometry gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We investigate momentum transport in the Hamiltonian electrostatic gyrokinetic formulation of Dubin et al (1983 Phys. Fluids 26 3524). We prove that the long wavelength electric field obtained from the gyrokinetic quasineutrality introduces a non-physical momentum source in the low flow ordering.

  2. Transport of momentum in full f gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I.; Catto, Peter J.

    2010-01-01

    Full f electrostatic gyrokinetic formulations employ two gyrokinetic equations, one for ions and the other for electrons, and quasineutrality to obtain the ion and electron distribution functions and the electrostatic potential. We demonstrate with several examples that the long wavelength radial electric field obtained with full f approaches is extremely sensitive to errors in the ion and electron density since small deviations in density give rise to large, nonphysical deviations in the conservation of toroidal angular momentum. For typical tokamak values, a relative error of 10 -7 in the ion or electron densities is enough to obtain the incorrect toroidal rotation. Based on the insights gained with the examples considered, three simple tests to check transport of toroidal angular momentum in full f simulations are proposed.

  3. Turbulent transport of toroidal angular momentum in low flow gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We derive a self-consistent equation for the turbulent transport of toroidal angular momentum in tokamaks in the low flow ordering that only requires solving gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in an expansion on the gyroradius over scale length. We also show that according to our orderings the long wavelength toroidal rotation and the long wavelength radial electric field satisfy the neoclassical relation that gives the toroidal rotation as a function of the radial electric field and the radial gradients of pressure and temperature. Thus, the radial electric field can be solved for once the toroidal rotation is calculated from the transport of toroidal angular momentum. Unfortunately, even though this methodology only requires a gyrokinetic model correct to second order in gyroradius over scale length, current gyrokinetic simulations are only valid to first order. To overcome this difficulty, we exploit the smallish ratio B p /B, where B is the total magnetic field and B p is its poloidal component. When B p /B is small, the usual first order gyrokinetic equation provides solutions that are accurate enough to employ for our expression for the transport of toroidal angular momentum. We show that current δf and full f simulations only need small corrections to achieve this accuracy. Full f simulations, however, are still unable to determine the long wavelength, radial electric field from the quasineutrality equation.

  4. Effects of collisions on conservation laws in gyrokinetic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H.; Nunami, M. [National Institute for Fusion Science, Toki 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki 509-5292 (Japan); Watanabe, T.-H. [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2015-08-15

    Effects of collisions on conservation laws for toroidal plasmas are investigated based on the gyrokinetic field theory. Associating the collisional system with a corresponding collisionless system at a given time such that the two systems have the same distribution functions and electromagnetic fields instantaneously, it is shown how the collisionless conservation laws derived from Noether's theorem are modified by the collision term. Effects of the external source term added into the gyrokinetic equation can be formulated similarly with the collisional effects. Particle, energy, and toroidal momentum balance equations including collisional and turbulent transport fluxes are systematically derived using a novel gyrokinetic collision operator, by which the collisional change rates of energy and canonical toroidal angular momentum per unit volume in the gyrocenter space can be given in the conservative forms. The ensemble-averaged transport equations of particles, energy, and toroidal momentum given in the present work are shown to include classical, neoclassical, and turbulent transport fluxes which agree with those derived from conventional recursive formulations.

  5. Conservation Laws for Gyrokinetic Equations for Large Perturbations and Flows

    Science.gov (United States)

    Dimits, Andris

    2017-10-01

    Gyrokinetic theory has proved to be very useful for the understanding of magnetized plasmas, both to simplify analytical treatments and as a basis for efficient numerical simulations. Gyrokinetic theories were previously developed in two extended orderings that are applicable to large fluctuations and flows as may arise in the tokamak edge and scrapeoff layer. In the present work, we cast the resulting equations in a field-theoretical variational form, and derive, up to second order in the respective orderings, the associated global and local energy and (linear and toroidal) momentum conservation relations that result from Noether's theorem. The consequences of these for the various possible choices of numerical discretization used in gyrokinetic simulations are considered. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and supported by the U.S. DOE, OFES.

  6. Gyrokinetic field theory

    International Nuclear Information System (INIS)

    Sugama, H.

    1999-08-01

    The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)

  7. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    Science.gov (United States)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  8. Momentum transport in gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Rico

    2016-07-01

    In this thesis, the gyrokinetic-Vlasov code GKW is used to study turbulent transport, with a focus on radial transport of toroidal momentum. To support the studies on turbulent transport an eigenvalue solver has been implemented into GKW. This allows to find, not only the most unstable mode, but also subdominant modes. Furthermore it is possible to follow the modes in parameter scans. Furthermore, two fundamental mechanisms that can generate an intrinsic rotation have been investigated: profile shearing and the velocity nonlinearity. The study of toroidal momentum transport in a tokamak due to profile shearing reveals that the momentum flux can not be accurately described by the gradient in the turbulent intensity. Consequently, a description using the profile variation is used. A linear model has been developed that is able to reproduce the variations in the momentum flux as the profiles of density and temperature vary, reasonably well. It uses, not only the gradient length of density and temperature profile, but also their derivative, i.e. the second derivative of the logarithm of the temperature and the density profile. It is shown that both first as well as second derivatives contribute to the generation of a momentum flux. A difference between the linear and nonlinear simulations has been found with respect to the behaviour of the momentum flux. In linear simulations the momentum flux is independent of the normalized Larmor radius ρ{sub *}, whereas it is linear in ρ{sub *} for nonlinear simulations, provided ρ{sub *} is small enough (≤4.10{sup -3}). Nonlinear simulations reveal that the profile shearing can generate an intrinsic rotation comparable to that of current experiments. Under reactor conditions, however, the intrinsic rotation from the profile shearing is expected to be small due to the small normalized Larmor radius ρ{sub *}

  9. Modelling the turbulent transport of angular momentum in tokamak plasmas - A quasi-linear gyrokinetic approach

    International Nuclear Information System (INIS)

    Cottier, Pierre

    2013-01-01

    The magnetic confinement in tokamaks is for now the most advanced way towards energy production by nuclear fusion. Both theoretical and experimental studies showed that rotation generation can increase its performance by reducing the turbulent transport in tokamak plasmas. The rotation influence on the heat and particle fluxes is studied along with the angular momentum transport with the quasi-linear gyro-kinetic eigenvalue code QuaLiKiz. For this purpose, the QuaLiKiz code is modified in order to take the plasma rotation into account and compute the angular momentum flux. It is shown that QuaLiKiz framework is able to correctly predict the angular momentum flux including the E*B shear induced residual stress as well as the influence of rotation on the heat and particle fluxes. The major approximations of QuaLiKiz formalisms are reviewed, in particular the ballooning representation at its lowest order and the eigenfunctions calculated in the hydrodynamic limit. The construction of the quasi-linear fluxes is also reviewed in details and the quasi-linear angular momentum flux is derived. The different contributions to the turbulent momentum flux are studied and successfully compared both against non-linear gyro-kinetic simulations and experimental data. (author) [fr

  10. Intrinsic rotation with gyrokinetic models

    International Nuclear Information System (INIS)

    Parra, Felix I.; Barnes, Michael; Catto, Peter J.; Calvo, Iván

    2012-01-01

    The generation of intrinsic rotation by turbulence and neoclassical effects in tokamaks is considered. To obtain the complex dependences observed in experiments, it is necessary to have a model of the radial flux of momentum that redistributes the momentum within the tokamak in the absence of a preexisting velocity. When the lowest order gyrokinetic formulation is used, a symmetry of the model precludes this possibility, making small effects in the gyroradius over scale length expansion necessary. These effects that are usually small become important for momentum transport because the symmetry of the lowest order gyrokinetic formulation leads to the cancellation of the lowest order momentum flux. The accuracy to which the gyrokinetic equation needs to be obtained to retain all the physically relevant effects is discussed.

  11. Conservation of energy and momentum in nonrelativistic plasmas

    International Nuclear Information System (INIS)

    Sugama, H.; Watanabe, T.-H.; Nunami, M.

    2013-01-01

    Conservation laws of energy and momentum for nonrelativistic plasmas are derived from applying Noether's theorem to the action integral for the Vlasov-Poisson-Ampère system [Sugama, Phys. Plasmas 7, 466 (2000)]. The symmetric pressure tensor is obtained from modifying the asymmetric canonical pressure tensor with using the rotational symmetry of the action integral. Differences between the resultant conservation laws and those for the Vlasov-Maxwell system including the Maxwell displacement current are clarified. These results provide a useful basis for gyrokinetic conservation laws because gyrokinetic equations are derived as an approximation of the Vlasov-Poisson-Ampère system.

  12. Metriplectic Gyrokinetics and Discretization Methods for the Landau Collision Integral

    Science.gov (United States)

    Hirvijoki, Eero; Burby, Joshua W.; Kraus, Michael

    2017-10-01

    We present two important results for the kinetic theory and numerical simulation of warm plasmas: 1) We provide a metriplectic formulation of collisional electrostatic gyrokinetics that is fully consistent with the First and Second Laws of Thermodynamics. 2) We provide a metriplectic temporal and velocity-space discretization for the particle phase-space Landau collision integral that satisfies the conservation of energy, momentum, and particle densities to machine precision, as well as guarantees the existence of numerical H-theorem. The properties are demonstrated algebraically. These two result have important implications: 1) Numerical methods addressing the Vlasov-Maxwell-Landau system of equations, or its reduced gyrokinetic versions, should start from a metriplectic formulation to preserve the fundamental physical principles also at the discrete level. 2) The plasma physics community should search for a metriplectic reduction theory that would serve a similar purpose as the existing Lagrangian and Hamiltonian reduction theories do in gyrokinetics. The discovery of metriplectic formulation of collisional electrostatic gyrokinetics is strong evidence in favor of such theory and, if uncovered, the theory would be invaluable in constructing reduced plasma models. Supported by U.S. DOE Contract Nos. DE-AC02-09-CH11466 (EH) and DE-AC05-06OR23100 (JWB) and by European Union's Horizon 2020 research and innovation Grant No. 708124 (MK).

  13. Gyrokinetic Studies on Turbulence-Driven and Neoclassical Nondiffusive Toroidal-Momentum Transport and the Effect of Residual Fluctuations in Strong ExB Shear

    International Nuclear Information System (INIS)

    Wang, W. X.; Hahm, T. S.; Ethier, S.; Rewoldt, G.; Lee, W. W.; Tang, W. M.; Kaye, S. M.; Diamond, P. H.

    2009-01-01

    A significant inward flux of toroidal momentum is found in global gyrokinetic simulations of ion temperature gradient turbulence, leading to core plasma rotation spin-up. The underlying mechanism is identified to be the generation of residual stress due to the k parallel symmetry breaking induced by global quasistationary zonal flow shear. Simulations also show a significant off-diagonal element associated with the ion temperature gradient in the neoclassical momentum flux, while the overall neoclassical flux is small. In addition, the residual turbulence found in the presence of strong ExB flow shear may account for neoclassical-level ion heat and anomalous momentum transport widely observed in experiments

  14. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    International Nuclear Information System (INIS)

    Krommes, John A.

    2007-01-01

    The present state of the theory of fluctuations in gyrokinetic (GK) plasmas and especially its application to sampling noise in GK particle-in-cell (PIC) simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism

  15. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    Energy Technology Data Exchange (ETDEWEB)

    John A. Krommes

    2007-10-09

    The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.

  16. Proof of the positive energy theorem including the angular momentum contribution

    International Nuclear Information System (INIS)

    Zhang Jingfei; Chee, G.Y.; Guo Yongxin

    2005-01-01

    A proof of the positive energy theorem of general relativity is given. In this proof the gravitational Lagrangian is identified with that of Lau and is equivalent to the teleparallel Lagrangian modulo, a boundary term. The approach adopted in this proof uses the two-spinor method and the extended Witten identities and then combines the Brown-York and the Nester-Witten approaches. At the same time the proof is extended to the case involving the contribution of angular momentum by choosing a special shift vector

  17. Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem

    International Nuclear Information System (INIS)

    Montesinos, M.; Flores, E.

    2006-01-01

    The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)

  18. Detailed study of spontaneous rotation generation in diverted H-mode plasma using the full-f gyrokinetic code XGC1

    Science.gov (United States)

    Seo, Janghoon; Chang, C. S.; Ku, S.; Kwon, J. M.; Yoon, E. S.

    2013-10-01

    The Full-f gyrokinetic code XGC1 is used to study the details of toroidal momentum generation in H-mode plasma. Diverted DIII-D geometry is used, with Monte Carlo neutral particles that are recycled at the limiter wall. Nonlinear Coulomb collisions conserve particle, momentum, and energy. Gyrokinetic ions and adiabatic electrons are used in the present simulation to include the effects from ion gyrokinetic turbulence and neoclassical physics, under self-consistent radial electric field generation. Ion orbit loss physics is automatically included. Simulations show a strong co-Ip flow in the H-mode layer at outside midplane, similarly to the experimental observation from DIII-D and ASDEX-U. The co-Ip flow in the edge propagates inward into core. It is found that the strong co-Ip flow generation is mostly from neoclassical physics. On the other hand, the inward momentum transport is from turbulence physics, consistently with the theory of residual stress from symmetry breaking. Therefore, interaction between the neoclassical and turbulence physics is a key factor in the spontaneous momentum generation.

  19. Fluctuation theorem for entropy production during effusion of an ideal gas with momentum transfer.

    Science.gov (United States)

    Wood, Kevin; Van den Broeck, C; Kawai, R; Lindenberg, Katja

    2007-06-01

    We derive an exact expression for entropy production during effusion of an ideal gas driven by momentum transfer in addition to energy and particle flux. Following the treatment in Cleuren [Phys. Rev. E 74, 021117 (2006)], we construct a master equation formulation of the process and explicitly verify the thermodynamic fluctuation theorem, thereby directly exhibiting its extended applicability to particle flows and hence to hydrodynamic systems.

  20. Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Montesinos, M. [CINVESTAV-IPN, 07360 Mexico D.F. (Mexico); Flores, E. [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)]. E-mail: merced@fis.cinvestav.mx

    2006-07-01

    The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)

  1. The Levinson theorem

    International Nuclear Information System (INIS)

    Ma Zhongqi

    2006-01-01

    The Levinson theorem is a fundamental theorem in quantum scattering theory, which shows the relation between the number of bound states and the phase shift at zero momentum for the Schroedinger equation. The Levinson theorem was established and developed mainly with the Jost function, with the Green function and with the Sturm-Liouville theorem. In this review, we compare three methods of proof, study the conditions of the potential for the Levinson theorem and generalize it to the Dirac equation. The method with the Sturm-Liouville theorem is explained in some detail. References to development and application of the Levinson theorem are introduced. (topical review)

  2. ''Turbulent Equipartition'' Theory of Toroidal Momentum Pinch

    International Nuclear Information System (INIS)

    Hahm, T.S.; Diamond, P.H.; Gurcan, O.D.; Rewaldt, G.

    2008-01-01

    The mode-independent part of magnetic curvature driven turbulent convective (TuroCo) pinch of the angular momentum density (Hahm et al., Phys. Plasmas 14,072302 (2007)) which was originally derived from the gyrokinetic equation, can be interpreted in terms of the turbulent equipartition (TEP) theory. It is shown that the previous results can be obtained from the local conservation of 'magnetically weighted angular momentum density', nm i U # parallel# R/B 2 , and its homogenization due to turbulent flows. It is also demonstrated that the magnetic curvature modification of the parallel acceleration in the nonlinear gyrokinetic equation in the laboratory frame, which was shown to be responsible for the TEP part of the TurCo pinch of angular momentum density in the previous work, is closely related to the Coriolis drift coupling to the perturbed electric field. In addition, the origin of the diffusive flux in the rotating frame is highlighted. Finally, it is illustrated that there should be a difference in scalings between the momentum pinch originated from inherently toroidal effects and that coming from other mechanisms which exist in a simpler geometry.

  3. Parametric dependences of momentum pinch and Prandtl number in JET

    DEFF Research Database (Denmark)

    Tala, T.; Salmi, A.; Angioni, C.

    2011-01-01

    Several parametric scans have been performed to study momentum transport on JET. A neutral beam injection modulation technique has been applied to separate the diffusive and convective momentum transport terms. The magnitude of the inward momentum pinch depends strongly on the inverse density...... gradient length, with an experimental scaling for the pinch number being -Rvpinch/χφ = 1.2R/Ln +1.4. There is no dependence of the pinch number on collisionality, whereas the pinch seems to depend weakly on q-profile, the pinch number decreasing with increasing q. The Prandtl number was not found to depend...... either on R/Ln, collisionality or on q. The gyro-kinetic simulations show qualitatively similar dependence of the pinch number on R/Ln, but the dependence is weaker in the simulations. Gyro-kinetic simulations do not find any clear parametric dependence in the Prandtl number, in agreement...

  4. Full-f gyrokinetic simulation over a confinement time

    Energy Technology Data Exchange (ETDEWEB)

    Idomura, Yasuhiro, E-mail: idomura.yasuhiro@jaea.go.jp [Japan Atomic Energy Agency, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8587 (Japan)

    2014-02-15

    A long time ion temperature gradient driven turbulence simulation over a confinement time is performed using the full-f gyrokinetic Eulerian code GT5D. The convergence of steady temperature and rotation profiles is examined, and it is shown that the profile relaxation can be significantly accelerated when the simulation is initialized with linearly unstable temperature profiles. In the steady state, the temperature profile and the ion heat diffusivity are self-consistently determined by the power balance condition, while the intrinsic rotation profile is sustained by complicated momentum transport processes without momentum input. The steady turbulent momentum transport is characterized by bursty non-diffusive fluxes, and the resulting turbulent residual stress is consistent with the profile shear stress theory [Y. Camenen et al., “Consequences of profile shearing on toroidal momentum transport,” Nucl. Fusion 51, 073039 (2011)] in which the residual stress depends not only on the profile shear and the radial electric field shear but also on the radial electric field itself. Based on the toroidal angular momentum conservation, it is found that in the steady null momentum transport state, the turbulent residual stress is cancelled by the neoclassical counterpart, which is greatly enhanced in the presence of turbulent fluctuations.

  5. Gyrokinetic magnetohydrodynamics and the associated equilibria

    Science.gov (United States)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-12-01

    The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee ["Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective," Phys. Plasmas 23, 070705 (2016)], and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, ϕ, and the vector potential, A , and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when ϕ→0 and A becomes constant in time, which, in turn, gives ∇.(J∥+J⊥)=0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. These gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.

  6. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hager, Robert, E-mail: rhager@pppl.gov; Chang, C. S., E-mail: cschang@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-04-15

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

  7. Gyrokinetic energy conservation and Poisson-bracket formulation

    International Nuclear Information System (INIS)

    Brizard, A.

    1989-01-01

    An integral expression for the gyrokinetic total energy of a magnetized plasma, with general magnetic field configuration perturbed by fully electromagnetic fields, was recently derived through the use of a gyrocenter Lie transformation. It is shown that the gyrokinetic energy is conserved by the gyrokinetic Hamiltonian flow to all orders in perturbed fields. An explicit demonstration that a gyrokinetic Hamiltonian containing quadratic nonlinearities preserves the gyrokinetic energy up to third order is given. The Poisson-bracket formulation greatly facilitates this demonstration with the help of the Jacobi identity and other properties of the Poisson brackets

  8. Turbulent and neoclassical toroidal momentum transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Abiteboul, J.

    2012-10-01

    The goal of magnetic confinement devices such as tokamaks is to produce energy from nuclear fusion reactions in plasmas at low densities and high temperatures. Experimentally, toroidal flows have been found to significantly improve the energy confinement, and therefore the performance of the machine. As extrinsic momentum sources will be limited in future fusion devices such as ITER, an understanding of the physics of toroidal momentum transport and the generation of intrinsic toroidal rotation in tokamaks would be an important step in order to predict the rotation profile in experiments. Among the mechanisms expected to contribute to the generation of toroidal rotation is the transport of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due to the low collisionality of the plasma, kinetic modeling is mandatory for the study of tokamak turbulence. In principle, this implies the modeling of a six-dimensional distribution function representing the density of particles in position and velocity phase-space, which can be reduced to five dimensions when considering only frequencies below the particle cyclotron frequency. This approximation, relevant for the study of turbulence in tokamaks, leads to the so-called gyrokinetic model and brings the computational cost of the model within the presently available numerical resources. In this work, we study the transport of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First, we show that this reduced model is indeed capable of accurately modeling momentum transport by deriving a local conservation equation of toroidal momentum, and verifying it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic turbulence can break the axisymmetry and generate toroidal rotation, while a strong link between turbulent heat and momentum transport is identified, as both exhibit the same large-scale avalanche-like events. The dynamics of turbulent transport are

  9. Evidence of Inward Toroidal Momentum Convection in the JET Tokamak

    DEFF Research Database (Denmark)

    Tala, T.; Zastrow, K.-D.; Ferreira, J.

    2009-01-01

    Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude...... and profile shape of the momentum diffusivity are similar to those of the ion heat diffusivity. A significant inward momentum pinch, up to 20 m/s, has been found. Both results are consistent with gyrokinetic simulations. This evidence is complemented in plasmas with internal transport barriers....

  10. Alfven Waves in Gyrokinetic Plasmas

    International Nuclear Information System (INIS)

    Lee, W.W.; Qin, H.

    2003-01-01

    A brief comparison of the properties of Alfven waves that are based on the gyrokinetic description with those derived from the MHD equations is presented. The critical differences between these two approaches are the treatment of the ion polarization effects. As such, the compressional Alfven waves in a gyrokinetic plasma can be eliminated through frequency ordering, whereas geometric simplifications are needed to decouple the shear Alfven waves from the compressional Alfven waves within the context of MHD. Theoretical and numerical procedures of using gyrokinetic particle simulation for studying microturbulence and kinetic-MHD physics including finite Larmor radius effects are also presented

  11. Turbulent momentum transport due to neoclassical flows

    International Nuclear Information System (INIS)

    Lee, Jungpyo; Barnes, Michael; Parra, Felix I; Belli, Emily; Candy, Jeff

    2015-01-01

    Intrinsic toroidal rotation in a tokamak can be driven by turbulent momentum transport due to neoclassical flow effects breaking a symmetry of turbulence. In this paper we categorize the contributions due to neoclassical effects to the turbulent momentum transport, and evaluate each contribution using gyrokinetic simulations. We find that the relative importance of each contribution changes with collisionality. For low collisionality, the dominant contributions come from neoclassical particle and parallel flows. For moderate collisionality, there are non-negligible contributions due to neoclassical poloidal electric field and poloidal gradients of density and temperature, which are not important for low collisionality. (paper)

  12. Low momentum transfer theorem for two photon exchange in lepton hardron scattering

    International Nuclear Information System (INIS)

    Penarrocha, J.A.; Bernabeu, J.

    1981-01-01

    The two photon contribution to lepton-hardon scattering is considered. Under the assumptions of Lorentz covarience, gauge invarience, unitarity, and analyticity, we prove a low momentum transfer theorem for the relevant amplitudes. Fixed energy dispersion relations tell us that their nonanalytic part, in the neighbourhood of t = 0, is given by the contribution of the two photon cut in the t-channel. The t-channel absorptive parts are obtained from unitarity. Their calculation has as input the two amplitudes corresponding to Compton scattering on the hadron with a pole contribution, and the continuum controlled at low t by the electromagnetic polarizabilities. By means of the dispersion integral, one proves the expansion k 1 (s)+k 2 (s)√-t+k 3 (s)tlog(-t)+O(t) for the continuum contribution, where k 1 (s) is the only unknown. Explicit expressions are obtained for the pole contribution as M→infinity, where M is the hadron mass, and for the continuum when (-t) 2 , where m is the muon mass and Λ is a characteristic parameter of the hadron structure

  13. Limitations, insights and improvements to gyrokinetics

    International Nuclear Information System (INIS)

    Catto, Peter J.; Parra, Felix I.; Kagan, Grigory; Simakov, Andrei N.

    2009-01-01

    We first consider gyrokinetic quasineutrality limitations when evaluating the axisymmetric radial electric field in a non-turbulent tokamak by an improved examination of intrinsic ambipolarity. We next prove that the background ions in a pedestal of poloidal ion gyroradius scale must be Maxwellian and nearly isothermal in Pfirsch-Schlueter and banana regime tokamak plasmas, and then consider zonal flow behaviour in a pedestal. Finally, we focus on a simplifying procedure for our transport time scale hybrid gyrokinetic-fluid treatment that removes the limitations of gyrokinetic quasineutrality and remains valid in the pedestal.

  14. A primer on Higgs boson low-energy theorems

    International Nuclear Information System (INIS)

    Dawson, S.; Haber, H.E.; California Univ., Santa Cruz, CA

    1989-05-01

    We give a pedagogical review of Higgs boson low-energy theorems and their applications in the study of light Higgs boson interactions with mesons and baryons. In particular, it is shown how to combine the chiral Lagrangian method with the Higgs low-energy theorems to obtain predictions for the interaction of Higgs bosons and pseudoscalar mesons. Finally, we discuss the relation between the low-energy theorems and a technique which makes use of the trace of the QCD energy-momentum tensor. 35 refs

  15. Momentum autocorrelation function of a classic diatomic chain

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ming B., E-mail: mingbyu@gmail.com

    2016-10-23

    A classical harmonic diatomic chain is studied using the recurrence relations method. The momentum autocorrelation function results from contributions of acoustic and optical branches. By use of convolution theorem, analytical expressions for the acoustic and optical contributions are derived as even-order Bessel function expansions with coefficients given in terms of integrals of elliptic functions in real axis and a contour parallel to the imaginary axis, respectively. - Highlights: • Momentum autocorrelation function of a classic diatomic chain is studied. • It is derived as even-order Bessel function expansion using the convolution theorem. • The expansion coefficients are integrals of elliptic functions. • Addition theorem is used to reduce complex elliptic function to complex sum of real ones.

  16. Force As A Momentum Current

    International Nuclear Information System (INIS)

    Munera, Hector A.

    2010-01-01

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  17. Matching factorization theorems with an inverse-error weighting

    Science.gov (United States)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; Pisano, Cristian; Signori, Andrea

    2018-06-01

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell-Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins-Soper-Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.

  18. Scale transformations, the energy-momentum tensor, and the equation of state

    International Nuclear Information System (INIS)

    Carruthers, P.

    1989-01-01

    The Equation of State (EOS) relates diagonal elements of the energy-momentum tensor θ μν . The first moment of the energy-momentum tensor generates scale transformations. The virial theorem, a consequence of the behavior of the energy density under scale transformations, allows one to eliminate the kinetic energy in terms of the potential terms. The trace theorem for the energy-momentum tensor expresses ε-3p in terms of ensemble averages of scale-breaking operators, allowing a new approach to the EOS. 10 refs

  19. Gyrokinetic Magnetohydrodynamics and the Associated Equilibrium

    Science.gov (United States)

    Lee, W. W.; Hudson, S. R.; Ma, C. H.

    2017-10-01

    A proposed scheme for the calculations of gyrokinetic MHD and its associated equilibrium is discussed related a recent paper on the subject. The scheme is based on the time-dependent gyrokinetic vorticity equation and parallel Ohm's law, as well as the associated gyrokinetic Ampere's law. This set of equations, in terms of the electrostatic potential, ϕ, and the vector potential, ϕ , supports both spatially varying perpendicular and parallel pressure gradients and their associated currents. The MHD equilibrium can be reached when ϕ -> 0 and A becomes constant in time, which, in turn, gives ∇ . (J|| +J⊥) = 0 and the associated magnetic islands. Examples in simple cylindrical geometry will be given. The present work is partially supported by US DoE Grant DE-AC02-09CH11466.

  20. Electromagnetic nonlinear gyrokinetics with polarization drift

    International Nuclear Information System (INIS)

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-01-01

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete

  1. Pullback Transformations in Gyrokinetic Theory

    International Nuclear Information System (INIS)

    Qin, H.; Tang, W.M.

    2003-01-01

    The Pullback transformation of the distribution function is a key component of the gyrokinetic theory. In this paper, a systematic treatment of this subject is presented, and results from applications of the uniform framework developed are reviewed. The focus is on providing a clear exposition of the basic formalism which arises from the existence of three distinct coordinate systems in gyrokinetic theory. The familiar gyrocenter coordinate system, where the gyromotion is decoupled from the rest of particle's dynamics, is non-canonical and non-fabric. On the other hand, Maxwell's equations, which are needed to complete a kinetic system, are initially only defined in the fabric laboratory phase space coordinate system. The pullback transformations provide a rigorous connection between the distribution functions in gyrocenter coordinates and Maxwell's equations in laboratory phase space coordinates. This involves the generalization of the usual moment integrals originally defined on the cotangent fiber of the phase space to the moment integrals on a general 6D symplectic manifold, is shown to be an important step in the proper formulation of gyrokinetic theory. The resultant systematic treatment of the moment integrals enabled by the pullback transformation. Without this vital element, a number of prominent physics features, such as the presence of the compressional Alfven wave and a proper description of the gyrokinetic equilibrium, cannot be readily recovered

  2. Gyrokinetic simulation of finite-β plasmas on parallel architectures

    International Nuclear Information System (INIS)

    Reynders, J.V.W.

    1993-01-01

    Much research exists on the linear and non-linear properties of plasma microinstabilities induced by density and temperature gradients. There has been an interest in the electromagnetic or finite-β effects on these microinstabilities. This thesis focuses on the finite-β modification of an ion temperature gradient (ITG) driven microinstability in a two-dimensional shearless and sheared-slab geometries. A gyrokinetic model is employed in the numerical and analytic studies of this instability. Chapter 1 introduces the electromagnetic gyrokinetic model employed in the numerical and analytic studies of the ITG instability. Some discussion of the Klimontovich particle representation of the gyrokinetic Vlasov equation and a multiple scale model of the background plasma gradient is presented. Chapter 2 details the computational issues facing an electromagnetic gyrokinetic particle simulation of the ITG mode. An electromagnetic extension of the partially linearized algorithm is presented with a comparison of quiet particle initialization routines. Chapter 3 presents and compares algorithms for the gyrokinetic particle simulation technique on SIMD and MIMD computing platforms. Chapter 4 discusses electromagnetic gyrokinetic fluctuation theory and provides a comparison of analytic and numerical results. Chapter 5 contains a linear and a non-linear three-wave coupling analysis of the finite-β modified ITG mode in a shearless slab geometry. Comparisons are made with linear and partially linearized gyrokinetic simulation results. Chapter 6 presents results from a finite-β modified ITG mode in a sheared slab geometry. The linear dispersion relation is derived and results from an integral eigenvalue code are presented. Comparisons are made with the gyrokinetic particle code in a variety of limits with both adiabatic and non-adiabatic electrons. Evidence of ITG driven microtearing is presented

  3. Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic coordinates

    International Nuclear Information System (INIS)

    Brizard, A.

    1988-09-01

    A gyrokinetic formalism using magnetic coordinates is used to derive self-consistent, nonlinear Maxwell-Vlasov equations that are suitable for particle simulation studies of finite-β tokamak microturbulence and its associated anomalous transport. The use of magnetic coordinates is an important feature of this work as it introduces the toroidal geometry naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the use of the Action-variational Lie perturbation method of Cary and Littlejohn, and preserves the Hamiltonian structure of the original Maxwell-Vlasov system. Previous nonlinear gyrokinetic sets of equations suitable for particle simulation analysis have considered either electrostatic and shear-Alfven perturbations in slab geometry, or electrostatic perturbations in toroidal geometry. In this present work, fully electromagnetic perturbations in toroidal geometry are considered. 26 refs

  4. Equilibrium fluctuation energy of gyrokinetic plasma

    International Nuclear Information System (INIS)

    Krommes, J.A.; Lee, W.W.; Oberman, C.

    1985-11-01

    The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result (k)/8π = 1/2T/[1 + (klambda/sub D/) 2 ] valid for arbitrarily magnetized plasmas. It is shown that, in a certain sense, the equilibrium electric field energy is minimum in the gyrokinetic regime. 13 refs., 2 figs

  5. Gyrokinetic linearized Landau collision operator

    DEFF Research Database (Denmark)

    Madsen, Jens

    2013-01-01

    , which is important in multiple ion-species plasmas. Second, the equilibrium operator describes drag and diffusion of the magnetic field aligned component of the vorticity associated with the E×B drift. Therefore, a correct description of collisional effects in turbulent plasmas requires the equilibrium......The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species...... operator, even for like-particle collisions....

  6. A divergence theorem for pseudo-Finsler spaces

    OpenAIRE

    Minguzzi, E.

    2015-01-01

    We study the divergence theorem on pseudo-Finsler spaces and obtain a completely Finslerian version for spaces having a vanishing mean Cartan torsion. This result helps to clarify the problem of energy-momentum conservation in Finsler gravity theories.

  7. Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks

    International Nuclear Information System (INIS)

    Parra, Felix I.; Barnes, Michael; Peeters, Arthur G.

    2011-01-01

    Two symmetries of the local nonlinear δf gyrokinetic system of equations in tokamaks in the high flow regime are presented. The turbulent transport of toroidal angular momentum changes sign under an up-down reflection of the tokamak and a sign change of both the rotation and the rotation shear. Thus, the turbulent transport of toroidal angular momentum must vanish for up-down symmetric tokamaks in the absence of both rotation and rotation shear. This has important implications for the modeling of spontaneous rotation.

  8. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Patrick H.

    2011-09-21

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  9. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    International Nuclear Information System (INIS)

    Diamond, Patrick H.

    2011-01-01

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  10. Influence of the centrifugal force and parallel dynamics on the toroidal momentum transport due to small scale turbulence in a tokamak

    International Nuclear Information System (INIS)

    Peeters, A. G.; Camenen, Y.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Strintzi, D.; Angioni, C.

    2009-01-01

    The paper derives the gyro-kinetic equation in the comoving frame of a toroidally rotating plasma, including both the Coriolis drift effect [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)] as well as the centrifugal force. The relation with the laboratory frame is discussed. A low field side gyro-fluid model is derived from the gyro-kinetic equation and applied to the description of parallel momentum transport. The model includes the effects of the Coriolis and centrifugal force as well as the parallel dynamics. The latter physics effect allows for a consistent description of both the Coriolis drift effect as well as the ExB shear effect [R. R. Dominguez and G. M. Staebler, Phys. Fluids B 5, 3876 (1993)] on the momentum transport. Strong plasma rotation as well as parallel dynamics reduce the Coriolis (inward) pinch of momentum and can lead to a sign reversal generating an outward pinch velocity. Also, the ExB shear effect is, in a similar manner, reduced by the parallel dynamics and stronger rotation.

  11. Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz

    Science.gov (United States)

    Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET

    2017-12-01

    Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%-25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.

  12. Global gyrokinetic simulation of tokamak transport

    International Nuclear Information System (INIS)

    Furnish, G.; Horton, W.; Kishimoto, Y.; LeBrun, M.J.; Tajima, T.

    1998-10-01

    A kinetic simulation code based on the gyrokinetic ion dynamics in global general metric (including a tokamak with circular or noncircular cross-section) has been developed. This gyrokinetic simulation is capable of examining the global and semi-global driftwave structures and their associated transport in a tokamak plasma. The authors investigate the property of the ion temperature gradient (ITG) or η i (η i ≡ ∂ ell nT i /∂ ell n n i ) driven drift waves in a tokamak plasma. The emergent semi-global drift wave modes give rise to thermal transport characterized by the Bohm scaling

  13. Gyrokinetic particle simulation of neoclassical transport

    International Nuclear Information System (INIS)

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1995-01-01

    A time varying weighting (δf ) scheme for gyrokinetic particle simulation is applied to a steady-state, multispecies simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion--electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient-driven electron particle flux and the bootstrap current while reducing temperature gradient-driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, in the present work a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes is demonstrated. copyright 1995 American Institute of Physics

  14. Soft theorems from conformal field theory

    International Nuclear Information System (INIS)

    Lipstein, Arthur E.

    2015-01-01

    Strominger and collaborators recently proposed that soft theorems for gauge and gravity amplitudes can be interpreted as Ward identities of a 2d CFT at null infinity. In this paper, we will consider a specific realization of this CFT known as ambitwistor string theory, which describes 4d Yang-Mills and gravity with any amount of supersymmetry. Using 4d ambtwistor string theory, we derive soft theorems in the form of an infinite series in the soft momentum which are valid to subleading order in gauge theory and sub-subleading order in gravity. Furthermore, we describe how the algebra of soft limits can be encoded in the braiding of soft vertex operators on the worldsheet and point out a simple relation between soft gluon and soft graviton vertex operators which suggests an interesting connection to color-kinematics duality. Finally, by considering ambitwistor string theory on a genus one worldsheet, we compute the 1-loop correction to the subleading soft graviton theorem due to infrared divergences.

  15. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    International Nuclear Information System (INIS)

    Zhu, Jian-Zhou; Hammett, Gregory W.

    2011-01-01

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence (T.-D. Lee, 'On some statistical properties of hydrodynamical and magnetohydrodynamical fields,' Q. Appl. Math. 10, 69 (1952)) is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  16. Gyrokinetic statistical absolute equilibrium and turbulence

    International Nuclear Information System (INIS)

    Zhu Jianzhou; Hammett, Gregory W.

    2010-01-01

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: a finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N+1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  17. Gyrokinetic Simulations with External Resonant Magnetic Perturbations: Island Torque and Nonambipolar Transport with Rotation

    Science.gov (United States)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic perturbations (RMPs) have been added to the δf gyrokinetic code GYRO. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr and the corresponding plasma torque (density) R[jrBθ/c], induced by islands that break the toroidal symmetry of a tokamak. This extends previous GYRO simulations for the transport of toroidal angular momentum (TAM) [1,2]. The focus is on full torus radial slice electrostatic simulations of induced q=m/n=6/3 islands with widths 5% of the minor radius. The island torque scales with the radial electric field Er the island width w, and the intensity I of the high-n micro-turbulence, as wErI^1/2. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that there is a small co-directed magnetic acceleration to the small diamagnetic co-rotation corresponding to the zero Er which can be called the residual stress [2] from an externally induced island. Finite-beta GYRO simulations of a core radial slice demonstrate island unlocking and the RMP screening. 6pt[1] R.E. Waltz, et al., Phys. Plasmas 14, 122507 (2007). [2] R.E. Waltz, et al., Phys. Plasmas 18, 042504 (2011).

  18. Gauge-free gyrokinetic theory

    Science.gov (United States)

    Burby, Joshua; Brizard, Alain

    2017-10-01

    Test-particle gyrocenter equations of motion play an essential role in the diagnosis of turbulent strongly-magnetized plasmas, and are playing an increasingly-important role in the formulation of kinetic-gyrokinetic hybrid models. Previous gyrocenter models required the knowledge of the perturbed electromagnetic potentials, which are not directly observable quantities (since they are gauge-dependent). A new gauge-free formulation of gyrocenter motion is presented, which enables gyrocenter trajectories to be determined using only measured values of the directly-observable electromagnetic field. Our gauge-free gyrokinetic theory is general enough to allow for gyroradius-scale fluctuations in both the electric and magnetic field. In addition, we provide gauge-free expressions for the charge and current densities produced by a distribution of gyrocenters, which explicitly include guiding-center and gyrocenter polarization and magnetization effects. This research was supported by the U.S. DOE Contract Nos. DE-SC0014032 (AB) and DE-AC05-06OR23100 (JB).

  19. Hamiltonian reductions in plasma physics about intrinsic gyrokinetic

    International Nuclear Information System (INIS)

    Guillebon de Resnes, L. de

    2013-01-01

    Gyrokinetic is a key model for plasma micro-turbulence, commonly used for fusion plasmas or small-scale astrophysical turbulence, for instance. The model still suffers from several issues, which could imply to reconsider the equations. This thesis dissertation clarifies three of them. First, one of the coordinates caused questions, both from a physical and from a mathematical point of view; a suitable constrained coordinate is introduced, which removes the issues from the theory and explains the intrinsic structures underlying the questions. Second, the perturbative coordinate transformation for gyrokinetic was computed only at lowest orders; explicit induction relations are obtained to go arbitrary order in the expansion. Third, the introduction of the coupling between the plasma and the electromagnetic field was not completely satisfactory; using the Hamiltonian structure of the dynamics, it is implemented in a more appropriate way, with strong consequences on the gyrokinetic equations, especially about their Hamiltonian structure. In order to address these three main points, several other results are obtained, for instance about the origin of the guiding-center adiabatic invariant, about a very efficient minimal guiding center transformation, or about an intermediate Hamiltonian model between Vlasov-Maxwell and gyrokinetic, where the characteristics include both the slow guiding-center dynamics and the fast gyro-angle dynamics. In addition, various reduction methods are used, introduced or developed, e.g. a Lie-transform of the equations of motion, a lifting method to transfer particle reductions to the corresponding Hamiltonian field dynamics, or a truncation method related both to Dirac's theory of constraints and to a projection onto a Lie-subalgebra. Besides gyrokinetic, this is useful to clarify other Hamiltonian reductions in plasma physics, for instance for incompressible or electrostatic dynamics, for magnetohydrodynamics, or for fluid closures including

  20. Gyrokinetic equivalence

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2009-01-01

    We compare two different derivations of the gyrokinetic equation: the Hamiltonian approach in Dubin D H E et al (1983 Phys. Fluids 26 3524) and the recursive methodology in Parra F I and Catto P J (2008 Plasma Phys. Control. Fusion 50 065014). We prove that both approaches yield the same result at least to second order in a Larmor radius over macroscopic length expansion. There are subtle differences in the definitions of some of the functions that need to be taken into account to prove the equivalence.

  1. Angular and linear momentum of excited ferromagnets

    NARCIS (Netherlands)

    Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.

    2013-01-01

    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist

  2. Efficient Eulerian gyrokinetic simulations with block-structured grids

    International Nuclear Information System (INIS)

    Jarema, Denis

    2017-01-01

    Gaining a deep understanding of plasma microturbulence is of paramount importance for the development of future nuclear fusion reactors, because it causes a strong outward transport of heat and particles. Gyrokinetics has proven itself as a valid mathematical model to simulate such plasma microturbulence effects. In spite of the advantages of this model, nonlinear radially extended (or global) gyrokinetic simulations are still extremely computationally expensive, involving a very large number of computational grid points. Hence, methods that reduce the number of grid points without a significant loss of accuracy are a prerequisite to be able to run high-fidelity simulations. At the level of the mathematical model, the gyrokinetic approach achieves a reduction from six to five coordinates in comparison to the fully kinetic models. This reduction leads to an important decrease in the total number of computational grid points. However, the velocity space mixed with the radial direction still requires a very fine resolution in grid based codes, due to the disparities in the thermal speed, which are caused by a strong temperature variation along the radial direction. An attempt to address this problem by modifying the underlying gyrokinetic set of equations leads to additional nonlinear terms, which are the most expensive parts to simulate. Furthermore, because of these modifications, well-established and computationally efficient implementations developed for the original set of equations can no longer be used. To tackle such issues, in this thesis we introduce an alternative approach of blockstructured grids. This approach reduces the number of grid points significantly, but without changing the underlying mathematical model. Furthermore, our technique is minimally invasive and allows the reuse of a large amount of already existing code using rectilinear grids, modifications being necessary only on the block boundaries. Moreover, the block-structured grid can be

  3. Efficient Eulerian gyrokinetic simulations with block-structured grids

    Energy Technology Data Exchange (ETDEWEB)

    Jarema, Denis

    2017-01-20

    Gaining a deep understanding of plasma microturbulence is of paramount importance for the development of future nuclear fusion reactors, because it causes a strong outward transport of heat and particles. Gyrokinetics has proven itself as a valid mathematical model to simulate such plasma microturbulence effects. In spite of the advantages of this model, nonlinear radially extended (or global) gyrokinetic simulations are still extremely computationally expensive, involving a very large number of computational grid points. Hence, methods that reduce the number of grid points without a significant loss of accuracy are a prerequisite to be able to run high-fidelity simulations. At the level of the mathematical model, the gyrokinetic approach achieves a reduction from six to five coordinates in comparison to the fully kinetic models. This reduction leads to an important decrease in the total number of computational grid points. However, the velocity space mixed with the radial direction still requires a very fine resolution in grid based codes, due to the disparities in the thermal speed, which are caused by a strong temperature variation along the radial direction. An attempt to address this problem by modifying the underlying gyrokinetic set of equations leads to additional nonlinear terms, which are the most expensive parts to simulate. Furthermore, because of these modifications, well-established and computationally efficient implementations developed for the original set of equations can no longer be used. To tackle such issues, in this thesis we introduce an alternative approach of blockstructured grids. This approach reduces the number of grid points significantly, but without changing the underlying mathematical model. Furthermore, our technique is minimally invasive and allows the reuse of a large amount of already existing code using rectilinear grids, modifications being necessary only on the block boundaries. Moreover, the block-structured grid can be

  4. Global gyrokinetic and fluid hybrid simulations of tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Michael David John

    2016-07-15

    Achieving commercial production of electricity by magnetic confinement fusion requires improvements in energy and particle confinement. In order to better understand and optimise confinement, numerical simulations of plasma phenomena are useful. One particularly challenging regime is that in which long wavelength MHD phenomena interact with kinetic phenomena. In such a regime, global electromagnetic gyrokinetic simulations are necessary. In this regime, computational requirements have been excessive for Eulerian methods, while Particle-in-Cell (PIC) methods have been particularly badly affected by the 'cancellation problem', a numerical problem resulting from the structure of the electromagnetic gyrokinetic equations. A number of researchers have been working on mitigating this problem with some significant successes. Another alternative to mitigating the problem is to move to a hybrid system of fluid and gyrokinetic equations. At the expense of reducing the physical content of the numerical model, particularly electron kinetic physics, it is possible in this way to perform global electromagnetic PIC simulations retaining ion gyrokinetic effects but eliminating the cancellation problem. The focus of this work has been the implementation of two such hybrid models into the gyrokinetic code EUTERPE. The two models treat electrons and the entire bulk plasma respectively as a fluid. Both models are additionally capable of considering the self-consistent interaction of an energetic ion species, described gyrokinetically, with the perturbed fields. These two models have been successfully benchmarked in linear growth rate and frequency against other codes for a Toroidal Alfven Eigenmode (TAE) case in both the linear and non-linear regimes. The m=1 internal kink mode, which is particularly challenging in terms of the fully gyrokinetic cancellation problem, has also been successfully benchmarked using the hybrid models with the MHD eigenvalue code CKA. Non

  5. Global gyrokinetic and fluid hybrid simulations of tokamaks and stellarators

    International Nuclear Information System (INIS)

    Cole, Michael David John

    2016-01-01

    Achieving commercial production of electricity by magnetic confinement fusion requires improvements in energy and particle confinement. In order to better understand and optimise confinement, numerical simulations of plasma phenomena are useful. One particularly challenging regime is that in which long wavelength MHD phenomena interact with kinetic phenomena. In such a regime, global electromagnetic gyrokinetic simulations are necessary. In this regime, computational requirements have been excessive for Eulerian methods, while Particle-in-Cell (PIC) methods have been particularly badly affected by the 'cancellation problem', a numerical problem resulting from the structure of the electromagnetic gyrokinetic equations. A number of researchers have been working on mitigating this problem with some significant successes. Another alternative to mitigating the problem is to move to a hybrid system of fluid and gyrokinetic equations. At the expense of reducing the physical content of the numerical model, particularly electron kinetic physics, it is possible in this way to perform global electromagnetic PIC simulations retaining ion gyrokinetic effects but eliminating the cancellation problem. The focus of this work has been the implementation of two such hybrid models into the gyrokinetic code EUTERPE. The two models treat electrons and the entire bulk plasma respectively as a fluid. Both models are additionally capable of considering the self-consistent interaction of an energetic ion species, described gyrokinetically, with the perturbed fields. These two models have been successfully benchmarked in linear growth rate and frequency against other codes for a Toroidal Alfven Eigenmode (TAE) case in both the linear and non-linear regimes. The m=1 internal kink mode, which is particularly challenging in terms of the fully gyrokinetic cancellation problem, has also been successfully benchmarked using the hybrid models with the MHD eigenvalue code CKA. Non-linear simulations

  6. Verification of Gyrokinetic Particle of Turbulent Simulation of Device Size Scaling Transport

    Institute of Scientific and Technical Information of China (English)

    LIN Zhihong; S. ETHIER; T. S. HAHM; W. M. TANG

    2012-01-01

    Verification and historical perspective are presented on the gyrokinetic particle simulations that discovered the device size scaling of turbulent transport and indentified the geometry model as the source of the long-standing disagreement between gyrokinetic particle and continuum simulations.

  7. The infrared limit of the SRG evolution and Levinson's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, E. Ruiz, E-mail: earriola@ugr.es [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Fisica Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Szpigel, S., E-mail: szpigel@mackenzie.br [Centro de Rádio-Astronomia e Astrofísica Mackenzie, Escola de Engenharia, Universidade Presbiteriana Mackenzie (Brazil); Timóteo, V.S., E-mail: varese@ft.unicamp.br [Grupo de Óptica e Modelagem Numérica – GOMNI, Faculdade de Tecnologia – FT, Universidade Estadual de Campinas – UNICAMP (Brazil)

    2014-07-30

    On a finite momentum grid with N integration points p{sub n} and weights w{sub n} (n=1,…,N) the Similarity Renormalization Group (SRG) with a given generator G unitarily evolves an initial interaction with a cutoff λ on energy differences, steadily driving the starting Hamiltonian in momentum space H{sub n,m}{sup 0}=p{sub n}{sup 2}δ{sub n,m}+V{sub n,m} to a diagonal form in the infrared limit (λ→0), H{sub n,m}{sup G,λ→0}=E{sub π(n)}δ{sub n,m}, where π(n) is a permutation of the eigenvalues E{sub n} which depends on G. Levinson's theorem establishes a relation between phase-shifts δ(p{sub n}) and the number of bound-states, n{sub B}, and reads δ(p{sub 1})−δ(p{sub N})=n{sub B}π. We show that unitarily equivalent Hamiltonians on the grid generate reaction matrices which are compatible with Levinson's theorem but are phase-inequivalent along the SRG trajectory. An isospectral definition of the phase-shift in terms of an energy-shift is possible but requires in addition a proper ordering of states on a momentum grid such as to fulfill Levinson's theorem. We show how the SRG with different generators G induces different isospectral flows in the presence of bound-states, leading to distinct orderings in the infrared limit. While the Wilson generator induces an ascending ordering incompatible with Levinson's theorem, the Wegner generator provides a much better ordering, although not the optimal one. We illustrate the discussion with the nucleon–nucleon (NN) interaction in the {sup 1}S{sub 0} and {sup 3}S{sub 1} channels.

  8. Convergence theorems for renormalized Feynman integrals with zero-mass propagators

    International Nuclear Information System (INIS)

    Lowenstein, J.H.

    1976-01-01

    A general momentum-space subtraction procedure is proposed for the removal of both ultraviolet and infrared divergences of Feynman integrals. Convergence theorems are proved which allow one to define time-ordered Green functions, as tempered distributions for a wide class of theories with zero-mass propagators. (orig.) [de

  9. Variational principle for nonlinear gyrokinetic Vlasov--Maxwell equations

    International Nuclear Information System (INIS)

    Brizard, Alain J.

    2000-01-01

    A new variational principle for the nonlinear gyrokinetic Vlasov--Maxwell equations is presented. This Eulerian variational principle uses constrained variations for the gyrocenter Vlasov distribution in eight-dimensional extended phase space and turns out to be simpler than the Lagrangian variational principle recently presented by H. Sugama [Phys. Plasmas 7, 466 (2000)]. A local energy conservation law is then derived explicitly by the Noether method. In future work, this new variational principle will be used to derive self-consistent, nonlinear, low-frequency Vlasov--Maxwell bounce-gyrokinetic equations, in which the fast gyromotion and bounce-motion time scales have been eliminated

  10. Parallel magnetic field perturbations in gyrokinetic simulations

    International Nuclear Information System (INIS)

    Joiner, N.; Hirose, A.; Dorland, W.

    2010-01-01

    At low β it is common to neglect parallel magnetic field perturbations on the basis that they are of order β 2 . This is only true if effects of order β are canceled by a term in the ∇B drift also of order β[H. L. Berk and R. R. Dominguez, J. Plasma Phys. 18, 31 (1977)]. To our knowledge this has not been rigorously tested with modern gyrokinetic codes. In this work we use the gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)] to investigate whether the compressional magnetic field perturbation B || is required for accurate gyrokinetic simulations at low β for microinstabilities commonly found in tokamaks. The kinetic ballooning mode (KBM) demonstrates the principle described by Berk and Dominguez strongly, as does the trapped electron mode, in a less dramatic way. The ion and electron temperature gradient (ETG) driven modes do not typically exhibit this behavior; the effects of B || are found to depend on the pressure gradients. The terms which are seen to cancel at long wavelength in KBM calculations can be cumulative in the ion temperature gradient case and increase with η e . The effect of B || on the ETG instability is shown to depend on the normalized pressure gradient β ' at constant β.

  11. First-principle description of collisional gyrokinetic turbulence in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Dif-Pradalier, G

    2008-10-15

    This dissertation starts in chapter 1 with a comprehensive introduction to nuclear fusion, its basic physics, goals and means. It especially defines the concept of a fusion plasma and some of its essential physical properties. The following chapter 2 discusses some fundamental concepts of statistical physics. It introduces the kinetic and the fluid frameworks, compares them and highlights their respective strengths and limitations. The end of the chapter is dedicated to the fluid theory. It presents two new sets of closure relations for fluid equations which retain important pieces of physics, relevant in the weakly collisional tokamak regimes: collective resonances which lead to Landau damping and entropy production. Nonetheless, since the evolution of the turbulence is intrinsically nonlinear and deeply influenced by velocity space effects, a kinetic collisional description is most relevant. First focusing on the kinetic aspect, chapter 3 introduces the so-called gyrokinetic framework along with the numerical solver - the GYSELA code - which will be used throughout this dissertation. Very generically, code solving is an initial value problem. The impact on turbulent nonlinear evolution of out of equilibrium initial conditions is discussed while studying transient flows, self-organizing dynamics and memory effects due to initial conditions. This dissertation introduces an operational definition, now of routine use in the GYSELA code, for the initial state and concludes on the special importance of the accurate calculation of the radial electric field. The GYSELA framework is further extended in chapter 4 to describe Coulomb collisions. The implementation of a collision operator acting on the full distribution function is presented. Its successful confrontation to collisional theory (neoclassical theory) is also shown. GYSELA is now part of the few gyrokinetic codes which can self-consistently address the interplay between turbulence and collisions. While

  12. First-principle description of collisional gyrokinetic turbulence in tokamak plasmas

    International Nuclear Information System (INIS)

    Dif-Pradalier, G.

    2008-10-01

    This dissertation starts in chapter 1 with a comprehensive introduction to nuclear fusion, its basic physics, goals and means. It especially defines the concept of a fusion plasma and some of its essential physical properties. The following chapter 2 discusses some fundamental concepts of statistical physics. It introduces the kinetic and the fluid frameworks, compares them and highlights their respective strengths and limitations. The end of the chapter is dedicated to the fluid theory. It presents two new sets of closure relations for fluid equations which retain important pieces of physics, relevant in the weakly collisional tokamak regimes: collective resonances which lead to Landau damping and entropy production. Nonetheless, since the evolution of the turbulence is intrinsically nonlinear and deeply influenced by velocity space effects, a kinetic collisional description is most relevant. First focusing on the kinetic aspect, chapter 3 introduces the so-called gyrokinetic framework along with the numerical solver - the GYSELA code - which will be used throughout this dissertation. Very generically, code solving is an initial value problem. The impact on turbulent nonlinear evolution of out of equilibrium initial conditions is discussed while studying transient flows, self-organizing dynamics and memory effects due to initial conditions. This dissertation introduces an operational definition, now of routine use in the GYSELA code, for the initial state and concludes on the special importance of the accurate calculation of the radial electric field. The GYSELA framework is further extended in chapter 4 to describe Coulomb collisions. The implementation of a collision operator acting on the full distribution function is presented. Its successful confrontation to collisional theory (neoclassical theory) is also shown. GYSELA is now part of the few gyrokinetic codes which can self-consistently address the interplay between turbulence and collisions. While

  13. Gyrokinetic theory and dynamics of the tokamak edge

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2016-08-15

    The validity of modern gyrokinetic field theory is assessed for the tokamak edge. The basic structure of the Lagrangian and resulting equations and their conservation laws is reviewed. The conventional microturbulence ordering for expansion is small potential/arbitrary wavelength. The equilibrium ordering for expansion is long wavelength/arbitrary amplitude. The long-wavelength form of the conventional Lagrangian is derived in detail. The two Lagrangians are shown to match at long wavelength if the E x B Mach number is small enough for its corrections to the gyroaveraging to be neglected. Therefore, the conventional derivation and its Lagrangian can be used at all wavelengths if these conditions are satisfied. Additionally, dynamical compressibility of the magnetic field can be neglected if the plasma beta is small. This allows general use of a shear-Alfven Lagrangian for edge turbulence and self consistent equilibrium-scale phenomena for flows, currents, and heat fluxes for conventional tokamaks without further modification by higher-order terms. Corrections in polarisation and toroidal angular momentum transport due to these higher-order terms for global edge turbulence computations are shown to be small. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Noether's theorems applications in mechanics and field theory

    CERN Document Server

    Sardanashvily, Gennadi

    2016-01-01

    The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.

  15. The gauge-invariant canonical energy-momentum tensor

    Science.gov (United States)

    Lorcé, Cédric

    2016-03-01

    The canonical energy-momentum tensor is often considered as a purely academic object because of its gauge dependence. However, it has recently been realized that canonical quantities can in fact be defined in a gauge-invariant way provided that strict locality is abandoned, the non-local aspect being dictacted in high-energy physics by the factorization theorems. Using the general techniques for the parametrization of non-local parton correlators, we provide for the first time a complete parametrization of the energy-momentum tensor (generalizing the purely local parametrizations of Ji and Bakker-Leader-Trueman used for the kinetic energy-momentum tensor) and identify explicitly the parts accessible from measurable two-parton distribution functions (TMDs and GPDs). As by-products, we confirm the absence of model-independent relations between TMDs and parton orbital angular momentum, recover in a much simpler way the Burkardt sum rule and derive three similar new sum rules expressing the conservation of transverse momentum.

  16. The gauge-invariant canonical energy-momentum tensor

    International Nuclear Information System (INIS)

    Lorce, C.

    2016-01-01

    The canonical energy-momentum tensor is often considered as a purely academic object because of its gauge dependence. However, it has recently been realized that canonical quantities can in fact be defined in a gauge-invariant way provided that strict locality is abandoned, the non-local aspect being dictated in high-energy physics by the factorization theorems. Using the general techniques for the parametrization of non-local parton correlators, we provide for the first time a complete parametrization of the energy-momentum tensor (generalizing the purely local parametrizations of Ji and Bakker-Leader-Trueman used for the kinetic energy-momentum tensor) and identify explicitly the parts accessible from measurable two-parton distribution functions (TMD and GPD). As by-products, we confirm the absence of model-independent relations between TMDs and parton orbital angular momentum, recover in a much simpler way the Burkardt sum rule and derive 3 similar new sum rules expressing the conservation of transverse momentum. (author)

  17. Current algebra and soft pion theorems for weak π production

    International Nuclear Information System (INIS)

    Adler, S.L.

    1976-01-01

    Beginning with definitions of vector, scalar, axial vector, pseudoscalar, and tensor current densities, equal time current commutators are derived and divergences are discussed. The partially conserved axial current (PCAC) hypothesis is formulated and used to derive the Goldberger--Treiman relation. Current algebra and the PCAC hypothesis are then employed to develop a master formula describing the reaction J + N → π + N where J is a current with four momentum k, and π is a soft pion with four momentum q. Several applications are considered: πN scattering consistency conditions, π isovector electroproduction relations, π production by an isoscalar weak neutral current, π axial vector weak production relations, and low energy theorems which combine soft pion results with knowledge of divergences of the vector or axial vector current J (which induces weak pion production). It is concluded that (1) the entire weak production amplitude is determined to zero order in q by soft pion theorems, and (2) combined relations determine corrections linear in q but of zero order in k

  18. Verification of gyrokinetic microstability codes with an LHD configuration

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nunami, M. [National Inst. for Fusion Science (Japan); Watanabe, T. -H. [Nagoya Univ. (Japan); Sugama, H. [National Inst. for Fusion Science (Japan); Tanaka, K. [National Inst. for Fusion Science (Japan)

    2014-11-01

    We extend previous benchmarks of the GS2 and GKV-X codes to verify their algorithms for solving the gyrokinetic Vlasov-Poisson equations for plasma microturbulence. Code benchmarks are the most complete way of verifying the correctness of implementations for the solution of mathematical models for complex physical processes such as those studied here. The linear stability calculations reported here are based on the plasma conditions of an ion-ITB plasma in the LHD configuration. The plasma parameters and the magnetic geometry differ from previous benchmarks involving these codes. We find excellent agreement between the independently written pre-processors that calculate the geometrical coefficients used in the gyrokinetic equations. Grid convergence tests are used to establish the resolution and domain size needed to obtain converged linear stability results. The agreement of the frequencies, growth rates and eigenfunctions in the benchmarks reported here provides additional verification that the algorithms used by the GS2 and GKV-X codes are correctly finding the linear eigenvalues and eigenfunctions of the gyrokinetic Vlasov-Poisson equations.

  19. Considering fluctuation energy as a measure of gyrokinetic turbulence

    International Nuclear Information System (INIS)

    Plunk, G G; Tatsuno, T; Dorland, W

    2012-01-01

    In gyrokinetic theory, there are two quadratic measures of fluctuation energy, left invariant under nonlinear interactions, that constrain turbulence. In a recent work (Plunk and Tatsuno 2011 Phys. Rev. Lett. 106 165003) we reported on the novel consequences that this constraint has for the direction and locality of spectral energy transfer. This paper builds on that previous work. We provide a detailed analysis in support of the results of Plunk and Tatsuno (2011 Phys. Rev. Lett. 106 165003), but significantly broaden the scope and use additional methods to address the problem of energy transfer. The perspective taken here is that the fluctuation energies are not merely formal invariants of an idealized model (two-dimensional gyrokinetics (Plunk et al 2010 J. Fluid Mech. 664 407–35)) but also general measures of gyrokinetic turbulence, i.e. quantities that can be used to predict the behavior of turbulence. Although many questions remain open, this paper collects evidence in favor of this perspective by demonstrating in several contexts that constrained spectral energy transfer governs the dynamics. (paper)

  20. Transverse momentum dependent (TMD) parton distribution functions : status and prospects

    NARCIS (Netherlands)

    Angeles-Martinez, R.; Bacchetta, A.; Balitsky, I.I.; Boer, D.; Boglione, M.; Boussarie, R.; Ceccopieri, F.A.; Cherednikov, I.O.; Connor, P.; Echevarria, M. G.; Ferrera, G.; Luyando, J. Grados; Hautmann, F.; Jung, H.; Kasemets, T.; Kutak, K.; Lansberg, J.P.; Lelek, A.; Lykasov, G.; Martinez, J. D. Madrigal; Mulders, P. J.; Nocera, Emanuele R.; Petreska, E.; Pisano, C.; Placakyte, R.; Radescu, V.; Radici, M.; Schnell, G.; Scimemi, I.; Signori, A.; Szymanowski, L.; Monfared, S. Taheri; van der Veken, F.F.; van Haevermaet, H.J.; van Mechelen, P.; Vladimirov, A.; Wallon, S.

    2015-01-01

    We review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of

  1. Angular momentum in non-relativistic QED and photon contribution to spin of hydrogen atom

    International Nuclear Information System (INIS)

    Chen Panying; Ji Xiangdong; Xu Yang; Zhang Yue

    2010-01-01

    We study angular momentum in non-relativistic quantum electrodynamics (NRQED). We construct the effective total angular momentum operator by applying Noether's theorem to the NRQED lagrangian. We calculate the NRQED matching for the individual components of the QED angular momentum up to one loop. We illustrate an application of our results by the first calculation of the angular momentum of the ground state hydrogen atom carried in radiative photons, α em 3 /18π, which might be measurable in future atomic experiments.

  2. Testing Gyrokinetics on C-Mod and NSTX

    International Nuclear Information System (INIS)

    Redi, M.H.; Dorland, W.; Fiore, C.L.; Stutman, D.; Baumgaertel, J.A.; Davis, B.; Kaye, S.M.; McCune, D.C.; Menard, J.; Rewoldt, G.

    2005-01-01

    Quantitative benchmarks of computational physics codes against experiment are essential for the credible application of such codes. Fluctuation measurements can provide necessary critical tests of nonlinear gyrokinetic simulations, but such require extraordinary computational resources. Linear micro-stability calculations with the GS2 [1] gyrokinetic code have been carried out for tokamak and ST experiments which exhibit internal transport barriers (ITB) and good plasma confinement. Qualitative correlation is found for improved confinement before and during ITB plasmas on Alcator C-Mod [2] and NSTX [3], with weaker long wavelength micro-instabilities in the plasma core regions. Mixing length transport models are discussed. The NSTX L-mode is found to be near marginal stability for kinetic ballooning modes. Fully electromagnetic, linear, gyrokinetic calculations of the Alcator C-Mod ITB during off-axis rf heating, following four plasma species and including the complete electron response show ITG/TEM microturbulence is suppressed in the plasma core and in the barrier region before barrier formation, without recourse to the usual requirements of velocity shear or reversed magnetic shear [4-5]. No strongly growing long or short wavelength drift modes are found in the plasma core but strong ITG/TEM and ETG drift wave turbulence is found outside the barrier region. Linear microstability analysis is qualitatively consistent with the experimental transport analysis, showing low transport inside and high transport outside the ITB region before barrier formation, without consideration of ExB shear stabilization

  3. Gyrokinetic simulations of turbulent transport: size scaling and chaotic behaviour

    International Nuclear Information System (INIS)

    Villard, L; Brunner, S; Casati, A; Aghdam, S Khosh; Lapillonne, X; McMillan, B F; Bottino, A; Dannert, T; Goerler, T; Hatzky, R; Jenko, F; Merz, F; Chowdhury, J; Ganesh, R; Garbet, X; Grandgirard, V; Latu, G; Sarazin, Y; Idomura, Y; Jolliet, S

    2010-01-01

    Important steps towards the understanding of turbulent transport have been made with the development of the gyrokinetic framework for describing turbulence and with the emergence of numerical codes able to solve the set of gyrokinetic equations. This paper presents some of the main recent advances in gyrokinetic theory and computing of turbulence. Solving 5D gyrokinetic equations for each species requires state-of-the-art high performance computing techniques involving massively parallel computers and parallel scalable algorithms. The various numerical schemes that have been explored until now, Lagrangian, Eulerian and semi-Lagrangian, each have their advantages and drawbacks. A past controversy regarding the finite size effect (finite ρ * ) in ITG turbulence has now been resolved. It has triggered an intensive benchmarking effort and careful examination of the convergence properties of the different numerical approaches. Now, both Eulerian and Lagrangian global codes are shown to agree and to converge to the flux-tube result in the ρ * → 0 limit. It is found, however, that an appropriate treatment of geometrical terms is necessary: inconsistent approximations that are sometimes used can lead to important discrepancies. Turbulent processes are characterized by a chaotic behaviour, often accompanied by bursts and avalanches. Performing ensemble averages of statistically independent simulations, starting from different initial conditions, is presented as a way to assess the intrinsic variability of turbulent fluxes and obtain reliable estimates of the standard deviation. Further developments concerning non-adiabatic electron dynamics around mode-rational surfaces and electromagnetic effects are discussed.

  4. Non-Maxwellian fast particle effects in gyrokinetic GENE simulations

    Science.gov (United States)

    Di Siena, A.; Görler, T.; Doerk, H.; Bilato, R.; Citrin, J.; Johnson, T.; Schneider, M.; Poli, E.; JET Contributors

    2018-04-01

    Fast ions have recently been found to significantly impact and partially suppress plasma turbulence both in experimental and numerical studies in a number of scenarios. Understanding the underlying physics and identifying the range of their beneficial effect is an essential task for future fusion reactors, where highly energetic ions are generated through fusion reactions and external heating schemes. However, in many of the gyrokinetic codes fast ions are, for simplicity, treated as equivalent-Maxwellian-distributed particle species, although it is well known that to rigorously model highly non-thermalised particles, a non-Maxwellian background distribution function is needed. To study the impact of this assumption, the gyrokinetic code GENE has recently been extended to support arbitrary background distribution functions which might be either analytical, e.g., slowing down and bi-Maxwellian, or obtained from numerical fast ion models. A particular JET plasma with strong fast-ion related turbulence suppression is revised with these new code capabilities both with linear and nonlinear gyrokinetic simulations. It appears that the fast ion stabilization tends to be less strong but still substantial with more realistic distributions, and this improves the quantitative power balance agreement with experiments.

  5. Intrinsic momentum generation by a combined neoclassical and turbulence mechanism in diverted DIII-D plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Janghoon; Choe, W. [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Chang, C. S.; Ku, S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Kwon, J. M. [National Fusion Research institute, Daejeon 305-806 (Korea, Republic of); Müller, Stefan H. [Max Planck Institute for Plasma Physics, Garching 85748 (Germany); Center for Energy Research, University of California San Diego, La Jolla, California 92093 (United States)

    2014-09-15

    Fluid Reynolds stress from turbulence has usually been considered to be responsible for the anomalous toroidal momentum transport in tokamak plasma. Experiment by Müller et al. [Phys. Rev. Lett. 106, 115001 (2011)], however, reported that neither the observed edge rotation profile nor the inward momentum transport phenomenon at the edge region of an H-mode plasma could be explained by the fluid Reynolds stress measured with reciprocating Langmuir-probe. The full-function gyrokinetic code XGC1 is used to explain, for the first time, Müller et al.'s experimental observations. It is discovered that, unlike in the plasma core, the fluid Reynolds stress from turbulence is not sufficient for momentum transport physics in plasma edge. The “turbulent neoclassical” physics arising from the interaction between kinetic neoclassical orbit dynamics and plasma turbulence is key in the tokamak edge region across the plasma pedestal into core.

  6. COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS

    International Nuclear Information System (INIS)

    WALTZ, R.E.; CANDY, J.; ROSENBLUTH, M.N.

    2002-01-01

    OAK B202 COMPREHENSIVE GYROKINETIC SIMULATION OF TOKAMAK TURBULENCE AT FINITE RELATIVE GYRORADIUS. A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate turbulent transport in actual experimental profiles and allow direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite beta, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ*) so as to treat the profile shear stabilization effects which break gyroBohm scaling. The code operates in a cyclic flux tube limit which allows only gyroBohm scaling and a noncyclic radial annulus with physical profile variation. The later requires an adaptive source to maintain equilibrium profiles. Simple ITG simulations demonstrate the broken gyroBohm scaling depends on the actual rotational velocity shear rates competing with mode growth rates, direct comprehensive simulations of the DIII-D ρ*-scaled L-mode experiments are presented as a quantitative test of gyrokinetics and the paradigm

  7. A generalized gyrokinetic Poisson solver

    International Nuclear Information System (INIS)

    Lin, Z.; Lee, W.W.

    1995-03-01

    A generalized gyrokinetic Poisson solver has been developed, which employs local operations in the configuration space to compute the polarization density response. The new technique is based on the actual physical process of gyrophase-averaging. It is useful for nonlocal simulations using general geometry equilibrium. Since it utilizes local operations rather than the global ones such as FFT, the new method is most amenable to massively parallel algorithms

  8. On push-forward representations in the standard gyrokinetic model

    International Nuclear Information System (INIS)

    Miyato, N.; Yagi, M.; Scott, B. D.

    2015-01-01

    Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This is true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear

  9. On push-forward representations in the standard gyrokinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Miyato, N., E-mail: miyato.naoaki@jaea.go.jp; Yagi, M. [Japan Atomic Energy Agency, 2-116 Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Scott, B. D. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany)

    2015-01-15

    Two representations of fluid moments in terms of a gyro-center distribution function and gyro-center coordinates, which are called push-forward representations, are compared in the standard electrostatic gyrokinetic model. In the representation conventionally used to derive the gyrokinetic Poisson equation, the pull-back transformation of the gyro-center distribution function contains effects of the gyro-center transformation and therefore electrostatic potential fluctuations, which is described by the Poisson brackets between the distribution function and scalar functions generating the gyro-center transformation. Usually, only the lowest order solution of the generating function at first order is considered to explicitly derive the gyrokinetic Poisson equation. This is true in explicitly deriving representations of scalar fluid moments with polarization terms. One also recovers the particle diamagnetic flux at this order because it is associated with the guiding-center transformation. However, higher-order solutions are needed to derive finite Larmor radius terms of particle flux including the polarization drift flux from the conventional representation. On the other hand, the lowest order solution is sufficient for the other representation, in which the gyro-center transformation part is combined with the guiding-center one and the pull-back transformation of the distribution function does not appear.

  10. Levinson theorem for Dirac particles in n dimensions

    International Nuclear Information System (INIS)

    Jiang Yu

    2005-01-01

    We study the Levinson theorem for a Dirac particle in an n-dimensional central field by use of the Green function approach, based on an analysis of the n-dimensional radial Dirac equation obtained through a simple algebraic derivation. We show that the zero-momentum phase shifts are related to the number of bound states with |E|< m plus the number of half-bound states of zero momenta--i.e., |E|=m--which are denoted by finite, but not square-integrable, wave functions

  11. Beyond scale separation in gyrokinetic turbulence

    International Nuclear Information System (INIS)

    Garbet, X.; Sarazin, Y.; Grandgirard, V.; Dif-Pradalier, G.; Darmet, G.; Ghendrih, Ph.; Angelino, P.; Bertrand, P.; Besse, N.; Gravier, E.; Morel, P.; Sonnendruecker, E.; Crouseilles, N.; Dischler, J.-M.; Latu, G.; Violard, E.; Brunetti, M.; Brunner, S.; Lapillonne, X.; Tran, T.-M.; Villard, L.; Boulet, M.

    2007-01-01

    This paper presents the results obtained with a set of gyrokinetic codes based on a semi-Lagrangian scheme. Several physics issues are addressed, namely, the comparison between fluid and kinetic descriptions, the intermittent behaviour of flux driven turbulence and the role of large scale flows in toroidal ITG turbulence. The question of the initialization of full-F simulations is also discussed

  12. A hybrid gyrokinetic ion and isothermal electron fluid code for astrophysical plasma

    Science.gov (United States)

    Kawazura, Y.; Barnes, M.

    2018-05-01

    This paper describes a new code for simulating astrophysical plasmas that solves a hybrid model composed of gyrokinetic ions (GKI) and an isothermal electron fluid (ITEF) Schekochihin et al. (2009) [9]. This model captures ion kinetic effects that are important near the ion gyro-radius scale while electron kinetic effects are ordered out by an electron-ion mass ratio expansion. The code is developed by incorporating the ITEF approximation into AstroGK, an Eulerian δf gyrokinetics code specialized to a slab geometry Numata et al. (2010) [41]. The new code treats the linear terms in the ITEF equations implicitly while the nonlinear terms are treated explicitly. We show linear and nonlinear benchmark tests to prove the validity and applicability of the simulation code. Since the fast electron timescale is eliminated by the mass ratio expansion, the Courant-Friedrichs-Lewy condition is much less restrictive than in full gyrokinetic codes; the present hybrid code runs ∼ 2√{mi /me } ∼ 100 times faster than AstroGK with a single ion species and kinetic electrons where mi /me is the ion-electron mass ratio. The improvement of the computational time makes it feasible to execute ion scale gyrokinetic simulations with a high velocity space resolution and to run multiple simulations to determine the dependence of turbulent dynamics on parameters such as electron-ion temperature ratio and plasma beta.

  13. Supercurrent and the Adler-Bardeen theorem in coupled supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Ensign, P.W.

    1987-01-01

    By the Adler-Bardeen theorem, only one-loop Feynman diagrams contribute to the anomalous divergences of quantum axial currents. The anomalous nature of scale transformations is manifested by an anomalous trace of the energy-momentum tensor, T/sup μ//sub μ/. Renormalization group arguments show that the quantum T/sup μ//sub μ/ must be proportional to the β-function. Since the β-function receives contributions at all loop levels, the Adler-Bardeen theorem appears to conflict with supersymmetry. Recently Grisaru, Milewski and Zanon constructed a supersymmetric axial current for pure supersymmetric Yang-Mills theory which satisfies the Adler-Bardeen theorem to two-loops. They used supersymmetric background field theory and regularization by dimensional reduction to maintain manifest supersymmetry and gauge invariance. In this thesis, their construction is extended to supersymmetric Yang-Mills theory coupled to chiral matter fields. The Adler-Bardeen theorem is then proven to all orders in perturbation theory for both the pure and coupled theories. The extension to coupled supersymmetric Yang-Mills supports the general validity of these techniques, and adds considerable insight into the structure of the anomalies. The all orders proof demonstrates that there is no conflict between supersymmetry and the Adler-Bardeen theorem

  14. Visualizing Gyrokinetic Turbulence in a Tokamak

    Science.gov (United States)

    Stantchev, George

    2005-10-01

    Multi-dimensional data output from gyrokinetic microturbulence codes are often difficult to visualize, in part due to the non-trivial geometry of the underlying grids, in part due to high irregularity of the relevant scalar field structures in turbulent regions. For instance, traditional isosurface extraction methods are likely to fail for the electrostatic potential field whose level sets may exhibit various geometric pathologies. To address these issues we develop an advanced interactive 3D gyrokinetic turbulence visualization framework which we apply in the study of microtearing instabilities calculated with GS2 in the MAST and NSTX geometries. In these simulations GS2 uses field-line-following coordinates such that the computational domain maps in physical space to a long, twisting flux tube with strong cross-sectional shear. Using statistical wavelet analysis we create a sparse multiple-scale volumetric representation of the relevant scalar fields, which we visualize via a variation of the so called splatting technique. To handle the problem of highly anisotropic flux tube configurations we adapt a geometry-driven surface illumination algorithm that places local light sources for effective feature-enhanced visualization.

  15. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST.

    Science.gov (United States)

    Xu, X Q

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (psi,theta,micro) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  16. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.

    1994-03-01

    The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form

  17. Virial theorem and hypervirial theorem in a spherical geometry

    International Nuclear Information System (INIS)

    Li Yan; Chen Jingling; Zhang Fulin

    2011-01-01

    The virial theorem in the one- and two-dimensional spherical geometry are presented in both classical and quantum mechanics. Choosing a special class of hypervirial operators, the quantum hypervirial relations in the spherical spaces are obtained. With the aid of the Hellmann-Feynman theorem, these relations can be used to formulate a perturbation theorem without wavefunctions, corresponding to the hypervirial-Hellmann-Feynman theorem perturbation theorem of Euclidean geometry. The one-dimensional harmonic oscillator and two-dimensional Coulomb system in the spherical spaces are given as two sample examples to illustrate the perturbation method. (paper)

  18. The Non-Signalling theorem in generalizations of Bell's theorem

    Science.gov (United States)

    Walleczek, J.; Grössing, G.

    2014-04-01

    Does "epistemic non-signalling" ensure the peaceful coexistence of special relativity and quantum nonlocality? The possibility of an affirmative answer is of great importance to deterministic approaches to quantum mechanics given recent developments towards generalizations of Bell's theorem. By generalizations of Bell's theorem we here mean efforts that seek to demonstrate the impossibility of any deterministic theories to obey the predictions of Bell's theorem, including not only local hidden-variables theories (LHVTs) but, critically, of nonlocal hidden-variables theories (NHVTs) also, such as de Broglie-Bohm theory. Naturally, in light of the well-established experimental findings from quantum physics, whether or not a deterministic approach to quantum mechanics, including an emergent quantum mechanics, is logically possible, depends on compatibility with the predictions of Bell's theorem. With respect to deterministic NHVTs, recent attempts to generalize Bell's theorem have claimed the impossibility of any such approaches to quantum mechanics. The present work offers arguments showing why such efforts towards generalization may fall short of their stated goal. In particular, we challenge the validity of the use of the non-signalling theorem as a conclusive argument in favor of the existence of free randomness, and therefore reject the use of the non-signalling theorem as an argument against the logical possibility of deterministic approaches. We here offer two distinct counter-arguments in support of the possibility of deterministic NHVTs: one argument exposes the circularity of the reasoning which is employed in recent claims, and a second argument is based on the inconclusive metaphysical status of the non-signalling theorem itself. We proceed by presenting an entirely informal treatment of key physical and metaphysical assumptions, and of their interrelationship, in attempts seeking to generalize Bell's theorem on the basis of an ontic, foundational

  19. A 3D gyrokinetic particle-in-cell simulation of fusion plasma microturbulence on parallel computers

    Science.gov (United States)

    Williams, T. J.

    1992-12-01

    One of the grand challenge problems now supported by HPCC is the Numerical Tokamak Project. A goal of this project is the study of low-frequency micro-instabilities in tokamak plasmas, which are believed to cause energy loss via turbulent thermal transport across the magnetic field lines. An important tool in this study is gyrokinetic particle-in-cell (PIC) simulation. Gyrokinetic, as opposed to fully-kinetic, methods are particularly well suited to the task because they are optimized to study the frequency and wavelength domain of the microinstabilities. Furthermore, many researchers now employ low-noise delta(f) methods to greatly reduce statistical noise by modelling only the perturbation of the gyrokinetic distribution function from a fixed background, not the entire distribution function. In spite of the increased efficiency of these improved algorithms over conventional PIC algorithms, gyrokinetic PIC simulations of tokamak micro-turbulence are still highly demanding of computer power--even fully-vectorized codes on vector supercomputers. For this reason, we have worked for several years to redevelop these codes on massively parallel computers. We have developed 3D gyrokinetic PIC simulation codes for SIMD and MIMD parallel processors, using control-parallel, data-parallel, and domain-decomposition message-passing (DDMP) programming paradigms. This poster summarizes our earlier work on codes for the Connection Machine and BBN TC2000 and our development of a generic DDMP code for distributed-memory parallel machines. We discuss the memory-access issues which are of key importance in writing parallel PIC codes, with special emphasis on issues peculiar to gyrokinetic PIC. We outline the domain decompositions in our new DDMP code and discuss the interplay of different domain decompositions suited for the particle-pushing and field-solution components of the PIC algorithm.

  20. Transverse momentum dependent (TMD) parton distribution functions. Status and prospects

    International Nuclear Information System (INIS)

    Angeles-Martinez, R.; Bacchetta, A.; Pavia Univ.; Balitsky, I.I.

    2015-07-01

    We provide a concise overview on transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q T spectra of Higgs and vector bosons for low q T , and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present an application of a new tool, TMDlib, to parton density fits and parameterizations.

  1. Gyrokinetic simulation of internal kink modes

    International Nuclear Information System (INIS)

    Naitou, Hiroshi; Tsuda, Kenji; Lee, W.W.; Sydora, R.D.

    1995-05-01

    Internal disruption in a tokamak has been simulated using a three-dimensional magneto-inductive gyrokinetic particle code. The code operates in both the standard gyrokinetic mode (total-f code) and the fully nonlinear characteristic mode (δf code). The latter, a recent addition, is a quiet low noise algorithm. The computational model represents a straight tokamak with periodic boundary conditions in the toroidal direction. The plasma is initially uniformly distributed in a square cross section with perfectly conducting walls. The linear mode structure of an unstable m = 1 (poloidal) and n = 1 (toroidal) kinetic internal kink mode is clearly observed, especially in the δf code. The width of the current layer around the x-point, where magnetic reconnection occurs, is found to be close to the collisionless electron skin depth. This is consistent with the theory in which electron inertia has a dominant role. The nonlinear behavior of the mode is found to be quite similar for both codes. Full reconnection in the Alfven time scale is observed along with the electrostatic potential structures created during the full reconnection phase. The E x B drift due to this electrostatic potential dominates the nonlinear phase of the development after the full reconnection

  2. Bringing global gyrokinetic turbulence simulations to the transport timescale using a multiscale approach

    Science.gov (United States)

    Parker, Jeffrey B.; LoDestro, Lynda L.; Told, Daniel; Merlo, Gabriele; Ricketson, Lee F.; Campos, Alejandro; Jenko, Frank; Hittinger, Jeffrey A. F.

    2018-05-01

    The vast separation dividing the characteristic times of energy confinement and turbulence in the core of toroidal plasmas makes first-principles prediction on long timescales extremely challenging. Here we report the demonstration of a multiple-timescale method that enables coupling global gyrokinetic simulations with a transport solver to calculate the evolution of the self-consistent temperature profile. This method, which exhibits resiliency to the intrinsic fluctuations arising in turbulence simulations, holds potential for integrating nonlocal gyrokinetic turbulence simulations into predictive, whole-device models.

  3. The Fluctuation Theorem and Dissipation Theorem for Poiseuille Flow

    International Nuclear Information System (INIS)

    Brookes, Sarah J; Reid, James C; Evans, Denis J; Searles, Debra J

    2011-01-01

    The fluctuation theorem and the dissipation theorem provide relationships to describe nonequilibrium systems arbitrarily far from, or close to equilibrium. They both rely on definition of a central property, the dissipation function. In this manuscript we apply these theorems to examine a boundary thermostatted system undergoing Poiseuille flow. The relationships are verified computationally and show that the dissipation theorem is potentially useful for study of boundary thermostatted systems consisting of complex molecules undergoing flow in the nonlinear regime.

  4. Three theorems on near horizon extremal vanishing horizon geometries

    Directory of Open Access Journals (Sweden)

    S. Sadeghian

    2016-02-01

    Full Text Available EVH black holes are Extremal black holes with Vanishing Horizon area, where vanishing of horizon area is a result of having a vanishing one-cycle on the horizon. We prove three theorems regarding near horizon geometry of EVH black hole solutions to generic Einstein gravity theories in diverse dimensions. These generic gravity theories are Einstein–Maxwell-dilaton-Λ theories, and gauged or ungauged supergravity theories with U(1 Maxwell fields. Our three theorems are: (1 The near horizon geometry of any EVH black hole has a three dimensional maximally symmetric subspace. (2 If the energy momentum tensor of the theory satisfies strong energy condition either this 3d part is an AdS3, or the solution is a direct product of a locally 3d flat space and a d−3 dimensional part. (3 These results extend to the near horizon geometry of near-EVH black holes, for which the AdS3 part is replaced with BTZ geometry.

  5. A Numerical Instability in an ADI Algorithm for Gyrokinetics

    International Nuclear Information System (INIS)

    Belli, E.A.; Hammett, G.W.

    2004-01-01

    We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem and its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve from the particle distribution function advance, has previously been found to work well for certain plasma kinetic problems involving one spatial and two velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem we find a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affects some other algorithms, such as a partially implicit Adams-Bashforth algorithm, where the parallel motion operator v parallel ∂/∂z is treated implicitly and the field terms are treated with an Adams-Bashforth explicit scheme. Fully explicit algorithms applied to all terms can be better at long wavelengths than these ADI or partially implicit algorithms

  6. Poncelet's theorem

    CERN Document Server

    Flatto, Leopold

    2009-01-01

    Poncelet's theorem is a famous result in algebraic geometry, dating to the early part of the nineteenth century. It concerns closed polygons inscribed in one conic and circumscribed about another. The theorem is of great depth in that it relates to a large and diverse body of mathematics. There are several proofs of the theorem, none of which is elementary. A particularly attractive feature of the theorem, which is easily understood but difficult to prove, is that it serves as a prism through which one can learn and appreciate a lot of beautiful mathematics. This book stresses the modern appro

  7. Gyrokinetic theory for particle and energy transport in fusion plasmas

    Science.gov (United States)

    Falessi, Matteo Valerio; Zonca, Fulvio

    2018-03-01

    A set of equations is derived describing the macroscopic transport of particles and energy in a thermonuclear plasma on the energy confinement time. The equations thus derived allow studying collisional and turbulent transport self-consistently, retaining the effect of magnetic field geometry without postulating any scale separation between the reference state and fluctuations. Previously, assuming scale separation, transport equations have been derived from kinetic equations by means of multiple-scale perturbation analysis and spatio-temporal averaging. In this work, the evolution equations for the moments of the distribution function are obtained following the standard approach; meanwhile, gyrokinetic theory has been used to explicitly express the fluctuation induced fluxes. In this way, equations for the transport of particles and energy up to the transport time scale can be derived using standard first order gyrokinetics.

  8. Interpreting angular momentum transfer between electromagnetic multipoles using vector spherical harmonics.

    Science.gov (United States)

    Grinter, Roger; Jones, Garth A

    2018-02-01

    The transfer of angular momentum between a quadrupole emitter and a dipole acceptor is investigated theoretically. Vector spherical harmonics are used to describe the angular part of the field of the mediating photon. Analytical results are presented for predicting angular momentum transfer between the emitter and absorber within a quantum electrodynamical framework. We interpret the allowability of such a process, which appears to violate conservation of angular momentum, in terms of the breakdown of the isotropy of space at the point of photon absorption (detection). That is, collapse of the wavefunction results in loss of all angular momentum information. This is consistent with Noether's Theorem and demystifies some common misconceptions about the nature of the photon. The results have implications for interpreting the detection of photons from multipole sources and offers insight into limits on information that can be extracted from quantum measurements in photonic systems.

  9. One-loop soft theorems via dual superconformal symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Brandhuber, Andreas; Hughes, Edward; Spence, Bill; Travaglini, Gabriele [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom)

    2016-03-14

    We study soft theorems at one loop in planar N = 4 super Yang-Mills theory through finite order in the infrared regulator and to subleading order in the soft parameter δ. In particular, we derive a universal constraint from dual superconformal symmetry, which we use to bootstrap subleading log δ behaviour. Moreover, we determine the complete infrared-finite subleading soft contribution of n-point MHV amplitudes using momentum twistors. Finally, we compute the subleading log δ behaviour of one-loop NMHV ratio functions at six and seven points, finding that universality holds within but not between helicity sectors.

  10. The Non-Signalling theorem in generalizations of Bell's theorem

    International Nuclear Information System (INIS)

    Walleczek, J; Grössing, G

    2014-01-01

    Does 'epistemic non-signalling' ensure the peaceful coexistence of special relativity and quantum nonlocality? The possibility of an affirmative answer is of great importance to deterministic approaches to quantum mechanics given recent developments towards generalizations of Bell's theorem. By generalizations of Bell's theorem we here mean efforts that seek to demonstrate the impossibility of any deterministic theories to obey the predictions of Bell's theorem, including not only local hidden-variables theories (LHVTs) but, critically, of nonlocal hidden-variables theories (NHVTs) also, such as de Broglie-Bohm theory. Naturally, in light of the well-established experimental findings from quantum physics, whether or not a deterministic approach to quantum mechanics, including an emergent quantum mechanics, is logically possible, depends on compatibility with the predictions of Bell's theorem. With respect to deterministic NHVTs, recent attempts to generalize Bell's theorem have claimed the impossibility of any such approaches to quantum mechanics. The present work offers arguments showing why such efforts towards generalization may fall short of their stated goal. In particular, we challenge the validity of the use of the non-signalling theorem as a conclusive argument in favor of the existence of free randomness, and therefore reject the use of the non-signalling theorem as an argument against the logical possibility of deterministic approaches. We here offer two distinct counter-arguments in support of the possibility of deterministic NHVTs: one argument exposes the circularity of the reasoning which is employed in recent claims, and a second argument is based on the inconclusive metaphysical status of the non-signalling theorem itself. We proceed by presenting an entirely informal treatment of key physical and metaphysical assumptions, and of their interrelationship, in attempts seeking to generalize Bell's theorem on the

  11. Gyrokinetic global analysis of ion temperature gradient driven mode in reversed shear tokamaks

    International Nuclear Information System (INIS)

    Idomura, Y.; Tokuda, S.; Kishimoto, Y.

    2003-01-01

    A new toroidal gyrokinetic particle code has been developed to study the ion temperature gradient driven (ITG) turbulence in reactor relevant tokamak parameters. We use a new method based on a canonical Maxwellian distribution F CM (P φ , ε, μ), which is defined by three constants of motion in the axisymmetric toroidal system, the canonical angular momentum P φ , the energy ε, and the magnetic moment μ. A quasi-ballooning representation enables linear and nonlinear high-m,n global calculations with a good numerical convergence. Conservation properties are improved by using the optimized loading method. From comprehensive linear global analyses over a wide range of an unstable toroidal mode number spectrum (n=0∼100) in large tokamak parameters (a/ρ ti =320∼460), properties of the ITG modes in reversed shear tokamaks are discussed. In the nonlinear simulation, it is found that a new method based on F CM can simulate a zonal flow damping correctly, and spurious zonal flow oscillations, which are observed in a conventional method based on a local Maxwellian distribution F LM (ψ, ε, μ), do not appear in the nonlinear regime. (author)

  12. Fermat's Last Theorem A Theorem at Last!

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 1. Fermat's Last Theorem A Theorem at Last! C S Yogananda. General Article Volume 1 Issue 1 January 1996 pp 71-79. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/001/01/0071-0079 ...

  13. Gyrokinetic particle-in-cell simulations of plasma microturbulence on advanced computing platforms

    International Nuclear Information System (INIS)

    Ethier, S; Tang, W M; Lin, Z

    2005-01-01

    Since its introduction in the early 1980s, the gyrokinetic particle-in-cell (PIC) method has been very successfully applied to the exploration of many important kinetic stability issues in magnetically confined plasmas. Its self-consistent treatment of charged particles and the associated electromagnetic fluctuations makes this method appropriate for studying enhanced transport driven by plasma turbulence. Advances in algorithms and computer hardware have led to the development of a parallel, global, gyrokinetic code in full toroidal geometry, the gyrokinetic toroidal code (GTC), developed at the Princeton Plasma Physics Laboratory. It has proven to be an invaluable tool to study key effects of low-frequency microturbulence in fusion plasmas. As a high-performance computing applications code, its flexible mixed-model parallel algorithm has allowed GTC to scale to over a thousand processors, which is routinely used for simulations. Improvements are continuously being made. As the US ramps up its support for the International Tokamak Experimental Reactor (ITER), the need for understanding the impact of turbulent transport in burning plasma fusion devices is of utmost importance. Accordingly, the GTC code is at the forefront of the set of numerical tools being used to assess and predict the performance of ITER on critical issues such as the efficiency of energy confinement in reactors

  14. Controlling fluctuations in an ITB and comparison with gyrokinetic simulations

    Science.gov (United States)

    Ernst, D. R.; Fiore, C. L.; Dominguez, A.; Podpaly, Y.; Reinke, M. L.; Terry, J. L.; Tsujii, N.; Bespamyatnov, I.; Churchill, M.; Greenwald, M.; Hubbard, A.; Hughes, J. W.; Lee, J.; Ma, Y.; Wolfe, S.; Wukitch, S.

    2011-10-01

    We have modulated on-axis ICRF minority heating to trigger fluctuations and core electron transport in Alcator C-Mod Internal Transport Barriers (ITB's). Temperature swings of 50% produced strong bursts of density fluctuations, measured by phase contrast imaging (PCI), while edge fluctuations from reflectometry, Mirnov coils, and gas puff imaging (GPI) simultaneously diminished. The PCI fluctuations are in phase with sawteeth, further evidence that they originate within the ITB foot. Linear gyrokinetic analysis with GS2 shows TEMs are driven unstable in the ITB by the on-axis heating, as in Refs.,. Nonlinear gyrokinetic simulations of turbulence in the ITB are compared with fluctuation data using a synthetic diagnostic. Strong ITB's were produced with high quality ion and electron profile data. Supported by U.S. DoE awards DE-FC02-99ER54512, DE-FG02-91ER54109, DE-FC02-08ER54966.

  15. Transverse momentum at work in high-energy scattering experiments

    Science.gov (United States)

    Signori, Andrea

    2017-01-01

    I will review some aspects of the definition and the phenomenology of Transverse-Momentum-Dependent distributions (TMDs) which are potentially interesting for the physics program at several current and future experimental facilities. First of all, I will review the definition of quark, gluon and Wilson loop TMDs based on gauge invariant hadronic matrix elements. Looking at the phenomenology of quarks, I will address the flavor dependence of the intrinsic transverse momentum in unpolarized TMDs, focusing on its extraction from Semi-Inclusive Deep-Inelastic Scattering. I will also present an estimate of its impact on the transverse momentum spectrum of W and Z bosons produced in unpolarized hadronic collisions and on the determination of the W boson mass. Moreover, the combined effect of the flavor dependence and the evolution of TMDs with the energy scale will be discussed for electron-positron annihilation. Concerning gluons, I will present from an effective theory point of view the TMD factorization theorem for the transverse momentum spectrum of pseudoscalar quarkonium produced in hadronic collisions. Relying on this, I will discuss the possibility of extracting precise information on (un)polarized gluon TMDs at a future Fixed Target Experiment at the LHC (AFTER@LHC).

  16. Green's theorem and Green's functions for the steady-state cosmic-ray equation of transport

    International Nuclear Information System (INIS)

    Webb, G.M.; Gleeson, L.J.

    1977-01-01

    Green's Theorem is developed for the spherically-symmetric steady-state cosmic-ray equation of transport in interplanetary space. By means of it the momentum distribution function F 0 (r,p), (r=heliocentric distance, p=momentum) can be determined in a region rsub(a) 0 . Examples of Green's functions are given for the case rsub(a)=0, rsub(b)=infinity and derived for the cases of finite rsub(a) and rsub(b). The diffusion coefficient kappa is assumed of the form kappa=kappa 0 (p)rsup(b). The treatment systematizes the development of all analytic solutions for steady-state solar and galactic cosmic-ray propagation and previous solutions form a subset of the present solutions. (Auth.)

  17. Frege's theorem

    CERN Document Server

    Heck, Richard G

    2011-01-01

    Frege's Theorem collects eleven essays by Richard G Heck, Jr, one of the world's leading authorities on Frege's philosophy. The Theorem is the central contribution of Gottlob Frege's formal work on arithmetic. It tells us that the axioms of arithmetic can be derived, purely logically, from a single principle: the number of these things is the same as the number of those things just in case these can be matched up one-to-one with those. But that principle seems so utterlyfundamental to thought about number that it might almost count as a definition of number. If so, Frege's Theorem shows that a

  18. GYSELA, a full-f global gyrokinetic Semi-Lagrangian code for ITG turbulence simulations

    International Nuclear Information System (INIS)

    Grandgirard, V.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, Ph.; Crouseilles, N.; Latu, G.; Sonnendruecker, E.; Besse, N.; Bertrand, P.

    2006-01-01

    This work addresses non-linear global gyrokinetic simulations of ion temperature gradient (ITG) driven turbulence with the GYSELA code. The particularity of GYSELA code is to use a fixed grid with a Semi-Lagrangian (SL) scheme and this for the entire distribution function. The 4D non-linear drift-kinetic version of the code already showns the interest of such a SL method which exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales. The code has been upgrated to run 5D simulations of toroidal ITG turbulence. Linear benchmarks and non-linear first results prove that semi-lagrangian codes can be a credible alternative for gyrokinetic simulations

  19. Nonlinear Gyrokinetic Theory With Polarization Drift

    International Nuclear Information System (INIS)

    Wang, L.; Hahm, T.S.

    2010-01-01

    A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the wide-spread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)].

  20. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. II. Resistive tearing mode

    International Nuclear Information System (INIS)

    Liu, Dongjian; Zhang, Wenlu; McClenaghan, Joseph; Wang, Jiaqi; Lin, Zhihong

    2014-01-01

    Global gyrokinetic particle simulation of resistive tearing modes has been developed and verified in the gyrokinetic toroidal code (GTC). GTC linear simulations in the fluid limit of the kink-tearing and resistive tearing modes in the cylindrical geometry agree well with the resistive magnetohydrodynamic eigenvalue and initial value codes. Ion kinetic effects are found to reduce the radial width of the tearing modes. GTC simulations of the resistive tearing modes in the toroidal geometry find that the toroidicity reduces the growth rates

  1. Complex proofs of real theorems

    CERN Document Server

    Lax, Peter D

    2011-01-01

    Complex Proofs of Real Theorems is an extended meditation on Hadamard's famous dictum, "The shortest and best way between two truths of the real domain often passes through the imaginary one." Directed at an audience acquainted with analysis at the first year graduate level, it aims at illustrating how complex variables can be used to provide quick and efficient proofs of a wide variety of important results in such areas of analysis as approximation theory, operator theory, harmonic analysis, and complex dynamics. Topics discussed include weighted approximation on the line, Müntz's theorem, Toeplitz operators, Beurling's theorem on the invariant spaces of the shift operator, prediction theory, the Riesz convexity theorem, the Paley-Wiener theorem, the Titchmarsh convolution theorem, the Gleason-Kahane-Żelazko theorem, and the Fatou-Julia-Baker theorem. The discussion begins with the world's shortest proof of the fundamental theorem of algebra and concludes with Newman's almost effortless proof of the prime ...

  2. Linear electrical circuits. Definitions - General theorems; Circuits electriques lineaires. Definitions - Theoremes generaux

    Energy Technology Data Exchange (ETDEWEB)

    Escane, J.M. [Ecole Superieure d' Electricite, 91 - Gif-sur-Yvette (France)

    2005-04-01

    The first part of this article defines the different elements of an electrical network and the models to represent them. Each model involves the current and the voltage as a function of time. Models involving time functions are simple but their use is not always easy. The Laplace transformation leads to a more convenient form where the variable is no more directly the time. This transformation leads also to the notion of transfer function which is the object of the second part. The third part aims at defining the fundamental operation rules of linear networks, commonly named 'general theorems': linearity principle and superimposition theorem, duality principle, Thevenin theorem, Norton theorem, Millman theorem, triangle-star and star-triangle transformations. These theorems allow to study complex power networks and to simplify the calculations. They are based on hypotheses, the first one is that all networks considered in this article are linear. (J.S.)

  3. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, G. M.; Candy, J. [General Atomics, San Diego, California 92186 (United States); Howard, N. T. [Oak Ridge Institute for Science Education (ORISE), Oak Ridge, Tennessee 37831 (United States); Holland, C. [University of California San Diego, San Diego, California 92093 (United States)

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.

  4. Linear relativistic gyrokinetic equation in general magnetically confined plasmas

    International Nuclear Information System (INIS)

    Tsai, S.T.; Van Dam, J.W.; Chen, L.

    1983-08-01

    The gyrokinetic formalism for linear electromagnetic waves of arbitrary frequency in general magnetic-field configurations is extended to include full relativistic effects. The derivation employs the small adiabaticity parameter rho/L 0 where rho is the Larmor radius and L 0 the equilibrium scale length. The effects of the plasma and magnetic field inhomogeneities and finite Larmor-radii effects are also contained

  5. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets

    Science.gov (United States)

    Okuma, Nobuyuki

    2017-09-01

    We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z -axis spin rotational symmetry, which can be explained in the context of a singular band point or a U (1 ) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q =-2 , while the typical one observed in topological insulator surface states is characterized by Q =+1 . A magnonic analogue of the surface states, the Dirac magnon with Q =+1 , is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.

  6. Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets.

    Science.gov (United States)

    Okuma, Nobuyuki

    2017-09-08

    We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z-axis spin rotational symmetry, which can be explained in the context of a singular band point or a U(1) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q=-2, while the typical one observed in topological insulator surface states is characterized by Q=+1. A magnonic analogue of the surface states, the Dirac magnon with Q=+1, is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.

  7. Gap and density theorems

    CERN Document Server

    Levinson, N

    1940-01-01

    A typical gap theorem of the type discussed in the book deals with a set of exponential functions { \\{e^{{{i\\lambda}_n} x}\\} } on an interval of the real line and explores the conditions under which this set generates the entire L_2 space on this interval. A typical gap theorem deals with functions f on the real line such that many Fourier coefficients of f vanish. The main goal of this book is to investigate relations between density and gap theorems and to study various cases where these theorems hold. The author also shows that density- and gap-type theorems are related to various propertie

  8. The quantitative Morse theorem

    OpenAIRE

    Loi, Ta Le; Phien, Phan

    2013-01-01

    In this paper, we give a proof of the quantitative Morse theorem stated by {Y. Yomdin} in \\cite{Y1}. The proof is based on the quantitative Sard theorem, the quantitative inverse function theorem and the quantitative Morse lemma.

  9. Gyrokinetic simulations with external resonant magnetic perturbations: Island torque and nonambipolar transport with plasma rotation

    Science.gov (United States)

    Waltz, R. E.; Waelbroeck, F. L.

    2012-03-01

    Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.

  10. Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence

    International Nuclear Information System (INIS)

    Hahm, T.S.; Wang, Lu; Madsen, J.

    2008-01-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E x B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρ i θi ∼ L E ∼ L p i is the thermal ion Larmor radius and ρ θi = B/B θ ρ i ), as typically observed in the tokamak H-mode edge, with L E and L p being the radial electric field and pressure gradient lengths. We take k # perpendicular# ρ i ∼ 1 for generality, and keep the relative fluctuation amplitudes e(delta)φ/T i ∼ (delta)B/B up to the second order. Extending the electrostatic theory in the presence of high E x B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation

  11. The origin of the energy-momentum conservation law

    Science.gov (United States)

    Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.

    2017-09-01

    The interplay between the action-reaction principle and the energy-momentum conservation law is revealed by the examples of the Maxwell-Lorentz and Yang-Mills-Wong theories, and general relativity. These two statements are shown to be equivalent in the sense that both hold or fail together. Their mutual agreement is demonstrated most clearly in the self-interaction problem by taking account of the rearrangement of degrees of freedom appearing in the action of the Maxwell-Lorentz and Yang-Mills-Wong theories. The failure of energy-momentum conservation in general relativity is attributed to the fact that this theory allows solutions having nontrivial topologies. The total energy and momentum of a system with nontrivial topological content prove to be ambiguous, coordinatization-dependent quantities. For example, the energy of a Schwarzschild black hole may take any positive value greater than, or equal to, the mass of the body whose collapse is responsible for forming this black hole. We draw the analogy to the paradoxial Banach-Tarski theorem; the measure becomes a poorly defined concept if initial three-dimensional bounded sets are rearranged in topologically nontrivial ways through the action of free non-Abelian isometry groups.

  12. Transport modelling and gyrokinetic analysis of advanced high performance discharges

    International Nuclear Information System (INIS)

    Kinsey, J.E.; Imbeaux, F.; Staebler, G.M.; Budny, R.; Bourdelle, C.; Fukuyama, A.; Garbet, X.; Tala, T.; Parail, V.

    2005-01-01

    Predictive transport modelling and gyrokinetic stability analyses of demonstration hybrid (HYBRID) and advanced tokamak (AT) discharges from the International Tokamak Physics Activity (ITPA) profile database are presented. Both regimes have exhibited enhanced core confinement (above the conventional ITER reference H-mode scenario) but differ in their current density profiles. Recent contributions to the ITPA database have facilitated an effort to study the underlying physics governing confinement in these advanced scenarios. In this paper, we assess the level of commonality of the turbulent transport physics and the relative roles of the transport suppression mechanisms (i.e. E x B shear and Shafranov shift (α) stabilization) using data for select HYBRID and AT discharges from the DIII-D, JET and AUG tokamaks. GLF23 transport modelling and gyrokinetic stability analysis indicate that E x B shear and Shafranov shift stabilization play essential roles in producing the improved core confinement in both HYBRID and AT discharges. Shafranov shift stabilization is found to be more important in AT discharges than in HYBRID discharges. We have also examined the competition between the stabilizing effects of E x B shear and Shafranov shift stabilization and the destabilizing effects of higher safety factors and parallel velocity shear. Linear and nonlinear gyrokinetic simulations of idealized low and high safety factor cases reveal some interesting consequences. A low safety factor (i.e. HYBRID relevant) is directly beneficial in reducing the transport, and E x B shear stabilization can dominate parallel velocity shear destabilization allowing the turbulence to be quenched. However, at low-q/high current, Shafranov shift stabilization plays less of a role. Higher safety factors (as found in AT discharges), on the other hand, have larger amounts of Shafranov shift stabilization, but parallel velocity shear destabilization can prevent E x B shear quenching of the turbulent

  13. Transport modeling and gyrokinetic analysis of advanced high performance discharges

    International Nuclear Information System (INIS)

    Kinsey, J.; Imbeaux, F.; Bourdelle, C.; Garbet, X.; Staebler, G.; Budny, R.; Fukuyama, A.; Tala, T.; Parail, V.

    2005-01-01

    Predictive transport modeling and gyrokinetic stability analyses of demonstration hybrid (HYBRID) and Advanced Tokamak (AT) discharges from the International Tokamak Physics Activity (ITPA) profile database are presented. Both regimes have exhibited enhanced core confinement (above the conventional ITER reference H-mode scenario) but differ in their current density profiles. Recent contributions to the ITPA database have facilitated an effort to study the underlying physics governing confinement in these advanced scenarios. In this paper, we assess the level of commonality of the turbulent transport physics and the relative roles of the transport suppression mechanisms (i.e. ExB shear and Shafranov shift (α) stabilization) using data for select HYBRID and AT discharges from the DIII-D, JET, and AUG tokamaks. GLF23 transport modeling and gyrokinetic stability analysis indicates that ExB shear and Shafranov shift stabilization play essential roles in producing the improved core confinement in both HYBRID and AT discharges. Shafranov shift stabilization is found to be more important in AT discharges than in HYBRID discharges. We have also examined the competition between the stabilizing effects of ExB shear and Shafranov shift stabilization and the destabilizing effects of higher safety factors and parallel velocity shear. Linear and nonlinear gyrokinetic simulations of idealized low and high safety factor cases reveals some interesting consequences. A low safety factor (i.e. HYBRID relevant) is directly beneficial in reducing the transport, and ExB shear stabilization can win out over parallel velocity shear destabilization allowing the turbulence to be quenched. However, at low-q/high current, Shafranov shift stabilization plays less of a role. Higher safety factors (as found in AT discharges), on the other hand, have larger amounts of Shafranov shift stabilization, but parallel velocity shear destabilization can prevent ExB shear quenching of the turbulent

  14. Neoclassical equilibrium in gyrokinetic simulations

    International Nuclear Information System (INIS)

    Garbet, X.; Dif-Pradalier, G.; Nguyen, C.; Sarazin, Y.; Grandgirard, V.; Ghendrih, Ph.

    2009-01-01

    This paper presents a set of model collision operators, which reproduce the neoclassical equilibrium and comply with the constraints of a full-f global gyrokinetic code. The assessment of these operators is based on an entropy variational principle, which allows one to perform a fast calculation of the neoclassical diffusivity and poloidal velocity. It is shown that the force balance equation is recovered at lowest order in the expansion parameter, the normalized gyroradius, hence allowing one to calculate correctly the radial electric field. Also, the conventional neoclassical transport and the poloidal velocity are reproduced in the plateau and banana regimes. The advantages and drawbacks of the various model operators are discussed in view of the requirements for neoclassical and turbulent transport.

  15. Momentum projection and relativistic boost of solitons: Coherent states and projection

    International Nuclear Information System (INIS)

    Luebeck, E.G.; Birse, M.C.; Henley, E.M.; Wilets, L.

    1986-01-01

    We present a method for calculating center-of-mass corrections to hadron properties in soliton models and we apply the method to the soliton bag model. A coherent state is used to provide a quantum wave function corresponding to the mean-field approximation. This state is projected onto a zero-momentum eigenstate. States of nonzero momentum can be constructed from this with a Lorentz boost operator. Hence center-of-mass corrections can be made in a properly relativistic way. The energy of the projected zero-momentum state is the hadron mass with spurious center-of-mass energy removed. We apply a variational principle to our projected state and use three ''virial theorems'' to test our approximate solution. We also study projection of general one-mode states. Projection reduces the nucleon energy by up to 25%. Variation after projection gives a further reduction of less than 20%. Somewhat larger reductions in the energy are found for meson states

  16. Comprehensive gyrokinetic simulation of tokamak turbulence at finite relative gyroradius

    International Nuclear Information System (INIS)

    Waltz, R.E.; Candy, J.; Rosenbluth, M.N.

    2003-01-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate turbulent transport in actual experimental profiles and allow direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite beta, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ*) so as to treat the profile shear stabilization effects which break gyro Bohm scaling. The code operates in a cyclic flux tube limit which allows only gyro Bohm scaling and a noncylic radial annulus with physical profile variation. The later requires an adaptive source to maintain equilibrium profiles. Simple ITG simulations demonstrate the broken gyro Bohm scaling paradigm of Garbet and Waltz [Phys. Plasmas 3, 1898 (1996)]. Since broken gyro Bohm scaling depends on the actual rotational velocity shear rates competing with mode growth rates, direct comprehensive simulations of the DIII-D ρ*-scaled L-mode experiments are presented as a quantitative test of gyrokinetics and the paradigm. (author)

  17. Bertrand's theorem and virial theorem in fractional classical mechanics

    Science.gov (United States)

    Yu, Rui-Yan; Wang, Towe

    2017-09-01

    Fractional classical mechanics is the classical counterpart of fractional quantum mechanics. The central force problem in this theory is investigated. Bertrand's theorem is generalized, and virial theorem is revisited, both in three spatial dimensions. In order to produce stable, closed, non-circular orbits, the inverse-square law and the Hooke's law should be modified in fractional classical mechanics.

  18. Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem

    Energy Technology Data Exchange (ETDEWEB)

    Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com [University of New South Wales, School of Physics (Australia)

    2016-06-15

    The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.

  19. A minimal collision operator for implementing neoclassical transport in gyrokinetic simulations

    International Nuclear Information System (INIS)

    Garbet, X.; Dif-Pradalier, G.; Nguyen, C.; Angelino, P.; Sarazin, Y.; Grandgirard, V.; Ghendrih, P.; Samain, A.

    2008-01-01

    This paper presents a class of collision operators, which reproduce neoclassical transport and comply with the constraints of a full-f global gyrokinetic code. The assessment of these operators is based on a variational entropy method, which allows a fast calculation of the neoclassical diffusivity and poloidal velocity.

  20. Large momentum expansion of two-loop self-energy diagrams with arbitrary masses

    International Nuclear Information System (INIS)

    Davydychev, A.I.; Smirnov, V.A.; Tausk, J.B.

    1993-01-01

    For two-loop two-point diagrams with arbitrary masses, an algorithm to derive the asymptotic expansion at large external momentum squared is constructed. By using a general theorem on asymptotic expansions of Feynman diagrams, the coefficients of the expansion are calculated analytically. For some two-loop diagrams occurring in the Standard Model, comparison with results of numerical integration shows that our expansion works well in the region above the highest physical threshold. (orig.)

  1. Verification of gyrokinetic particle simulation of current-driven instability in fusion plasmas. I. Internal kink mode

    Energy Technology Data Exchange (ETDEWEB)

    McClenaghan, J.; Lin, Z.; Holod, I.; Deng, W.; Wang, Z. [University of California, Irvine, California 92697 (United States)

    2014-12-15

    The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.

  2. Gyrokinetic simulation of microtearing turbulence

    International Nuclear Information System (INIS)

    Doerk, Hauke

    2013-01-01

    In modern fusion experiments, plasma turbulence is responsible for the radial heat transport and thus determines the plasma confinement within the magnetic field of tokamak devices. Deeper theoretical understanding is needed to explain today's and future fusion experiments. The goal of fusion research is to establish nuclear fusion as a safe and sustainable energy source. In future fusion power plants, and also in large fusion experiments like the presently constructed ITER, plasma heating predominantly affects the electron species. The reason is of fundamental nature: the collisional cross section of fast ions that are produced by the heating systems is larger for thermal electrons than for thermal ions. It is thus essential to correctly predict electron thermal transport, but the overall picture still continues to evolve. Besides microinstabilities on the electron gyroradius scales, also a stochastized magnetic field can contribute to enhanced electron transport. Already since the 1970's, the so-called microtearing instability is discussed as a source of stochastic fields. This microinstability deserves its name for breaking up the magnetic field structure by forming small-scale magnetic islands. The linear microtearing instability and its nonlinear, turbulent behavior is investigated in this thesis by means of numerical simulations with the gyrokinetic turbulence code Gene. The underlying gyrokinetic equations are not only appropriate to predict turbulent transport, but also describe neoclassical transport that is drift-kinetic in nature. Besides revealing interesting physics on long time scales, solving the neoclassical equation serves as an excellent test for the numerical implementation of the collision operator in Gene. Focusing on the local limit, it is found that a modification of this implementation that considers certain symmetries is necessary to obtain a satisfactory agreement with the well-established drift-kinetic neoclassical code Neo. Also the

  3. Gyrokinetic simulations of neoclassical transport using a minimal collision operator

    International Nuclear Information System (INIS)

    Dif-Pradalier, G.; Grandgirard, V.; Sarazin, Y.; Garbet, X.; Ghendrih, Ph.; Angelino, P.

    2008-01-01

    Conventional neoclassical predictions are successfully recovered within a gyrokinetic framework using a minimal Fokker-Planck collision operator. This operator is shown to accurately describe some essential features of neoclassical theory, namely the neoclassical transport, the poloidal rotation and the linear damping of axisymmetric flows while interestingly preserving a high numerical efficiency. Its form makes it especially adapted to Eulerian or Semi-Lagrangian schemes.

  4. Direct identification of predator-prey dynamics in gyrokinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D [Laboratoire de Physique des Plasmas, CNRS, Paris-Sud, Ecole Polytechnique, UMR7648, F-91128 Palaiseau (France); Diamond, Patrick H. [University of California, San Diego, La Jolla, California 92093-0319 (United States)

    2015-09-15

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.

  5. Angular momentum of phonons and its application to single-spin relaxation

    Science.gov (United States)

    Nakane, Jotaro J.; Kohno, Hiroshi

    2018-05-01

    We reexamine the relaxation process of a single spin embedded in an elastic medium, a problem studied recently by Garanin and Chudnovsky (GC) [Phys. Rev. B 92, 024421 (2015), 10.1103/PhysRevB.92.024421] from the viewpoint of angular-momentum transfer. Using Noether's theorem, we identify two distinct angular momenta of the medium, one Newtonian discussed by GC and the other field-theoretical, both of which consist of an orbital part and a spin part. For both angular momenta, we found that the orbital part is as essential as the spin part in the relaxation process. In particular, the angular-momentum transfer from the (real) spin to the Newtonian orbital part may be considered as an incipient rotation that leads to the Einstein-de Haas effect.

  6. MVT a most valuable theorem

    CERN Document Server

    Smorynski, Craig

    2017-01-01

    This book is about the rise and supposed fall of the mean value theorem. It discusses the evolution of the theorem and the concepts behind it, how the theorem relates to other fundamental results in calculus, and modern re-evaluations of its role in the standard calculus course. The mean value theorem is one of the central results of calculus. It was called “the fundamental theorem of the differential calculus” because of its power to provide simple and rigorous proofs of basic results encountered in a first-year course in calculus. In mathematical terms, the book is a thorough treatment of this theorem and some related results in the field; in historical terms, it is not a history of calculus or mathematics, but a case study in both. MVT: A Most Valuable Theorem is aimed at those who teach calculus, especially those setting out to do so for the first time. It is also accessible to anyone who has finished the first semester of the standard course in the subject and will be of interest to undergraduate mat...

  7. Global gyrokinetic simulation of Tokamak edge pedestal instabilities.

    Science.gov (United States)

    Wan, Weigang; Parker, Scott E; Chen, Yang; Yan, Zheng; Groebner, Richard J; Snyder, Philip B

    2012-11-02

    Global electromagnetic gyrokinetic simulations show the existence of near threshold conditions for both a high-n kinetic ballooning mode (KBM) and an intermediate-n kinetic version of peeling-ballooning mode (KPBM) in the edge pedestal of two DIII-D H-mode discharges. When the magnetic shear is reduced in a narrow region of steep pressure gradient, the KPBM is significantly stabilized, while the KBM is weakly destabilized and hence becomes the most-unstable mode. Collisions decrease the KBM's critical β and increase the growth rate.

  8. Progress in gyrokinetic simulations of toroidal ITG turbulence

    International Nuclear Information System (INIS)

    Nevins, W.M.; Dimits, A.M.; Cohen, B.I.; Shumaker, D.E.

    2001-01-01

    The 3-D nonlinear toroidal gyrokinetic simulation code PG3EQ is used to study toroidal ion temperature gradient (ITG) driven turbulence - a key cause of the anomalous transport that limits tokamak plasma performance. Systematic studies of the dependence of ion thermal transport on various parameters and effects are presented, including dependence on E-vectorxB-vector and toroidal velocity shear, sensitivity to the force balance in simulations with radial temperature gradient variation, and the dependences on magnetic shear and ion temperature gradient. (author)

  9. The photon angular momentum controversy: Resolution of a conflict between laser optics and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Leader, Elliot, E-mail: e.leader@imperial.ac.uk

    2016-05-10

    The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community, exacerbated by the realization that many different forms of the angular momentum operators are, in principle, possible. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to photon orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view, and shows that it is the gauge invariant version of the canonical angular momentum which agrees with the results of a host of laser optics experiments.

  10. Nature of turbulent transport across sheared zonal flows: insights from gyrokinetic simulations

    International Nuclear Information System (INIS)

    Sanchez, R; Newman, D E; Leboeuf, J-N; Decyk, V K

    2011-01-01

    The traditional view regarding the reduction of turbulence-induced transport across a stable sheared flow invokes a reduction of the characteristic length scale in the direction perpendicular to the flow as a result of the shearing and stretching of eddies caused by the differential pull exerted in the direction of the flow. A reduced effective transport coefficient then suffices to capture the reduction, that can then be readily incorporated into a transport model. However, recent evidence from gyrokinetic simulations of the toroidal ion-temperature-gradient mode suggests that the dynamics of turbulent transport across sheared flows changes in a more fundamental manner, and that the use of reduced effective transport coefficients fails to capture the full dynamics that may exhibit both subdiffusion and non-Gaussian statistics. In this contribution, after briefly reviewing these results, we propose some candidates for the physical mechanisms responsible for endowing transport with such non-diffusive characteristics, backing these proposals with new numerical gyrokinetic data.

  11. Generalized Dandelin’s Theorem

    Science.gov (United States)

    Kheyfets, A. L.

    2017-11-01

    The paper gives a geometric proof of the theorem which states that in case of the plane section of a second-order surface of rotation (quadrics of rotation, QR), such conics as an ellipse, a hyperbola or a parabola (types of conic sections) are formed. The theorem supplements the well-known Dandelin’s theorem which gives the geometric proof only for a circular cone and applies the proof to all QR, namely an ellipsoid, a hyperboloid, a paraboloid and a cylinder. That’s why the considered theorem is known as the generalized Dandelin’s theorem (GDT). The GDT proof is based on a relatively unknown generalized directrix definition (GDD) of conics. The work outlines the GDD proof for all types of conics as their necessary and sufficient condition. Based on the GDD, the author proves the GDT for all QR in case of a random position of the cutting plane. The graphical stereometric structures necessary for the proof are given. The implementation of the structures by 3d computer methods is considered. The article shows the examples of the builds made in the AutoCAD package. The theorem is intended for the training course of theoretical training of elite student groups of architectural and construction specialties.

  12. Scaling and scale invariance of conservation laws in Reynolds transport theorem framework

    Science.gov (United States)

    Haltas, Ismail; Ulusoy, Suleyman

    2015-07-01

    Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework.

  13. Asymptotic and spectral analysis of the gyrokinetic-waterbag integro-differential operator in toroidal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Besse, Nicolas, E-mail: Nicolas.Besse@oca.eu [Laboratoire J.-L. Lagrange, UMR CNRS/OCA/UCA 7293, Université Côte d’Azur, Observatoire de la Côte d’Azur, Bd de l’Observatoire CS 34229, 06304 Nice Cedex 4 (France); Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Coulette, David, E-mail: David.Coulette@ipcms.unistra.fr [Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS/US 7504, Université de Strasbourg, 23 Rue du Loess, 67034 Strasbourg (France)

    2016-08-15

    Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov–Poisson and Vlasov–Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, “Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry” (submitted)] and were found to be surprisingly close to those for the original

  14. Optimized Loading for Particle-in-cell Gyrokinetic Simulations

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2004-01-01

    The problem of particle loading in particle-in-cell gyrokinetic simulations is addressed using a quadratic optimization algorithm. Optimized loading in configuration space dramatically reduces the short wavelength modes in the electrostatic potential that are partly responsible for the non-conservation of total energy; further, the long wavelength modes are resolved with good accuracy. As a result, the conservation of energy for the optimized loading is much better that the conservation of energy for the random loading. The method is valid for any geometry and can be coupled to optimization algorithms in velocity space

  15. Factor and Remainder Theorems: An Appreciation

    Science.gov (United States)

    Weiss, Michael

    2016-01-01

    The high school curriculum sometimes seems like a disconnected collection of topics and techniques. Theorems like the factor theorem and the remainder theorem can play an important role as a conceptual "glue" that holds the curriculum together. These two theorems establish the connection between the factors of a polynomial, the solutions…

  16. The Patchwork Divergence Theorem

    OpenAIRE

    Dray, Tevian; Hellaby, Charles

    1994-01-01

    The divergence theorem in its usual form applies only to suitably smooth vector fields. For vector fields which are merely piecewise smooth, as is natural at a boundary between regions with different physical properties, one must patch together the divergence theorem applied separately in each region. We give an elegant derivation of the resulting "patchwork divergence theorem" which is independent of the metric signature in either region, and which is thus valid if the signature changes. (PA...

  17. The Hellmann–Feynman theorem, the comparison theorem, and the envelope theory

    Directory of Open Access Journals (Sweden)

    Claude Semay

    2015-01-01

    Full Text Available The envelope theory is a convenient method to compute approximate solutions for bound state equations in quantum mechanics. It is shown that these approximate solutions obey a kind of Hellmann–Feynman theorem, and that the comparison theorem can be applied to these approximate solutions for two ordered Hamiltonians.

  18. Steady-State Gyrokinetics Transport Code (SSGKT), A Scientific Application Partnership with the Framework Application for Core-Edge Transport Simulations, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fahey, Mark R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Candy, Jeff [General Atomics, San Diego, CA (United States)

    2013-11-07

    This project initiated the development of TGYRO - a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale GYRO turbulence simulations into a framework for practical multi-scale simulation of conventional tokamaks as well as future reactors. Using a lightweight master transport code, multiple independent (each massively parallel) gyrokinetic simulations are coordinated. The capability to evolve profiles using the TGLF model was also added to TGYRO and represents a more typical use-case for TGYRO. The goal of the project was to develop a steady-state Gyrokinetic transport code (SSGKT) that integrates micro-scale gyrokinetic turbulence simulations into a framework for practical multi-scale simulation of a burning plasma core ? the International Thermonuclear Experimental Reactor (ITER) in particular. This multi-scale simulation capability will be used to predict the performance (the fusion energy gain, Q) given the H-mode pedestal temperature and density. At present, projections of this type rely on transport models like GLF23, which are based on rather approximate fits to the results of linear and nonlinear simulations. Our goal is to make these performance projections with precise nonlinear gyrokinetic simulations. The method of approach is to use a lightweight master transport code to coordinate multiple independent (each massively parallel) gyrokinetic simulations using the GYRO code. This project targets the practical multi-scale simulation of a reactor core plasma in order to predict the core temperature and density profiles given the H-mode pedestal temperature and density. A master transport code will provide feedback to O(16) independent gyrokinetic simulations (each massively parallel). A successful feedback scheme offers a novel approach to predictive modeling of an important national and international problem. Success in this area of fusion simulations will allow US scientists to direct the research path of ITER over the next two

  19. Alpha Momentum and Price Momentum

    Directory of Open Access Journals (Sweden)

    Hannah Lea Hühn

    2018-05-01

    Full Text Available We analyze a novel alpha momentum strategy that invests in stocks based on three-factor alphas which we estimate using daily returns. The empirical analysis for the U.S. and for Europe shows that (i past alpha has power in predicting the cross-section of stock returns; (ii alpha momentum exhibits less dynamic factor exposures than price momentum and (iii alpha momentum dominates price momentum only in the U.S. Connecting both strategies to behavioral explanations, alpha momentum is more related to an underreaction to firm-specific news while price momentum is primarily driven by price overshooting due to momentum trading.

  20. On Krasnoselskii's Cone Fixed Point Theorem

    Directory of Open Access Journals (Sweden)

    Man Kam Kwong

    2008-04-01

    Full Text Available In recent years, the Krasnoselskii fixed point theorem for cone maps and its many generalizations have been successfully applied to establish the existence of multiple solutions in the study of boundary value problems of various types. In the first part of this paper, we revisit the Krasnoselskii theorem, in a more topological perspective, and show that it can be deduced in an elementary way from the classical Brouwer-Schauder theorem. This viewpoint also leads to a topology-theoretic generalization of the theorem. In the second part of the paper, we extend the cone theorem in a different direction using the notion of retraction and show that a stronger form of the often cited Leggett-Williams theorem is a special case of this extension.

  1. A gyrokinetic calculation of transmission and reflection of the fast wave in the ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Fuchs, V.; Dendy, R.O.

    1993-01-01

    A full-wave equation has been obtained from the gyrokinetic theory for the fast wave traversing a minority cyclotron resonance [Phys. Fluids B 4, 493 (1992)] with the aid of the fast wave approximation [Phys. Fluids 31, 1614 (1988)]. This theory describes the transmission, reflection, and absorption of the fast wave for arbitrary values of the parallel wave number. For oblique propagation the absorption is due to both ion cyclotron damping by minority ions and mode conversion to the ion Bernstein wave. The results for a 3 He minority in a D plasma indicate that for perpendicular propagation and minority temperatures of a few keV the power lost by the fast wave is all mode converted whereas for minority temperatures ∼100 keV∼30% of the incident power is dissipated by the minority ions due to the gyrokinetic correction. The gyrokinetic correction also results in a significant reduction in the reflection coefficient for low field side incidence when k zLB approx-lt 1 and the minority and hybrid resonances overlap

  2. Discovering the Theorem of Pythagoras

    Science.gov (United States)

    Lattanzio, Robert (Editor)

    1988-01-01

    In this 'Project Mathematics! series, sponsored by the California Institute of Technology, Pythagoraus' theorem a(exp 2) + b(exp 2) = c(exp 2) is discussed and the history behind this theorem is explained. hrough live film footage and computer animation, applications in real life are presented and the significance of and uses for this theorem are put into practice.

  3. Bit-Blasting ACL2 Theorems

    Directory of Open Access Journals (Sweden)

    Sol Swords

    2011-10-01

    Full Text Available Interactive theorem proving requires a lot of human guidance. Proving a property involves (1 figuring out why it holds, then (2 coaxing the theorem prover into believing it. Both steps can take a long time. We explain how to use GL, a framework for proving finite ACL2 theorems with BDD- or SAT-based reasoning. This approach makes it unnecessary to deeply understand why a property is true, and automates the process of admitting it as a theorem. We use GL at Centaur Technology to verify execution units for x86 integer, MMX, SSE, and floating-point arithmetic.

  4. Keller’s theorem revisited

    Science.gov (United States)

    Ortiz, Guillermo P.; Mochán, W. Luis

    2018-02-01

    Keller’s theorem relates the components of the macroscopic dielectric response of a binary two-dimensional composite system with those of the reciprocal system obtained by interchanging its components. We present a derivation of the theorem that, unlike previous ones, does not employ the common assumption that the response function relates an irrotational to a solenoidal field and that is valid for dispersive and dissipative anisotropic systems. We show that the usual statement of Keller’s theorem in terms of the conductivity is strictly valid only at zero frequency and we obtain a new generalization for finite frequencies. We develop applications of the theorem to the study of the optical properties of systems such as superlattices, 2D isotropic and anisotropic metamaterials and random media, to test the accuracy of theories and computational schemes, and to increase the accuracy of approximate calculations.

  5. The azimuthal component of Poynting's vector and the angular momentum of light

    Science.gov (United States)

    Cameron, Robert P.; Speirits, Fiona C.; Gilson, Claire R.; Allen, L.; Barnett, Stephen M.

    2015-12-01

    The usual description in basic electromagnetic theory of the linear and angular momenta of light is centred upon the identification of Poynting's vector as the linear momentum density and its cross product with position, or azimuthal component, as the angular momentum density. This seemingly reasonable approach brings with it peculiarities, however, in particular with regards to the separation of angular momentum into orbital and spin contributions, which has sometimes been regarded as contrived. In the present paper, we observe that densities are not unique, which leads us to ask whether the usual description is, in fact, the most natural choice. To answer this, we adopt a fundamental rather than heuristic approach by first identifying appropriate symmetries of Maxwell's equations and subsequently applying Noether's theorem to obtain associated conservation laws. We do not arrive at the usual description. Rather, an equally acceptable one in which the relationship between linear and angular momenta is nevertheless more subtle and in which orbital and spin contributions emerge separately and with transparent forms.

  6. A Decomposition Theorem for Finite Automata.

    Science.gov (United States)

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  7. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    OpenAIRE

    Estève , D. ,; Sarazin , Y.; Garbet , X.; Grandgirard , V.; Breton , S. ,; Donnel , P. ,; Asahi , Y. ,; Bourdelle , C.; Dif-Pradalier , G; Ehrlacher , C.; Emeriau , C.; Ghendrih , Ph; Gillot , C.; Latu , G.; Passeron , C.

    2018-01-01

    International audience; Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code [V. Grandgirard et al., Comp. Phys. Commun. 207, 35 (2016)]. A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime likely relevant for tungsten, the standard expression of the neoclassical impurity flux is shown t...

  8. The Classical Version of Stokes' Theorem Revisited

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2005-01-01

    Using only fairly simple and elementary considerations - essentially from first year undergraduate mathematics - we prove that the classical Stokes' theorem for any given surface and vector field in $\\mathbb{R}^{3}$ follows from an application of Gauss' divergence theorem to a suitable modification...... of the vector field in a tubular shell around the given surface. The intuitive appeal of the divergence theorem is thus applied to bootstrap a corresponding intuition for Stokes' theorem. The two stated classical theorems are (like the fundamental theorem of calculus) nothing but shadows of the general version...... to above. Our proof that Stokes' theorem follows from Gauss' divergence theorem goes via a well known and often used exercise, which simply relates the concepts of divergence and curl on the local differential level. The rest of the paper uses only integration in $1$, $2$, and $3$ variables together...

  9. Performance evaluations of advanced massively parallel platforms based on gyrokinetic toroidal five-dimensional Eulerian code GT5D

    International Nuclear Information System (INIS)

    Idomura, Yasuhiro; Jolliet, Sebastien

    2010-01-01

    A gyrokinetic toroidal five dimensional Eulerian code GT5D is ported on six advanced massively parallel platforms and comprehensive benchmark tests are performed. A parallelisation technique based on physical properties of the gyrokinetic equation is presented. By extending the parallelisation technique with a hybrid parallel model, the scalability of the code is improved on platforms with multi-core processors. In the benchmark tests, a good salability is confirmed up to several thousands cores on every platforms, and the maximum sustained performance of ∼18.6 Tflops is achieved using 16384 cores of BX900. (author)

  10. The Second Noether Theorem on Time Scales

    Directory of Open Access Journals (Sweden)

    Agnieszka B. Malinowska

    2013-01-01

    Full Text Available We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the h-calculus and the second Noether theorem for the q-calculus.

  11. Nonextensive Pythagoras' Theorem

    OpenAIRE

    Dukkipati, Ambedkar

    2006-01-01

    Kullback-Leibler relative-entropy, in cases involving distributions resulting from relative-entropy minimization, has a celebrated property reminiscent of squared Euclidean distance: it satisfies an analogue of the Pythagoras' theorem. And hence, this property is referred to as Pythagoras' theorem of relative-entropy minimization or triangle equality and plays a fundamental role in geometrical approaches of statistical estimation theory like information geometry. Equvalent of Pythagoras' theo...

  12. Some approximation theorems

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. The general theme of this note is illustrated by the following theorem: Theorem 1. Suppose K is a compact set in the complex plane and 0 belongs to the boundary ∂K. Let A(K) denote the space of all functions f on K such that f is holo- morphic in a neighborhood of K and f(0) = 0. Also for any given positive integer ...

  13. Pascal’s Theorem in Real Projective Plane

    OpenAIRE

    Coghetto Roland

    2017-01-01

    In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem)1. Pappus’ theorem is a special case of a degenerate conic of two lines.

  14. A quasi-linear gyrokinetic transport model for tokamak plasmas

    International Nuclear Information System (INIS)

    Casati, A.

    2009-10-01

    After a presentation of some basics around nuclear fusion, this research thesis introduces the framework of the tokamak strategy to deal with confinement, hence the main plasma instabilities which are responsible for turbulent transport of energy and matter in such a system. The author also briefly introduces the two principal plasma representations, the fluid and the kinetic ones. He explains why the gyro-kinetic approach has been preferred. A tokamak relevant case is presented in order to highlight the relevance of a correct accounting of the kinetic wave-particle resonance. He discusses the issue of the quasi-linear response. Firstly, the derivation of the model, called QuaLiKiz, and its underlying hypotheses to get the energy and the particle turbulent flux are presented. Secondly, the validity of the quasi-linear response is verified against the nonlinear gyro-kinetic simulations. The saturation model that is assumed in QuaLiKiz, is presented and discussed. Then, the author qualifies the global outcomes of QuaLiKiz. Both the quasi-linear energy and the particle flux are compared to the expectations from the nonlinear simulations, across a wide scan of tokamak relevant parameters. Therefore, the coupling of QuaLiKiz within the integrated transport solver CRONOS is presented: this procedure allows the time-dependent transport problem to be solved, hence the direct application of the model to the experiment. The first preliminary results regarding the experimental analysis are finally discussed

  15. Pascal’s Theorem in Real Projective Plane

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2017-07-01

    Full Text Available In this article we check, with the Mizar system [2], Pascal’s theorem in the real projective plane (in projective geometry Pascal’s theorem is also known as the Hexagrammum Mysticum Theorem1. Pappus’ theorem is a special case of a degenerate conic of two lines.

  16. Comment on 'On higher order corrections to gyrokinetic Vlasov-Poisson equations in the long wavelength limit' [Phys. Plasmas 16, 044506 (2009)

    International Nuclear Information System (INIS)

    Parra, Felix I.; Catto, Peter J.

    2009-01-01

    A recent publication [F. I. Parra and P. J. Catto, Plasma Phys. Controlled Fusion 50, 065014 (2008)] warned against the use of the lower order gyrokinetic Poisson equation at long wavelengths because the long wavelength, radial electric field must remain undetermined to the order the equation is obtained. Another reference [W. W. Lee and R. A. Kolesnikov, Phys. Plasmas 16, 044506 (2009)] criticizes these results by arguing that the higher order terms neglected in the most common gyrokinetic Poisson equation are formally smaller than the terms that are retained. This argument is flawed and ignores that the lower order terms, although formally larger, must cancel without determining the long wavelength, radial electric field. The reason for this cancellation is discussed. In addition, the origin of a nonlinear term present in the gyrokinetic Poisson equation [F. I. Parra and P. J. Catto, Plasma Phys. Controlled Fusion 50, 065014 (2008)] is explained.

  17. Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor

    International Nuclear Information System (INIS)

    Kholmetskii, A L; Missevitch, O V; Yarman, T

    2011-01-01

    We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j·E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.

  18. From Einstein's theorem to Bell's theorem: a history of quantum non-locality

    Science.gov (United States)

    Wiseman, H. M.

    2006-04-01

    In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.

  19. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experiment

    Energy Technology Data Exchange (ETDEWEB)

    White, A. E., E-mail: whitea@mit.edu; Howard, N. T.; Creely, A. J.; Chilenski, M. A.; Greenwald, M.; Hubbard, A. E.; Hughes, J. W.; Marmar, E.; Rice, J. E.; Sierchio, J. M.; Sung, C.; Walk, J. R.; Whyte, D. G. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Mikkelsen, D. R.; Edlund, E. M.; Kung, C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Holland, C. [University of California, San Diego (UCSD) San Diego, California 92093 (United States); Candy, J.; Petty, C. C. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Reinke, M. L. [York University, Heslington, York YO10 5DD (United Kingdom); and others

    2015-05-15

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.

  20. Fluid and gyrokinetic simulations of impurity transport at JET

    DEFF Research Database (Denmark)

    Nordman, H; Skyman, A; Strand, P

    2011-01-01

    Impurity transport coefficients due to ion-temperature-gradient (ITG) mode and trapped-electron mode turbulence are calculated using profile data from dedicated impurity injection experiments at JET. Results obtained with a multi-fluid model are compared with quasi-linear and nonlinear gyrokinetic...... simulation results obtained with the code GENE. The sign of the impurity convective velocity (pinch) and its various contributions are discussed. The dependence of the impurity transport coefficients and impurity peaking factor −∇nZ/nZ on plasma parameters such as impurity charge number Z, ion logarithmic...

  1. Topological interpretation of Luttinger theorem

    OpenAIRE

    Seki, Kazuhiro; Yunoki, Seiji

    2017-01-01

    Based solely on the analytical properties of the single-particle Green's function of fermions at finite temperatures, we show that the generalized Luttinger theorem inherently possesses topological aspects. The topological interpretation of the generalized Luttinger theorem can be introduced because i) the Luttinger volume is represented as the winding number of the single-particle Green's function and thus ii) the deviation of the theorem, expressed with a ratio between the interacting and n...

  2. Hamilton-Jacobi theorems for regular reducible Hamiltonian systems on a cotangent bundle

    Science.gov (United States)

    Wang, Hong

    2017-09-01

    In this paper, some of formulations of Hamilton-Jacobi equations for Hamiltonian system and regular reduced Hamiltonian systems are given. At first, an important lemma is proved, and it is a modification for the corresponding result of Abraham and Marsden (1978), such that we can prove two types of geometric Hamilton-Jacobi theorem for a Hamiltonian system on the cotangent bundle of a configuration manifold, by using the symplectic form and dynamical vector field. Then these results are generalized to the regular reducible Hamiltonian system with symmetry and momentum map, by using the reduced symplectic form and the reduced dynamical vector field. The Hamilton-Jacobi theorems are proved and two types of Hamilton-Jacobi equations, for the regular point reduced Hamiltonian system and the regular orbit reduced Hamiltonian system, are obtained. As an application of the theoretical results, the regular point reducible Hamiltonian system on a Lie group is considered, and two types of Lie-Poisson Hamilton-Jacobi equation for the regular point reduced system are given. In particular, the Type I and Type II of Lie-Poisson Hamilton-Jacobi equations for the regular point reduced rigid body and heavy top systems are shown, respectively.

  3. Renormalized perturbation theory: Vlasov-Poisson System, weak turbulence limit and gyrokinetics

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1987-10-01

    The Self-consistency of the renormalized perturbation theory is demonstrated by applying it to the Vlasov-Poisson System and showing that the theory has the correct weak turbulence limit. Energy conservation is proved to arbitrary high order for the electrostatic drift waves. The theory is applied to derive renormalized equations for a low-β gyrokinetic system. Comparison of our theory with other current theories is presented. 22 refs

  4. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    Science.gov (United States)

    Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.

    2018-03-01

    Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.

  5. Particle-in-cell simulations of electron transport from plasma turbulence: recent progress in gyrokinetic particle simulations of turbulent plasmas

    International Nuclear Information System (INIS)

    Lin, Z; Rewoldt, G; Ethier, S; Hahm, T S; Lee, W W; Lewandowski, J L V; Nishimura, Y; Wang, W X

    2005-01-01

    Recent progress in gyrokinetic particle-in-cell simulations of turbulent plasmas using the gyrokinetic toroidal code (GTC) is surveyed. In particular, recent results for electron temperature gradient (ETG) modes and their resulting transport are presented. Also, turbulence spreading, and the effects of the parallel nonlinearity, are described. The GTC code has also been generalized for non-circular plasma cross-section, and initial results are presented. In addition, two distinct methods of generalizing the GTC code to be electromagnetic are described, along with preliminary results. Finally, a related code, GTC-Neo, for calculating neoclassical fluxes, electric fields, and velocities, are described

  6. Including collisions in gyrokinetic tokamak and stellarator simulations

    International Nuclear Information System (INIS)

    Kauffmann, Karla

    2012-01-01

    Particle and heat transport in fusion devices often exceed the neoclassical prediction. This anomalous transport is thought to be produced by turbulence caused by microinstabilities such as ion and electron-temperature-gradient (ITG/ETG) and trapped-electron-mode (TEM) instabilities, the latter ones known for being strongly influenced by collisions. Additionally, in stellarators, the neoclassical transport can be important in the core, and therefore investigation of the effects of collisions is an important field of study. Prior to this thesis, however, no gyrokinetic simulations retaining collisions had been performed in stellarator geometry. In this work, collisional effects were added to EUTERPE, a previously collisionless gyrokinetic code which utilizes the δf method. To simulate the collisions, a pitch-angle scattering operator was employed, and its implementation was carried out following the methods proposed in [Takizuka and Abe 1977, Vernay Master's thesis 2008]. To test this implementation, the evolution of the distribution function in a homogeneous plasma was first simulated, where Legendre polynomials constitute eigenfunctions of the collision operator. Also, the solution of the Spitzer problem was reproduced for a cylinder and a tokamak. Both these tests showed that collisions were correctly implemented and that the code is suited for more complex simulations. As a next step, the code was used to calculate the neoclassical radial particle flux by neglecting any turbulent fluctuations in the distribution function and the electric field. Particle fluxes in the neoclassical analytical regimes were simulated for tokamak and stellarator (LHD) configurations. In addition to the comparison with analytical fluxes, a successful benchmark with the DKES code was presented for the tokamak case, which further validates the code for neoclassical simulations. In the final part of the work, the effects of collisions were investigated for slab and toroidal ITGs and

  7. Including collisions in gyrokinetic tokamak and stellarator simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kauffmann, Karla

    2012-04-10

    Particle and heat transport in fusion devices often exceed the neoclassical prediction. This anomalous transport is thought to be produced by turbulence caused by microinstabilities such as ion and electron-temperature-gradient (ITG/ETG) and trapped-electron-mode (TEM) instabilities, the latter ones known for being strongly influenced by collisions. Additionally, in stellarators, the neoclassical transport can be important in the core, and therefore investigation of the effects of collisions is an important field of study. Prior to this thesis, however, no gyrokinetic simulations retaining collisions had been performed in stellarator geometry. In this work, collisional effects were added to EUTERPE, a previously collisionless gyrokinetic code which utilizes the {delta}f method. To simulate the collisions, a pitch-angle scattering operator was employed, and its implementation was carried out following the methods proposed in [Takizuka and Abe 1977, Vernay Master's thesis 2008]. To test this implementation, the evolution of the distribution function in a homogeneous plasma was first simulated, where Legendre polynomials constitute eigenfunctions of the collision operator. Also, the solution of the Spitzer problem was reproduced for a cylinder and a tokamak. Both these tests showed that collisions were correctly implemented and that the code is suited for more complex simulations. As a next step, the code was used to calculate the neoclassical radial particle flux by neglecting any turbulent fluctuations in the distribution function and the electric field. Particle fluxes in the neoclassical analytical regimes were simulated for tokamak and stellarator (LHD) configurations. In addition to the comparison with analytical fluxes, a successful benchmark with the DKES code was presented for the tokamak case, which further validates the code for neoclassical simulations. In the final part of the work, the effects of collisions were investigated for slab and toroidal

  8. Advances in continuum kinetic and gyrokinetic simulations of turbulence on open-field line geometries

    Science.gov (United States)

    Hakim, Ammar; Shi, Eric; Juno, James; Bernard, Tess; Hammett, Greg

    2017-10-01

    For weakly collisional (or collisionless) plasmas, kinetic effects are required to capture the physics of micro-turbulence. We have implemented solvers for kinetic and gyrokinetic equations in the computational plasma physics framework, Gkeyll. We use a version of discontinuous Galerkin scheme that conserves energy exactly. Plasma sheaths are modeled with novel boundary conditions. Positivity of distribution functions is maintained via a reconstruction method, allowing robust simulations that continue to conserve energy even with positivity limiters. We have performed a large number of benchmarks, verifying the accuracy and robustness of our code. We demonstrate the application of our algorithm to two classes of problems (a) Vlasov-Maxwell simulations of turbulence in a magnetized plasma, applicable to space plasmas; (b) Gyrokinetic simulations of turbulence in open-field-line geometries, applicable to laboratory plasmas. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  9. A note on generalized Weyl's theorem

    Science.gov (United States)

    Zguitti, H.

    2006-04-01

    We prove that if either T or T* has the single-valued extension property, then the spectral mapping theorem holds for B-Weyl spectrum. If, moreover T is isoloid, and generalized Weyl's theorem holds for T, then generalized Weyl's theorem holds for f(T) for every . An application is given for algebraically paranormal operators.

  10. Subsubleading soft theorems of gravitons and dilatons in the bosonic string

    International Nuclear Information System (INIS)

    Vecchia, Paolo Di; Marotta, Raffaele; Mojaza, Matin

    2016-01-01

    Starting from the amplitude with an arbitrary number of massless closed states of the bosonic string, we compute the soft limit when one of the states becomes soft to subsubleading order in the soft momentum expansion, and we show that when the soft state is a graviton or a dilaton, the full string amplitude can be expressed as a soft theorem through subsubleading order. It turns out that there are string corrections to the field theoretical limit in the case of a soft graviton, while for a soft dilaton the string corrections vanish. We then show that the new soft theorems, including the string corrections, can be simply obtained from the exchange diagrams where the soft state is attached to the other external states through the three-point string vertex of three massless states. In the soft-limit, the propagator of the exchanged state is divergent, and at tree-level these are the only divergent contributions to the full amplitude. However, they do not form a gauge invariant subset and must be supplemented with extra non-singular terms. The requirement of gauge invariance then fixes the complete amplitude through subsubleading order in the soft expansion, reproducing exactly what one gets from the explicit calculation in string theory. From this it is seen that the string corrections at subsubleading order arise as a consequence of the three-point amplitude having string corrections in the bosonic string. When specialized to a soft dilaton, it remarkably turns out that the string corrections vanish and that the non-singular piece of the subsubleading term of the dilaton soft theorem is the generator of space-time special conformal transformation.

  11. Benchmark test of drift-kinetic and gyrokinetic codes through neoclassical transport simulations

    International Nuclear Information System (INIS)

    Satake, S.; Sugama, H.; Watanabe, T.-H.; Idomura, Yasuhiro

    2009-09-01

    Two simulation codes that solve the drift-kinetic or gyrokinetic equation in toroidal plasmas are benchmarked by comparing the simulation results of neoclassical transport. The two codes are the drift-kinetic δf Monte Carlo code (FORTEC-3D) and the gyrokinetic full- f Vlasov code (GT5D), both of which solve radially-global, five-dimensional kinetic equation with including the linear Fokker-Planck collision operator. In a tokamak configuration, neoclassical radial heat flux and the force balance relation, which relates the parallel mean flow with radial electric field and temperature gradient, are compared between these two codes, and their results are also compared with the local neoclassical transport theory. It is found that the simulation results of the two codes coincide very well in a wide rage of plasma collisionality parameter ν * = 0.01 - 10 and also agree with the theoretical estimations. The time evolution of radial electric field and particle flux, and the radial profile of the geodesic acoustic mode frequency also coincide very well. These facts guarantee the capability of GT5D to simulate plasma turbulence transport with including proper neoclassical effects of collisional diffusion and equilibrium radial electric field. (author)

  12. Emergent classicality via commuting position and momentum operators

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, J J, E-mail: j.halliwell@ic.ac.u [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2009-06-01

    Any account of the emergence of classicality from quantum theory must address the fact that the quantum operators representing positions and momenta do not commute, whereas their classical counterparts suffer no such restrictions. To address this, we revive an old idea of von Neumann, and seek a pair of commuting operators X, P which are, in a specific sense, 'close' to the canonical non-commuting position and momentum operators, x,p. The construction of such operators is related to the problem of finding complete sets of orthonormal phase space localized states, a problem severely limited by the Balian-Low theorem. Here these limitations are avoided by restricting attention to situations in which the density matrix is reasonably decohered (i.e., spread out in phase space).

  13. Morley’s Trisector Theorem

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-06-01

    Full Text Available Morley’s trisector theorem states that “The points of intersection of the adjacent trisectors of the angles of any triangle are the vertices of an equilateral triangle” [10]. There are many proofs of Morley’s trisector theorem [12, 16, 9, 13, 8, 20, 3, 18]. We follow the proof given by A. Letac in [15].

  14. Riemannian and Lorentzian flow-cut theorems

    Science.gov (United States)

    Headrick, Matthew; Hubeny, Veronika E.

    2018-05-01

    We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut (MFMC) theorem for boundary regions, applied recently to develop a ‘bit-thread’ interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous MFMC theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworth’s theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.

  15. An extended characterisation theorem for quantum logics

    International Nuclear Information System (INIS)

    Sharma, C.S.; Mukherjee, M.K.

    1977-01-01

    Two theorems are proved. In the first properties of an important mapping from an orthocomplemented lattice to itself are studied. In the second the characterisation theorem of Zierler (Pacific J. Math.; 11:1151 (1961)) is extended to obtain a very useful theorem characterising orthomodular lattices. Since quantum logics are merely sigma-complete orthomodular lattices, the principal result is, for application in quantum physics, a characterisation theorem for quantum logics. (author)

  16. The Levy sections theorem revisited

    International Nuclear Information System (INIS)

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Silva, Sergio Da

    2007-01-01

    This paper revisits the Levy sections theorem. We extend the scope of the theorem to time series and apply it to historical daily returns of selected dollar exchange rates. The elevated kurtosis usually observed in such series is then explained by their volatility patterns. And the duration of exchange rate pegs explains the extra elevated kurtosis in the exchange rates of emerging markets. In the end, our extension of the theorem provides an approach that is simpler than the more common explicit modelling of fat tails and dependence. Our main purpose is to build up a technique based on the sections that allows one to artificially remove the fat tails and dependence present in a data set. By analysing data through the lenses of the Levy sections theorem one can find common patterns in otherwise very different data sets

  17. The Levy sections theorem revisited

    Science.gov (United States)

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Da Silva, Sergio

    2007-06-01

    This paper revisits the Levy sections theorem. We extend the scope of the theorem to time series and apply it to historical daily returns of selected dollar exchange rates. The elevated kurtosis usually observed in such series is then explained by their volatility patterns. And the duration of exchange rate pegs explains the extra elevated kurtosis in the exchange rates of emerging markets. In the end, our extension of the theorem provides an approach that is simpler than the more common explicit modelling of fat tails and dependence. Our main purpose is to build up a technique based on the sections that allows one to artificially remove the fat tails and dependence present in a data set. By analysing data through the lenses of the Levy sections theorem one can find common patterns in otherwise very different data sets.

  18. Definable davies' theorem

    DEFF Research Database (Denmark)

    Törnquist, Asger Dag; Weiss, W.

    2009-01-01

    We prove the following descriptive set-theoretic analogue of a theorem of R. 0. Davies: Every σ function f:ℝ × ℝ → ℝ can be represented as a sum of rectangular Σ functions if and only if all reals are constructible.......We prove the following descriptive set-theoretic analogue of a theorem of R. 0. Davies: Every σ function f:ℝ × ℝ → ℝ can be represented as a sum of rectangular Σ functions if and only if all reals are constructible....

  19. Green's theorem and Gorenstein sequences

    OpenAIRE

    Ahn, Jeaman; Migliore, Juan C.; Shin, Yong-Su

    2016-01-01

    We study consequences, for a standard graded algebra, of extremal behavior in Green's Hyperplane Restriction Theorem. First, we extend his Theorem 4 from the case of a plane curve to the case of a hypersurface in a linear space. Second, assuming a certain Lefschetz condition, we give a connection to extremal behavior in Macaulay's theorem. We apply these results to show that $(1,19,17,19,1)$ is not a Gorenstein sequence, and as a result we classify the sequences of the form $(1,a,a-2,a,1)$ th...

  20. Complex integration and Cauchy's theorem

    CERN Document Server

    Watson, GN

    2012-01-01

    This brief monograph by one of the great mathematicians of the early twentieth century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals.Author G. N. Watson begins by reviewing various propositions of Poincaré's Analysis Situs, upon which proof of the theorem's most general form depends. Subsequent chapters examine the calculus of residues, calculus optimization, the

  1. The azimuthal component of Poynting's vector and the angular momentum of light

    International Nuclear Information System (INIS)

    Cameron, Robert P; Speirits, Fiona C; Barnett, Stephen M; Gilson, Claire R; Allen, L

    2015-01-01

    The usual description in basic electromagnetic theory of the linear and angular momenta of light is centred upon the identification of Poynting's vector as the linear momentum density and its cross product with position, or azimuthal component, as the angular momentum density. This seemingly reasonable approach brings with it peculiarities, however, in particular with regards to the separation of angular momentum into orbital and spin contributions, which has sometimes been regarded as contrived. In the present paper, we observe that densities are not unique, which leads us to ask whether the usual description is, in fact, the most natural choice. To answer this, we adopt a fundamental rather than heuristic approach by first identifying appropriate symmetries of Maxwell's equations and subsequently applying Noether's theorem to obtain associated conservation laws. We do not arrive at the usual description. Rather, an equally acceptable one in which the relationship between linear and angular momenta is nevertheless more subtle and in which orbital and spin contributions emerge separately and with transparent forms. (paper)

  2. Validation of gyrokinetic simulations with measurements of electron temperature fluctuations and density-temperature phase angles on ASDEX Upgrade

    Science.gov (United States)

    Freethy, S. J.; Görler, T.; Creely, A. J.; Conway, G. D.; Denk, S. S.; Happel, T.; Koenen, C.; Hennequin, P.; White, A. E.; ASDEX Upgrade Team

    2018-05-01

    Measurements of turbulent electron temperature fluctuation amplitudes, δTe ⊥/Te , frequency spectra, and radial correlation lengths, Lr(Te ⊥) , have been performed at ASDEX Upgrade using a newly upgraded Correlation ECE diagnostic in the range of scales k⊥scale non-linear gyrokinetic turbulence simulations of the outer core (ρtor = 0.75) of a low density, electron heated L-mode plasma, performed using the gyrokinetic simulation code, GENE. The ion and electron temperature gradients were scanned within uncertainties. It is found that gyrokinetic simulations are able to match simultaneously the electron and ion heat flux at this radius within the experimental uncertainties. The simulations were performed based on a reference discharge for which δTe ⊥/Te measurements were available, and Lr(Te ⊥) and αnT were then predicted using synthetic diagnostics prior to measurements in a repeat discharge. While temperature fluctuation amplitudes are overestimated by >50% for all simulations within the sensitivity scans performed, good quantitative agreement is found for Lr(Te ⊥) and αnT. A validation metric is used to quantify the level of agreement of individual simulations with experimental measurements, and the best agreement is found close to the experimental gradient values.

  3. Global full-f gyrokinetic simulations of plasma turbulence

    International Nuclear Information System (INIS)

    Grandgirard, V; Sarazin, Y; Angelino, P; Bottino, A; Crouseilles, N; Darmet, G; Dif-Pradalier, G; Garbet, X; Ghendrih, Ph; Jolliet, S; Latu, G; Sonnendruecker, E; Villard, L

    2007-01-01

    Critical physical issues can be specifically tackled with the global full-f gyrokinetic code GYSELA. Three main results are presented. First, the self-consistent treatment of equilibrium and fluctuations highlights the competition between two compensation mechanisms for the curvature driven vertical charge separation, namely, parallel flow and polarization. The impact of the latter on the turbulent transport is discussed. In the non-linear regime, the benchmark with the Particle-In-Cell code ORB5 looks satisfactory. Second, the transport scaling with ρ * is found to depend both on ρ * itself and on the distance to the linear threshold. Finally, a statistical steady-state turbulent regime is achieved in a reduced version of GYSELA by prescribing a constant heat source

  4. Transverse momentum dependent fragmenting jet functions with applications to quarkonium production

    Energy Technology Data Exchange (ETDEWEB)

    Bain, Reggie; Makris, Yiannis; Mehen, Thomas [Department of Physics, Duke University,Science Dr., Box 90305, Durham, NC 27708 (United States)

    2016-11-23

    We introduce the transverse momentum dependent fragmenting jet function (TMDFJF), which appears in factorization theorems for cross sections for jets with an identified hadron. These are functions of z, the hadron’s longitudinal momentum fraction, and transverse momentum, p{sub ⊥}, relative to the jet axis. In the framework of Soft-Collinear Effective Theory (SCET) we derive the TMDFJF from both a factorized SCET cross section and the TMD fragmentation function defined in the literature. The TMDFJFs are factorized into distinct collinear and soft-collinear modes by matching onto SCET{sub +}. As TMD calculations contain rapidity divergences, both the renormalization group (RG) and rapidity renormalization group (RRG) must be used to provide resummed calculations with next-to-leading-logarithm prime (NLL’) accuracy. We apply our formalism to the production of J/ψ within jets initiated by gluons. In this case the TMDFJF can be calculated in terms of NRQCD (Non-relativistic quantum chromodynamics) fragmentation functions. We find that when the J/ψ carries a significant fraction of the jet energy, the p{sub T} and z distributions differ for different NRQCD production mechanisms. Another observable with discriminating power is the average angle that the J/ψ makes with the jet axis.

  5. The de Finetti theorem for test spaces

    International Nuclear Information System (INIS)

    Barrett, Jonathan; Leifer, Matthew

    2009-01-01

    We prove a de Finetti theorem for exchangeable sequences of states on test spaces, where a test space is a generalization of the sample space of classical probability theory and the Hilbert space of quantum theory. The standard classical and quantum de Finetti theorems are obtained as special cases. By working in a test space framework, the common features that are responsible for the existence of these theorems are elucidated. In addition, the test space framework is general enough to imply a de Finetti theorem for classical processes. We conclude by discussing the ways in which our assumptions may fail, leading to probabilistic models that do not have a de Finetti theorem.

  6. Precision measurement of the muon momentum in pion decay at rest

    International Nuclear Information System (INIS)

    Daum, M.; Eaton, G.H.; Frosch, R.; Hirschmann, H.; McCulloch, J.; Minehart, R.C.; Steiner, E.

    1979-01-01

    At the Schweizerisches Institut fuer Nuklearforschung (SIN) we have measured the muon momentum in the pion decay π + → μ + +ν/sub μ/ at rest using a magnetic spectrometer. Our result is p/sub μ/+=29.7877 +- 0.0014 MeV/c. From our p/sub μ/+ value and the rest masses of the muon, m/sub μ/+=105.659 46 +- 0.000 24 MeV/c 2 , and the pion, m/sub π/-=139.5679 +- 0.0015 MeV/c 2 , we derive a new value for the squared muon-neutrino rest mass, m/sub ν/μ 2 =0.13 +- 0.14 (MeV/c 2 ) 2 . From this we obtain m/sub ν/μ 2 (90% C.L.), which is at present the lowest experimental upper limit for the muon-neutrino rest mass. Here the validity of the CPT theorem (m/sub π/+=m/sub π/-) and energy and momentum conservation in pion decay were assumed. Our result can be interpreted in a second way: From cosmological arguments using the big-bang hypothesis an upper limit of about 40 eV/c 2 has been derived for the neutrino rest mass. With this limit and the above value of the muon mass we can calculate the pion-muon mass difference or the rest mass of the π + with strongly improved precision from our measurement. The results are deltam=m/sub π/+-m/sub μ/+=33.9063 +- 0.0018 MeV/c 2 or m/sub π/+=139.5658 +- 0.018 MeV/c 2 . This positive-pion mass is consistent with the present world average for the negative-pion mass, in agreement with the CPT theorem

  7. Correlation Functions of the Energy Momentum Tensor on Spaces of Constant Curvature

    CERN Document Server

    Osborn, H

    2000-01-01

    An analysis of one and two point functions of the energy momentum tensor on homogeneous spaces of constant curvature is undertaken. The possibility of proving a c-theorem in this framework is discussed, in particular in relation to the coefficients c,a, which appear in the energy momentum tensor trace on general curved backgrounds in four dimensions. Ward identities relating the correlation functions are derived and explicit expressions are obtained for free scalar, spinor field theories in general dimensions and also free vector fields in dimension four. A natural geometric formalism which is independent of any choice of coordinates is used and the role of conformal symmetries on such constant curvature spaces is analysed. The results are shown to be constrained by the operator product expansion. For negative curvature the spectral representation, involving unitary positive energy representations of $O(d-1,2)$, for two point functions of vector currents is derived in detail and extended to the energy momentu...

  8. -Dimensional Fractional Lagrange's Inversion Theorem

    Directory of Open Access Journals (Sweden)

    F. A. Abd El-Salam

    2013-01-01

    Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.

  9. Fully non-linear multi-species Fokker-Planck-Landau collisions for gyrokinetic particle-in-cell simulations of fusion plasma

    Science.gov (United States)

    Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.

    2015-11-01

    We describe the implementation, and application of a time-dependent, fully nonlinear multi-species Fokker-Planck-Landau collision operator based on the single-species work of Yoon and Chang [Phys. Plasmas 21, 032503 (2014)] in the full-function gyrokinetic particle-in-cell codes XGC1 [Ku et al., Nucl. Fusion 49, 115021 (2009)] and XGCa. XGC simulations include the pedestal and scrape-off layer, where significant deviations of the particle distribution function from a Maxwellian can occur. Thus, in order to describe collisional effects on neoclassical and turbulence physics accurately, the use of a non-linear collision operator is a necessity. Our collision operator is based on a finite volume method using the velocity-space distribution functions sampled from the marker particles. Since the same fine configuration space mesh is used for collisions and the Poisson solver, the workload due to collisions can be comparable to or larger than the workload due to particle motion. We demonstrate that computing time spent on collisions can be kept affordable by applying advanced parallelization strategies while conserving mass, momentum, and energy to reasonable accuracy. We also show results of production scale XGCa simulations in the H-mode pedestal and compare to conventional theory. Work supported by US DOE OFES and OASCR.

  10. Commentaries on Hilbert's Basis Theorem | Apine | Science World ...

    African Journals Online (AJOL)

    The famous basis theorem of David Hilbert is an important theorem in commutative algebra. In particular the Hilbert's basis theorem is the most important source of Noetherian rings which are by far the most important class of rings in commutative algebra. In this paper we have used Hilbert's theorem to examine their unique ...

  11. Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor

    Energy Technology Data Exchange (ETDEWEB)

    Kholmetskii, A L [Department of Physics, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus); Missevitch, O V [Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya Street, 220030 Minsk (Belarus); Yarman, T, E-mail: khol123@yahoo.com [Department of Engineering, Okan University, Akfirat, Istanbul, Turkey and Savronik, Eskisehir (Turkey)

    2011-05-01

    We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j{center_dot}E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.

  12. A density Corradi-Hajnal theorem

    Czech Academy of Sciences Publication Activity Database

    Allen, P.; Böttcher, J.; Hladký, Jan; Piguet, D.

    2015-01-01

    Roč. 67, č. 4 (2015), s. 721-758 ISSN 0008-414X Institutional support: RVO:67985840 Keywords : extremal graph theory * Mantel's theorem * Corradi-Hajnal theorem Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2015 http://cms.math.ca/10.4153/CJM-2014-030-6

  13. Symbolic logic and mechanical theorem proving

    CERN Document Server

    Chang, Chin-Liang

    1969-01-01

    This book contains an introduction to symbolic logic and a thorough discussion of mechanical theorem proving and its applications. The book consists of three major parts. Chapters 2 and 3 constitute an introduction to symbolic logic. Chapters 4-9 introduce several techniques in mechanical theorem proving, and Chapters 10 an 11 show how theorem proving can be applied to various areas such as question answering, problem solving, program analysis, and program synthesis.

  14. Visual interrogation of gyrokinetic particle simulations

    International Nuclear Information System (INIS)

    Jones, Chad; Ma, K-L; Sanderson, Allen; Myers, Lee Roy Jr

    2007-01-01

    Gyrokinetic particle simulations are critical to the study of anomalous energy transport associated with plasma microturbulence in magnetic confinement fusion experiments. The simulations are conducted on massively parallel computers and produce large quantities of particles, variables, and time steps, thus presenting a formidable challenge to data analysis tasks. We present two new visualization techniques for scientists to improve their understanding of the time-varying, multivariate particle data. One technique allows scientists to examine correlations in multivariate particle data with tightly coupled views of the data in both physical space and variable space, and to visually identify and track features of interest. The second technique, built into SCIRun, allows scientists to perform range-based queries over a series of time slices and visualize the resulting particles using glyphs. The ability to navigate the multiple dimensions of the particle data, as well as query individual or a collection of particles, enables scientists to not only validate their simulations but also discover new phenomena in their data

  15. Introduction to Gyrokinetic Theory with Applications in Magnetic Confinement Research in Plasma Physics

    International Nuclear Information System (INIS)

    Tang, W.M.

    2005-01-01

    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources

  16. Coalgebraic Lindström Theorems

    NARCIS (Netherlands)

    Kurz, A.; Venema, Y.

    2010-01-01

    We study modal Lindström theorems from a coalgebraic perspective. We provide three different Lindström theorems for coalgebraic logic, one of which is a direct generalisation of de Rijke's result for Kripke models. Both the other two results are based on the properties of bisimulation invariance,

  17. Equivalent conserved currents and generalized Noether's theorem

    International Nuclear Information System (INIS)

    Gordon, T.J.

    1984-01-01

    A generalized Noether theorem is presented, relating symmetries and equivalence classes of local) conservation laws in classical field theories; this is contrasted with the standard theorem. The concept of a ''Noether'' field theory is introduced, being a theory for which the generalized theorem applies; not only does this include the cases of Lagrangian and Hamiltonian field theories, these structures are ''derived'' from the Noether property in a natural way. The generalized theorem applies to currents and symmetries that contain derivatives of the fields up to an arbitrarily high order

  18. Strong versions of Bell's theorem

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1994-01-01

    Technical aspects of a recently constructed strong version of Bell's theorem are discussed. The theorem assumes neither hidden variables nor factorization, and neither determinism nor counterfactual definiteness. It deals directly with logical connections. Hence its relationship with modal logic needs to be described. It is shown that the proof can be embedded in an orthodox modal logic, and hence its compatibility with modal logic assured, but that this embedding weakens the theorem by introducing as added assumptions the conventionalities of the particular modal logic that is adopted. This weakening is avoided in the recent proof by using directly the set-theoretic conditions entailed by the locality assumption

  19. Global full-f gyrokinetic simulations of plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Grandgirard, V [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Sarazin, Y [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Angelino, P [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Bottino, A [Max Plank Institut fr Plasmaphysik, IPP-EURATOM AssociationGarching (Germany); Crouseilles, N [IRMA, Universite Louis Pasteur, 7, rue Rene Descartes, 67084 Strasbourg Cedex (France); Darmet, G [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Dif-Pradalier, G [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Garbet, X [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Ghendrih, Ph [CEA/DSM/DRFC, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance (France); Jolliet, S [CRPP, Association Euratom-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Latu, G [LaBRI, 341 Cours Liberation, 33405 Talence Cedex (France); Sonnendruecker, E [IRMA, Universite Louis Pasteur, 7, rue Rene Descartes, 67084 Strasbourg Cedex (France); Villard, L [CRPP, Association Euratom-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland)

    2007-12-15

    Critical physical issues can be specifically tackled with the global full-f gyrokinetic code GYSELA. Three main results are presented. First, the self-consistent treatment of equilibrium and fluctuations highlights the competition between two compensation mechanisms for the curvature driven vertical charge separation, namely, parallel flow and polarization. The impact of the latter on the turbulent transport is discussed. In the non-linear regime, the benchmark with the Particle-In-Cell code ORB5 looks satisfactory. Second, the transport scaling with {rho}{sub *} is found to depend both on {rho}{sub *} itself and on the distance to the linear threshold. Finally, a statistical steady-state turbulent regime is achieved in a reduced version of GYSELA by prescribing a constant heat source.

  20. Gyrokinetic full f analysis of electric field dynamics and poloidal velocity in the FT2-tokamak configuration

    International Nuclear Information System (INIS)

    Leerink, S.; Heikkinen, J. A.; Janhunen, S. J.; Kiviniemi, T. P.; Nora, M.; Ogando, F.

    2008-01-01

    The ELMFIRE gyrokinetic simulation code has been used to perform full f simulations of the FT-2 tokamak. The dynamics of the radial electric field and the creation of poloidal velocity in the presence of turbulence are presented.

  1. Geometry of the Adiabatic Theorem

    Science.gov (United States)

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  2. Theoretical and Numerical Properties of a Gyrokinetic Plasma: Issues Related to Transport Time Scale Simulation

    International Nuclear Information System (INIS)

    Lee, W.W.

    2003-01-01

    Particle simulation has played an important role for the recent investigations on turbulence in magnetically confined plasmas. In this paper, theoretical and numerical properties of a gyrokinetic plasma as well as its relationship with magnetohydrodynamics (MHD) are discussed with the ultimate aim of simulating microturbulence in transport time scale using massively parallel computers

  3. A definability theorem for first order logic

    NARCIS (Netherlands)

    Butz, C.; Moerdijk, I.

    1997-01-01

    In this paper we will present a definability theorem for first order logic This theorem is very easy to state and its proof only uses elementary tools To explain the theorem let us first observe that if M is a model of a theory T in a language L then clearly any definable subset S M ie a subset S

  4. On Newton’s shell theorem

    Science.gov (United States)

    Borghi, Riccardo

    2014-03-01

    In the present letter, Newton’s theorem for the gravitational field outside a uniform spherical shell is considered. In particular, a purely geometric proof of proposition LXXI/theorem XXXI of Newton’s Principia, which is suitable for undergraduates and even skilled high-school students, is proposed. Minimal knowledge of elementary calculus and three-dimensional Euclidean geometry are required.

  5. Force law in material media, hidden momentum and quantum phases

    International Nuclear Information System (INIS)

    Kholmetskii, Alexander L.; Missevitch, Oleg V.; Yarman, T.

    2016-01-01

    We address to the force law in classical electrodynamics of material media, paying attention on the force term due to time variation of hidden momentum of magnetic dipoles. We highlight that the emergence of this force component is required by the general theorem, deriving zero total momentum for any static configuration of charges/currents. At the same time, we disclose the impossibility to add this force term covariantly to the Lorentz force law in material media. We further show that the adoption of the Einstein–Laub force law does not resolve the issue, because for a small electric/magnetic dipole, the density of Einstein–Laub force integrates exactly to the same equation, like the Lorentz force with the inclusion of hidden momentum contribution. Thus, none of the available expressions for the force on a moving dipole is compatible with the relativistic transformation of force, and we support this statement with a number of particular examples. In this respect, we suggest applying the Lagrangian approach to the derivation of the force law in a magnetized/polarized medium. In the framework of this approach we obtain the novel expression for the force on a small electric/magnetic dipole, with the novel expression for its generalized momentum. The latter expression implies two novel quantum effects with non-topological phases, when an electric dipole is moving in an electric field, and when a magnetic dipole is moving in a magnetic field. These phases, in general, are not related to dynamical effects, because they are not equal to zero, when the classical force on a dipole is vanishing. The implications of the obtained results are discussed.

  6. The total energy-momentum tensor for electromagnetic fields in a dielectric

    Science.gov (United States)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density

  7. Illustrating the Central Limit Theorem through Microsoft Excel Simulations

    Science.gov (United States)

    Moen, David H.; Powell, John E.

    2005-01-01

    Using Microsoft Excel, several interactive, computerized learning modules are developed to demonstrate the Central Limit Theorem. These modules are used in the classroom to enhance the comprehension of this theorem. The Central Limit Theorem is a very important theorem in statistics, and yet because it is not intuitively obvious, statistics…

  8. The implicit function theorem history, theory, and applications

    CERN Document Server

    Krantz, Steven G

    2003-01-01

    The implicit function theorem is part of the bedrock of mathematics analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for Ck functions, (ii) formulations in other function spaces, (iii) formulations for non-smooth function, (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash-Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present volume. The history of the implicit function theorem is a lively and complex store, and intimately bound up with the development of fundamental ideas in a...

  9. Resolving the mystery of transport within internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, G. M.; Belli, E. A.; Candy, J.; Waltz, R. E.; Greenfield, C. M.; Lao, L. L.; Smith, S. P. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Kinsey, J. E. [CompX, P.O. Box 2672, Del Mar, California 92014-5672 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Chrystal, C. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States)

    2014-05-15

    The Trapped Gyro-Landau Fluid (TGLF) quasi-linear model [G. M. Staebler, et al., Phys. Plasmas 12, 102508 (2005)], which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures, and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by E×B velocity shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E×B velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.

  10. No-go theorems for the minimization of potentials

    International Nuclear Information System (INIS)

    Chang, D.; Kumar, A.

    1985-01-01

    Using a theorem in linear algebra, we prove some no-go theorems in the minimization of potentials related to the problem of symmetry breaking. Some applications in the grand unified model building are mentioned. Another application of the algebraic theorem is also included to demonstrate its usefulness

  11. Gyrokinetic Studies of Turbulence in Steep Gradient Region: Role of Turbulence Spreading and E x B Shear

    Energy Technology Data Exchange (ETDEWEB)

    T.S. Hahm; Z. Lin; P.H. Diamond; G. Rewoldt; W.X. Wang; S. Ethier; O. Gurcan; W.W. Lee; W.M. Tang

    2004-12-21

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length.

  12. Gyrokinetic studies of turbulence in steep gradient region: Role of turbulence spreading and E x B shear

    International Nuclear Information System (INIS)

    Hahm, T.S.; Lin, Z.; Diamond, P.H.; Gurcan, O.; Rewoldt, G.; Wang, W.X.; Ethier, S.; Lee, W.W.; Lewandowski, J.L.V.; Tang, W.M.

    2005-01-01

    An integrated program of gyrokinetic particle simulation and theory has been developed to investigate several outstanding issues in both turbulence and neoclassical physics. Gyrokinetic particle simulations of toroidal ion temperature gradient (ITG) turbulence spreading using the GTC code and its related dynamical model have been extended to the case with radially increasing ion temperature gradient, to study the inward spreading of edge turbulence toward the core. Due to turbulence spreading from the edge, the turbulence intensity in the core region is significantly enhanced over the value obtained from simulations of the core region only. Even when the core gradient is within the Dimits shift regime (i.e., self-generated zonal flows reduce the transport to a negligible value), a significant level of turbulence and transport is observed in the core due to spreading from the edge. The scaling of the turbulent front propagation speed is closer to the prediction from our nonlinear diffusion model than one based on linear toroidal coupling. A calculation of ion poloidal rotation in the presence of sharp density and toroidal angular rotation frequency gradients from the GTC-Neo particle simulation code shows that the results are significantly different from the conventional neoclassical theory predictions. An energy conserving set of a fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to edge turbulence, is being derived via the phase-space action variational Lie perturbation method. Our generalized ordering takes the ion poloidal gyroradius to be on the order of the radial electric field gradient length. (author)

  13. Applications of square-related theorems

    Science.gov (United States)

    Srinivasan, V. K.

    2014-04-01

    The square centre of a given square is the point of intersection of its two diagonals. When two squares of different side lengths share the same square centre, there are in general four diagonals that go through the same square centre. The Two Squares Theorem developed in this paper summarizes some nice theoretical conclusions that can be obtained when two squares of different side lengths share the same square centre. These results provide the theoretical basis for two of the constructions given in the book of H.S. Hall and F.H. Stevens , 'A Shorter School Geometry, Part 1, Metric Edition'. In page 134 of this book, the authors present, in exercise 4, a practical construction which leads to a verification of the Pythagorean theorem. Subsequently in Theorems 29 and 30, the authors present the standard proofs of the Pythagorean theorem and its converse. In page 140, the authors present, in exercise 15, what amounts to a geometric construction, whose verification involves a simple algebraic identity. Both the constructions are of great importance and can be replicated by using the standard equipment provided in a 'geometry toolbox' carried by students in high schools. The author hopes that the results proved in this paper, in conjunction with the two constructions from the above-mentioned book, would provide high school students an appreciation of the celebrated theorem of Pythagoras. The diagrams that accompany this document are based on the free software GeoGebra. The author formally acknowledges his indebtedness to the creators of this free software at the end of this document.

  14. The matrix Euler-Fermat theorem

    International Nuclear Information System (INIS)

    Arnol'd, Vladimir I

    2004-01-01

    We prove many congruences for binomial and multinomial coefficients as well as for the coefficients of the Girard-Newton formula in the theory of symmetric functions. These congruences also imply congruences (modulo powers of primes) for the traces of various powers of matrices with integer elements. We thus have an extension of the matrix Fermat theorem similar to Euler's extension of the numerical little Fermat theorem

  15. A Converse to the Cayley-Hamilton Theorem

    Indian Academy of Sciences (India)

    follows that qj = api, where a is a unit. Thus, we must have that the expansion of I into irreducibles is unique. Hence, K[x] is a UFD. A famous theorem of Gauss implies that K[XI' X2,. ,xn] is also an UFD. Gauss's Theorem: R[x] is a UFD, if and only if R is a UFD. For a proof of Gauss's theorem and a detailed proof of the fact that ...

  16. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  17. Stacked spheres and lower bound theorem

    Indian Academy of Sciences (India)

    BASUDEB DATTA

    2011-11-20

    Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...

  18. Dimensional analysis beyond the Pi theorem

    CERN Document Server

    Zohuri, Bahman

    2017-01-01

    Dimensional Analysis and Physical Similarity are well understood subjects, and the general concepts of dynamical similarity are explained in this book. Our exposition is essentially different from those available in the literature, although it follows the general ideas known as Pi Theorem. There are many excellent books that one can refer to; however, dimensional analysis goes beyond Pi theorem, which is also known as Buckingham’s Pi Theorem. Many techniques via self-similar solutions can bound solutions to problems that seem intractable. A time-developing phenomenon is called self-similar if the spatial distributions of its properties at different points in time can be obtained from one another by a similarity transformation, and identifying one of the independent variables as time. However, this is where Dimensional Analysis goes beyond Pi Theorem into self-similarity, which has represented progress for researchers. In recent years there has been a surge of interest in self-similar solutions of the First ...

  19. Automated theorem proving theory and practice

    CERN Document Server

    Newborn, Monty

    2001-01-01

    As the 21st century begins, the power of our magical new tool and partner, the computer, is increasing at an astonishing rate. Computers that perform billions of operations per second are now commonplace. Multiprocessors with thousands of little computers - relatively little! -can now carry out parallel computations and solve problems in seconds that only a few years ago took days or months. Chess-playing programs are on an even footing with the world's best players. IBM's Deep Blue defeated world champion Garry Kasparov in a match several years ago. Increasingly computers are expected to be more intelligent, to reason, to be able to draw conclusions from given facts, or abstractly, to prove theorems-the subject of this book. Specifically, this book is about two theorem-proving programs, THEO and HERBY. The first four chapters contain introductory material about automated theorem proving and the two programs. This includes material on the language used to express theorems, predicate calculus, and the rules of...

  20. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  1. Theorems of Tarski's Undefinability and Godel's Second Incompleteness - Computationally

    OpenAIRE

    Salehi, Saeed

    2015-01-01

    We present a version of Godel's Second Incompleteness Theorem for recursively enumerable consistent extensions of a fixed axiomatizable theory, by incorporating some bi-theoretic version of the derivability conditions (first discussed by M. Detlefsen 2001). We also argue that Tarski's theorem on the Undefinability of Truth is Godel's First Incompleteness Theorem relativized to definable oracles; here a unification of these two theorems is given.

  2. Full-f XGC1 gyrokinetic study of improved ion energy confinement from impurity stabilization of ITG turbulence

    Science.gov (United States)

    Kim, Kyuho; Kwon, Jae-Min; Chang, C. S.; Seo, Janghoon; Ku, S.; Choe, W.

    2017-06-01

    Flux-driven full-f gyrokinetic simulations are performed to study carbon impurity effects on the ion temperature gradient (ITG) turbulence and ion thermal transport in a toroidal geometry. Employing the full-f gyrokinetic code XGC1, both main ions and impurities are evolved self-consistently including turbulence and neoclassical physics. It is found that the carbon impurity profile self-organizes to form an inwardly peaked density profile, which weakens the ITG instabilities and reduces the overall fluctuations and ion thermal transport. A stronger reduction appears in the low frequency components of the fluctuations. The global structure of E × B flow also changes, resulting in the reduction of global avalanche like transport events in the impure plasma. Detailed properties of impurity transport are also studied, and it is revealed that both the inward neoclassical pinch and the outward turbulent transport are equally important in the formation of the steady state impurity profile.

  3. Gyrokinetic theory of slab universal modes and the non-existence of the gradient drift coupling (GDC) instability

    Science.gov (United States)

    Rogers, Barrett N.; Zhu, Ben; Francisquez, Manaure

    2018-05-01

    A gyrokinetic linear stability analysis of a collisionless slab geometry in the local approximation is presented. We focus on k∥=0 universal (or entropy) modes driven by plasma gradients at small and large plasma β. These are small scale non-MHD instabilities with growth rates that typically peak near k⊥ρi˜1 and vanish in the long wavelength k⊥→0 limit. This work also discusses a mode known as the Gradient Drift Coupling (GDC) instability previously reported in the gyrokinetic literature, which has a finite growth rate γ=√{β/[2 (1 +β)] }Cs/|Lp| with Cs2=p0/ρ0 for k⊥→0 and is universally unstable for 1 /Lp≠0 . We show that the GDC instability is a spurious, unphysical artifact that erroneously arises due to the failure to respect the total equilibrium pressure balance p0+B02/(8 π)=constant , which renders the assumption B0'=0 inconsistent if p0'≠0 .

  4. Generalized Optical Theorem Detection in Random and Complex Media

    Science.gov (United States)

    Tu, Jing

    The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar

  5. Other trigonometric proofs of Pythagoras theorem

    OpenAIRE

    Luzia, Nuno

    2015-01-01

    Only very recently a trigonometric proof of the Pythagoras theorem was given by Zimba \\cite{1}, many authors thought this was not possible. In this note we give other trigonometric proofs of Pythagoras theorem by establishing, geometrically, the half-angle formula $\\cos\\theta=1-2\\sin^2 \\frac{\\theta}{2}$.

  6. The Pomeranchuk theorem and its modifications

    International Nuclear Information System (INIS)

    Fischer, J.; Saly, R.

    1980-01-01

    A review of the various modifications and improvements of the Pomeranchuk theorem and also of related statements is given. The present status of the Pomeranchuk relation based on dispersion relation is discussed. Numerous problems related to the Pomeranchuk theorem and some answers to these problems are collected in a clear table

  7. Correlation functions of the energy-momentum tensor on spaces of constant curvature

    International Nuclear Information System (INIS)

    Osborn, H.; Shore, G.M.

    2000-01-01

    An analysis of one- and two-point functions of the energy-momentum tensor on homogeneous spaces of constant curvature is undertaken. The possibility of proving a c-theorem in this framework is discussed, in particular in relation to the coefficients c,a, which appear in the energy-momentum tensor trace on general curved backgrounds in four dimensions. Ward identities relating the correlation functions are derived and explicit expressions are obtained for free scalar, spinor field theories in general dimensions and also free vector fields in dimension four. A natural geometric formalism which is independent of any choice of coordinates is used and the role of conformal symmetries on such constant curvature spaces is analysed. The results are shown to be constrained by the operator product expansion. For negative curvature the spectral representation, involving unitary positive energy representations of O(d-1,2), for two-point functions of vector currents is derived in detail and extended to the energy-momentum tensor by analogy. It is demonstrated that, at non-coincident points, the two-point functions are not related to a in any direct fashion and there is no straightforward demonstration obtainable in this framework of irreversibility under renormalisation group flow of any function of the couplings for four-dimensional field theories which reduces to a at fixed points

  8. 角动量的理论研究%Theoretical Studies on Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    尹芬芬

    2015-01-01

    研究一些物理问题时,我们会遇到质点或质点系相对于参考点或绕轴转动的情况,此时用速度、动量都不能解决,因此物理学中引入了新的物理量—角动量.角动量能准确地描述物体的转动状况,在量子领域中也能反映表征状态,并且在现代技术中有着广泛的应用.本文从角动量的定义出发,对质点对参考点、质点绕定轴、质点系绕定轴等不同情况下的角动量定理及守恒定律进行了研究,并对动量守恒和角动量守恒的区别与联系以及角动量的知识应用等进行了探讨.%In physics, mass points or mass point systems may revolve relative to the reference point or around the axis. In this case, neither velocity nor momentum can solve it, but angular momentum, a new physical concept of physics, is introduced, which precisely describes the revolution of an object, reflects its representational state in the quantum realm, and is therefore widely used in modern technologies. Based on the definition of angular momentum, this article studies the angular momentum theorems and the conservation laws governing in different circumstances such as the mass point relative to the reference point, the mass point around the fixed axis, the mass point system around the fixed axis, etc, and further probes the differences and commonality between momentum conservation and angular momentum conservation, and the application of angular momentum.

  9. Adiabatic theorem and spectral concentration

    International Nuclear Information System (INIS)

    Nenciu, G.

    1981-01-01

    The spectral concentration of arbitrary order, for the Stark effect is proved to exist for a large class of Hamiltonians appearing in nonrelativistic and relativistic quantum mechanics. The results are consequences of an abstract theorem about the spectral concentration for self-ad oint operators. A general form of the adiabatic theorem of quantum mechanics, generalizing an earlier result of the author as well as some results of Lenard, is also proved [ru

  10. Nonperturbative Adler-Bardeen theorem

    International Nuclear Information System (INIS)

    Mastropietro, Vieri

    2007-01-01

    The Adler-Bardeen theorem has been proven only as a statement valid at all orders in perturbation theory, without any control on the convergence of the series. In this paper we prove a nonperturbative version of the Adler-Bardeen theorem in d=2 by using recently developed technical tools in the theory of Grassmann integration. The proof is based on the assumption that the boson propagator decays fast enough for large momenta. If the boson propagator does not decay, as for Thirring contact interactions, the anomaly in the WI (Ward Identities) is renormalized by higher order contributions

  11. A general comparison theorem for backward stochastic differential equations

    OpenAIRE

    Cohen, Samuel N.; Elliott, Robert J.; Pearce, Charles E. M.

    2010-01-01

    A useful result when dealing with backward stochastic differential equations is the comparison theorem of Peng (1992). When the equations are not based on Brownian motion, the comparison theorem no longer holds in general. In this paper we present a condition for a comparison theorem to hold for backward stochastic differential equations based on arbitrary martingales. This theorem applies to both vector and scalar situations. Applications to the theory of nonlinear expectat...

  12. Pythagoras theorem

    OpenAIRE

    Debattista, Josephine

    2000-01-01

    Pythagoras 580 BC was a Greek mathematician who became famous for formulating Pythagoras Theorem but its principles were known earlier. The ancient Egyptians wanted to layout square (90°) corners to their fields. To solve this problem about 2000 BC they discovered the 'magic' of the 3-4-5 triangle.

  13. On Comparison Theorems for Conformable Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Mehmet Zeki Sarikaya

    2016-10-01

    Full Text Available In this paper the more general comparison theorems for conformable fractional differential equations is proposed and tested. Thus we prove some inequalities for conformable integrals by using the generalization of Sturm's separation and Sturm's comparison theorems. The results presented here would provide generalizations of those given in earlier works. The numerical example is also presented to verify the proposed theorem.

  14. The classical version of Stokes' Theorem revisited

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2008-01-01

    Using only fairly simple and elementary considerations - essentially from first year undergraduate mathematics - we show how the classical Stokes' theorem for any given surface and vector field in $\\mathbb{R}^{3}$ follows from an application of Gauss' divergence theorem to a suitable modification...... exercise, which simply relates the concepts of divergence and curl on the local differential level. The rest of the paper uses only integration in $1$, $2$, and $3$ variables together with a 'fattening' technique for surfaces and the inverse function theorem....

  15. Unpacking Rouché's Theorem

    Science.gov (United States)

    Howell, Russell W.; Schrohe, Elmar

    2017-01-01

    Rouché's Theorem is a standard topic in undergraduate complex analysis. It is usually covered near the end of the course with applications relating to pure mathematics only (e.g., using it to produce an alternate proof of the Fundamental Theorem of Algebra). The "winding number" provides a geometric interpretation relating to the…

  16. Search strategy for theorem proving in artificial systems. I

    Energy Technology Data Exchange (ETDEWEB)

    Lovitskii, V A; Barenboim, M S

    1981-01-01

    A strategy is contrived, employing the language of finite-order predicate calculus, for finding proofs of theorems. A theorem is formulated, based on 2 known theorems on purity and absorption, and used to determine 5 properties of a set of propositions. 3 references.

  17. Tight closure and vanishing theorems

    International Nuclear Information System (INIS)

    Smith, K.E.

    2001-01-01

    Tight closure has become a thriving branch of commutative algebra since it was first introduced by Mel Hochster and Craig Huneke in 1986. Over the past few years, it has become increasingly clear that tight closure has deep connections with complex algebraic geometry as well, especially with those areas of algebraic geometry where vanishing theorems play a starring role. The purpose of these lectures is to introduce tight closure and to explain some of these connections with algebraic geometry. Tight closure is basically a technique for harnessing the power of the Frobenius map. The use of the Frobenius map to prove theorems about complex algebraic varieties is a familiar technique in algebraic geometry, so it should perhaps come as no surprise that tight closure is applicable to algebraic geometry. On the other hand, it seems that so far we are only seeing the tip of a large and very beautiful iceberg in terms of tight closure's interpretation and applications to algebraic geometry. Interestingly, although tight closure is a 'characteristic p' tool, many of the problems where tight closure has proved useful have also yielded to analytic (L2) techniques. Despite some striking parallels, there had been no specific result directly linking tight closure and L∼ techniques. Recently, however, the equivalence of an ideal central to the theory of tight closure was shown to be equivalent to a certain 'multiplier ideal' first defined using L2 methods. Presumably, deeper connections will continue to emerge. There are two main types of problems for which tight closure has been helpful: in identifying nice structure and in establishing uniform behavior. The original algebraic applications of tight closure include, for example, a quick proof of the Hochster-Roberts theorem on the Cohen-Macaulayness of rings of invariants, and also a refined version of the Brianqon-Skoda theorem on the uniform behaviour of integral closures of powers of ideals. More recent, geometric

  18. Fluid and gyrokinetic modelling of particle transport in plasmas with hollow density profiles

    International Nuclear Information System (INIS)

    Tegnered, D; Oberparleiter, M; Nordman, H; Strand, P

    2016-01-01

    Hollow density profiles occur in connection with pellet fuelling and L to H transitions. A positive density gradient could potentially stabilize the turbulence or change the relation between convective and diffusive fluxes, thereby reducing the turbulent transport of particles towards the center, making the fuelling scheme inefficient. In the present work, the particle transport driven by ITG/TE mode turbulence in regions of hollow density profiles is studied by fluid as well as gyrokinetic simulations. The fluid model used, an extended version of the Weiland transport model, Extended Drift Wave Model (EDWM), incorporates an arbitrary number of ion species in a multi-fluid description, and an extended wavelength spectrum. The fluid model, which is fast and hence suitable for use in predictive simulations, is compared to gyrokinetic simulations using the code GENE. Typical tokamak parameters are used based on the Cyclone Base Case. Parameter scans in key plasma parameters like plasma β, R/L T , and magnetic shear are investigated. It is found that β in particular has a stabilizing effect in the negative R/L n region, both nonlinear GENE and EDWM show a decrease in inward flux for negative R/L n and a change of direction from inward to outward for positive R/L n . This might have serious consequences for pellet fuelling of high β plasmas. (paper)

  19. Analysis and optimization of gyrokinetic toroidal simulations on homogenous and heterogenous platforms

    International Nuclear Information System (INIS)

    Ibrahim, Khaled Z.; Madduri, Kamesh; Williams, Samuel; Wang, Bei; Oliker, Leonid

    2013-01-01

    The Gyrokinetic Toroidal Code (GTC) uses the particle-in-cell method to efficiently simulate plasma microturbulence. This paper presents novel analysis and optimization techniques to enhance the performance of GTC on large-scale machines. We introduce cell access analysis to better manage locality vs. synchronization tradeoffs on CPU and GPU-based architectures. Finally, our optimized hybrid parallel implementation of GTC uses MPI, OpenMP, and NVIDIA CUDA, achieves up to a 2× speedup over the reference Fortran version on multiple parallel systems, and scales efficiently to tens of thousands of cores.

  20. Profile stiffness measurements in the Helically Symmetric experiment and comparison to nonlinear gyrokinetic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Weir, G. M.; Faber, B. J.; Likin, K. M.; Talmadge, J. N.; Anderson, D. T.; Anderson, F. S. B. [HSX Plasma Laboratory, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2015-05-15

    Stiffness measurements are presented in the quasi-helically symmetric experiment (HSX), in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron cyclotron emission is used to measure the local electron temperature response to modulated electron cyclotron resonant heating. The amplitude and phase of the heat wave through the steep electron temperature gradient (ETG) region of the plasma are used to determine a transient electron thermal diffusivity that is close to the steady-state diffusivity. The low stiffness in the region between 0.2 ≤ r/a ≤ 0.4 agrees with the scaling of the steady-state heat flux with temperature gradient in this region. These experimental results are compared to gyrokinetic calculations in a flux-tube geometry using the gyrokinetic electromagnetic numerical experiment code with two kinetic species. Linear simulations show that the ETG mode may be experimentally relevant within r/a ≤ 0.2, while the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability across most of the plasma. The TEM is primarily driven by the density gradient. Non-linear calculations of the saturated heat flux driven by the TEM and ETG bracket the experimental heat flux.

  1. The Osgood-Schoenflies theorem revisited

    International Nuclear Information System (INIS)

    Siebenmann, L C

    2005-01-01

    The very first unknotting theorem of a purely topological character established that every compact subset of the Euclidean plane homeomorphic to a circle can be moved onto a round circle by a globally defined self-homeomorphism of the plane. This difficult hundred-year-old theorem is here celebrated with a partly new elementary proof, and a first but tentative account of its history. Some quite fundamental corollaries of the proof are sketched, and some generalizations are mentioned

  2. Preservation theorems on finite structures

    International Nuclear Information System (INIS)

    Hebert, M.

    1994-09-01

    This paper concerns classical Preservation results applied to finite structures. We consider binary relations for which a strong form of preservation theorem (called strong interpolation) exists in the usual case. This includes most classical cases: embeddings, extensions, homomorphisms into and onto, sandwiches, etc. We establish necessary and sufficient syntactic conditions for the preservation theorems for sentences and for theories to hold in the restricted context of finite structures. We deduce that for all relations above, the restricted theorem for theories hold provided the language is finite. For the sentences the restricted version fails in most cases; in fact the ''homomorphism into'' case seems to be the only possible one, but the efforts to show that have failed. We hope our results may help to solve this frustrating problem; in the meantime, they are used to put a lower bound on the level of complexity of potential counterexamples. (author). 8 refs

  3. The Interpretability of Inconsistency: Feferman's Theorem and Related Results

    NARCIS (Netherlands)

    Visser, Albert

    This paper is an exposition of Feferman's Theorem concerning the interpretability of inconsistency and of further insights directly connected to this result. Feferman's Theorem is a strengthening of the Second Incompleteness Theorem. It says, in metaphorical paraphrase, that it is not just the case

  4. The Interpretability of Inconsistency: Feferman's Theorem and Related Results

    NARCIS (Netherlands)

    Visser, Albert

    2014-01-01

    This paper is an exposition of Feferman's Theorem concerning the interpretability of inconsistency and of further insights directly connected to this result. Feferman's Theorem is a strengthening of the Second Incompleteness Theorem. It says, in metaphorical paraphrase, that it is not just the case

  5. Some fixed point theorems in fuzzy reflexive Banach spaces

    International Nuclear Information System (INIS)

    Sadeqi, I.; Solaty kia, F.

    2009-01-01

    In this paper, we first show that there are some gaps in the fixed point theorems for fuzzy non-expansive mappings which are proved by Bag and Samanta, in [Bag T, Samanta SK. Fixed point theorems on fuzzy normed linear spaces. Inf Sci 2006;176:2910-31; Bag T, Samanta SK. Some fixed point theorems in fuzzy normed linear spaces. Inform Sci 2007;177(3):3271-89]. By introducing the notion of fuzzy and α- fuzzy reflexive Banach spaces, we obtain some results which help us to establish the correct version of fuzzy fixed point theorems. Second, by applying Theorem 3.3 of Sadeqi and Solati kia [Sadeqi I, Solati kia F. Fuzzy normed linear space and it's topological structure. Chaos, Solitons and Fractals, in press] which says that any fuzzy normed linear space is also a topological vector space, we show that all topological version of fixed point theorems do hold in fuzzy normed linear spaces.

  6. The Goldstone equivalence theorem and AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Nikhil; Cantrell, Sean [Department of Physics & Astronomy, Johns Hopkins University,Baltimore, MD 21218 (United States)

    2015-08-03

    The Goldstone equivalence theorem allows one to relate scattering amplitudes of massive gauge fields to those of scalar fields in the limit of large scattering energies. We generalize this theorem under the framework of the AdS/CFT correspondence. First, we obtain an expression of the equivalence theorem in terms of correlation functions of creation and annihilation operators by using an AdS wave function approach to the AdS/CFT dictionary. It is shown that the divergence of the non-conserved conformal current dual to the bulk gauge field is approximately primary when computing correlators for theories in which the masses of all the exchanged particles are sufficiently large. The results are then generalized to higher spin fields. We then go on to generalize the theorem using conformal blocks in two and four-dimensional CFTs. We show that when the scaling dimensions of the exchanged operators are large compared to both their spins and the dimension of the current, the conformal blocks satisfy an equivalence theorem.

  7. Global gyrokinetic simulations of TEM microturbulence

    Science.gov (United States)

    Vernay, T.; Brunner, S.; Villard, L.; McMillan, B. F.; Jolliet, S.; Bottino, A.; Görler, T.; Jenko, F.

    2013-07-01

    Global gyrokinetic simulations of electrostatic temperature-gradient-driven trapped-electron-mode (TEM) turbulence using the δf particle-in-cell code ORB5 are presented. The electron response is either fully kinetic or hybrid, i.e. considering kinetic trapped and adiabatic passing electrons. A linear benchmark in the TEM regime against the Eulerian-based code GENE is presented. Two different methods for controlling the numerical noise, based, respectively, on a Krook operator and a so-called coarse-graining approach, are discussed and successfully compared. Both linear and non-linear studies are carried out for addressing the issue of finite-ρ*-effects and finite electron collisionality on TEM turbulence. Electron collisions are found to damp TEMs through the detrapping process, while finite-ρ*-effects turn out to be important in the non-linear regime but very small in the linear regime. Finally, the effects of zonal flows on TEM turbulence are briefly considered as well and shown to be unimportant in the temperature-gradient-driven TEM regime. Consistently, basically no difference is found between linear and non-linear critical electron temperature gradients in the TEM regime.

  8. The direct Flow parametric Proof of Gauss' Divergence Theorem revisited

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    The standard proof of the divergence theorem in undergraduate calculus courses covers the theorem for static domains between two graph surfaces. We show that within first year undergraduate curriculum, the flow proof of the dynamic version of the divergence theorem - which is usually considered...... we apply the key instrumental concepts and verify the various steps towards this alternative proof of the divergence theorem....

  9. Two proofs of Fine's theorem

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    2014-01-01

    Fine's theorem concerns the question of determining the conditions under which a certain set of probabilities for pairs of four bivalent quantities may be taken to be the marginals of an underlying probability distribution. The eight CHSH inequalities are well-known to be necessary conditions, but Fine's theorem is the striking result that they are also sufficient conditions. Here two transparent and self-contained proofs of Fine's theorem are presented. The first is a physically motivated proof using an explicit local hidden variables model. The second is an algebraic proof which uses a representation of the probabilities in terms of correlation functions. - Highlights: • A discussion of the various approaches to proving Fine's theorem. • A new physically-motivated proof using a local hidden variables model. • A new algebraic proof. • A new form of the CHSH inequalities

  10. Radon-Nikodym type theorem for α-completely positive maps

    International Nuclear Information System (INIS)

    Heo, Jaeseong; Ji, Un Cig

    2010-01-01

    We introduce a new notion of α-completely positive map on a C*-algebra as a generalization of the notion of completely positive map. Then we study a theorem of the Radon-Nikodym type that there is a one-to-one correspondence between α-completely positive maps and positive operators and, as an application of the Radon-Nikodym type theorem, we give a characterization of pure α-completely positive maps. Finally, we study a covariant version of the Stinespring's theorem for a covariant α-completely positive map (see Theorem 4.3).

  11. On Pythagoras Theorem for Products of Spectral Triples

    OpenAIRE

    D'Andrea, Francesco; Martinetti, Pierre

    2013-01-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some un...

  12. Pauli and The Spin-Statistics Theorem

    International Nuclear Information System (INIS)

    Duck, Ian; Sudarshan, E.C.G.

    1998-03-01

    This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties.Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that 'everyone knows the spin-statistics theorem, but no one understands it'. This book simplifies and clarifies the formal statements of the theorem, and also corrects the invariably flawed intuitive explanations which are frequently put forward. The book will be of interest to many practising physicists in all fields who have long been frustrated by the impenetrable discussions on the subject which have been available until now.It will also be accessible to students at an advanced undergraduate level as an introduction to modern physics based directly on the classical writings of the founders, including Pauli, Dirac, Heisenberg, Einstein and many others

  13. Effects of the magnetic equilibrium on gyrokinetic simulations of tokamak microinstabilities

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Weigang; Chen, Yang; Parker, Scott E. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Groebner, Richard J. [General Atomics, Post Office Box 85068, San Diego, California 92186 (United States)

    2015-06-15

    The general geometry of the experimental tokamak magnetic equilibrium is implemented in the global gyrokinetic simulation code GEM. Compared to the general geometry, the well used Miller parameterization of the magnetic equilibrium is a good approximation in the core region and up to the top of the pedestal. Linear simulations indicate that results with the two geometries agree for r/a ≤ 0.9. However, in the edge region, the instabilities are sensitive to the magnetic equilibrium in both the L-mode and the H-mode plasmas. A small variation of the plasma shaping parameters leads to large changes to the edge instability.

  14. Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales

    International Nuclear Information System (INIS)

    Howes, G. G.; TenBarge, J. M.; Dorland, W.; Numata, R.; Quataert, E.; Schekochihin, A. A.; Tatsuno, T.

    2011-01-01

    A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k -2.8 as observed in in situ spacecraft measurements of the 'dissipation range' of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.

  15. The Pythagoras' Theorem

    OpenAIRE

    Saikia, Manjil P.

    2013-01-01

    We give a brief historical overview of the famous Pythagoras' theorem and Pythagoras. We present a simple proof of the result and dicsuss some extensions. We follow \\cite{thales}, \\cite{wiki} and \\cite{wiki2} for the historical comments and sources.

  16. Cantor's Little Theorem

    Indian Academy of Sciences (India)

    eralizing the method of proof of the well known. Cantor's ... Godel's first incompleteness theorem is proved. ... that the number of elements in any finite set is a natural number. ..... proof also has a Godel number; of course, you have to fix.

  17. Double soft theorem for perturbative gravity

    OpenAIRE

    Saha, Arnab

    2016-01-01

    Following up on the recent work of Cachazo, He and Yuan \\cite{arXiv:1503.04816 [hep-th]}, we derive the double soft graviton theorem in perturbative gravity. We show that the double soft theorem derived using CHY formula precisely matches with the perturbative computation involving Feynman diagrams. In particular, we find how certain delicate limits of Feynman diagrams play an important role in obtaining this equivalence.

  18. A Converse of Fermat's Little Theorem

    Science.gov (United States)

    Bruckman, P. S.

    2007-01-01

    As the name of the paper implies, a converse of Fermat's Little Theorem (FLT) is stated and proved. FLT states the following: if p is any prime, and x any integer, then x[superscript p] [equivalent to] x (mod p). There is already a well-known converse of FLT, known as Lehmer's Theorem, which is as follows: if x is an integer coprime with m, such…

  19. A conservative scheme of drift kinetic electrons for gyrokinetic simulation of kinetic-MHD processes in toroidal plasmas

    Science.gov (United States)

    Bao, J.; Liu, D.; Lin, Z.

    2017-10-01

    A conservative scheme of drift kinetic electrons for gyrokinetic simulations of kinetic-magnetohydrodynamic processes in toroidal plasmas has been formulated and verified. Both vector potential and electron perturbed distribution function are decomposed into adiabatic part with analytic solution and non-adiabatic part solved numerically. The adiabatic parallel electric field is solved directly from the electron adiabatic response, resulting in a high degree of accuracy. The consistency between electrostatic potential and parallel vector potential is enforced by using the electron continuity equation. Since particles are only used to calculate the non-adiabatic response, which is used to calculate the non-adiabatic vector potential through Ohm's law, the conservative scheme minimizes the electron particle noise and mitigates the cancellation problem. Linear dispersion relations of the kinetic Alfvén wave and the collisionless tearing mode in cylindrical geometry have been verified in gyrokinetic toroidal code simulations, which show that the perpendicular grid size can be larger than the electron collisionless skin depth when the mode wavelength is longer than the electron skin depth.

  20. Can a stationary Bianchi black brane have momentum along the direction with no translational symmetry?

    International Nuclear Information System (INIS)

    Iizuka, Norihiro; Ishibashi, Akihiro; Maeda, Kengo

    2014-01-01

    Bianchi black branes (black brane solutions with homogeneous but anisotropic horizons classified by the Bianchi type) provide a simple holographic setting with lattice structures taken into account. In the case of holographic superconductor, we have a persistent current with lattices. Accordingly, we expect that in the dual gravity side, a black brane should carry some momentum along a direction of lattice structure, where translational invariance is broken. Motivated by this expectation, we consider whether — and if possible, in what circumstances — a Bianchi black brane can have momentum along a direction of no-translational invariance. First, we show that this cannot be the case for a certain class of stationary Bianchi black brane solutions in the Einstein-Maxwell-dilation theory. Then we also show that this can be the case for some Bianchi VII_0 black branes by numerically constructing such a solution in the Einstein-Maxwell theory with an additional vector field having a source term. The horizon of this solution admits a translational invariance on the horizon and conveys momentum (and is “rotating” when compactified). However this translational invariance is broken just outside the horizon. This indicates the existence of a black brane solution which is regular but non-analytic at the horizon, thereby evading the black hole rigidity theorem.

  1. Partially linearized algorithms in gyrokinetic particle simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A.M.; Lee, W.W.

    1990-10-01

    In this paper, particle simulation algorithms with time-varying weights for the gyrokinetic Vlasov-Poisson system have been developed. The primary purpose is to use them for the removal of the selected nonlinearities in the simulation of gradient-driven microturbulence so that the relative importance of the various nonlinear effects can be assessed. It is hoped that the use of these procedures will result in a better understanding of the transport mechanisms and scaling in tokamaks. Another application of these algorithms is for the improvement of the numerical properties of the simulation plasma. For instance, implementations of such algorithms (1) enable us to suppress the intrinsic numerical noise in the simulation, and (2) also make it possible to regulate the weights of the fast-moving particles and, in turn, to eliminate the associated high frequency oscillations. Examples of their application to drift-type instabilities in slab geometry are given. We note that the work reported here represents the first successful use of the weighted algorithms in particle codes for the nonlinear simulation of plasmas.

  2. Partially linearized algorithms in gyrokinetic particle simulation

    International Nuclear Information System (INIS)

    Dimits, A.M.; Lee, W.W.

    1990-10-01

    In this paper, particle simulation algorithms with time-varying weights for the gyrokinetic Vlasov-Poisson system have been developed. The primary purpose is to use them for the removal of the selected nonlinearities in the simulation of gradient-driven microturbulence so that the relative importance of the various nonlinear effects can be assessed. It is hoped that the use of these procedures will result in a better understanding of the transport mechanisms and scaling in tokamaks. Another application of these algorithms is for the improvement of the numerical properties of the simulation plasma. For instance, implementations of such algorithms (1) enable us to suppress the intrinsic numerical noise in the simulation, and (2) also make it possible to regulate the weights of the fast-moving particles and, in turn, to eliminate the associated high frequency oscillations. Examples of their application to drift-type instabilities in slab geometry are given. We note that the work reported here represents the first successful use of the weighted algorithms in particle codes for the nonlinear simulation of plasmas

  3. A Metrized Duality Theorem for Markov Processes

    DEFF Research Database (Denmark)

    Kozen, Dexter; Mardare, Radu Iulian; Panangaden, Prakash

    2014-01-01

    We extend our previous duality theorem for Markov processes by equipping the processes with a pseudometric and the algebras with a notion of metric diameter. We are able to show that the isomorphisms of our previous duality theorem become isometries in this quantitative setting. This opens the wa...

  4. Generalized optical theorems

    International Nuclear Information System (INIS)

    Cahill, K.

    1975-11-01

    Local field theory is used to derive formulas that express certain boundary values of the N-point function as sums of products of scattering amplitudes. These formulas constitute a generalization of the optical theorem and facilitate the analysis of multiparticle scattering functions [fr

  5. Green's Theorem for Sign Data

    OpenAIRE

    Houston, Louis M.

    2012-01-01

    Sign data are the signs of signal added to noise. It is well known that a constant signal can be recovered from sign data. In this paper, we show that an integral over variant signal can be recovered from an integral over sign data based on the variant signal. We refer to this as a generalized sign data average. We use this result to derive a Green's theorem for sign data. Green's theorem is important to various seismic processing methods, including seismic migration. Results in this paper ge...

  6. Cross-code gyrokinetic verification and benchmark on the linear collisionless dynamics of the geodesic acoustic mode

    Science.gov (United States)

    Biancalani, A.; Bottino, A.; Ehrlacher, C.; Grandgirard, V.; Merlo, G.; Novikau, I.; Qiu, Z.; Sonnendrücker, E.; Garbet, X.; Görler, T.; Leerink, S.; Palermo, F.; Zarzoso, D.

    2017-06-01

    The linear properties of the geodesic acoustic modes (GAMs) in tokamaks are investigated by means of the comparison of analytical theory and gyrokinetic numerical simulations. The dependence on the value of the safety factor, finite-orbit-width of the ions in relation to the radial mode width, magnetic-flux-surface shaping, and electron/ion mass ratio are considered. Nonuniformities in the plasma profiles (such as density, temperature, and safety factor), electro-magnetic effects, collisions, and the presence of minority species are neglected. Also, only linear simulations are considered, focusing on the local dynamics. We use three different gyrokinetic codes: the Lagrangian (particle-in-cell) code ORB5, the Eulerian code GENE, and semi-Lagrangian code GYSELA. One of the main aims of this paper is to provide a detailed comparison of the numerical results and analytical theory, in the regimes where this is possible. This helps understanding better the behavior of the linear GAM dynamics in these different regimes, the behavior of the codes, which is crucial in the view of a future work where more physics is present, and the regimes of validity of each specific analytical dispersion relation.

  7. A STRONG OPTIMIZATION THEOREM IN LOCALLY CONVEX SPACES

    Institute of Scientific and Technical Information of China (English)

    程立新; 腾岩梅

    2003-01-01

    This paper presents a geometric characterization of convex sets in locally convex spaces onwhich a strong optimization theorem of the Stegall-type holds, and gives Collier's theorem ofw* Asplund spaces a localized setting.

  8. Liouville's theorem and phase-space cooling

    International Nuclear Information System (INIS)

    Mills, R.L.; Sessler, A.M.

    1993-01-01

    A discussion is presented of Liouville's theorem and its consequences for conservative dynamical systems. A formal proof of Liouville's theorem is given. The Boltzmann equation is derived, and the collisionless Boltzmann equation is shown to be rigorously true for a continuous medium. The Fokker-Planck equation is derived. Discussion is given as to when the various equations are applicable and, in particular, under what circumstances phase space cooling may occur

  9. DISCRETE FIXED POINT THEOREMS AND THEIR APPLICATION TO NASH EQUILIBRIUM

    OpenAIRE

    Sato, Junichi; Kawasaki, Hidefumi

    2007-01-01

    Fixed point theorems are powerful tools in not only mathematics but also economic. In some economic problems, we need not real-valued but integer-valued equilibriums. However, classical fixed point theorems guarantee only real-valued equilibria. So we need discrete fixed point theorems in order to get discrete equilibria. In this paper, we first provide discrete fixed point theorems, next apply them to a non-cooperative game and prove the existence of a Nash equilibrium of pure strategies.

  10. Gyrokinetic simulations in general geometry and applications to collisional damping of zonal flows

    International Nuclear Information System (INIS)

    Lin, Z.; Hahm, T.S.; Lee, W.W.; Tang, W.M.; White, R.B.

    2000-01-01

    A fully three-dimensional gyrokinetic particle code using magnetic coordinates for general geometry has been developed and applied to the investigation of zonal flows dynamics in toroidal ion-temperature-gradient turbulence. Full torus simulation results support the important conclusion that turbulence-driven zonal flows significantly reduce the turbulent transport. Linear collisionless simulations for damping of an initial poloidal flow perturbation exhibit an asymptotic residual flow. The collisional damping of this residual causes the dependence of ion thermal transport on the ion-ion collision frequency even in regimes where the instabilities are collisionless

  11. Notes on the area theorem

    International Nuclear Information System (INIS)

    Park, Mu-In

    2008-01-01

    Hawking's area theorem can be understood from a quasi-stationary process in which a black hole accretes positive energy matter, independent of the details of the gravity action. I use this process to study the dynamics of the inner as well as the outer horizons for various black holes which include the recently discovered exotic black holes and three-dimensional black holes in higher derivative gravities as well as the usual BTZ black hole and the Kerr black hole in four dimensions. I find that the area for the inner horizon 'can decrease', rather than increase, with the quasi-stationary process. However, I find that the area for the outer horizon 'never decreases' such that the usual area theorem still works in our examples, though this is quite non-trivial in general. There exists an instability problem of the inner horizons but it seems that the instability is not important in my analysis. I also find a generalized area theorem by combining those of the outer and inner horizons

  12. Optimal no-go theorem on hidden-variable predictions of effect expectations

    Science.gov (United States)

    Blass, Andreas; Gurevich, Yuri

    2018-03-01

    No-go theorems prove that, under reasonable assumptions, classical hidden-variable theories cannot reproduce the predictions of quantum mechanics. Traditional no-go theorems proved that hidden-variable theories cannot predict correctly the values of observables. Recent expectation no-go theorems prove that hidden-variable theories cannot predict the expectations of observables. We prove the strongest expectation-focused no-go theorem to date. It is optimal in the sense that the natural weakenings of the assumptions and the natural strengthenings of the conclusion make the theorem fail. The literature on expectation no-go theorems strongly suggests that the expectation-focused approach is more general than the value-focused one. We establish that the expectation approach is not more general.

  13. The Classical Version of Stokes' Theorem Revisited

    Science.gov (United States)

    Markvorsen, Steen

    2008-01-01

    Using only fairly simple and elementary considerations--essentially from first year undergraduate mathematics--we show how the classical Stokes' theorem for any given surface and vector field in R[superscript 3] follows from an application of Gauss' divergence theorem to a suitable modification of the vector field in a tubular shell around the…

  14. The divergence theorem for unbounded vector fields

    OpenAIRE

    De Pauw, Thierry; Pfeffer, Washek F.

    2007-01-01

    In the context of Lebesgue integration, we derive the divergence theorem for unbounded vector. elds that can have singularities at every point of a compact set whose Minkowski content of codimension greater than two is. nite. The resulting integration by parts theorem is applied to removable sets of holomorphic and harmonic functions.

  15. Gleason-Busch theorem for sequential measurements

    Science.gov (United States)

    Flatt, Kieran; Barnett, Stephen M.; Croke, Sarah

    2017-12-01

    Gleason's theorem is a statement that, given some reasonable assumptions, the Born rule used to calculate probabilities in quantum mechanics is essentially unique [A. M. Gleason, Indiana Univ. Math. J. 6, 885 (1957), 10.1512/iumj.1957.6.56050]. We show that Gleason's theorem contains within it also the structure of sequential measurements, and along with this the state update rule. We give a small set of axioms, which are physically motivated and analogous to those in Busch's proof of Gleason's theorem [P. Busch, Phys. Rev. Lett. 91, 120403 (2003), 10.1103/PhysRevLett.91.120403], from which the familiar Kraus operator form follows. An axiomatic approach has practical relevance as well as fundamental interest, in making clear those assumptions which underlie the security of quantum communication protocols. Interestingly, the two-time formalism is seen to arise naturally in this approach.

  16. Development of a global toroidal gyrokinetic Vlasov code with new real space field solver

    International Nuclear Information System (INIS)

    Obrejan, Kevin; Imadera, Kenji; Li, Ji-Quan; Kishimoto, Yasuaki

    2015-01-01

    This work introduces a new full-f toroidal gyrokinetic (GK) Vlasov simulation code that uses a real space field solver. This solver enables us to compute the gyro-averaging operators in real space to allow proper treatment of finite Larmor radius (FLR) effects without requiring any particular hypothesis and in any magnetic field configuration (X-point, D-shaped etc). The code was well verified through benchmark tests such as toroidal Ion Temperature Gradient (ITG) instability and collisionless damping of zonal flow. (author)

  17. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  18. The large deviations theorem and ergodicity

    International Nuclear Information System (INIS)

    Gu Rongbao

    2007-01-01

    In this paper, some relationships between stochastic and topological properties of dynamical systems are studied. For a continuous map f from a compact metric space X into itself, we show that if f satisfies the large deviations theorem then it is topologically ergodic. Moreover, we introduce the topologically strong ergodicity, and prove that if f is a topologically strongly ergodic map satisfying the large deviations theorem then it is sensitively dependent on initial conditions

  19. SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhihong [Univ. of California, Irvine, CA (United States)

    2017-12-30

    Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulation codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting of the

  20. Gödel's Theorem

    NARCIS (Netherlands)

    Dalen, D. van

    The following pages make form a new chapter for the book Logic and Structure. This chapter deals with the incompleteness theorem, and contains enough basic material for the treatment of the required notions of computability, representability and the like. This chapter will appear in the next

  1. Visualizing the Central Limit Theorem through Simulation

    Science.gov (United States)

    Ruggieri, Eric

    2016-01-01

    The Central Limit Theorem is one of the most important concepts taught in an introductory statistics course, however, it may be the least understood by students. Sure, students can plug numbers into a formula and solve problems, but conceptually, do they really understand what the Central Limit Theorem is saying? This paper describes a simulation…

  2. The equivalence theorem

    International Nuclear Information System (INIS)

    Veltman, H.

    1990-01-01

    The equivalence theorem states that, at an energy E much larger than the vector-boson mass M, the leading order of the amplitude with longitudinally polarized vector bosons on mass shell is given by the amplitude in which these vector bosons are replaced by the corresponding Higgs ghosts. We prove the equivalence theorem and show its validity in every order in perturbation theory. We first derive the renormalized Ward identities by using the diagrammatic method. Only the Feynman-- 't Hooft gauge is discussed. The last step of the proof includes the power-counting method evaluated in the large-Higgs-boson-mass limit, needed to estimate the leading energy behavior of the amplitudes involved. We derive expressions for the amplitudes involving longitudinally polarized vector bosons for all orders in perturbation theory. The fermion mass has not been neglected and everything is evaluated in the region m f ∼M much-lt E much-lt m Higgs

  3. Out-of-time-order fluctuation-dissipation theorem

    Science.gov (United States)

    Tsuji, Naoto; Shitara, Tomohiro; Ueda, Masahito

    2018-01-01

    We prove a generalized fluctuation-dissipation theorem for a certain class of out-of-time-ordered correlators (OTOCs) with a modified statistical average, which we call bipartite OTOCs, for general quantum systems in thermal equilibrium. The difference between the bipartite and physical OTOCs defined by the usual statistical average is quantified by a measure of quantum fluctuations known as the Wigner-Yanase skew information. Within this difference, the theorem describes a universal relation between chaotic behavior in quantum systems and a nonlinear-response function that involves a time-reversed process. We show that the theorem can be generalized to higher-order n -partite OTOCs as well as in the form of generalized covariance.

  4. Scale symmetry and virial theorem

    International Nuclear Information System (INIS)

    Westenholz, C. von

    1978-01-01

    Scale symmetry (or dilatation invariance) is discussed in terms of Noether's Theorem expressed in terms of a symmetry group action on phase space endowed with a symplectic structure. The conventional conceptual approach expressing invariance of some Hamiltonian under scale transformations is re-expressed in alternate form by infinitesimal automorphisms of the given symplectic structure. That is, the vector field representing scale transformations leaves the symplectic structure invariant. In this model, the conserved quantity or constant of motion related to scale symmetry is the virial. It is shown that the conventional virial theorem can be derived within this framework

  5. On Pythagoras Theorem for Products of Spectral Triples

    Science.gov (United States)

    D'Andrea, Francesco; Martinetti, Pierre

    2013-05-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non-pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some unitality condition. We show that these inequalities are optimal, and we provide non-unital counter-examples inspired by K-homology.

  6. Convergence theorems for certain classes of nonlinear mappings

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1992-01-01

    Recently, Xinlong Weng announced a convergence theorem for the iterative approximation of fixed points of local strictly pseudo-contractive mappings in uniformly smooth Banach spaces, (Proc. Amer. Math. Soc. Vol.113, No.3 (1991) 727-731). An example is presented which shows that this theorem of Weng is false. Then, a convergence theorem is proved, in certain real Banach spaces, for approximation a solution of the inclusion f is an element of x + Tx, where T is a set-valued monotone operator. An explicit error estimate is also presented. (author). 26 refs

  7. Markov's theorem and algorithmically non-recognizable combinatorial manifolds

    International Nuclear Information System (INIS)

    Shtan'ko, M A

    2004-01-01

    We prove the theorem of Markov on the existence of an algorithmically non-recognizable combinatorial n-dimensional manifold for every n≥4. We construct for the first time a concrete manifold which is algorithmically non-recognizable. A strengthened form of Markov's theorem is proved using the combinatorial methods of regular neighbourhoods and handle theory. The proofs coincide for all n≥4. We use Borisov's group with insoluble word problem. It has two generators and twelve relations. The use of this group forms the base for proving the strengthened form of Markov's theorem

  8. A note on the weighted Khintchine-Groshev Theorem

    DEFF Research Database (Denmark)

    Hussain, Mumtaz; Yusupova, Tatiana

    Let W(m,n;ψ−−) denote the set of ψ1,…,ψn-approximable points in Rmn. The classical Khintchine-Groshev theorem assumes a monotonicity condition on the approximating functions ψ−−. Removing monotonicity from the Khintchine-Groshev theorem is attributed to different authors for different cases of m...... and n. It can not be removed for m=n=1 as Duffin-Shcaeffer provided the counter example. We deal with the only remaining case m=2 and thereby remove all unnecessary conditions from the Khintchine-Groshev theorem....

  9. Fluctuation theorem for Hamiltonian Systems: Le Chatelier's principle

    Science.gov (United States)

    Evans, Denis J.; Searles, Debra J.; Mittag, Emil

    2001-05-01

    For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a specified value compared to the negative of that value. In the past, it has been generally thought that the presence of some thermostating mechanism was an essential component of any system that satisfies a fluctuation theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamiltonian systems, with or without applied dissipative fields.

  10. A Hohenberg-Kohn theorem for non-local potentials

    International Nuclear Information System (INIS)

    Meron, E.; Katriel, J.

    1977-01-01

    It is shown that within any class of commuting one-body potentials a Hohenberg-Kohn type theorem is satisfied with respect to an appropriately defined density. The Hohenberg-Kohn theorem for local potentials follows as a special case. (Auth.)

  11. Response to Comment on 'On Higher-Order Corrections to Gyrokinetic Vlasov-Poisson Equations in the Long Wavelength Limit [Phys. Plasmas 16,044506 (2009)]'

    International Nuclear Information System (INIS)

    Lee, W.W.; Kolesnikov, R.A.

    2009-01-01

    We show in this Response that the nonlinear Poisson's equation in our original paper derived from the drift kinetic approach can be verified by using the nonlinear gyrokinetic Poisson's equation of Dubin et al. (Phys. Fluids 26, 3524 (1983)). This nonlinear contribution in φ 2 is indeed of the order of k # perpendicular# 4 in the long wavelength limit and remains finite for zero ion temperature, in contrast to the nonlinear term by Parra and Catto (Plasma Phys. Control. Fusion 50, 065014 (2008)), which is of the order of k # perpendicular# 2 and diverges for T i → 0. For comparison, the leading term for the gyrokinetic Poisson's equation in this limit is of the order of k # perpendicular# 2 φ.

  12. Grid-based Parallel Data Streaming Implemented for the Gyrokinetic Toroidal Code

    International Nuclear Information System (INIS)

    Klasky, S.; Ethier, S.; Lin, Z.; Martins, K.; McCune, D.; Samtaney, R.

    2003-01-01

    We have developed a threaded parallel data streaming approach using Globus to transfer multi-terabyte simulation data from a remote supercomputer to the scientist's home analysis/visualization cluster, as the simulation executes, with negligible overhead. Data transfer experiments show that this concurrent data transfer approach is more favorable compared with writing to local disk and then transferring this data to be post-processed. The present approach is conducive to using the grid to pipeline the simulation with post-processing and visualization. We have applied this method to the Gyrokinetic Toroidal Code (GTC), a 3-dimensional particle-in-cell code used to study microturbulence in magnetic confinement fusion from first principles plasma theory

  13. The AKM theorem and oscillations in the hadron scattering amplitude at high energy and small momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, P.; Nicolescu, B. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Selyugin, O.V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    1996-10-01

    It is shown that the high precision UA4/2 data for differential cross sections p-barp scattering are compatible with the presence of Auberson -Kinoshita - Martin (AKM) type of oscillations at very small momentum transfers. These oscillations seem to be periodic in {radical}|t|. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. (K.A.). 19 refs.

  14. Non-renormalisation theorems in string theory

    International Nuclear Information System (INIS)

    Vanhove, P.

    2007-10-01

    In this thesis we describe various non renormalisation theorems for the string effective action. These results are derived in the context of the M theory conjecture allowing to connect the four gravitons string theory S matrix elements with that of eleven dimensional supergravity. These theorems imply that N = 8 supergravity theory has the same UV behaviour as the N = 4 supersymmetric Yang Mills theory at least up to three loops, and could be UV finite in four dimensions. (author)

  15. Singularity theorems from weakened energy conditions

    International Nuclear Information System (INIS)

    Fewster, Christopher J; Galloway, Gregory J

    2011-01-01

    We establish analogues of the Hawking and Penrose singularity theorems based on (a) averaged energy conditions with exponential damping; (b) conditions on local stress-energy averages inspired by the quantum energy inequalities satisfied by a number of quantum field theories. As particular applications, we establish singularity theorems for the Einstein equations coupled to a classical scalar field, which violates the strong energy condition, and the nonminimally coupled scalar field, which also violates the null energy condition.

  16. COMPARISON THEOREMS AND APPLICATIONS OF OSCILLATION OF NEUTRAL DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    燕居让

    1991-01-01

    We first establish comparison theorems of the oscillation for a higher-order neutral delaydifferential equation. By these comparison theorems, the criterion of oscillation propertiesof neutral delay differential equation is reduced to that of nonneutral delay differential equa-tion, from which we give a series of oscillation theorems for neutral delay differentialequation.

  17. Integrable equations, addition theorems, and the Riemann-Schottky problem

    International Nuclear Information System (INIS)

    Buchstaber, Viktor M; Krichever, I M

    2006-01-01

    The classical Weierstrass theorem claims that, among the analytic functions, the only functions admitting an algebraic addition theorem are the elliptic functions and their degenerations. This survey is devoted to far-reaching generalizations of this result that are motivated by the theory of integrable systems. The authors discovered a strong form of the addition theorem for theta functions of Jacobian varieties, and this form led to new approaches to known problems in the geometry of Abelian varieties. It is shown that strong forms of addition theorems arise naturally in the theory of the so-called trilinear functional equations. Diverse aspects of the approaches suggested here are discussed, and some important open problems are formulated.

  18. The Weinberg-Witten theorem on massless particles: an essay

    International Nuclear Information System (INIS)

    Loebbert, F.

    2008-01-01

    In this essay we deal with the Weinberg-Witten theorem which imposes limitations on massless particles. First we motivate a classification of massless particles given by the Poincare group as the symmetry group of Minkowski spacetime. We then use the fundamental structure of the background in the form of Poincare covariance to derive restrictions on charged massless particles known as the Weinberg-Witten theorem. We address possible misunderstandings in the proof of this theorem motivated by several papers on this topic. In the last section the consequences of the theorem are discussed. We treat it in the context of known particles and as a constraint for emergent theories. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  19. Gyrokinetic Simulation of Global Turbulent Transport Properties in Tokamak Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.X.; Lin, Z.; Tang, W.M.; Lee, W.W.; Ethier, S.; Lewandowski, J.L.V.; Rewoldt, G.; Hahm, T.S.; Manickam, J.

    2006-01-01

    A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak experiments is described. It incorporates the comprehensive influence of noncircular cross section, realistic plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, and Coulomb collisions. An interesting result of global turbulence development in a shaped tokamak plasma is presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless system. Our simulation results suggest that the zonal flows can drive turbulence. However, this process is too weak to be an effective zonal flow saturation mechanism.

  20. Theorems of low energy in Compton scattering

    International Nuclear Information System (INIS)

    Chahine, J.

    1984-01-01

    We have obtained the low energy theorems in Compton scattering to third and fouth order in the frequency of the incident photon. Next we calculated the polarized cross section to third order and the unpolarized to fourth order in terms of partial amplitudes not covered by the low energy theorems, what will permit the experimental determination of these partial amplitudes. (Author) [pt

  1. Zamolodchikov's c-theorem and string effective actions

    International Nuclear Information System (INIS)

    Mavromatos, N.E.; Miramontes, J.L.

    1988-01-01

    Zamolodchikov's c-theorem for 2D renormalisable field theories is presented in a way which allows for a straightforward application to the case of bosonic σ-models. As a consistency check in the latter case, the Curci-Paffuti relation is rederived. It is also shown that the 'metric' in coupling constant space in this case is a c-number function of the backgrounds. Attempts to derive off-shell functional relations between the Weyl anomaly coefficients and field variations of string effective actions, compatible with the c-theorem, are discussed by emphasising the necessity of performing explicit perturbative calculations in order to arrive at definite conclusions. Comments concerning the extension of the c-theorem to the case of supersymmetric and heterotic σ-models are also made. (orig.)

  2. The implementation of a toroidal limiter model into the gyrokinetic code ELMFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Leerink, S.; Janhunen, S.J.; Kiviniemi, T.P.; Nora, M. [Euratom-Tekes Association, Helsinki University of Technology (Finland); Heikkinen, J.A. [Euratom-Tekes Association, VTT, P.O. Box 1000, FI-02044 VTT (Finland); Ogando, F. [Universidad Nacional de Educacion a Distancia, Madrid (Spain)

    2008-03-15

    The ELMFIRE full nonlinear gyrokinetic simulation code has been developed for calculations of plasma evolution and dynamics of turbulence in tokamak geometry. The code is applicable for calculations of strong perturbations in particle distribution function, rapid transients and steep gradients in plasma. Benchmarking against experimental reflectometry data from the FT2 tokamak is being discussed and in this paper a model for comparison and studying poloidal velocity is presented. To make the ELMFIRE code suitable for scrape-off layer simulations a simplified toroidal limiter model has been implemented. The model is be discussed and first results are presented. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. There is No Quantum Regression Theorem

    International Nuclear Information System (INIS)

    Ford, G.W.; OConnell, R.F.

    1996-01-01

    The Onsager regression hypothesis states that the regression of fluctuations is governed by macroscopic equations describing the approach to equilibrium. It is here asserted that this hypothesis fails in the quantum case. This is shown first by explicit calculation for the example of quantum Brownian motion of an oscillator and then in general from the fluctuation-dissipation theorem. It is asserted that the correct generalization of the Onsager hypothesis is the fluctuation-dissipation theorem. copyright 1996 The American Physical Society

  4. Gyrokinetic modelling of the quasilinear particle flux for plasmas with neutral-beam fuelling

    Science.gov (United States)

    Narita, E.; Honda, M.; Nakata, M.; Yoshida, M.; Takenaga, H.; Hayashi, N.

    2018-02-01

    A quasilinear particle flux is modelled based on gyrokinetic calculations. The particle flux is estimated by determining factors, namely, coefficients of off-diagonal terms and a particle diffusivity. In this paper, the methodology to estimate the factors is presented using a subset of JT-60U plasmas. First, the coefficients of off-diagonal terms are estimated by linear gyrokinetic calculations. Next, to obtain the particle diffusivity, a semi-empirical approach is taken. Most experimental analyses for particle transport have assumed that turbulent particle fluxes are zero in the core region. On the other hand, even in the stationary state, the plasmas in question have a finite turbulent particle flux due to neutral-beam fuelling. By combining estimates of the experimental turbulent particle flux and the coefficients of off-diagonal terms calculated earlier, the particle diffusivity is obtained. The particle diffusivity should reflect a saturation amplitude of instabilities. The particle diffusivity is investigated in terms of the effects of the linear instability and linear zonal flow response, and it is found that a formula including these effects roughly reproduces the particle diffusivity. The developed framework for prediction of the particle flux is flexible to add terms neglected in the current model. The methodology to estimate the quasilinear particle flux requires so low computational cost that a database consisting of the resultant coefficients of off-diagonal terms and particle diffusivity can be constructed to train a neural network. The development of the methodology is the first step towards a neural-network-based particle transport model for fast prediction of the particle flux.

  5. Adiabatic Theorem for Quantum Spin Systems

    Science.gov (United States)

    Bachmann, S.; De Roeck, W.; Fraas, M.

    2017-08-01

    The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

  6. Theorem Proving In Higher Order Logics

    Science.gov (United States)

    Carreno, Victor A. (Editor); Munoz, Cesar A.; Tahar, Sofiene

    2002-01-01

    The TPHOLs International Conference serves as a venue for the presentation of work in theorem proving in higher-order logics and related areas in deduction, formal specification, software and hardware verification, and other applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume. Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in theorem proving systems with those needing such libraries for their applications. Many of the major higher order theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support. This work is of interest in a number of application areas, such as formal methods development for hardware and software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by their authors at the workshop venue, and one invited talk.

  7. The Surprise Examination Paradox and the Second Incompleteness Theorem

    OpenAIRE

    Kritchman, Shira; Raz, Ran

    2010-01-01

    We give a new proof for Godel's second incompleteness theorem, based on Kolmogorov complexity, Chaitin's incompleteness theorem, and an argument that resembles the surprise examination paradox. We then go the other way around and suggest that the second incompleteness theorem gives a possible resolution of the surprise examination paradox. Roughly speaking, we argue that the flaw in the derivation of the paradox is that it contains a hidden assumption that one can prove the consistency of the...

  8. COMPARISON THEOREM OF BACKWARD DOUBLY STOCHASTIC DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper is devoted to deriving a comparison theorem of solutions to backward doubly stochastic differential equations driven by Brownian motion and backward It-Kunita integral. By the application of this theorem, we give an existence result of the solutions to these equations with continuous coefficients.

  9. The spectral problem of global microinstabilities in tokamak-like plasmas using a gyrokinetic model

    International Nuclear Information System (INIS)

    Brunner, S.; Vaclavik, J.; Fivaz, M.; Appert, K.

    1996-01-01

    Tokamak-like plasmas are modeled by a periodic cylindrical system with magnetic shear and realistic density and temperature profiles. Linear electrostatic microinstabilities in such plasmas are studied by solving the eigenvalue problem starting from gyrokinetic theory. The actual eigenvalue equation is then of integral type. With this approach, finite Larmor radius (FLR) effects to all orders are taken into account. FLR effects provide for the only radial coupling in a cylinder and to lowest order correspond to polarization drift. This effectively one-dimensional problem helped us to gain useful knowledge for solving gyrokinetic equations in a curved system. When searching for the eigenfrequencies of the global modes, two different methods have been tested and compared. Either the true eigenvalue problem is solved by finding the zeros of the characteristic equation, or one considers a system driven by an antenna and looks for resonances in the power response of the plasma. In addition, mode structures were computed as well in direct as in Fourier space. The advantages and disadvantages of these various approaches are discussed. Ion temperature gradient (ITG) instabilities are studied over a wide range of parameters and for wavelengths perpendicular to the magnetic field down to the scale of ion Larmor radii. Flute instabilities driven by magnetic curvature drifts are also considered. Some of these results are compared with a time evolution PIC code. Such comparisons are valuable as the convergence of PIC results is often questioned. Work considering true toroidal geometry is in progress

  10. Generalizations of the Nash Equilibrium Theorem in the KKM Theory

    Directory of Open Access Journals (Sweden)

    Sehie Park

    2010-01-01

    Full Text Available The partial KKM principle for an abstract convex space is an abstract form of the classical KKM theorem. In this paper, we derive generalized forms of the Ky Fan minimax inequality, the von Neumann-Sion minimax theorem, the von Neumann-Fan intersection theorem, the Fan-type analytic alternative, and the Nash equilibrium theorem for abstract convex spaces satisfying the partial KKM principle. These results are compared with previously known cases for G-convex spaces. Consequently, our results unify and generalize most of previously known particular cases of the same nature. Finally, we add some detailed historical remarks on related topics.

  11. Testing the No-Hair Theorem with Sgr A*

    Directory of Open Access Journals (Sweden)

    Tim Johannsen

    2012-01-01

    Full Text Available The no-hair theorem characterizes the fundamental nature of black holes in general relativity. This theorem can be tested observationally by measuring the mass and spin of a black hole as well as its quadrupole moment, which may deviate from the expected Kerr value. Sgr A*, the supermassive black hole at the center of the Milky Way, is a prime candidate for such tests thanks to its large angular size, high brightness, and rich population of nearby stars. In this paper, I discuss a new theoretical framework for a test of the no-hair theorem that is ideal for imaging observations of Sgr A* with very long baseline interferometry (VLBI. The approach is formulated in terms of a Kerr-like spacetime that depends on a free parameter and is regular everywhere outside of the event horizon. Together with the results from astrometric and timing observations, VLBI imaging of Sgr A* may lead to a secure test of the no-hair theorem.

  12. Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinate

    International Nuclear Information System (INIS)

    Fivaz, M.; Brunner, S.; Ridder, G. de; Sauter, O.; Tran, T.M.; Vaclavik, J.; Villard, L.; Appert, K.

    1997-08-01

    We present a fully-global linear gyrokinetic simulation code (GYGLES) aimed at describing the instable spectrum of the ion-temperature-gradient modes in toroidal geometry. We formulate the Particle-In-Cell method with finite elements defined in magnetic coordinates, which provides excellent numerical convergence properties. The poloidal mode structure corresponding to k // =0 is extracted without approximation from the equations, which reduces drastically the numerical resolution needed. The code can simulate routinely modes with both very long and very short toroidal wavelengths, can treat realistic (MHD) equilibria of any size and runs on a massively parallel computer. (author) 10 figs., 28 refs

  13. Quantization of Chirikov Map and Quantum KAM Theorem.

    Science.gov (United States)

    Shi, Kang-Jie

    KAM theorem is one of the most important theorems in classical nonlinear dynamics and chaos. To extend KAM theorem to the regime of quantum mechanics, we first study the quantum Chirikov map, whose classical counterpart provides a good example of KAM theorem. Under resonance condition 2pihbar = 1/N, we obtain the eigenstates of the evolution operator of this system. We find that the wave functions in the coherent state representation (CSR) are very similar to the classical trajectories. In particular, some of these wave functions have wall-like structure at the locations of classical KAM curves. We also find that a local average is necessary for a Wigner function to approach its classical limit in the phase space. We then study the general problem theoretically. Under similar conditions for establishing the classical KAM theorem, we obtain a quantum extension of KAM theorem. By constructing successive unitary transformations, we can greatly reduce the perturbation part of a near-integrable Hamiltonian system in a region associated with a Diophantine number {rm W}_{o}. This reduction is restricted only by the magnitude of hbar.. We can summarize our results as follows: In the CSR of a nearly integrable quantum system, associated with a Diophantine number {rm W}_ {o}, there is a band near the corresponding KAM torus of the classical limit of the system. In this band, a Gaussian wave packet moves quasi-periodically (and remain close to the KAM torus) for a long time, with possible diffusion in both the size and the shape of its wave packet. The upper bound of the tunnelling rate out of this band for the wave packet can be made much smaller than any given power of hbar, if the original perturbation is sufficiently small (but independent of hbar). When hbarto 0, we reproduce the classical KAM theorem. For most near-integrable systems the eigenstate wave function in the above band can either have a wall -like structure or have a vanishing amplitude. These conclusions

  14. Cosmological constant, inflation and no-cloning theorem

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qingguo, E-mail: huangqg@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Lin Fengli, E-mail: linfengli@phy.ntnu.edu.tw [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Physics, National Taiwan Normal University, Taipei, 116, Taiwan (China)

    2012-05-30

    From the viewpoint of no-cloning theorem we postulate a relation between the current accelerated expansion of our universe and the inflationary expansion in the very early universe. It implies that the fate of our universe should be in a state with accelerated expansion. Quantitatively we find that the no-cloning theorem leads to a lower bound on the cosmological constant which is compatible with observations.

  15. Elastic hadron scattering and optical theorem

    CERN Document Server

    Lokajicek, Milos V.; Prochazka, Jiri

    2014-01-01

    In principle all contemporary phenomenological models of elastic hadronic scattering have been based on the assumption of optical theorem validity that has been overtaken from optics. It will be shown that the given theorem which has not been actually proved cannot be applied to short-ranged strong interactions in any case. The actual progress in description of collision processes might then exist only if the initial states are specified on the basis of impact parameter values of colliding particles and probability dependence on this parameter is established.

  16. Two fixed point theorems on quasi-metric spaces via mw- distances

    Energy Technology Data Exchange (ETDEWEB)

    Alegre, C.

    2017-07-01

    In this paper we prove a Banach-type fixed point theorem and a Kannan-type theorem in the setting of quasi-metric spaces using the notion of mw-distance. These theorems generalize some results that have recently appeared in the literature. (Author)

  17. On the Riesz representation theorem and integral operators ...

    African Journals Online (AJOL)

    We present a Riesz representation theorem in the setting of extended integration theory as introduced in [6]. The result is used to obtain boundedness theorems for integral operators in the more general setting of spaces of vector valued extended integrable functions. Keywords: Vector integral, integral operators, operator ...

  18. A generalization of the virial theorem for strongly singular potentials

    International Nuclear Information System (INIS)

    Gesztesy, F.; Pittner, L.

    1978-09-01

    Using scale transformations the authors prove a generalization of the virial theorem for the eigenfunctions of non-relativistic Schroedinger Hamiltonians which are defined as the Friedrichs extension of strongly singular differential operators. The theorem also applies to situations where the ground state has divergent kinetic and potential energy and thus the usual version of the virial theorem becomes meaningless. (Auth.)

  19. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  20. Restrictions placed on constitutive relations by angular momentum balance and Galilean invariance

    Science.gov (United States)

    Rajagopal, K. R.; Srinivasa, A. R.

    2013-04-01

    In this note, we will show that for describing the response of a wide class of bodies, it is sufficient to invoke only the balance of angular momentum to obtain the restrictions on the constitutive functions that one obtains by appealing to frame indifference. While this result is known for hyperelastic materials (although it is not found in any standard text on the subject), we extend this result to classes of elasto-plastic and viscoelastic materials as well as for a class of implicit constitutive equations for viscous fluids. In particular, we show that for a class of bodies capable of instantaneous elastic response that is dictated by a stored energy function, the symmetry of the Cauchy stress alone is enough to obtain all the necessary restrictions. The result is related to Noether's theorem; if we know that there is a conserved quantity (i.e., angular momentum), we can then show that the energy function must be invariant under a group of transformations. For a class of generalized Newtonian fluids (including the Navier Stokes fluid and the Bingham fluid), the symmetry of the stress and Galilean invariance of the response functions are all that are required to obtain restrictions that are usually obtained by enforcing frame indifference.

  1. Logic for computer science foundations of automatic theorem proving

    CERN Document Server

    Gallier, Jean H

    2015-01-01

    This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in fir

  2. A Systematic Method for Verification and Validation of Gyrokinetic Microstability Codes

    Energy Technology Data Exchange (ETDEWEB)

    Bravenec, Ronald [Fourth State Research, Austin, TX (United States)

    2017-11-14

    My original proposal for the period Feb. 15, 2014 through Feb. 14, 2017 called for an integrated validation and verification effort carried out by myself with collaborators. The validation component would require experimental profile and power-balance analysis. In addition, it would require running the gyrokinetic codes varying the input profiles within experimental uncertainties to seek agreement with experiment before discounting a code as invalidated. Therefore, validation would require a major increase of effort over my previous grant periods which covered only code verification (code benchmarking). Consequently, I had requested full-time funding. Instead, I am being funded at somewhat less than half time (5 calendar months per year). As a consequence, I decided to forego the validation component and to only continue the verification efforts.

  3. Quantum voting and violation of Arrow's impossibility theorem

    Science.gov (United States)

    Bao, Ning; Yunger Halpern, Nicole

    2017-06-01

    We propose a quantum voting system in the spirit of quantum games such as the quantum prisoner's dilemma. Our scheme enables a constitution to violate a quantum analog of Arrow's impossibility theorem. Arrow's theorem is a claim proved deductively in economics: Every (classical) constitution endowed with three innocuous-seeming properties is a dictatorship. We construct quantum analogs of constitutions, of the properties, and of Arrow's theorem. A quantum version of majority rule, we show, violates this quantum Arrow conjecture. Our voting system allows for tactical-voting strategies reliant on entanglement, interference, and superpositions. This contribution to quantum game theory helps elucidate how quantum phenomena can be harnessed for strategic advantage.

  4. Flux tube gyrokinetic simulations of the edge pedestal

    Science.gov (United States)

    Parker, Scott; Wan, Weigang; Chen, Yang

    2011-10-01

    The linear instabilities of DIII-D H-mode pedestal are studied with gyrokinetic micro-turbulence simulations. The simulation code GEM is an electromagnetic δf code with global tokamak geometry in the form of Miller equilibrium. Local flux tube simulations are carried out for multiple positions of two DIII-D profiles: shot #98889 and shot #131997. Near the top of the pedestal, the instability is clearly ITG. The dominant instability of the pedestal appears at the steep gradient region, and it is identified as a low frequency mode mostly driven by electron temperature gradient. The mode propagates along the electron diamagnetic direction for low n and may propagate along the ion direction for high n. At some positions near the steep gradient region, an ion instability is found which shows some characteristics of kinetic ballooning mode (KBM). These results will be compared to the results of E. Wang et al. and D. Fulton et al. in the same session. We thank R. Groebner and P. Snyder for providing experimental profiles and helpful discussions.

  5. Generalized Perron--Frobenius Theorem for Nonsquare Matrices

    OpenAIRE

    Avin, Chen; Borokhovich, Michael; Haddad, Yoram; Kantor, Erez; Lotker, Zvi; Parter, Merav; Peleg, David

    2013-01-01

    The celebrated Perron--Frobenius (PF) theorem is stated for irreducible nonnegative square matrices, and provides a simple characterization of their eigenvectors and eigenvalues. The importance of this theorem stems from the fact that eigenvalue problems on such matrices arise in many fields of science and engineering, including dynamical systems theory, economics, statistics and optimization. However, many real-life scenarios give rise to nonsquare matrices. A natural question is whether the...

  6. Goedel incompleteness theorems and the limits of their applicability. I

    International Nuclear Information System (INIS)

    Beklemishev, Lev D

    2011-01-01

    This is a survey of results related to the Goedel incompleteness theorems and the limits of their applicability. The first part of the paper discusses Goedel's own formulations along with modern strengthenings of the first incompleteness theorem. Various forms and proofs of this theorem are compared. Incompleteness results related to algorithmic problems and mathematically natural examples of unprovable statements are discussed. Bibliography: 68 titles.

  7. Goedel incompleteness theorems and the limits of their applicability. I

    Energy Technology Data Exchange (ETDEWEB)

    Beklemishev, Lev D [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-01-25

    This is a survey of results related to the Goedel incompleteness theorems and the limits of their applicability. The first part of the paper discusses Goedel's own formulations along with modern strengthenings of the first incompleteness theorem. Various forms and proofs of this theorem are compared. Incompleteness results related to algorithmic problems and mathematically natural examples of unprovable statements are discussed. Bibliography: 68 titles.

  8. H-theorem in quantum physics.

    Science.gov (United States)

    Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.

  9. Physical approach to price momentum and its application to momentum strategy

    Science.gov (United States)

    Choi, Jaehyung

    2014-12-01

    We introduce various quantitative and mathematical definitions for price momentum of financial instruments. The price momentum is quantified with velocity and mass concepts originated from the momentum in physics. By using the physical momentum of price as a selection criterion, the weekly contrarian strategies are implemented in South Korea KOSPI 200 and US S&P 500 universes. The alternative strategies constructed by the physical momentum achieve the better expected returns and reward-risk measures than those of the traditional contrarian strategy in weekly scale. The portfolio performance is not understood by the Fama-French three-factor model.

  10. Leaning on Socrates to Derive the Pythagorean Theorem

    Science.gov (United States)

    Percy, Andrew; Carr, Alistair

    2010-01-01

    The one theorem just about every student remembers from school is the theorem about the side lengths of a right angled triangle which Euclid attributed to Pythagoras when writing Proposition 47 of "The Elements". Usually first met in middle school, the student will be continually exposed throughout their mathematical education to the…

  11. Four theorems on the psychometric function.

    Science.gov (United States)

    May, Keith A; Solomon, Joshua A

    2013-01-01

    In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull "slope" parameter, β, can be approximated by β(Noise) x β(Transducer), where β(Noise) is the β of the Weibull function that fits best to the cumulative noise distribution, and β(Transducer) depends on the transducer. We derive general expressions for β(Noise) and β(Transducer), from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when d' ∝ (Δx)(b), β ≈ β(Noise) x b. We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4-0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull β reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of β for contrast discrimination suggests that, if internal noise is stimulus

  12. Four theorems on the psychometric function.

    Directory of Open Access Journals (Sweden)

    Keith A May

    Full Text Available In a 2-alternative forced-choice (2AFC discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull "slope" parameter, β, can be approximated by β(Noise x β(Transducer, where β(Noise is the β of the Weibull function that fits best to the cumulative noise distribution, and β(Transducer depends on the transducer. We derive general expressions for β(Noise and β(Transducer, from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when d' ∝ (Δx(b, β ≈ β(Noise x b. We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4-0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull β reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of β for contrast discrimination suggests that, if internal noise is

  13. Gyrokinetic Vlasov code including full three-dimensional geometry of experiments

    International Nuclear Information System (INIS)

    Nunami, Masanori; Watanabe, Tomohiko; Sugama, Hideo

    2010-03-01

    A new gyrokinetic Vlasov simulation code, GKV-X, is developed for investigating the turbulent transport in magnetic confinement devices with non-axisymmetric configurations. Effects of the magnetic surface shapes in a three-dimensional equilibrium obtained from the VMEC code are accurately incorporated. Linear simulations of the ion temperature gradient instabilities and the zonal flows in the Large Helical Device (LHD) configuration are carried out by the GKV-X code for a benchmark test against the GKV code. The frequency, the growth rate, and the mode structure of the ion temperature gradient instability are influenced by the VMEC geometrical data such as the metric tensor components of the Boozer coordinates for high poloidal wave numbers, while the difference between the zonal flow responses obtained by the GKV and GKV-X codes is found to be small in the core LHD region. (author)

  14. On the Leray-Hirsch Theorem for the Lichnerowicz cohomology

    International Nuclear Information System (INIS)

    Ait Haddoul, Hassan

    2004-03-01

    The purpose of this paper is to prove the Leray-Hirsch theorem for the Lichnerowicz; cohomology with respect to basic and vertical closed 1-forms. This is a generalization of the Kfirmeth theorem to fiber bundles. (author)

  15. Advances in comprehensive gyrokinetic simulations of transport in tokamaks

    International Nuclear Information System (INIS)

    Waltz, R.E.; Candy, J.; Hinton, F.L.; Estrada-Mila, C.; Kinsey, J.E.

    2005-01-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ*) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated. (author)

  16. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    International Nuclear Information System (INIS)

    WALTZ, R. E; CANDY, J; HINTON, F. L; ESTRADA-MILA, C; KINSEY, J.E

    2004-01-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ * ) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated

  17. A Note on a Broken-Cycle Theorem for Hypergraphs

    Directory of Open Access Journals (Sweden)

    Trinks Martin

    2014-08-01

    Full Text Available Whitney’s Broken-cycle Theorem states the chromatic polynomial of a graph as a sum over special edge subsets. We give a definition of cycles in hypergraphs that preserves the statement of the theorem there

  18. Kochen-Specker theorem studied with neutron interferometer.

    Science.gov (United States)

    Hasegawa, Yuji; Durstberger-Rennhofer, Katharina; Sponar, Stephan; Rauch, Helmut

    2011-04-01

    The Kochen-Specker theorem shows the incompatibility of noncontextual hidden variable theories with quantum mechanics. Quantum contextuality is a more general concept than quantum non-locality which is quite well tested in experiments using Bell inequalities. Within neutron interferometry we performed an experimental test of the Kochen-Specker theorem with an inequality, which identifies quantum contextuality, by using spin-path entanglement of single neutrons. Here entanglement is achieved not between different particles, but between degrees of freedom of a single neutron, i.e., between spin and path degree of freedom. Appropriate combinations of the spin analysis and the position of the phase shifter allow an experimental verification of the violation of an inequality derived from the Kochen-Specker theorem. The observed violation 2.291±0.008≰1 clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.

  19. Kochen-Specker theorem studied with neutron interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yuji, E-mail: Hasegawa@ati.ac.a [Atominstitut, Technische Universitaet Wien, Stadionallee 2, A-1020 Wien (Austria); Durstberger-Rennhofer, Katharina; Sponar, Stephan; Rauch, Helmut [Atominstitut, Technische Universitaet Wien, Stadionallee 2, A-1020 Wien (Austria)

    2011-04-01

    The Kochen-Specker theorem shows the incompatibility of noncontextual hidden variable theories with quantum mechanics. Quantum contextuality is a more general concept than quantum non-locality which is quite well tested in experiments using Bell inequalities. Within neutron interferometry we performed an experimental test of the Kochen-Specker theorem with an inequality, which identifies quantum contextuality, by using spin-path entanglement of single neutrons. Here entanglement is achieved not between different particles, but between degrees of freedom of a single neutron, i.e., between spin and path degree of freedom. Appropriate combinations of the spin analysis and the position of the phase shifter allow an experimental verification of the violation of an inequality derived from the Kochen-Specker theorem. The observed violation 2.291{+-}0.008 not {<=} 1 clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.

  20. A note on the homomorphism theorem for hemirings

    Directory of Open Access Journals (Sweden)

    D. M. Olson

    1978-01-01

    Full Text Available The fundamental homomorphism theorem for rings is not generally applicable in hemiring theory. In this paper, we show that for the class of N-homomorphism of hemirings the fundamental theorem is valid. In addition, the concept of N-homomorphism is used to prove that every hereditarily semisubtractive hemiring is of type (K.

  1. Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria

    International Nuclear Information System (INIS)

    Frieman, E.A.; Chen, L.

    1981-10-01

    A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency

  2. Converse Barrier Certificate Theorems

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither...

  3. Direct and converse theorems the elements of symbolic logic

    CERN Document Server

    Gradshtein, I S; Stark, M; Ulam, S

    1963-01-01

    Direct and Converse Theorems: The Elements of Symbolic Logic, Third Edition explains the logical relations between direct, converse, inverse, and inverse converse theorems, as well as the concept of necessary and sufficient conditions. This book consists of two chapters. The first chapter is devoted to the question of negation. Connected with the question of the negation of a proposition are interrelations of the direct and converse and also of the direct and inverse theorems; the interrelations of necessary and sufficient conditions; and the definition of the locus of a point. The second chap

  4. Generalized Kutta–Joukowski theorem for multi-vortex and multi-airfoil flow with vortex production — A general model

    Directory of Open Access Journals (Sweden)

    Bai Chenyuan

    2014-10-01

    Full Text Available By using a special momentum approach and with the help of interchange between singularity velocity and induced flow velocity, we derive in a physical way explicit force formulas for two-dimensional inviscid flow involving multiple bound and free vortices, multiple airfoils, and vortex production. These force formulas hold individually for each airfoil thus allowing for force decomposition, and the contributions to forces from singularities (such as bound and image vortices, sources, and doublets and bodies out of an airfoil are related to their induced velocities at the locations of singularities inside this airfoil. The force contribution due to vortex production is related to the vortex production rate and the distance between each pair of vortices in production, thus frame-independent. The formulas are validated against a number of standard problems. These force formulas, which generalize the classic Kutta–Joukowski theorem (for a single bound vortex and the recent generalized Lagally theorem (for problems without a bound vortex and vortex production to more general cases, can be used to identify or understand the roles of outside vortices and bodies on the forces of the actual body, optimize arrangement of outside vortices and bodies for force enhancement or reduction, and derive analytical force formulas once the flow field is given or known.

  5. Full radius linear and nonlinear gyrokinetic simulations for tokamaks and stellarators: Zonal flows, applied E x B flows, trapped electrons and finite beta

    International Nuclear Information System (INIS)

    Villard, L.; Allfrey, S.J.; Bottino, A.

    2003-01-01

    The aim of this paper is to report on recent advances made on global gyrokinetic simulations of Ion Temperature Gradient modes (ITG) and other microinstabilities. The nonlinear development and saturation of ITG modes and the role of E x B zonal flows are studied with a global nonlinear δ f formulation that retains parallel nonlinearity and thus allows for a check of the energy conservation property as a means to verify the quality of the numerical simulation. Due to an optimised loading technique the conservation property is satisfied with an unprecedented quality well into the nonlinear stage. The zonal component of the perturbation establishes a quasi-steady state with regions of ITG suppression, strongly reduced radial energy flux and steepened effective temperature profile alternating with regions of higher ITG mode amplitudes, larger radial energy flux and flattened effective temperature profile. A semi-Lagrangian approach free of statistical noise is proposed as an alternative to the nonlinear δf formulation. An ASDEX-Upgrade experiment with an Internal Transport Barrier (ITB) is analysed with a global gyrokinetic code that includes trapped electron dynamics. The weakly destabilizing effect of trapped electron dynamics on ITG modes in an axisymmetric bumpy configuration modelling W7-X is shown in global linear simulations that retain the full electron dynamics. Finite β effects on microinstabilities are investigated with a linear global spectral electromagnetic gyrokinetic formulation. The radial global structure of electromagnetic modes shows a resonant behaviour with rational q values. (author)

  6. Level comparison theorems and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Baumgartner, B.; Grosse, H.

    1986-01-01

    The sign of the Laplacian of the spherical symmetric potential determines the order of energy levels with the same principal Coulomb quantum number. This recently derived theorem has been generalized, extended and applied to various situations in particle, nuclear and atomic physics. Besides a comparison theorem the essential step was the use of supersymmetric quantum mechanics. Recently worked out applications of supersymmetric quantum mechanics to index problems of Dirac operators are mentioned. (Author)

  7. Generalized Panofsky-Wenzel theorem and hybrid coupling

    CERN Document Server

    Smirnov, A V

    2001-01-01

    The Panofsky-Wenzel theorem is reformulated for the case in which phase slippage between the wave and beam is not negligible. The extended theorem can be applied in analysis of detuned waveguides, RF injectors, bunchers, some tapered waveguides or high-power sources and multi-cell cavities for dipole and higher order modes. As an example, the relative contribution of the Lorentz' component of the deflecting force is calculated for a conventional circular disk-loaded waveguide.

  8. Joint probability distributions and fluctuation theorems

    International Nuclear Information System (INIS)

    García-García, Reinaldo; Kolton, Alejandro B; Domínguez, Daniel; Lecomte, Vivien

    2012-01-01

    We derive various exact results for Markovian systems that spontaneously relax to a non-equilibrium steady state by using joint probability distribution symmetries of different entropy production decompositions. The analytical approach is applied to diverse problems such as the description of the fluctuations induced by experimental errors, for unveiling symmetries of correlation functions appearing in fluctuation–dissipation relations recently generalized to non-equilibrium steady states, and also for mapping averages between different trajectory-based dynamical ensembles. Many known fluctuation theorems arise as special instances of our approach for particular twofold decompositions of the total entropy production. As a complement, we also briefly review and synthesize the variety of fluctuation theorems applying to stochastic dynamics of both continuous systems described by a Langevin dynamics and discrete systems obeying a Markov dynamics, emphasizing how these results emerge from distinct symmetries of the dynamical entropy of the trajectory followed by the system. For Langevin dynamics, we embed the 'dual dynamics' with a physical meaning, and for Markov systems we show how the fluctuation theorems translate into symmetries of modified evolution operators

  9. Fully Quantum Fluctuation Theorems

    Science.gov (United States)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  10. Deviations from Wick's theorem in the canonical ensemble

    Science.gov (United States)

    Schönhammer, K.

    2017-07-01

    Wick's theorem for the expectation values of products of field operators for a system of noninteracting fermions or bosons plays an important role in the perturbative approach to the quantum many-body problem. A finite-temperature version holds in the framework of the grand canonical ensemble, but not for the canonical ensemble appropriate for systems with fixed particle number such as ultracold quantum gases in optical lattices. Here we present formulas for expectation values of products of field operators in the canonical ensemble using a method in the spirit of Gaudin's proof of Wick's theorem for the grand canonical case. The deviations from Wick's theorem are examined quantitatively for two simple models of noninteracting fermions.

  11. Field momentum, inertial momentum and gravitational momentum of a system of bodies in the post-Newtonian approximation

    Energy Technology Data Exchange (ETDEWEB)

    Jankiewicz, Cz; Sikora, D [Wyzsza Szkola Pedagogiczna, Rzeszow (Poland)

    1980-01-01

    It is shwon that in the post-Newtonian approximation the gravitational momentum of a system of point particles is equal to the sum of field momentum and inertial momentum only in two classes of coordinate systems. This equality may be treated as a natural condition on a coordinate system in which the generally covariant Einstein equations are to be solved.

  12. On momentum conservation

    International Nuclear Information System (INIS)

    Karastoyanov, A.

    1990-01-01

    The relativistic law of momentum transformation shows that the sum of momenta of even isolated particles is not invariable in all inertial reference systems. This is connected with the relativistic change of kinetic energy and mass of a system of particles in result of internal interactions. The paper proposes a short and simple proof on the necessity of potential momentum. The momentum conservation law (for all interactions in the Minkowski world) is expressed in a generalized form. The constancy of the sum of kinetic and potential momentum of closed system of particles is shown. The energy conservation is a necessary condition. The potential momentum is defined as usual (e.g. as in the Berkeley Physics Course). (author). 13 refs

  13. Sources of intrinsic rotation in the low-flow ordering

    International Nuclear Information System (INIS)

    Parra, Felix I.; Barnes, Michael; Catto, Peter J.

    2011-01-01

    A low flow, δf gyrokinetic formulation to obtain the intrinsic rotation profiles is presented. The momentum conservation equation in the low-flow ordering contains new terms, neglected in previous first-principles formulations, that may explain the intrinsic rotation observed in tokamaks in the absence of external sources of momentum. The intrinsic rotation profile depends on the density and temperature profiles and on the up-down asymmetry.

  14. Action-angle variables and a KAM theorem for b-Poisson manifolds

    OpenAIRE

    Kiesenhofer, Anna; Miranda Galcerán, Eva; Scott, Geoffrey

    2015-01-01

    In this article we prove an action-angle theorem for b-integrable systems on b-Poisson manifolds improving the action-angle theorem contained in [14] for general Poisson manifolds in this setting. As an application, we prove a KAM-type theorem for b-Poisson manifolds. (C) 2015 Elsevier Masson SAS. All rights reserved.

  15. A new proof of the positive energy theorem

    International Nuclear Information System (INIS)

    Witten, E.

    1981-01-01

    A new proof is given of the positive energy theorem of classical general relativity. Also, a new proof is given that there are no asymptotically Euclidean gravitational instantons. (These theorems have been proved previously, by a different method, by Schoen and Yau). The relevance of these results to the stability of Minkowski space is discussed. (orig.)

  16. Uniqueness theorems for differential pencils with eigenparameter boundary conditions and transmission conditions

    Science.gov (United States)

    Yang, Chuan-Fu

    Inverse spectral problems are considered for differential pencils with boundary conditions depending polynomially on the spectral parameter and with a finite number of transmission conditions. We give formulations of the associated inverse problems such as Titchmarsh-Weyl theorem, Hochstadt-Lieberman theorem and Mochizuki-Trooshin theorem, and prove corresponding uniqueness theorems. The obtained results are generalizations of the similar results for the classical Sturm-Liouville operator on a finite interval.

  17. Virtual continuity of the measurable functions of several variables, and Sobolev embedding theorems

    OpenAIRE

    Vershik, Anatoly; Zatitskiy, Pavel; Petrov, Fedor

    2013-01-01

    Classical Luzin's theorem states that the measurable function of one variable is "almost" continuous. This is not so anymore for functions of several variables. The search of right analogue of the Luzin theorem leads to a notion of virtually continuous functions of several variables. This probably new notion appears implicitly in the statements like embeddings theorems and traces theorems for Sobolev spaces. In fact, it reveals their nature as theorems about virtual continuity. This notion is...

  18. The low-energy theorem of pion photoproduction using the Skyrme model

    International Nuclear Information System (INIS)

    Ikehashi, T.; Ohta, K.

    1995-01-01

    We reassess the validity of the current-algebra based low-energy theorem of pion photoproduction on the nucleon using the Skyrme model. We find that one of the off-shell electromagnetic form factors of the nucleon exhibits infrared divergence in the chiral limit. This contribution introduces an additional term to the threshold amplitude predicted by the low-energy theorem. The emergence of the additional term indicates an unavoidable necessity of off-shell form factors in deriving the low-energy theorem. In the case of neutral pion production, the new contribution to the threshold amplitude is found to be comparable in magnitude to the low-energy theorem's prediction and has the opposite sign. In the charged pion production channels, the correction to the theorem is shown to be relatively small. (orig.)

  19. Dynamic Newton-Puiseux Theorem

    DEFF Research Database (Denmark)

    Mannaa, Bassel; Coquand, Thierry

    2013-01-01

    A constructive version of Newton-Puiseux theorem for computing the Puiseux expansions of algebraic curves is presented. The proof is based on a classical proof by Abhyankar. Algebraic numbers are evaluated dynamically; hence the base field need not be algebraically closed and a factorization...

  20. A Maximal Element Theorem in FWC-Spaces and Its Applications

    Science.gov (United States)

    Hu, Qingwen; Miao, Yulin

    2014-01-01

    A maximal element theorem is proved in finite weakly convex spaces (FWC-spaces, in short) which have no linear, convex, and topological structure. Using the maximal element theorem, we develop new existence theorems of solutions to variational relation problem, generalized equilibrium problem, equilibrium problem with lower and upper bounds, and minimax problem in FWC-spaces. The results represented in this paper unify and extend some known results in the literature. PMID:24782672

  1. Pauli and the spin-statistics theorem

    CERN Document Server

    Duck, Ian M

    1997-01-01

    This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties. Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that

  2. Quantum nonlocality and reality 50 years of Bell's theorem

    CERN Document Server

    Gao, Shan

    2016-01-01

    Description Contents Resources Courses About the Authors Combining twenty-six original essays written by an impressive line-up of distinguished physicists and philosophers of physics, this anthology reflects some of the latest thoughts by leading experts on the influence of Bell's theorem on quantum physics. Essays progress from John Bell's character and background, through studies of his main work, and on to more speculative ideas, addressing the controversies surrounding the theorem, and investigating the theorem's meaning and its deep implications for the nature of physical reality. Combined, they present a powerful comment on the undeniable significance of Bell's theorem for the development of ideas in quantum physics over the past 50 years. Questions surrounding the assumptions and significance of Bell's work still inspire discussion in the field of quantum physics. Adding to this with a theoretical and philosophical perspective, this balanced anthology is an indispensable volume for students and researc...

  3. On the c-theorem in higher genus

    International Nuclear Information System (INIS)

    Espriu, D.; Mavromatos, N.E.

    1990-01-01

    We study the extension of the c-therorem to arbitrary genus Riemann surfaces. We analyze the breakdown of conformal invariance caused by the need of cutting off regions of moduli space to regulate divergences and argue how these can be absorbed in the bare couplings on the sphere. An extension of the c-theorem then follows. We also discuss the relationship between the c-theorem and the effective action when corrections from higher genera are accounted for. (orig.)

  4. The Hellman-Feynman theorem at finite temperature

    International Nuclear Information System (INIS)

    Cabrera, A.; Calles, A.

    1990-01-01

    The possibility of a kind of Hellman-Feynman theorem at finite temperature is discussed. Using the cannonical ensembles, the derivative of the internal energy is obtained when it depends explicitly on a parameter. It is found that under the low temperature regime the derivative of the energy can be obtained as the statistical average of the derivative of the hamiltonian operator. The result allows to speak of the existence of the Hellman-Feynman theorem at finite temperatures (Author)

  5. Kochen-Specker theorem studied with neutron interferometer

    International Nuclear Information System (INIS)

    Hasegawa, Yuji; Durstberger-Rennhofer, Katharina; Sponar, Stephan; Rauch, Helmut

    2011-01-01

    The Kochen-Specker theorem shows the incompatibility of noncontextual hidden variable theories with quantum mechanics. Quantum contextuality is a more general concept than quantum non-locality which is quite well tested in experiments using Bell inequalities. Within neutron interferometry we performed an experimental test of the Kochen-Specker theorem with an inequality, which identifies quantum contextuality, by using spin-path entanglement of single neutrons. Here entanglement is achieved not between different particles, but between degrees of freedom of a single neutron, i.e., between spin and path degree of freedom. Appropriate combinations of the spin analysis and the position of the phase shifter allow an experimental verification of the violation of an inequality derived from the Kochen-Specker theorem. The observed violation 2.291±0.008 not ≤ 1 clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.

  6. Towards the optimization of a gyrokinetic Particle-In-Cell (PIC) code on large-scale hybrid architectures

    International Nuclear Information System (INIS)

    Ohana, N; Lanti, E; Tran, T M; Brunner, S; Hariri, F; Villard, L; Jocksch, A; Gheller, C

    2016-01-01

    With the aim of enabling state-of-the-art gyrokinetic PIC codes to benefit from the performance of recent multithreaded devices, we developed an application from a platform called the “PIC-engine” [1, 2, 3] embedding simplified basic features of the PIC method. The application solves the gyrokinetic equations in a sheared plasma slab using B-spline finite elements up to fourth order to represent the self-consistent electrostatic field. Preliminary studies of the so-called Particle-In-Fourier (PIF) approach, which uses Fourier modes as basis functions in the periodic dimensions of the system instead of the real-space grid, show that this method can be faster than PIC for simulations with a small number of Fourier modes. Similarly to the PIC-engine, multiple levels of parallelism have been implemented using MPI+OpenMP [2] and MPI+OpenACC [1], the latter exploiting the computational power of GPUs without requiring complete code rewriting. It is shown that sorting particles [3] can lead to performance improvement by increasing data locality and vectorizing grid memory access. Weak scalability tests have been successfully run on the GPU-equipped Cray XC30 Piz Daint (at CSCS) up to 4,096 nodes. The reduced time-to-solution will enable more realistic and thus more computationally intensive simulations of turbulent transport in magnetic fusion devices. (paper)

  7. Strong converse theorems using Rényi entropies

    Energy Technology Data Exchange (ETDEWEB)

    Leditzky, Felix; Datta, Nilanjana [Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WB (United Kingdom); Wilde, Mark M. [Department of Physics and Astronomy, Center for Computation and Technology, Hearne Institute for Theoretical Physics, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-08-15

    We use a Rényi entropy method to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, measurement compression with quantum side information, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [preprint http://arxiv.org/abs/1404.5940 [quant-ph] (2014)], which he used to give a new proof of the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the (e, q)-plane, where e and q denote the entanglement cost and quantum communication cost, respectively. In the case of measurement compression with quantum side information, we prove a strong converse theorem for the classical communication cost, which is a new result extending the previously known weak converse. For the remaining tasks, we provide new proofs for strong converse theorems previously established using smooth entropies. For each task, we obtain the strong converse theorem from explicit bounds on the figure of merit of the task in terms of a Rényi generalization of the optimal rate. Hence, we identify candidates for the strong converse exponents for each task discussed in this paper. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched Rényi divergence. In particular, we obtain novel bounds relating these quantities, as well as the Rényi conditional mutual information, to the fidelity of two quantum states.

  8. Guided Discovery of the Nine-Point Circle Theorem and Its Proof

    Science.gov (United States)

    Buchbinder, Orly

    2018-01-01

    The nine-point circle theorem is one of the most beautiful and surprising theorems in Euclidean geometry. It establishes an existence of a circle passing through nine points, all of which are related to a single triangle. This paper describes a set of instructional activities that can help students discover the nine-point circle theorem through…

  9. A comprehensive gyrokinetic description of global electrostatic microinstabilities in a tokamak

    Science.gov (United States)

    Chowdhury, J.; Ganesh, R.; Brunner, S.; Vaclavik, J.; Villard, L.; Angelino, P.

    2009-05-01

    It is believed that low frequency microinstabilities such as ion temperature gradient (ITG) driven modes and trapped electron modes (TEMs) are largely responsible for the experimentally observed anomalous transport via the ion and electron channels in a tokamak. In the present work, a comprehensive global linear gyrokinetic model incorporating fully kinetic (trapped and passing) electrons and ions, actual ion to electron mass ratio, radial coupling, and profile variation is used to investigate the ITG driven modes and pure TEMs. These modes are found to exhibit multiscale structures in the presence of nonadiabatic passing electrons. The multiscale structure is related to the large nonadiabaticity of electrons in the vicinity of mode rational magnetic surfaces and leads to reduced mixing length estimates of transport compared to those obtained from adiabatic electron models.

  10. An extension of Brosowski-Meinardus theorem on invariant approximation

    International Nuclear Information System (INIS)

    Liaqat Ali Khan; Abdul Rahim Khan.

    1991-07-01

    We obtain a generalization of a fixed point theorem of Dotson for non-expansive mappings on star-shaped sets and then use it to prove a unified Brosowski-Meinardus theorem on invariant approximation in the setting of p-normed linear spaces. (author). 13 refs

  11. K S Krishnan's 1948 Perception of the Sampling Theorem

    Indian Academy of Sciences (India)

    K S Krishnan's 1948 Perception of the. Sampling Theorem. Raiiah Simon is a. Professor at the Institute of Mathematical. Sciences, Chennai. His primary interests are in classical and quantum optics, geometric phases, group theoretical techniques and quantum information science. Keywords. Sompling theorem, K S ...

  12. An improved version of the Mar otto Theorem

    International Nuclear Information System (INIS)

    Li Changpin; Chen Guanrong

    2003-01-01

    In 1975, Li and Yorke introduced the first precise definition of discrete chaos and established a very simple criterion for chaos in one-dimensional difference equations, 'period three implies chaos' for brevity. After three years. Marotto generalized this result to n-dimensional difference equations, showing that the existence of a snap-back repeller implies chaos in the sense of Li-Yorke. This theorem is up to now the best one in predicting and analyzing discrete chaos in multidimensional difference equations. Yet, it is well known that there exists an error in the condition of the original Marotto Theorem, and several authors had tried to correct it in different ways. In this paper, we further clarify the issue, with an improved version of the Marotto Theorem derived

  13. A remark on the energy conditions for Hawking's area theorem

    Science.gov (United States)

    Lesourd, Martin

    2018-06-01

    Hawking's area theorem is a fundamental result in black hole theory that is universally associated with the null energy condition. That this condition can be weakened is illustrated by the formulation of a strengthened version of the theorem based on an energy condition that allows for violations of the null energy condition. With the semi-classical context in mind, some brief remarks pertaining to the suitability of the area theorem and its energy condition are made.

  14. The direct Flow parametric Proof of Gauss' Divergence Theorem revisited

    OpenAIRE

    Markvorsen, Steen

    2006-01-01

    The standard proof of the divergence theorem in undergraduate calculus courses covers the theorem for static domains between two graph surfaces. We show that within first year undergraduate curriculum, the flow proof of the dynamic version of the divergence theorem - which is usually considered only much later in more advanced math courses - is comprehensible with only a little extension of the first year curriculum. Moreover, it is more intuitive than the static proof. We support this intuit...

  15. Study of no-man's land physics in the total-f gyrokinetic code XGC1

    Science.gov (United States)

    Ku, Seung Hoe; Chang, C. S.; Lang, J.

    2014-10-01

    While the ``transport shortfall'' in the ``no-man's land'' has been observed often in delta-f codes, it has not yet been observed in the global total-f gyrokinetic particle code XGC1. Since understanding the interaction between the edge and core transport appears to be a critical element in the prediction for ITER performance, understanding the no-man's land issue is an important physics research topic. Simulation results using the Holland case will be presented and the physics causing the shortfall phenomenon will be discussed. Nonlinear nonlocal interaction of turbulence, secondary flows, and transport appears to be the key.

  16. A perceptron network theorem prover for the propositional calculus

    NARCIS (Netherlands)

    Drossaers, M.F.J.

    In this paper a short introduction to neural networks and a design for a perceptron network theorem prover for the propositional calculus are presented. The theorem prover is a representation of a variant of the semantic tableau method, called the parallel tableau method, by a network of

  17. Dependence of two-neutron momentum densities on total pair momentum

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph A [Los Alamos National Laboratory; Wiringa, R B [ANL; Schiavilla, R [JEFFERSON LAB; Pieper, Steven C [ANL

    2008-01-01

    Two-nucleon momentum distributions are calculated for the ground states of {sup 3}He and {sup 4}He as a function of the nucleons' relative and total momenta. We use variational Monte Carlo wave functions derived from a realistic Hamiltonian with two- and three-nucleon potentials. The momentum distribution of pp pairs is found to be much smaller than that of pn pairs for values of the relative momentum in the range (300--500) MeV/c and vanishing total momentum. Howeer, as the totalmomentum increases to 400 MeV/c, the ratio of pp to pn pairs in this relative momentum range grows and approaches the limit 1/2 for {sup 3}He and 1/4 for {sup 4}He, corresponding to the ratio of pp to pn pairs in these nuclei. This behavior should be easily observable in two-nucleon knock-out processes, such as A(e, e'pN).

  18. An arithmetic transference proof of a relative Szemer\\'edi theorem

    OpenAIRE

    Zhao, Yufei

    2013-01-01

    Recently Conlon, Fox, and the author gave a new proof of a relative Szemer\\'edi theorem, which was the main novel ingredient in the proof of the celebrated Green-Tao theorem that the primes contain arbitrarily long arithmetic progressions. Roughly speaking, a relative Szemer\\'edi theorem says that if S is a set of integers satisfying certain conditions, and A is a subset of S with positive relative density, then A contains long arithmetic progressions, and our recent results show that S only ...

  19. A non-renormalization theorem for conformal anomalies

    International Nuclear Information System (INIS)

    Petkou, Anastasios; Skenderis, Kostas

    1999-01-01

    We provide a non-renormalization theorem for the coefficients of the conformal anomaly associated with operators with vanishing anomalous dimensions. Such operators include conserved currents and chiral operators in superconformal field theories. We illustrate the theorem by computing the conformal anomaly of 2-point functions both by a computation in the conformal field theory and via the AdS/CFT correspondence. Our results imply that 2- and 3-point functions of chiral primary operators in N=4 SU(N) SYM will not renormalize provided that a 'generalized Adler-Bardeen theorem' holds. We further show that recent arguments connecting the non-renormalizability of the above-mentioned correlation functions to a bonus U(1) Y symmetry are incomplete due to possible U(1) Y violating contact terms. The tree level contribution to the contact terms may be set to zero by considering appropriately normalized operators. Non-renormalizability of the above-mentioned correlation functions, however, will follow only if these contact terms saturate by free fields

  20. The Boundary Crossing Theorem and the Maximal Stability Interval

    Directory of Open Access Journals (Sweden)

    Jorge-Antonio López-Renteria

    2011-01-01

    useful tools in the study of the stability of family of polynomials. Although both of these theorem seem intuitively obvious, they can be used for proving important results. In this paper, we give generalizations of these two theorems and we apply such generalizations for finding the maximal stability interval.

  1. The nekhoroshev theorem and long-term stabilities in the solar system

    Directory of Open Access Journals (Sweden)

    Guzzo M.

    2015-01-01

    Full Text Available The Nekhoroshev theorem has been often indicated in the last decades as the reference theorem for explaining the dynamics of several systems which are stable in the long-term. The Solar System dynamics provides a wide range of possible and useful applications. In fact, despite the complicated models which are used to numerically integrate realistic Solar System dynamics as accurately as possible, when the integrated solutions are chaotic the reliability of the numerical integrations is limited, and a theoretical long-term stability analysis is required. After the first formulation of Nekhoroshev’s theorem in 1977, many theoretical improvements have been achieved. On the one hand, alternative proofs of the theorem itself led to consistent improvements of the stability estimates; on the other hand, the extensions which were necessary to apply the theorem to the systems of interest for Solar System Dynamics, in particular concerning the removal of degeneracies and the implementation of computer assisted proofs, have been developed. In this review paper we discuss some of the motivations and the results which have made Nekhoroshev’s theorem a reference stability result for many applications in the Solar System dynamics.

  2. Arbitrary poloidal gyroradius effects in tokamak pedestals and transport barriers

    International Nuclear Information System (INIS)

    Kagan, Grigory; Catto, Peter J

    2008-01-01

    A technique is developed and applied for analyzing pedestal and internal transport barrier (ITB) regions in a tokamak by formulating a special version of gyrokinetics. In contrast to typical gyrokinetic treatments, canonical angular momentum is taken as the gyrokinetic radial variable rather than the radial guiding center location. Such an approach allows strong radial plasma gradients to be treated, while retaining zonal flow and neoclassical (including orbit squeezing) behavior and the effects of turbulence. The new, nonlinear gyrokinetic variables are constructed to higher order than is typically the case. The nonlinear gyrokinetic equation obtained is capable of handling such problems as collisional zonal flow damping with radial wavelengths comparable to the ion poloidal gyroradius, as well as zonal flow and neoclassical transport in the pedestal or ITB. This choice of gyrokinetic variables allows the toroidally rotating Maxwellian solution of the isothermal tokamak limit to be recovered. More importantly, we prove that a physically acceptable solution for the lowest order ion distribution function in the banana regime anywhere in a tokamak and, in particular, in the pedestal must be nearly this same isothermal Maxwellian solution. That is, the ion temperature variation scale must be much greater than the poloidal ion gyroradius. Consequently, in the banana regime the background radial ion temperature profile cannot have a pedestal similar to that of plasma density

  3. A Randomized Central Limit Theorem

    International Nuclear Information System (INIS)

    Eliazar, Iddo; Klafter, Joseph

    2010-01-01

    The Central Limit Theorem (CLT), one of the most elemental pillars of Probability Theory and Statistical Physics, asserts that: the universal probability law of large aggregates of independent and identically distributed random summands with zero mean and finite variance, scaled by the square root of the aggregate-size (√(n)), is Gaussian. The scaling scheme of the CLT is deterministic and uniform - scaling all aggregate-summands by the common and deterministic factor √(n). This Letter considers scaling schemes which are stochastic and non-uniform, and presents a 'Randomized Central Limit Theorem' (RCLT): we establish a class of random scaling schemes which yields universal probability laws of large aggregates of independent and identically distributed random summands. The RCLT universal probability laws, in turn, are the one-sided and the symmetric Levy laws.

  4. A no-hair theorem for black holes in f(R) gravity

    Science.gov (United States)

    Cañate, Pedro

    2018-01-01

    In this work we present a no-hair theorem which discards the existence of four-dimensional asymptotically flat, static and spherically symmetric or stationary axisymmetric, non-trivial black holes in the frame of f(R) gravity under metric formalism. Here we show that our no-hair theorem also can discard asymptotic de Sitter stationary and axisymmetric non-trivial black holes. The novelty is that this no-hair theorem is built without resorting to known mapping between f(R) gravity and scalar–tensor theory. Thus, an advantage will be that our no-hair theorem applies as well to metric f(R) models that cannot be mapped to scalar–tensor theory.

  5. An Almost Sure Ergodic Theorem for Quasistatic Dynamical Systems

    International Nuclear Information System (INIS)

    Stenlund, Mikko

    2016-01-01

    We prove an almost sure ergodic theorem for abstract quasistatic dynamical systems, as an attempt of taking steps toward an ergodic theory of such systems. The result at issue is meant to serve as a working counterpart of Birkhoff’s ergodic theorem which fails in the quasistatic setup. It is formulated so that the conditions, which essentially require sufficiently good memory-loss properties, could be verified in a straightforward way in physical applications. We also introduce the concept of a physical family of measures for a quasistatic dynamical system. These objects manifest themselves, for instance, in numerical experiments. We then illustrate the use of the theorem by examples.

  6. An Almost Sure Ergodic Theorem for Quasistatic Dynamical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stenlund, Mikko, E-mail: mikko.stenlund@helsinki.fi [University of Helsinki, Department of Mathematics and Statistics (Finland)

    2016-09-15

    We prove an almost sure ergodic theorem for abstract quasistatic dynamical systems, as an attempt of taking steps toward an ergodic theory of such systems. The result at issue is meant to serve as a working counterpart of Birkhoff’s ergodic theorem which fails in the quasistatic setup. It is formulated so that the conditions, which essentially require sufficiently good memory-loss properties, could be verified in a straightforward way in physical applications. We also introduce the concept of a physical family of measures for a quasistatic dynamical system. These objects manifest themselves, for instance, in numerical experiments. We then illustrate the use of the theorem by examples.

  7. An Efficient Method for Verifying Gyrokinetic Microstability Codes

    Science.gov (United States)

    Bravenec, R.; Candy, J.; Dorland, W.; Holland, C.

    2009-11-01

    Benchmarks for gyrokinetic microstability codes can be developed through successful ``apples-to-apples'' comparisons among them. Unlike previous efforts, we perform the comparisons for actual discharges, rendering the verification efforts relevant to existing experiments and future devices (ITER). The process requires i) assembling the experimental analyses at multiple times, radii, discharges, and devices, ii) creating the input files ensuring that the input parameters are faithfully translated code-to-code, iii) running the codes, and iv) comparing the results, all in an organized fashion. The purpose of this work is to automate this process as much as possible: At present, a python routine is used to generate and organize GYRO input files from TRANSP or ONETWO analyses. Another routine translates the GYRO input files into GS2 input files. (Translation software for other codes has not yet been written.) Other python codes submit the multiple GYRO and GS2 jobs, organize the results, and collect them into a table suitable for plotting. (These separate python routines could easily be consolidated.) An example of the process -- a linear comparison between GYRO and GS2 for a DIII-D discharge at multiple radii -- will be presented.

  8. Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Belli, E. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hammett, G. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dorland, W. [Univ. of Maryland, College Park, MD (United States)

    2008-08-01

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ-1.5 or κ-2.0, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.

  9. Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence

    International Nuclear Information System (INIS)

    E.A. Belli, G.W. Hammett and W. Dorland

    2008-01-01

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ∼ κ -1.5 or κ -2.0 , depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows

  10. Nonlinear gyrokinetics: a powerful tool for the description of microturbulence in magnetized plasmas

    International Nuclear Information System (INIS)

    Krommes, John A

    2010-01-01

    Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a 'pull-back' (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and difficulties) of deriving nonlinear gyrofluid equations suitable for rapid numerical solution-although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.

  11. Nonlinear Gyrokinetics: A Powerful Tool for the Description of Microturbulence in Magnetized Plasmas

    International Nuclear Information System (INIS)

    Krommes, John E.

    2010-01-01

    Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a 'pull-back' (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and diffculties) of deriving nonlinear gyro fluid equations suitable for rapid numerical solution - although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.

  12. Dual electromagnetism: helicity, spin, momentum and angular momentum

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Y; Nori, Franco; Bekshaev, Aleksandr Y

    2013-01-01

    The dual symmetry between electric and magnetic fields is an important intrinsic property of Maxwell equations in free space. This symmetry underlies the conservation of optical helicity and, as we show here, is closely related to the separation of spin and orbital degrees of freedom of light (the helicity flux coincides with the spin angular momentum). However, in the standard field-theory formulation of electromagnetism, the field Lagrangian is not dual symmetric. This leads to problematic dual-asymmetric forms of the canonical energy–momentum, spin and orbital angular-momentum tensors. Moreover, we show that the components of these tensors conflict with the helicity and energy conservation laws. To resolve this discrepancy between the symmetries of the Lagrangian and Maxwell equations, we put forward a dual-symmetric Lagrangian formulation of classical electromagnetism. This dual electromagnetism preserves the form of Maxwell equations, yields meaningful canonical energy–momentum and angular-momentum tensors, and ensures a self-consistent separation of the spin and orbital degrees of freedom. This provides a rigorous derivation of the results suggested in other recent approaches. We make the Noether analysis of the dual symmetry and all the Poincaré symmetries, examine both local and integral conserved quantities and show that only the dual electromagnetism naturally produces a complete self-consistent set of conservation laws. We also discuss the observability of physical quantities distinguishing the standard and dual theories, as well as relations to quantum weak measurements and various optical experiments. (paper)

  13. Some functional limit theorems for compound Cox processes

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, Victor Yu. [Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Institute of Informatics Problems FRC CSC RAS (Russian Federation); Chertok, A. V. [Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Euphoria Group LLC (Russian Federation); Korchagin, A. Yu. [Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow (Russian Federation); Kossova, E. V. [Higher School of Economics National Research University, Moscow (Russian Federation); Zeifman, Alexander I. [Vologda State University, S.Orlova, 6, Vologda (Russian Federation); Institute of Informatics Problems FRC CSC RAS, ISEDT RAS (Russian Federation)

    2016-06-08

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  14. Some functional limit theorems for compound Cox processes

    International Nuclear Information System (INIS)

    Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.

    2016-01-01

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  15. A short list color proof of Grotzsch's theorem

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2000-01-01

    We give a short proof of the result that every planar graph of girth $5$is $3$-choosable and hence also of Gr\\"{o}tzsch's theorem saying that everyplanar triangle-free graph is $3$-colorable.......We give a short proof of the result that every planar graph of girth $5$is $3$-choosable and hence also of Gr\\"{o}tzsch's theorem saying that everyplanar triangle-free graph is $3$-colorable....

  16. Gyrokinetic analysis of linear microinstabilities for the stellarator Wendelstein 7-X

    Science.gov (United States)

    Xanthopoulos, P.; Jenko, F.

    2007-04-01

    A linear collisionless gyrokinetic investigation of ion temperature gradient (ITG) modes—considering both adiabatic and full electron dynamics—and trapped electron modes (TEMs) is presented for the stellarator Wendelstein 7-X (W7-X) [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525]. The study of ITG modes reveals that in W7-X, microinstabilities of distinct character coexist. The effect of changes in the density gradient and temperature ratio is discussed. Substantial differences with respect to the axisymmetric geometry appear in W7-X, concerning the relative separation of regions with a large fraction of helically trapped particles and those of pronounced bad curvature. For both ITG modes and TEMs, the dependence of their linear growth rates on the background gradients is studied along with their parallel mode structure.

  17. Large momentum transfer phenomena

    International Nuclear Information System (INIS)

    Imachi, Masahiro; Otsuki, Shoichiro; Matsuoka, Takeo; Sawada, Shoji.

    1978-01-01

    The large momentum transfer phenomena in hadron reaction drastically differ from small momentum transfer phenomena, and are described in this paper. Brief review on the features of the large transverse momentum transfer reactions is described in relation with two-body reactions, single particle productions, particle ratios, two jet structure, two particle correlations, jet production cross section, and the component of momentum perpendicular to the plane defined by the incident protons and the triggered pions and transverse momentum relative to jet axis. In case of two-body process, the exponent N of the power law of the differential cross section is a value between 10 to 11.5 in the large momentum transfer region. The breaks of the exponential behaviors into the power ones are observed at the large momentum transfer region. The break would enable to estimate the order of a critical length. The large momentum transfer phenomena strongly suggest an important role of constituents of hadrons in the hard region. Hard rearrangement of constituents from different initial hadrons induces large momentum transfer reactions. Several rules to count constituents in the hard region have been proposed so far to explain the power behavior. Scale invariant quark interaction and hard reactions are explained, and a summary of the possible types of hard subprocess is presented. (Kato, T.)

  18. Optical Angular Momentum

    International Nuclear Information System (INIS)

    Arimondo, Ennio

    2004-01-01

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  19. On the information-theoretic approach to G\\"odel's incompleteness theorem

    OpenAIRE

    D'Abramo, Germano

    2002-01-01

    In this paper we briefly review and analyze three published proofs of Chaitin's theorem, the celebrated information-theoretic version of G\\"odel's incompleteness theorem. Then, we discuss our main perplexity concerning a key step common to all these demonstrations.

  20. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    International Nuclear Information System (INIS)

    WALTZ, RE; CANDY, J; HINTON, FL; ESTRADA-MILA, C; KINSEY, JE.

    2004-01-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ * ) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed

  1. On Frobenius, Mazur, and Gelfand-Mazur theorems on division ...

    African Journals Online (AJOL)

    ... R of real numbers, the field C of complex numbers, or the non-commutative algebra Q of quaternions. Gelfand [15] proved that every normed division algebra over the field C is isomorphic to C. He named this theorem, which is fundamental for the development of the theory of Banach Algebras, the Gelfand-Mazur theorem.

  2. Quantum de Finetti theorem in phase-space representation

    International Nuclear Information System (INIS)

    Leverrier, Anthony; Cerf, Nicolas J.

    2009-01-01

    The quantum versions of de Finetti's theorem derived so far express the convergence of n-partite symmetric states, i.e., states that are invariant under permutations of their n parties, toward probabilistic mixtures of independent and identically distributed (IID) states of the form σ xn . Unfortunately, these theorems only hold in finite-dimensional Hilbert spaces, and their direct generalization to infinite-dimensional Hilbert spaces is known to fail. Here, we address this problem by considering invariance under orthogonal transformations in phase space instead of permutations in state space, which leads to a quantum de Finetti theorem particularly relevant to continuous-variable systems. Specifically, an n-mode bosonic state that is invariant with respect to this continuous symmetry in phase space is proven to converge toward a probabilistic mixture of IID Gaussian states (actually, n identical thermal states).

  3. Some commutativity theorems for a certain class of rings

    International Nuclear Information System (INIS)

    Khan, M.A.

    1994-08-01

    In the present paper we first establish the commutativity theorem for semiprime ring satisfying the polynomial identity [x n ,y]x r = ±y s [x,y m ]y t for all x,y in R, where m,n,r,s and t are fixed nonnegative integers, and further, we investigate commutativity of rings with unity under some additional hypothesis. Moreover, it is also shown that the above result is true for s-unital. Also, we provide some counter examples which show that the hypothesis of our theorems are not altogether superfluous. The results of this paper generalize some of the well-known commutativity theorems for rings which are right s-unital. (author). 21 refs

  4. Hadronic interactions of the J/ψ and Adler's theorem

    International Nuclear Information System (INIS)

    Bourque, A.; Gale, C.; Haglin, K.L.

    2004-01-01

    Effective Lagrangian models of charmonium have recently been used to estimate dissociation cross sections with light hadrons. Detailed study of the symmetry properties reveals possible shortcomings relative to chiral symmetry. We therefore propose a new Lagrangian and point out distinguishing features amongst the different approaches. Moreover, we test the models against Adler's theorem, which requires, in the appropriate limit, the decoupling of pions from the theory for the normal parity sector. Using the newly proposed Lagrangian, which exhibits SU L (N f )xSU R (N f ) symmetry and complies with Adler's theorem, we find dissociation cross sections with pions that are reduced in an energy-dependent way, with respect to cases where the theorem is not fulfilled

  5. Towards a Novel no-hair Theorem for Black Holes

    CERN Document Server

    Hertog, T

    2006-01-01

    We provide strong numerical evidence for a new no-scalar-hair theorem for black holes in general relativity, which rules out spherical scalar hair of static four dimensional black holes if the scalar field theory, when coupled to gravity, satisfies the Positive Energy Theorem. This sheds light on the no-scalar-hair conjecture for Calabi-Yau compactifications of string theory, where the effective potential typically has negative regions but where supersymmetry ensures the total energy is always positive. In theories where the scalar tends to a negative local maximum of the potential at infinity, we find the no-scalar-hair theorem holds provided the asymptotic conditions are invariant under the full anti-de Sitter symmetry group.

  6. Standardization and Confluence in Pure Lambda-Calculus Formalized for the Matita Theorem Prover

    Directory of Open Access Journals (Sweden)

    Ferruccio Guidi

    2012-01-01

    Full Text Available We present a formalization of pure lambda-calculus for the Matita interactive theorem prover, including the proofs of two relevant results in reduction theory: the confluence theorem and the standardization theorem. The proof of the latter is based on a new approach recently introduced by Xi and refined by Kashima that, avoiding the notion of development and having a neat inductive structure, is particularly suited for formalization in theorem provers.

  7. Unified quantum no-go theorems and transforming of quantum pure states in a restricted set

    Science.gov (United States)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2017-12-01

    The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.

  8. On the interpretation and relevance of the Fundamental Theorem of Natural Selection.

    Science.gov (United States)

    Ewens, Warren J; Lessard, Sabin

    2015-09-01

    The attempt to understand the statement, and then to find the interpretation, of Fisher's "Fundamental Theorem of Natural Selection" caused problems for generations of population geneticists. Price's (1972) paper was the first to lead to an understanding of the statement of the theorem. The theorem shows (in the discrete-time case) that the so-called "partial change" in mean fitness of a population between a parental generation and an offspring generation is the parental generation additive genetic variance in fitness divided by the parental generation mean fitness. In the continuous-time case the partial rate of change in mean fitness is equal to the parental generation additive genetic variance in fitness with no division by the mean fitness. This "partial change" has been interpreted by some as the change in mean fitness due to changes in gene frequency, and by others as the change in mean fitness due to natural selection. (Fisher variously used both interpretations.) In this paper we discuss these interpretations of the theorem. We indicate why we are unhappy with both. We also discuss the long-term relevance of the Fundamental Theorem of Natural Selection, again reaching a negative assessment. We introduce and discuss the concept of genic evolutionary potential. We finally review an optimizing theorem that involves changes in gene frequency, the additive genetic variance in fitness and the mean fitness itself, all of which are involved in the Fundamental Theorem of Natural Selection, and which is free of the difficulties in interpretation of the Fundamental Theorem of Natural Selection. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The universality of the Carnot theorem

    International Nuclear Information System (INIS)

    Gonzalez-Ayala, Julian; Angulo-Brown, F

    2013-01-01

    It is common in many thermodynamics textbooks to illustrate the Carnot theorem through the use of diverse state equations for gases, paramagnets, and other simple thermodynamic systems. As is well known, the universality of the Carnot efficiency is easily demonstrated in a temperature–entropy diagram, which means that η C is independent of the working substance. In this paper we remark that the universality of the Carnot theorem goes beyond conventional state equations, and is fulfilled by gas state equations that do not correspond to an ideal gas in the dilution limit, namely V → ∞. Some of these unconventional state equations have certain thermodynamic ‘anomalies’ that nonetheless do not forbid them from obeying the Carnot theorem. We discuss how this very general behaviour arises from Maxwell relations, which are connected with a geometrical property expressed through preserving area transformations. A rule is proposed to calculate the Maxwell relations associated with a thermodynamic system by using the preserving area relationships. In this way it is possible to calculate the number of possible preserving area mappings by giving the number of possible Jacobian identities between all pairs of thermodynamic variables included in the corresponding Gibbs equation. This paper is intended for undergraduates and specialists in thermodynamics and related areas. (paper)

  10. Opechowski's theorem and commutator groups

    International Nuclear Information System (INIS)

    Caride, A.O.; Zanette, S.I.

    1985-01-01

    It is shown that the conditions of application of Opechowski's theorem for double groups of subgroups of O(3) are directly associated to the structure of their commutator groups. Some characteristics of the structure of classes are also discussed. (Author) [pt

  11. Astrophysical gyrokinetics: turbulence in pressure-anisotropic plasmas at ion scales and beyond

    Science.gov (United States)

    Kunz, M. W.; Abel, I. G.; Klein, K. G.

    2018-04-01

    We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. The turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion-Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (J. Plasma Phys., vol. 81, 2015, 325810501). At scales at and below the ion-Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalization of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvénic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfvén waves transition into kinetic Alfvén waves. Secondly, we derive and discuss a very general gyrokinetic free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfvén waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy, even within the bounds imposed on it by firehose and mirror instabilities, can cause order-of-magnitude variations in the ion-to-electron heating ratio due to the dissipation of Alfvénic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects turbulent fluctuation spectra, the differential heating of particle species and the ratio of parallel

  12. Momentum fractionation on superstrata

    International Nuclear Information System (INIS)

    Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.

    2016-01-01

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS_3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.

  13. Generalized Fourier slice theorem for cone-beam image reconstruction.

    Science.gov (United States)

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  14. Kolmogorov-Arnold-Moser Theorem

    Indian Academy of Sciences (India)

    system (not necessarily the 2-body system). Kolmogorov was the first to provide a solution to the above general problem in a theorem formulated in 1954 (see Suggested. Reading). However, he provided only an outline of the proof. The actual proof (with all the details) turned to be quite difficult and was provided by Arnold ...

  15. Limit theorems for stationary increments Lévy driven moving averages

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas; Lachièze-Rey, Raphaël; Podolskij, Mark

    of the kernel function g at 0. First order asymptotic theory essentially comprise three cases: stable convergence towards a certain infinitely divisible distribution, an ergodic type limit theorem and convergence in probability towards an integrated random process. We also prove the second order limit theorem...

  16. Formalization of the Integral Calculus in the PVS Theorem Prover

    Science.gov (United States)

    Butler, Ricky W.

    2004-01-01

    The PVS Theorem prover is a widely used formal verification tool used for the analysis of safety-critical systems. The PVS prover, though fully equipped to support deduction in a very general logic framework, namely higher-order logic, it must nevertheless, be augmented with the definitions and associated theorems for every branch of mathematics and Computer Science that is used in a verification. This is a formidable task, ultimately requiring the contributions of researchers and developers all over the world. This paper reports on the formalization of the integral calculus in the PVS theorem prover. All of the basic definitions and theorems covered in a first course on integral calculus have been completed.The theory and proofs were based on Rosenlicht's classic text on real analysis and follow the traditional epsilon-delta method. The goal of this work was to provide a practical set of PVS theories that could be used for verification of hybrid systems that arise in air traffic management systems and other aerospace applications. All of the basic linearity, integrability, boundedness, and continuity properties of the integral calculus were proved. The work culminated in the proof of the Fundamental Theorem Of Calculus. There is a brief discussion about why mechanically checked proofs are so much longer than standard mathematics textbook proofs.

  17. Probability densities and the radon variable transformation theorem

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1985-01-01

    D. T. Gillespie recently derived a random variable transformation theorem relating to the joint probability densities of functionally dependent sets of random variables. The present author points out that the theorem can be derived as an immediate corollary of a simpler and more fundamental relation. In this relation the probability density is represented as a delta function averaged over an unspecified distribution of unspecified internal random variables. The random variable transformation is derived from this relation

  18. Quantum work fluctuation theorem: Nonergodic Brownian motion case

    International Nuclear Information System (INIS)

    Bai, Zhan-Wu

    2014-01-01

    The work fluctuations of a quantum Brownian particle driven by an external force in a general nonergodic heat bath are studied under a general initial state. The exact analytical expression of the work probability distribution function is derived. Results show the existence of a quantum asymptotic fluctuation theorem, which is in general not a direct generalization of its classical counterpart. The form of this theorem is dependent on the structure of the heat bath and the specified initial condition.

  19. Noncommutative gauge field theories: A no-go theorem

    International Nuclear Information System (INIS)

    Chaichian, M.; Tureanu, A.; Presnajder, P.; Sheikh-Jabbari, M.M.

    2001-06-01

    Studying the mathematical structure of the noncommutative groups in more detail, we prove a no-go theorem for the noncommutative gauge theories. According to this theorem, the closure condition of the gauge algebra implies that: 1) the local noncommutative u(n) algebra only admits the irreducible nxn matrix-representation. Hence the gauge fields, as elements of the algebra, are in nxn matrix form, while the matter fields can only be either in fundamental, adjoint or singlet states; 2) for any gauge group consisting of several simple group factors, the matter fields can transform nontrivially under at most two noncommutative group factors. In other words, the matter fields cannot carry more than two simple noncommutative gauge group charges. This no-go theorem imposes strong restrictions on the construction of the noncommutative version of the Standard Model and in resolving the standing problem of charge quantization in noncommutative QED. (author)

  20. Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.

    Science.gov (United States)

    Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A

    2013-11-01

    This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced

  1. Center for Gyrokinetic/MHD Hybrid Simulation of Energetic Particle Physics in Toroidal Plasmas (CSEPP). Final report

    International Nuclear Information System (INIS)

    Chen, Yang

    2012-01-01

    At Colorado University-Boulder the primary task is to extend our gyrokinetic Particle-in-Cell simulation of tokamak micro-turbulence and transport to the area of energetic particle physics. We have implemented a gyrokinetic ion/massless fluid electron hybrid model in the global δf-PIC code GEM, and benchmarked the code with analytic results on the thermal ion radiative damping rate of Toroidal Alfven Eigenmodes (TAE) and with mode frequency and spatial structure from eigenmode analysis. We also performed nonlinear simulations of both a single-n mode (n is the toroidal mode number) and multiple-n modes, and in the case of single-n, benchmarked the code on the saturation amplitude vs. particle collision rate with analytical theory. Most simulations use the f method for both ions species, but we have explored the full-f method for energetic particles in cases where the burst amplitude of the excited instabilities is large as to cause significant re-distribution or loss of the energetic particles. We used the hybrid model to study the stability of high-n TAEs in ITER. Our simulations show that the most unstable modes in ITER lie in the rage of 10 α (0) = 0.7% for the fully shaped ITER equilibrium. We also carried nonlinear simulations of the most unstable n = 15 mode and found that the saturation amplitude for the nominal ITER discharge is too low to cause large redistribution or loss of alpha particles. To include kinetic electron effects in the hybrid model we have studied a kinetic electron closure scheme for the fluid electron model. The most important element of the closure scheme is a complete Ohm's law for the parallel electric field E || , derived by combining the quasi-neutrality condition, the Ampere's equation and the v || moment of the gyrokinetic equations. A discretization method for the closure scheme is studied in detail for a three-dimensional shear-less slab plasma. It is found that for long-wavelength shear Alfven waves the kinetic closure scheme

  2. Fluctuation theorems and atypical trajectories

    International Nuclear Information System (INIS)

    Sahoo, M; Lahiri, S; Jayannavar, A M

    2011-01-01

    In this work, we have studied simple models that can be solved analytically to illustrate various fluctuation theorems. These fluctuation theorems provide symmetries individually to the distributions of physical quantities such as the classical work (W c ), thermodynamic work (W), total entropy (Δs tot ) and dissipated heat (Q), when the system is driven arbitrarily out of equilibrium. All these quantities can be defined for individual trajectories. We have studied the number of trajectories which exhibit behaviour unexpected at the macroscopic level. As the time of observation increases, the fraction of such atypical trajectories decreases, as expected at the macroscale. The distributions for the thermodynamic work and entropy production in nonlinear models may exhibit a peak (most probable value) in the atypical regime without violating the expected average behaviour. However, dissipated heat and classical work exhibit a peak in the regime of typical behaviour only.

  3. A uniform Tauberian theorem in dynamic games

    Science.gov (United States)

    Khlopin, D. V.

    2018-01-01

    Antagonistic dynamic games including games represented in normal form are considered. The asymptotic behaviour of value in these games is investigated as the game horizon tends to infinity (Cesàro mean) and as the discounting parameter tends to zero (Abel mean). The corresponding Abelian-Tauberian theorem is established: it is demonstrated that in both families the game value uniformly converges to the same limit, provided that at least one of the limits exists. Analogues of one-sided Tauberian theorems are obtained. An example shows that the requirements are essential even for control problems. Bibliography: 31 titles.

  4. The aftermath of the intermediate value theorem

    Directory of Open Access Journals (Sweden)

    Morales Claudio H

    2004-01-01

    Full Text Available The solvability of nonlinear equations has awakened great interest among mathematicians for a number of centuries, perhaps as early as the Babylonian culture (3000–300 B.C.E.. However, we intend to bring to our attention that some of the problems studied nowadays appear to be amazingly related to the time of Bolzano's era (1781–1848. Indeed, this Czech mathematician or perhaps philosopher has rigorously proven what is known today as the intermediate value theorem, a result that is intimately related to various classical theorems that will be discussed throughout this work.

  5. At math meetings, enormous theorem eclipses fermat.

    Science.gov (United States)

    Cipra, B

    1995-02-10

    Hardly a word was said about Fermat's Last Theorem at the joint meetings of the American Mathematical Society and the Mathematical Association of America, held this year from 4 to 7 January in San Francisco. For Andrew Wiles's proof, no news is good news: There are no reports of mistakes. But mathematicians found plenty of other topics to discuss. Among them: a computational breakthrough in the study of turbulent diffusion and progress in slimming down the proof of an important result in group theory, whose original size makes checking the proof of Fermat's Last Theorem look like an afternoon's pastime.

  6. A general conservative extension theorem in process algebras with inequalities

    NARCIS (Netherlands)

    d' Argenio, P.R.; Verhoef, Chris

    1997-01-01

    We prove a general conservative extension theorem for transition system based process theories with easy-to-check and reasonable conditions. The core of this result is another general theorem which gives sufficient conditions for a system of operational rules and an extension of it in order to

  7. Capacity theory with local rationality the strong Fekete-Szegö theorem on curves

    CERN Document Server

    Rumely, Robert

    2013-01-01

    This book is devoted to the proof of a deep theorem in arithmetic geometry, the Fekete-Szegö theorem with local rationality conditions. The prototype for the theorem is Raphael Robinson's theorem on totally real algebraic integers in an interval, which says that if [a,b] is a real interval of length greater than 4, then it contains infinitely many Galois orbits of algebraic integers, while if its length is less than 4, it contains only finitely many. The theorem shows this phenomenon holds on algebraic curves of arbitrary genus over global fields of any characteristic, and is valid for a broad class of sets. The book is a sequel to the author's work Capacity Theory on Algebraic Curves and contains applications to algebraic integers and units, the Mandelbrot set, elliptic curves, Fermat curves, and modular curves. A long chapter is devoted to examples, including methods for computing capacities. Another chapter contains extensions of the theorem, including variants on Berkovich curves. The proof uses both alg...

  8. Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases

    International Nuclear Information System (INIS)

    Brandino, G. P.; Caux, J.-S.; Konik, R. M.

    2015-01-01

    Real-time dynamics in a quantum many-body system are inherently complicated and hence difficult to predict. There are, however, a special set of systems where these dynamics are theoretically tractable: integrable models. Such models possess non-trivial conserved quantities beyond energy and momentum. These quantities are believed to control dynamics and thermalization in low dimensional atomic gases as well as in quantum spin chains. But what happens when the special symmetries leading to the existence of the extra conserved quantities are broken? Is there any memory of the quantities if the breaking is weak? Here, in the presence of weak integrability breaking, we show that it is possible to construct residual quasi-conserved quantities, so providing a quantum analog to the KAM theorem and its attendant Nekhoreshev estimates. We demonstrate this construction explicitly in the context of quantum quenches in one-dimensional Bose gases and argue that these quasi-conserved quantities can be probed experimentally.

  9. Angular momentum in general relativity

    International Nuclear Information System (INIS)

    Cresswell, A.; Zimmerman, R.L.; Oregon Univ., Eugene

    1986-01-01

    It is argued that the correct expressions for the angular momentum flux carried by gravitational radiation should follow directly from the momentum currents. Following this approach, the authors compute the angular momentum associated with several different choices of energy-momentum prescriptions. (author)

  10. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  11. A Geometrical Approach to Bell's Theorem

    Science.gov (United States)

    Rubincam, David Parry

    2000-01-01

    Bell's theorem can be proved through simple geometrical reasoning, without the need for the Psi function, probability distributions, or calculus. The proof is based on N. David Mermin's explication of the Einstein-Podolsky-Rosen-Bohm experiment, which involves Stern-Gerlach detectors which flash red or green lights when detecting spin-up or spin-down. The statistics of local hidden variable theories for this experiment can be arranged in colored strips from which simple inequalities can be deduced. These inequalities lead to a demonstration of Bell's theorem. Moreover, all local hidden variable theories can be graphed in such a way as to enclose their statistics in a pyramid, with the quantum-mechanical result lying a finite distance beneath the base of the pyramid.

  12. A Meinardus Theorem with Multiple Singularities

    Science.gov (United States)

    Granovsky, Boris L.; Stark, Dudley

    2012-09-01

    Meinardus proved a general theorem about the asymptotics of the number of weighted partitions, when the Dirichlet generating function for weights has a single pole on the positive real axis. Continuing (Granovsky et al., Adv. Appl. Math. 41:307-328, 2008), we derive asymptotics for the numbers of three basic types of decomposable combinatorial structures (or, equivalently, ideal gas models in statistical mechanics) of size n, when their Dirichlet generating functions have multiple simple poles on the positive real axis. Examples to which our theorem applies include ones related to vector partitions and quantum field theory. Our asymptotic formula for the number of weighted partitions disproves the belief accepted in the physics literature that the main term in the asymptotics is determined by the rightmost pole.

  13. A Riesz Representation Theorem for the Space of Henstock Integrable Vector-Valued Functions

    Directory of Open Access Journals (Sweden)

    Tomás Pérez Becerra

    2018-01-01

    Full Text Available Using a bounded bilinear operator, we define the Henstock-Stieltjes integral for vector-valued functions; we prove some integration by parts theorems for Henstock integral and a Riesz-type theorem which provides an alternative proof of the representation theorem for real functions proved by Alexiewicz.

  14. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  15. General H-theorem and Entropies that Violate the Second Law

    Directory of Open Access Journals (Sweden)

    Alexander N. Gorban

    2014-04-01

    Full Text Available H-theorem states that the entropy production is nonnegative and, therefore, the entropy of a closed system should monotonically change in time. In information processing, the entropy production is positive for random transformation of signals (the information processing lemma. Originally, the H-theorem and the information processing lemma were proved for the classical Boltzmann-Gibbs-Shannon entropy and for the correspondent divergence (the relative entropy. Many new entropies and divergences have been proposed during last decades and for all of them the H-theorem is needed. This note proposes a simple and general criterion to check whether the H-theorem is valid for a convex divergence H and demonstrates that some of the popular divergences obey no H-theorem. We consider systems with n states Ai that obey first order kinetics (master equation. A convex function H is a Lyapunov function for all master equations with given equilibrium if and only if its conditional minima properly describe the equilibria of pair transitions Ai ⇌ Aj . This theorem does not depend on the principle of detailed balance and is valid for general Markov kinetics. Elementary analysis of pair equilibria demonstrate that the popular Bregman divergences like Euclidian distance or Itakura-Saito distance in the space of distribution cannot be the universal Lyapunov functions for the first-order kinetics and can increase in Markov processes. Therefore, they violate the second law and the information processing lemma. In particular, for these measures of information (divergences random manipulation with data may add information to data. The main results are extended to nonlinear generalized mass action law kinetic equations.

  16. Gyrokinetic Calculations of Microturbulence and Transport for NSTX and Alcator-CMOD H-modes

    International Nuclear Information System (INIS)

    Redi, M.H.; Dorland, W.; Bell, R.; Bonoli, P.; Bourdelle, C.; Candy, J.; Ernst, D.; Fiore, C.; Gates, D.; Hammett, G.; Hill, K.; Kaye, S.; LeBlanc, B.; Menard, J.; Mikkelsen, D.; Rewoldt, G.; Rice, J.; Waltz, R.; Wukitch, S.

    2003-01-01

    Recent H-mode experiments on NSTX [National Spherical Torus Experiment] and experiments on Alcator-CMOD, which also exhibit internal transport barriers (ITB), have been examined with gyrokinetic simulations with the GS2 and GYRO codes to identify the underlying key plasma parameters for control of plasma performance and, ultimately, the successful operation of future reactors such as ITER [International Thermonuclear Experimental Reactor]. On NSTX the H-mode is characterized by remarkably good ion confinement and electron temperature profiles highly resilient in time. On CMOD, an ITB with a very steep electron density profile develops following off-axis radio-frequency heating and establishment of H-mode. Both experiments exhibit ion thermal confinement at the neoclassical level. Electron confinement is also good in the CMOD core

  17. Metrical theorems on systems of small inhomogeneous linear forms

    DEFF Research Database (Denmark)

    Hussain, Mumtaz; Kristensen, Simon

    In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed.......In this paper we establish complete Khintchine-Groshev and Schmidt type theorems for inhomogeneous small linear forms in the so-called doubly metric case, in which the inhomogeneous parameter is not fixed....

  18. A generalization of Abel's Theorem and the Abel-Jacobi map

    DEFF Research Database (Denmark)

    Dupont, Johan Louis; Kamber, Franz W.

    We generalize Abel’s classical theorem on linear equivalence of divisors on a Riemann surface. For every closed submanifold Md ⊂ Xn in a compact oriented Riemannian n–manifold, or more generally for any d–cycle Z relative to a triangulation of X, we define a (simplicial) (n − d − 1)–gerbe Z......, the Abel gerbe determined by Z, whose vanishing as a Deligne cohomology class generalizes the notion of ‘linear equivalence to zero’. In this setting, Abel’s theorem remains valid. Moreover, we generalize the classical Inversion Theorem for the Abel–Jacobi map, thereby proving that the moduli space of Abel...

  19. Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem

    Science.gov (United States)

    Li, Lei; Liu, Jian-Guo; Lu, Jianfeng

    2017-10-01

    We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.

  20. Fourier diffraction theorem for diffusion-based thermal tomography

    International Nuclear Information System (INIS)

    Baddour, Natalie

    2006-01-01

    There has been much recent interest in thermal imaging as a method of non-destructive testing and for non-invasive medical imaging. The basic idea of applying heat or cold to an area and observing the resulting temperature change with an infrared camera has led to the development of rapid and relatively inexpensive inspection systems. However, the main drawback to date has been that such an approach provides mainly qualitative results. In order to advance the quantitative results that are possible via thermal imaging, there is interest in applying techniques and algorithms from conventional tomography. Many tomography algorithms are based on the Fourier diffraction theorem, which is inapplicable to thermal imaging without suitable modification to account for the attenuative nature of thermal waves. In this paper, the Fourier diffraction theorem for thermal tomography is derived and discussed. The intent is for this thermal-diffusion based Fourier diffraction theorem to form the basis of tomographic reconstruction algorithms for quantitative thermal imaging

  1. Is the Quantum State Real? An Extended Review of ψ-ontology Theorems

    Directory of Open Access Journals (Sweden)

    Matthew Saul Leifer

    2014-11-01

    Full Text Available Towards the end of 2011, Pusey, Barrett and Rudolph derived a theorem that aimed to show that the quantum state must be ontic (a state of reality in a broad class of realist approaches to quantum theory. This result attracted a lot of attention and controversy. The aim of this review article is to review the background to the Pusey–Barrett–Rudolph Theorem, to provide a clear presentation of the theorem itself, and to review related work that has appeared since the publication of the Pusey–Barrett–Rudolph paper. In particular, this review: Explains what it means for the quantum state to be ontic or epistemic (a state of knowledge; Reviews arguments for and against an ontic interpretation of the quantum state as they existed prior to the Pusey–Barrett–Rudolph Theorem; Explains why proving the reality of the quantum state is a very strong constraint on realist theories in that it would imply many of the known no-go theorems, such as Bell's Theorem and the need for an exponentially large ontic state space; Provides a comprehensive presentation of the Pusey–Barrett–Rudolph Theorem itself, along with subsequent improvements and criticisms of its assumptions; Reviews two other arguments for the reality of the quantum state: the first due to Hardy and the second due to Colbeck and Renner, and explains why their assumptions are less compelling than those of the Pusey–Barrett–Rudolph Theorem; Reviews subsequent work aimed at ruling out stronger notions of what it means for the quantum state to be epistemic and points out open questions in this area. The overall aim is not only to provide the background needed for the novice in this area to understand the current status, but also to discuss often overlooked subtleties that should be of interest to the experts. Quanta 2014; 3: 67–155.

  2. Anomaly manifestation of Lieb-Schultz-Mattis theorem and topological phases

    Science.gov (United States)

    Cho, Gil Young; Hsieh, Chang-Tse; Ryu, Shinsei

    2017-11-01

    The Lieb-Schultz-Mattis (LSM) theorem dictates that emergent low-energy states from a lattice model cannot be a trivial symmetric insulator if the filling per unit cell is not integral and if the lattice translation symmetry and particle number conservation are strictly imposed. In this paper, we compare the one-dimensional gapless states enforced by the LSM theorem and the boundaries of one-higher dimensional strong symmetry-protected topological (SPT) phases from the perspective of quantum anomalies. We first note that they can both be described by the same low-energy effective field theory with the same effective symmetry realizations on low-energy modes, wherein non-on-site lattice translation symmetry is encoded as if it were an internal symmetry. In spite of the identical form of the low-energy effective field theories, we show that the quantum anomalies of the theories play different roles in the two systems. In particular, we find that the chiral anomaly is equivalent to the LSM theorem, whereas there is another anomaly that is not related to the LSM theorem but is intrinsic to the SPT states. As an application, we extend the conventional LSM theorem to multiple-charge multiple-species problems and construct several exotic symmetric insulators. We also find that the (3+1)d chiral anomaly provides only the perturbative stability of the gaplessness local in the parameter space.

  3. Formalization of the Integral Calculus in the PVS Theorem Prover

    Directory of Open Access Journals (Sweden)

    Ricky Wayne Butler

    2009-04-01

    Full Text Available The PVS Theorem prover is a widely used formal verification tool used for the analysis of safetycritical systems. The PVS prover, though fully equipped to support deduction in a very general logic framework, namely higher-order logic, it must nevertheless, be augmented with the definitions and associated theorems for every branch of mathematics and Computer Science that is used in a verification. This is a formidable task, ultimately requiring the contributions of researchers and developers all over the world. This paper reports on the formalization of the integral calculus in the PVS theorem prover. All of the basic definitions and theorems covered in a first course on integral calculus have been completed.The theory and proofs were based on Rosenlicht’s classic text on real analysis and follow the traditional epsilon-delta method. The goal of this work was to provide a practical set of PVS theories that could be used for verification of hybrid systems that arise in air traffic management systems and other aerospace applications. All of the basic linearity, integrability, boundedness, and continuity properties of the integral calculus were proved. The work culminated in the proof of the Fundamental Theorem Of Calculus. There is a brief discussion about why mechanically checked proofs are so much longer than standard mathematics textbook proofs.

  4. Bell's theorem, accountability and nonlocality

    International Nuclear Information System (INIS)

    Vona, Nicola; Liang, Yeong-Cherng

    2014-01-01

    Bell's theorem is a fundamental theorem in physics concerning the incompatibility between some correlations predicted by quantum theory and a large class of physical theories. In this paper, we introduce the hypothesis of accountability, which demands that it is possible to explain the correlations of the data collected in many runs of a Bell experiment in terms of what happens in each single run. Under this assumption, and making use of a recent result by Colbeck and Renner (2011 Nature Commun. 2 411), we then show that any nontrivial account of these correlations in the form of an extension of quantum theory must violate parameter independence. Moreover, we analyze the violation of outcome independence of quantum mechanics and show that it is also a manifestation of nonlocality. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell's theorem’. (paper)

  5. An Introduction to Kristof's Theorem for Solving Least-Square Optimization Problems Without Calculus.

    Science.gov (United States)

    Waller, Niels

    2018-01-01

    Kristof's Theorem (Kristof, 1970 ) describes a matrix trace inequality that can be used to solve a wide-class of least-square optimization problems without calculus. Considering its generality, it is surprising that Kristof's Theorem is rarely used in statistics and psychometric applications. The underutilization of this method likely stems, in part, from the mathematical complexity of Kristof's ( 1964 , 1970 ) writings. In this article, I describe the underlying logic of Kristof's Theorem in simple terms by reviewing four key mathematical ideas that are used in the theorem's proof. I then show how Kristof's Theorem can be used to provide novel derivations to two cognate models from statistics and psychometrics. This tutorial includes a glossary of technical terms and an online supplement with R (R Core Team, 2017 ) code to perform the calculations described in the text.

  6. Bayes' theorem and its application to nuclear power plant safety

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2013-01-01

    Bayes' theorem has been paid in much attention for its application to Probabilistic Safety Assessment (PSA). In this lecture, the basis for understanding Bayes' theorem is first explained and how to interpret the Bayes' equation with respect to the pair of conjugate distributions between prior distribution and likelihood. Then for the application to PSA, component failure data are evaluated by Bayes' theorem by using the examples of demand probability of the start of diesel generator and failure of pressure sensor. Frequencies of nuclear power plant accidents are also evaluated by Bayes' theorem for the example case of frequency of 'fires in reactor compartment' and 'core melt' frequency with the experience of Fukushima dai-ichi accidents. Lastly, several contrasting arguments are introduced briefly between favorable and critical peoples regarding the Bayes' methods. (author)

  7. Non-renormalization theorems andN=2 supersymmetric backgrounds

    International Nuclear Information System (INIS)

    Butter, Daniel; Wit, Bernard de; Lodato, Ivano

    2014-01-01

    The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed

  8. Twelve years before the quantum no-cloning theorem

    Science.gov (United States)

    Ortigoso, Juan

    2018-03-01

    The celebrated quantum no-cloning theorem establishes the impossibility of making a perfect copy of an unknown quantum state. The discovery of this important theorem for the field of quantum information is currently dated 1982. I show here that an article published in 1970 [J. L. Park, Found. Phys. 1, 23-33 (1970)] contained an explicit mathematical proof of the impossibility of cloning quantum states. I analyze Park's demonstration in the light of published explanations concerning the genesis of the better-known papers on no-cloning.

  9. Strong limit theorems in noncommutative L2-spaces

    CERN Document Server

    Jajte, Ryszard

    1991-01-01

    The noncommutative versions of fundamental classical results on the almost sure convergence in L2-spaces are discussed: individual ergodic theorems, strong laws of large numbers, theorems on convergence of orthogonal series, of martingales of powers of contractions etc. The proofs introduce new techniques in von Neumann algebras. The reader is assumed to master the fundamentals of functional analysis and probability. The book is written mainly for mathematicians and physicists familiar with probability theory and interested in applications of operator algebras to quantum statistical mechanics.

  10. A power counting theorem for Feynman integrals on the lattice

    International Nuclear Information System (INIS)

    Reisz, T.

    1988-01-01

    A convergence theorem is proved, which states sufficient conditions for the existence of the continuum limit for a wide class of Feynman integrals on a space-time lattice. A new kind of a UV-divergence degree is introduced, which allows the formulation of the theorem in terms of power counting conditions. (orig.)

  11. Differentiation of retarded integrals and the divergence theorem for retarded functions with discontinuities

    International Nuclear Information System (INIS)

    Cooperstock, F.I.; Lim, P.H.

    1986-01-01

    Theorems expressing the time derivatives of retarded volume and surface integrals are presented as well as the Gauss divergence theorem for retarded functions with discontinuities. These theorems greatly facilitate the analysis of gravitational radiation from the motion of disjoint matter distributions in general relativity and could find useful application in other branches of physics

  12. Nucleon internal structure: a new set of quark, gluon momentum, angular momentum operators and parton distribution functions

    International Nuclear Information System (INIS)

    Wang Fan; Sun Weimin; Chen Xiangsong; Lu Xiaofu; Goldman, T.

    2009-01-01

    It is unavoidable to deal with the quark and gluon momentum and angular momentum contributions to the nucleon momentum and spin in the study of nucleon internal structure. However we never have the quark and gluon momentum, orbital angular momentum and gluon spin operators which satisfy both the gauge invariance and the canonical momentum and angular momentum commutation relation. The conflicts between the gauge invariance and canonical quantization requirement of these operators are discussed. A new set of quark and gluon momentum, orbital angular momentum and spin operators, which satisfy both the gauge invariance and canonical momentum and angular momentum commutation relation, are proposed. The key point to achieve such a proper decomposition is to separate the gauge field into the pure gauge and the gauge covariant parts. The same conflicts also exist in QED and quantum mechanics and have been solved in the same manner. The impacts of this new decomposition to the nucleon internal structure are discussed. (authors)

  13. Multivariable Chinese Remainder Theorem

    Indian Academy of Sciences (India)

    IAS Admin

    to sleep. The 3rd thief wakes up and finds the rest of the coins make 7 equal piles excepting a coin which he pockets. If the total number of coins they stole is not more than 200, what is the exact number? With a bit of hit and miss, one can find that 157 is a possible number. The Chinese remainder theorem gives a systematic ...

  14. Angle Defect and Descartes' Theorem

    Science.gov (United States)

    Scott, Paul

    2006-01-01

    Rene Descartes lived from 1596 to 1650. His contributions to geometry are still remembered today in the terminology "Descartes' plane". This paper discusses a simple theorem of Descartes, which enables students to easily determine the number of vertices of almost every polyhedron. (Contains 1 table and 2 figures.)

  15. Optical theorem and its history

    International Nuclear Information System (INIS)

    Newton, R.G.

    1978-01-01

    A translation is presented of a paper submitted to the symposium ''Concepts and methods in microscopic physics'' held at Washington University in 1974. A detailed description is given of the history of the optical theorem, its various formulations and derivations and its use in the scattering theory. (Z.J.)

  16. Gyrokinetic continuum simulations of turbulence in the Texas Helimak

    Science.gov (United States)

    Bernard, T. N.; Shi, E. L.; Hammett, G. W.; Hakim, A.; Taylor, E. I.

    2017-10-01

    We have used the Gkeyll code to perform 3x-2v full-f gyrokinetic continuum simulations of electrostatic plasma turbulence in the Texas Helimak. The Helimak is an open field-line experiment with magnetic curvature and shear. It is useful for validating numerical codes due to its extensive diagnostics and simple, helical geometry, which is similar to the scrape-off layer region of tokamaks. Interchange and drift-wave modes are the main turbulence mechanisms in the device, and potential biasing is applied to study the effect of velocity shear on turbulence reduction. With Gkeyll, we varied field-line pitch angle and simulated biased and unbiased cases to study different turbulent regimes and turbulence reduction. These are the first kinetic simulations of the Helimak and resulting plasma profiles agree fairly well with experimental data. This research demonstrates Gkeyll's progress towards 5D simulations of the SOL region of fusion devices. Supported by the U.S. DOE SCGSR program under contract DE-SC0014664, the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE contract DE-AC02-09CH11466.

  17. Fast Low-to-High Confinement Mode Bifurcation Dynamics in a Tokamak Edge Plasma Gyrokinetic Simulation.

    Science.gov (United States)

    Chang, C S; Ku, S; Tynan, G R; Hager, R; Churchill, R M; Cziegler, I; Greenwald, M; Hubbard, A E; Hughes, J W

    2017-04-28

    Transport barrier formation and its relation to sheared flows in fluids and plasmas are of fundamental interest in various natural and laboratory observations and of critical importance in achieving an economical energy production in a magnetic fusion device. Here we report the first observation of an edge transport barrier formation event in an electrostatic gyrokinetic simulation carried out in a realistic diverted tokamak edge geometry under strong forcing by a high rate of heat deposition. The results show that turbulent Reynolds-stress-driven sheared E×B flows act in concert with neoclassical orbit loss to quench turbulent transport and form a transport barrier just inside the last closed magnetic flux surface.

  18. Goedel's theorem and leapfrog

    International Nuclear Information System (INIS)

    Lloyd, Mark Anthony

    1999-01-01

    We in the nuclear power industry consider ourselves to be at the forefront of civilised progress. Yet, all too often, even we ourselves don't believe our public relations statements about nuclear power. Why is this? Let us approach the question by considering Godel's Theorem. Godel's Theorem is extremely complicated mathematically, but for our purposes can be simplified to the maxim that one cannot validate a system from within that system. Scientists, especially those in the fields of astronomy and nuclear physics, have long realised the implications of Godel's Theorem. The people to whom we must communicate look to us, who officially know everything about our industry, to comfort and reassure them. And we forget that we can only comfort them by addressing their emotional needs, not by demonstrating our chilling o bjectivity . Let us try something completely new in communication. Instead of looking for incremental rules which will help us marginally differentiate the way we communicate about minor or major incidents, let us leapfrog across 'objectivity' to meaning and relevance. If we truly believe that nuclear energy is a good thing, this leap should not be difficult. Finally, if we as communicators are not prepared to be meaningful and relevant - not prepared to leapfrog beyond weasel terms like 'minor incident' - what does that say about the kinds of people we believe the nuclear community to be? Are nuclear people a group apart, divisible from the rest of the human race by their evil? In fact the nuclear community is a living, laughing, normal part of a whole society; and is moreover a good contributor to the technological progress that society demands. When we ourselves recognise this, we will start to communicate nuclear issues in the same language as the rest of society. We will start to speak plainly and convincingly, and our conviction will leapfrog our audience into being able to believe us

  19. Expanding the Interaction Equivalency Theorem

    Directory of Open Access Journals (Sweden)

    Brenda Cecilia Padilla Rodriguez

    2015-06-01

    Full Text Available Although interaction is recognised as a key element for learning, its incorporation in online courses can be challenging. The interaction equivalency theorem provides guidelines: Meaningful learning can be supported as long as one of three types of interactions (learner-content, learner-teacher and learner-learner is present at a high level. This study sought to apply this theorem to the corporate sector, and to expand it to include other indicators of course effectiveness: satisfaction, knowledge transfer, business results and return on expectations. A large Mexican organisation participated in this research, with 146 learners, 30 teachers and 3 academic assistants. Three versions of an online course were designed, each emphasising a different type of interaction. Data were collected through surveys, exams, observations, activity logs, think aloud protocols and sales records. All course versions yielded high levels of effectiveness, in terms of satisfaction, learning and return on expectations. Yet, course design did not dictate the types of interactions in which students engaged within the courses. Findings suggest that the interaction equivalency theorem can be reformulated as follows: In corporate settings, an online course can be effective in terms of satisfaction, learning, knowledge transfer, business results and return on expectations, as long as (a at least one of three types of interaction (learner-content, learner-teacher or learner-learner features prominently in the design of the course, and (b course delivery is consistent with the chosen type of interaction. Focusing on only one type of interaction carries a high risk of confusion, disengagement or missed learning opportunities, which can be managed by incorporating other forms of interactions.

  20. Optical angular momentum and atoms

    Science.gov (United States)

    2017-01-01

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom’s angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light’s OAM, aiding our fundamental understanding of light–matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069766

  1. Radon transformation on reductive symmetric spaces:Support theorems

    DEFF Research Database (Denmark)

    Kuit, Job Jacob

    2013-01-01

    We introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and derive support theorems for these transforms. A reductive symmetric space is a homogeneous space G/H for a reductive Lie group G of the Harish-Chandra class, where H is an open sub...... is based on the relation between the Radon transform and the Fourier transform on G/H, and a Paley–Wiener-shift type argument. Our results generalize the support theorem of Helgason for the Radon transform on a Riemannian symmetric space....

  2. Convergence theorems for Banach space valued integrable multifunctions

    Directory of Open Access Journals (Sweden)

    Nikolaos S. Papageorgiou

    1987-01-01

    Full Text Available In this work we generalize a result of Kato on the pointwise behavior of a weakly convergent sequence in the Lebesgue-Bochner spaces LXP(Ω (1≤p≤∞. Then we use that result to prove Fatou's type lemmata and dominated convergence theorems for the Aumann integral of Banach space valued measurable multifunctions. Analogous convergence results are also proved for the sets of integrable selectors of those multifunctions. In the process of proving those convergence theorems we make some useful observations concerning the Kuratowski-Mosco convergence of sets.

  3. Poisson's theorem and integrals of KdV equation

    International Nuclear Information System (INIS)

    Tasso, H.

    1978-01-01

    Using Poisson's theorem it is proved that if F = integral sub(-infinity)sup(+infinity) T(u,usub(x),...usub(n,t))dx is an invariant functional of KdV equation, then integral sub(-infinity)sup(+infinity) delta F/delta u dx integral sub(-infinity)sup(+infinity) delta T/delta u dx is also an invariant functional. In the case of a polynomial T, one finds in a simple way the known recursion ΔTr/Δu = Tsub(r-1). This note gives an example of the usefulness of Poisson's theorem. (author)

  4. Extension and reconstruction theorems for the Urysohn universal metric space

    Czech Academy of Sciences Publication Activity Database

    Kubiś, Wieslaw; Rubin, M.

    2010-01-01

    Roč. 60, č. 1 (2010), s. 1-29 ISSN 0011-4642 R&D Projects: GA AV ČR IAA100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : Urysohn space * bilipschitz homeomorphism * modulus of continuity * reconstruction theorem * extension theorem Subject RIV: BA - General Mathematics Impact factor: 0.265, year: 2010 http://dml.cz/handle/10338.dmlcz/140544

  5. Global gyrokinetic simulations of the H-mode tokamak edge pedestal

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Weigang; Parker, Scott E.; Chen, Yang [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Groebner, Richard J. [General Atomics, Post Office Box 85068, San Diego, California 92186 (United States); Yan, Zheng [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Pankin, Alexei Y.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80305 (United States)

    2013-05-15

    Global gyrokinetic simulations of DIII-D H-mode edge pedestal show two types of instabilities may exist approaching the onset of edge localized modes: an intermediate-n, high frequency mode which we identify as the “kinetic peeling ballooning mode (KPBM),” and a high-n, low frequency mode. Our previous study [W. Wan et al., Phys. Rev. Lett. 109, 185004 (2012)] has shown that when the safety factor profile is flattened around the steep pressure gradient region, the high-n mode is clearly kinetic ballooning mode and becomes the dominant instability. Otherwise, the KPBM dominates. Here, the properties of the two instabilities are studied by varying the density and temperature profiles. It is found that the KPBM is destabilized by density and ion temperature gradient, and the high-n mode is mostly destabilized by electron temperature gradient. Nonlinear simulations with the KPBM saturate at high levels. The equilibrium radial electric field (E{sub r}) reduces the transport. The effect of the parallel equilibrium current is found to be weak.

  6. On the Fourier integral theorem

    NARCIS (Netherlands)

    Koekoek, J.

    1987-01-01

    Introduction. In traditional proofs of convergence of Fourier series and of the Fourier integraI theorem basic tools are the theory of Dirichlet integraIs and the Riemann-Lebesgue lemma. Recently CHERNOFF [I) and REoIlEFFER (2) gave new proofs of convergenceof Fourier series which make no use of the

  7. A New Simple Approach for Entropy and Carnot Theorem

    International Nuclear Information System (INIS)

    Veliev, E. V.

    2004-01-01

    Entropy and Carnot theorem occupy central place in the typical Thermodynamics courses at the university level. In this work, we suggest a new simple approach for introducing the concept of entropy. Using simple procedure in TV plane, we proved that for reversible processes ∫dQ/T=0 and it is sufficient to define entropy. And also, using reversible processes in TS plane, we give an alternative simple proof for Carnot theorem

  8. H-theorems from macroscopic autonomous equations

    Czech Academy of Sciences Publication Activity Database

    De Roeck, W.; Maes, C.; Netočný, Karel

    2006-01-01

    Roč. 123, č. 3 (2006), s. 571-583 ISSN 0022-4715 Institutional research plan: CEZ:AV0Z10100520 Keywords : H-theorem, entropy * irreversible equations Subject RIV: BE - Theoretical Physics Impact factor: 1.437, year: 2006

  9. Differentiability in density-functional theory: Further study of the locality theorem

    International Nuclear Information System (INIS)

    Lindgren, Ingvar; Salomonson, Sten

    2004-01-01

    The locality theorem in density-functional theory (DFT) states that the functional derivative of the Hohenberg-Kohn universal functional can be expressed as a local multiplicative potential function, and this is the basis of DFT and of the successful Kohn-Sham model. Nesbet has in several papers [Phys. Rev. A 58, R12 (1998); ibid.65, 010502 (2001); Adv. Quant. Chem, 43, 1 (2003)] claimed that this theorem is in conflict with fundamental quantum physics, and as a consequence that the Hohenberg-Kohn theory cannot be generally valid. We have commented upon these works [Comment, Phys. Rev. A 67, 056501 (2003)] and recently extended the arguments [Adv. Quantum Chem. 43, 95 (2003)]. We have shown that there is no such conflict and that the locality theorem is inherently exact. In the present work we have furthermore verified this numerically by constructing a local Kohn-Sham potential for the 1s2s 3 S state of helium that generates the many-body electron density and shown that the corresponding 2s Kohn-Sham orbital eigenvalue agrees with the ionization energy to nine digits. Similar result is obtained with the Hartree-Fock density. Therefore, in addition to verifying the locality theorem, this result also confirms the so-called ionization-potential theorem

  10. A hierarchical generalization of the acoustic reciprocity theorem involving higher-order derivatives and interaction quantities.

    Science.gov (United States)

    Lin, Ju; Li, Jie; Li, Xiaolei; Wang, Ning

    2016-10-01

    An acoustic reciprocity theorem is generalized, for a smoothly varying perturbed medium, to a hierarchy of reciprocity theorems including higher-order derivatives of acoustic fields. The standard reciprocity theorem is the first member of the hierarchy. It is shown that the conservation of higher-order interaction quantities is related closely to higher-order derivative distributions of perturbed media. Then integral reciprocity theorems are obtained by applying Gauss's divergence theorem, which give explicit integral representations connecting higher-order interactions and higher-order derivative distributions of perturbed media. Some possible applications to an inverse problem are also discussed.

  11. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas

    2017-12-27

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  12. Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods

    KAUST Repository

    Loizou, Nicolas; Richtarik, Peter

    2017-01-01

    In this paper we study several classes of stochastic optimization algorithms enriched with heavy ball momentum. Among the methods studied are: stochastic gradient descent, stochastic Newton, stochastic proximal point and stochastic dual subspace ascent. This is the first time momentum variants of several of these methods are studied. We choose to perform our analysis in a setting in which all of the above methods are equivalent. We prove global nonassymptotic linear convergence rates for all methods and various measures of success, including primal function values, primal iterates (in L2 sense), and dual function values. We also show that the primal iterates converge at an accelerated linear rate in the L1 sense. This is the first time a linear rate is shown for the stochastic heavy ball method (i.e., stochastic gradient descent method with momentum). Under somewhat weaker conditions, we establish a sublinear convergence rate for Cesaro averages of primal iterates. Moreover, we propose a novel concept, which we call stochastic momentum, aimed at decreasing the cost of performing the momentum step. We prove linear convergence of several stochastic methods with stochastic momentum, and show that in some sparse data regimes and for sufficiently small momentum parameters, these methods enjoy better overall complexity than methods with deterministic momentum. Finally, we perform extensive numerical testing on artificial and real datasets, including data coming from average consensus problems.

  13. Asymptotic twistor theory and the Kerr theorem

    International Nuclear Information System (INIS)

    Newman, Ezra T

    2006-01-01

    We first review asymptotic twistor theory with its real subspace of null asymptotic twistors: a five-dimensional CR manifold. This is followed by a description of the Kerr theorem (the identification of shear-free null congruences, in Minkowski space, with the zeros of holomorphic functions of three variables) and an asymptotic version of the Kerr theorem that produces regular asymptotically shear-free null geodesic congruences in arbitrary asymptotically flat Einstein or Einstein-Maxwell spacetimes. A surprising aspect of this work is the role played by analytic curves in H-space, each curve generating an asymptotically flat null geodesic congruence. Also there is a discussion of the physical space realizations of the two associated five- and three-dimensional CR manifolds

  14. Proofs and generalizations of the pythagorean theorem

    Directory of Open Access Journals (Sweden)

    Lialda B. Cavalcanti

    2011-01-01

    Full Text Available This article explores a topic developed by a group of researchers of the Science and Technology Teaching School of Instituto Federal de Pernambuco, Brazil (IFPE, in assistance to the development of the Mathematics Practical and Teaching Laboratory of the distance learning Teaching Licensure, financed by the Universidad Abierta de Brasil. In this article, we describe the peculiarities present in the proofs of the Pythagorean theorem with the purpose of illustrating some of these methods. The selection of these peculiarities was founded and based on the comparison of areas by means of the superimposition of geometrical shapes and used several different class resources. Some generalizations of this important theorem in mathematical problem-solving are also shown.

  15. KLN theorem and infinite statistics

    International Nuclear Information System (INIS)

    Grandou, T.

    1992-01-01

    The possible extension of the Kinoshita-Lee-Nauenberg (KLN) theorem to the case of infinite statistics is examined. It is shown that it appears as a stable structure in a quantum field theory context. The extension is provided by working out the Fock space realization of a 'quantum algebra'. (author) 2 refs

  16. Fermion fractionization and index theorem

    International Nuclear Information System (INIS)

    Hirayama, Minoru; Torii, Tatsuo

    1982-01-01

    The relation between the fermion fractionization and the Callias-Bott-Seeley index theorem for the Dirac operator in the open space of odd dimension is clarified. Only the case of one spatial dimension is discussed in detail. Sum rules for the expectation values of various quantities in fermion-fractionized configurations are derived. (author)

  17. The Geometric Mean Value Theorem

    Science.gov (United States)

    de Camargo, André Pierro

    2018-01-01

    In a previous article published in the "American Mathematical Monthly," Tucker ("Amer Math Monthly." 1997; 104(3): 231-240) made severe criticism on the Mean Value Theorem and, unfortunately, the majority of calculus textbooks also do not help to improve its reputation. The standard argument for proving it seems to be applying…

  18. Cut contribution to momentum autocorrelation function of an impurity in a classical diatomic chain

    Science.gov (United States)

    Yu, Ming B.

    2018-02-01

    A classic diatomic chain with a mass impurity is studied using the recurrence relations method. The momentum autocorrelation function of the impurity is a sum of contributions from two pairs of resonant poles and three branch cuts. The former results in cosine function and the latter in acoustic and optical branches. By use of convolution theorem, analytical expressions for the acoustic and optical branches are derived as even-order Bessel function expansions. The expansion coefficients are integrals of elliptic functions in the real axis for the acoustic branch and along a contour parallel to the imaginary axis for the optical branch, respectively. An integral is carried out for the calculation of optical branch: ∫0 ϕ dθ/√((1 - r 1 2 sin2 θ)(1 - r 2 2 sin2 θ)) = igsn -1 (sin ϕ) ( r 2 2 > r 1 2 > 1, g is a constant).

  19. Atiyah-Patodi-Singer index theorem for domain-wall fermion Dirac operator

    Science.gov (United States)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi

    2018-03-01

    Recently, the Atiyah-Patodi-Singer(APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. Although it is widely applied to physics, the mathematical set-up in the original APS index theorem is too abstract and general (allowing non-trivial metric and so on) and also the connection between the APS boundary condition and the physical boundary condition on the surface of topological material is unclear. For this reason, in contrast to the Atiyah-Singer index theorem, derivation of the APS index theorem in physics language is still missing. In this talk, we attempt to reformulate the APS index in a "physicist-friendly" way, similar to the Fujikawa method on closed manifolds, for our familiar domain-wall fermion Dirac operator in a flat Euclidean space. We find that the APS index is naturally embedded in the determinant of domain-wall fermions, representing the so-called anomaly descent equations.

  20. Vapour–to–liquid nucleation: Nucleation theorems for nonisothermal–nonideal case

    Energy Technology Data Exchange (ETDEWEB)

    Malila, J.; McGraw, R.; Napari, I.; Laaksonen, A.

    2010-08-29

    Homogeneous vapour-to-liquid nucleation, a basic process of aerosol formation, is often considered as a type example of nucleation phenomena, while most treatment of the subject introduce several simplifying assumptions (ideal gas phase, incompressible nucleus, isothermal kinetics, size-independent surface free energy...). During last decades, nucleation theorems have provided new insights into properties of critical nuclei facilitating direct comparison between laboratory experiments and molecular simulations. These theorems are, despite of their generality, often applied in forms where the aforementioned assumptions are made. Here we present forms of nucleation theorems that explicitly take into account these effects and allow direct estimation of their importance. Only assumptions are Arrhenius-type kinetics of nucleation process and exclusion carrier gas molecules from the critical nucleus.