Sample records for gyrocon deflection-modulated amplifier

  1. Progress on the gyrocon deflection-modulated amplifier

    Tallerico, P.J.


    The gyrocon is a high-power deflection-modulated amplifier that can have excellent spatial bunching and, hence, high dc-to-rf conversion efficiency. A program to design and build a prototype amplifier at 450 MHz is discussed. Peak powers of 150 kW and conversion efficiencies of 23% have been measured; the testing program is being pursued to improve this performance. Some possible mechanisms for the difference between the experimental and calculated performance are discussed

  2. Gyrocon: a deflection-modulated, high-power microwave amplifier

    Tallerico, P.J.


    A large-signal, relativistic theory of the electron-field interaction in a new class of microwave amplifiers is presented and applied to the analysis of a high-power, 450-MHz amplifier for accelerator applications. The analysis indicates that electronic efficiencies in excess of 90 percent are obtainable and that overall efficiencies of 90 percent are possible. The amplifier is unique in several respects; the electron velocity is perpendicular to the circuit energy flow, the device uses a fast-wave circuit, and the electron beam is deflection modulated

  3. Gyrocon radio-frequency generator for FY-80 and FY-81

    Tallerico, P.J.


    The gyrocon is a high-power, high-efficiency amplifier that operates by deflection modulation of an electron beam. The spatial bunching can be better than the temporal bunching in a klystron, especially for high output powers and uhf frequencies. Soviet gyrocons have produced over 40 MW of pulsed power at 430 MHz and 250-kW cw at 181 MHz. The progress on the construction and testing of a 450-MHz prototype gyrocon is discussed. The maximum pulsed output power that has been achieved in the reporting period is 1 kW. Although these powers are significantly below the design goal of 650 kW, there is a good chance that the experimental program in FY-82 will result in increased output power

  4. Gyrocon Radio-Frequency-Generator project for FY-78 and -79

    Tallerico, P.J.; Rankin, J.E.


    The gyrocon is a high-power, high-efficiency amplifier that operates by deflection modulation of an electron beam. The bunching is better than that in a klystron, especially for very high powers and UHF frequencies, so the overall efficiency and the maximum output power can be higher than in a klystron. The present theory includes the effects of large signals, space charge, and finite beam size. The equations of motion are relativistically correct, and the space-charge fields are correct to first order in v/c. The theory is derived and a computer code to solve these equations is discussed. The code is then used to obtain several specific examples of gyrocon designs that have significant advantages over klystrons or gridded tubes in the 0.2- to 1.0-GHz frequency range. Several embodiments of the gyrocon are possible: the radial style and the spherical style are discussed in this report. The radial style has a bender magnet to increase the deflection of the beam, whereas the spherical gyrocon does not employ the bender magnet. The optimum frequency range for the spherical gyrocon is from 1.0 to 2.5 GHz

  5. Gyrocons and magnicons: Microwave generators with circular deflection of the electron beam

    Nezhevenko, O.A.


    A new class of microwave power amplifiers is presented in this paper. In these amplifiers, the beam is modulated by varying its spatial position by means of circular deflection. Today, this class consists of two devices: the gyrocon and its advanced version--the magnicon. This paper outlines the theory and the results of experimental research for both the gyrocon and the magnicon. The possibility of obtaining high power and high efficiency in both the decimeter and centimeter-wave ranges shows that these devices (the magnicon especially) may turn into one of the main microwave energy sources for future particle accelerators

  6. Computer modeling of the gyrocon

    Tallerico, P.J.; Rankin, J.E.


    A gyrocon computer model is discussed in which the electron beam is followed from the gun output to the collector region. The initial beam may be selected either as a uniform circular beam or may be taken from the output of an electron gun simulated by the program of William Herrmannsfeldt. The fully relativistic equations of motion are then integrated numerically to follow the beam successively through a drift tunnel, a cylindrical rf beam deflection cavity, a combination drift space and magnetic bender region, and an output rf cavity. The parameters for each region are variable input data from a control file. The program calculates power losses in the cavity wall, power required by beam loading, power transferred from the beam to the output cavity fields, and electronic and overall efficiency. Space-charge effects are approximated if selected. Graphical displays of beam motions are produced. We discuss the Los Alamos Scientific Laboratory (LASL) prototype design as an example of code usage. The design shows a gyrocon of about two-thirds megawatt output at 450 MHz with up to 86% overall efficiency

  7. Advances in high-power rf amplifiers

    Tallerico, P.J.


    Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems

  8. High-current Standing Wave Linac With Gyrocon Power Source

    Karliner, M M; Makarov, I G; Nezhevenko, O A; Ostreiko, G N; Persov, B Z; Serdobintsev, G V


    A gyrocon together with high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. 2.2 amps of pulsed current have been obtained at electron energy of 20 MeV. The achieved energy conversion efficiency is about 55%.

  9. Study of electron beam energy conversion at gyrocon-linear accelerator facility

    Karliner, M.M.; Makarov, I.G.; Ostreiko, G.N.


    A gyrocon together with the high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. The achieved energy conversion efficiency is about 55%

  10. VEPP-4 electron-positron storage ring RF-system on the base of gyrocon-power SHF-generator with a debunched relativistic beam

    Budker, G.I.; Gaponov, V.A.; Gorniker, Eh.I.


    A gyrocon, SHF-generator, is described in which the energy of debunched relativistic electron beam is converted to the energy of electromagnetic oscillations. The gyrocon is intended for supplying the VEPP-4 accelerating resonators. A high-voltage accelerator is used as an electron source. An electron beam is scanned by a rotating magnetic field of the resonator and in different points of the orbit circumscribed by the beam and is injected into the outlet resonator. The resonator represents a ring-form waveguide with slots for the beam passage. A travelling wave, whose field decelerates electrons, is excited in the resonator tuned in to the scanning frequency, converting the beam power to RF-power which is taken off through the energy outlets. The design parameters of the gyrocon are as follows: electron efficiency > 95%, the general efficiency > 80%, amplification factor 23 dB, output power = 5 MW. Results of preliminary tests of the gyrocon are presented

  11. Fiber Amplifiers

    Rottwitt, Karsten


    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  12. Initial tests of an 11.4 GHz magnicon amplifier

    Gold, S.H.; Sullivan, C.A.; Manheimer, W.M.; Hafizi, B.


    The magnicon, a scanning beam microwave amplifier related to the gyrocon, is a possible replacement for klystron amplifiers in future high-gradient linear accelerators. The magnicon circuit consists of a multicavity deflection system followed by an output cavity. The purpose of the deflection system is to spin up the electron beam phase-coherently to high transverse momentum. In order to do this, the deflection cavities employ rotating TM 11 modes, producing a gyrating electron beam whose centroid rotates about the cavity axis in synchronism with the advance in phase of the rf modes. The output cavity employs a cyclotron resonant mechanism to extract principally the transverse beam momentum. It employs an rf mode that rotates synchronously with the deflection cavity modes, and with the entry point of the electron beam into the output cavity, making possible a highly efficient interaction. The NRL magnicon uses a 100--200 A, 500 keV beam produced by a cold-cathode diode on the NRL Long-Pulse Accelerator Facility. The first cavity is externally driven at 5.7 GHz, while the output cavity is designed to produce megawatts of power at 11.4 GHz in the TM 210 mode. In this paper, the authors present a progress report on the NRL magnicon experiment. They will discuss the procedure used to cold test and calibrate the magnicon circuit, and present initial results from experimental operations

  13. Operation amplifier

    Tetsuya, Saito; Nauta, Bram


    To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a differential amplifier circuit 1;

  14. Operation Amplifier

    Tetsuya, Saito; Nauta, Bram


    PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a

  15. Operation Amplifier

    Tetsuya, S.; Nauta, Bram


    PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. ; SOLUTION: The operation amplifier comprises: a

  16. Operational amplifiers

    Dostal, Jiri


    This book provides the reader with the practical knowledge necessary to select and use operational amplifier devices. It presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits.Provides the reader with practical knowledge necessary to select and use operational amplifier devices. Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits

  17. Amplifier Distortion

    Keeports, David


    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  18. Amplified Policymaking

    Prince, Katherine; Woempner, Carolyn


    This brief examines the policy implications of two drivers of change presented in the "2020 Forecast: Creating the Future of Learning"-- Pattern Recognition and Amplified Organization. These drivers point toward a series of cultural shifts and illuminate how we are developing new ways of organizing, constructing, and managing knowledge.…

  19. Amplifier for nuclear spectrometry

    Suarez Canner, E.


    The spectroscopy amplifier model AE-020 is designed to adjust suitable the pulses coming from nuclear radiation detectors. Due to is capacity and specifications, the amplifier can be used together with high and medium resolution spectroscopy system

  20. Portable musical instrument amplifier

    Christian, David E.


    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  1. Amplification factor variable amplifier

    Akitsugu, Oshita; Nauta, Bram


    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ; SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and

  2. Amplification factor variable amplifier

    Akitsugu, Oshita; Nauta, Bram


    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ;SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and can

  3. Oscillators and operational amplifiers

    Lindberg, Erik


    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed.


    Several fluidic tuned AC Amplifiers were designed and tested. Interstage tuning and feedback designs are considered. Good results were obtained...corresponding Q’s as high as 12. Element designs and test results of one, two, and three stage amplifiers are presented. AC Modulated Carrier Systems

  5. Antares laser power amplifier

    Stine, R.D.; Ross, G.F.; Silvernail, C.


    The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed

  6. Auto-Zero Differential Amplifier

    Quilligan, Gerard T. (Inventor); Aslam, Shahid (Inventor)


    An autozero amplifier may include a window comparator network to monitor an output offset of a differential amplifier. The autozero amplifier may also include an integrator to receive a signal from a latched window comparator network, and send an adjustment signal back to the differential amplifier to reduce an offset of the differential amplifier.

  7. Noise in Optical Amplifiers

    Jeppesen, Palle


    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  8. Electrospun amplified fiber optics.

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario


    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  9. Fast pulse amplifier

    Lepetit, J.; Poussier, E.


    This amplifier comprises an inverter transformer, the primary circuit of which receives a pulse and the secondary circuit of which is connected to several amplifying elements in parallel. The inverter transformer is made of coaxial cable segments winded around a magnetic torus; the cable cores connected in series constitute the primary circuit and the braiding of cables, connected in parallel, are the secondary circuit. The transformer comprises, besides, delay lines in series with each braiding of the secondary circuit, these ones are such that pulses issued from each braiding arrive together to the secondary circuit connectors. This invention applies, noticeably in the case of a high voltage amplifier, to the control of deflection blocks of particles used in medicine or in particle accelerators [fr

  10. Fast logarithmic amplifier

    Tai, I.; Hasegawa, K.


    This paper reports on the improvement of frequency characteristics of a logarithmic amplifier with a Paterson transdiode connection. The improvement of the response speed has been achieved by using a phase compensation technique. Small signal response analyses of the logging circuit revealed the effects of a series resistor Rsub(p) and a parallel capacitance Csub(p) on the response of the circuit. The improvement of the frequency characteristics are remarkable at higher current levels. These facts were proved by the practical logarithmic amplifier. (auth.)

  11. Amplifying genetic logic gates.

    Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew


    Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

  12. Flashlamp excited fluid laser amplified


    The patent describes a laser amplifier with chambers for containing and amplifying an intensifier medium. It serves the need for a large impulse repetition rate and high intensities as required e.g. for laser isotope separation

  13. Improved-Bandwidth Transimpedance Amplifier

    Chapsky, Jacob


    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  14. Simplified design of IC amplifiers

    Lenk, John


    Simplified Design of IC Amplifiers has something for everyone involved in electronics. No matter what skill level, this book shows how to design and experiment with IC amplifiers. For experimenters, students, and serious hobbyists, this book provides sufficient information to design and build IC amplifier circuits from 'scratch'. For working engineers who design amplifier circuits or select IC amplifiers, the book provides a variety of circuit configurations to make designing easier.Provides basics for all phases of practical design.Covers the most popular forms for amplif

  15. Wideband amplifier design

    Hollister, Allen L


    In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model

  16. Building valve amplifiers

    Jones, Morgan


    Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or

  17. Superconducting digital logic amplifier

    Przybysz, J.X.


    This paper describes a superconducting digital logic amplifier for interfacing between a Josephson junction logic circuit having output current and a higher voltage semiconductor circuit input. The amplifier comprising: an input terminal for connection to a; an output terminal for connection to a semiconductor circuit input; an input, lower critical current, Josephson junction having first and second terminals; a first series string of at least three lower critical current Josephson junctions. The first series string being connected to the first terminal of the input Josephson junction such that the first series string is in series with the input Josephson junction to provide a series combination. The input terminal being connected to the first terminal of the input Josephson junction, and with the critical current of the lower critical current Josephson junctions of the input Josephson junction and the first series Josephson junctions being less than the output current of the low voltage Josephson junction circuit; a second series string of at least four higher critical current Josephson junctions. The second string being connected in parallel with the series combination to provide parallel strings having an upper common connection and a lower common connection. The lower common connection being connected to the second terminal of the input Josephson junction and the upper common connection being connected to the output terminal; and a pulsed DC current source connected the parallel strings at the upper common connection. The DC current source having a current at least equal to the critical current of the higher critical current Josephson junctions

  18. Cascade energy amplifier

    Barzilov, A.P.; Gulevich, A.V.; Kukharchuk, O.F.


    The technical problem of long-life fission product and minor actinide incineration and production of plutonium fuel in the prospective nuclear systems will arise at significant scales of nuclear power industry development. Subcritical nuclear reactors driven by extemal neutron sources (energy amplifiers) are considered as incinerators of toxicity of complete nuclear industry. In the frames of this concept, the subcritical reactor part consisting of two coupled blanket regions (inner fast neutron spectrum core and outer thermal core) driven by extemal neutron source is discussed. Two types of source are studied: spallation target and 14-MeV fusion bum of micropellets. Liquid metal Pb-Bi is considered as target material and coolant of inner fast core. Thermal core is a heavy-water subcritical reactor of the Candu-type. The fast core is protected from thermal neutrons influence with the boron shield. All reactor technologies used in this concept are tested during years of operation and commercially available. Thus, the cascade energy amplifiers have a set of advantages in comparison with traditional concepts: in energy production, in transmutation efficiency, and in economics. (authors)

  19. Nanoscale electromechanical parametric amplifier

    Aleman, Benjamin Jose; Zettl, Alexander


    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  20. Linear pulse amplifier

    Tjutju, R.L.


    Pulse amplifier is standard significant part of spectrometer. Apart from other type of amplification, it's a combination of amplification and pulse shaping. Because of its special purpose the device should fulfill the following : High resolution is desired to gain a high yield comparable to its actual state of condition. High signal to noise is desired to nhν resolution. High linearity to facilitate calibration. A good overload recovery, in order to the device will capable of analizing a low energy radiation which appear joinly on the high energy fields. Other expections of the device are its economical and practical use its extentive application. For that reason it's built on a standard NIM principle. Taking also into account the above mentioned considerations. High quality component parts are used throughout, while its availability in the domestic market is secured. (author)

  1. Modeling of semiconductor optical amplifiers

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  2. CERN: Energy amplifier



    Even under the heavy burden of responsibility as CERN's Director General from 1989-3 the fertile mind of Carlo Rubbia the scientist was never still. A long-time Rubbia 'hobby' has been the search for new sources of nuclear energy, exploiting knowledge and skills from high energy physics. An initial objective was to adopt heavy ion techniques to induce controlled thermonuclear fusion, but in 1994 this quest changed direction. Putting the problems of thermonuclear fusion aside, Rubbia began to explore an alternative route to energy production through controlled nuclear fission. The idea is to use a particle accelerator producing neutrons by spallation (interaction of particles with a target) to feed a fuel/moderator assembly where the neutrons multiply by fission chain reactions. If the energy liberated becomes substantially greater than that needed to drive the accelerator, the process has a net gain and becomes selfsupporting. Hence the name ''Energy Amplifier'' (EA). Similar systems for energy production or for nuclear waste incineration have been proposed at Los Alamos and in Japan and Russia, but appear to require the prior development of innovative linear accelerators. For Rubbia's Amplifier, the requisite accelerator is a reasonable extrapolation of an existing cyclotron such that at the Swiss Paul Scherrer Institute. Moreover, the EA would require fuel rods very similar to those of conventional reactors, rather than demand-ing new technology using liquid fuel loops (molten salts) with on-line separation of radioactive products. Unlike a reactor, the EA's fission reaction is not self-sustaining: it is sub-critical and needs a continuous supply of neutrons from the accelerator. This makes Chernobyl-type meltdowns unlikely: if the accelerator stops, the reaction stops too. Another major advantage is that the old dream of using thorium as a fuel is now made possible. Thorium is not itself fissile, but under neutron

  3. Millimeter-wave power amplifiers

    du Preez, Jaco


    This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.

  4. Small signal microwave amplifier design

    Grosch, Theodore


    This book explains techniques and examples for designing stable amplifiers for high-frequency applications in which the signal is small and the amplifier circuit is linear. An in-depth discussion of linear network theory provides the foundation needed to develop actual designs. Examples throughout the book will show you how to apply the knowledge gained in each chapter leading to the complex design of low noise amplifiers. Many exercises at the end of each chapter will help students to practice their skills. The solutions to these design problems are available in an accompanying solutions book

  5. Final amplifier design and mercury

    Rose, E.A.; Hanson, D.E.


    The final amplifier for the Mercury KrF excimer facility is being designed. The design exercise involves extensive modeling to predict amplifier performance. Models of the pulsed-power system, including a Child-Langmuir diode with closure, electron-beam energy deposition, KrF laser kinetics, amplified spontaneous emission (ASE), a time-dependent laser extraction in the presence of ASE are presented as a design package. The design exercise indicates that the energy objective of Phase I -- 100 joules -- will be met

  6. New Packaging for Amplifier Slabs

    Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  7. Operational amplifiers theory and design

    Huijsing, Johan


    This proven textbook guides readers to a thorough understanding of the theory and design of operational amplifiers (OpAmps). The core of the book presents systematically the design of operational amplifiers, classifying them into a periodic system of nine main overall configurations, ranging from one gain stage up to four or more stages. This division enables circuit designers to recognize quickly, understand, and choose optimal configurations. Characterization of operational amplifiers is given by macro models and error matrices, together with measurement techniques for their parameters. Definitions are given for four types of operational amplifiers depending on the grounding of their input and output ports. Many famous designs are evaluated in depth, using a carefully structured approach enhanced by numerous figures. In order to reinforce the concepts introduced and facilitate self-evaluation of design skills, the author includes problems with detailed solutions, as well as simulation exercises. Provides te...

  8. TARC: Carlo Rubbia's Energy Amplifier

    Laurent Guiraud


    Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.

  9. Enhanced performance CCD output amplifier

    Dunham, Mark E.; Morley, David W.


    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  10. Spectroscopic amplifier for pin diode

    Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R.


    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)

  11. Dielectric waveguide amplifiers and lasers

    Pollnau, Markus

    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length

  12. CMOS Current-mode Operational Amplifier

    Kaulberg, Thomas


    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-range ±700¿A) and a (theoretically) unlimited slew-rate. The amplifier is realized in a standard CMOS 2......A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  13. A CMOS current-mode operational amplifier

    Kaulberg, Thomas


    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain-bandwidth product of 3 MHz, an offset current of 0.8 μA (signal range ±700 μA), and a (theoretically) unlimited slew rate. The amplifier is realized in a standard CMOS 2......A fully differential-input, differential-output, current-mode operational amplifier (COA) is described. The amplifier utilizes three second-generation current conveyors (CCIIs) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  14. Amplified spontaneous emissions in a high-gain laser amplifier

    Osada, Hidenori; Gamo, Hideya.


    The gain and line-narrowing of the amplified spontaneous emissions(ASE) in a partially homogeneous high-gain Xe 3.51 μm laser amplifier were studied theoretically and experimentally with emphasis of saturation effect. The unidirectionally travelling ASE was generated by conveniently using optical isolators and used as a broadband radiation source. It has properties of 10 μW/mm 2 in intensity with fluctuation of less than 1% in 5 hours, 43.5 MHz of the linewidth and 1.0 x 10 -3 radians of beam divergence. The measured saturation intensity was 4.85 μW/mm 2 and a small signal gain was 0.1 cm -1 . The theoretical prediction of the line-narrowing shows reasonablly good agreement with the measured one. (author)

  15. Single conversion stage amplifier - SICAM

    Ljusev, P.


    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  16. Analog circuit design designing high performance amplifiers

    Feucht, Dennis


    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  17. Higher order mode optical fiber Raman amplifiers

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.


    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  18. SPS RF System Amplifier plant


    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  19. Challenges in higher order mode Raman amplifiers

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk


    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  20. European Research on THz Vacuum Amplifiers

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.


    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players...... of the European research, academy and industry in vacuum electronics. This paper describes the status of the project and progress towards the THz amplifier realization....

  1. Integrated amplifying circuit with MOS transistors

    Baylac, B; Merckel, G; Meunier, P


    The invention relates to a feedback-pass-band amplifier with MOS-transistors. The differential stage of conventional amplifiers is changed into an adding state, whereas the differential amplification stages are changed into amplifier inverter stages. All MOS transistors used in that amplifier are of similar configuration and are interdigitized, whereby the operating speed dispersion is reduced. This can be applied to obtaining a measurement channel for proportional chambers.

  2. NASA developments in solid state power amplifiers

    Leonard, Regis F.


    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  3. A pulse amplifier for nuclear instrumentation

    Martin, D.; Cliff, P.


    A Class-A 1 Watt amplifier has been designed and optimized for nanosecond pulses. Spanning .01MHz to 1300Mhz, signal gain is 26dB with gain flatness of 1dB. The amplifier drive +- 10 volts across 500 with 350ps risetime. Each amplifier is housed in a 2-wide NIM

  4. Remote Acquisition Amplifier For 50-Ohm Cable

    Amador, Jose J.


    Buffer-amplifier unit designed to drive 50-Ohm cables up to 100 ft. (30 m) long, compensating for attenuation in cables and enabling remote operation of oscilloscopes. Variable resistor provides for adjustment of gain of amplifier, such that overall gain from input terminals of amplifier to output end of cable set to unity.

  5. An Implantable CMOS Amplifier for Nerve Signals

    Nielsen, Jannik Hammel; Lehmann, Torsten


    In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. The amplifier is constructed in a fully differential topology to maximize noise rejection. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved....... A continuous-time current-steering offset-compensation technique is utilized in order to minimize the noise contribution and to minimize dynamic impact on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0...

  6. Semiconductor quantum-dot lasers and amplifiers

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.


    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  7. CMOS Current-mode Operational Amplifier

    Kaulberg, Thomas


    A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-r...

  8. NIF/LMJ prototype amplifier mechanical design

    Horvath, J.


    Amplifier prototypes for the National Ignition Facility and the Laser Megajoule will be tested at Lawrence Livermore National Laboratory. The prototype amplifier, which is an ensemble of modules from LLNL and Centre d'Etudes de Limeil-Valenton, is cassette-based with bottom access for maintenance. A sealed maintenance transfer vehicle which moves optical cassettes between the amplifier and the assembly cleanroom, and a vacuum gripper which holds laser slabs during cassette assembly will also be tested. The prototype amplifier will be used to verify amplifier optical performance, thermal recovery time, and cleanliness of mechanical operations



    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  10. Audio power amplifier design handbook

    Self, Douglas


    This book is essential for audio power amplifier designers and engineers for one simple enables you as a professional to develop reliable, high-performance circuits. The Author Douglas Self covers the major issues of distortion and linearity, power supplies, overload, DC-protection and reactive loading. He also tackles unusual forms of compensation and distortion produced by capacitors and fuses. This completely updated fifth edition includes four NEW chapters including one on The XD Principle, invented by the author, and used by Cambridge Audio. Cro

  11. Cathode-follower power amplifier

    Giordano, S.; Puglisi, M.


    In circular accelerators and particularly in storage rings it is essential that the total impedance, as seen by the beam, be kept below some critical value. A model of the accelerating system was built using a single-ended cathode-follower amplifier driving a ferrite-loaded cavity. The system operated at 234.5 kHz with a peak output voltage of +-10 kV on the gap. The dynamic output impedance, as measured on the gap, was < 15 ohms

  12. A system for biasing a differential amplifier

    Barbier, Daniel; Ittel, J.M.; Poujois, Robert


    This invention concerns a system for biasing a differential amplifier. It particularly applies to the integrated differential amplifiers designed with MOS field effect transistors. Variations in the technological parameters may well cause the amplifying transistors to work outside their usual operational area, in other words outside the linear part of the transfer characteristic. To ensure that these transistors function correctly, it is necessary that the value of the voltage difference at the output be equally null. To do this and to centre on the so called 'rest' point of the amplifier transfer charateristic, the condition will be set that the output potentials of each amplifier transistor should have a zero value or a constant value as sum. With this in view, the bias on the source (generally a transistor powered by its grid bias voltage) supplying current to the two amplifying transistors fitted in parallel, is permanently adjusted in a suitable manner [fr

  13. Enhanced Gain in Photonic Crystal Amplifiers

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann


    We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission....... These results are promising for short and efficient semiconductor optical amplifiers. This effect will also benefit other devices, such as mode locked lasers....

  14. Very broad bandwidth klystron amplifiers

    Faillon, G.; Egloff, G.; Farvet, C.

    Large surveillance radars use transmitters at peak power levels of around one MW and average levels of a few kW, and possibly several tens of kW, in S band, or even C band. In general, the amplification stage of these transmitters is a microwave power tube, frequently a klystron. Although designers often turn to klystrons because of their good peak and average power capabilities, they still see them as narrow band amplifiers, undoubtedly because of their resonant cavities which, at first sight, would seem highly selective. But, with the progress of recent years, it has now become quite feasible to use these tubes in installations requiring bandwidths in excess of 10 - 12 percent, and even 15 percent, at 1 MW peak for example, in S-band.

  15. Hydraulically amplified PZT mems actuator

    Miles, Robin R.


    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  16. Transverse pumped laser amplifier architecture

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary


    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  17. Design of an 1800nm Raman amplifier

    Svane, Ask Sebastian; Rottwitt, Karsten


    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... in transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise...

  18. Reflection amplifiers in self-regulated learning

    Verpoorten, Dominique


    Verpoorten, D. (2012). Reflection amplifiers in self-regulated learning. Doctoral thesis. November, 9, 2012, Heerlen, The Netherlands: Open Universiteit (CELSTEC). Datawyse / Universitaire Pers Maastricht.

  19. Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters

    Wang, Z.; Durhuus, T.; Mikkelsen, Benny


    A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....

  20. Self-pulsation in Raman fiber amplifiers

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten


    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  1. Pulse amplifier with high 'common mode rejection'

    Ijlst, P.


    The input signal of a pulse amplifier contains large 'common-mode' signals which have to be suppressed. A transformer, especially constructed for this purpose, is described. It has been tried to optimize the signal to noise ratio of the pulse amplifier by means of noise analysis. (Auth.)



    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...

  3. Bevalac injector final stage RF amplifier upgrades

    Howard, D.; Calvert, J.; Dwinell, R.; Lax, J.; Lindner, A.; Richter, R.; Ridgeway, W.


    With the assistance of the DOE In-house Energy Management Program, the Bevalac injector final stage RF amplifier systems have been successfully upgraded to reduce energy consumption and operating costs. This recently completed project removed the energy-inefficient plate voltage modulator circuits that were used in conjunction with the final stage RF amplifiers. Construction, design, and operating parameters are described in detail

  4. Method for reducing snap in magnetic amplifiers

    Fischer, R. L. E.; Word, J. L.


    Method of reducing snap in magnetic amplifiers uses a degenerative feedback circuit consisting of a resistor and a separate winding on a magnetic core. The feedback circuit extends amplifier range by allowing it to be used at lower values of output current.

  5. A fluidic/pneumatic interface amplifier

    Limbert, D. E.; Kegel, T. M.

    The development of a low cost, reliable, linear pressure amplifier to interface Laminar Proportional Amplifiers (LPA) to pneumatic controllers is presented. The amplifier consists of an LPA input stage and an output stage consisting of a venturi in series with a bellows nozzle valve. The LPA output drives the bellows nozzle valve thereby altering the flowrate through the venturi. The pressure within the venturi throat region, which is the amplifier output, changes with the flowrate. Non-linear characteristics, due to supersonic flow within the venturi, are altered through the use of feedback to the LPA input. A computer based model, to aid in optimizing the amplifier design, is developed. This model incorporates the effects of shock waves and boundary layers within the venturi. Good correspondence between the model and an experimental prototype is shown.

  6. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.


    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  7. An Implantable CMOS Amplifier for Nerve Signals

    Nielsen, Jannik Hammel; Lehmann, Torsten


    In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved. A continuous-time offset-compensation technique is utilized in order to minimize impact...... on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0.5 μm CMOS single poly, n-well process. The prototype amplifier features a gain of 80 dB over a 3.6 kHz bandwidth, a CMRR of more than 87 dB and a PSRR...

  8. Bandwidth tunable amplifier for recording biopotential signals.

    Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer


    This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.

  9. Dual-range linearized transimpedance amplifier system

    Wessendorf, Kurt O.


    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  10. Detection of Non-Amplified Genomic DNA

    Corradini, Roberto


    This book offers a state-of-the-art overview on non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. The importance of non-amplified DNA sequencing technologies will be also discussed. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specifi...

  11. Ultrafast disk lasers and amplifiers

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha


    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  12. Phase noise in RF and microwave amplifiers.

    Boudot, Rodolphe; Rubiola, Enrico


    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  13. Simulations of longitudinally pumped dye laser amplifier

    Takehisa, Kiwamu; Takemori, Satoshi


    Simulations of a copper laser pumped dye laser amplifier and new designs of the longitudinally pumped dye laser amplifier are presented. The simulations take the consideration of the amplified spontaneous emission (ASE). The new designs utilize a center-hole reflector instead of a dichroic mirror. The simulation results indicate that the poor spatial overlap between the pump beam and the dye beam in the transverse pumping not only reduces the laser output power, but also generates ASE strongly. The results also indicate that the longitudinal pumping is as efficient as the transverse pumping. (author)

  14. A parallel input composite transimpedance amplifier

    Kim, D. J.; Kim, C.


    A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.

  15. Fundamentals of RF and microwave transistor amplifiers

    Bahl, Inder J


    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  16. Quantum electronics maser amplifiers and oscillators

    Fain, V M; Sanders, J H


    Quantum Electronics, Volume 2: Maser Amplifiers and Oscillators deals with the experimental and theoretical aspects of maser amplifiers and oscillators which are based on the principles of quantum electronics. It shows how the concepts and equations used in quantum electronics follow from the basic principles of theoretical physics.Comprised of three chapters, this volume begins with a discussion on the elements of the theory of quantum oscillators and amplifiers working in the microwave region, along with the practical achievements in this field. Attention is paid to two-level paramagnetic ma

  17. Unconditionally stable microwave Si-IMPATT amplifiers

    Seddik, M.M.


    The purpose of this investigation has been the development of an improved understanding of the design and analysis of microwave reflection amplifiers employing the negative resistance property of the IMPATT devices. Unconditionally stable amplifier circuit using a Silicon IMPATT diode is designed. The problems associated with the design procedures and the stability criterion are discussed. A computer program is developed to perform the computations. The stable characteristics of a reflection-type Si-IMPATT amplifier, such as gain, frequency and bandwidth are examined. It was found that at large signal drive levels, 7 dB gain with bandwidth of 800 MHz at 22,5 mA was obtained. (author)

  18. Automatic error compensation in dc amplifiers

    Longden, L.L.


    When operational amplifiers are exposed to high levels of neutron fluence or total ionizing dose, significant changes may be observed in input voltages and currents. These changes may produce large errors at the output of direct-coupled amplifier stages. Therefore, the need exists for automatic compensation techniques. However, previously introduced techniques compensate only for errors in the main amplifier and neglect the errors induced by the compensating circuitry. In this paper, the techniques introduced compensate not only for errors in the main operational amplifier, but also for errors induced by the compensation circuitry. Included in the paper is a theoretical analysis of each compensation technique, along with advantages and disadvantages of each. Important design criteria and information necessary for proper selection of semiconductor switches will also be included. Introduced in this paper will be compensation circuitry for both resistive and capacitive feedback networks

  19. Stimulated Brillouin scattering threshold in fiber amplifiers

    Liang Liping; Chang Liping


    Based on the wave coupling theory and the evolution model of the critical pump power (or Brillouin threshold) for stimulated Brillouin scattering (SBS) in double-clad fiber amplifiers, the influence of signal bandwidth, fiber-core diameter and amplifier gain on SBS threshold is simulated theoretically. And experimental measurements of SBS are presented in ytterbium-doped double-clad fiber amplifiers with single-frequency hundred nanosecond pulse amplification. Under different input signal pulses, the forward amplified pulse distortion is observed when the pulse energy is up to 660 nJ and the peak power is up to 3.3 W in the pulse amplification with pulse duration of 200 ns and repetition rate of 1 Hz. And the backward SBS narrow pulse appears. The pulse peak power equals to SBS threshold. Good agreement is shown between the modeled and experimental data. (authors)

  20. Complementary DNA-amplified fragment length polymorphism ...

    Complementary DNA-amplified fragment length polymorphism (AFLP-cDNA) analysis of differential gene expression from the xerophyte Ammopiptanthus mongolicus in response to cold, drought and cold together with drought.

  1. Behavior of MOSFET Amplifier in Radiation Fields

    Sharshar, K.A.A.; Ashry, M.


    MOSFET type 2 N 3823 characteristics and its application as an amplifier are analyzed including the effects of gamma, electron beam 1.5 MeV 25 m A and neutron flux. The 1-V characteristics, transfer curve, and the frequency response of the amplifier, and the amplification factor(A v 0 are discussed with MOSFET circuit parameters. The drain current and the amplitude of the output signal decrease as the absorbed dose increases. The measured values of the amplified signal are attenuated by 30% and 6% after exposing the MOSFET to gamma radiation and electron beam at the same dose respectively. Also for exposure to 4x10 13 N/cm 3 neutrons decreased the measured value of the amplified signal by 73% of the initial values. The decrease in the gain of the MOSFET is due to the degradation of the transconductance. It is also noticed that percentage of the decrease depends on the type of radiation

  2. Quantum-Limited Directional Amplifiers with Optomechanics

    Malz, Daniel; Tóth, László D.; Bernier, Nathan R.; Feofanov, Alexey K.; Kippenberg, Tobias J.; Nunnenkamp, Andreas


    Directional amplifiers are an important resource in quantum-information processing, as they protect sensitive quantum systems from excess noise. Here, we propose an implementation of phase-preserving and phase-sensitive directional amplifiers for microwave signals in an electromechanical setup comprising two microwave cavities and two mechanical resonators. We show that both can reach their respective quantum limits on added noise. In the reverse direction, they emit thermal noise stemming from the mechanical resonators; we discuss how this noise can be suppressed, a crucial aspect for technological applications. The isolation bandwidth in both is of the order of the mechanical linewidth divided by the amplitude gain. We derive the bandwidth and gain-bandwidth product for both and find that the phase-sensitive amplifier has an unlimited gain-bandwidth product. Our study represents an important step toward flexible, on-chip integrated nonreciprocal amplifiers of microwave signals.

  3. Manhattan equation for the operational amplifier

    Mishonov, Todor M.; Danchev, Victor I.; Petkov, Emil G.; Gourev, Vassil N.; Dimitrova, Iglika M.; Varonov, Albert M.


    A differential equation relating the voltage at the output of an operational amplifier $U_0$ and the difference between the input voltages ($U_{+}$ and $U_{-}$) has been derived. The crossover frequency $f_0$ is a parameter in this operational amplifier master equation. The formulas derived as a consequence of this equation find applications in thousands of specifications for electronic devices but as far as we know, the equation has never been published. Actually, the master equation of oper...

  4. Distributed amplifier using Josephson vortex flow transistors

    McGinnis, D.P.; Beyer, J.B.; Nordman, J.E.


    A wide-band traveling wave amplifier using vortex flow transistors is proposed. A vortex flow transistor is a long Josephson junction used as a current controlled voltage source. The dual nature of this device to the field effect transistor is exploited. A circuit model of this device is proposed and a distributed amplifier utilizing 50 vortex flow transistors is predicted to have useful gain to 100 GHz

  5. Multiple excitation regenerative amplifier inertial confinement system

    George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.


    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation

  6. Transpermeance Amplifier Applied to Magnetic Bearings

    Jossana Ferreira


    Full Text Available The most conventional approach of controlling magnetic forces in active magnetic bearings (AMBs is through current feedback amplifiers: transconductance. This enables the operation of the AMB to be understood in terms of a relatively simple current-based model as has been widely reported on in the literature. The alternative notion of using transpermeance amplifiers, which approximate the feedback of gap flux rather than current, has been in commercial use in some form for at least thirty years, however is only recently seeing more widespread acceptance as a commercial standard. This study explores how such alternative amplifiers should be modeled and then examines the differences in behavior between AMBs equipped with transconductance and transpermeance amplifiers. The focus of this study is on two aspects. The first is the influence of rotor displacement on AMB force, commonly modeled as a constant negative equivalent mechanical stiffness, and it is shown that either scheme actually leads to a finite bandwidth effect, but that this bandwidth is much lower when transpermeance is employed. The second aspect is the influence of eddy currents. Using a very simple model of eddy currents (a secondary short-circuited coil, it is demonstrated that transpermeance amplifiers can recover significant actuator bandwidth compared with transconductance, but at the cost of needing increased peak current headroom.

  7. Wideband Low Noise Amplifiers Exploiting Thermal Noise Cancellation

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram


    Low Noise Amplifiers (LNAs) are commonly used to amplify signals that are too weak for direct processing for example in radio or cable receivers. Traditionally, low noise amplifiers are implemented via tuned amplifiers, exploiting inductors and capacitors in resonating LC-circuits. This can render

  8. Solid-state disk amplifiers for fusion-laser systems

    Martin, W.E.; Trenholme, J.B.; Linford, G.J.; Yarema, S.M.; Hurley, C.A.


    We review the design, performance, and operation of large-aperture (10 to 46 cm) solid-state disk amplifiers for use in laser systems. We present design data, prototype tests, simulations, and projections for conventional cylindrical pump-geometry amplifiers and rectangular pump-geometry disk amplifiers. The design of amplifiers for the Nova laser system is discussed.

  9. The design of high performance weak current integrated amplifier

    Chen Guojie; Cao Hui


    A design method of high performance weak current integrated amplifier using ICL7650 operational amplifier is introduced. The operating principle of circuits and the step of improving amplifier's performance are illustrated. Finally, the experimental results are given. The amplifier has programmable measurement range of 10 -9 -10 -12 A, automatic zero-correction, accurate measurement, and good stability. (authors)

  10. Power Amplifiers in CMOS Technology: A contribution to power amplifier theory and techniques

    Acar, M.


    In order to meet the demands from the market on cheaper, miniaturized mobile communications devices realization of RF power amplifiers in the mainstream CMOS technology is essential. In general, CMOS Power Amplifiers (PAs) require high voltage to decrease the matching network losses and for high

  11. Design considerations for RF power amplifiers demonstrated through a GSM/EDGE power amplifier module

    Baltus, P.G.M.; Bezooijen, van A.; Huijsing, J.H.; Steyaert, M.; Roermund, van A.H.M.


    This paper describes the design considerations for RF power amplifiers in general, including trends in systems, linearity and efficiency, the PA environment, implementation is sues and technology. As an example a triple-band (900/1800/1900MHz) dual mode (GSMIEdge) power amplifier module is described

  12. Wideband pulse amplifiers for the NECTAr chip

    Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribó, M.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.


    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  13. Wideband pulse amplifiers for the NECTAr chip

    Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J-F.; Naumann, C.L.; Nayman, P.; Ribó, M.


    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1–3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  14. Wideband pulse amplifiers for the NECTAr chip

    Sanuy, A., E-mail: [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Gascon, D. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Sieiro, X. [Departament d' Electronica, Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, CC072, bat. 13, place Eugene Bataillon, 34095 Montpellier (France); Glicenstein, J-F. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Ribo, M. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); and others


    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  15. An automated test facility for neutronic amplifiers

    Beattie, W.J.


    Neutronic amplifiers are used at the Chalk River Laboratory in applications such as neutron flux monitoring and reactor control systems. Routine preventive maintenance of control and safety systems included annual calibration and characterization of the neutronic amplifiers. An investigation into the traditional methods of annual routine maintenance of amplifiers concluded that frequency and phase response measurements in particular were labour intensive and subject to non-repeatable errors. A decision was made to upgrade testing methods and facilities by using programmable test equipment under the control of a computer. In order to verify the results of the routine measurements, expressions for the transfer functions were derived from the circuit diagrams. Frequency and phase responses were then calculated and plotted thus providing a bench-mark to which the test results can be compared. (author)

  16. A high-efficiency superconductor distributed amplifier

    Herr, Q P, E-mail: [Northrop Grumman Corporation, 7323 Aviation Boulevard, Baltimore, MD 21240 (United States)


    A superconductor output amplifier that converts single-flux-quantum signals to a non-return-to-zero pattern is reported using a twelve-stage distributed amplifier configuration. The output amplitude is measured to be 1.75 mV over a wide bias current range of {+-} 12%. The bit error rate is measured using a Delta-Sigma data pattern to be less than 1 x 10{sup -9} at 10 Gb s{sup -1} per channel. Analysis of the eye diagram suggests that the actual bit error rate may be much lower. The amplifier has power efficiency of 12% neglecting the termination resistor, which may be eliminated from the circuit with a small modification. (rapid communication)

  17. Noise figure of amplified dispersive Fourier transformation

    Goda, Keisuke; Jalali, Bahram


    Amplified dispersive Fourier transformation (ADFT) is a powerful tool for fast real-time spectroscopy as it overcomes the limitations of traditional optical spectrometers. ADFT maps the spectrum of an optical pulse into a temporal waveform using group-velocity dispersion and simultaneously amplifies it in the optical domain. It greatly simplifies spectroscopy by replacing the diffraction grating and detector array in the conventional spectrometer with a dispersive fiber and single-pixel photodetector, enabling ultrafast real-time spectroscopic measurements. Following our earlier work on the theory of ADFT, here we study the effect of noise on ADFT. We derive the noise figure of ADFT and discuss its dependence on various parameters.

  18. Predistortion of a Bidirectional Cuk Audio Amplifier

    Birch, Thomas Hagen; Nielsen, Dennis; Knott, Arnold


    Some non-linear amplifier topologies are capable of providing a larger voltage gain than one from a DC source, which could make them suitable for various applications. However, the non-linearities introduce a significant amount of harmonic distortion (THD). Some of this distortion could be reduced...... using predistortion. This paper suggests linearizing a nonlinear bidirectional Cuk audio amplifier using an analog predistortion approach. A prototype power stage was built and results show that a voltage gain of up to 9 dB and reduction in THD from 6% down to 3% was obtainable using this approach....

  19. Cryogenic transimpedance amplifier for micromechanical capacitive sensors.

    Antonio, D; Pastoriza, H; Julián, P; Mandolesi, P


    We developed a cryogenic transimpedance amplifier that works at a broad range of temperatures, from room temperature down to 4 K. The device was realized with a standard complementary metal oxide semiconductor 1.5 mum process. Measurements of current-voltage characteristics, open-loop gain, input referred noise current, and power consumption are presented as a function of temperature. The transimpedance amplifier has been successfully applied to sense the motion of a polysilicon micromechanical oscillator at low temperatures. The whole device is intended to serve as a magnetometer for microscopic superconducting samples.

  20. Dynamic range meter for radiofrequency amplifiers

    Drozd S. S.


    Full Text Available The new measurement setup having increased on 20…30 dB the own dynamic range in comparison with the standard circuit of the dynamic range meter is offered and the rated value of an error bringing by setup in the worst case does not exceed ± 2,8 dB. The measurement setup can be applied also to determinate levels of intermodulation components average power amplifiers and powerful amplifiers of a low-frequency at replacement of the quartz filter on meeting low-frequency the LC-filter and the spectrum analyzer.

  1. Optimization of a high efficiency FEL amplifier

    Schneidmiller, E.A.; Yurkov, M.V.


    The problem of an efficiency increase of an FEL amplifier is now of great practical importance. Technique of undulator tapering in the post-saturation regime is used at the existing X-ray FELs LCLS and SACLA, and is planned for use at the European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Application of similarity techniques allows us to derive universal law of the undulator tapering.

  2. Operational amplifier circuits analysis and design

    Nelson, J C C


    This book, a revised and updated version of the author's Basic Operational Amplifiers (Butterworths 1986), enables the non-specialist to make effective use of readily available integrated circuit operational amplifiers for a range of applications, including instrumentation, signal generation and processing.It is assumed the reader has a background in the basic techniques of circuit analysis, particularly the use of j notation for reactive circuits, with a corresponding level of mathematical ability. The underlying theory is explained with sufficient but not excessive, detail. A range of compu

  3. Cavity enhanced rephased amplified spontaneous emission

    A Williamson, Lewis; J Longdell, Jevon


    Amplified spontaneous emission is usually treated as an incoherent noise process. Recent theoretical and experimental work using rephasing optical pulses has shown that rephased amplified spontaneous emission (RASE) is a potential source of wide bandwidth time-delayed entanglement. Due to poor echo efficiency the plain RASE protocol does not in theory achieve perfect entanglement. Experiments done to date show a very small amount of entanglement at best. Here we show that RASE can, in principle, produce perfect multimode time-delayed two mode squeezing when the active medium is placed inside a Q-switched cavity. (paper)

  4. Hybrid amplifier for calorimetry with photodiode readout

    Sushkov, V V


    A hybrid surface mounted amplifier for the photodiode readout of the EM calorimeter has been developed. The main technical characteristics of the design are presented. The design able to math readout constraints for a high luminosity collider experiment is discussed. 10 refs., 2 tabs., 8 figs.

  5. Amplifier Design for Proportional Ionization Chambers

    Baker, W. H.


    This paper presents the requirements of a nuclear amplifier of short resolving time, designed to accept pulses of widely varying amplitudes. Data are given which show that a proportional ionization chamber loaded with a 1,000-ohm resistor develops pulses of 0.5 microsecond duration and several volts amplitude. Results indicate that seven basic requirements are imposed on the amplifier when counting soft beta and gamma radiation in the presence of alpha particles, without absorbers. It should, (1) have a fast recovery time, (2) have a relatively good low frequency response, (3) accept pulses of widely varying heights without developing spurious pulsed, (4) have a limiting output stage, (5) preserve the inherently short rise time of the chamber, (6) minimize pulse integration, and (7) have sufficient gain to detect the weak pulses well below the chamber voltage at which continuous discharge takes place. The results obtained with an amplifier which meets these requirements is described. A formula is derived which indicates that redesign of the proportional ionization chamber might eliminate the need for an amplifier. This may be possible if the radioactive particles are collimated parallel to the collecting electrode.

  6. Methylation sensitive amplified polymorphism (MSAP) reveals that ...

    ajl yemi


    Dec 19, 2011 ... Key words: Salt stress, alkali stress, Gossypium hirsutum L., DNA methylation, methylation sensitive amplified polymorphism (MSAP). INTRODUCTION. DNA methylation is one of the key epigenetic mecha- nisms among eukaryotes that can modulate gene expression without the changes of DNA sequence.

  7. Enhanced timing channel for spectroscopy amplifiers

    Ianakiev, K; Grigorov, N [Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)


    Purpose of this paper is to analyze noise and timing performance of some methods of filtering in the fast channel. Implementation of RLC-filter into a semi-Gaussian amplifier allows to obtain the time resolution of 420 ns. 5 refs.

  8. Optimization of Pr3+:ZBLAN fiber amplifiers

    Pedersen, B.; Miniscalco, J. W.; Quimby, R. S.


    Experimental parameters have been measured and used in a quantitative model of Pr3+-doped fluorozirconate fiber amplifiers. The optimum cutoff wavelength was determined to be 800 nm and the gain for 400 mW of pump was found to increase from 12 to 34 dB if the NA was increased from 0.15 to 0...

  9. Reducing Switching Artifacts in Chopper Amplifiers

    Kusuda, Y.


    This thesis describes the theory, design, and implementation of chopper operational amplifiers (op-amps) in CMOS integrated circuits (ICs). The chopping technique periodically corrects DC errors of such op-amps, so that low 1/f noise and stable, microvolt-level offset can be achieved. However,

  10. High-Performance Operational and Instrumentation Amplifiers

    Shahi, B.


    This thesis describes techniques to reduce the offset error in precision instrumentation and operational amplifiers. The offset error which is considered a major error source associated with gain blocks, together with other errors are reviewed. Conventional and newer approaches to remove offset and



    The invention relates to a switch mode power amplifier. A first and a second change-over switch are inserted between a DC voltage supply and a primary side of an isolation transformer. Two secondary windings are connected to a power output terminal. A first and a second secondary side power switc...

  12. Feedback analysis of transimpedance operational amplifier circuits

    Bruun, Erik


    The transimpedance or current feedback operational amplifier (CFB op-amp) is reviewed and compared to a conventional voltage mode op-amp using an analysis emphasizing the basic feedback characteristics of the circuit. With this approach the paradox of the constant bandwidth obtained from CFB op...

  13. Random amplified polymorphic DNA based genetic characterization ...

    Random amplified polymorphic DNA based genetic characterization of four important species of Bamboo, found in Raigad district, Maharashtra State, India. ... Bambusoideae are differentiated from other members of the family by the presence of petiolate blades with parallel venation and stamens are three, four, six or more, ...

  14. Molecular markers. Amplified fragment length polymorphism

    Pržulj Novo


    Full Text Available Amplified Fragment Length Polymorphism molecular markers (AFLPs has been developed combining procedures of RFLPs and RAPDs molekular markers, i.e. the first step is restriction digestion of the genomic DNA that is followed by selective amplification of the restricted fragments. The advantage of the AFLP technique is that it allows rapid generation of a large number of reproducible markers. The reproducibility of AFLPs markers is assured by the use of restriction site-specific adapters and adapter-specific primers for PCR reaction. Only fragments containing the restriction site sequence plus the additional nucleotides will be amplified and the more selected nucleotides added on the primer sequence the fewer the number of fragments amplified by PCR. The amplified products are normally separated on a sequencing gel and visualized after exposure to X-ray film or by using fluorescent labeled primers. AFLP shave proven to be extremely proficient in revealing diversity at below the species level. A disadvantage of AFLP technique is that AFLPs are essentially a dominant marker system and not able to identify heterozygotes.

  15. Compensation techniques for operational amplifier bias current

    Silva, M.S.


    Two techniques are proposed for the compensation of the input current on operational amplifiers that can be used on inverting and non-inverting configurations. A qualitative analysis of temperature drift problems is made, and as a practical application, the construction of a voltage follower for high impedance measurements is presented. (Author) [pt

  16. Application of randomly amplified polymorphic DNA (RAPD ...



    Oct 10, 2011 ... and T7-010 based on functional markers according to He et al. (2007). These primers were constructed by Invitrogen GmbH,. Karlsruhe, Germany, and used to amplify the polyphenol oxidases genes. The sequences of these primers were as follows: T3-001: 5`-CCA TTA ACC CTC ACT AAA GGG ACC GTA ...

  17. Multi-pass amplifier architecture for high power laser systems

    Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C


    A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.

  18. Transmission characteristics of acoustic amplifier in thermoacoustic engine

    Sun Daming; Qiu Limin; Wang Bo; Xiao Yong


    Thermoacoustic engines are promising in practical applications for the merits of simple configuration, reliable operation and environmentally friendly working gas. An acoustic amplifier can increase the output pressure amplitude of a thermoacoustic engine (TE) and improve the matching between the engine and its load. In order to make full use of an acoustic amplifier, the transmission characteristics are studied based on linear thermoacoustic theory. Computational and experimental results show that the amplifying ability of an acoustic amplifier is mainly determined by its geometry parameters and output resistance impedance. The amplifying ability of an acoustic amplifier with appropriate length and diameter reaches its maximum when the output resistance impedance is infinite. It is also shown that the acoustic amplifier consumes an amount of acoustic power when amplifying pressure amplitude and the acoustic power consumption increases with amplifying ratio. Furthermore, a novel cascade acoustic amplifier is proposed, which has a much stronger amplifying ability with reduced acoustic power consumption. In experiments, a two-stage cascade acoustic amplifier amplifies the pressure ratio from 1.177 to 1.62 and produces a pressure amplitude of 0.547 MPa with nitrogen of 2.20 MPa as working gas. Good agreements are obtained between the theoretical analysis and experimental results. This research is instructive for comprehensively understanding the mechanism and making full use of the acoustic amplifier

  19. Is there a role for amplifiers in sexual selection?

    Gualla, Filippo; Cermelli, Paolo; Castellano, Sergio


    The amplifier hypothesis states that selection could favour the evolution of traits in signallers that improve the ability of receivers to extract honest information from other signals or cues. We provide a formal definition of amplifiers based on the receiver's mechanisms of signal perception and we present a game-theoretical model in which males advertise their quality and females use sequential-sampling tactics to choose among prospective mates. The main effect of an amplifier on the female mating strategy is to increase her mating threshold, making the female more selective as the effectiveness of the amplifier increases. The effects of the amplifier on male advertising strategy depends both on the context and on the types of the amplifier involved. We consider two different contexts for the evolution of amplifiers (when the effect of amplifiers is on signals and when it is on cues) and two types of amplifiers (the 'neutral amplifier', when it improves quality assessment without altering male attractiveness, and the 'attractive amplifier', when it improves both quality assessment and male attractiveness). The game-theoretical model provides two main results. First, neutral and attractive amplifiers represent, respectively, a conditional and an unconditional signalling strategy. In fact, at the equilibrium, neutral amplifiers are displayed only by males whose advertising level lays above the female acceptance threshold, whereas attractive amplifiers are displayed by all signalling males, independent of their quality. Second, amplifiers of signals increase the differences in advertising levels between amplifying and not-amplifying males, but they decrease the differences within each group, so that the system converges towards an 'all-or-nothing' signalling strategy. By applying concepts from information theory, we show that the increase in information transfer at the perception level due to the amplifier of signals is contrasted by a decrease in information

  20. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier

    Wang Hanchao; Huang Lirong; Shi Zhongwei


    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influencedby the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled. (semiconductor devices)

  1. Assembly and maintenance of full scale NIF amplifiers in the amplifier module prototype laboratory (AMPLAB)

    Horvath, J. A.


    Mechanical assembly and maintenance of the prototype National Ignition Facility amplifiers in the Amplifier Module Prototype Laboratory (AMPLAB) at Lawrence Livermore National Laboratory requires specialized equipment designed to manipulate large and delicate amplifier components in a safe and clean manner. Observations made during the operation of this assembly and maintenance equipment in AMPLAB provide design guidance for similar tools being built for the National Ignition Facility. Fixtures used for amplifier frame installation, laser slab and flashlamp cassette assembly, transport, and installation, and in-situ blastshield exchange are presented. Examples include a vacuum slab gripper, slab handling clean crane, slab cassette assembly fixture, sealed transport vehicle for slab cassette movement between the cleanroom and amplifier, slab cassette transfer fixture between the cleanroom and transport vehicle, and equipment needed for frame assembly unit, blastshield, an d flashlamp cassette installation and removal. The use of these tools for amplifier assembly, system reconfiguration, reflector replacement, and recovery from an abnormal occurrence such as a flashlamp explosion is described. Observations are made on the design and operation of these tools and their contribution to the final design

  2. Transport in coherently absorbing or amplifying media

    Sen, A.K.


    We study electronic transport in a one-dimensional ordered chain in the presence of either absorption or amplification at each site (the site-potential having an imaginary positive or negative part) within a single-band tightbinding Hamiltonian. The spectrum in either case for the isolated (closed) quantum system is found to become broader compared to the regular Bloch case where there is no absorption or amplification at any site. Interestingly for the transport through an infinitely long ordered chain (open quantum system), the reflectance saturates to a value greater (lesser) than unity in the amplifying (absorbing) case and the transmittance decays to zero in either case. This fact implies that the transmittance does not grow indefinitely even for an ordered, amplifying (active or lasing) medium and that it is not necessary to have any disorder or interaction induced confining mechanism on the transmitted wave, so as to achieve an amplification in the backscattered wave. (author). 8 refs, 2 figs

  3. Amplified music exposure carries risks to hearing.

    da Silva, Valéria Gomes; de Oliveira, Carlos Augusto Costa Pires; Tauil, Pedro Luíz; de Castro Silva, Isabella Monteiro; Sampaio, André Luiz Lopes


    To investigate the association between changes in the outer hair cells and exposure to amplified music in a group of high-school students. In this retrospective, case-control study, 86 subjects underwent audiometry, immittance audiometry, and distortion-product otoacoustic emission tests. The subjects were questioned about their listening habits and divided into 2 groups: exposed and unexposed. Most of the subjects had reduced function in their outer hair cells, mainly beginning at 8 kHz. Among 60 subjects-30 cases and 30 controls-75% were considered exposed and 25% unexposed. The exposed subjects were 9.33 times more likely to have altered outer hair cells than the unexposed subjects were. Exposure to amplified music is associated with reduced function in the hair cells. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. Cryogenic cooling for high power laser amplifiers

    Perin J.P.


    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  5. Spaceflight 2 um Tm Fiber MOPA Amplifier, Phase I

    National Aeronautics and Space Administration — Fibertek proposes to design, develop, and test a spaceflight prototype 2051 nm thulium (Tm)-doped fiber amplifier (TDFA) optical master oscillator power amplifier...

  6. Conversion of the random amplified polymorphic DNA (RAPD ...

    Conversion of the random amplified polymorphic DNA (RAPD) marker UBC#116 linked to Fusarium crown and root rot resistance gene (Frl) into a co-dominant sequence characterized amplified region (SCAR) marker for marker-assisted selection of tomato.

  7. Electrically Pumped Vertical-Cavity Amplifiers

    Greibe, Tine


    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  8. Self-amplifying mRNA vaccines.

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J


    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Fast Electrocardiogram Amplifier Recovery after Defibrillation Shock

    Ivan Dotsinsky


    Full Text Available A procedure for fast ECG amplifier recovery after defibrillation shocks was developed and simulated in the MATLAB environment. Exponentially decaying post-shock voltages have been recorded. Signals from the AHA database are taken and mixed with the recorded exponential disturbances. The algorithm applies moving averaging (comb filter on the compound input signal, thereby obtaining the samples of the disturbance. They are currently subtracted from the input signal. The results obtained show that its recovery is practically instantaneous.

  10. Ultra-low Voltage CMOS Cascode Amplifier

    Lehmann, Torsten; Cassia, Marco


    In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique, which reduces the MOST threshold voltage by forcing a constant current though the transistor bulk terminal. We also look at limitations and improvements of this CDB technique.

  11. X-ray image amplifying tube


    The photo electrons from the picture on the fluorescent input screen are amplified by an electron optical system and produce an intensified image on the output screen. This can be photographed and shown on a TV screen. The effects of stray magnetic fields are reduced by covering the input screen with a grating made of strips of ferromagnetic material such as μ metal. (T.S.E.T.)

  12. Ultra-low Voltage CMOS Cascode Amplifier

    Lehmann, Torsten; Cassia, Marco


    In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique......, which reduces the MOST threshold voltage by forcing a constant current though the transistor bulk terminal. We also look at limitations and improvements of this CDB technique....

  13. Prototype disc amplifier for Iskra-6 facility

    Grigorovich, S.V.; Eroshenko, V.F.; Krotov, V.A.; Demidov, V.L.; Kalinin, N.V.; Kurunov, R.F.; Smirnov, V.G.; Fomin, V.M.


    Eight-channel disk amplifiers of the ISKRA-6 facility are made up of sections. An amplifier section consists of eight active elements (2*4) made of KGSS-0180/35-grade neodymium phosphate glass 400*690*40 mm in size located in frames at the Brewster angle. Twenty flash-lamps are arranged in one amplifier module. The flash-lamps have an inter electrode distance of 1600 mm, the tube is 40 mm in inner diameter. The results of numerical investigations into the dynamics of high-current pulse radiation discharge are presented. The investigations were carried out by the 1-dimensional RMHD-model. This model takes into account the transient processes in the electric circuit and the physical processes in the discharge plasma: ionization, Joule heating, thermal conductivity, radiation transfer and plasma motion caused by the non-uniformity of energy introduction into the discharge in case of a non-uniform initial ionization of gas in the pumping lamp. The experimental results of spectral measurements and light efficiency of the flash-lamps depending on specific power and value of energy contribution are presented

  14. Charge sensitive amplifies. The state of arts

    Mori, Kunishiro [Clear Pulse Co., Tokyo (Japan)


    In the radiation detectors, signals are essentially brought with charges produced by radiation, then it is naturally the best way to use a charge sensitive amplifier (CSA) system to extract those signals. The CSA is thought to be the best amplifier suitable to almost all the radiation detectors, if neglecting economical points of view. The CSA has been only applied to special fields like radiation detection because the concept of `charges` is not so universal against the concepts of `voltage` and `current`. The CSA, however, is low in noise and a high speed amplifier and may be applicable not only to radiation measurement but also piezoelectric devices and also bolometers. In this article, noise in the CSA, basic circuit on the CSA, concepts of `equivalent noise charge` (ENC), a method for the ENC, and importance of the `open-loop gain` in the CSA to achieve better performance of it and how to realize in a practical CSA were described. And, characteristics on a counting rate of the CSA, various circuit used in the CSA, and CSAs which are commercially available at present and special purpose CSAs were also introduced. (G.K.)

  15. Pump to signal noise transfer in parametric fiber amplifiers

    Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe


    Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....

  16. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    Berg, Tommy Winther; Mørk, Jesper


    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  17. The OPTHER Project: Progress toward the THz Amplifier

    Paoloni, C; Brunetti, F; Di Carlo, A


    This paper describes the status of the OPTHER (OPtically driven TeraHertz AmplifiERs) project and progress toward the THz amplifier realization. This project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within...... this project is a consolidation of efforts at the international level from the leading scientific and industrial European organizations working with vacuum electronics....

  18. Differential transimpedance amplifier circuit for correlated differential amplification

    Gresham, Christopher A [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger P [Tucson, AZ


    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  19. Functional Blocks and Biquadratic ARC Filters using Transimpedance Amplifiers

    R. Sarman; R. Prokop; T. Dostal


    The aims of the article are design and analysis of modern circuits including high performance functional blocks and biquadratic filters using transimpedance amplifiers. Here are given various types of these circuits, that works in classical voltage, current or hybrid mode. In this paper are also compared various possibilities of connection of single amplifier filters as for reduction of influence of transimpedance amplifier parasitic elements.

  20. The Dynamics of Semiconductor Optical Amplifiers – Modeling and Applications

    Mørk, Jesper; Nielsen, Mads Lønstrup; Berg, Tommy Winther


    The importance of semiconductor optical amplifiers is discussed. A semiconductor optical amplifier (SOA) is a semiconductor laser with anti-reflection coated facets that amplifies an injected light signal by means of stimulated emission. SOAs have a number of unique properties that open up...

  1. A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory

    Guo, Jiarong


    A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).

  2. Note: A high dynamic range, linear response transimpedance amplifier.

    Eckel, S; Sushkov, A O; Lamoreaux, S K


    We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.

  3. Characterization of a Common-Source Amplifier Using Ferroelectric Transistors

    Hunt, Mitchell; Sayyah, Rana; MacLeond, Todd C.; Ho, Pat D.


    This paper presents empirical data that was collected through experiments using a FeFET in the established common-source amplifier circuit. The unique behavior of the FeFET lends itself to interesting and useful operation in this widely used common-source amplifier. The paper examines the effect of using a ferroelectric transistor for the amplifier. It also examines the effects of varying load resistance, biasing, and input voltages on the output signal and gives several examples of the output of the amplifier for a given input. The difference between a commonsource amplifier using a ferroelectric transistor and that using a MOSFET is addressed.

  4. Characterization of a Common-Gate Amplifier Using Ferroelectric Transistors

    Hunt, Mitchell; Sayyah, Rana; MacLeod, Todd C.; Ho, Fat D.


    In this paper, the empirical data collected through experiments performed using a FeFET in the common-gate amplifier circuit is presented. The FeFET common-gate amplifier was characterized by varying all parameters in the circuit, such as load resistance, biasing of the transistor, and input voltages. Due to the polarization of the ferroelectric layer, the particular behavior of the FeFET common-gate amplifier presents interesting results. Furthermore, the differences between a FeFET common-gate amplifier and a MOSFET common-gate amplifier are examined.

  5. Class D audio amplifiers for high voltage capacitive transducers

    Nielsen, Dennis

    of high volume, weight, and cost. High efficient class D amplifiers are now widely available offering power densities, that their linear counterparts can not match. Unlike the technology of audio amplifiers, the loudspeaker is still based on the traditional electrodynamic transducer invented by C.W. Rice......Audio reproduction systems contains two key components, the amplifier and the loudspeaker. In the last 20 – 30 years the technology of audio amplifiers have performed a fundamental shift of paradigm. Class D audio amplifiers have replaced the linear amplifiers, suffering from the well-known issues...... with the low level of acoustical output power and complex amplifier requirements, have limited the commercial success of the technology. Horn or compression drivers are typically favoured, when high acoustic output power is required, this is however at the expense of significant distortion combined...

  6. Low noise amplifier for ZnS(Ag) scintillation chamber

    Do Hoang Cuong


    A new pulse amplifier that can be used with standard photomultiplier tubes coupled with Zn(Ag) scintillation chamber is presented. The amplifier based on an IC operational amplifier LF 356N consists of a low-noise charge sensitive preamplifier and pulse shaping circuits for optimization of signal to noise ratio. Temperature instability is ≤ 0.05%/ o C. Dynamic range for linear output signals is equal +7 V. The presented amplifier is used in a measuring head for 0.17 L Lucas chambers developed in Department of Nuclear Instruments and Methods of the INCT in laboratory investigations aimed to develop methods and instruments for measurement of radon concentration in the air. The amplifier can also be employed for measurement of ionizing radiation by means of other scintillators coupled to PM tube. The amplifier is followed by a pulse discriminator with adjustable discrimination level. The amplifier output signal and discriminator output pulses are fed to external devices. (author)

  7. A new semicustom integrated bipolar amplifier for silicon strip detectors

    Zimmerman, T.


    The QPA02 is a four channel DC coupled two stage transimpedance amplifier designed at Fermilab on a semicustom linear array (Quickchip 2S) manufactured by Tektronix. The chip was developed as a silicon strip amplifier but may have other applications as well. Each channel consists of a preamplifier and a second stage amplifier/sharper with differential output which can directly drive a transmission line (90 to 140 ohms). External bypass capacitors are the only discrete components required. QPA02 has been tested and demonstrated to be an effective silicon strip amplifier. Other applications may exist which can use this amplifier or a modified version of this amplifier. For example, another design is now in progress for a wire chamber amplifier, QPA03, to be reported later. Only a relatively small effort was required to modify the design and layout for this application. 11 figs

  8. High sensitivity amplifier/discriminator for PWC's

    Hansen, S.


    The facility support group at Fermilab is designing and building a general purpose beam chamber for use in several locations at the laboratory. This pwc has 128 wires per plane spaced 1 mm apart. An initial production of 25 signal planes is anticipated. In proportional chambers, the size of the signal depends exponentially on the charge stored per unit of length along the anode wire. As the wire spacing decreases, the capacitance per unit length decreases, thereby requiring increased applied voltage to restore the necessary charge per unit length. In practical terms, this phenomenon is responsible for difficulties in constructing chambers with less than 2 mm wire spacing. 1 mm chambers, therefore, are frequently operated very near to their breakdown point and/or a high gain gas containing organic compounds such as magic gas is used. This argon/iso-butane mixture has three drawbacks: it is explosive when exposed to the air, it leaves a residue on the wires after extended use and is costly. An amplifier with higher sensitivity would reduce the problems associated with operating chambers with small wire spacings and allow them to be run a safe margin below their breakdown voltage even with an inorganic gas mixture such as argon/CO2, this eliminating the need to use magic gas. Described here is a low cost amplifier with a usable threshold of less than 0.5 μA. Data on the performance of this amplifier/discriminator in operation on a prototype beam chamber are given. This data shows the advantages of the high sensitivity of this design

  9. Numerical simulation of cross field amplifiers

    Eppley, K.


    Cross field amplifiers (CFA) have been used in many applications where high power, high frequency microwaves are needed. Although these tubes have been manufactured for decades, theoretical analysis of their properties is not as highly developed as for other microwave devices such as klystrons. One feature distinguishing cross field amplifiers is that the operating current is produced by secondary emission from a cold cathode. This removes the need for a heater and enables the device to act as a switch tube, drawing no power until the rf drive is applied. However, this method of generating the current does complicate the simulation. We are developing a simulation model of cross field amplifiers using the PIC code CONDOR. We simulate an interaction region, one traveling wavelength long, with periodic boundary conditions. An electric field with the appropriate phase velocity is imposed on the upper boundary of the problem. Evaluation of the integral of E·J gives the power interchanged between the wave and the beam. Given the impedance of the structure, we then calculate the change in the traveling wave field. Thus we simulate the growth of the wave through the device. The main advance of our model over previous CFA simulations is the realistic tracking of absorption and secondary emission. The code uses experimental curves to calculate secondary production as a function of absorbed energy, with a theoretical expression for the angular dependence. We have used this code to model the 100 MW X-band CFA under construction at SLAC, as designed by Joseph Feinstein and Terry Lee. We are examining several questions of practical interest, such as the power and spectrum of absorbed electrons, the minimum traveling wave field needed to initiate spoke formation, and the variation of output power with dc voltage, anode-cathode gap, and magnetic field. 5 refs., 8 figs

  10. Waveguide harmonic damper for klystron amplifier

    Kang, Y.


    A waveguide harmonic damper was designed for removing the harmonic frequency power from the klystron amplifiers of the APS linac. Straight coaxial probe antennas are used in a rectangular waveguide to form a damper. A linear array of the probe antennas is used on a narrow wall of the rectangular waveguide for damping klystron harmonics while decoupling the fundamental frequency in dominent TE 01 mode. The klystron harmonics can exist in the waveguide as waveguide higher-order modes above cutoff. Computer simulations are made to investigate the waveguide harmonic damping characteristics of the damper

  11. Active isotropic slabs: conditions for amplified reflection

    Perez, Liliana I.; Matteo, Claudia L.; Etcheverry, Javier; Duplaá, María Celeste


    We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus.

  12. Active isotropic slabs: conditions for amplified reflection

    Perez, Liliana I; Duplaá, María Celeste; Matteo, Claudia L; Etcheverry, Javier


    We analyse in detail the necessary conditions to obtain amplified reflection (AR) in isotropic interfaces when a plane wave propagates from a transparent medium towards an active one. First, we demonstrate analytically that AR is not possible if a single interface is involved. Then, we study the conditions for AR in a very simple configuration: normal incidence on an active slab immersed in transparent media. Finally, we develop an analysis in the complex plane in order to establish a geometrical method that not only describes the behaviour of active slabs but also helps to simplify the calculus. (paper)

  13. Sm 3+-doped polymer optical waveguide amplifiers

    Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing


    Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.

  14. Trial manufacture of an insulated amplifier

    Okuno, Shigeo; Matsuura, Kiyokata.


    Trial manufacture of an insulated amplifier was carried out. The input signals are divided by filters Th and Tl into high frequency component and low frequency component. The high frequency component drives a transformer T 1 , and secondary signals are induced. The low frequency component drives a transformer T 2 through a buffer and a modulator. The secondary signals from both transformers are recombined to make the output signals. Compensation for the frequency characteristics of the high frequency transformer and that for the effect of a filter in the demodulation circuit for low frequency component are considered. The time constant of output signals for rectangular input signals was 30 microsec, when only the low frequency part is operated. The drift of the direct current level is within 5 mV. The characteristic features of the high frequency part was also investigated. The overall characteristic features of this amplifier were good for the frequency range of 0 to 500 kHz. (Kato, T.)

  15. Mechanical Amplifier for a Piezoelectric Transducer

    Moore, James; Swain, Mark; Lawson, Peter; Calvet, Robert


    A mechanical amplifier has been devised to multiply the stroke of a piezoelectric transducer (PZT) intended for use at liquid helium temperatures. Interferometry holds the key to high angular resolution imaging and astrometry in space. Future space missions that will detect planets around other solar systems and perform detailed studies of the evolution of stars and galaxies will use new interferometers that observe at mid- and far-infrared wavelengths. Phase-measurement interferometry is key to many aspects of astronomical interferometry, and PZTs are ideal modulators for most methods of phase measurement, but primarily at visible wavelengths. At far infrared wavelengths of 150 to 300 m, background noise is a severe problem and all optics must be cooled to about 4 K. Under these conditions, piezos are ill-suited as modulators, because their throw is reduced by as much as a factor of 2, and even a wavelength or two of modulation is beyond their capability. The largest commercially available piezo stacks are about 5 in. (12.7 cm) long and have a throw of about 180 m at room temperature and only 90 m at 4 K. It would seem difficult or impossible to use PZTs for phase measurements in the far infrared were it not for the new mechanical amplifier that was designed and built.

  16. Direct solar-pumped iodine laser amplifier

    Han, Kwang S.; Hwang, In Heon


    The optimum conditions of a solar pumped iodine laser are found in this research for the case of a continuous wave operation and a pulsed operation. The optimum product of the pressure(p) inside the laser tube and the tube diameter(d) was pd=40 approx. 50 torr-cm on the contrary to the case of a high intensity flashlamp pumped iodine laser where the optimum value of the product is known to be pd=150 torr-cm. The pressure-diameter product is less than 1/3 of that of the high power iodine laser. During the research period, various laser materials were also studied for solar pumping. Among the laser materials, Nd:YAG is found to have the lowest laser threshold pumping intensity of about 200 solar constant. The Rhodamine 6G was also tested as the solar pumped laser material. The threshold pumping power was measured to be about 20,000 solar constant. The amplification experiment for a continuously pumped iodine laser amplifier was performed using Vortek solar simulator and the amplification factors were measured for single pass amplification and triple pass amplification of the 15 cm long amplifier tube. The amplification of 5 was obtained for the triple pass amplification.

  17. Discretization analysis of bifurcation based nonlinear amplifiers

    Feldkord, Sven; Reit, Marco; Mathis, Wolfgang


    Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.

  18. Quantum dots for lasers, amplifiers and computing

    Bimberg, Dieter


    For InAs-GaAs based quantum dot lasers emitting at 1300 nm, digital modulation showing an open eye pattern up to 12 Gb s -1 at room temperature is demonstrated, at 10 Gb s -1 the bit error rate is below 10 -12 at -2 dB m receiver power. Cut-off frequencies up to 20 GHz are realised for lasers emitting at 1.1 μm. Passively mode-locked QD lasers generate optical pulses with repetition frequencies between 5 and 50 GHz, with a minimum Fourier limited pulse length of 3 ps. The uncorrelated jitter is below 1 ps. We use here deeply etched narrow ridge waveguide structures which show excellent performance similar to shallow mesa structures, but a circular far field at a ridge width of 1 μm, improving coupling efficiency into fibres. No beam filamentation of the fundamental mode, low a-factors and strongly reduced sensitivity to optical feedback are observed. QD lasers are thus superior to QW lasers for any system or network. Quantum dot semiconductor optical amplifier (QD SOAs) demonstrate gain recovery times of 120-140 fs, 4-7 times faster than bulk/QW SOAs, and a net gain larger than 0.4 dB/(mm*QD-layer) providing us with novel types of booster amplifiers and Mach-Zehnder interferometers. These breakthroughs became possible due to systematic development of self-organized growth technologies

  19. Development of FIR arrays with integrating amplifiers

    Young, Erick T.


    The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.

  20. Multipath interference test method for distributed amplifiers

    Okada, Takahiro; Aida, Kazuo


    A method for testing distributed amplifiers is presented; the multipath interference (MPI) is detected as a beat spectrum between the multipath signal and the direct signal using a binary frequency shifted keying (FSK) test signal. The lightwave source is composed of a DFB-LD that is directly modulated by a pulse stream passing through an equalizer, and emits the FSK signal of the frequency deviation of about 430MHz at repetition rate of 80-100 kHz. The receiver consists of a photo-diode and an electrical spectrum analyzer (ESA). The base-band power spectrum peak appeared at the frequency of the FSK frequency deviation can be converted to amount of MPI using a calibration chart. The test method has improved the minimum detectable MPI as low as -70 dB, compared to that of -50 dB of the conventional test method. The detailed design and performance of the proposed method are discussed, including the MPI simulator for calibration procedure, computer simulations for evaluating the error caused by the FSK repetition rate and the fiber length under test and experiments on singlemode fibers and distributed Raman amplifier.

  1. Direct coupled amplifiers using field effect transistors

    Fowler, E P [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)


    The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10{sup -8} A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10{sup -10} A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with

  2. Single-mode operation of a coiled multimode fiber amplifier

    Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew


    We report a new approach to obtaining single-transverse-mode operation of a multimode fiber amplifier in which the gain fiber is coiled to induce significant bend loss for all but the lowest-order mode. We demonstrated this method by constructing a coiled amplifier using Yb-doped, double-clad fiber with a core diameter of 25 μm and a numerical aperture of ∼0.1 (V≅7.4) . When the amplifier was operated as an amplified-spontaneous-emission source, the output beam had an M 2 value of 1.09±0.09 ; when seeded at 1064 nm, the slope efficiency was similar to that of an uncoiled amplifier. This technique will permit scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality. (c) 2000 Optical Society of America

  3. Realization of OFCC based Transimpedance Mode Instrumentation Amplifier

    Neeta Pandey


    Full Text Available The paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three Operational Floating Current Conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematicThe paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three operational floating current conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematic.

  4. Modeling and design techniques for RF power amplifiers

    Raghavan, Arvind; Laskar, Joy


    The book covers RF power amplifier design, from device and modeling considerations to advanced circuit design architectures and techniques. It focuses on recent developments and advanced topics in this area, including numerous practical designs to back the theoretical considerations. It presents the challenges in designing power amplifiers in silicon and helps the reader improve the efficiency of linear power amplifiers, and design more accurate compact device models, with faster extraction routines, to create cost effective and reliable circuits.

  5. GaN-based Power amplifiers for microwave applications

    Jorge Julián Moreno-Rubio


    Full Text Available This paper presents a discussion about the design strategies of different kind of power amplifiers for RF/Microwave appli- cations, such as the tuned load power amplifier, class F, class F-1 and Doherty. Furthermore, it is shown the continuous wave characterization of the amplifiers above mentioned. A comparison between the obtained results, in terms of gain, efficiency and output power is presented.

  6. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard


    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  7. Functional Blocks and Biquadratic ARC Filters using Transimpedance Amplifiers

    R. Sarman


    Full Text Available The aims of the article are design and analysis of modern circuits including high performance functional blocks and biquadratic filters using transimpedance amplifiers. Here are given various types of these circuits, that works in classical voltage, current or hybrid mode. In this paper are also compared various possibilities of connection of single amplifier filters as for reduction of influence of transimpedance amplifier parasitic elements.

  8. Compressed magnetic flux amplifier with capacitive load

    Stuetzer, O.M.


    A first-order analysis is presented for a compressed magnetic flux (CMF) current amplifier working into a load with a capacitive component. Since the purpose of the investigation was to gain a general understanding of the arrangement, a number of approximations and limitations were accepted. The inductance of the transducer varies with time; the inductance/resistance/capacitance (LRC) circuit therefore is parametric and solutions are different for the stable regime (high C), the oscillation regime (low C), and the transition case. Solutions and performance depend strongly on circuit boundary conditions, i.e., energization of the circuit by either an injected current or by an applied capacitor charge. The behavior of current and energy amplification for the various cases are discussed in detail. A number of experiments with small CMF devices showed that the first-order theory presented predicts transducer performance well in the linear regime

  9. Noise-driven neuromorphic tuned amplifier

    Fanelli, Duccio; Ginelli, Francesco; Livi, Roberto; Zagli, Niccoló; Zankoc, Clement


    We study a simple stochastic model of neuronal excitatory and inhibitory interactions. The model is defined on a directed lattice and internodes couplings are modulated by a nonlinear function that mimics the process of synaptic activation. We prove that such a system behaves as a fully tunable amplifier: the endogenous component of noise, stemming from finite size effects, seeds a coherent (exponential) amplification across the chain generating giant oscillations with tunable frequencies, a process that the brain could exploit to enhance, and eventually encode, different signals. On a wider perspective, the characterized amplification process could provide a reliable pacemaking mechanism for biological systems. The device extracts energy from the finite size bath and operates as an out of equilibrium thermal machine, under stationary conditions.

  10. Rippled beam free electron laser amplifier

    Carlsten, Bruce E.


    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  11. Current feedback operational amplifiers and their applications

    Senani, Raj; Singh, A K; Singh, V K


    This book describes a variety of current feedback operational amplifier (CFOA) architectures and their applications in analog signal processing/generation. Coverage includes a comprehensive survey of commercially available, off-the-shelf integrated circuit CFOAs, as well as recent advances made on the design of CFOAs, including design innovations for bipolar and CMOS CFOAs.  This book serves as a single-source reference to the topic, as well as a catalog of over 200 application circuits which would be useful not only for students, educators and researchers in apprising them about the recent developments in the area but would also serve as a comprehensive repertoire of useful circuits for practicing engineers who might be interested in choosing an appropriate CFOA-based topology for use in a given application.

  12. A highly linear power amplifier for WLAN

    Jin Jie; Shi Jia; Ai Baoli; Zhang Xuguang


    A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P 1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. (paper)

  13. New developments in relativistic klystron amplifiers

    Friedman, M; Colombant, D; Fernsler, R; Hubbard, R; Lampe, M; Serlin, V; Slinker, S [Naval Research Lab., Washington, DC (United States). Plasma Physics Div.


    A relativistic klystron amplifier that employed cavities with inductively loaded wide gaps and a novel converter has achieved 50% energy efficiency, a significant advance over the previous state of the art of 20%. The new device was immersed in a 3 kG magnetic field and contained two innovations: (1) Wide gaps which include an inductively loaded return current structure that was opaque to the unmodulated beam space charge but transparent to the RF field. (2) A novel converter that was made of a `leaky` cavity with a radially-converging inductively-loaded structure that was inserted in the output wide-gap. This structure reduced the potential energy residing in the electron beam and maximized RF output energy. (author). 4 figs., 13 refs.

  14. Optical oscillator-amplifier laser configuration

    McAllister, G.L.


    A laser is described that has incorporated therein an oscillator formed by a pair of mirrors, at least one of the mirrors being positioned outside of the envelope. The mirrors are dimensioned and spaced from each other so that the resonator has a relatively low Fresnel number and is operated unstably. The entire surface of one of these mirrors is convex and diffracts a portion of the energy outside of the oscillator region. Also incorporated into the laser is an amplifier region defined by a separate pair of mirrors which receive the energy diffracted from the oscillator region. The second pair of mirrors form an optical system with a high Fresnel number. A filter, modulator or other control for the laser signal may be placed outside the laser envelope in the optical path of the oscillator

  15. Coherent combination of ultrafast fiber amplifiers

    Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N


    We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)

  16. Pulse shaping amplifier (PSA) for nuclear spectroscopy system

    Lombigit, L.; Maslina Mohd Ibrahim; Nolida Yusup; Nur Aira Abdul Rahman; Yong, C.F.


    Pulse Shaping Amplifier (PSA) is an essential components in nuclear spectroscopy system. This networks have two functions; to shape the output pulse and performs noise filtering. In this paper, we describes procedure for design and development of a pulse shaping amplifier which can be used for nuclear spectroscopy system. This prototype was developed using high performance electronics devices and assembled on a FR4 type printed circuit board. Performance of this prototype was tested by comparing it with an equivalent commercial spectroscopy amplifier (Model SILENA 7611). The test results show that the performance of this prototype is comparable to the commercial spectroscopic amplifier. (author)

  17. Ring cavity for a Raman capillary waveguide amplifier

    Kurnit, N.A.


    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  18. FDML swept source at 1060 nm using a tapered amplifier

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang


    We present a novel frequency-swept light source working at 1060nm that utilizes a tapered amplifier as gain medium. These devices feature significantly higher saturation power than conventional semiconductor optical amplifiers and can thus improve the limited output power of swept sources in this...... an axial resolution of 15 µm in air (~11µm in tissue) for OCT applications can be achieved....

  19. Subjective test of class D amplifiers without output filter

    Agerkvist, Finn T.; Fenger, Lars M.


    This paper presents the results of subjective listening tests designed to determine whether the output filter on class D amplifiers used in active loudspeakers can be omitted without audible errors occurring. The frequency range of the amplifiers was limited to 0-3 kHz corresponding to a woofer...

  20. A Power Efficient Audio Amplifier Combining Switching and Linear Techniques

    van der Zee, Ronan A.R.; van Tuijl, Adrianus Johannes Maria


    Integrated Class D audio amplifiers are very power efficient, but require an external filter which prevents further integration. Also due to this filter, large feedback factors are hard to realise, so that the load influences the distortion- and transfer characteristics. The amplifier presented in

  1. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    Ljusev, Petar; Andersen, Michael Andreas E.


    has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced...

  2. Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers

    Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael


    We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion inf...... characteristics of the amplifier and shows local maxima for specific dispersion values....

  3. A high performance electrometer amplifier of hybrid design

    Rao, N.V.; Nazare, C.K.


    A high performance, reliable, electrometer amplifier of hybrid design for low current measurements in mass spectrometers has been developed. The short term instability with a 5 x 10 11 ohms input resistor is less than 1 x 10sup(-15) Amp. The drift is better than 1 mV/hour. The design steps are illustrated with a typical amplifier performance details. (auth.)

  4. Amplified spontaneous emission in solar-pumped iodine laser

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.


    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  5. A Review of High Voltage Drive Amplifiers for Capacitive Actuators

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.


    This paper gives an overview of the high voltage amplifiers, which are used to drive capacitive actuators. The amplifiers for both piezoelectric and DEAP (dielectric electroactive polymer) actuator are discussed. The suitable topologies for driving capacitive actuators are illustrated in detail...

  6. Efficiency of random amplified polymorphic DNA (RAPD) and inter ...

    Efficiency of random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) markers for genotype fingerprinting and genetic diversity studies in canola ( ) ... The number of amplified fragments with RAPD primers ranged from 8 to 21, with the size of amplicons ranging from 162 to 3154 bp.

  7. Gain characteristics of a saturated fiber optic parametric amplifier

    Rottwitt, Karsten; Lorenzen, Michael Rodas; Noordegraaf, Danny


    In this work we discuss saturation performance of a fiber optic parametric amplifier. A simple numerical model is described and applied to specific cases. A system experiment using a saturated amplifier illustrates a 4 dB improvement in required signal to noise ratio for a fixed bit error ratio....

  8. 47 CFR 2.815 - External radio frequency power amplifiers.


    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false External radio frequency power amplifiers. 2... AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.815 External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power...

  9. Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers

    Poel, Mike van der; Hvam, Jørn Märcher


    We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...

  10. Series-Tuned High Efficiency RF-Power Amplifiers

    Vidkjær, Jens


    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  11. External Peltier Cooler For Low-Noise Amplifier

    Soper, Terry A.


    Inexpensive Peltier-effect cooling module made of few commercially available parts used to reduce thermal noise in microwave amplifier. Retrofitted to almost any microwave low-noise amplifier or receiver preamplifier used in communication, telemetry, or radar. Includes copper or aluminum cold plate held tightly against unit to be cooled by strap-type worm-gear clamps.

  12. Slow Light at High Frequencies in an Amplifying Semiconductor Waveguide

    Öhman, Filip; Yvind, Kresten; Mørk, Jesper


    We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz.......We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz....

  13. Modeling Distortion Effects in Class-D Amplifier Filter Inductors

    Knott, Arnold; Stegenborg-Andersen, Tore; Thomsen, Ole Cornelius


    Distortion is generally accepted as a quantifier to judge the quality of audio power amplifiers. In switchmode power amplifiers various mechanisms influence this performance measure. After giving an overview of those, this paper focuses on the particular effect of the nonlinearity of the output f...

  14. CARM and harmonic gyro-amplifier experiments at 17 GHz

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.


    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE 31 mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE 11 mode is also discussed

  15. A Transimpedance Amplifier for Remotely Located Quartz Tuning Forks

    Kleinbaum, Ethan; Csathy, Gabor


    The cable capacitance in cryogenic and high vacuum applications of quartz tuning forks imposes severe constraints on the bandwidth and noise performance of the measurement. We present a single stage low noise transimpedance amplifier with a bandwidth exceeding 1 MHz and provide an in-depth analysis of the dependence of the amplifier parameters on the cable capacitance.

  16. Note: a transimpedance amplifier for remotely located quartz tuning forks.

    Kleinbaum, Ethan; Csáthy, Gábor A


    The cable capacitance in cryogenic and high vacuum applications of quartz tuning forks imposes severe constraints on the bandwidth and noise performance of the measurement. We present a single stage low noise transimpedance amplifier with a bandwidth exceeding 1 MHz and provide an in-depth analysis of the dependence of the amplifier parameters on the cable capacitance.

  17. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.

    Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V


    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.

  18. PHEMT Distributed Power Amplifier Adopting Broadband Impedance Transformer

    Narendra, K.; Limiti, E.; Paoloni, C.


    A non-uniform drain line distributed power amplifier (DPA) employing a broadband impedance transformer is presented. The DPA is based on GaAs PHEMT technology. The impedance transformer employs asymmetric coupled lines and transforms a low output impedance of the amplifier to a standard 50 Ω...

  19. Traveling-Wave Tube Amplifier for THz Frequencies

    Kotiranta, Mikko; Krozer, Viktor; Zhurbenko, Vitaliy

    tubes and gas lasers, but the ones available are too expensive or large for many applications. This work is related to the European project OPTHER (Optically driven terahertz amplifiers) which aims to realise a compact, powerful and efficient vacuum tube amplifier for the frequency range of 0.3 – 2...

  20. Amplifying Islam : Pluralism, Secularism, and Religious Sounds in The Netherlands

    Tamimi Arab, P.


    This dissertation is an ethnographic study of the amplified azan, the Islamic call to prayer, in the Netherlands, adding a sonic dimension to analyses of the politics of Islamic aesthetics in the western world. Often rejected by opponents as noise pollution, facilitating the amplified azan is an

  1. Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications

    Berg, Tommy Winther


    This thesis describes the physics and applications of quantum dot semiconductor optical amplifiers based on numerical simulations. These devices possess a number of unique properties compared with other types of semiconductor amplifiers, which should allow enhanced performance of semiconductor...... respects is comparable to those of fiber amplifiers. The possibility of inverting the optically active states to a large degree is essential in order to achieve this performance. Optical signal processing through cross gain modulation and four wave mixing is modeled and described. For both approaches...... and QW devices and to experiments on quantum dot amplifiers. These comparisons outline the qualitative differences between the different types of amplifiers. In all cases focus is put on the physical processes responsible the differences....

  2. Low-cost amplifier for alpha detection with photodiode

    Domienikan, Cláudio; Costa, Priscila; Genezini, Frederico A.; Zahn, Guilherme S., E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)


    A low-cost amplifier for Hamamatsu S3590-09 PIN photodiode to be used in alpha detection is presented. This amplifier consists basically of two circuits: a pulse preamplifier and a shaper-driver. The PIN photodiode is reverse-biased and connected to a charge preamplifier input. Incident alpha particles generate a small current pulse in the photodiode. The integrating circuit of the low noise preamplifier transforms current pulse into a voltage pulse with amplitude proportional to the charge carried by the current pulse. The shaper-driver consists of a differentiator and an integrator and is responsible for filtering and further amplifying the preamplifier signal, generating a NIM-compatible energy pulse. The performance of the set photodiode-amplifier was successively tested through the use of a {sup 243}Am radioactive source. The low-cost photodiode amplifier was designed and constructed at IPEN - CNEN/SP using national components and expertise. (author)

  3. Efficient and Compact Optical Amplifier Using EYDF

    Sulaiman Wadi Harun


    Full Text Available An efficient Erbium/Ytterbium doped fiber amplifier (EYDFA is demonstrated using a 1058nm pumping wavelength, where the amplification is assisted by energy transfer between Yb and Er ions. The energy transfer increases the limit of erbium doping concentration that is imposed by concentration quenching in Erbium-doped fiber (EDF. Therefore, the gain and noise figure are severely degraded with 1480 nm pumping, where the energy transfer cannot be achieved. The use of optical isolator improves the small signal gain and noise figure by about 4.8 dB and 1.6 dB, respectively. By employing a double-pass configuration, a higher gain can be obtained with an expense of a noise figure penalty. The gain improvement of 17.0 dB is obtained at 20 mW and -50 dBm of pump and input signal powers. This shows that the double-pass configuration is an important aspect to consider when designing an efficient EYDFA.

  4. Direct solar-pumped iodine laser amplifier

    Han, Kwang S.


    This semiannual progress report covers the period from March 1, 1987 to September 30, 1987 under NASA grant NAG1-441 entitled 'Direct solar-pumped iodine laser amplifier'. During this period Nd:YAG and Nd:Cr:GSGG crystals have been tested for the solar-simulator pumped cw laser, and loss mechanisms of the laser output power in a flashlamp-pumped iodine laser also have been identified theoretically. It was observed that the threshold pump-beam intensities for both Nd:YAG and Nd:Cr:GSGG crystals were about 1000 solar constants, and the cw laser operation of the Nd:Cr:GSGG crystal was more difficult than that of the Nd:YAG crystal under the solar-simulator pumping. The possibility of the Nd:Cr:GSGG laser operation with a fast continuously chopped pumping was also observed. In addition, good agreement between the theoretical calculations and the experimental data on the loss mechanisms of a flashlamp-pumped iodine laser at various fill pressures and various lasants was achieved.

  5. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    Venkatasubbarao, Srivatsa


    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  6. Status Report on the Energy Amplifier

    Rubbia, Carlo


    0ne year after its first presentation,the Energy Amplifier (EA) Project holds its promises for a environmentally acceptable form of energy extraction from nuclei, namely to eliminate or at least greatly reduce(i) the environmental impact of the long-lived highly radioactive waste;(ii) the possibility of diversions toward military applications;(iii) the risks of an accidental divergence related to the critical operation of the chain reaction and (iv) make a more efficient use of a fuel which is less radio-toxic to extract and more abundant on Earth than Uranium. In these respects the EA (or equivalent scenarios from Los Alamos and elsewhere) is comparable in performance to Thermonuclear Fusion. Bot h approches offer pratically unl;imited fuel resources: the energetic content of Lithium on the Earth's crust needed by Fusion is estimated to be seven times the one of Thorium and they are both adequate for millions of years of very intensived utilisation.However the EA can be built economically,in a variety of siz...

  7. Stochastic phenomena in a fiber Raman amplifier

    Kalashnikov, Vladimir [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Institute of Photonics, Vienna University of Technology (Austria); Sergeyev, Sergey V. [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Ania-Castanon, Juan Diego [Instituto de Optica CSIC, Madrid (Spain); Jacobsen, Gunnar [Acreo, Kista (Sweden); Popov, Sergei [Royal Institute of Technology (KTH), Stockholm (Sweden)


    The interplay of such cornerstones of modern nonlinear fiber optics as a nonlinearity, stochasticity and polarization leads to variety of the noise induced instabilities including polarization attraction and escape phenomena harnessing of which is a key to unlocking the fiber optic systems specifications required in high resolution spectroscopy, metrology, biomedicine and telecommunications. Here, by using direct stochastic modeling, the mapping of interplay of the Raman scattering-based nonlinearity, the random birefringence of a fiber, and the pump-to-signal intensity noise transfer has been done in terms of the fiber Raman amplifier parameters, namely polarization mode dispersion, the relative intensity noise of the pump laser, fiber length, and the signal power. The obtained results reveal conditions for emergence of the random birefringence-induced resonance-like enhancement of the gain fluctuations (stochastic anti-resonance) accompanied by pulse broadening and rare events in the form of low power output signals having probability heavily deviated from the Gaussian distribution. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. A highly linear power amplifier for WLAN

    Jie, Jin; Jia, Shi; Baoli, Ai; Xuguang, Zhang


    A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. Project supported by the National Natural Science Foundation of China (No. 61201244) and the Natural Science Fund of SUES (No. E1-0501-14-0168).

  9. Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: Comparison with bulk amplifiers

    Borri, P.; Langbein, W.; Hvam, Jørn Märcher


    The ultrafast gain dynamics in an electrically pumped InAs/InGaAs/GaAs quantum-dot amplifier are measured at room temperature with femtosecond resolution, and compared with results on an InGaAsP bulk amplifier. The role of spectral hole burning and carrier heating in the recovery of the gain...

  10. Nitric oxide amplifies the rat electroretinogram.

    Vielma, Alex; Delgado, Luz; Elgueta, Claudio; Osorio, Rodrigo; Palacios, Adrián G; Schmachtenberg, Oliver


    It is well established that nitric oxide (NO) participates in retinal signal processing through stimulation of its receptor enzyme, soluble guanylyl cyclase (sGC). However, under pathological conditions such as uveoretinitis, diabetic or ischemic retinopathy, elevated NO concentrations may cause protein S-nitrosation and peroxynitrite formation in the retina, promoting cellular injury and apoptosis. Previous electroretinogram (ERG) studies demonstrated deleterious effects of NO on the retinal light response, but showed no evidence for a role in normal signal processing. To better understand the function of NO in ocular physiology, we investigated the effects of exogenous NO, produced by NO donors with different release kinetics, on the flash ERG of the rat. Within a limited concentration range, NO strongly amplified ERG a- and b-waves, oscillatory potentials, and the scotopic threshold response. Amplification exceeded 100% under dark adaptation, whereas the photopic ERG and the isolated cone response were increased by less than 50%. Blocking photoreceptor-bipolar cell synapses by AP-4 demonstrated a significant increase of the isolated a-wave by NO, and modeling the ERG generator PIII supported photoreceptors as primary NO targets. The sGC inhibitors ODQ and NS2028 did not reduce NO-dependent ERG amplification, ruling out an involvement of the classical NO effector cyclic GMP. Using immunohistochemistry, we show that illumination and exogenous NO altered the S-nitrosation level of the photoreceptor layer, suggesting that direct protein modifications caused by elevated levels of NO may be responsible for the observed phenomenon. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Methylphenidate alters selective attention by amplifying salience.

    ter Huurne, Niels; Fallon, Sean James; van Schouwenburg, Martine; van der Schaaf, Marieke; Buitelaar, Jan; Jensen, Ole; Cools, Roshan


    Methylphenidate, the most common treatment of attention deficit hyperactivity disorder (ADHD), is increasingly used by healthy individuals as a "smart drug" to enhance cognitive abilities like attention. A key feature of (selective) attention is the ability to ignore irrelevant but salient information in the environment (distractors). Although crucial for cognitive performance, until now, it is not known how the use of methylphenidate affects resistance to attentional capture by distractors. The present study aims to clarify how methylphenidate affects distractor suppression in healthy individuals. The effect of methylphenidate (20 mg) on distractor suppression was assessed in healthy subjects (N = 20), in a within-subject double-blind placebo-controlled crossover design. We used a visuospatial attention task with target faces flanked by strong (faces) or weak distractors (scrambled faces). Methylphenidate increased accuracy on trials that required gender identification of target face stimuli (methylphenidate 88.9 ± 1.4 [mean ± SEM], placebo 86.0 ± 1.2 %; p = .003), suggesting increased processing of the faces. At the same time, however, methylphenidate increased reaction time when the target face was flanked by a face distractor relative to a scrambled face distractor (methylphenidate 34.9 ± 3.73, placebo 26.7 ± 2.84 ms; p = .027), suggesting enhanced attentional capture by distractors with task-relevant features. We conclude that methylphenidate amplifies salience of task-relevant information at the level of the stimulus category. This leads to enhanced processing of the target (faces) but also increased attentional capture by distractors drawn from the same category as the target.

  12. Direct solar-pumped iodine laser amplifier

    Han, Kwang S.; Hwang, In Heon; Kim, Khong Hon; Stock, Larry V.


    A XeCl laser pumped iodine laser oscillator was developed which will be incorporated into the Master Oscillator Power Amplifier (MOPA) system. The developed XeCl laser produces output energy of about 60 mJ per pulse. The pulse duration was about 10 nsec. The kinetic model for the solar-pumped laser was refined and the algorithm for the calculation of a set of rate equations was improved to increase the accuracy and the efficiency of the calculation. The improved algorithm was applied to explain the existing experimental data taken from a flashlamp pumped iodine laser for three kinds of lasants, i-C3F7I, n-C4F9I, and t-C4F9I. Various solid laser materials were evaluated for solar-pumping. The materials studied were Nd:YAG, Nd:YLF, and Cr:Nd:GSGG crystals. The slope efficiency of 0.17 percent was measured for the Nd:YLF near the threshold pump intensity which was 211 solar constants (29W/sq cm). The threshold pump intensity of the Nd:YAG was measured to be 236 solar constants (32W/sq cm) and the near-threshold slope efficiency was 0.12 percent. True CW laser operation of Cr:Nd:GSGG was possible only at pump intensities less than or equal to 1,500 solar constants (203 W/sq cm). This fact was attributed to the high thermal focusing effect of the Cr:Nd:GSGG rod.

  13. A modular positive feedback-based gene amplifier

    Bhalerao Kaustubh D


    Full Text Available Abstract Background Positive feedback is a common mechanism used in the regulation of many gene circuits as it can amplify the response to inducers and also generate binary outputs and hysteresis. In the context of electrical circuit design, positive feedback is often considered in the design of amplifiers. Similar approaches, therefore, may be used for the design of amplifiers in synthetic gene circuits with applications, for example, in cell-based sensors. Results We developed a modular positive feedback circuit that can function as a genetic signal amplifier, heightening the sensitivity to inducer signals as well as increasing maximum expression levels without the need for an external cofactor. The design utilizes a constitutively active, autoinducer-independent variant of the quorum-sensing regulator LuxR. We experimentally tested the ability of the positive feedback module to separately amplify the output of a one-component tetracycline sensor and a two-component aspartate sensor. In each case, the positive feedback module amplified the response to the respective inducers, both with regards to the dynamic range and sensitivity. Conclusions The advantage of our design is that the actual feedback mechanism depends only on a single gene and does not require any other modulation. Furthermore, this circuit can amplify any transcriptional signal, not just one encoded within the circuit or tuned by an external inducer. As our design is modular, it can potentially be used as a component in the design of more complex synthetic gene circuits.

  14. Class-E Amplifier Design Improvements for GSM Frequencies

    Z. Nadir


    Full Text Available Efficient power amplifiers are essential in portable battery-operated systems such as mobile phones. Also, the power amplifier (PA is the most power-consuming building block in the transmitter of a portable system. This paper investigates how the efficiency of the power amplifier (which is beneficial for multiple applications in communcation sector can be improved by increasing the efficiency of switching mode class E power amplifiers for frequencies of 900 MHz and 1800 MHz. The paper tackles modeling, design improvements and verification through simulation for higher efficiencies. This is the continuation of previous work by the authors. These nonlinear power amplifiers can only amplify constant-envelope RF signals without introducing significant distortion. Mobile systems such as Advanced Mobile Phone System (AMPS and Global System for Mobile communications (GSM use modulation schemes which generate constant amplitude RF outputs in order to use efficient but nonlinear power amplifiers. Improvements in designs are suggested and higher efficiencies are achieved, to the tune of 67.1% (for 900 MHz and 67.0% (1800 MHz.

  15. Detection of weak optical signals with a laser amplifier

    Kozlovskii, A. V.


    Detection of weak and extremely weak light signals amplified by linear and four-wave mixing laser amplifiers is analyzed. Photoelectron distributions are found for different input photon statistics over a wide range of gain. Signal-to-noise ratios are calculated and analyzed for preamplification schemes using linear and four-wave mixing amplifiers. Calculations show that the high signal-to-noise ratio (much higher than unity), ensuring reliable detection of weak input signals, can be attained only with a four-wave mixing preamplification scheme. Qualitative dependence of the signal-to-noise ratio on the quantum statistical properties of both signal and idler waves is demonstrated

  16. Class-D audio amplifiers with negative feedback

    Cox, Stephen M.; Candy, B. H.


    There are many different designs for audio amplifiers. Class-D, or switching, amplifiers generate their output signal in the form of a high-frequency square wave of variable duty cycle (ratio of on time to off time). The square-wave nature of the output allows a particularly efficient output stage, with minimal losses. The output is ultimately filtered to remove components of the spectrum above the audio range. Mathematical models are derived here for a variety of related class-D amplifier de...

  17. Efficient performance simulation of class D amplifier output stages

    Nyboe, Flemming; Risbo, Lars; Andreani, Pietro


    Straightforward simulation of amplifier distortion involves transient simulation of operation on a sine wave input signal, and a subsequent FFT of the output voltage. This approach is very slow on class D amplifiers, since the switching behavior forces simulation time steps that are many orders...... of magnitude smaller than the duration of one period of an audio sine wave. This work presents a method of simulating the amplifier transfer characteristic using a minimum amount of simulation time, and then deriving THD from the results....

  18. Integrated wide-band low-background amplifiers

    Il'yushchenko, I.I.


    Ways of increasing stability and reproduction of characteristics of wide-band integral amplifiers that would to the least extent increase their background noises, are discussed. Considered are some certain flowsheets of integral wide-band amplifiers with low background noise of foreign production which differ from one another by construction of inlet cascades as well as by the applied feedback type. The principal flowsheets of the amplifiers and their main performances are presented. The analysis of the data obtained has revealed that microcircuits made of cascades with a common emitter and local combined feedback are most wide-band among all the considered microcircuits [ru

  19. Model of pulse extraction from a copper laser amplifier

    Boley, C.D.; Warner, B.E.


    A computational model of pulse propagation through a copper laser amplifier has been developed. The model contains a system of 1-D (in the axial direction), time-dependent equations for the laser intensity and amplified spontaneous emission (ASE), coupled to rate equations for the atomic levels. Detailed calculations are presented for a high-power amplifier at Lawrence Livermore National Laboratory. The extracted power agrees with experiment near saturation. At lower input power the calculation overestimates experiment, probably because of increased ASE effects. 6 refs., 6 figs

  20. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    Danson John; Plett Calvin; Tait Niall


    A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA) operating at GHz and GHz, and a tunable power amplifier (PA) at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB no...

  1. Influence of mode competition on beam quality of fiber amplifier

    Xiao Qi-Rong; Yan Ping; Sun Jun-Yi; Chen Xiao; Ren Hai-Cui; Gong Ma-Li


    Theoretical and experimental studies of the influence of the mode competition on the output beam quality of fiber amplifiers are presented. Rate equations and modal decomposition method are used in the theoretical model. In the experiment, the output beam-quality factor of a fiber amplifier, which is based on a Yb-doped double-clad large mode area fiber as a function of the seed beam quality and the pump power of the amplifier, is measured. The experimental results are consistent with the theoretical analysis. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Minimizing Crosstalk in Self Oscillating Switch Mode Audio Power Amplifiers

    Knott, Arnold; Ploug, Rasmus Overgaard


    a method to minimize this phenomenon by improving the integrity of the various power distribution systems of the amplifier. The method is then applied to an amplifier built for this investigation. The results show that the crosstalk is suppressed with 30 dB, but is not entirely eliminated......The varying switching frequencies of self oscillating switch mode audio amplifiers have been known to cause interchannel intermodulation disturbances in multi channel configurations. This crosstalk phenomenon has a negative impact on the audio performance. The goal of this paper is to present...

  3. Radiofrequency amplifier based on a DC superconducting quantum interference device

    Martinis, J.M.; Hilbert, C.; Clarke, J.


    A method is described of amplifying a radiofrequency signal consisting of: disposing a single symmetrically biased dc SQUID and an input coil within a superconducting shield, the dc SQUID having a superconducting ring interrupted by two shunted Josephson junctions, and the input coil being inductively coupled solely to the ring of the single SQUID, establishing a constant magnetic flux threading the SQUID ring, applying the radiofrequency signal to the input coil from outside of the superconducting shield, obtaining an amplified radiofrequency signal solely from across the ring of the single SQUID, transmitting the amplified radiofrequency signal from across the SQUID ring to the outside of the superconducting shield

  4. Design and Fabrication of a 1 THz Backward Wave Amplifier

    Paoloni, Claudio; Di Carlo, Aldo; Brunetti, Francesca


    , to get a level of output power to enable applications at these frequencies. The OPTHER (Optically driven THz amplifier) project, funded by the European Community, is on the road to realize the first 1 THz vacuum tube amplifier. Technology at the state of the art has been used for the realization...... of the parts with dimensions supporting THz frequencies. A backward wave amplifier configuration is chosen to make the parts realizable. A carbon nanotube cold cathode has been considered for electron generation. A thermionic micro electron gun is designed to test the tube. A novel slow-wave structure (SWS...

  5. Introduction to RF power amplifier design and simulation

    Eroglu, Abdullah


    Introduction to RF Power Amplifier Design and Simulation fills a gap in the existing literature by providing step-by-step guidance for the design of radio frequency (RF) power amplifiers, from analytical formulation to simulation, implementation, and measurement. Featuring numerous illustrations and examples of real-world engineering applications, this book:Gives an overview of intermodulation and elaborates on the difference between linear and nonlinear amplifiersDescribes the high-frequency model and transient characteristics of metal-oxide-semiconductor field-effect transistorsDetails activ

  6. Designing and development of a synchronous analogic amplifier

    De la Hoz, E.; Ortiz, A.


    A large number of electronic systems used in the measurement and analysis of weak signals involve a ''lock-in'' amplifier, because it provides an effective method for the recovery of signals buried below a considerable high level of noise. The use of the ''lock-in'' amplifier in our institutions is very limited due to the high expense and the lack of warranties for its maintenance. The purpose of the present work is to design and build a low cost ''lock-in'' amplifier using components available in the local market. Its optimization has allowed us to increase the sensitivity and linearity of the systems, making it very versatile for dedicated applications

  7. Modeling FWM and impairments aware amplifiers placement technique for an optical MAN/WAN: Inline amplifiers case

    Singh, Gurpreet; Singh, Maninder Lal


    A new four wave mixing (FWM) model for an optical network with amplifiers and a comparative analysis among three proposed amplifiers placement techniques have been presented in this paper. The FWM model is validated with the experimental measured data. The novelty of this model is its uniqueness that on direct substitutions of network parameters like length, it works even for unequal inter amplifier separations. The novelty of the analysis done among three schemes is that it presents fair choice of amplifiers placement methods for varied total system length. The appropriateness of these three schemes has been analyzed on the basis of critical system length, critical number of amplifiers and critical bit error rate (10-9) in presence of four wave mixing (FWM) and amplified spontaneous emission noise (ASE). The implementation of analysis done has been given with the help of an example of a regenerative metropolitan area network (MAN). The results suggest that the decreasing fiber section scheme should be avoided for placements of amplifiers and schemes IUFS and EFS shows their importance interchangeably for different set of parameters.

  8. Compact solid state radio frequency amplifiers in kW regime for ...

    RF amplifier; solid state amplifier; power combiner and divider; .... was designed using planar and coaxial transmission line baluns with minimum lumped variable ..... Cripps S C 1999 RF power amplifiers for wireless communication. Norwood: ...

  9. High Energy Single Frequency Resonant Amplifier, Phase I

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  10. Distributed CMOS Bidirectional Amplifiers Broadbanding and Linearization Techniques

    El-Khatib, Ziad; Mahmoud, Samy A


    This book describes methods to design distributed amplifiers useful for performing circuit functions such as duplexing, paraphrase amplification, phase shifting power splitting and power combiner applications.  A CMOS bidirectional distributed amplifier is presented that combines for the first time device-level with circuit-level linearization, suppressing the third-order intermodulation distortion. It is implemented in 0.13μm RF CMOS technology for use in highly linear, low-cost UWB Radio-over-Fiber communication systems. Describes CMOS distributed amplifiers for optoelectronic applications such as Radio-over-Fiber systems, base station transceivers and picocells; Presents most recent techniques for linearization of CMOS distributed amplifiers; Includes coverage of CMOS I-V transconductors, as well as CMOS on-chip inductor integration and modeling; Includes circuit applications for UWB Radio-over-Fiber networks.

  11. Optical crosstalk reduction using Amplified Spontaneous Emission (ASE)

    Chen, H.; Fontaine, N.K.; Ryf, R.; Alvarado, J.C.; van Weerdenburg, J.A.A.; Amezcua-Correa, R.; Okonkwo, C.; Koonen, A.M.J.


    We employ spectrally filtered amplified spontaneous emission as the signal carrier and matched local oscillator to mitigate optical crosstalk. We demonstrate polarization crosstalk reduction in single-mode fiber transmission and modal crosstalk reduction over multimode fiber.

  12. Waveguide source of amplified spontaneous emission ASE 1550 nm

    Razik, M.; Budnicki, A.; Abramski, M.


    Light source of amplified spontaneous emission (ASE) type has been built on the base of double-clad waveguide doped with ytterbium and erbium. The characteristics and applications of the ASE source have been also presented

  13. Directional amplifier in an optomechanical system with optical gain

    Jiang, Cheng; Song, L. N.; Li, Yong


    Directional amplifiers are crucial nonreciprocal devices in both classical and quantum information processing. Here we propose a scheme for realizing a directional amplifier between optical and microwave fields based on an optomechanical system with optical gain, where an active optical cavity and two passive microwave cavities are coupled to a common mechanical resonator via radiation pressure. The two passive cavities are coupled via hopping interaction to facilitate the directional amplification between the active and passive cavities. We obtain the condition of achieving optical directional amplification and find that the direction of amplification can be controlled by the phase differences between the effective optomechanical couplings. The effects of the gain rate of the active cavity and the effective coupling strengths on the maximum gain of the amplifier are discussed. We show that the noise added to this amplifier can be greatly suppressed in the large cooperativity limit.

  14. Characterization and Optimization of the Magnetron Directional Amplifier

    Hatfield, Michael


    .... A conventional microwave oven magnetron may be converted into a two-port amplifier capable of delivering over 30 dB of gain, while remaining phase-locked to the input signal over a wide frequency range...

  15. High power X-band coaxial amplifier experiments

    Davis, T.J.; Nation, J.A.


    Studies are continuing on the development of X-band coaxial microwave amplifiers as a source for next generation linear colliders. Coaxial amplifiers employ an annular electron beam propagating between inner and outer drift tube conductors, a configuration which allows large increases in beam current over standard pencil beam amplifiers. Large average diameter systems may still be used without mode competition since TM mode cutoff frequencies are controlled by the separation between conductors. A number of amplifier configurations are being studied, all primed by a driven initial cavity which resonates around 9 GHz. Simple theory of coaxial systems and particle-in-cell simulations are presented, as well as initial experimental results using a 420 keV, 7-8 kA, 9 cm diameter annular beam

  16. Pole-zero adjustment of spectroscopy amplifiers using multichannel analyzers

    Ianakiev, K; Grigorov, T [Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)


    The technique to eliminate the undesirable undershoot in the output signal of a spectroscopy amplifier is considered. The functional scheme of the pole-zero monitoring circuit is presented as well as its operation principles are considered. 3 refs.

  17. Free-electron laser system with Raman amplifier outcoupling

    Linford, G.J.


    A free-electron laser system is described comprising: a free-electron laser pump beam generator producing a high-power optical output beam in a vacuum environement; a Raman amplifier cell located in the path of the output beam from the pump beam generator; means for generating and introducing a Stokes seed beam into the Raman amplifier cell, a pair of gaseous windows through which the output beam enters and leaves the Raman amplifier cell, each window having a stream of gas moving continuously in a direction generally perpendicular to the beam; and a mirror positioned in the path of the output beam from the Raman amplifier, the mirror functioning to reflect and further direct the output beam, but not the unwanted spectral components.

  18. Rare-Earth Doped Photonic Crystal Fibre Lasers and Amplifiers

    Hougaard, Kristian G.


    In this thesis, a theoretical and numerical study of the use of rare-earthdoped photonic crystal fibres as optical amplifiers and lasers, has been performed. Photonic crystal fibres or microstructured optical fibres is a new kind of optical fibre in which the cladding region typically consist....... Their novel properties allow for design of optical fibre amplifiers and fibre lasers with superior performance, compared to solutions based on conventional fibres. The primary applications considered are high efficiency fibre amplifiers based on index guiding photonic crystal fibres, and cladding pumped....... The thesis also presents the basic properties of optical amplification, and describes the numerical model developed to model the behaviour of lasers and amplifiers based on photonic crystal fibres. The developed numerical tools are then used to investigate specific applications of photonic crystal fibres...

  19. Fiber amplifiers under thermal loads leading to transverse mode instability

    Johansen, Mette Marie; Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard


    Transverse mode instability (TMI) in rare-earth doped fiber amplifiers operating above an average power threshold is caused by intermodal stimulated thermal Rayleigh scattering due to quantum defect heating. We investigate thermally induced longitudinal waveguide perturbations causing power...

  20. Programmable gain equalizer for multi-core fiber amplifiers

    Fontaine, N.K.; Guan, B.; Ryf, R.; Chen, H.; Koonen, A.M.J.; Ben Yoo, S.J.; Abedin, K.; Fini, J.; Taunay, T.F.; Neilson, D.T.


    We demonstrate a programmable gain equalizer for 7-core fiber that can independently equalize spectra or block wavelengths in each core across the C-band. It is spliced directly to a side-pumped multi-core amplifying fiber.

  1. Parametric Amplifiers for Microwave Kinectic Inductance Detector (MKID) Readout

    National Aeronautics and Space Administration — Build a microwave amplifier with near quantum-limited sensitivity, octave or greater bandwidth, gain > 20 dB for input signals in the frequency range 1 – 10 GHz,...

  2. Development of microwave amplifier based on gallium nitride semiconductor structures

    Pavlov, D.Yi.; Prokopenko, O.V.; Tsvyirko, Yu.A.; Pavlov, Yi.L.


    Microwave properties of microwave amplifier based on gallium nitride (GN) semiconductor structures has been calculated numerically. We proposed the method of numerical calculation of device. This method is accurately sets the value of its characteristics depending on the elements that are used in design of amplifier. It is shown that the device based on GN HEMT-transistors could have amplification factor about 50 dB, while its sizes are 27x18x5.5 mm 3 . Also was provided the absolute stability an amplifier in the whole operating frequency range. It is quite important when using this type of amplifiers in different conditions of exploitation and various fields of use the radioelectronic equipment

  3. Ka-Band Klystron Amplifier for CUBESATs, Phase II

    National Aeronautics and Space Administration — We offer an ultra-compact klystron amplifier for remote sensing on CubeSats. It will operate at 35.7 GHz, have 400 MHz bandwidth, and output greater than 32 watts...

  4. On the unlimited gain of a nonlinear parametric amplifier

    Sorokin, Vladislav


    The present paper is concerned with analysis of the response of a nonlinear parametric amplifier in abroad range of system parameters, particularly beyond resonance. Such analysis is of particular interestfor micro- and nanosystems, since many small-scale parametric amplifiers exhibit a distinctly...... nonlinearbehavior when amplitude of their response is sufficiently large. The modified method of direct separa-tion of motions is employed to study the considered system. As the result it is obtained that steady-stateamplitude of the nonlinear parametric amplifier response can reach large values in the case...... of arbitrarilysmall amplitude of external excitation, so that the amplifier gain tends to infinity. Very large amplifiergain can be achieved in a broad range of system parameters, in particular when the amplitude of para-metric excitation is comparatively small. The obtained results clearly demonstrate that very...

  5. Hearing Aids and Personal Sound Amplifiers: Know the Difference

    ... Products For Consumers Home For Consumers Consumer Updates Hearing Aids and Personal Sound Amplifiers: Know the Difference ... that FDA launched today. Signs of Loss of Hearing Mann says that consumers who suspect they suffer ...

  6. Effects of entanglement in an ideal optical amplifier

    Franson, J. D.; Brewster, R. A.


    In an ideal linear amplifier, the output signal is linearly related to the input signal with an additive noise that is independent of the input. The decoherence of a quantum-mechanical state as a result of optical amplification is usually assumed to be due to the addition of quantum noise. Here we show that entanglement between the input signal and the amplifying medium can produce an exponentially-large amount of decoherence in an ideal optical amplifier even when the gain is arbitrarily close to unity and the added noise is negligible. These effects occur for macroscopic superposition states, where even a small amount of gain can leave a significant amount of which-path information in the environment. Our results show that the usual input/output relation of a linear amplifier does not provide a complete description of the output state when post-selection is used.

  7. A Cost-Effective Amplifier for Electromagnetic Field Strength Measurement

    Rusek, A


    .... This paper presents an inexpensive broadband amplifier designed to increase the overall gain of a measurement system consisting of a 50 ohm broadband antenna coupled to a 50 ohm input spectrum analyzer...

  8. Amplifying mirrors with saturated gain without and with a resonator

    Skettrup, Torben


    An investigation of amplifying mirrors with a view to their use in resonator structures has been performed. Both non-saturated and saturated amplifying mirrors are demonstrated. It was found that relatively high values of gain (typical 5-10 times) can be obtained even when saturation is taken...... into account. Several resonator structures containing from two up to four mirrors, some including beamsplitters, are investigated. It was found that the gain to a first approximation depends only on the ratio between the pumping power and the input power on the amplifying mirror. It was also found...... that the configuration with four mirrors is well suited as an amplifier device working as an optical transistor since high values of gain up to 40 times could be obtained....

  9. Wideband multi-element Er-doped fiber amplifier

    Thipparapu, N K; Jain, S; May-Smith, T C; Sahu, J K


    A multi-element Er-doped fiber amplifier (MEEDFA) is demonstrated in which the gain profile is extended into the S and L bands. Each fiber element of the MEEDFA is found to provide a maximum gain of 37 dB and a noise figure of < 4 dB in the C-band. The gain profile of the amplifier is shifted towards longer wavelength by cascading fiber elements. The novel geometry of the multi-element fiber (MEF) could allow for the development of a broadband amplifier in a split-band configuration. The proposed amplifier can operate in the wavelength band of 1520 to 1595 nm (75 nm), with a minimum gain of 20 dB. (letter)

  10. Amplifiers with ground-isolated inputs and outputs

    Da Costa Vieira, David; Merite, Bernard; Tattegrain, Alain


    The amplifiers described in this note aim at ensuring a connection between different apparatuses with grounds being at a different potential. They will be inserted in the measurement channels of the Cabri reactor

  11. induced by cadmium using random amplified polymorphic DNA



    Apr 17, 2013 ... metallurgy, painting, plastic production, etc., and is being released into the biosphere, and ...... aquatic macrophytes: Random amplified polymorphic DNA analysis and identification of ... ecotoxicology. Toxicol. Ecotoxicol.

  12. High Efficiency S-Band 20 Watt Amplifier

    National Aeronautics and Space Administration — This project includes the design and build of a prototype 20 W, high efficiency, S-Band amplifier.   The design will incorporate the latest semiconductor technology,...

  13. Resistor-less charge sensitive amplifier for semiconductor detectors

    Pelczar, K., E-mail:; Panas, K.; Zuzel, G.


    A new concept of a Charge Sensitive Amplifier without a high-value resistor in the feedback loop is presented. Basic spectroscopic parameters of the amplifier coupled to a coaxial High Purity Germanium detector (HPGe) are discussed. The amplifier signal input is realized with an n-channel J-FET transistor. The feedback capacitor is discharged continuously by the second, forward biased n-channel J-FET, driven by an RC low–pass filter. Both the analog—with a standard spectroscopy amplifier and a multi-channel analyzer—and the digital—by applying a Flash Analog to Digital Converter—signal readouts were tested. The achieved resolution in the analog and the digital readouts was 0.17% and 0.21%, respectively, at the Full Width at Half Maximum of the registered {sup 60}Co 1332.5 keV gamma line.

  14. Linear and nonlinear analysis of high-power rf amplifiers

    Puglisi, M.


    After a survey of the state variable analysis method the final amplifier for the CBA is analyzed taking into account the real beam waveshape. An empirical method for checking the stability of a non-linear system is also considered

  15. Ferrite bead effect on Class-D amplifier audio quality

    Haddad , Kevin El; Mrad , Roberto; Morel , Florent; Pillonnet , Gael; Vollaire , Christian; Nagari , Angelo


    International audience; This paper studies the effect of ferrite beads on the audio quality of Class-D audio amplifiers. This latter is a switch-ing circuit which creates high frequency harmonics. Generally, a filter is used at the amplifier output for the sake of electro-magnetic compatibility (EMC). So often, in integrated solutions, this filter contains ferrite beads which are magnetic components and present nonlinear behavior. Time domain measurements and their equivalence in frequency do...

  16. Ripple compensation for a class-D amplifier

    Cox, Stephen M.; du Toit Mouton, Hendrik


    This paper presents the first detailed mathematical analysis of the ripple compensation technique for reducing audio distortion in a class-D amplifier with negative feedback. The amplifier converts a relatively low-frequency audio signal to a high-frequency train of rectangular pulses whose widths are slowly modulated according to the audio signal (pulse-width modulation, PWM). Distortion manifests itself through unwanted audio-frequency harmonics that arise in the output due to nonlinearitie...

  17. An amplifier for VUV photomultiplier operating in cryogenic environment

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S.; Di Giovanni, A.; D'Inzeo, M.; Franchi, G.; Pazos Clemens, L.


    We present the characterisation of an amplifier potentially interesting for noble liquid detectors. The design has been conceived considering the requirements of low power consumption (less than 30 mW), low noise, amplification factor of 10 at 100 MHz and use of commercial components. The amplifier has been integrated onto an electronic board with a voltage divider to operate an Hamamatsu R11410 photomultiplier tube (used in XENON1T, Aprile et al. (2014) [1] dark matter experiment).

  18. An amplifier for VUV photomultiplier operating in cryogenic environment

    Arneodo, F.; Benabderrahmane, M.L.; Dahal, S. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Di Giovanni, A., E-mail: [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); D' Inzeo, M.; Franchi, G. [Age Scientific srl – Capezzano Pianore (Italy); Pazos Clemens, L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates)


    We present the characterisation of an amplifier potentially interesting for noble liquid detectors. The design has been conceived considering the requirements of low power consumption (less than 30 mW), low noise, amplification factor of 10 at 100 MHz and use of commercial components. The amplifier has been integrated onto an electronic board with a voltage divider to operate an Hamamatsu R11410 photomultiplier tube (used in XENON1T, Aprile et al. (2014) [1] dark matter experiment).

  19. Design of low noise transimpedance amplifier for intravascular ultrasound

    Reda, Dina


    In this paper, we study transimpedance amplifiers for capacitive sensing applications with a focus on Intravascular Ultra Sound (IVUS). We employ RF noise cancellation technique on capacitive feedback based transimpedance amplifiers. This technique eliminates the input-referred noise of TIAs completely and enhances the dynamic range of front-end electronics. Simulation results verify the proposed technique used in two different TIA topologies employing shunt-shunt feedback. ©2009 IEEE.

  20. Remote optically-tunable transimpedance amplifiers for quantum well diodes

    Carraresi, L.; Landi, G.; Rocchi, S.; Vignoli, V


    In a previous paper we discussed the advantages in using linear optical transmission systems based on quantum well diodes in modern high energy physics experiments. In this paper, after a short summary of the quantum well theory, the electronics section of the above optical transmission system is presented. In particular the basic configuration of a transimpedance amplifier and the arrangement of an optical remote control system for the amplifier gain and bandwidth tuning are discussed.

  1. Remote optically-tunable transimpedance amplifiers for quantum well diodes

    Carraresi, L.; Landi, G.; Rocchi, S.; Vignoli, V.


    In a previous paper we discussed the advantages in using linear optical transmission systems based on quantum well diodes in modern high energy physics experiments. In this paper, after a short summary of the quantum well theory, the electronics section of the above optical transmission system is presented. In particular the basic configuration of a transimpedance amplifier and the arrangement of an optical remote control system for the amplifier gain and bandwidth tuning are discussed

  2. An analog integrated front-end amplifier for neural applications

    Zhou, Zhijun; Warr, Paul


    The front-end amplifier forms the critical element for signal detection and pre-processing within neural monitoring systems. It determines not only the fidelity of the biosignal, but also impacts power consumption and detector size. In this paper, a combined feedback loop-controlled approach is proposed to neutralize for the input leakage currents generated by low noise amplifiers when in integrated circuit form, alongside signal leakage into the input bias network. Significantly, this loop t...

  3. Ultrafast optical signal processing using semiconductor quantum dot amplifiers

    Berg, Tommy Winther; Mørk, Jesper


    The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing.......The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing....

  4. Self-amplifying autocrine actions of BDNF in axon development

    Cheng, Pei-Lin; Song, Ai-Hong; Wong, Yu-Hui; Wang, Sheng; Zhang, Xiang; Poo, Mu-Ming


    A critical step in neuronal development is the formation of axon/dendrite polarity, a process involving symmetry breaking in the newborn neuron. Local self-amplifying processes could enhance and stabilize the initial asymmetry in the distribution of axon/dendrite determinants, but the identity of these processes remains elusive. We here report that BDNF, a secreted neurotrophin essential for the survival and differentiation of many neuronal populations, serves as a self-amplifying autocrine f...

  5. A high-power compact regenerative amplifier FEL

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.


    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction ( 5 in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept

  6. Design And Construction Of 300W Audio Power Amplifier For Classroom

    Shune Lei Aung


    Full Text Available Abstract This paper describes the design and construction of 300W audio power amplifier for classroom. In the construction of this amplifier microphone preamplifier tone preamplifier equalizer line amplifier output power amplifier and sound level indicator are included. The output power amplifier is designed as O.C.L system and constructed by using Class B among many types of amplifier classes. There are two types in O.C.L system quasi system and complementary system. Between them the complementary system is used in the construction of 300W audio power amplifier. The Multisim software is utilized for the construction of audio power amplifier.

  7. Photonic-band-gap gyrotron amplifier with picosecond pulses

    Nanni, Emilio A.; Jawla, Sudheer; Lewis, Samantha M.; Shapiro, Michael A.; Temkin, Richard J.


    We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

  8. Power Amplifier Design for E-band Wireless System Communications

    Hadziabdic, Dzenan; Krozer, Viktor; Johansen, Tom Keinicke


    E-band wireless communications will become important as the microwave backhaul for high-speed data transmission. One of the most critical components is the front-end power amplifier in this system. The paper analyzes different technologies with potential in the E-band frequency range and present...... a power amplifier design satisfying the E-band system specifications. The designed power amplifier achieves a maximum output power of ges 20 dBm with a state-of-the-art power-added efficiency of 15%. The power is realized using InP DHBT technology. To the best of our knowledge it is the highest output...... power and efficiency reported for an InP HBT power amplifier in this frequency range. The predicted power-added efficiency is higher than that of power amplifiers based on SiGe HBT and GaAs pHEMT technologies. The design shows the capabilities of InP DHBT for power amplifier applications...

  9. Ways to suppress click and pop for class D amplifiers

    Wang Haishi; Zhang Bo; Sun Jiang


    Undesirable audio click and pop may be generated in a speaker or headphone. Compared to linear (class A/B/AB) amplifiers, class D amplifiers that comprise of an input stage and a modulation stage are more prone to producing click and pop. This article analyzes sources that generate click and pop in class D amplifiers, and corresponding ways to suppress them. For a class D amplifier with a single-ended input, click and pop is likely to be due to two factors. One is from a voltage difference (V DIF ) between the voltage of an input capacitance (V CIN ) and a reference voltage (V REF ) of the input stage, and the other one is from the non-linear switching during the setting up of the bias and feedback voltages/currents (BFVC) of the modulation stage. In this article, a fast charging loop is introduced into the input stage to charge V CIN to roughly near V REF . Then a correction loop further charges or discharges V CIN , substantially equalizing it with V REF . Dummy switches are introduced into the modulation stage to provide switching signals for setting up BFVC, and the power switches are disabled until the BFVC are set up successfully. A two channel single-ended class D amplifier with the above features is fabricated with 0.5 μm Bi-CMOS process. Road test and fast Fourier transform analysis indicate that there is no noticeable click and pop. (semiconductor integrated circuits)

  10. Amplified spontaneous emission measurements on the Aurora large aperture module

    Oertel, J.A.; Czuchlewski, S.J.; Leland, W.T.; Turner, T.P.


    The large aperture module (LAM) of the Aurora KrF laser can be used to address a number of issues that relate to the scaling of KrF amplifiers to larger ICF systems. Perhaps foremost among these are the possible effects of amplified spontaneous emission (ASE) on laser performance. To assess this problem a 3-D computer code has been developed to model these ASE effects. The code uses an iterative procedure to arrive at a self-consistent steady state solution to the 3-D distribution of coherent and incoherent fluxes within the amplifier. Two-pass energy extraction, wall reflectivity, and nonuniform excitation are included in the model. The authors previously reported the effects of ASE on the small signal gains measured in the 1- x 1- x 2-m 3 LAM. The code also makes quantitative predictions of the ASE that should be generated in the amplifier. This paper indicates the radiance expected for a medium of uniform gain in terms of the (g - ν)L product and the parameter g/a. The quantity (g - ν)L is the product of the net gain and the path length along the direction of observation. The present experiments compare values of ASE measured at various locations around the LAM with the code predictions. The impact of ASE on amplifier output, is also discussed

  11. Power neodymium-glass amplifier of a repetitively pulsed laser

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)


    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 Multiplication-Sign 25 mm and a {approx}40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 {mu}s. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass {approx}3.2, the linear gain {approx}0.031 cm{sup -1} with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm{sup -3}. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4{lambda} ({lambda} = 0.63 {mu}m is the probing radiation wavelength).

  12. Power neodymium-glass amplifier of a repetitively pulsed laser

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I


    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 × 25 mm and a ∼40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 μs. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass ∼3.2, the linear gain ∼0.031 cm -1 with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm -3 . The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4λ (λ = 0.63 μm is the probing radiation wavelength).

  13. Spectroscopic amplifier for pin diode; Amplificador espectroscopico para diodo Pin

    Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R., E-mail: [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)


    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)


    Fundhi Fanju Hafili


    Full Text Available ABSTRAK Seiring dengan perkembangan dan kebutuhan teknologi saat ini pembelajaran elektro dapat dibuat menjadi lebih praktis dan menarik di ponsel berbasis android Mempelajari elektronika juga memerlukan usaha-usaha nyata yang ber-kesinambungan dan mengarah kepada tumbuhnya kesadaran untuk menjadikan elektronika sebagai perkembangan teknologi. Dengan adanya metode game, merupakan salah satu metode belajar merakit amplifier yang disusun secara praktis dan sistematis sehingga memudahkan setiap orang untuk belajar maupun mengajarkan merancang amplifier. Sementara itu metode pembelajaran yang ada saat ini yaitu melalui buku maupun dengan cara bertatap muka langsung dengan tentor dirasa masih kurang efektif. Untuk mengatasi masalah tersebut maka penulis membuat game edukasi elektro merancang amplifier, karena mudah dipahami dan memudahkan para calon teknisi elektro dalam belajar merancang amplifier. Perancangan ini dilakukan dengan pendekatan metode Research and Development adalah metode penelitian yang digunakan untuk menghasilkan produk tertentu dan menguji keefektifan produk tersebut. Dengan aplikasi ini diharapkan dapat membantu para pengguna yang ingin belajar merakit amplifier berbasis android. . Kata kunci: elektro, game, research and development.

  15. Integrated circuit amplifiers for multi-electrode intracortical recording.

    Jochum, Thomas; Denison, Timothy; Wolf, Patrick


    Significant progress has been made in systems that interpret the electrical signals of the brain in order to control an actuator. One version of these systems senses neuronal extracellular action potentials with an array of up to 100 miniature probes inserted into the cortex. The impedance of each probe is high, so environmental electrical noise is readily coupled to the neuronal signal. To minimize this noise, an amplifier is placed close to each probe. Thus, the need has arisen for many amplifiers to be placed near the cortex. Commercially available integrated circuits do not satisfy the area, power and noise requirements of this application, so researchers have designed custom integrated-circuit amplifiers. This paper presents a comprehensive survey of the neural amplifiers described in publications prior to 2008. Methods to achieve high input impedance, low noise and a large time-constant high-pass filter are reviewed. A tutorial on the biological, electrochemical, mechanical and electromagnetic phenomena that influence amplifier design is provided. Areas for additional research, including sub-nanoampere electrolysis and chronic cortical heating, are discussed. Unresolved design concerns, including teraohm circuitry, electrical overstress and component failure, are identified.

  16. Design and development of digital seismic amplifier recorder

    Samsidar, Siti Alaa; Afuar, Waldy; Handayani, Gunawan, E-mail: [Department of Physics, ITB (Indonesia)


    A digital seismic recording is a recording technique of seismic data in digital systems. This method is more convenient because it is more accurate than other methods of seismic recorders. To improve the quality of the results of seismic measurements, the signal needs to be amplified to obtain better subsurface images. The purpose of this study is to improve the accuracy of measurement by amplifying the input signal. We use seismic sensors/geophones with a frequency of 4.5 Hz. The signal is amplified by means of 12 units of non-inverting amplifier. The non-inverting amplifier using IC 741 with the resistor values 1KΩ and 1MΩ. The amplification results were 1,000 times. The results of signal amplification converted into digital by using the Analog Digital Converter (ADC). Quantitative analysis in this study was performed using the software Lab VIEW 8.6. The Lab VIEW 8.6 program was used to control the ADC. The results of qualitative analysis showed that the seismic conditioning can produce a large output, so that the data obtained is better than conventional data. This application can be used for geophysical methods that have low input voltage such as microtremor application.

  17. Low Loss Nanostructured Polymers for Chip-scale Waveguide Amplifiers.

    Chen, George F R; Zhao, Xinyu; Sun, Yang; He, Chaobin; Tan, Mei Chee; Tan, Dawn T H


    On-chip waveguide amplifiers offer higher gain in small device sizes and better integration with photonic devices than the commonly available fiber amplifiers. However, on-chip amplifiers have yet to make its way into the mainstream due to the limited availability of materials with ideal light guiding and amplification properties. A low-loss nanostructured on-chip channel polymeric waveguide amplifier was designed, characterized, fabricated and its gain experimentally measured at telecommunication wavelength. The active polymeric waveguide core comprises of NaYF 4 :Yb,Er,Ce core-shell nanocrystals dispersed within a SU8 polymer, where the nanoparticle interfacial characteristics were tailored using hydrolyzed polyhedral oligomeric silsesquioxane-graft-poly(methyl methacrylate) to improve particle dispersion. Both the enhanced IR emission intensity from our nanocrystals using a tri-dopant scheme and the reduced scattering losses from our excellent particle dispersion at a high solid loading of 6.0 vol% contributed to the outstanding optical performance of our polymeric waveguide. We achieved one of the highest reported gain of 6.6 dB/cm using a relatively low coupled pump power of 80 mW. These polymeric waveguide amplifiers offer greater promise for integrated optical circuits due to their processability and integration advantages which will play a key role in the emerging areas of flexible communication and optoelectronic devices.

  18. Ways to suppress click and pop for class D amplifiers

    Haishi, Wang; Bo, Zhang; Jiang, Sun


    Undesirable audio click and pop may be generated in a speaker or headphone. Compared to linear (class A/B/AB) amplifiers, class D amplifiers that comprise of an input stage and a modulation stage are more prone to producing click and pop. This article analyzes sources that generate click and pop in class D amplifiers, and corresponding ways to suppress them. For a class D amplifier with a single-ended input, click and pop is likely to be due to two factors. One is from a voltage difference (VDIF) between the voltage of an input capacitance (VCIN) and a reference voltage (VREF) of the input stage, and the other one is from the non-linear switching during the setting up of the bias and feedback voltages/currents (BFVC) of the modulation stage. In this article, a fast charging loop is introduced into the input stage to charge VCIN to roughly near VREF. Then a correction loop further charges or discharges VCIN, substantially equalizing it with VREF. Dummy switches are introduced into the modulation stage to provide switching signals for setting up BFVC, and the power switches are disabled until the BFVC are set up successfully. A two channel single-ended class D amplifier with the above features is fabricated with 0.5 μm Bi-CMOS process. Road test and fast Fourier transform analysis indicate that there is no noticeable click and pop.

  19. 47 CFR 97.315 - Certification of external RF power amplifiers.


    .... (2) The amplifier was manufactured before April 28, 1978, and has been issued a marketing waiver by... that operator's station. (3) The amplifier is sold to an amateur radio operator or to a dealer, the amplifier is purchased in used condition by a dealer, or the amplifier is sold to an amateur radio operator...

  20. A numerical design approach for single amplifier, Active-RC Butterworth filter of order 5

    Gaunholt, Hans


    filter applying just one operational amplifier coupled as a unity gain amplifier. It is shown that the influence from the real operational amplifier may be reduced by trimming just one resistor in the circuit. The unity gain amplifiers have the advantage of providing low power consumption, yielding...

  1. Dynamic absorption coefficients of chemically amplified resists and nonchemically amplified resists at extreme ultraviolet

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin


    The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.

  2. Spatial chirp in Ti:sapphire multipass amplifier

    Li Wenkai; Lu Jun; Li Yanyan; Guo Xiaoyang; Wu Fenxiang; Yu Linpeng; Wang Pengfei; Xu Yi; Leng Yuxin


    The spatial chirp generated in the Ti:sapphire multipass amplifier is numerically investigated based on the one-dimensional (1D) and two-dimensional (2D) Frantz–Nodvik equations. The simulation indicates that the spatial chirp is induced by the spatially inhomogeneous gain, and it can be almost eliminated by utilization of proper beam profiles and spot sizes of the signal and pump pulses, for example, the pump pulse has a top-hatted beam profile and the signal pulse has a super-Gaussian beam profile with a relatively larger spot size. In this way, a clear understanding of spatial chirp mechanisms in the Ti:sapphire multipass amplifier is proposed, therefore we can effectively almost eliminate the spatial chirp and improve the beam quality of a high-power Ti:sapphire chirped pulse amplifier system. (paper)

  3. Efficiency Optimization in Class-D Audio Amplifiers

    Yamauchi, Akira; Knott, Arnold; Jørgensen, Ivan Harald Holger


    This paper presents a new power efficiency optimization routine for designing Class-D audio amplifiers. The proposed optimization procedure finds design parameters for the power stage and the output filter, and the optimum switching frequency such that the weighted power losses are minimized under...... the given constraints. The optimization routine is applied to minimize the power losses in a 130 W class-D audio amplifier based on consumer behavior investigations, where the amplifier operates at idle and low power levels most of the time. Experimental results demonstrate that the optimization method can...... lead to around 30 % of efficiency improvement at 1.3 W output power without significant effects on both audio performance and the efficiency at high power levels....

  4. Embedded control system for high power RF amplifiers

    Sharma, Deepak Kumar; Gupta, Alok Kumar; Jain, Akhilesh; Hannurkar, P.R.


    RF power devices are usually very sensitive to overheat and reflected RF power; hence a protective interlock system is required to be embedded with high power solid state RF amplifiers. The solid state RF amplifiers have salient features of graceful degradation and very low mean time to repair (MTTR). In order to exploit these features in favour of lowest system downtime, a real-time control system is embedded with high power RF amplifiers. The control system is developed with the features of monitoring, measurement and network publishing of various parameters, historical data logging, alarm generation, displaying data to the operator and tripping the system in case of any interlock failure. This paper discusses the design philosophy, features, functions and implementation details of the embedded control system. (author)

  5. Using MEMS Capacitive Switches in Tunable RF Amplifiers

    Danson John


    Full Text Available A MEMS capacitive switch suitable for use in tunable RF amplifiers is described. A MEMS switch is designed, fabricated, and characterized with physical and RF measurements for inclusion in simulations. Using the MEMS switch models, a dual-band low-noise amplifier (LNA operating at GHz and GHz, and a tunable power amplifier (PA at GHz are simulated in m CMOS. MEMS switches allow the LNA to operate with 11 dB of isolation between the two bands while maintaining dB of gain and sub- dB noise figure. MEMS switches are used to implement a variable matching network that allows the PA to realize up to 37% PAE improvement at low input powers.

  6. Multi-path interferometric Josephson directional amplifier for qubit readout

    Abdo, Baleegh; Bronn, Nicholas T.; Jinka, Oblesh; Olivadese, Salvatore; Brink, Markus; Chow, Jerry M.


    We realize and characterize a quantum-limited, directional Josephson amplifier suitable for qubit readout. The device consists of two nondegenerate, three-wave-mixing amplifiers that are coupled together in an interferometric scheme, embedded in a printed circuit board. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the device, which plays the role of the magnetic field in a Faraday medium. Directional amplification and reflection-gain elimination are induced via wave interference between multiple paths in the system. We measure and discuss the main figures of merit of the device and show that the experimental results are in good agreement with theory. An improved version of this directional amplifier is expected to eliminate the need for bulky, off-chip isolation stages that generally separate quantum systems and preamplifiers in high-fidelity, quantum-nondemolition measurement setups.

  7. Electronically Tunable Transimpedance Instrumentation Amplifier Based on OTRA

    Rajeshwari Pandey


    Full Text Available Operational transresistance amplifier (OTRA is the most suitable analog building block (ABB for transimpedance type signal processing due to its very nature of current input and voltage output. In this paper, OTRA-based transimpedance instrumentation amplifier (TIA is presented. It provides high differential gain and bandwidth, which is independent of gain. It also offers high common-mode rejection ratio (CMRR. The amplifier gain can be controlled electronically by implementing resistors using MOS transistors operating in linear region. The circuit can be made fully integrated. The proposed circuit is insensitive to parasitic input capacitances and input resistances due to the internally grounded input terminals of OTRA. Theoretical analysis is verified through PSPICE simulations and experimentation.

  8. A transimpedance amplifier using a novel current mode feedback loop

    Anghinolfi, Francis; Delagnes, E; Jarron, Pierre; Scharfetter, L H H


    We present a transimpedance amplifier stage based on a novel current mode feedback topology. This circuit employs NMOS and PMOS transistors exclusively and requires neither capacitor for stabilizing the transimpedance loop nor resistor for the transresistance feedback and transistor loading. This amplifier circuit is fully compatible with submicron digital CMOS processes. The active feedback network consists of two grounded-gate MOS devices which split the output current in both the feedback and output branches. The transresistance and the phase margin are adjustable through external DC signals. The measured rise time of the impulse response of the amplifier implemented in an industrial 0,7µm CMOS process is 18 ns for a transresistance of 180 k‡ and 30 ns for a transresistance of 560 k‡. The measured Equivalent Noise Charge (ENC) is 800 rms e¯ for an input capacitance of 20 pF with the transresistance adjusted to 560 k‡.

  9. A digitally assisted, signal folding neural recording amplifier.

    Chen, Yi; Basu, Arindam; Liu, Lei; Zou, Xiaodan; Rajkumar, Ramamoorthy; Dawe, Gavin Stewart; Je, Minkyu


    A novel signal folding and reconstruction scheme for neural recording applications that exploits the 1/f(n) characteristics of neural signals is described in this paper. The amplified output is 'folded' into a predefined range of voltages by using comparison and reset circuits along with the core amplifier. After this output signal is digitized and transmitted, a reconstruction algorithm can be applied in the digital domain to recover the amplified signal from the folded waveform. This scheme enables the use of an analog-to-digital convertor with less number of bits for the same effective dynamic range. It also reduces the transmission data rate of the recording chip. Both of these features allow power and area savings at the system level. Other advantages of the proposed topology are increased reliability due to the removal of pseudo-resistors, lower harmonic distortion and low-voltage operation. An analysis of the reconstruction error introduced by this scheme is presented along with a behavioral model to provide a quick estimate of the post reconstruction dynamic range. Measurement results from two different core amplifier designs in 65 nm and 180 nm CMOS processes are presented to prove the generality of the proposed scheme in the neural recording applications. Operating from a 1 V power supply, the amplifier in 180 nm CMOS has a gain of 54.2 dB, bandwidth of 5.7 kHz, input referred noise of 3.8 μVrms and power dissipation of 2.52 μW leading to a NEF of 3.1 in spike band. It exhibits a dynamic range of 66 dB and maximum SNDR of 43 dB in LFP band. It also reduces system level power (by reducing the number of bits in the ADC by 2) as well as data rate to 80% of a conventional design. In vivo measurements validate the ability of this amplifier to simultaneously record spike and LFP signals.

  10. A second-order class-D audio amplifier

    Cox, Stephen M.; Tan, M.T.; Yu, J.


    Class-D audio amplifiers are particularly efficient, and this efficiency has led to their ubiquity in a wide range of modern electronic appliances. Their output takes the form of a high-frequency square wave whose duty cycle (ratio of on-time to off-time) is modulated at low frequency according to the audio signal. A mathematical model is developed here for a second-order class-D amplifier design (i.e., containing one second-order integrator) with negative feedback. We derive exact expression...

  11. Population structure of Salmonella investigated by amplified fragment length polymorphism

    Torpdahl, M.; Ahrens, Peter


    Aims: This study was undertaken to investigate the usefulness of amplified fragment length polymorphism (AFLP) in determining the population structure of Salmonella. Methods and Results: A total of 89 strains were subjected to AFLP analysis using the enzymes BglII and BspDI, a combination...... that is novel in Salmonella. Both species S. bongori and S. enterica and all subsp. of S. enterica were represented with emphasis on S. enterica subsp. enterica using a local strain collection and strains from the Salmonella Reference Collection B (SARB). The amplified fragments were used in a band...

  12. Tapered amplifier laser with frequency-shifted feedback

    A. Bayerle, S. Tzanova, P. Vlaar, B. Pasquiou, F. Schreck


    Full Text Available We present a frequency-shifted feedback (FSF laser based on a tapered amplifier. The laser operates as a coherent broadband source with up to 370GHz spectral width and 2.3us coherence time. If the FSF laser is seeded by a continuous-wave laser a frequency comb spanning the output spectrum appears in addition to the broadband emission. The laser has an output power of 280mW and a center wavelength of 780nm. The ease and flexibility of use of tapered amplifiers makes our FSF laser attractive for a wide range of applications, especially in metrology.

  13. Current-Driven Switch-Mode Audio Power Amplifiers

    Knott, Arnold; Buhl, Niels Christian; Andersen, Michael A. E.


    The conversion of electrical energy into sound waves by electromechanical transducers is proportional to the current through the coil of the transducer. However virtually all audio power amplifiers provide a controlled voltage through the interface to the transducer. This paper is presenting...... a switch-mode audio power amplifier not only providing controlled current but also being supplied by current. This results in an output filter size reduction by a factor of 6. The implemented prototype shows decent audio performance with THD + N below 0.1 %....

  14. A Method To ModifyCorrect The Performance Of Amplifiers

    Rohith Krishnan R


    Full Text Available Abstract The actual response of the amplifier may vary with the replacement of some aged or damaged components and this method is to compensate that problem. Here we use op-amp Fixator as the design tool. The tool helps us to isolate the selected circuit component from rest of the circuit adjust its operating point to correct the performance deviations and to modify the circuit without changing other parts of the circuit. A method to modifycorrect the performance of amplifiers by properly redesign the circuit is presented in this paper.

  15. Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier

    Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)


    A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.

  16. A European Project on Vacuum Tube Amplifiers for THz Amplification

    Paoloni, Claudio; Di Carlo, Aldo; Brunetti, Francesca


    The OPTHER (Optically Driven THz amplifier) project supported by the European Commission within the Seventh Framework Program (FP7) represents the first joint European attempt to realize vacuum electron devices in THz range. The target of the project was to design and realize the first 1 THz vacuum...... tube amplifier. The challenges of the presented task and the innovative solutions adopted established a new level of knowledge in the field. The main aspects of the OPTHER project are described, focusing on challenges and adopted innovative solutions....

  17. Gain dynamics and saturation in semiconductor quantum dot amplifiers

    Berg, Tommy Winther; Mørk, Jesper; Hvam, Jørn Märcher


    Quantum dot (QD)-based semiconductor optical amplifiers offer unique properties compared with conventional devices based on bulk or quantum well material. Due to the bandfilling properties of QDs and the existence of a nearby reservoir of carriers in the form of a wetting layer, QD semiconductor...... optical amplifiers may be operated in regimes of high linearity, i.e. with a high saturation power, but can also show strong and fast nonlinearities by breaking the equilibrium between discrete dot states and the continuum of wetting layer states. In this paper, we analyse the interplay of these two...

  18. Thermal-recovery of modal instability in rod fiber amplifiers

    Jørgensen, Mette Marie; Laurila, Marko; Noordegraaf, Danny


    We investigate the temporal dynamics of Modal instabilities (MI) in ROD fiber amplifiers using a 100 μm core rod fiber in a single-pass amplifier configuration, and we achieve ~200W of extracted output power before the onset of MI. Above the MI threshold, we investigate the temporal dynamics of b...... and thermally annealed between each test series. We find that the MI threshold degrades as it is reached multiple times, but is recovered by thermal annealing. We also find that the test history of the rods affects the temporal dynamics....

  19. Nonclassical photon streams using rephased amplified spontaneous emission

    Ledingham, Patrick M.; Naylor, William R.; Longdell, Jevon J.; Beavan, Sarah E.; Sellars, Matthew J.


    We present a fully quantum mechanical treatment of optically rephased photon echoes. These echoes exhibit noise due to amplified spontaneous emission; however, this noise can be seen as a consequence of the entanglement between the atoms and the output light. With a rephasing pulse one can get an 'echo' of the amplified spontaneous emission, leading to light with nonclassical correlations at points separated in time, which is of interest in the context of building wide bandwith quantum repeaters. We also suggest a wideband version of DLCZ protocol based on the same ideas.

  20. 1000 kW ICRH amplifiers for MFTF-B

    Boksberger, U.


    For the startup of the MFTF-B ICRH heating will be applied. Two commercial amplifiers derived from standard broadcast transmitters provide 1000 kW RF power each into a matching system for any VSWR as high as 1.5. Emphasis is put on the specific environment of magnetic fields and seismic loads as well as to the particular RF power control requirements and remote operation. Also addressed is the amplifier's performance into a typical load. The load variations due to the MFTF-B plasma coupling were calculated by TRW

  1. Optimal Operation of a Josephson Parametric Amplifier for Vacuum Squeezing

    Malnou, M.; Palken, D. A.; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.


    A Josephson parametric amplifier (JPA) can create squeezed states of microwave light, lowering the noise associated with certain quantum measurements. We experimentally study how the JPA's pump influences the phase-sensitive amplification and deamplification of a coherent tone's amplitude when that amplitude is commensurate with vacuum fluctuations. We predict and demonstrate that, by operating the JPA with a single current pump whose power is greater than the value that maximizes gain, the amplifier distortion is reduced and, consequently, squeezing is improved. Optimizing the singly pumped JPA's operation in this fashion, we directly observe 3.87 ±0.03 dB of vacuum squeezing over a bandwidth of 30 MHz.

  2. Efficient trigger signal generation from wasted backward amplified stimulated emission at optical amplifiers for optical coherence tomography

    Kim Seung Taek


    Full Text Available This paper propose an optical structure to generate trigger signals for optical coherence tomography (OCT using backward light which is usually disposed. The backward light is called backward amplified stimulated emission generated from semiconductor optical amplifier (SOA when using swept wavelength tunable laser (SWTL. A circulator is applied to block undesirable lights in the SWTL instead of an isolator in common SWTL. The circulator also diverts backward amplified spontaneous lights, which finally bring out trigger signals for a high speed digitizer. The spectra of the forward lights at SOA and the waveform of the backward lights were measured to check the procedure of the trigger formation in the experiment. The results showed that the trigger signals from the proposed SWTL with the circulator was quite usable in OCT.

  3. Design of a high-gain laser diode-array pumped Nd:YAG alternating precessive slab amplifier (APS amplifier)

    Coyle, D. B.


    In the design of space-qualifiable laser systems for ranging and altimetry, such as NASA's Geodynamic Laser Ranging System (GLRS), the transmitter must be kept small, powerful yet efficient, and must consist of as few components as possible. A novel preamplifier design is examined which requires no external beam steering optics, yielding a compact component with simple alignment procedures. The gains achieved are comparable to multipass zigzag amplifiers using two or more sets of external optics for extra passes through the amplifying medium.

  4. 2R Regeneration in Concatenated Semiconductor Optical Amplifiers and Electroabsorbers

    Christiansen, Lotte Jin; Xu, Lin; Yvind, Kresten


    We present a novel 2R regenerator with a large level separation and steep step a sharp, adjustable threshold based on concatenated semiconductor optical amplifiers and electroabsorbers. We demonstrate demonstrate improvements in both extinction-ratio and BER sensitivity atfor a 10 Gb/s NRZ signal....

  5. Giant Geometrically Amplified Piezoresistance in Metal-Semiconductor Hybrid Resistors

    Hansen, Ole; Reck, Kasper; Thomsen, Erik Vilain


    We show that very high geometrically amplified piezoresistance can indeed be obtained in microstructured metal-semiconductor hybrid devices, even significantly higher amplification factors than the factor of approximately 8 demonstrated recently by Rowe and co-workers may be achieved. However, we...... than the sensitivity of conventional piezoresistors fabricated in the same piezoresistive material. ©2008 American Institute of Physics...

  6. Trial manufacture of inside ellipse mirror for laser amplifier

    Kodama, Kenzo; Numajiri, Fumio; Kikuta, Yozo; Takasawa, Minoru; Oohira, Susumu; Nagaoka, Isao


    Inside ellipse mirrors have been trially manufactured for high power glass laser amplifiers. Their cutting process, machining, surface roughness, usage of cutting tools, materials, and processing process are given. Trial manufacture of supplementary devices for adjusting the direction of laser beam axis is also given. (author)

  7. Development and energization of IOT based RF amplifier

    Mandal, A.; Som, S.; Raj, P.R.; Manna, S.K.; Ghosh, S.; Seth, S.; Thakurta, S.; Thakur, S.K.; Saha, S.; Panda, U.S.


    A 704 MHz IOT based CW RF amplifier has been developed in VECC. It can also be used with proper tuning to power cavity modules operating at 650 MHz in high energy high intensity proton linear accelerator proposed to be built for ADSS/SNS programme in India and Project-X at Fermilab, USA. This IOT based amplifier provides up to 60 kW continuous wave RF power at 700 MHz. It required various power supplies, LCW cooling and forced air cooling for its operation. The auxiliary power supplies like Grid, Filament and Ion-pump, are floated and mounted on an isolated frame, i.e., HV deck. The mains inputs are electrically isolated by means of isolation transformer. Also, a Programmable Logic Controller (PLC) based interlocks along with high voltage collector power supply has been designed and developed for the safe operation of the RF amplifier. This paper discusses about various developments and energization of the IOT based RF amplifier with high power dummy load. (author)

  8. Short pulse mid-infrared amplifier for high average power

    Botha, LR


    Full Text Available High pressure CO2 lasers are good candidates for amplifying picosecond mid infrared pulses. High pressure CO2 lasers are notorious for being unreliable and difficult to operate. In this paper a high pressure CO2 laser is presented based on well...

  9. Application of amplified fragment length polymorphism (AFLPs) for ...

    Uapaca kirkiana Muell. Årg is a dioecious fruit tree species for priority domestication in Southern Africa. It reaches reproductive maturity in eight to ten years with male plants making up 50% of breeding populations. Early identification of sex of seedlings is a prerequisite for selection and tree improvement. The amplified ...

  10. Frequency resolved transverse mode instability in rod fiber amplifiers

    Johansen, Mette Marie; Laurila, Marko; Maack, Martin D.


    Frequency dynamics of transverse mode instabilities (TMIs) are investigated by testing three 285/100 rod fibers in a single-pass amplifier setup reaching up to ~200W of extracted output power without beam instabilities. The pump power is increased well above the TMI threshold to uncover output dy...

  11. Temporal and transverse coherence of self-amplified spontaneous emission

    Kim, K.J.


    The authors review the coherence properties of the self-amplified spontaneous emission (SASE). Temporally, SASE is similar to the spontaneous undulator radiation except that the spectral bandwidth is about ten times narrower compared with typical undulator radiation. The situation is quite different in the transverse dimension, where SASE is fully coherent

  12. Using a sequence characterized amplified region (SCAR) marker for ...



    Sep 13, 2010 ... This work used sequence characterized amplified region (SCAR) marker to detect the Bacillus cereus strain in strawberry fields. The purpose was to develop an effective molecular method for detecting the functional target microorganisms applied in agricultural fields. A 3×109. CFU/ml vegetative cell.

  13. Design of wideband hybrid amplifiers for local area networks

    Karásek, Miroslav; Menif, M.; Bellemare, A.


    Roč. 148, č. 3 (2001), s. 150-155 ISSN 1350-2433 Grant - others:EU COST(XE) OC 265.10 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibre amplifiers * wavelength division multiplexing * Raman spectra Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.611, year: 2001

  14. Development of a sequence characterized amplified region (SCAR ...

    The varieties of rice are difficult to be distinguished because of their similar morphological characters, therefore rice variety identification or differentiation is very important. The authentication by using molecular marker or DNA fingerprinting is the most accurate method. In this study, random amplified polymorphic DNA ...

  15. Entanglement-based linear-optical qubit amplifier

    Meyer-Scott, E.; Bula, M.; Bartkiewicz, K.; Černoch, Antonín; Soubusta, Jan; Jennewein, T.; Lemr, Karel


    Roč. 87, č. 1 (2013), "012327-1"-"012327-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : quantum physics * photonics qubits * qubit amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013

  16. Detection of somaclonal variation by random amplified polymorphic ...

    Detection of somaclonal variation by random amplified polymorphic DNA analysis during micropropagation of Phalaenopsis bellina (Rchb.f.) Christenson. ... Among the primers used, P 16 produced the highest number of bands (29), while primer OPU 10 produced the lowest number (15). The range of similarity coefficient ...

  17. Inter simple sequence repeats (ISSR) and random amplified ...

    21 of 30 random amplified polymorphic DNA (RAPD) primers produced 220 reproducible bands with average of 10.47 bands per primer and 80.12% of polymorphism. OPR02 primer showed the highest number of effective allele (Ne), Shannon index (I) and genetic diversity (H). Some of the cultivars had specific bands, ...

  18. Detailed design analysis of erbium-doped fiber amplifiers

    Pedersen, Bo; Bjarklev, Anders Overgaard; Lumholt, Ole


    When pumping the erbium-doped fiber amplifier at 0.98 and 1.48 mu m, the optimum cutoff wavelength for step profiles with arbitrary numerical aperture is shown to be 0.80 and 0.90 mu m, respectively. The use of a confined erbium profile can improve the gain coefficient up to 45%. The index raising...

  19. Accurate simulation of Raman amplified lightwave synthesized frequency sweeper

    Pedersen, Anders Tegtmeier; Olesen, Anders Sig; Rottwitt, Karsten


    A lightwave synthesized frequency sweeper using a Raman amplifier for loss compensation is presented together with a numerical model capable of predicting the shape of individual pulses as well as the overall envelope of more than 100 pulses. The generated pulse envelope consists of 116 pulses wi...

  20. Application of random amplified polymorphic DNA (RAPD) markers ...

    The random amplified polymorphic DNA (RAPD) technique has been widely applied to identify different varieties of plants for molecular breeding. However, application of RAPD markers to identify parthenogenesis in plants has not been reported. In this investigation, we used pedigree and RAPD markers to differentiate ...

  1. Self-pulsation threshold of Raman amplified Brillouin fiber cavities

    Ott, Johan Raunkjær; Pedersen, Martin Erland Vestergaard; Rottwitt, Karsten


    An implicit equation for the oscillation threshold of stimulated Brillouin scattering from Raman amplified signals in fibers with external feedback is derived under the assumption of no depletion. This is compared to numerical investigations of Raman amplification schemes showing good agreement...

  2. Random amplified polymorphic DNA (RAPD) markers reveal genetic ...

    The present study evaluated genetic variability of superior bael genotypes collected from different parts of Andaman Islands, India using fruit characters and random amplified polymorphic DNA (RAPD) markers. Genomic DNA extracted from leaf material using cetyl trimethyl ammonium bromide (CTAB) method was ...

  3. ( Quercus spp. ) using random amplified polymorphic DNA (RAPD)

    Quercus is one of the most important woody genera of the Northern hemisphere and considered as one of the main forest tree species in Iran. In this study, genetic relationships in the genus Quercus, using random amplified polymorphic DNA (RAPD) was examined. Five species, including: Quercus robur, Quercus ...

  4. Erbium-doped integrated waveguide amplifiers and lasers

    Bradley, J.; Pollnau, Markus

    Erbium-doped fiber devices have been extraordinarily successful due to their broad optical gain around 1.5–1.6 μm. Er-doped fiber amplifiers enable efficient, stable amplification of high-speed, wavelength-division-multiplexed signals, thus continue to dominate as part of the backbone of longhaul

  5. Multi Carrier Modulation Audio Power Amplifier with Programmable Logic

    Christiansen, Theis; Andersen, Toke Meyer; Knott, Arnold


    While switch-mode audio power amplifiers allow compact implementations and high output power levels due to their high power efficiency, they are very well known for creating electromagnetic interference (EMI) with other electronic equipment. To lower the EMI of switch-mode (class D) audio power a...

  6. Multi Carrier Modulator for Switch-Mode Audio Power Amplifiers

    Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael Andreas E.


    While switch-mode audio power amplifiers allow compact implementations and high output power levels due to their high power efficiency, they are very well known for creating electromagnetic interference (EMI) with other electronic equipment, in particular radio receivers. Lowering the EMI of swit...

  7. Genetic diversity of Santalum album using random amplified ...

    In the present study Random Amplified Polymorphic DNA (RAPD) technique was used to accesses the genetic diversity among 30 accessions of S. album collected from different parts of South India. A total of 248 polymorphic amplicons were obtained from 30 primers. The value of Jaccard coefficient ranged from 0.66 to ...

  8. Ka-Band Klystron Amplifier for CUBESATs, Phase I

    National Aeronautics and Space Administration — We propose a Ka-Band klystron amplifier for use in CubeSats. It will operate at 35.7 GHz, have 400 MHz of bandwidth, and output at least 32 watts of saturated power....

  9. Amplifiers dedicated for large area SiC photodiodes

    Doroz, P.; Duk, M.; Korwin-Pawlowski, M. L.; Borecki, M.


    Large area SiC photodiodes find applications in optoelectronic sensors working at special conditions. These conditions include detection of UV radiation in harsh environment. Moreover, the mentioned sensors have to be selective and resistant to unwanted signals. For this purpose, the modulation of light at source unit and the rejection of constant current and low frequency component of signal at detector unit are used. The popular frequency used for modulation in such sensor is 1kHz. The large area photodiodes are characterized by a large capacitance and low shunt resistance that varies with polarization of the photodiode and can significantly modify the conditions of signal pre-amplification. In this paper two pre-amplifiers topology are analyzed: the transimpedance amplifier and the non-inverting voltage to voltage amplifier with negative feedback. The feedback loops of both pre-amplifiers are equipped with elements used for initial constant current and low frequency signals rejections. Both circuits are analyzed and compared using simulation and experimental approaches.

  10. The Modulation Response of a Semiconductor Laser Amplifier

    Mørk, Jesper; Mecozzi, Antonio; Eisenstein, Gadi


    We present a theoretical analysis of the modulation response of a semiconductor laser amplifier. We find a resonance behavior similar to the well-known relaxation oscillation resonance found in semiconductor lasers, but of a different physical origin. The role of the waveguide (scattering) loss i...

  11. Multilevel inverter based class D audio amplifier for capacitive transducers

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.


    The reduced semiconductor voltage stress makes the multilevel inverters especially interesting, when driving capacitive transducers for audio applications. A ± 300 V flying capacitor class D audio amplifier driving a 100 nF load in the midrange region of 0.1-3.5 kHz with Total Harmonic Distortion...

  12. Large area electron beam pumped krypton fluoride laser amplifier

    Sethian, J.D.; Obenschain, S.P.; Gerber, K.A.; Pawley, C.J.; Serlin, V.; Sullivan, C.A.; Webster, W.; Deniz, A.V.; Lehecka, T.; McGeoch, M.W.; Altes, R.A.; Corcoran, P.A.; Smith, I.D.; Barr, O.C.


    Nike is a recently completed multi-kilojoule krypton fluoride (KrF) laser that has been built to study the physics of direct drive inertial confinement fusion. This paper describes in detail both the pulsed power and optical performance of the largest amplifier in the Nike laser, the 60 cm amplifier. This is a double pass, double sided, electron beam-pumped system that amplifies the laser beam from an input of 50 J to an output of up to 5 kJ. It has an optical aperture of 60 cm x 60 cm and a gain length of 200 cm. The two electron beams are 60 cm high x 200 cm wide, have a voltage of 640 kV, a current of 540 kA, and a flat top power pulse duration of 250 ns. A 2 kG magnetic field is used to guide the beams and prevent self-pinching. Each electron beam is produced by its own Marx/pulse forming line system. The amplifier has been fully integrated into the Nike system and is used on a daily basis for laser-target experiments. copyright 1997 American Institute of Physics

  13. Picosecond mid-infrared amplifier for high average power.

    Botha, LR


    Full Text Available High pressure CO2 lasers are good candidates for amplifying picosecond mid infrared pulses. High pressure CO2 lasers are notorious for being unreliable and difficult to operate. In this paper a high pressure CO2 laser is presented based on well...

  14. A fully integrated 16 channel digitally trimmed pulse shaping amplifier

    Hearn, W.E.; Wright, M.E.


    A fully integrated CMOS pulse shaping amplifier has been developed at LBL. All frequency dependent networks are included on the chip. Provision is made for tuning to compensate for process variations. The overall architecture and details of the circuitry are discussed. Test results are presented

  15. Processing of optical combs with fiber optic parametric amplifiers

    Slavík, Radan; Kakande, J.; Richardson, D.J.; Petropoulos, P.


    Roč. 20, č. 9 (2012), s. 10059-10070 ISSN 1094-4087 Institutional support: RVO:67985882 Keywords : Fiber -optic parametric amplifier * Phase sensitive * Spectral coverage Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.546, year: 2012

  16. K-Band Traveling-Wave Tube Amplifier

    Force, Dale A.; Simons, Rainee N.; Peterson, Todd T.; Spitsen, Paul C.


    A new space-qualified, high-power, high-efficiency, K-band traveling-wave tube amplifier (TWTA) will provide high-rate, high-capacity, direct-to-Earth communications for science data and video gathered by the Lunar Reconnaissance Orbiter (LRO) during its mission. Several technological advances were responsible for the successful demonstration of the K-band TWTA.

  17. Nonlinear carrier dynamics in a quantum dash optical amplifier

    Hansen, Per Lunnemann; Ek, Sara; Yvind, Kresten


    dynamics. Thus, both enhancement as well as suppression of the transmission can be observed even when the amplifier is biased at transparency. A simple theoretical model taking into account two-photon absorption and free carrier absorption is presented that shows good agreement with the measurements....

  18. Methylation sensitive-sequence related amplified polymorphism (MS ...



    Apr 25, 2011 ... Sequence-related amplified polymorphism (SRAP) is a simple but an efficient gene amplification marker system for both .... Each polymorphic band reflecting different methylation status at the ... After boiling for 5 min in the water, the .... CpG dinucleotides in the open reading frame of a testicular germ cell-.

  19. Recent advances in long wavelength quantum dot lasers and amplifiers

    Nötzel, R.; Bente, E.A.J.M.; Smit, M.K.; Dorren, H.J.S.


    We demonstrate 1.55-µm InAs/InGaAsP/InP (100) quantum dot (QD) shallow and deep etched Fabry-Pérot and ring lasers, micro-ring lasers, mode-locked lasers, Butt-joint integrated lasers, polarization control of gain, and wavelength conversion in QD amplifiers.

  20. Free electron laser amplifier driven by an induction linac

    Neil, V.K.


    This paper discusses the use of a free-electron laser amplifier as a means of converting the kinetic energy of an electron beam into coherent radiation. In particular, the use of an induction linear accelerator is discussed. The motion of the elections in the tapered and untapered wiggler magnets is discussed as well as the beam emittance, and the radiation fields involved

  1. Effects of gamma radiation on commercial operational amplifiers

    Claro, Luiz H.; Santos, Jose A. dos


    The operational amplifiers are widely used in nuclear instrumentation. Their applications span the signal conditioning circuits, analog instrumentation, amplifiers, converters, oscillators and others. If an operational amplifier is used to work in a radiation environment, the device suffers degradation in its performance leading to the bad work in the systems. Some of these devices are designed as rad-hard components and therefore the effects of radiation damage are minimized, however its main disadvantage is the high cost and difficult to find in the market. As an alternative one can use the conventional electronic components available in the market and named COTS (Commercially Available Off-The-Shelf) but they must be tested under a radiation environment. In this work the effect of the radiation damage is studied in two typical operational amplifiers. Some electric parameters of these devices were measured for different gamma radiation doses and they were working at different input signal frequencies. A 60 Co isotopic radiation source was used and the results show that there is a certain degradation of the device depending on the radiation absorbed dose. (author)

  2. An energy amplifier fluidized bed nuclear reactor concept

    Sefidvash, F.; Seifritz, W.


    The concept of a fluidized bed nuclear reactor driven by an energy amplifier system is described. The reactor has promising characteristics of inherent safety and passive cooling. The reactor can easily operate with any desired spectrum in order to be a plutonium burner or have it operate with thorium fuel cycle. (orig.) [de

  3. State-dependent linear-optical qubit amplifier

    Bartkiewicz, K.; Černoch, Antonín; Lemr, K.


    Roč. 88, č. 6 (2013), "062304-1"-"062304-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : linear-optical qubit amplifier * quantum cloning * quantum cryptography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013

  4. The spectacular human nose: an amplifier of individual quality?

    Åse Kristine Rognmo Mikalsen


    Full Text Available Amplifiers are signals that improve the perception of underlying differences in quality. They are cost free and advantageous to high quality individuals, but disadvantageous to low quality individuals, as poor quality is easier perceived because of the amplifier. For an amplifier to evolve, the average fitness benefit to the high quality individuals should be higher than the average cost for the low quality individuals. The human nose is, compared to the nose of most other primates, extraordinary large, fragile and easily broken—especially in male–male interactions. May it have evolved as an amplifier among high quality individuals, allowing easy assessment of individual quality and influencing the perception of attractiveness? We tested the latter by manipulating the position of the nose tip or, as a control, the mouth in facial pictures and had the pictures rated for attractiveness. Our results show that facial attractiveness failed to be influenced by mouth manipulations. Yet, facial attractiveness increased when the nose tip was artificially centered according to other facial features. Conversely, attractiveness decreased when the nose tip was displaced away from its central position. Our results suggest that our evaluation of attractiveness is clearly sensitive to the centering of the nose tip, possibly because it affects our perception of the face’s symmetry and/or averageness. However, whether such centering is related to individual quality remains unclear.

  5. Optimizing learning of a locomotor task: amplifying errors as needed.

    Marchal-Crespo, Laura; López-Olóriz, Jorge; Jaeger, Lukas; Riener, Robert


    Research on motor learning has emphasized that errors drive motor adaptation. Thereby, several researchers have proposed robotic training strategies that amplify movement errors rather than decrease them. In this study, the effect of different robotic training strategies that amplify errors on learning a complex locomotor task was investigated. The experiment was conducted with a one degree-of freedom robotic stepper (MARCOS). Subjects were requested to actively coordinate their legs in a desired gait-like pattern in order to track a Lissajous figure presented on a visual display. Learning with three different training strategies was evaluated: (i) No perturbation: the robot follows the subjects' movement without applying any perturbation, (ii) Error amplification: existing errors were amplified with repulsive forces proportional to errors, (iii) Noise disturbance: errors were evoked with a randomly-varying force disturbance. Results showed that training without perturbations was especially suitable for a subset of initially less-skilled subjects, while error amplification seemed to benefit more skilled subjects. Training with error amplification, however, limited transfer of learning. Random disturbing forces benefited learning and promoted transfer in all subjects, probably because it increased attention. These results suggest that learning a locomotor task can be optimized when errors are randomly evoked or amplified based on subjects' initial skill level.

  6. The neutronics of an Accelerator-Driven Energy Amplifier

    Moeller, E.; Gudowski, W. [Royal Institute of Technology, Stockholm (Sweden)


    This study has been focused on an Accelerator-Driven Energy Amplifier, based on the concept proposed by the CERN-group. To analyze the performance of this system the extensive optimization of the core lattice was done, the temperature coefficients of reactivity were investigated, reactivity budget and power distribution were estimated.

  7. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    Dyndgaard, Morten Glarborg


    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...

  8. Pulsed hydrogen fluoride laser oscillator-amplifier experiments

    Schott, G.L.


    Pulsed HF chemical laser oscillator energies were scaled from millijoules to several kilojoules over the period 1970-1974, reaching approximately 10 J with SF 6 and transverse discharges, and using electron-beam initiation and elemental F 2 above 1000J. This demonstrated scalability to large energy with acceptable electrical efficiency is only one prerequisite for application of this gas laser in fusion; equally important matters are achievement of focusable, approximately 1 ns pulses, couplable to light-element targets, all from an affordable system. Exploratory MOPA experiments are reported which address control of HF laser beam focusability and pulse duration, using SF 6 -based experimental oscillator--amplifier sequences and Pockels' cell switching. Simultaneous multiline lasing with 2.6 less than or equal to lambda less than or equal to 3.1 μm and high specific gain and energy density are particularly important factors encountered with HF, where amplifier pumping and lasing occur in a substantially cw temporal relationship, even in less than 100 ns bursts. Time-resolved SF 6 --HI oscillator spectra contain 27 simultaneous lines from six vibrational bands. An apertured, SF 6 -hydrocarbon pin-discharge oscillator generates approximately 10 mJ of TEM 00 radiation, which is amplified to approximately 1 J in approximately 150 ns by a TEA amplifier and p []opagated tens of meters. A three-stage system coupling these elements through an approximately 1 ns electrooptic gate to a greater than 10 J, e-beam energized amplifier is under development. (auth)

  9. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    Heaney, M.B.


    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al 2 O 3 /Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 x 10 17 in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO 3 crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies

  10. BET bromodomain inhibition of MYC-amplified medulloblastoma.

    Bandopadhayay, Pratiti; Bergthold, Guillaume; Nguyen, Brian; Schubert, Simone; Gholamin, Sharareh; Tang, Yujie; Bolin, Sara; Schumacher, Steven E; Zeid, Rhamy; Masoud, Sabran; Yu, Furong; Vue, Nujsaubnusi; Gibson, William J; Paolella, Brenton R; Mitra, Siddhartha S; Cheshier, Samuel H; Qi, Jun; Liu, Kun-Wei; Wechsler-Reya, Robert; Weiss, William A; Swartling, Fredrik J; Kieran, Mark W; Bradner, James E; Beroukhim, Rameen; Cho, Yoon-Jae


    MYC-amplified medulloblastomas are highly lethal tumors. Bromodomain and extraterminal (BET) bromodomain inhibition has recently been shown to suppress MYC-associated transcriptional activity in other cancers. The compound JQ1 inhibits BET bromodomain-containing proteins, including BRD4. Here, we investigate BET bromodomain targeting for the treatment of MYC-amplified medulloblastoma. We evaluated the effects of genetic and pharmacologic inhibition of BET bromodomains on proliferation, cell cycle, and apoptosis in established and newly generated patient- and genetically engineered mouse model (GEMM)-derived medulloblastoma cell lines and xenografts that harbored amplifications of MYC or MYCN. We also assessed the effect of JQ1 on MYC expression and global MYC-associated transcriptional activity. We assessed the in vivo efficacy of JQ1 in orthotopic xenografts established in immunocompromised mice. Treatment of MYC-amplified medulloblastoma cells with JQ1 decreased cell viability associated with arrest at G1 and apoptosis. We observed downregulation of MYC expression and confirmed the inhibition of MYC-associated transcriptional targets. The exogenous expression of MYC from a retroviral promoter reduced the effect of JQ1 on cell viability, suggesting that attenuated levels of MYC contribute to the functional effects of JQ1. JQ1 significantly prolonged the survival of orthotopic xenograft models of MYC-amplified medulloblastoma (P < 0.001). Xenografts harvested from mice after five doses of JQ1 had reduced the expression of MYC mRNA and a reduced proliferative index. JQ1 suppresses MYC expression and MYC-associated transcriptional activity in medulloblastomas, resulting in an overall decrease in medulloblastoma cell viability. These preclinical findings highlight the promise of BET bromodomain inhibitors as novel agents for MYC-amplified medulloblastoma. ©2013 AACR

  11. Stabilization of the outputs of pulse amplifiers utilizing non-linear feedback networks. Application to nuclear spectrometer amplifiers

    Henein, K.L.


    In nuclear spectroscopy, baseline instability and random fluctuations at the output of the amplifier create imperfectly solved problems mainly at high counting rates. After a critical examination of current systems, solutions are proposed which surpass existing ones. It is shown that restorers and stabilizers of baselines have their own preferential application. Considering natural limits of performance the proposed solutions give entirely satisfactory results [fr

  12. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    Xie, M.; Kim, K.J.


    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4π. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY

  13. Deep UV light generation by a fiber/bulk hybrid amplifier at 199 nm

    Urata, Yoshiharu; Shinozaki, Tatsuya; Wada, Yoshio; Kaneda, Yushi; Wada, Satoshi; Imai, Shinichi


    A high-pulse-repetition-frequency (PRF) pulsed light source in the deep ultraviolet region has been realized by a multiple wavelength conversion technique using a hybrid fiber/bulk amplifier system. Output of 199 nm with a power of 50 mW was achieved at 2.4 MHz PRF. The 1 μm amplifier consisted of a Yb-doped fiber amplifier and a Nd-doped YVO4 amplifier. A 1.5 μm fiber master-oscillator power amplifier was employed as the other fundamental source. The amplifiers exhibited good amplification properties in pulse energy, polarization extinction ratio, and spectrum for nonlinear wavelength conversion

  14. Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions

    Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard


    Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to

  15. Measurement of locus copy number by hybridisation with amplifiable probes

    Armour, John A. L.; Sismani, Carolina; Patsalis, Philippos C.; Cross, Gareth


    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicroscopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader–Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications. PMID:10606661

  16. Influence of higher order modes on angled-facet amplifiers

    Wang, Z.; Mikkelsen, B.; Stubkjær, Kristian


    The influence of the first-order mode on the residual reflectivity of angled-facet amplifiers is analyzed. For a 7 degrees angled-facet ridge waveguide amplifier with a single-layer antireflective (AR) coating, a gain ripple lower than 1-dB at 25-dB gain can be obtained independent...... of the polarization, even in the presence of a first-order mode with a 15-dB gain. The tolerances for the thickness and refractive index of the AR coating are reduced by a factor of three compared to operation in the fundamental mode only. The influence of the higher order mode can virtually be suppressed...

  17. Mode control in a high-gain relativistic klystron amplifier

    Li, Zheng-Hong; Zhang, Hong; Ju, Bing-Quan; Su, Chang; Wu, Yang


    Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier. Meanwhile higher modes, which affect the working mode, are also easy to excite in a device with more middle cavities. In order for the positive feedback process for higher modes to be excited, a special measure is taken to increase the threshold current for such modes. Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current. So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV. Particle in cell simulations show that the gain is 1.6 × 105 with the input RF power of 6.8 kW, and that the output RF power reaches 1.1 GW.

  18. ICESat-2 laser Nd:YVO4 amplifier

    Sawruk, Nicholas W.; Burns, Patrick M.; Edwards, Ryan E.; Litvinovitch, Viatcheslav; Martin, Nigel; Witt, Greg; Fakhoury, Elias; Iskander, John; Pronko, Mark S.; Troupaki, Elisavet; Bay, Michael M.; He, Charles C.; Wang, Liqin L.; Cavanaugh, John F.; Farrokh, Babak; Salem, Jonathan A.; Baker, Eric


    We report on the cause and corrective actions of three amplifier crystal fractures in the space-qualified laser systems used in NASA Goddard Space Flight Center's (GSFC) Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2). The ICESat-2 lasers each contain three end-pumped Nd:YVOO4 amplifier stages. The crystals are clamped between two gold plated copper heat spreaders with an indium foil thermal interface material, and the crystal fractures occurred after multiple years of storage and over a year of operational run-time. The primary contributors are high compressive loading of the NdYVO4 crystals at the beginning of life, a time dependent crystal stress caused by an intermetallic reaction of the gold plating and indium, and slow crack growth resulting in a reduction in crystal strength over time. An updated crystal mounting scheme was designed, analyzed, fabricated and tested. Thee fracture slab failure analysis, finite-element modeling and corrective actions are presented.

  19. High power pulsed sources based on fiber amplifiers

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre


    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  20. Measurement of locus copy number by hybridisation with amplifiable probes.

    Armour, J A; Sismani, C; Patsalis, P C; Cross, G


    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicro-scopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader-Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications.

  1. Amplified Spontaneous Emission of Organic Pyridinium Dye doped Polymeric Waveguide

    Jun, Xi; Li-Hua, Ye; Qiong, Wang; Deng, Xu; Chang-Gui, Lu; Guo-Hua, Hu; Yi-Ping, Cui


    An organic dye salt trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methylpyridinium iodide (ASPI) is doped with an electron transport organic molecule tris(8-hydroxyquinoline) aluminium (Alq3) in a host matrix of poly(methylmethacrylate) (PMMA), and the amplified spontaneous emission (ASE) is studied. By efficient Forster energy transfer from Alq3 to ASPI, it is demonstrated that the ASE threshold of ASPI:Alq3:PMMA waveguide (about 11μJ/pulse) is much lower than that of ASPI:PMMA system (about 38μJ/pulse). Meanwhile, the peak position of ASE can be controlled by the effect of film thickness on waveguide modes. We show that the ASE peak position can be tuned over 37nm. These characteristics indicate the ASPI:Alq3 system as a promising gain medium for optical amplifiers and organic semiconductor lasers

  2. Analysis and evaluation of the power amplifier device

    Kim, Y. K.; Ryu, J. W. [Kongju National University, Gongju (Korea, Republic of)


    We developed a master oscillator power amplifier (MOPA) type fiber amplifier for the separation of the Ca-48 isotope by using a fiber laser. The ytterbium (Yb)-doped end-capped rod-type photonic crystal fiber (PCF) was used as a gain medium of MOPA amplifier. The PCFs used in our experiments were a 56-cm and an 81-cm rod-type end-capped Yb-doped double-clad PM fibers 'DC-285/100-PM-Yb-Rod', with a 100-{mu}m core (NA 0.02) and a 285-{mu}m cladding (NA 0.6) fabricated by NKT Photonics. The mode field diameter (MFD) of the rod-type PCF was 75-{mu}m, and an absorption efficiency of 30 dB/m at 976 nm and a low NA 0.02 helped to sustain the excellent lasing beam quality. We obtained an output power of 112 W at a pump power of 380 W with a repetition rate of 150 kHz. The measured pulse width was 13 ns at 150 kHz, 1056 nm. The laser beam quality shows a single mode amplification characteristics with a beam quality factor values of M2 are 2 -3. The PCF launching efficiency reached a maximum value of 86.7% with an average efficiencies of above 80%. At a pump power of 250 W and seed power input of 4 W, the CW PCF amplifier was found to generate average output powers of 138 W, 110 W, and 82 W at 1056-nm, 1070-nm, and 1089-nm wavelengths, respectively. The amplified PCF output beam had a line width of 70 MHz full width at half maximum (FWHM). These PCF amplified beams had good beam qualities with M2values of less than 1.8 at all three wavelengths. The gain saturation seed input power in the 81-cm PCF was found to be {approx}6 W at 1056 nm. The temperature of the PCF core reached over 230 .deg. C at the pumping section of the PCF. The temperatures of the end-cap heads on both the pumping and the output end-cap sides were 81.4 .deg. C and 35.7 .deg. C, respectively. The PCF amplifier maintained good polarization mode characteristics with an average DOP of over 87%. The slight decrease in the DOP oat output powers over 170 W output power may have been caused by a

  3. Statistics for demodulation RFI in inverting operational amplifier circuits

    Sutu, Y.-H.; Whalen, J. J.

    An investigation was conducted with the objective to determine statistical variations for RFI demodulation responses in operational amplifier (op amp) circuits. Attention is given to the experimental procedures employed, a three-stage op amp LED experiment, NCAP (Nonlinear Circuit Analysis Program) simulations of demodulation RFI in 741 op amps, and a comparison of RFI in four op amp types. Three major recommendations for future investigations are presented on the basis of the obtained results. One is concerned with the conduction of additional measurements of demodulation RFI in inverting amplifiers, while another suggests the employment of an automatic measurement system. It is also proposed to conduct additional NCAP simulations in which parasitic effects are accounted for more thoroughly.

  4. Maynard Smith: amplifying the reasons for signal reliability.

    Harper, D G C


    One of the many questions to which John Maynard Smith contributed was that of why most animal signals are reliable. He initially rejected the "handicap" argument but gradually accepted it, a process I briefly describe. This episode illustrated his preference for mathematical models over verbal ones, and the generosity with which he could change his mind. Even after accepting that some signals are reliable because of their strategic costs, he argued for a pluralistic approach to signal reliability. Signal complexity was a developing interest when he died. Signals usually involve several components, some of which appear to amplify other signal components. The terms "amplifier" and "index" require more thought to reduce the scope for semantic confusion. I conclude by describing Maynard Smith's fascination with peacocks Pavo cristatus.

  5. Low-voltage CMOS operational amplifiers theory, design and implementation

    Sakurai, Satoshi


    Low-Voltage CMOS Operational Amplifiers: Theory, Design and Implementation discusses both single and two-stage architectures. Opamps with constant-gm input stage are designed and their excellent performance over the rail-to-rail input common mode range is demonstrated. The first set of CMOS constant-gm input stages was introduced by a group from Technische Universiteit, Delft and Universiteit Twente, the Netherlands. These earlier versions of circuits are discussed, along with new circuits developed at the Ohio State University. The design, fabrication (MOSIS Tiny Chips), and characterization of the new circuits are now complete. Basic analog integrated circuit design concepts should be understood in order to fully appreciate the work presented. However, the topics are presented in a logical order and the circuits are explained in great detail, so that Low-Voltage CMOS Operational Amplifiers can be read and enjoyed by those without much experience in analog circuit design. It is an invaluable reference boo...

  6. High brightness photonic lantern kW-class amplifier

    Montoya, Juan; Hwang, Chris; Aleshire, Chris; Reed, Patricia; Martz, Dale; Riley, Mike; Trainor, Michael; Belley, Catherine; Shaw, Scot; Fan, T. Y.; Ripin, Dan


    Pump-limited kW-class operation in a multimode fiber amplifier using adaptive mode control was achieved. A photonic lantern front end was used to inject an arbitrary superposition of modes on the input to a kW-class fiber amplifier to achieve a nearly diffraction-limited output. We report on the adaptive spatial mode control architecture which allows for compensating transverse-mode disturbances at high power. We also describe the advantages of adaptive spatial mode control for optical phased array systems. In particular, we show that the additional degrees of freedom allow for broader steering and improved atmospheric turbulence compensation relative to piston-only optical phased arrays.

  7. Development of amplifier and shaper for high-rate MWPC

    Kamiji, Ichinori; Nanjo, Hajime; Kawasaki, Naoki; Maeda, Yosuke; Naito, Daichi; Seki, Shigeto; Nakagiri, Kota; Sasao, Noboru; Nomura, Tadashi


    A multi-wire proportional chamber (MWPC) will be used as an in-beam charged particle detector for the J-PARC E14 (KOTO) experiment. The maximum counting rate of the MWPC is expected to be up to 1 MHz per channel due to the high neutron and photon flux, expected to be 1 GHz for the 30 x 30 cm"2 area. An amplifier to cope with such high counting-rate is required. We developed a prototype of such amplifier, which has a charge preamplifier with the integration time of 3 ns and a pulse shaping part with three pole-zero cancellation networks. The shaper reduced the characteristic long tail lasting tens of microseconds in the signal of MWPC to 150 ns. Its performance has been tested by using a single-channel MWPC which has almost the same geometrical parameters as the MWPC to be installed in the KOTO experiment. (author)

  8. Accurate Modeling and Analysis of Isolation Performance in Multiport Amplifiers

    Marinella Aloisio


    Full Text Available A Multiport Amplifier (MPA is an implementation of the satellite power amplification section that allows sharing the payload RF power among several beams/ports and guarantees a highly efficient exploitation of the available DC satellite power. This feature is of paramount importance in multiple beam satellite systems where the use of MPAs allows reconfiguring the RF output power among the different service beams in order to handle unexpected traffic unbalances and traffic variations over time. This paper presents Monte Carlo simulations carried out by means of an ESA in-house simulator developed in Matlab environment. The objective of the simulations is to analyse how the MPA performance, in particular in terms of isolation at the MPA output ports, is affected by the amplitude and phase tracking errors of the high power amplifiers within the MPA.



    a single local feedback path A (7) with a lowpass characteristic and local forward blocks B¿1? or B (3, 4). The leads to a much improved system with a very low sensitivity to errors in the switching power stage. In the second preferred embodiment of the invention the control structure is extended...... and feedback path A to determine stable self-oscillating conditions. An implemented 250W example MECC digital power amplifier has proven superior performance in terms of audio performance (0.005 % distortion, 115 dB dynamic range) and efficiency (92 %).......A digital switching power amplifier with Multivariable Enhanced Cascade Controlled (MECC) includes a modulator, a switching power stage and a low pass filter. In the first preferred embodiment an enhanced cascade control structure local to the switching power stage is added, characterised by having...

  10. Noise spectra in balanced optical detectors based on transimpedance amplifiers

    Masalov, A. V.; Kuzhamuratov, A.; Lvovsky, A. I.


    We present a thorough theoretical analysis and experimental study of the shot and electronic noise spectra of a balanced optical detector based on an operational amplifier connected in a transimpedance scheme. We identify and quantify the primary parameters responsible for the limitations of the circuit, in particular, the bandwidth and shot-to-electronic noise clearance. We find that the shot noise spectrum can be made consistent with the second-order Butterworth filter, while the electronic noise grows linearly with the second power of the frequency. Good agreement between the theory and experiment is observed; however, the capacitances of the operational amplifier input and the photodiodes appear significantly higher than those specified in manufacturers' datasheets. This observation is confirmed by independent tests.

  11. Wide bandwidth transimpedance amplifier for extremely high sensitivity continuous measurements.

    Ferrari, Giorgio; Sampietro, Marco


    This article presents a wide bandwidth transimpedance amplifier based on the series of an integrator and a differentiator stage, having an additional feedback loop to discharge the standing current from the device under test (DUT) to ensure an unlimited measuring time opportunity when compared to switched discharge configurations while maintaining a large signal amplification over the full bandwidth. The amplifier shows a flat response from 0.6 Hz to 1.4 MHz, the capability to operate with leakage currents from the DUT as high as tens of nanoamperes, and rail-to-rail dynamic range for sinusoidal current signals independent of the DUT leakage current. Also available is a monitor output of the stationary current to track experimental slow drifts. The circuit is ideal for noise spectral and impedance measurements of nanodevices and biomolecules when in the presence of a physiological medium and in all cases where high sensitivity current measurements are requested such as in scanning probe microscopy systems.

  12. Precision Instrumentation Amplifiers and Read-Out Integrated Circuits

    Wu, Rong; Makinwa, Kofi A A


    This book presents innovative solutions in the design of precision instrumentation amplifier and read-out ICs, which can be used to boost millivolt-level signals transmitted by modern sensors, to levels compatible with the input ranges of typical Analog-to-Digital Converters (ADCs).  The discussion includes the theory, design and realization of interface electronics for bridge transducers and thermocouples. It describes the use of power efficient techniques to mitigate low frequency errors, resulting in interface electronics with high accuracy, low noise and low drift. Since this book is mainly about techniques for eliminating low frequency errors, it describes the nature of these errors and the associated dynamic offset cancellation techniques used to mitigate them.  Surveys comprehensively offset cancellation and accuracy improvement techniques applied in precision amplifier designs; Presents techniques in precision circuit design to mitigate low frequency errors in millivolt-level signals transmitted by ...

  13. A novel power amplifier structure for RFID tag applications

    Deng Jianbao; Zhang Shilin; Li De; Zhang Yanzheng; Mao Luhong; Xie Sheng


    A novel matching method between the power amplifier (PA) and antenna of an active or semi-active RFID tag is presented. A PCB dipole antenna is used as the resonance inductor of a differential power amplifier. The total PA chip area is reduced greatly to only 240 × 70 μm 2 in a 0.18 μm CMOS process due to saving two on-chip integrated inductors. Operating in class AB with a 1.8 V supply voltage and 2.45 GHz input signal, the PA shows a measured output power of 8 dBm at the 1 dB compression point. (semiconductor integrated circuits)

  14. On the Creation of Solitons in Amplifying Optical Fibers

    Christoph Mahnke


    Full Text Available We treat the creation of solitons in amplifying fibers. Strictly speaking, solitons are objects in an integrable setting while in real-world systems loss and gain break integrability. That case usually has been treated in the perturbation limit of low loss or gain. In a recent approach fiber-optic solitons were described beyond that limit, so that it became possible to specify how and where solitons are eventually destroyed. Here we treat the opposite case: in the presence of gain, new solitons can arise from an initially weak pulse. We find conditions for that to happen for both localized and distributed gain, with no restriction to small gain. By tracing the energy budget we show that even when another soliton is already present and copropagates, a newly created soliton takes its energy from radiation only. Our results may find applications in amplified transmission lines or in fiber lasers.

  15. 5 Watt GaN HEMT Power Amplifier for LTE

    K. Niotaki


    Full Text Available This work presents the design and implementation of a stand-alone linear power amplifier at 2.4 GHz with high output power. A GaN HEMT transistor is selected for the design and implementation of the power amplifier. The device exhibits a gain of 11.7 dB and a drain efficiency of 39% for an output power of 36.7 dBm at 2.4 GHz for an input power of 25dBm. The carrier to intermodulation ratio is better than 25 dB for a two tone input signal of 25 dBm of total power and a spacing of 5 MHz. The fabricated device is also tested with LTE input signals of different bandwidths (5MHz to 20MHz.

  16. An RF Power Amplifier in a Digital CMOS Process

    Nielsen, Per Asbeck; Fallesen, Carsten


    A two stage class B power amplifier for 1.9 GHz is presented. The amplifier is fabricated in a standard digital EPI-CMOS process with low resistivity substrate. The measured output power is 29 dBm in a 50 Omega load. A design method to find the large signal parameters of the output transistor...... is presented. It separates the determination of the optimal load resistance and the determination of the large signal drain-source capacitance. Based on this method, proper values for on-chip interstage matching and off-chip output matching can be derived. A envelope linearisation circuit for the PA...... is proposed. Simulations and measurements of a fabricated linearisation circuit are presented and used to calculate the achievable linearity in terms of the spectral leakage and the error vector magnitude of a EDGE (3 pi /8-8PSK) modulated signal....

  17. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier, Phase II

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  18. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier, Phase I

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  19. How to interpret Methylation Sensitive Amplified Polymorphism (MSAP) profiles?

    Fulneček, Jaroslav; Kovařík, Aleš


    Background DNA methylation plays a key role in development, contributes to genome stability, and may also respond to external factors supporting adaptation and evolution. To connect different types of stimuli with particular biological processes, identifying genome regions with altered 5-methylcytosine distribution at a genome-wide scale is important. Many researchers are using the simple, reliable, and relatively inexpensive Methylation Sensitive Amplified Polymorphism (MSAP) method that is ...

  20. Optimum design of Nd-doped fiber optical amplifiers

    Rasmussen, Thomas; Bjarklev, Anders Overgaard; Lumholt, Ole


    The waveguide parameters for a Nd-doped fluoride (Nd:ZBLANP) fiber amplifier have been optimized for small-signal and booster operation using an accurate numerical model. The optimum cutoff wavelength is shown to be 800 nm and the numerical aperture should be made as large as possible. Around 80%......% booster quantum conversion efficiency can be reached for an input power of 10 dBm and a pump power of 100 mW by the use of one filter...

  1. X-ray amplifier energy deposition scaling with channeled propagation

    Boyer, K.; Luk, T.S.; McPherson, A.


    The spatial control of the energy deposited for excitation of an x-ray amplifier plays an important role in the fundamental scaling relationship between the required energy, the gain and the wavelength. New results concerning the ability to establish confined modes of propagation of sort pulse radiation of sufficiently high intensity in plasmas lead to a sharply reduced need for the total energy deposited, since the concentration of deposited power can be very efficiently organized

  2. Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier

    Hassan Jassim Motlak


    A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to...

  3. Self-amplified spontaneous emission for short wavelength coherent radiation

    Kim, K.J.; Xie, M.


    We review the recent progress in our understanding of the self-amplified spontaneous emission (SASE), emphasizing the application to short wavelength generation. Simple formulae are given for the start-up, exponential gain and the saturation of SASE. Accelerator technologies producing high brightness electron beams required for short wavelength SASE are discussed. An example utilizing electron beams from a photocathode-linac system to produce 4nm SASE in the multigigawatt range is presented

  4. Gain recovery dynamics and limitations in quantum dot amplifiers

    Berg, Tommy Winther; Bischoff, Svend; Magnúsdóttir, Ingibjörg


    gain recovery in a quantum dot amplifier, and it is thus not yet clear what the limiting processes for the device response are. We present the results of a comprehensive theoretical model, which agrees well with the experimental results, and indicates the importance of slow recovery of higher energy...... levels. The model used is of the rate-equation type with three energy levels: ground state (GS) and excited state (ES) dot levels and a wetting layer...

  5. Radiation transmission window, especially for X-ray image amplifier

    Christgau, H.; Bodes, U.


    The vacuum steel bulb of the image amplifier is closed by means of an Al window. Tightness of the joint between windowpane and window frame is obtained by a diffusion weld for which edge parts with Al coating, a pressure between 60 and 180 N/mm 2 and a temperature of 200 up to 500 0 C were provided. For weld improvemente the points of the Al windows to be connected may be nickle-plated before silvering them. (DG) [de

  6. Ultrashort-pulse laser machining system employing a parametric amplifier

    Perry, Michael D.


    A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.

  7. LNA A 1.9 GHZ low noise amplifier

    Jorge Julián Moreno-Rubio


    Full Text Available This paper shows the design, the simulation, and the layout from a low noise amplifier (LNA, designed with and approximate band from 25 to 80 MHz. The design results of the matching neworks are shown, its noise figure, its available and transduced gain according to its non lineal model (TOM, the DC network, crash inductors and matching capacitors with the large impedance transmission lines.

  8. Extraction of PCR-amplifiable genomic DNA from Bacillus anthracisspores

    Torok, Tamas


    Bacterial endospore disruption and nucleic acid extractionresulting in DNA of PCR-amplifiable quality and quantity are not trivial.Responding to the needs of the Hazardous Materials Response Unit (HMRU),Laboratory Division, Federal Bureau of Investigation, protocols weredeveloped to close these gaps. Effectiveness and reproducibility of thetechniques were validated with laboratory grown pure spores of Bacillusanthracis and its close phylogenetic neighbors, and with spiked soils anddamaged samples.

  9. Study on the ELDRS of bipolar linear operational amplifier

    Yang Hui; Liu Yanfang; Chen Yu; Bai Hua; Zhang Dong


    Bipolar linear devices laboratory irradiation testing results are significantly different from the actual in flight exposure to the radiation. In this paper the total dose irradiation of operational amplifiers, and analysis upon the total dose response of these bipolar circuits under the different test conditions were investigated in the same experiment. Total dose tests of bipolar linear operational amplifiers show susceptible to dose rate, bias and room temperature annealing during exposure. The critical sensitive parameters of operational amplifier are input bias current, input offset current, input offset voltage, and open loop gain, which exhibits both bias and dose rate dependence. With calculating the change of each electrical parameter (Δpara) for each sample at 300 Gy radiation level, it has been found that ratio of the Δpara at low dose rate to the Δpara at high dose rate exceeds 2.46 times for any of the parameters. So these parts are considered to be ELDRS susceptible. After room temperature annealing, the main parameters have time dependence effect at low dose rate and without time dependent effect at high dose rate. (authors)

  10. An 8–18 GHz broadband high power amplifier

    Wang Lifa; Yang Ruixia; Li Yanlei; Wu Jingfeng


    An 8–18 GHz broadband high power amplifier (HPA) with a hybrid integrated circuit (HIC) is designed and fabricated. This HPA is achieved with the use of a 4-fingered micro-strip Lange coupler in a GaAs MMIC process. In order to decrease electromagnetic interference, a multilayer AlN material with good heat dissipation is adopted as the carrier of the power amplifier. When the input power is 25 dBm, the saturated power of the continuous wave (CW) outputted by the power amplifier is more than 39 dBm within the frequency range of 8–13 GHz, while it is more than 38.6 dBm within other frequency ranges. We obtain the peak power output, 39.4 dBm, at the frequency of 11.9 GHz. In the whole frequency band, the power-added efficiency is more than 18%. When the input power is 18 dBm, the small signal gain is 15.7 ± 0.7 dB. The dimensions of the HPA are 25 × 15 × 1.5 mm 3 . (semiconductor integrated circuits)

  11. On cuff imbalance and tripolar ENG amplifier configurations.

    Triantis, Iasonas F; Demosthenous, Andreas; Donaldson, Nick


    Electroneurogram (ENG) recording techniques benefit from the use of tripolar cuffs because they assist in reducing interference from sources outside the cuff. However, in practice the performance of ENG amplifier configurations, such as the quasi-tripole and the true-tripole, has been widely reported to be degraded due to the departure of the tripolar cuff from ideal behavior. This paper establishes the presence of cuff imbalance and investigates its relationship to cuff asymmetry, cuff end-effects and interference source proximity. The paper also presents a comparison of the aforementioned amplifier configurations with a new alternative, termed the adaptive-tripole, developed to automatically compensate for cuff imbalance. The output signal-to-interference ratio of the three amplifier configurations were compared in vivo for two interference signals (stimulus artifact and M-wave) superimposed on compound action potentials. The experiments showed (for the first time) that the two interference signals result in different cuff imbalance values. Nevertheless, even with two distinct cuff imbalances present, the adaptive-tripole performed better than the other two systems in 61.9% of the trials.

  12. Fiber optical parametric amplifiers in optical communication systems

    Marhic (†), Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud


    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. PMID:25866588

  13. Amplifier channel for a fission fragment semiconductor detector

    Tyurin, G.P.


    To compensate the decrease of the transformation coefficient of fission fragment semiconductor detector (SCD) developed is a special amplification channel with controlled transfer coefficient. The block diagram of the channel is presented, the main functional units of which are as follows: preamplifying head with charge-sensitive and timing preamplifiers, linear amplifier and the circuit of spectrum position stabilization, which includes a differential discriminator, integrator and reference signal generator. The amplification channel is made in the CAMAC standard and has the following specifications: dinamical input capacitance of charge-sensitive amplifier c=10000 n PHI, signal amplitude at output of the linear amplifier at energy of fission fragments of 120 MeV has negative polarity and is equal to 5 V. Pulse amplitude change at SCD sensitivity decrease to 50% constitutes not more than 1%. Timing preamplifier has the gain factor at voltage of K=80 at front duration of 3.5 nc. Time resolution of the amplification channel is not worse than 1 nc. Dimensions of preamplifying head are 40x40x15 mm. The amplification channel permitted to use SCD for long-term measurements of fission fragment spectra [ru

  14. Localization of the cochlear amplifier in living sensitive ears.

    Tianying Ren

    Full Text Available BACKGROUND: To detect soft sounds, the mammalian cochlea increases its sensitivity by amplifying incoming sounds up to one thousand times. Although the cochlear amplifier is thought to be a local cellular process at an area basal to the response peak on the spiral basilar membrane, its location has not been demonstrated experimentally. METHODOLOGY AND PRINCIPAL FINDINGS: Using a sensitive laser interferometer to measure sub-nanometer vibrations at two locations along the basilar membrane in sensitive gerbil cochleae, here we show that the cochlea can boost soft sound-induced vibrations as much as 50 dB/mm at an area proximal to the response peak on the basilar membrane. The observed amplification works maximally at low sound levels and at frequencies immediately below the peak-response frequency of the measured apical location. The amplification decreases more than 65 dB/mm as sound levels increases. CONCLUSIONS AND SIGNIFICANCE: We conclude that the cochlea amplifier resides at a small longitudinal region basal to the response peak in the sensitive cochlea. These data provides critical information for advancing our knowledge on cochlear mechanisms responsible for the remarkable hearing sensitivity, frequency selectivity and dynamic range.

  15. CMOS Optoelectronic Lock-In Amplifier With Integrated Phototransistor Array.

    An Hu; Chodavarapu, Vamsy P


    We describe the design and development of an optoelectronic lock-in amplifier (LIA) for optical sensing and spectroscopy applications. The prototype amplifier is fabricated using Taiwan Semiconductor Manufacturing Co. complementary metal-oxide semiconductor 0.35-μm technology and uses a phototransistor array (total active area is 400 μm × 640μm) to convert the incident optical signals into electrical currents. The photocurrents are then converted into voltage signals using a transimpedance amplifier for subsequent convenient signal processing by the LIA circuitry. The LIA is optimized to be operational at 20-kHz modulation frequency but is operational in the frequency range from 13 kHz to 25 kHz. The system is tested with a light-emitting diode (LED) as the light source. The noise and signal distortions are suppressed with filters and a phase-locked loop (PLL) implemented in the LIA. The output dc voltage of the LIA is proportional to the incident optical power. The minimum measured dynamic reserve and sensitivity are 1.31 dB and 34 mV/μW, respectively. The output versus input relationship has shown good linearity. The LIA consumes an average power of 12.79 mW with a 3.3-V dc power supply.

  16. A Collaborative Project for the Development of Energy Amplifier

    Joo, H. K.; Kim, S. J.; Kim, Y. H.; Lee, Y. W.; Cho, C. H.; Song, T. Y.


    An energy amplifier can be an option for the future system for electricity generation and for management of spent fuel. An energy amplifier system is composed of a proton accelerator and a proton transportation system, a target system, a subcritical reactor, and a heat transfer system. A development plan for energy amplifier should be individually prepared for each sub-sytem. For the development of a subcritical reactor, a feasibility and conceptual studies is recommended to be carried out till the basic research phase which is performed with the development of the accelerator system. The feasibility study needs 1∼2 years of research period and 1.5 man-year of efforts. The conceptual design for the subcritical reactor will determine a reactor concept, the power of reactor and accelerator, the interface with a target system, fuel design, the performance and safety analysis of the core, and the fuel cycle option including thorium cycle, and it requires 2∼3 years of research period and 6 man-year of man power

  17. A Kinetics Model for KrF Laser Amplifiers

    Giuliani, J. L.; Kepple, P.; Lehmberg, R.; Obenschain, S. P.; Petrov, G.


    A computer kinetics code has been developed to model the temporal and spatial behavior of an e-beam pumped KrF laser amplifier. The deposition of the primary beam electrons is assumed to be spatially uniform and the energy distribution function of the nascent electron population is calculated to be near Maxwellian below 10 eV. For an initial Kr/Ar/F2 composition, the code calculates the densities of 24 species subject to over 100 reactions with 1-D spatial resolution (typically 16 zones) along the longitudinal lasing axis. Enthalpy accounting for each process is performed to partition the energy into internal, thermal, and radiative components. The electron as well as the heavy particle temperatures are followed for energy conservation and excitation rates. Transport of the lasing photons is performed along the axis on a dense subgrid using the method of characteristics. Amplified spontaneous emission is calculated using a discrete ordinates approach and includes contributions to the local intensity from the whole amplifier volume. Specular reflection off side walls and the rear mirror are included. Results of the model will be compared with data from the NRL NIKE laser and other published results.

  18. A state comparison amplifier with feed forward state correction

    Mazzarella, Luca; Donaldson, Ross; Collins, Robert; Zanforlin, Ugo; Buller, Gerald; Jeffers, John


    The Quantum State Comparison AMPlifier (SCAMP) is a probabilistic amplifier that works for known sets of coherent states. The input state is mixed with a guess state at a beam splitter and one of the output ports is coupled to a detector. The other output contains the amplified state, which is accepted on the condition that no counts are recorded. The system uses only classical resources and has been shown to achieve high gain and repetition rate. However the output fidelity is not high enough for most quantum communication purposes. Here we show how the success probability and fidelity are enhanced by repeated comparison stages, conditioning later state choices on the outcomes of earlier detections. A detector firing at an early stage means that a guess is wrong. This knowledge allows us to correct the state perfectly. The system requires fast-switching between different input states, but still requires only classical resources. Figures of merit compare favourably with other schemes, most notably the probability-fidelity product is higher than for unambiguous state discrimination. Due to its simplicity, the system is a candidate to counteract quantum signal degradation in a lossy fibre or as a quantum receiver to improve the key rate of continuous variable quantum communication. The work was supported by the QComm Project of the UK Engineering and Physical Sciences Research Council (EP/M013472/1).

  19. Investigation of switching frequency variations in self-oscillating class D amplifiers

    Nielsen, Dennis; Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael A. E.


    Class D audio amplifiers have gained significant influence in sound reproduction due to their high efficiency. One of the most commonly used control methods in class D amplifiers is known as self-oscillation. An parameter of key interest in self-oscillating class D amplifiers is the switching frequency, which can be directly related to the performance of the amplifier. This paper will clearify the myth of the switching frequency through investigation of its dependency on modulation index and ...

  20. A Reduced Switch Voltage Stress Class E Power Amplifier Using Harmonic Control Network

    Ali Reza Zirak; Sobhan Roshani


    In this paper, a harmonic control network (HCN) is presented to reduce the voltage stress (maximum MOSFET voltage) of the class E power amplifier (PA). Effects of the HCN on the amplifier specifications are investigated. The results show that the proposed HCN affects several specifications of the amplifier, such as drain voltage, switch current, output power capability (Cp factor), and drain impedance. The output power capability of the presented amplifier is also improved, compared with the ...

  1. Theoretical analysis of quantum dot amplifiers with high saturation power and low noise figure

    Berg, Tommy Winther; Mørk, Jesper


    Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers.......Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers....

  2. A low noise charge sensitive amplifier for use in vacuum photo diode readout

    Stephenson, R.


    The amplifier described consists of a charge sensitive pre-amplifier optimised for low noise with low values of input shunt capacitance, and a shaping amplifier providing both differentiation and integration. Amplifier gain is adjustable up to a maximum of approximately 100 μV/electron with a rise time of 2 μS to the peak of the output voltage, and with an open circuit input noise level of 150 electrons RMS. (author)

  3. Linear Distributed GaN MMIC Power Amplifier with Improved Power-added Efficiency


    QPSK LTE waveform, the ACPR1improved by ~10 dBc at average output power of 23 dBm, without digital pre-distortion. Keywords: GaN, linear amplifiers...wideband amplifier, OIP3, LTE Introduction RF communications with spectral efficiency utilizes complex modulation schemes that require amplifier...wideband amplifiers remain. In this paper, we report on the measured CW performance of a multi-octave (100 MHz ‒ 8 GHz) GaN MMIC NDPA fabricated with

  4. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  5. Design techniques and measured performance for a uniformly-pumped 4-cm diameter rod amplifier

    Linford, G.J.; Yarema, S.M.


    A solid-state laser rod amplifier of moderate aperture achieving a high degree of spatial gain uniformity has been constructed and its performance evaluated. Digital and analogue techniques were used to optimize the amplifier design for performance in a laser fusion application. Results of simple 2-D computer simulations and experimental evaluations of amplifier performance are presented

  6. Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion

    Durhuus, Terji; Mikkelsen, Benny; Stubkjær, Kristian


    . The model is used to assess intermodulation distortion and crosstalk. Cascaded amplifiers are considered, and the crosstalk and intermodulation distortion due to cascaded amplifiers are found to accumulate by adding together in amplitude; this may limit the number or cascaded amplifiers in multichannel...

  7. Bandwidth limitations in current mode and voltage mode integrated feedback amplifiers

    Bruun, Erik


    loop bandwidth remains constant for a feedback amplifier. The constant-bandwidth relations of such amplifier designs are reviewed in this paper and they are combined with the constraints imposed by technology when the feedback amplifier is to be designed in an integrated technology. From this analysis...

  8. Investigation of switching frequency variations in self-oscillating class D amplifiers

    Nielsen, Dennis; Knott, Arnold; Pfaffinger, Gerhard


    Class D audio amplifiers have gained significant influence in sound reproduction due to their high efficiency. One of the most commonly used control methods in class D amplifiers is known as self-oscillation. An parameter of key interest in self-oscillating class D amplifiers is the switching fre...

  9. Investigation of switching frequency variations and EMI properties in self-oscillating class D amplifiers

    Nielsen, Dennis; Knott, Arnold; Pfaffinger, Gerhard


    Class D audio amplifiers have gained significant influence in sound reproduction due to their high efficiency. One of the most commonly used control methods in these amplifiers is self-oscillation. A parameter of key interest in self-oscillating amplifiers is the switching frequency, which is kno...

  10. Active rc filter permits easy trade-off of amplifier gain and sensitivity to gain

    Kerwin, W. J.; Shaffer, C. V.


    Passive RC network was designed with zeros of transmission in the right half of the complex frequency plane in the feedback loop of a simple negative-gain amplifier. The proper positioning provides any desired trade-off between amplifier gain and sensitivity to amplifier gain.

  11. Spatial Power Combining Amplifier for Ground and Flight Applications

    Velazco, J. E.; Taylor, M.


    Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross

  12. A numerical design approach for single amplifier, Active-RC Butterworth filter of order 5

    Gaunholt, Hans


    A design method is presented for the design of all pole lowpass active-RC filters applying operational amplifiers. The operational amplifier model used is the integrator model: omegat/s where omegat is the unity gain frequency. The design method is used for the design of a fifth order Butterworth filter applying just one operational amplifier coupled as a unity gain amplifier. It is shown that the influence from the real operational amplifier may be reduced by trimming just one resistor in th...

  13. The design of a 4’th order Bandpass Butterworth filter with one operational amplifier.

    Gaunholt, Hans


    A numerical design method is presented for the design of all pole band pass active-RC filters applying just one operational amplifier. The operational amplifier model used is the integrator model: ωt/s where ωt is the unity gain fre-quency. The design method is used for the design of a fourth order band pass filter with Butterworth poles applying just one operational amplifier coupled as a unity gain amplifier. The unity gain amplifiers have the advantage of providing low power consumption, y...

  14. Low-noise audio amplifiers and preamplifier for use with intrinsic thermocouples

    Langner, G.C.; Sachs, R.D.; Stewart, F.L.


    Two simple, low-noise audio amplifiers and one low-noise preamplifier for use with intrinsic thermocouples were designed, built, and tested. The amplifiers and the preamplifier have different front end designs. One amplifier uses ultralow-noise operational amplifiers; the other amplifier uses a hybrid component. The preamplifier uses ultralow-noise discrete components. The amplifiers' equivalent noise inputs, at maximum gain, are 4.09 nV and 50 nV; the preamplifier's input is 4.05 μV. Their bandwidths are 15 600 Hz, 550 Hz, and 174 kHz, respectively. the amplifiers' equivalent noise inputs were measured from approx. 0 to 100 Hz, whereas the preamplifier's equivalent noise input was measured from approx. 0 to 174 kHz

  15. High-power piezo drive amplifier for large stack and PFC applications

    Clingman, Dan J.; Gamble, Mike


    This paper describes the continuing development of Boeing High Power Piezo Drive Amplifiers. Described is the development and testing of a 1500 Vpp, 8 amp switching amplifier. This amplifier is used to drive a piezo stack driven rotor blade trailing edge flap on a full size helicopter. Also discuss is a switching amplifier designed to drive a Piezo Fiber Composite (PFC) active twist rotor blade. This amplifier was designed to drive the PFC material at 2000 Vpp and 0.5 amps. These amplifiers recycle reactive energy, allowing for a power and weight efficient amplifier design. This work was done in conjunction with the DARPA sponsored Phase II Smart Rotor Blade program and the NASA Langley Research Center sponsored Active Twist Rotor (ATR) blade program.

  16. A CHI wiggler ubitron amplifier experiment: Wiggler characterization

    Taccetti, J.M.; Jackson, R.H.; Freund, H.P. [Naval Research Lab., Washington, DC (United States)] [and others


    A 35 GHz CHI (Coaxial Hybrid Iron) wiggler ubitron amplifier experiment is under construction at the Naval Research Laboratory. The CHI wiggler configuration has the potential of generating high wiggler magnetic fields at short periods with excellent beam focusing and transport properties. This makes it a desirable configuration for the generation of high power coherent radiation in relatively compact systems. The CHI wiggler consists of alternating rings of magnetic and non-magnetic materials concentric with a central rod of similar alternating design but shifted along the axis by half a period. Once inserted in a solenoidal magnetic field, the CHI structure deforms the axial field to create a radial field oscillating with the same periodicity as the rings. An annular electron beam is propagated through the coaxial gap where the oscillating radial field imparts an azimuthal wiggle motion. The principal goals of the experiment are to investigate the performance tradeoffs involved in the CHI configuration for high frequency amplifiers operating at low voltages with small wiggler periods. The nominal design parameters are a center frequency of 35 GHz, wiggler period of 0.75 cm, and beam voltage of approximately 150 kV. Calculations have shown an intrinsic (untapered) efficiency of {approximately} 7% when operating at 6.3 kG axial field (wiggler field, B{sub w}{approximately}1270 G). The calculated gain was 36 dB, saturating at a distance of 46 cm. These parameters yield an instantaneous amplifier bandwidth of {approximately} 25%. There appears to be room for further improvement in efficiency, a matter which will be scrutinized more closely in the final design. A prototype CHI wiggler is presently being fabricated for use in conjunction with an existing 30 kG superconducting solenoid. The performance properties of the prototype will be characterized and compared with linear and non-linear calculations.

  17. Automatic alignment of double optical paths in excimer laser amplifier

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun


    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  18. Testing methodologies and systems for semiconductor optical amplifiers

    Wieckowski, Michael

    Semiconductor optical amplifiers (SOA's) are gaining increased prominence in both optical communication systems and high-speed optical processing systems, due primarily to their unique nonlinear characteristics. This in turn, has raised questions regarding their lifetime performance reliability and has generated a demand for effective testing techniques. This is especially critical for industries utilizing SOA's as components for system-in-package products. It is important to note that very little research to date has been conducted in this area, even though production volume and market demand has continued to increase. In this thesis, the reliability of dilute-mode InP semiconductor optical amplifiers is studied experimentally and theoretically. The aging characteristics of the production level devices are demonstrated and the necessary techniques to accurately characterize them are presented. In addition, this work proposes a new methodology for characterizing the optical performance of these devices using measurements in the electrical domain. It is shown that optical performance degradation, specifically with respect to gain, can be directly qualified through measurements of electrical subthreshold differential resistance. This metric exhibits a linear proportionality to the defect concentration in the active region, and as such, can be used for prescreening devices before employing traditional optical testing methods. A complete theoretical analysis is developed in this work to explain this relationship based upon the device's current-voltage curve and its associated leakage and recombination currents. These results are then extended to realize new techniques for testing semiconductor optical amplifiers and other similarly structured devices. These techniques can be employed after fabrication and during packaged operation through the use of a proposed stand-alone testing system, or using a proposed integrated CMOS self-testing circuit. Both methods are capable

  19. A review on power reducing methods of neural recording amplifiers

    samira mehdipour


    Full Text Available Implantable multi-channel neural recording Microsystems comprise a large number of neural amplifiers, that can affect the overall power consumption and chip area of the analog part of the system.power, noise, size and dc offset are the main challenge faced by designers. Ideally the output of the opamp should be at zero volts when the inputs are grounded.In reality the input terminals are at slightly different dc potentials.The input offset voltage is defined as the voltage that must be applied between the two input terminals of the opamp to obtain zero volts at the output. Amplifier must have capability to reject this dc offset. First method that uses a capacitor feedback network with ac coupling of input devices to reject the offset is very popular in designs.very small low-cutoff frequency.The second method employs a closed-loop resistive feedback and electrode capacitance to form a highpass filter.Moreover,The third method adopts the symmetric floating resistor the feedback path of low noise amplifier to achieve low-frequency cutoff and rejects DC offset voltage. .In some application we can use folded cascade topology.The telescopic topology is a good candidate in terms of providing large gain and phase margin while dissipating small power. the cortical VLSI neuron model reducing power consumption of circuits.Power distribution is the best way to reduce power, noise and silicon area. The total power consumption of the amplifier array is reduced by applying the partial OTA sharing technique. The silicon area is reduced as a benefit of sharing the bulky capacitor.

  20. Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments

    Menninger, W.L.; Danly, B.G.; Temkin, R.J.


    The first multimegawatt harmonic relativistic gyrotron traveling-wave tube (gyro-twt) amplifier experiment has been designed, built, and tested. Results from this experimental setup, including the first ever reported third-harmonic gyro-twt results, are presented. Operation frequency is 17.1 GHz. Detailed phase measurements are also presented. The electron beam source is SNOMAD-II, a solid-state nonlinear magnetic accelerator driver with nominal parameters of 400 kV and 350 A. The flat-top pulsewidth is 30 ns. The electron beam is focused using a Pierce geometry and then imparted with transverse momentum using a bifilar helical wiggler magnet. Experimental operation involving both a second-harmonic interaction with the TE 21 mode and a third-harmonic interaction with the TE 31 mode, both at 17 GHz, has been characterized. The third-harmonic interaction resulted in 4-MW output power and 50-dB single-pass gain, with an efficiency of up to ∼8%. The best measured phase stability of the TE 31 amplified pulse was ±10 degree over a 9-ns period. The phase stability was limited because the maximum RF power was attained when operating far from wiggler resonance. The second harmonic, TE 21 had a peak amplified power of 2 MW corresponding to 40-dB single-pass gain and 4% efficiency. The second-harmonic interaction showed stronger superradiant emission than the third-harmonic interaction. Characterizations of the second- and third-harmonic gyro-twt experiments presented here include measurement of far-field radiation patterns, gain and phase versus interaction length, phase stability, and output power versus input power

  1. High rate amplifier-digitizer system for liquid argon calorimeters

    Droege, T.F.; Lobkowicz, F.; Fukushima, Y.


    A low-cost charge amplifier for a liquid argon photon detector and a new method for pulse height analysis are described. This scheme is suitable for high-energy photon detection with high counting rate. Samples of preamplifer output are taken just before and just after the arrival of the charge from the detector. The difference of these samples provides a stable pedestal and rejects low frequency noise. Short two-pulse resolving time (approximately equal to 200ns) is achieved. 6 refs

  2. Amplifying human ability through autonomics and machine learning in IMPACT

    Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.


    Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.

  3. X-ray laser '' oscillator-amplifier'' experiments

    Shimkaveg, G.M.; Carter, M.R.; Young, B.K.F.; Walling, R.S.; Osterheld, A.L.; Trebes, J.E.; London, R.A.; Ratowsky, R.P.; Stewart, R.E.; Craxton, R.S.


    We present results from experiments directed toward increasing the degree of transverse coherence in x-ray laser beams. We have concentrated on the neon-like yttrium (Z=39) collisionally-pumped x-ray laser as the test system for these studies because of its unique combination of brightness, monochromaticity, and high-reflectivity optics availability. Attempts at improving laser performance using proximate feedback optics failed. Modest success has been found to date in ''double foil'' experiments, involving two x-ray lasers spatially separated by 29 cm and shot sequentially in an ''oscillator-amplifier'' configuration

  4. Optimal linear detectors for nonorthogonal amplify-and-forward protocol

    Ahmed, Qasim Zeeshan; Park, Kihong; Alouini, Mohamed-Slim; Aissa, Sonia


    In this paper, we propose optimal linear detectors for non-orthogonal amplify-and-forward cooperative protocol when considering a single-relay scenario. Two types of detectors are proposed based on the principles of minimum mean square error (MMSE) and minimum bit error rate (MBER). The MMSE detector minimizes the mean square error, while the MBER minimizes the system bit error rate (BER). Both detectors exhibit excellent BER performance with relatively low complexity as compared to the maximal likelihood (ML) detector. The BER performance of both detectors is superior to the channel inversion, the maximal ratio combining, and the biased ML detectors. © 2013 IEEE.

  5. Propagation delay of femtosecond pulses in an optical amplifier

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    of 2.6 THz, through a quantum-dot (QD) semiconductor amplifier (SOA) at room temperature. This extremely large bandwidth, on the other hand, is at the cost of a rather small group index change of ?ng=4*10-3. We have performed two types of femtosecond pulse slow-down and advancement experiments....... In the first experiment, we prepare a narrow peak or dip in the SOA gain spectrum by injection of a strong pump pulse4. The resulting dispersion feature is then probed by a weak pulse. In the second experiment, we measure self-slowdown or advancement as pulse energy isincreased5. In both cases, we perform...

  6. Photonic lantern adaptive spatial mode control in LMA fiber amplifiers.

    Montoya, Juan; Aleshire, Chris; Hwang, Christopher; Fontaine, Nicolas K; Velázquez-Benítez, Amado; Martz, Dale H; Fan, T Y; Ripin, Dan


    We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.

  7. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier

    Liu Kui; Cui Shu-Zhen; Yang Rong-Guo; Zhang Jun-Xiang; Gao Jiang-Rui


    We experimentally demonstrate that HG 01 (Hermit—Gauss) and HG 10 squeezed states can be generated simultaneously in an optical parametric amplifier. The HG 01 mode is a bright squeezed state and the HG 10 mode is a vacuum squeezed state. The squeezing of the HG 01 mode is −2.8 dB, and the squeezing of the HG 10 mode is −1.6 dB. We also demonstrate that the output field is also continuous-variable entanglement with orbital angular momentum. (general)

  8. Displacement of microwave squeezed states with Josephson parametric amplifiers

    Zhong, Ling; Baust, Alexander; Xie, Edwar; Schwarz, Manuel; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Fedorov, Kirill; Menzel, Edwin; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Betzenbichler, Martin; Pogorzalek, Stefan; Haeberlein, Max; Eder, Peter; Goetz, Jan; Wulschner, Karl Friedrich; Huebl, Hans; Deppe, Frank [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany)


    Propagating quantum microwaves are promising building blocks for quantum communication. Interestingly, such itinerant quantum microwaves can be generated in the form of squeezed photon states by Josephson parametric amplifiers (JPA). We employ a specific ''dual-path'' setup for both state reconstruction and JPA characterization. Displacement operations are performed by using a directional coupler after the squeezing. We compare our results with theory predictions. In particular, we discuss our experiments in the context of remote state preparation and quantum teleportation with propagating microwaves.

  9. OFCC based voltage and transadmittance mode instrumentation amplifier

    Nand, Deva; Pandey, Neeta; Pandey, Rajeshwari; Tripathi, Prateek; Gola, Prashant


    The operational floating current conveyor (OFCC) is a versatile active block due to the availability of both low and high input and output impedance terminals. This paper addresses the realization of OFCC based voltage and transadmittance mode instrumentation amplifiers (VMIA and TAM IA). It employs three OFCCs and seven resistors. The transadmittance mode operation can easily be obtained by simply connecting an OFCC based voltage to current converter at the output. The effect of non-idealities of OFCC, in particular finite transimpedance and tracking error, on system performance is also dealt with and corresponding mathematical expressions are derived. The functional verification is performed through SPICE simulation using CMOS based implementation of OFCC.

  10. Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier

    Chiu, C. C.; Pao, K. F.; Yan, Y. C.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.


    By delivering unprecedented power and gain, the gyrotron traveling-wave amplifier (gyro-TWT) offers great promise for advanced millimeter wave radars. However, the underlying physics of this complex nonlinear system is yet to be fully elucidated. Here, we report a new phenomenon in the form of nonlinearly driven oscillations. A zero-drive stable gyro-TWT is shown to be susceptible to a considerably reduced dynamic range at the band edge, followed by a sudden transition into driven oscillations and then a hysteresis effect. An analysis of this unexpected behavior and its physical interpretation are presented.

  11. Electrical versus optical pumping of quantum dot amplifiers

    Berg, Tommy Winther; Bischoff, Svend; Mørk, Jesper


    The influence of the pumping mechanism for the dynamical properties of quantum dot amplifiers is investigated for 10, 40 and 160 GHz signals. A fast response is predicted in the case of optical pumping in the wetting layer (WL). The combination of fast relaxation and capture times and the presence...... of a reservoir of carriers in the WL opens up for the possibility of ultrafast gain recovery in QD devices. The strength of optical contra electrical pumping is that it reduces the bottleneck effect of a slow WL. Optical pumping thus allows significant improvement of the dynamical properties of QD devices....

  12. Optimal linear detectors for nonorthogonal amplify-and-forward protocol

    Ahmed, Qasim Zeeshan


    In this paper, we propose optimal linear detectors for non-orthogonal amplify-and-forward cooperative protocol when considering a single-relay scenario. Two types of detectors are proposed based on the principles of minimum mean square error (MMSE) and minimum bit error rate (MBER). The MMSE detector minimizes the mean square error, while the MBER minimizes the system bit error rate (BER). Both detectors exhibit excellent BER performance with relatively low complexity as compared to the maximal likelihood (ML) detector. The BER performance of both detectors is superior to the channel inversion, the maximal ratio combining, and the biased ML detectors. © 2013 IEEE.

  13. Amplify-and-forward relaying in wireless communications

    Rodriguez, Leonardo Jimenez; Le-Ngoc, Tho


    This SpringerBrief explores the advantage of relaying techniques in addressing the increasing demand for high data rates and reliable services over the air. It demonstrates how to design cost-effective relay systems that provide high spectral efficiency and fully exploit the diversity of the relay channel. The brief covers advances in achievable rates, power allocation schemes, and error performance for half-duplex (HD) and full-duplex (FD) amplify-and-forward (AF) single-relay systems. The authors discuss the capacity and respective optimal power allocation for a wide range of HD protocols ov

  14. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor


    Hybrid Biosensor Jieun Lee1,2, Jaeman Jang1, Bongsik Choi1, Jinsu Yoon1, Jee-Yeon Kim3, Yang-Kyu Choi3, Dong Myong Kim1, Dae Hwan Kim1 & Sung-Jin Choi1...This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response...of field-effect-transistor (FET)-based biosensors . The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential

  15. Strong environmental coupling in a Josephson parametric amplifier

    Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M.; Megrant, A.; Sundqvist, K. M.


    We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.

  16. Linear CMOS RF power amplifiers a complete design workflow

    Ruiz, Hector Solar


    The work establishes the design flow for the optimization of linear CMOS power amplifiers from the first steps of the design to the final IC implementation and tests. The authors also focuses on design guidelines of the inductor's geometrical characteristics for power applications and covers their measurement and characterization. Additionally, a model is proposed which would facilitate designs in terms of transistor sizing, required inductor quality factors or minimum supply voltage. The model considers limitations that CMOS processes can impose on implementation. The book also provides diffe

  17. Sensitive pre-amplifier to load for Pin diodes

    Jacobo V, R. Y.; Hernandez D, V.; Ramirez J, F. J.


    The electronic instrumentation is indispensable for the measurement and characterization of the radiation. By means of this essential characteristics of the radiation are determined, as activity and their energy components. The nuclear instrumentation is based on the technical characteristics of the radiation detectors and the electronic devices associates (amplifiers, ana logical and digital converters, multichannel analyzers, etc.) The radiation detectors are very important instruments in fields as the nuclear physics, medicine, radiological protection, industry and in other fields, since they are the only method to capture the radiation and to be able to quantify it in precise form. To detect radiation diverse detector types are used, as the semiconductor type, inside them are the photodiodes type Pin. In this work the results that were obtained of the design, simulation, construction and tests of a preamplifier that was designed starting from a photodiode type Pin are presented. The system was designed and simulated with a program for electronic circuits, in this were carried out many tests being obtained a compact design and achieving the best necessary characteristics for its optimization. With the results of the simulation phase the electronics phase was built, which was couples to a spectroscopic amplifier and a multichannel analyzer. The total of the system was evaluated analyzing its performance before a triple source of alphas. Of the tests phase we find that the system allows obtaining, in a multichannel analyzer, the pulses height spectrum, with a good resolution and with this was calibrated the multichannel analyzer

  18. Two-stage, high power X-band amplifier experiment

    Kuang, E.; Davis, T.J.; Ivers, J.D.; Kerslick, G.S.; Nation, J.A.; Schaechter, L.


    At output powers in excess of 100 MW the authors have noted the development of sidebands in many TWT structures. To address this problem an experiment using a narrow bandwidth, two-stage TWT is in progress. The TWT amplifier consists of a dielectric (e = 5) slow-wave structure, a 30 dB sever section and a 8.8-9.0 GHz passband periodic, metallic structure. The electron beam used in this experiment is a 950 kV, 1 kA, 50 ns pencil beam propagating along an applied axial field of 9 kG. The dielectric first stage has a maximum gain of 30 dB measured at 8.87 GHz, with output powers of up to 50 MW in the TM 01 mode. In these experiments the dielectric amplifier output power is about 3-5 MW and the output power of the complete two-stage device is ∼160 MW at the input frequency. The sidebands detected in earlier experiments have been eliminated. The authors also report measurements of the energy spread of the electron beam resulting from the amplification process. These experimental results are compared with MAGIC code simulations and analytic work they have carried out on such devices

  19. Programmable Input Mode Instrumentation Amplifier Using Multiple Output Current Conveyors

    Pankiewicz Bogdan


    Full Text Available In this paper a programmable input mode instrumentation amplifier (IA utilising second generation, multiple output current conveyors and transmission gates is presented. Its main advantage is the ability to choose a voltage or current mode of inputs by setting the voltage of two configuration nodes. The presented IA is prepared as an integrated circuit block to be used alone or as a sub-block in a microcontroller or in a field programmable gate array (FPGA, which shall condition analogue signals to be next converted by an analogue-to-digital converter (ADC. IA is designed in AMS 0.35 µm CMOS technology and the power supply is 3.3 V; the power consumption is approximately 9.1 mW. A linear input range in the voltage mode reaches ± 1.68 V or ± 250 µA in current mode. A passband of the IA is above 11 MHz. The amplifier works in class A, so its current supply is almost constant and does not cause noise disturbing nearby working precision analogue circuits.

  20. Ultra-low noise miniaturized neural amplifier with hardware averaging.

    Dweiri, Yazan M; Eggers, Thomas; McCallum, Grant; Durand, Dominique M


    Peripheral nerves carry neural signals that could be used to control hybrid bionic systems. Cuff electrodes provide a robust and stable interface but the recorded signal amplitude is small (concept of hardware averaging to nerve recordings obtained with cuff electrodes. An optimization procedure is developed to minimize noise and power simultaneously. The novel design was based on existing neural amplifiers (Intan Technologies, LLC) and is validated with signals obtained from the FINE in chronic dog experiments. We showed that hardware averaging leads to a reduction in the total recording noise by a factor of 1/√N or less depending on the source resistance. Chronic recording of physiological activity with FINE using the presented design showed significant improvement on the recorded baseline noise with at least two parallel operation transconductance amplifiers leading to a 46.1% reduction at N = 8. The functionality of these recordings was quantified by the SNR improvement and shown to be significant for N = 3 or more. The present design was shown to be capable of generating hardware averaging on noise improvement for neural recording with cuff electrodes, and can accommodate the presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.

  1. Regime for a Self-ionizing Raman Laser Amplifier

    Clark, D.S.; Fisch, N.J.


    Backward Raman amplification and compression at high power might occur if a long pumping laser pulse is passed through a plasma to interact resonantly with a counter-propagating short seed pulse [V.M. Malkin, et al., Phys. Rev. Lett. 82 (1999) 4448-4451]. One critical issue, however, is that the pump may be unacceptably depleted due to spontaneous Raman backscatter from intrinsic fluctuations in the amplifying plasma medium prior to its useful interaction with the seed. Premature backscatter may be avoided, however, by employing a gaseous medium with pump intensities too low to ionize the medium, and using the intense seed to produce the plasma by rapid photoionization as it is being amplified [V.M. Malkin, et al., Phys. Plasmas (2001)]. In addition to allowing that only rather low power pumps be used, photoionization introduces a damping of the short pulse which must be overcome by the Raman growth rate for net amplification to occur. The parameter space of gas densities, laser wavelengths, and laser intensities is surveyed to identify favorable regimes for this effect. Output laser intensities of 10(superscript ''17'') W/cm(superscript ''2'') for 0.5 mm radiation are found to be feasible for such a scheme using a pump of 10(superscript ''13'') W/cm(superscript ''2'') and an initial seed of 5 x 10(superscript ''14'') W/cm(superscript ''2'') over an amplification length of 5.6 cm in hydrogen gas

  2. An Electronically Tunable Transconductance Amplifier for Use in Auditory Prostheses

    FARAGO, P.


    Full Text Available Low-voltage and low-power trends in analog electronics enable novel features in modern bio-medical devices, such as extensive portability, autonomy and even battery-less operation. One specific example is the cochlear implant (CI, which emulates the physiology of hearing to produce auditory sensations via neural stimulation. Besides low-voltage and low-power operation, a key feature in modern CIs is wide-range programmability of the speech processing parameters. This paper proposes an operational transconductance amplifier (OTA for use in CIs, with wide-range electronic tuning of the transconductance value. The proposed OTA is developed around a cascade of two transconductor stages, making the transconductance dependent on the bias current ratio. A combination of linearization techniques: bulk input, parallel differential pairs and feedback, is used to achieve sufficient linear range for CI speech processing. Wide-range parameter tuning of the speech processing sections is illustrated on a variable gain amplifier, a bandpass Tow-Thomas biquad and an envelope detector. Finally, the complete CI speech processing chain is illustrated. The proposed OTA and its employment in CI analog speech processing are validated on a 350 nm CMOS process.

  3. Millimeter wave free electron laser amplifiers: Experiments and designs

    Bidwell, S.W.; Zhang, Z.X.; Antonsen, T.M. Jr.; Bensen, D.M.; Destler, W.W.; Granatstein, V.L.; Lantham, P.E.; Levush, B.; Rodgers, J.


    Free electron laser amplifies are investigated as sources of high- average-power (1 MW) millimeter to submillimeter wave radiation (200 GHz - 600 GHz) for application to electron cyclotron resonance heating of magnetically confined fusion plasmas. As a stepping-stone to higher frequencies and cw operation a pulsed amplifier (τ pulse ≅ 80 ns) at 98 GHz is being developed. Status is reported on this experiment which investigates linear gain amplification with use of sheet electron beam (transverse cross section = 0.1 cm x 2.0 cm, V beam = 440 keV, I beam ≅ 10 A) and short-period wiggler (ell w = 0.96 cm) and with expected output of 140 W. Predictions of gain and efficiency from a 1-D universal formulation are presented. Beam propagation results, with wiggler focusing as a means of sheet beam confinement in both transverse dimensions, through the 54 cm (56 period) pulsed electromagnet wiggler are discussed. Peak wiggler fields of 5.1 kG on-axis have been achieved

  4. A reflexing electron microwave amplifier for rf particle accelerator applications

    Fazio, M.V.; Hoeberling, R.F.


    The evolution of rf-accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave power sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing-electron class of sources can produce microwave powers at the gigawatt level and has demonstrated operation from 800-MHz to 40-GHz. The pulse length appears to be limited by diode closure, and reflexing-electron devices have been operated in a repetitively pulsed mode. A design is presented for a reflexing electron microwave amplifier that is frequency and phase locked. In this design, the generated microwave power can be efficiently coupled to one or several accelerator loads. Frequency and phase-locking capability may permit parallel-source operation for higher power. The low-frequency (500-MHz to 10-GHz) operation at very high power required by present and proposed microwave particle accelerators makes an amplifier, based on reflexing electron phenomena, a candidate for the development of new accelerator power sources. (author)

  5. LED-pumped Alexandrite laser oscillator and amplifier

    Pichon, Pierre; Blanchot, Jean-Philippe; Balembois, François; Druon, Frédéric; Georges, Patrick


    In this paper, we report the first LED-pumped transition-metal-doped laser oscillator and amplifier based on an alexandrite crystal (Cr3+:BeAl2O4). A Ce:YAG luminescent concentrator illuminated by blue LEDs is used to reach higher pump powers than with LEDs alone. The luminescent 200-mm-long-composit luminescent concentrator involving 2240 LEDs can delivers up to 268 mJ for a peak irradiance of 8.5 kW/cm2. In oscillator configuration, an LED-pumped alexandrite laser delivering an energy of 2.9 mJ at 748 nm in free running operation is demonstrated. In the cavity, we measured a double pass small signal gain of 1.28, in good agreement with numerical simulations. As amplifier, the system demonstrated to boost a CW Ti:sapphire laser by a factor of 4 at 750 nm in 8 passes with a large tuning range from 710 nm to 800 nm.

  6. Effect of amplified spontaneous emission and parasitic oscillations on the performance of cryogenically-cooled slab amplifiers

    Sawicka, Magdalena; Divoký, Martin; Lucianetti, Antonio; Mocek, Tomáš


    Roč. 31, č. 4 (2013), s. 553-560 ISSN 0263-0346 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : amplified spontaneous emission * cryogenic cooling * parasitic oscillations * slab lasers * Yb:YAG, Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.701, year: 2013

  7. Differential InP HEMT MMIC Amplifiers Embedded in Waveguides

    Kangaslahti, Pekka; Schlecht, Erich; Samoska, Lorene


    Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The differential configuration makes it possible to obtain gains greater than those of amplifiers having the single-ended configuration. To reduce losses associated with packaging, the MMIC chips are designed integrally with, and embedded in, waveguide packages, with the additional benefit that the packages are compact enough to fit into phased transmitting and/or receiving antenna arrays. Differential configurations (which are inherently balanced) have been used to extend the upper limits of operating frequencies of complementary metal oxide/semiconductor (CMOS) amplifiers to the microwave range but, until now, have not been applied in millimeter- wave amplifier circuits. Baluns have traditionally been used to transform from single-ended to balanced configurations, but baluns tend to be lossy. Instead of baluns, finlines are used to effect this transformation in the present line of development. Finlines have been used extensively to drive millimeter- wave mixers in balanced configurations. In the present extension of the finline balancing concept, finline transitions are integrated onto the affected MMICs (see figure). The differential configuration creates a virtual ground within each pair of InP HEMT gate fingers, eliminating the need for inductive vias to ground. Elimination of these vias greatly reduces parasitic components of current and the associated losses within an amplifier, thereby enabling more nearly complete utilization of the full performance of each transistor. The differential configuration offers the additional benefit of multiplying (relative to the single-ended configuration) the input and output impedances of each transistor by a factor of four, so that it is possible to use large transistors that would otherwise have

  8. [Acute hearing loss and tinnitus caused by amplified recreational music].

    Metternich, F U; Brusis, T


    Hearing loss resulting from exposure to permanent or repeated amplified music in professional musicians and music consumers is described in literature. The risk of hearing loss does not exist only after prolonged exposure to music. Short-term exposure to very high sound levels, for example in concerts, can also cause hearing loss and tinnitus. The retrospective study includes 24 patients who required rheologic therapy between 1994 and 1997 due to a music related acoustic trauma. The type, intensity, and length of music exposure as well as the distance and the position to the source of noise were examined. The type of hearing damage and its development during rheological treatment was studied by pure-tone audiometry. In the majority of examined patients (67%) the hearing loss developed on the basis of one-time exposure at a rock concert or pop concert, followed by hearing loss from attending discotheques (17%) or parties (12%), and music exposure from personal cassette players (4%). The majority of patients showed a maximum hearing loss of 40-60 dB (A) in a frequency between 3 kHz and 4 kHz. Pure-tone audiometry in 58% of the patients exhibited a unilateral threshold in a frequency between 3 kHz and 4 kHz combined with ipsilateral tinnitus of the same frequency. Twenty-one percent of the patients showed a symmetric bilateral threshold and tinnitus between 3 kHz and 4 kHz. In 8% there was a unilateral tinnitus, and in 13% a bilateral tinnitus without any hearing loss. All patients improved their hearing loss during rheologic treatment. Improvement in the tinnitus was only achieved in 33% of the examined cases. The risk of permanent hearing loss resulting from short-term exposure to amplified music is low compared to the risk of continuous tinnitus. Given the lack of acceptance of personal ear protectors, the risk of acute hearing damage due to amplified music could be reduced by avoiding the immediate proximity to the speakers.

  9. Microwave amplifier and active circuit design using the real frequency technique

    Jarry, Pierre


    This book focuses on the authors' Real Frequency Technique (RFT) and its application to a wide variety of multi-stage microwave amplifiers and active filters, and passive equalizers for radar pulse shaping and antenna return loss applications. The first two chapters review the fundamentals of microwave amplifier design and provide a description of the RFT. Each subsequent chapter introduces a new type of amplifier or circuit design, reviews its design problems, and explains how the RFT can be adapted to solve these problems. The authors take a practical approach by summarizing the design steps and giving numerous examples of amplifier realizations and measured responses. Provides a complete description of the RFT as it is first used to design multistage lumped amplifiers using a progressive optimization of the equalizers, leading to a small umber of parameters to optimize simultaneously Presents modifications to the RFT to design trans-impedance microwave amplifiers that are used for photodiodes acti...

  10. Class H power amplifier for power saving in fluxgate current transducers

    Velasco Quesada, Guillermo; Román Lumbreras, Manuel; Pérez Delgado, Raul; Conesa Roca, Alfons


    This paper presents a new improvement in the design of a fluxgate-based current transducer in order to reduce the power consumption of control electronics. The proposed improvement involves the replacement of the output linear amplifier of the transducer by a class H amplifier. The output amplifier is devoted to the magnetic flux compensation and generates the transducer output current, which is proportional to the current to be measured. In this way, it is possible to reduce significantly th...

  11. Investigation of switching frequency variations and EMI properties in self-oscillating class D amplifiers

    Nielsen, Dennis; Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael A. E.


    Class D audio amplifiers have gained significant influence in sound reproduction due to their high efficiency. One of the most commonly used control methods in these amplifiers is self-oscillation. A parameter of key interest in self-oscillating amplifiers is the switching frequency, which is known for its variation. Knowledge of switching frequency variations is of great importance with respect to electromagnetic interference (EMI). This paper will investigate, whether the switching frequenc...

  12. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    Ljusev, Petar; Andersen, Michael Andreas E.


    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify the design, increase...... efficiency, reduce the product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented....

  13. C.A.D for broad-band multistage microwave transimpedance amplifier.

    Olomo Ngongo, A.; Perennec, A.; Soares, R.; Jarry, P.


    In high data rate optical-fiber, it is necessary to employ an ultra broad-band transimpedance amplifier. In this paper, we present a technique for the design of a transimpedance amplifiers. It can be applied as well to the design of interstage equalizers for microwave transimpedance amplifiers. In the version described in this paper, the optimisation process is applied to the transimpedance gain and noise which is adjusted. Based on the load charge matching technique, a sequential procedure t...

  14. Preliminary design studies for a 100 MW Energy Amplifier prototype

    Abánades, A


    The Energy Amplifier (EA) is a new concept of fission system based on a subcritical assembly sustained with the neutrons generated by proton beam impact on a heavy element (spallation). This concept, proposed by the Nobel Laureate C. Rubbia (Rubbia, 1995), has remarkable capabilities in the nuclear energy field. First, it can be used to transmute radioactive wastes with a high efficiency alleviating the requirements of the geological repositories, and, second, it provides a massive energy source with the intrinsic safety derived from the use of a subcritical system and an almost null production of long-lived radioactive wastes. EA concept principles have been successfully tested by two experiments at CERN: FEAT (Andriamonge, 1995), that proved there is a net energy gain, by comparing the energy needed by the accelerator with the generated one by fission in the subcritical system. The second experiment, TARC (Abanades, 1997; Arnould, 1999) demonstrated the capability to transmute radioactive elements. The next...

  15. Amplified-fragment length polymorphism fingerprinting of Mycoplasma species

    Kokotovic, Branko; Friis, N.F.; Jensen, J.S.


    Amplified-fragment length polymorphism (AFLP) is a whole-genome fingerprinting method based on selective amplification of restriction fragments. The potential of the method for the characterization of mycoplasmas was investigated in a total of 50 strains of human and animal origin, including...... Mycoplasma genitalium (n = 11), Mycoplasma pneumoniae (n = 5), Mycoplasma hominis (n = 5), Mycoplasma hyopneunmoniae (n = 9), Myco plasma flocculare (n = 5), Mycoplasma hyosynoviae (n = 10), and Mycoplasma dispar (n = 5), AFLP templates were prepared by the digestion of mycoplasmal DNA with BglII and Mfe...... to discriminate the analyzed strains at species and intraspecies levels as well, Each of the tested Mycoplasma species developed a banding pattern entirely different from those obtained from other species under analysis, Subtle intraspecies genomic differences were detected among strains of all of the Mycoplasma...

  16. SiGe HBTs Optimization for Wireless Power Amplifier Applications

    Pierre-Marie Mans


    Full Text Available This paper deals with SiGe HBTs optimization for power amplifier applications dedicated to wireless communications. In this work, we investigate the fT-BVCEO tradeoff by various collector optimization schemes such as epilayer thickness and dopant concentration, and SIC and CAP characteristics. Furthermore, a new trapezoidal base Germanium (Ge profile is proposed. Thanks to this profile, precise control of Ge content at the metallurgical emitter-base junction is obtained. Gain stability is obtained for a wide range of temperatures through tuning the emitter-base junction Ge percent. Finally, a comprehensive investigation of Ge introduction into the collector (backside Ge profile is conducted in order to improve the fT values at high injection levels.

  17. submitter Experimental temperature measurements for the energy amplifier test

    Calero, J; Gallego, E; Gálvez, J; García Tabares, L; González, E; Jaren, J; López, C; Lorente, A; Martínez Val, J M; Oropesa, J; Rubbia, C; Rubio, J A; Saldana, F; Tamarit, J; Vieira, S


    A uranium thermometer has been designed and built in order to make local power measurements in the First Energy Amplifier Test (FEAT). Due to the experimental conditions power measurements of tens to hundreds of nW were required, implying a sensitivity in the temperature change measurements of the order of 1 mK. A uranium thermometer accurate enough to match that sensitivity has been built. The thermometer is able to determine the absolute energetic gain obtained in a tiny subcritical uranium assembly exposed to a proton beam of kinetic energies between 600 MeV and 2.75 GeV. In addition, the thermometer measurements have provided information about the spatial power distribution and the shape of the neutron spallation cascade.

  18. RF extraction issues in the relativistic klystron amplifiers

    Serlin, Victor; Friedman, Moshe; Lampe, Martin; Hubbard, Richard F.


    Relativistic klystron amplifiers (RKAs) were successfully operated at NRL in several frequency regimes and power levels. In particular, an L-band RKA was optimized for high- power rf extraction into the atmosphere and an S-band RKA was operated, both in a two-beam and a single-beam configuration. At L-band the rf extraction at maximum power levels (>= 15 GW) was hindered by pulse shortening and poor repeatability. Preliminary investigation showed electron emission in the radiating horn, due to very high voltages associated with the multi-gigawatt rf power levels. This electron current constituted an electric load in parallel with the radiating antenna, and precipitated the rf pulse collapse. At S-band the peak extracted power reached 1.7 GW with power efficiency approximately 50%. However, pulse shortening limited the duration to approximately 50 nanoseconds. The new triaxial RKA promises to solve many of the existing problems.

  19. SiC MOSFET Switching Power Amplifier Project Summary

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Henson, Alex


    Eagle Harbor Technologies has completed a Phase I/II program to develop SiC MOSFET based Switching Power Amplifiers (SPA) for precision magnet control in fusion science applications. During this program, EHT developed several units have been delivered to the Helicity Injected Torus (HIT) experiment at the University of Washington to drive both the voltage and flux circuits of the helicity injectors. These units are capable of switching 700 V at 100 kHz with an adjustable duty cycle from 10 - 90% and a combined total output current of 96 kA for 4 ms (at max current). The SPAs switching is controlled by the microcontroller at HIT, which adjusts the duty cycle to maintain a specific waveform in the injector. The SPAs include overcurrent and shoot-through protection circuity. EHT will present an overview of the program including final results for the SPA waveforms. With support of DOE SBIR.

  20. Short-pulse propagation in fiber optical parametric amplifiers

    Cristofori, Valentina

    Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... transfer can be reduced in saturated F OPAs. In order to characterize propagation impairments such as dispersion and Kerr effect, affecting signals reaching multi-terabit per second per channel, short pulses on the order of 500 fs need to be considered. Therefore, a short pulses fiber laser source...... is implemented to obtain an all-fiber system. The advantages of all fiber-systems are related to their reliability, long-term stability and compactness. Fiber optical parametric chirped pulse amplification is promising for the amplification of such signals thanks to the inherent compatibility of FOPAs with fiber...

  1. The energy amplifier: An analysis and a research proposal

    Andreani, Roberto; Atzeni, Stefano; De Marco, Francesco; Valli, Giulio [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Energia; Pierazzi, Luigi [ENEA, Centro Ricerche Brasimone, Bologna (Italy). Dipt. Energia


    The fast neutron Energy Amplifier (f-EA) proposed by C. Rubbia et al. [CERN/AT/95-44(ET) and CERN/LHC/96-11(EET)] is viewed in the context of the activities aimed at increasing the public acceptability of nuclear power. A few crucial architectural, technological, and reactor physics issues are pointed out. Areas to which ENEA Fusion Division (ENEA-ERG-FUS) could contribute with its expertise and facilities are identified. Comments are also presented with reference to the comparison between the safety characteristics of the f-EA and of the magnetic fusion reactor concept, published by C. Rubbia in a recent report [CERN/AT/95-58(ET)].

  2. Comparison of different wavelength pump sources for Tm subnanosecond amplifier

    Cserteg, Andras; Guillemet, Sébastien; Hernandez, Yves; Giannone, Domenico


    We report here a comparison of different pumping wavelengths for short pulse Thulium fibre amplifiers. We compare the results in terms of efficiency and required fibre length. As we operate the laser in the sub-nanosecond regime, the fibre length is a critical parameter regarding non linear effects. With 793 nm clad-pumping, a 4 m long active fibre was necessary, leading to strong spectral deformation through Self Phase Modulation (SPM). Core-pumping scheme was then more in-depth investigated with several wavelengths tested. Good results with Erbium and Raman shifted pumping sources were obtained, with very short fibre length, aiming to reach a few micro-joules per pulse without (or with limited) SPM.

  3. Breadboard Amplifier: Building and Using Simple Electrophysiology Equipment.

    Crisp, Kevin M; Lin, Hunter; Prosper, Issa


    Electrophysiology is a valuable skill for the neuroscientist, but the learning curve for students can be steep. Here we describe a very simple electromyography (EMG) amplifier that can be built from scratch by students with no electronics experience in about 30 minutes, making it ideal for incorporating into a laboratory activity. With few parts and no adjustments except the gain, students can begin physiology experiments quickly while having the satisfaction of having built the equipment themselves. Because the output of the circuit goes to a computer sound card, students can listen to electrophysiological activity as they see it on the computer screen, a feature many of our students greatly appreciated. Various applications are discussed, including dual channel recording, using streaming media platforms with remote lab partners and acquiring data in the field on a smart phone. Our students reported that they enjoyed being able to build a working device and using it to record from their own muscles.

  4. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel


    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....

  5. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa


    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  6. Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers

    Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.


    In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.

  7. Cascade Structure of Digital Predistorter for Power Amplifier Linearization

    E. B. Solovyeva


    Full Text Available In this paper, a cascade structure of nonlinear digital predistorter (DPD synthesized by the direct learning adaptive algorithm is represented. DPD is used for linearization of power amplifier (PA characteristic, namely for compensation of PA nonlinear distortion. Blocks of the cascade DPD are described by different models: the functional link artificial neural network (FLANN, the polynomial perceptron network (PPN and the radially pruned Volterra model (RPVM. At synthesis of the cascade DPD there is possibility to overcome the ill conditionality problem due to reducing the dimension of DPD nonlinear operator approximation. Results of compensating nonlinear distortion in Wiener–Hammerstein model of PA at the GSM–signal with four carriers are shown. The highest accuracy of PA linearization is produced by the cascade DPD containing PPN and RPVM.

  8. Study of silicon photomultipliers fast amplifier and thermoregulation

    D'antone, I.; Fabbri, L.; Foschi, E.; Guandalini, C.; Laurenti, G.; Lax, I.; Levi, G.; Quadrani, L.; Sbarra, Ca.; Sbarra, Cr.; Villa, M.; Zoccoli, A.; Zuffa, M.


    The silicon photomultipliers (SiPM) are adopted in various physical applications, from medical physics to astrophysics, for their advantages in terms of cost and weight with respect to traditional photo detectors. Their low bias voltage supply (about 30 V), hardiness and resistance to magnetic field are ideal characteristics for space application. In the frame of INFN-Irst collaboration, some of them have been developed and produced at FBK (Trento-Italy), and have been characterized in the INFN laboratories of Bologna (DaSiPM2 collaboration). The SiPM can be used in conjunction with fibres and counters in high energy physics experiments. To exploit the SiPM time resolution, a fast amplifier has been studied. The SiPM gain depends critically on temperature and a thermal stabilization is also necessary. The use of a thermoelectric cooler module based on a Peltier cell has been investigated, and the results are shown.

  9. A tentative programme towards a full scale energy amplifier

    Rubbia, Carlo


    We present a proposal of a full scale demonstration plant of the Energy Amplifier (EA), following the conceptual design of Ref. [1]. Unlike the presently on going CERN experiments, reaction rates will be sufficiently massive to permit demonstrating the practical feasibility of energy generation on an industrial scale and to tackle the complete family chains of [1] the breeding process in Thorium fuel, [2] the burning of the self-generated Actinides, [3] the Plutonium (higher Actinides) burning of spent fuel from ordinary Reactors and [4] Fuel reprocessing/regeneration. The accelerator must provide a beam power which is commensurate to the rate of transformations which are sought. No existing accelerator can meet such a performance and a dedicated facility must be built. We describe an alternative based on the superconducting cavities (SC) now in standard use at the LEP \\[e^+-e^-\\] collider which is scheduled to terminate its operation by year 200 After this time, with reasonable modifications, the fully opera...

  10. Thermal effects in high average power optical parametric amplifiers.

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas


    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  11. Computer-aided design of broad band reflection type amplifiers

    Hammershaimb, Edgar; Jeppesen, Palle; Schjær-Jacobsen, Hans


    Microwave negative resistance reflection type amplifiers using stable transferred electron devices (TED's) are optimized by numerical optimization techniques programmed for an interactive graphic datascreen. The small signal impedance of packaged TED's is measured on an automatic network analyzer....... At the same time the impedance of unpackaged devices are obtained by on-line correction for the package parasitics. The microwave circuit chosen is a multiple slug coaxial cavity, that is modelled by sections of lossy transmission lines including step susceptances. The measured small signal impedance...... of the packaged TED's and the cavity model are used in a direct optimization procedure, in which the calculated minimum gain in the prescribed frequency range is progressively maximized by adjusting the lengths, characteristic impedances and positions of the slugs. The computed results are displayed...

  12. The energy amplifier: An analysis and a research proposal

    Andreani, Roberto; Atzeni, Stefano; De Marco, Francesco; Valli, Giulio; Pierazzi, Luigi


    The fast neutron Energy Amplifier (f-EA) proposed by C. Rubbia et al. [CERN/AT/95-44(ET) and CERN/LHC/96-11(EET)] is viewed in the context of the activities aimed at increasing the public acceptability of nuclear power. A few crucial architectural, technological, and reactor physics issues are pointed out. Areas to which ENEA Fusion Division (ENEA-ERG-FUS) could contribute with its expertise and facilities are identified. Comments are also presented with reference to the comparison between the safety characteristics of the f-EA and of the magnetic fusion reactor concept, published by C. Rubbia in a recent report [CERN/AT/95-58(ET)

  13. Amplified Erosion above Waterfalls and Oversteepened Bedrock Reaches

    Haviv, I.; Enzel, Y.; Whipple, K. X.; Zilberman, E.; Stone, J.; Matmon, A.; Fifield, K. L.


    Although waterfalls are abundant along steep bedrock channels, none of the conventional erosion laws can predict incision at the lip of a waterfall where flow is non-uniform and bed slope can be vertical. Considering the expected increase in flow velocity and shear stress at the lip of a vertical waterfall we determine erosion amplification at a waterfall lip as: Elip/Enormal= (1+0.4/Fr2)3n, where Fr is the Froude number and n ranges between 0.5-1.7. This amplification expression suggests that erosion at the lip could be as much as 2-5 times higher than normally expected in a setting with identical hydraulic geometry. It also demonstrates that a freefall is expected to amplify upstream incision rates even when the flow approaching the waterfall is highly supercritical. Utilizing this erosion amplification expression in numerical simulations in conjunction with a standard detachment-limited incision model we demonstrate its impact on reach-scale morphology above waterfalls. These simulations indicate that amplified erosion at the lip of a waterfall can trigger the formation of an oversteepened reach whose length is longer than the flow acceleration zone, provided incision velocity (Vi) at the edge of the flow acceleration zone is higher than the retreat velocity of the waterfall face. Such an oversteepened reach is expected to be more pronounced when Vi increases with increasing slope. The simulations also suggest that oversteepening can eventually lead to quasi steady-state gradients upstream from a waterfall provided Vi decreases with increasing slope. Flow acceleration above waterfalls can thus account, at least partially, for oversteepened bedrock reaches that are prevalent above waterfalls. Such reaches have been reported for the escarpments of southeast Australia, western Dead Sea, and at Niagara Falls. Using the cosmogenic isotope 36Cl we demonstrate that Vi upstream of a waterfall at the Dead Sea western escarpment is high enough for freefall

  14. Free electron laser amplifier experiments on SG-1

    Hui Zhongxi; Zhou Chuanming; Wu Ruian


    The SG-1 FEL facility is composed of a linear induction accelerator (LIA), an electron beam transport system, a wiggler, a microwave source and a diagnostic system. SG-1 LIA provides a 2 kA, 3.0 MeV beam with a normalized emittance of 0.4∼0.6 (π rad·cm), an energy spread (FWHM) of 4%, resulting in a beam brightness of nearly 10 8 A/πm·rad) 2[1] . The beam current through the wiggler is about 600 A. The first ASE experiments began in September 1991. A 2.6-m long wiggler with a peak magnetic field of 0.3 T was used. At 35.8∼36.5 GHz an ASE output of 0.5 W was obtained for a beam current of nearly 50 A. After a shutdown of about 8 months, the second series of ASE experiments began in October 1992. The second series of ASE experiments were performed with a wiggler magnetic field between 0.25∼0.27 T. The maximum output power is about 100 kw for B w = 0.24 T, I = 600 A, At ν = 35.2 GHz. Based on the ASE experiments the amplifier experiments was carried out on SG-1. Using an 300 W input signal (TE 01 ), a beam current of about 600 A and wiggler magnetic fields of 0.24∼0.28 T, the authors measured the FEL output power as a function of the wiggler magnetic field. The resonant magnetic field was about 0.25 T. Meanwhile, in order to study the amplifier gain, the authors measured the FEL output power as a function of the wiggler length at a peak wiggler magnetic field of 0.26 T. The exponential gain is approximately 19 dB/m and the maximum output power is about 10 MW

  15. Power amplifier circuits for functional electrical stimulation systems

    Delmar Carvalho de Souza

    Full Text Available Abstract Introduction: Functional electrical stimulation (FES is a technique that has been successfully employed in rehabilitation treatment to mitigate problems after spinal cord injury (SCI. One of the most relevant modules in a typical FES system is the power or output amplifier stage, which is responsible for the application of voltage or current pulses of proper intensity to the biological tissue, applied noninvasively via electrodes, placed on the skin surface or inside the muscular tissue, closer to the nervous fibers. The goals of this paper are to describe and discuss about the main power output designs usually employed in transcutaneous functional electrical stimulators as well as safety precautions taken to protect patients. Methods A systematic review investigated the circuits of papers published in IEEE Xplore and ScienceDirect databases from 2000 to 2016. The query terms were “((FES or Functional electric stimulator and (circuit or design” with 274 papers retrieved from IEEE Xplore and 29 from ScienceDirect. After the application of exclusion criteria the amount of papers decreased to 9 and 2 from IEEE Xplore and ScienceDirect, respectively. One paper was inserted in the results as a technological contribution to the field. Therefore, 12 papers presented power stage circuits suitable to stimulate great muscles. Discussion The retrieved results presented relevant circuits with different electronic strategies and circuit components. Some of them considered patient safety strategies or aimed to preserve muscle homeostasis such as biphasic current application, which prevents charge accumulation in stimulated tissues as well as circuits that dealt with electrical impedance variation to keep the electrode-tissue interface within an electrochemical safe regime. The investigation revealed a predominance of design strategies using operational amplifiers in power circuits, current outputs, and safety methods to reduce risks of electrical

  16. Neratinib overcomes trastuzumab resistance in HER2 amplified breast cancer.

    Canonici, Alexandra; Gijsen, Merel; Mullooly, Maeve; Bennett, Ruth; Bouguern, Noujoude; Pedersen, Kasper; O'Brien, Neil A; Roxanis, Ioannis; Li, Ji-Liang; Bridge, Esther; Finn, Richard; Siamon, Dennis; McGowan, Patricia; Duffy, Michael J; O'Donovan, Norma; Crown, John; Kong, Anthony


    Trastuzumab has been shown to improve the survival outcomes of HER2 positive breast cancer patients. However, a significant proportion of HER2-positive patients are either inherently resistant or develop resistance to trastuzumab. We assessed the effects of neratinib, an irreversible panHER inhibitor, in a panel of 36 breast cancer cell lines. We further assessed its effects with or without trastuzumab in several sensitive and resistant breast cancer cells as well as a BT474 xenograft model. We confirmed that neratinib was significantly more active in HER2-amplified than HER2 non-amplified cell lines. Neratinib decreased the activation of the 4 HER receptors and inhibited downstream pathways. However, HER3 and Akt were reactivated at 24 hours, which was prevented by the combination of trastuzumab and neratinib. Neratinib also decreased pHER2 and pHER3 in acquired trastuzumab resistant cells. Neratinib in combination with trastuzumab had a greater growth inhibitory effect than either drug alone in 4 HER2 positive cell lines. Furthermore, trastuzumab in combination with neratinib was growth inhibitory in SKBR3 and BT474 cells which had acquired resistance to trastuzumab as well as in a BT474 xenograft model. Innately trastuzumab resistant cell lines showed sensitivity to neratinib, but the combination did not enhance response compared to neratinib alone. Levels of HER2 and phospho-HER2 showed a direct correlation with sensitivity to neratinib. Our data indicate that neratinib is an effective anti-HER2 therapy and counteracted both innate and acquired trastuzumab resistance in HER2 positive breast cancer. Our results suggest that combined treatment with trastuzumab and neratinib is likely to be more effective than either treatment alone for both trastuzumab-sensitive breast cancer as well as HER2-positive tumors with acquired resistance to trastuzumab.

  17. Amplifying the helicopter drift in a conformal HMD

    Schmerwitz, Sven; Knabl, Patrizia M.; Lueken, Thomas; Doehler, Hans-Ullrich


    Helicopter operations require a well-controlled and minimal lateral drift shortly before ground contact. Any lateral speed exceeding this small threshold can cause a dangerous momentum around the roll axis, which may cause a total roll over of the helicopter. As long as pilots can observe visual cues from the ground, they are able to easily control the helicopter drift. But whenever natural vision is reduced or even obscured, e.g. due to night, fog, or dust, this controllability diminishes. Therefore helicopter operators could benefit from some type of "drift indication" that mitigates the influence of a degraded visual environment. Generally humans derive ego motion by the perceived environmental object flow. The visual cues perceived are located close to the helicopter, therefore even small movements can be recognized. This fact was used to investigate a modified drift indication. To enhance the perception of ego motion in a conformal HMD symbol set the measured movement was used to generate a pattern motion in the forward field of view close or on the landing pad. The paper will discuss the method of amplified ego motion drift indication. Aspects concerning impact factors like visualization type, location, gain and more will be addressed. Further conclusions from previous studies, a high fidelity experiment and a part task experiment, will be provided. A part task study will be presented that compared different amplified drift indications against a predictor. 24 participants, 15 holding a fixed wing license and 4 helicopter pilots, had to perform a dual task on a virtual reality headset. A simplified control model was used to steer a "helicopter" down to a landing pad while acknowledging randomly placed characters.

  18. Precise Characterization and Multiobjective Optimization of Low Noise Amplifiers

    J. Dobes


    Full Text Available Although practically all function blocks of the satellite navigation receivers are realized using the CMOS digital integrated circuits, it is appropriate to create a separate low noise antenna preamplifier based on a low noise pHEMT. Such an RF front end can be strongly optimized to attain a suitable tradeoff between the noise figure and transducer power gain. Further, as all the four principal navigation systems (GPS, GLONASS, Galileo, and COMPASS work in similar frequency bands (roughly from 1.1 to 1.7 GHz, it is reasonable to create the low noise preamplifier for all of them. In the paper, a sophisticated method of the amplifier design is suggested based on multiobjective optimization. A substantial improvement of a standard optimization method is also outlined to satisfy a uniform coverage of Pareto front. Moreover, for enhancing efficiency of many times repeated solutions of large linear systems during the optimization, a new modification of the Markowitz criterion is suggested compatible with fast modes of the LU factorization. Extraordinary attention was also given to the accuracy of modeling. First, an extraction of pHEMT model parameters was performed including its noise part, and several models were compared. The extraction was carried out by an original identification procedure based on a combination of metaheuristic and direct methods. Second, the equations of the passive elements (including transmission lines and T-splitters were carefully defined using frequency dispersion of their parameters as Q, ESR, etc. Third, an optimal selection of the operating point and essential passive elements was performed using the improved optimization method. Finally, the s-parameters and noise figure of the amplifier were measured, and stability and third-order intermodulation products were also checked.

  19. A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications

    Gaspar, M., E-mail: marcos.gaspar@psi.c [Paul Scherrer Institute, CH 5232 Villigen PSI (Switzerland); Pedrozzi, M. [Paul Scherrer Institute, CH 5232 Villigen PSI (Switzerland); Ferreira, L.F.R. [Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Garvey, T. [Paul Scherrer Institute, CH 5232 Villigen PSI (Switzerland)


    We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.

  20. A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications

    Gaspar, M.; Pedrozzi, M.; Ferreira, L.F.R.; Garvey, T.


    We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.