WorldWideScience

Sample records for gut microbiome specific

  1. Nicotine Alters the Gut Microbiome and Metabolites of Gut-Brain Interactions in a Sex-Specific Manner.

    Science.gov (United States)

    Chi, Liang; Mahbub, Ridwan; Gao, Bei; Bian, Xiaoming; Tu, Pengcheng; Ru, Hongyu; Lu, Kun

    2017-12-18

    As the primary active substance in tobacco, nicotine affects the activity of the central nervous system, and its effects are sex-dependent. There are complex interactions between the gut and brain, and the gut microbiome can influence neuronal activity and host behavior, with diverse chemical signaling being involved. However, it is unclear whether nicotine can affect the normal gut microbiome and associated chemical signaling of the gut-brain axis. Sex is an important factor that shapes the gut microbiome, but the role of sex in the interaction among nicotine, gut bacteria, and related metabolites remains unknown. In this study, we applied high-throughput sequencing and gas chromatography-mass spectrometry (GC-MS) to explore how nicotine exposure affects the gut microbiome and its metabolism in female and male C57BL/6J mice, with a focus on the chemical signaling involved in gut-brain interactions. 16S sequencing results indicated that the community composition of the gut microbiome was differentially perturbed by nicotine in females and males. Differential alterations of bacterial carbohydrate metabolic pathways are consistent with lower body weight gain in nicotine-treated males. Oxidative stress response and DNA repair genes were also specifically enriched in the nicotine-treated male gut microbiome. The fecal metabolome indicated that multiple neurotransmitters, such as glutamate, gamma-aminobutyric acid (GABA), and glycine, were differentially altered in female and male mice. Some neuroactive metabolites, including leucine and uric acid, were also changed. This study demonstrates a sex-dependent effect of nicotine on gut microbiome community composition, functional bacterial genes, and the fecal metabolome.

  2. Gut microbiome populations are associated with structure-specific changes in white matter architecture

    OpenAIRE

    Ong, Irene M.; Gonzalez, Jose G.; McIlwain, Sean J.; Sawin, Emily A.; Schoen, Andrew J.; Adluru, Nagesh; Alexander, Andrew L.; Yu, John-Paul J.

    2018-01-01

    Altered gut microbiome populations are associated with a broad range of neurodevelopmental disorders including autism spectrum disorder and mood disorders. In animal models, modulation of gut microbiome populations via dietary manipulation influences brain function and behavior and has been shown to ameliorate behavioral symptoms. With striking differences in microbiome-driven behavior, we explored whether these behavioral changes are also accompanied by corresponding changes in neural tissue...

  3. Novel {alpha}-glucosidase from human gut microbiome : substrate specificities and their switch.

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.; Tesar, C.; Wilton, R.; Keigher, L.; Babnigg, G.; Joachimiak, A.; Biosciences Division

    2010-01-01

    The human intestine harbors a large number of microbes forming a complex microbial community that greatly affects the physiology and pathology of the host. In the human gut microbiome, the enrichment in certain protein gene families appears to be widespread. They include enzymes involved in carbohydrate metabolism such as glucoside hydrolases of dietary polysaccharides and glycoconjugates. We report the crystal structures (wild type, 2 mutants, and a mutant/substrate complex) and the enzymatic activity of a recombinant {alpha}-glucosidase from human gut bacterium Ruminococcus obeum. The first ever protein structures from this bacterium reveal a structural homologue to human intestinal maltase-glucoamylase with a highly conserved catalytic domain and reduced auxiliary domains. The {alpha}-glucosidase, a member of GH31 family, shows substrate preference for {alpha}(1-6) over {alpha}(1-4) glycosidic linkages and produces glucose from isomaltose as well as maltose. The preference can be switched by a single mutation at its active site, suggestive of widespread adaptation to utilization of a variety of polysaccharides by intestinal micro-organisms as energy resources. Novel {alpha}-glucosidase from human gut microbiome: substrate specificities and their switch.

  4. Gut microbiome populations are associated with structure-specific changes in white matter architecture.

    Science.gov (United States)

    Ong, Irene M; Gonzalez, Jose G; McIlwain, Sean J; Sawin, Emily A; Schoen, Andrew J; Adluru, Nagesh; Alexander, Andrew L; Yu, John-Paul J

    2018-01-10

    Altered gut microbiome populations are associated with a broad range of neurodevelopmental disorders including autism spectrum disorder and mood disorders. In animal models, modulation of gut microbiome populations via dietary manipulation influences brain function and behavior and has been shown to ameliorate behavioral symptoms. With striking differences in microbiome-driven behavior, we explored whether these behavioral changes are also accompanied by corresponding changes in neural tissue microstructure. Utilizing diffusion tensor imaging, we identified global changes in white matter structural integrity occurring in a diet-dependent manner. Analysis of 16S ribosomal RNA sequencing of gut bacteria also showed changes in bacterial populations as a function of diet. Changes in brain structure were found to be associated with diet-dependent changes in gut microbiome populations using a machine learning classifier for quantitative assessment of the strength of microbiome-brain region associations. These associations allow us to further test our understanding of the gut-brain-microbiota axis by revealing possible links between altered and dysbiotic gut microbiome populations and changes in brain structure, highlighting the potential impact of diet and metagenomic effects in neuroimaging.

  5. The gut microbiome.

    Science.gov (United States)

    Actis, Giovanni C

    2014-01-01

    Since the discovery and use of the microscope in the 17(th) century, we know that we host trillions of micro-organisms mostly in the form of bacteria indwelling the "barrier organs" skin, gut, and airways. They exert regulatory functions, are in a continuous dialogue with the intestinal epithelia, influence energy handling, produce nutrients, and may cause diabetes and obesity. The human microbiome has developed by modulating or avoiding inflammatory responses; the host senses bacterial presence through cell surface sensors (the Toll-like receptors) as well as by refining mucous barriers as passive defense mechanisms. The cell density and composition of the microbiome are variable and multifactored. The way of delivery establishes the type of initial flora; use of antibiotics is another factor; diet composition after weaning will shape the adult's microbiome composition, depending on the subject's life-style. Short-chain fatty acids participate in the favoring action exerted by microbiome in the pathogenesis of type-2 diabetes and obesity. Clinical observation has pinpointed a sharp rise of various dysimmune conditions in the last decades, including IBD and rheumatoid arthritis, changes that outweigh the input of simple heritability. It is nowadays proposed that the microbiome, incapable to keep up with the changes of our life-style and feeding sources in the past few decades might have contributed to these immune imbalances, finding itself inadequate to handle the changed gut environment. Another pathway to pathology is the rise of directly pathogenic phyla within a given microbiome: growth of adherent E. coli, of C. concisus, and of C. jejuni, might be examples of causes of local enteropathy, whereas the genus Prevotella copri is now suspected to be linked to rise of arthritic disorders. Inflammasomes are required to shape a non colitogenic flora. Treatment of IBD and infectious enteritides by the use of fecal transplant is warranted by this knowledge.

  6. Xenobiotic Metabolism and Gut Microbiomes

    Science.gov (United States)

    Das, Anubhav; Srinivasan, Meenakshi; Ghosh, Tarini Shankar; Mande, Sharmila S.

    2016-01-01

    Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome) in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs) also indicate geographic as well as age specific trends. PMID:27695034

  7. Xenobiotic Metabolism and Gut Microbiomes.

    Directory of Open Access Journals (Sweden)

    Anubhav Das

    Full Text Available Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs also indicate geographic as well as age specific trends.

  8. Advancing gut microbiome research using cultivation

    DEFF Research Database (Denmark)

    Sommer, Morten OA

    2015-01-01

    Culture-independent approaches have driven the field of microbiome research and illuminated intricate relationships between the gut microbiota and human health. However, definitively associating phenotypes to specific strains or elucidating physiological interactions is challenging for metagenomic...... approaches. Recently a number of new approaches to gut microbiota cultivation have emerged through the integration of high-throughput phylogenetic mapping and new simplified cultivation methods. These methodologies are described along with their potential use within microbiome research. Deployment of novel...

  9. An Integrated Metabolomic and Microbiome Analysis Identified Specific Gut Microbiota Associated with Fecal Cholesterol and Coprostanol in Clostridium difficile Infection.

    Directory of Open Access Journals (Sweden)

    Vijay C Antharam

    Full Text Available Clostridium difficile infection (CDI is characterized by dysbiosis of the intestinal microbiota and a profound derangement in the fecal metabolome. However, the contribution of specific gut microbes to fecal metabolites in C. difficile-associated gut microbiome remains poorly understood. Using gas-chromatography mass spectrometry (GC-MS and 16S rRNA deep sequencing, we analyzed the metabolome and microbiome of fecal samples obtained longitudinally from subjects with Clostridium difficile infection (n = 7 and healthy controls (n = 6. From 155 fecal metabolites, we identified two sterol metabolites at >95% match to cholesterol and coprostanol that significantly discriminated C. difficile-associated gut microbiome from healthy microbiota. By correlating the levels of cholesterol and coprostanol in fecal extracts with 2,395 bacterial operational taxonomic units (OTUs determined by 16S rRNA sequencing, we identified 63 OTUs associated with high levels of coprostanol and 2 OTUs correlated with low coprostanol levels. Using indicator species analysis (ISA, 31 of the 63 coprostanol-associated bacteria correlated with health, and two Veillonella species were associated with low coprostanol levels that correlated strongly with CDI. These 65 bacterial taxa could be clustered into 12 sub-communities, with each community containing a consortium of organisms that co-occurred with one another. Our studies identified 63 human gut microbes associated with cholesterol-reducing activities. Given the importance of gut bacteria in reducing and eliminating cholesterol from the GI tract, these results support the recent finding that gut microbiome may play an important role in host lipid metabolism.

  10. An Integrated Metabolomic and Microbiome Analysis Identified Specific Gut Microbiota Associated with Fecal Cholesterol and Coprostanol in Clostridium difficile Infection.

    Science.gov (United States)

    Antharam, Vijay C; McEwen, Daniel C; Garrett, Timothy J; Dossey, Aaron T; Li, Eric C; Kozlov, Andrew N; Mesbah, Zhubene; Wang, Gary P

    2016-01-01

    Clostridium difficile infection (CDI) is characterized by dysbiosis of the intestinal microbiota and a profound derangement in the fecal metabolome. However, the contribution of specific gut microbes to fecal metabolites in C. difficile-associated gut microbiome remains poorly understood. Using gas-chromatography mass spectrometry (GC-MS) and 16S rRNA deep sequencing, we analyzed the metabolome and microbiome of fecal samples obtained longitudinally from subjects with Clostridium difficile infection (n = 7) and healthy controls (n = 6). From 155 fecal metabolites, we identified two sterol metabolites at >95% match to cholesterol and coprostanol that significantly discriminated C. difficile-associated gut microbiome from healthy microbiota. By correlating the levels of cholesterol and coprostanol in fecal extracts with 2,395 bacterial operational taxonomic units (OTUs) determined by 16S rRNA sequencing, we identified 63 OTUs associated with high levels of coprostanol and 2 OTUs correlated with low coprostanol levels. Using indicator species analysis (ISA), 31 of the 63 coprostanol-associated bacteria correlated with health, and two Veillonella species were associated with low coprostanol levels that correlated strongly with CDI. These 65 bacterial taxa could be clustered into 12 sub-communities, with each community containing a consortium of organisms that co-occurred with one another. Our studies identified 63 human gut microbes associated with cholesterol-reducing activities. Given the importance of gut bacteria in reducing and eliminating cholesterol from the GI tract, these results support the recent finding that gut microbiome may play an important role in host lipid metabolism.

  11. Alterations of the Gut Microbiome in Hypertension

    Directory of Open Access Journals (Sweden)

    Qiulong Yan

    2017-08-01

    Full Text Available Introduction: Human gut microbiota is believed to be directly or indirectly involved in cardiovascular diseases and hypertension. However, the identification and functional status of the hypertension-related gut microbe(s have not yet been surveyed in a comprehensive manner.Methods: Here we characterized the gut microbiome in hypertension status by comparing fecal samples of 60 patients with primary hypertension and 60 gender-, age-, and body weight-matched healthy controls based on whole-metagenome shotgun sequencing.Results: Hypertension implicated a remarkable gut dysbiosis with significant reduction in within-sample diversity and shift in microbial composition. Metagenome-wide association study (MGWAS revealed 53,953 microbial genes that differ in distribution between the patients and healthy controls (false discovery rate, 0.05 and can be grouped into 68 clusters representing bacterial species. Opportunistic pathogenic taxa, such as, Klebsiella spp., Streptococcus spp., and Parabacteroides merdae were frequently distributed in hypertensive gut microbiome, whereas the short-chain fatty acid producer, such as, Roseburia spp. and Faecalibacterium prausnitzii, were higher in controls. The number of hypertension-associated species also showed stronger correlation to the severity of disease. Functionally, the hypertensive gut microbiome exhibited higher membrane transport, lipopolysaccharide biosynthesis and steroid degradation, while in controls the metabolism of amino acid, cofactors and vitamins was found to be higher. We further provided the microbial markers for disease discrimination and achieved an area under the receiver operator characteristic curve (AUC of 0.78, demonstrating the potential of gut microbiota in prediction of hypertension.Conclusion: These findings represent specific alterations in microbial diversity, genes, species and functions of the hypertensive gut microbiome. Further studies on the causality relationship between

  12. Metagenomic Analysis of the Human Gut Microbiome

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha

    individuals have lower diversity microbiomes with incomplete functional capacity. Diversity is an important measurement linking microbiome variance to diseases. Our results suggest that diseases are linked to the microbiome not by the presence of “bad” bacteria, but mostly by the loss of the “good” bacteria....... Finally, we show that bacterial adaptations explain the shift observed in the human gut microbiome....

  13. Gut microbiomes and their metabolites shape human and animal health.

    Science.gov (United States)

    Park, Woojun

    2018-03-01

    The host genetic background, complex surrounding environments, and gut microbiome are very closely linked to human and animal health and disease. Although significant correlations between gut microbiota and human and animal health have been revealed, the specific roles of each gut bacterium in shaping human and animal health and disease remain unclear. However, recent omics-based studies using experimental animals and surveys of gut microbiota from unhealthy humans have provided insights into the relationships among microbial community, their metabolites, and human and animal health. This editorial introduces six review papers that provide new discoveries of disease-associated microbiomes and suggest possible microbiome-based therapeutic approaches to human disease.

  14. Dietary effects on human gut microbiome diversity.

    Science.gov (United States)

    Xu, Zhenjiang; Knight, Rob

    2015-01-01

    The human gut harbours diverse and abundant microbes, forming a complex ecological system that interacts with host and environmental factors. In this article, we summarise recent advances in microbiome studies across both Western and non-Western populations, either in cross-sectional or longitudinal surveys, and over various age groups, revealing a considerable diversity and variability in the human gut microbiome. Of all the exogenous factors affecting gut microbiome, a long-term diet appears to have the largest effect to date. Recent research on the effects of dietary interventions has shown that the gut microbiome can change dramatically with diet; however, the gut microbiome is generally resilient, and short-term dietary intervention is not typically successful in treating obesity and malnutrition. Understanding the dynamics of the gut microbiome under different conditions will help us diagnose and treat many diseases that are now known to be associated with microbial communities.

  15. Dietary effects on human gut microbiome diversity

    OpenAIRE

    Xu, Zhenjiang; Knight, Rob

    2014-01-01

    The human gut harbours diverse and abundant microbes, forming a complex ecological system that interacts with host and environmental factors. In this article, we summarise recent advances in microbiome studies across both Western and non-Western populations, either in cross-sectional or longitudinal surveys, and over various age groups, revealing a considerable diversity and variability in the human gut microbiome. Of all the exogenous factors affecting gut microbiome, a long-term diet appear...

  16. The Microbiome-Gut-Behavior Axis: Crosstalk Between the Gut Microbiome and Oligodendrocytes Modulates Behavioral Responses.

    Science.gov (United States)

    Ntranos, Achilles; Casaccia, Patrizia

    2018-01-01

    Environmental and dietary stimuli have always been implicated in brain development and behavioral responses. The gut, being the major portal of communication with the external environment, has recently been brought to the forefront of this interaction with the establishment of a gut-brain axis in health and disease. Moreover, recent breakthroughs in germ-free and antibiotic-treated mice have demonstrated the significant impact of the microbiome in modulating behavioral responses in mice and have established a more specific microbiome-gut-behavior axis. One of the mechanisms by which this axis affects social behavior is by regulating myelination at the prefrontal cortex, an important site for complex cognitive behavior planning and decision-making. The prefrontal cortex exhibits late myelination of its axonal projections that could extend into the third decade of life in humans, which make it susceptible to external influences, such as microbial metabolites. Changes in the gut microbiome were shown to alter the composition of the microbial metabolome affecting highly permeable bioactive compounds, such as p-cresol, which could impair oligodendrocyte differentiation. Dysregulated myelination in the prefrontal cortex is then able to affect behavioral responses in mice, shifting them towards social isolation. The reduced social interactions could then limit microbial exchange, which could otherwise pose a threat to the survival of the existing microbial community in the host and, thus, provide an evolutionary advantage to the specific microbial community. In this review, we will analyze the microbiome-gut-behavior axis, describe the interactions between the gut microbiome and oligodendrocytes and highlight their role in the modulation of social behavior.

  17. Correlations of host genetic and gut microbiome composition

    Directory of Open Access Journals (Sweden)

    Krystyna Dabrowska

    2016-08-01

    Full Text Available The human gut microbiome has a considerable impact on host health. The long list of microbiome-related health disorders raises the question of what in fact determines microbiome composition. In this review we sought to understand how the host itself impacts the structure of the gut microbiota population, specifically by correlations of host genetics and gut microbiome composition.Host genetic profile has been linked to differences in microbiome composition, thus suggesting that host genetics can shape the gut microbiome of the host. However, cause-consequence mechanisms behind these links are still unclear. A survey of the possible mechanisms allowing host genetics to shape microbiota composition in the gut demonstrated the major role of metabolic functions and the immune system. A considerable impact of other factors, such as diet, may outweigh the effects of host genetic background. More studies are necessary for good understanding of the relations between the host genetic profile, gut microbiome composition, and host health. According to the idea of personalized medicine, patient-tailored management of microbiota content remains a fascinating area for further inquiry.

  18. Unexplored Archaeal Diversity in the Great Ape Gut Microbiome.

    Science.gov (United States)

    Raymann, Kasie; Moeller, Andrew H; Goodman, Andrew L; Ochman, Howard

    2017-01-01

    Archaea are habitual residents of the human gut flora but are detected at substantially lower frequencies than bacteria. Previous studies have indicated that each human harbors very few archaeal species. However, the low diversity of human-associated archaea that has been detected could be due to the preponderance of bacteria in these communities, such that relatively few sequences are classified as Archaea even when microbiomes are sampled deeply. Moreover, the universal prokaryotic primer pair typically used to interrogate microbial diversity has low specificity to the archaeal domain, potentially leaving vast amounts of diversity unobserved. As a result, the prevalence, diversity, and distribution of archaea may be substantially underestimated. Here we evaluate archaeal diversity in gut microbiomes using an approach that targets virtually all known members of this domain. Comparing microbiomes across five great ape species allowed us to examine the dynamics of archaeal lineages over evolutionary time scales. These analyses revealed hundreds of gut-associated archaeal lineages, indicating that upwards of 90% of the archaeal diversity in the human and great ape gut microbiomes has been overlooked. Additionally, these results indicate a progressive reduction in archaeal diversity in the human lineage, paralleling the decline reported for bacteria. IMPORTANCE Our findings show that Archaea are a habitual and vital component of human and great ape gut microbiomes but are largely ignored on account of the failure of previous studies to realize their full diversity. Here we report unprecedented levels of archaeal diversity in great ape gut microbiomes, exceeding that detected by conventional 16S rRNA gene surveys. Paralleling what has been reported for bacteria, there is a vast reduction of archaeal diversity in humans. Our study demonstrates that archaeal diversity in the great ape gut microbiome greatly exceeds that reported previously and provides the basis for

  19. Emerging Technologies for Gut Microbiome Research

    Science.gov (United States)

    Arnold, Jason W.; Roach, Jeffrey; Azcarate-Peril, M. Andrea

    2016-01-01

    Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies. PMID:27426971

  20. The gut microbiome in atherosclerotic cardiovascular disease

    DEFF Research Database (Denmark)

    Jie, Zhuye; Xia, Huihua; Zhong, Shi-Long

    2017-01-01

    The gut microbiota has been linked to cardiovascular diseases. However, the composition and functional capacity of the gut microbiome in relation to cardiovascular diseases have not been systematically examined. Here, we perform a metagenome-wide association study on stools from 218 individuals...... with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls. The ACVD gut microbiome deviates from the healthy status by increased abundance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for metabolism or transport of several molecules important for cardiovascular......), with liver cirrhosis, and rheumatoid arthritis. Our data represent a comprehensive resource for further investigations on the role of the gut microbiome in promoting or preventing ACVD as well as other related diseases.The gut microbiota may play a role in cardiovascular diseases. Here, the authors perform...

  1. Metabolome of human gut microbiome is predictive of host dysbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Peter E.; Dai, Yang

    2015-09-14

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  2. Bioinformatics Approaches for Human Gut Microbiome Research

    Directory of Open Access Journals (Sweden)

    Zhijun Zheng

    2016-07-01

    Full Text Available The human microbiome has received much attention because many studies have reported that the human gut microbiome is associated with several diseases. The very large datasets that are produced by these kinds of studies means that bioinformatics approaches are crucial for their analysis. Here, we systematically reviewed bioinformatics tools that are commonly used in microbiome research, including a typical pipeline and software for sequence alignment, abundance profiling, enterotype determination, taxonomic diversity, identifying differentially abundant species/genes, gene cataloging, and functional analyses. We also summarized the algorithms and methods used to define metagenomic species and co-abundance gene groups to expand our understanding of unclassified and poorly understood gut microbes that are undocumented in the current genome databases. Additionally, we examined the methods used to identify metagenomic biomarkers based on the gut microbiome, which might help to expand the knowledge and approaches for disease detection and monitoring.

  3. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis.

    Science.gov (United States)

    Wen, Chengping; Zheng, Zhijun; Shao, Tiejuan; Liu, Lin; Xie, Zhijun; Le Chatelier, Emmanuelle; He, Zhixing; Zhong, Wendi; Fan, Yongsheng; Zhang, Linshuang; Li, Haichang; Wu, Chunyan; Hu, Changfeng; Xu, Qian; Zhou, Jia; Cai, Shunfeng; Wang, Dawei; Huang, Yun; Breban, Maxime; Qin, Nan; Ehrlich, Stanislav Dusko

    2017-07-27

    The assessment and characterization of the gut microbiome has become a focus of research in the area of human autoimmune diseases. Ankylosing spondylitis is an inflammatory autoimmune disease and evidence showed that ankylosing spondylitis may be a microbiome-driven disease. To investigate the relationship between the gut microbiome and ankylosing spondylitis, a quantitative metagenomics study based on deep shotgun sequencing was performed, using gut microbial DNA from 211 Chinese individuals. A total of 23,709 genes and 12 metagenomic species were shown to be differentially abundant between ankylosing spondylitis patients and healthy controls. Patients were characterized by a form of gut microbial dysbiosis that is more prominent than previously reported cases with inflammatory bowel disease. Specifically, the ankylosing spondylitis patients demonstrated increases in the abundance of Prevotella melaninogenica, Prevotella copri, and Prevotella sp. C561 and decreases in Bacteroides spp. It is noteworthy that the Bifidobacterium genus, which is commonly used in probiotics, accumulated in the ankylosing spondylitis patients. Diagnostic algorithms were established using a subset of these gut microbial biomarkers. Alterations of the gut microbiome are associated with development of ankylosing spondylitis. Our data suggest biomarkers identified in this study might participate in the pathogenesis or development process of ankylosing spondylitis, providing new leads for the development of new diagnostic tools and potential treatments.

  4. Control of the gut microbiome by fecal microRNA

    Directory of Open Access Journals (Sweden)

    Shirong Liu

    2016-03-01

    Full Text Available Since their discovery in the early 90s, microRNAs (miRNAs, small non-coding RNAs, have mainly been associated with posttranscriptional regulation of gene expression on a cell-autonomous level. Recent evidence has extended this role by adding inter-species communication to the manifold functional range. In our latest study [Liu S, et al., 2016, Cell Host & Microbe], we identified miRNAs in gut lumen and feces of both mice and humans. We found that intestinal epithelial cells (IEC and Hopx+ cells were the two main sources of fecal miRNA. Deficiency of IEC-miRNA resulted in gut dysbiosis and WT fecal miRNA transplantation restored the gut microbiota. We investigated potential mechanisms for this effect and found that miRNAs were able to regulate the gut microbiome. By culturing bacteria with miRNAs, we found that host miRNAs were able to enter bacteria, specifically regulate bacterial gene transcripts and affect bacterial growth. Oral administration of synthetic miRNA mimics affected specific bacteria in the gut. Our findings describe a previously unknown pathway by which the gut microbiome is regulated by the host and raises the possibility that miRNAs may be used therapeutically to manipulate the microbiome for the treatment of disease.

  5. Proton pump inhibitors affect the gut microbiome

    NARCIS (Netherlands)

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Feenstra, Ettje T.; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    BACKGROUND AND AIMS: Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or

  6. Enterotypes of the human gut microbiome

    DEFF Research Database (Denmark)

    Arumugam, M.; Raes, J.; Pelletier, E.

    2011-01-01

    Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries...

  7. Enterotypes of the human gut microbiome

    DEFF Research Database (Denmark)

    Arumugam, Manimozhiyan; Raes, Jeroen; Pelletier, Eric

    2011-01-01

    Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previou...

  8. The human gut microbiome, a taxonomic conundrum.

    Science.gov (United States)

    Sankar, Senthil Alias; Lagier, Jean-Christophe; Pontarotti, Pierre; Raoult, Didier; Fournier, Pierre-Edouard

    2015-06-01

    From culture to metagenomics, within only 130 years, our knowledge of the human microbiome has considerably improved. With >1000 microbial species identified to date, the gastro-intestinal microbiota is the most complex of human biotas. It is composed of a majority of Bacteroidetes and Firmicutes and, although exhibiting great inter-individual variations according to age, geographic origin, disease or antibiotic uptake, it is stable over time. Metagenomic studies have suggested associations between specific gut microbiota compositions and a variety of diseases, including irritable bowel syndrome, Crohn's disease, colon cancer, type 2 diabetes and obesity. However, these data remain method-dependent, as no consensus strategy has been defined to decipher the complexity of the gut microbiota. High-throughput culture-independent techniques have highlighted the limitations of culture by showing the importance of uncultured species, whereas modern culture methods have demonstrated that metagenomics underestimates the microbial diversity by ignoring minor populations. In this review, we highlight the progress and challenges that pave the way to a complete understanding of the human gastrointestinal microbiota and its influence on human health. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Proton pump inhibitors affect the gut microbiome.

    Science.gov (United States)

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Tigchelaar, Ettje F; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    2016-05-01

    Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or promoting colonisation by pathogens. In this study, we investigated the influence of PPI use on the gut microbiome. The gut microbiome composition of 1815 individuals, spanning three cohorts, was assessed by tag sequencing of the 16S rRNA gene. The difference in microbiota composition in PPI users versus non-users was analysed separately in each cohort, followed by a meta-analysis. 211 of the participants were using PPIs at the moment of stool sampling. PPI use is associated with a significant decrease in Shannon's diversity and with changes in 20% of the bacterial taxa (false discovery rate microbiome of PPI-users, including the genus Rothia (p=9.8×10(-38)). In PPI users we observed a significant increase in bacteria: genera Enterococcus, Streptococcus, Staphylococcus and the potentially pathogenic species Escherichia coli. The differences between PPI users and non-users observed in this study are consistently associated with changes towards a less healthy gut microbiome. These differences are in line with known changes that predispose to C. difficile infections and can potentially explain the increased risk of enteric infections in PPI users. On a population level, the effects of PPI are more prominent than the effects of antibiotics or other commonly used drugs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. From next-generation sequencing to systematic modeling of the gut microbiome

    OpenAIRE

    Ji, Boyang; Nielsen, Jens

    2015-01-01

    Changes in the human gut microbiome are associated with altered human metabolism and health, yet the mechanisms of interactions between microbial species and human metabolism have not been clearly elucidated. Next-generation sequencing has revolutionized the human gut microbiome research, but most current applications concentrate on studying the microbial diversity of communities and have at best provided associations between specific gut bacteria and human health. However, little is known ab...

  11. Breaking down the gut microbiome composition in multiple sclerosis.

    Science.gov (United States)

    Budhram, Adrian; Parvathy, Seema; Kremenchutzky, Marcelo; Silverman, Michael

    2017-04-01

    The gut microbiome, which consists of a highly diverse ecologic community of micro-organisms, has increasingly been studied regarding its role in multiple sclerosis (MS) immunopathogenesis. This review critically examines the literature investigating the gut microbiome in MS. A comprehensive search was performed of PubMed databases and ECTRIMS meeting abstracts for literature relating to the gut microbiome in MS. Controlled studies examining the gut microbiome in patients with MS were included for review. Identified studies were predominantly case-control in their design and consistently found differences in the gut microbiome of MS patients compared to controls. We examine plausible mechanistic links between these differences and MS immunopathogenesis, and discuss the therapeutic implications of these findings. Review of the available literature reveals potential immunopathogenic links between the gut microbiome and MS, identifies avenues for therapeutic advancement, and emphasizes the need for further systematic study in this emerging field.

  12. Alzheimer's Disease Histological and Behavioral Manifestations in Transgenic Mice Correlate with Specific Gut Microbiome State.

    Science.gov (United States)

    Shen, Liang; Liu, Lu; Ji, Hong-Fang

    2017-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disease and is the most common form of dementia. In recent years, many studies indicated the association of gut microbiota changes with metabolic diseases. However, the gut microbiota of AD has not been investigated. The present study aims to compare the gut microbiota in APP/PS1 transgenic mice of AD and C57/Bl6 wild-type (WT) mice by pyrosequencing the V3 and V4 regions of the bacterial 16S ribosomal RNA genes. The 3-, 6-, and 8-month-old APP/PS1 and WT mice were used to explore the effects of age on the gut microbiota. First, the results indicated that impaired spatial learning and memory appeared in 6-month-old APP/PS1 mice and was further aggravated in the 8-month-old group, which was consistent with immunohistochemical studies of amyloid plaque. Second, AD histological and behavioral manifestations in the APP/PS1 mice were found to be correlated with a specific gut microbiome state. Third, the microbiota diversity of APP/PS1 mice decreased with increased age. Fourth, further inspection showed that the abundance of Helicobacteraceae and Desulfovibrionaceae at the family level and Odoribacter and Helicobacter at the genus level increased significantly in APP/PS1 mice than in WT mice, while Prevotella abundance in WT mice was significantly higher than in APP/PS1 mice. More human studies are warranted to explore the potential of gut microbiota as diagnostic biomarkers or therapeutic target for AD.

  13. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis

    OpenAIRE

    Le Chatelier, Emmanuelle; He, Zhixing; Zhong, Wendi; Fan, Yongsheng; Zhang, Linshuang; Li, Haichang; Wu, Chunyan; Hu, Changfeng; Xu, Qian; Zhou, Jia; Cai, Shunfeng; Wang, Dawei; Huang, Yun; Breban, Maxime; Qin, Nan

    2017-01-01

    Background The assessment and characterization of the gut microbiome has become a focus of research in the area of human autoimmune diseases. Ankylosing spondylitis is an inflammatory autoimmune disease and evidence showed that ankylosing spondylitis may be a microbiome-driven disease. Results To investigate the relationship between the gut microbiome and ankylosing spondylitis, a quantitative metagenomics study based on deep shotgun sequencing was performed, using gut microbial DNA from 211 ...

  14. The gut microbiome and the brain.

    Science.gov (United States)

    Galland, Leo

    2014-12-01

    The human gut microbiome impacts human brain health in numerous ways: (1) Structural bacterial components such as lipopolysaccharides provide low-grade tonic stimulation of the innate immune system. Excessive stimulation due to bacterial dysbiosis, small intestinal bacterial overgrowth, or increased intestinal permeability may produce systemic and/or central nervous system inflammation. (2) Bacterial proteins may cross-react with human antigens to stimulate dysfunctional responses of the adaptive immune system. (3) Bacterial enzymes may produce neurotoxic metabolites such as D-lactic acid and ammonia. Even beneficial metabolites such as short-chain fatty acids may exert neurotoxicity. (4) Gut microbes can produce hormones and neurotransmitters that are identical to those produced by humans. Bacterial receptors for these hormones influence microbial growth and virulence. (5) Gut bacteria directly stimulate afferent neurons of the enteric nervous system to send signals to the brain via the vagus nerve. Through these varied mechanisms, gut microbes shape the architecture of sleep and stress reactivity of the hypothalamic-pituitary-adrenal axis. They influence memory, mood, and cognition and are clinically and therapeutically relevant to a range of disorders, including alcoholism, chronic fatigue syndrome, fibromyalgia, and restless legs syndrome. Their role in multiple sclerosis and the neurologic manifestations of celiac disease is being studied. Nutritional tools for altering the gut microbiome therapeutically include changes in diet, probiotics, and prebiotics.

  15. Early-life gut microbiome and egg allergy.

    Science.gov (United States)

    Fazlollahi, Mina; Chun, Yoojin; Grishin, Alexander; Wood, Robert A; Burks, A Wesley; Dawson, Peter; Jones, Stacie M; Leung, Donald Y M; Sampson, Hugh A; Sicherer, Scott H; Bunyavanich, Supinda

    2018-01-10

    Gut microbiota may play a role in egg allergy. We sought to examine the association between early-life gut microbiota and egg allergy. We studied 141 children with egg allergy and controls from the multi-center Consortium of Food Allergy Research study. At enrollment (age 3 to 16 months), fecal samples were collected and clinical evaluation, egg specific IgE measurement, and egg skin prick test were performed. Gut microbiome was profiled by 16S rRNA sequencing. Analyses for the primary outcome of egg allergy at enrollment, and the secondary outcomes of egg sensitization at enrollment and resolution of egg allergy by age 8 years, were performed using Quantitative Insights into Microbial Ecology (QIIME), Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), and Statistical Analysis of Metagenomic Profiles (STAMP). Compared to controls, increased alpha diversity and distinct taxa (PERMANOVA P=5.0x10 -4 ) characterized the early-life gut microbiome of children with egg allergy. Genera from the Lachnospiraceae, Streptococcaceae, and Leuconostocaceae families were differentially abundant in children with egg allergy. Predicted metagenome functional analyses showed differential purine metabolism by the gut microbiota of egg allergic subjects (Kruskal Wallis P adj =0.021). Greater gut microbiome diversity and genera from Lachnospiraceae and Ruminococcaceae were associated with egg sensitization (PERMANOVA P = 5.0x10 -4 ). Among those with egg allergy, there was no association between early-life gut microbiota and egg allergy resolution by age 8 years. The distinct early-life gut microbiota in egg allergic and egg-sensitized children identified by our study may point to targets for preventive or therapeutic intervention. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Gut microbiome composition is associated with temperament during early childhood.

    Science.gov (United States)

    Christian, Lisa M; Galley, Jeffrey D; Hade, Erinn M; Schoppe-Sullivan, Sarah; Kamp Dush, Claire; Bailey, Michael T

    2015-03-01

    Understanding the dynamics of the gut-brain axis has clinical implications for physical and mental health conditions, including obesity and anxiety. As such disorders have early life antecedents, it is of value to determine if associations between the gut microbiome and behavior are present in early life in humans. We used next generation pyrosequencing to examine associations between the community structure of the gut microbiome and maternal ratings of child temperament in 77 children at 18-27months of age. It was hypothesized that children would differ in their gut microbial structure, as indicated by measures of alpha and beta diversity, based on their temperamental characteristics. Among both boys and girls, greater Surgency/Extraversion was associated greater phylogenetic diversity. In addition, among boys only, subscales loading on this composite scale were associated with differences in phylogenetic diversity, the Shannon Diversity index (SDI), beta diversity, and differences in abundances of Dialister, Rikenellaceae, Ruminococcaceae, and Parabacteroides. In girls only, higher Effortful Control was associated with a lower SDI score and differences in both beta diversity and Rikenellaceae were observed in relation to Fear. Some differences in dietary patterns were observed in relation to temperament, but these did not account for the observed differences in the microbiome. Differences in gut microbiome composition, including alpha diversity, beta diversity, and abundances of specific bacterial species, were observed in association with temperament in toddlers. This study was cross-sectional and observational and, therefore, does not permit determination of the causal direction of effects. However, if bidirectional brain-gut relationships are present in humans in early life, this may represent an opportunity for intervention relevant to physical as well as mental health disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Brain Gut Microbiome Interactions and Functional Bowel Disorders

    Science.gov (United States)

    Mayer, Emeran A.; Savidge, Tor; Shulman, Robert J.

    2014-01-01

    Alterations in the bidirectional interactions between the gut and the nervous system play an important role in IBS pathophysiology and symptom generation. A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. Characterizations of alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It remains to be determined if the observed abnormalities are a consequence of altered top down signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation of the microbiota, and if they play a role in the development of altered brain gut interactions early in life. Different mechanisms may play role in subsets of patients. Characterization of gut microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating gut metabolites with specific abnormalities in the gut brain axis are required to answer these questions. PMID:24583088

  18. Community assembly of the worm gut microbiome

    Science.gov (United States)

    Gore, Jeff

    It has become increasingly clear that human health is strongly influenced by the bacteria that live within the gut, known collectively as the gut microbiome. This complex community varies tremendously between individuals, but understanding the sources that lead to this heterogeneity is challenging. To address this challenge, we are using a bottom-up approach to develop a predictive understanding of how the microbiome assembles and functions within a simple and experimentally tractable gut, the gut of the worm C. elegans. We have found that stochastic community assembly in the C. elegansintestine is sufficient to produce strong inter-worm heterogeneity in community composition. When worms are fed with two neutrally-competing fluorescently labeled bacterial strains, we observe stochastically-driven bimodality in community composition, where approximately half of the worms are dominated by each bacterial strain. A simple model incorporating stochastic colonization suggests that heterogeneity between worms is driven by the low rate at which bacteria successfully establish new intestinal colonies. We can increase this rate experimentally by feeding worms at high bacterial density; in these conditions the bimodality disappears. We have also characterized all pairwise interspecies competitions among a set of eleven bacterial species, illuminating the rules governing interspecies community assembly. These results demonstrate the potential importance of stochastic processes in bacterial community formation and suggest a role for C. elegans as a model system for ecology of host-associated communities.

  19. The Gut Microbiome Is Altered in a Letrozole-Induced Mouse Model of Polycystic Ovary Syndrome.

    Directory of Open Access Journals (Sweden)

    Scott T Kelley

    Full Text Available Women with polycystic ovary syndrome (PCOS have reproductive and metabolic abnormalities that result in an increased risk of infertility, diabetes and cardiovascular disease. The large intestine contains a complex community of microorganisms (the gut microbiome that is dysregulated in humans with obesity and type 2 diabetes. Using a letrozole-induced PCOS mouse model, we demonstrated significant diet-independent changes in the gut microbial community, suggesting that gut microbiome dysbiosis may also occur in PCOS women. Letrozole treatment was associated with a time-dependent shift in the gut microbiome and a substantial reduction in overall species and phylogenetic richness. Letrozole treatment also correlated with significant changes in the abundance of specific Bacteroidetes and Firmicutes previously implicated in other mouse models of metabolic disease in a time-dependent manner. Our results suggest that the hyperandrogenemia observed in PCOS may significantly alter the gut microbiome independently of diet.

  20. Nutrition and the gut microbiome in the elderly.

    Science.gov (United States)

    Salazar, Nuria; Valdés-Varela, Lorena; González, Sonia; Gueimonde, Miguel; de Los Reyes-Gavilán, Clara G

    2017-03-04

    The gut microbiota is the assembly of microorganisms living in our intestine and their genomes are known as the microbiome. The correct composition and functionality of this microbiome is essential for maintaining a "healthy status." Aging is related to changes in the gut microbiota which are frequently associated with physiological modifications of the gastrointestinal tract, as well as, to changes in dietary patterns, together with a concomitant decline in cognitive and immune function, all together contributing to frailty. Therefore, nutritional strategies directed at restoring the microbiota in the elderly have to be addressed from a global perspective, considering not only the microbiota but also other extra-intestinal targets of action. The present review aims at summarizing the current knowledge on intestinal microbiota alterations and other functions impaired in the elderly and to analyze tools for implementing nutritional strategies, through the use of probiotics, prebiotics or specific nutrients in order to counterbalance such alterations.

  1. Gut microbiome and lipid metabolism : from associations to mechanisms

    NARCIS (Netherlands)

    Wang, Zheng; Koonen, Debby; Hofker, Marten; Fu, Jingyuan

    Purpose of review The gut microbiome has now been convincingly linked to human metabolic health but the underlying causality and mechanisms remain poorly understood. This review focuses on the recent progress in establishing the associations between gut microbiome species and lipid metabolism in

  2. The Human Neonatal Gut Microbiome: A Brief Review

    Directory of Open Access Journals (Sweden)

    Emily C. Gritz

    2015-03-01

    Full Text Available The field of genomics has expanded into subspecialties such as metagenomics over the course of the last decade and a half. The development of massively parallel sequencing capabilities has allowed for increasingly detailed study of the genome of the human microbiome, the microbial super organ that resides symbiotically within the mucosal tissues and integumentary system of the human host. The gut microbiome, and particularly the study of its origins in neonates, have become subtopics of great interest within the field of genomics. This brief review seeks to summarize recent literature regarding the origins and establishment of the neonatal gut microbiome, beginning in utero, and how it is affected by neonatal nutritional status (breastfed versus formula fed and gestational age (term versus preterm. We also explore the role of dysbiosis, a perturbation within the fragile ecosystem of the microbiome, and its role in the origin of select pathologic states, specifically, obesity and necrotizing enterocolitis in preterm infants. We discuss the evidence supporting enteral pre- and probiotic supplementation of commensal organisms such as Bifidobacterium and Lactobacillus in the neonatal period, and their role in the prevention and amelioration of necrotizing enterocolitis in premature infants. Finally, we review directions to consider for further research to promote human health within this field.

  3. Nutrition, the Gut and the Microbiome

    DEFF Research Database (Denmark)

    Kjølbæk, Louise

    , the current evidence does not support that protein supplementation improves weight maintenance after a weight loss, compared to carbohydrate, in individuals with a normal protein intake. Convincing evidence supports that dietary calcium intake improves BP and lipid profile, while an effect on faecal fat......, but an optimal diet to improve the success of weight loss maintenance has not reached consensus among worldwide expects. During the last decade, it has been observed that the gut microbiota composition is associated with obesity and obesity-associated diseases. However, a deeper understanding of how the host...... the gut and the microbiome in relation to obesity and obesity-associated diseases. The objective was investigated by the conduct of three studies (KIFU, PROKA, MNG). In KIFU, the effect of habitual calcium intake on faecal fat and energy excretions was investigated by an observational study. The 189...

  4. Rapid changes in the gut microbiome during human evolution.

    Science.gov (United States)

    Moeller, Andrew H; Li, Yingying; Mpoudi Ngole, Eitel; Ahuka-Mundeke, Steve; Lonsdorf, Elizabeth V; Pusey, Anne E; Peeters, Martine; Hahn, Beatrice H; Ochman, Howard

    2014-11-18

    Humans are ecosystems containing trillions of microorganisms, but the evolutionary history of this microbiome is obscured by a lack of knowledge about microbiomes of African apes. We sequenced the gut communities of hundreds of chimpanzees, bonobos, and gorillas and developed a phylogenetic approach to reconstruct how present-day human microbiomes have diverged from those of ancestral populations. Compositional change in the microbiome was slow and clock-like during African ape diversification, but human microbiomes have deviated from the ancestral state at an accelerated rate. Relative to the microbiomes of wild apes, human microbiomes have lost ancestral microbial diversity while becoming specialized for animal-based diets. Individual wild apes cultivate more phyla, classes, orders, families, genera, and species of bacteria than do individual humans across a range of societies. These results indicate that humanity has experienced a depletion of the gut flora since diverging from Pan.

  5. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors

    Directory of Open Access Journals (Sweden)

    Lucas Auer

    2017-12-01

    Full Text Available Termites are xylophages, being able to digest a wide variety of lignocellulosic biomass including wood with high lignin content. This ability to feed on recalcitrant plant material is the result of complex symbiotic relationships, which involve termite-specific gut microbiomes. Therefore, these represent a potential source of microorganisms for the bioconversion of lignocellulose in bioprocesses targeting the production of carboxylates. In this study, gut microbiomes of four termite species were studied for their capacity to degrade wheat straw and produce carboxylates in controlled bioreactors. All of the gut microbiomes successfully degraded lignocellulose and up to 45% w/w of wheat straw degradation was observed, with the Nasutitermes ephratae gut-microbiome displaying the highest levels of wheat straw degradation, carboxylate production and enzymatic activity. Comparing the 16S rRNA gene diversity of the initial gut inocula to the bacterial communities in lignocellulose degradation bioreactors revealed important changes in community diversity. In particular, taxa such as Spirochaetes and Fibrobacteres that were highly abundant in the initial gut inocula were replaced by Firmicutes and Proteobacteria at the end of incubation in wheat straw bioreactors. Overall, this study demonstrates that termite-gut microbiomes constitute a reservoir of lignocellulose-degrading bacteria that can be harnessed in artificial conditions for biomass conversion processes that lead to the production of useful molecules.

  6. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors.

    Science.gov (United States)

    Auer, Lucas; Lazuka, Adèle; Sillam-Dussès, David; Miambi, Edouard; O'Donohue, Michael; Hernandez-Raquet, Guillermina

    2017-01-01

    Termites are xylophages, being able to digest a wide variety of lignocellulosic biomass including wood with high lignin content. This ability to feed on recalcitrant plant material is the result of complex symbiotic relationships, which involve termite-specific gut microbiomes. Therefore, these represent a potential source of microorganisms for the bioconversion of lignocellulose in bioprocesses targeting the production of carboxylates. In this study, gut microbiomes of four termite species were studied for their capacity to degrade wheat straw and produce carboxylates in controlled bioreactors. All of the gut microbiomes successfully degraded lignocellulose and up to 45% w/w of wheat straw degradation was observed, with the Nasutitermes ephratae gut-microbiome displaying the highest levels of wheat straw degradation, carboxylate production and enzymatic activity. Comparing the 16S rRNA gene diversity of the initial gut inocula to the bacterial communities in lignocellulose degradation bioreactors revealed important changes in community diversity. In particular, taxa such as Spirochaetes and Fibrobacteres that were highly abundant in the initial gut inocula were replaced by Firmicutes and Proteobacteria at the end of incubation in wheat straw bioreactors. Overall, this study demonstrates that termite-gut microbiomes constitute a reservoir of lignocellulose-degrading bacteria that can be harnessed in artificial conditions for biomass conversion processes that lead to the production of useful molecules.

  7. Host Genetics and Gut Microbiome : Challenges and Perspectives

    NARCIS (Netherlands)

    Kurilshikov, Alexander; Wijmenga, Cisca; Fu, Jingyuan; Zhernakova, Alexandra

    The mammalian gut is colonized by trillions of microorganisms collectively called the microbiome. It is increasingly clear that this microbiome has a critical role of in many aspects of health including metabolism and immunity. While environmental factors such as diet and medications have been shown

  8. The gut mycobiome of the Human Microbiome Project healthy cohort.

    Science.gov (United States)

    Nash, Andrea K; Auchtung, Thomas A; Wong, Matthew C; Smith, Daniel P; Gesell, Jonathan R; Ross, Matthew C; Stewart, Christopher J; Metcalf, Ginger A; Muzny, Donna M; Gibbs, Richard A; Ajami, Nadim J; Petrosino, Joseph F

    2017-11-25

    Most studies describing the human gut microbiome in healthy and diseased states have emphasized the bacterial component, but the fungal microbiome (i.e., the mycobiome) is beginning to gain recognition as a fundamental part of our microbiome. To date, human gut mycobiome studies have primarily been disease centric or in small cohorts of healthy individuals. To contribute to existing knowledge of the human mycobiome, we investigated the gut mycobiome of the Human Microbiome Project (HMP) cohort by sequencing the Internal Transcribed Spacer 2 (ITS2) region as well as the 18S rRNA gene. Three hundred seventeen HMP stool samples were analyzed by ITS2 sequencing. Fecal fungal diversity was significantly lower in comparison to bacterial diversity. Yeast dominated the samples, comprising eight of the top 15 most abundant genera. Specifically, fungal communities were characterized by a high prevalence of Saccharomyces, Malassezia, and Candida, with S. cerevisiae, M. restricta, and C. albicans operational taxonomic units (OTUs) present in 96.8, 88.3, and 80.8% of samples, respectively. There was a high degree of inter- and intra-volunteer variability in fungal communities. However, S. cerevisiae, M. restricta, and C. albicans OTUs were found in 92.2, 78.3, and 63.6% of volunteers, respectively, in all samples donated over an approximately 1-year period. Metagenomic and 18S rRNA gene sequencing data agreed with ITS2 results; however, ITS2 sequencing provided greater resolution of the relatively low abundance mycobiome constituents. Compared to bacterial communities, the human gut mycobiome is low in diversity and dominated by yeast including Saccharomyces, Malassezia, and Candida. Both inter- and intra-volunteer variability in the HMP cohort were high, revealing that unlike bacterial communities, an individual's mycobiome is no more similar to itself over time than to another person's. Nonetheless, several fungal species persisted across a majority of samples, evidence that

  9. Dietary Interventions to Modulate the Gut Microbiome-How Far Away Are We From Precision Medicine.

    Science.gov (United States)

    De Filippis, Francesca; Vitaglione, Paola; Cuomo, Rosario; Berni Canani, Roberto; Ercolini, Danilo

    2018-04-13

    The importance of the gut microbiome in human health and disease is fully acknowledged. A perturbation in the equilibrium among the different microbial populations living in the gut (dysbiosis) has been associated with the development of several types of diseases. Modulation of the gut microbiome through dietary intervention is an emerging therapeutic and preventive strategy for many conditions. Nevertheless, interpersonal differences in response to therapeutic treatments or dietary regimens are often observed during clinical trials, and recent research has suggested that subject-specific features of the gut microbiota may be responsible. In this review, we summarize recent findings in personalized nutrition, highlighting how individualized characterization of the microbiome may assist in designing ad hoc tailored dietary intervention for disease treatment and prevention. Moreover, we discuss the limitations and challenges encountered in integrating patient-specific microbial data into clinical practice.

  10. A psychology of the human brain-gut-microbiome axis.

    Science.gov (United States)

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  11. Steroids, stress and the gut microbiome-brain axis.

    Science.gov (United States)

    Tetel, M J; de Vries, G J; Melcangi, R C; Panzica, G; O'Mahony, S M

    2018-02-01

    It is becoming well established that the gut microbiome has a profound impact on human health and disease. In this review, we explore how steroids can influence the gut microbiota and, in turn, how the gut microbiota can influence hormone levels. Within the context of the gut microbiome-brain axis, we discuss how perturbations in the gut microbiota can alter the stress axis and behaviour. In addition, human studies on the possible role of gut microbiota in depression and anxiety are examined. Finally, we present some of the challenges and important questions that need to be addressed by future research in this exciting new area at the intersection of steroids, stress, gut-brain axis and human health. © 2017 British Society for Neuroendocrinology.

  12. An integrated catalog of reference genes in the human gut microbiome

    DEFF Research Database (Denmark)

    Li, Junhua; Jia, Huijue; Cai, Xianghang

    2014-01-01

    Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of global microbiome diversity. Here we combined 249 newly...... sequenced samples of the Metagenomics of the Human Intestinal Tract (MetaHit) project with 1,018 previously sequenced samples to create a cohort from three continents that is at least threefold larger than cohorts used for previous gene catalogs. From this we established the integrated gene catalog (IGC......) comprising 9,879,896 genes. The catalog includes close-to-complete sets of genes for most gut microbes, which are also of considerably higher quality than in previous catalogs. Analyses of a group of samples from Chinese and Danish individuals using the catalog revealed country-specific gut microbial...

  13. Dynamics of the human gut microbiome in inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Halfvarson, Jonas; Brislawn, Colin J.; Lamendella, Regina; Vázquez-Baeza, Yoshiki; Walters, William A.; Bramer, Lisa M.; D' Amato, Mauro; Bonfiglio, Ferdinando; McDonald, Daniel; Gonzalez, Antonio; McClure, Erin E.; Dunklebarger, Mitchell F.; Knight, Rob; Jansson, Janet K.

    2017-02-13

    Inflammatory bowel disease (IBD) is characterized by flares of inflammation with periodic need for increased medication and sometimes even surgery. IBD etiology is partly attributed to a deregulated immune response to gut microbiome dysbiosis. Cross-sectional studies have revealed microbial signatures for different IBD diseases, including ulcerative colitis (UC), colonic Crohn’s Disease (CCD), and ileal CD (ICD). Although IBD is dynamic, microbiome studies have primarily focused on single timepoints or few individuals. Here we dissect the long-term dynamic behavior of the gut microbiome in IBD and differentiate this from normal variation. Microbiomes of IBD subjects fluctuate more than healthy individuals, based on deviation from a newly-defined healthy plane (HP). ICD subjects deviated most from the HP, especially subjects with surgical resection. Intriguingly, the microbiomes of some IBD subjects periodically visited the HP then deviated away from it. Inflammation was not directly correlated with distance to the healthy plane, but there was some correlation between observed dramatic fluctuations in the gut microbiome and intensified medication due to a flare of the disease. These results help guide therapies that will re-direct the gut microbiome towards a healthy state and maintain remission in IBD.

  14. Application of metagenomics in the human gut microbiome.

    Science.gov (United States)

    Wang, Wei-Lin; Xu, Shao-Yan; Ren, Zhi-Gang; Tao, Liang; Jiang, Jian-Wen; Zheng, Shu-Sen

    2015-01-21

    There are more than 1000 microbial species living in the complex human intestine. The gut microbial community plays an important role in protecting the host against pathogenic microbes, modulating immunity, regulating metabolic processes, and is even regarded as an endocrine organ. However, traditional culture methods are very limited for identifying microbes. With the application of molecular biologic technology in the field of the intestinal microbiome, especially metagenomic sequencing of the next-generation sequencing technology, progress has been made in the study of the human intestinal microbiome. Metagenomics can be used to study intestinal microbiome diversity and dysbiosis, as well as its relationship to health and disease. Moreover, functional metagenomics can identify novel functional genes, microbial pathways, antibiotic resistance genes, functional dysbiosis of the intestinal microbiome, and determine interactions and co-evolution between microbiota and host, though there are still some limitations. Metatranscriptomics, metaproteomics and metabolomics represent enormous complements to the understanding of the human gut microbiome. This review aims to demonstrate that metagenomics can be a powerful tool in studying the human gut microbiome with encouraging prospects. The limitations of metagenomics to be overcome are also discussed. Metatranscriptomics, metaproteomics and metabolomics in relation to the study of the human gut microbiome are also briefly discussed.

  15. Correlating the Gut Microbiome to Health and Disease

    NARCIS (Netherlands)

    Marques, T.M.; Holster, S.; Wall, R.; König, J.; Brummer, R.J.; Vos, de Willem

    2016-01-01

    The gut microbiota is a complex ecosystem consisting of a diverse population of prokaryotes that has a symbiotic relationship with its host; thus it plays a vital role for the host's health. Our understanding of the effect of the gut microbiome in health and disease has grown substantially over

  16. Human gut microbiome viewed across age and geography

    Science.gov (United States)

    Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, we characterized bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy child...

  17. The gut microbiome in cardio-metabolic health

    DEFF Research Database (Denmark)

    Hansen, Tue Haldor; Gøbel, Rikke J; Hansen, Torben

    2015-01-01

    that the gut microbiota, as an environmental factor influencing the metabolic state of the host, is readily modifiable through a variety of interventions. In this review we provide an overview of the development of the gut microbiome and its compositional and functional changes in relation to cardio...

  18. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders

    Science.gov (United States)

    Kelly, John R.; Kennedy, Paul J.; Cryan, John F.; Dinan, Timothy G.; Clarke, Gerard; Hyland, Niall P.

    2015-01-01

    The emerging links between our gut microbiome and the central nervous system (CNS) are regarded as a paradigm shift in neuroscience with possible implications for not only understanding the pathophysiology of stress-related psychiatric disorders, but also their treatment. Thus the gut microbiome and its influence on host barrier function is positioned to be a critical node within the brain-gut axis. Mounting preclinical evidence broadly suggests that the gut microbiota can modulate brain development, function and behavior by immune, endocrine and neural pathways of the brain-gut-microbiota axis. Detailed mechanistic insights explaining these specific interactions are currently underdeveloped. However, the concept that a “leaky gut” may facilitate communication between the microbiota and these key signaling pathways has gained traction. Deficits in intestinal permeability may underpin the chronic low-grade inflammation observed in disorders such as depression and the gut microbiome plays a critical role in regulating intestinal permeability. In this review we will discuss the possible role played by the gut microbiota in maintaining intestinal barrier function and the CNS consequences when it becomes disrupted. We will draw on both clinical and preclinical evidence to support this concept as well as the key features of the gut microbiota which are necessary for normal intestinal barrier function. PMID:26528128

  19. Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome

    Science.gov (United States)

    Van den Abbeele, Pieter; Verstraete, Willy; El Aidy, Sahar; Geirnaert, Annelies; Van de Wiele, Tom

    2013-01-01

    Summary Accumulating evidence demonstrates the intimate association between human hosts and the gut microbiome. Starting at birth, the sterile gut of the newborn acquires a diverse spectrum of microbes, needed for immunological priming. However, current practices (caesarean sections, use of formula milk) deprive newborns from being exposed to this broad spectrum of microbes. Unnecessary use of antibiotics and excessive hygienic precautions (e.g. natural versus chlorinated drinking water) together with the Western diet further contribute to a decreased microbial diversity in the adult gut. This has been correlated with recurrent Clostridium difficile infection, inflammatory bowel diseases and obesity, among others. A healthy gut microbiome is thus characterized by a diverse network of metabolically interacting microbial members. In this context, we review several existing and novel approaches to manage the gut microbiome. First, prebiotic compounds should be re-defined in the sense that they should enhance the ecological biodiversity rather than stimulating single species. Recent studies highlight that structurally different polysaccharides require specific primary degraders but also enhance a similar network of secondary degraders that benefit from cross-feeding. A faecal transplantation is a second approach to restore biodiversity when the microbiota is severely dysbiosed, with promising results regarding C. difficile-associated disease and obesity-related metabolic syndromes. A final strategy is the introduction of key microbial network units, i.e. pre-organized microbial associations, which strengthen the overall microbial network of the gut microbiome that supports human health. PMID:23594389

  20. Characterization of the human gut microbiome during travelers' diarrhea.

    Science.gov (United States)

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Campbell, Frederick; Wadsworth, W Duncan; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2015-01-01

    Alterations in the gut microbiota are correlated with ailments such as obesity, inflammatory bowel disease, and diarrhea. Up to 60% of individuals traveling from industrialized to developing countries acquire a form of secretory diarrhea known as travelers' diarrhea (TD), and enterotoxigenic Escherichia coli (ETEC) and norovirus (NoV) are the leading causative pathogens. Presumably, TD alters the gut microbiome, however the effect of TD on gut communities has not been studied. We report the first analysis of bacterial gut populations associated with TD. We examined and compared the gut microbiomes of individuals who developed TD associated with ETEC, NoV, or mixed pathogens, and TD with no pathogen identified, to healthy travelers. We observed a signature dysbiotic gut microbiome profile of high Firmicutes:Bacteroidetes ratios in the travelers who developed diarrhea, regardless of etiologic agent or presence of a pathogen. There was no significant difference in α-diversity among travelers. The bacterial composition of the microbiota of the healthy travelers was similar to the diarrheal groups, however the β-diversity of the healthy travelers was significantly different than any pathogen-associated TD group. Further comparison of the healthy traveler microbiota to those from healthy subjects who were part of the Human Microbiome Project also revealed a significantly higher Firmicutes:Bacteriodetes ratio in the healthy travelers and significantly different β-diversity. Thus, the composition of the gut microbiome in healthy, diarrhea-free travelers has characteristics of a dysbiotic gut, suggesting that these alterations could be associated with factors such as travel.

  1. Human gut microbiome viewed across age and geography.

    Science.gov (United States)

    Yatsunenko, Tanya; Rey, Federico E; Manary, Mark J; Trehan, Indi; Dominguez-Bello, Maria Gloria; Contreras, Monica; Magris, Magda; Hidalgo, Glida; Baldassano, Robert N; Anokhin, Andrey P; Heath, Andrew C; Warner, Barbara; Reeder, Jens; Kuczynski, Justin; Caporaso, J Gregory; Lozupone, Catherine A; Lauber, Christian; Clemente, Jose Carlos; Knights, Dan; Knight, Rob; Gordon, Jeffrey I

    2012-05-09

    Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, here we characterize bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy children and adults from the Amazonas of Venezuela, rural Malawi and US metropolitan areas and included mono- and dizygotic twins. Shared features of the functional maturation of the gut microbiome were identified during the first three years of life in all three populations, including age-associated changes in the genes involved in vitamin biosynthesis and metabolism. Pronounced differences in bacterial assemblages and functional gene repertoires were noted between US residents and those in the other two countries. These distinctive features are evident in early infancy as well as adulthood. Our findings underscore the need to consider the microbiome when evaluating human development, nutritional needs, physiological variations and the impact of westernization.

  2. Estrogen-gut microbiome axis: Physiological and clinical implications.

    Science.gov (United States)

    Baker, James M; Al-Nakkash, Layla; Herbst-Kralovetz, Melissa M

    2017-09-01

    Low levels of gonadal circulating estrogen observed in post-menopausal women can adversely impact a diverse range of physiological factors, with clinical implications for brain cognition, gut health, the female reproductive tract and other aspects of women's health. One of the principal regulators of circulating estrogens is the gut microbiome. This review aims to shed light on the role of the gut microbiota in estrogen-modulated disease. The gut microbiota regulates estrogens through secretion of β-glucuronidase, an enzyme that deconjugates estrogens into their active forms. When this process is impaired through dysbiosis of gut microbiota, characterized by lower microbial diversity, the decrease in deconjugation results in a reduction of circulating estrogens. The alteration in circulating estrogens may contribute to the development of conditions discussed herein: obesity, metabolic syndrome, cancer, endometrial hyperplasia, endometriosis, polycystic ovary syndrome, fertility, cardiovascular disease (CVD) and cognitive function. The bi-directional relationship between the metabolic profile (including estrogen levels) and gut microbiota in estrogen-driven disease will also be discussed. Promising therapeutic interventions manipulating the gut microbiome and the metabolic profile of estrogen-driven disease, such as bariatric surgery and metformin, will be detailed. Modulation of the microbiome composition subsequently impacts the metabolic profile, and vice versa, and has been shown to alleviate many of the estrogen-modulated disease states. Last, we highlight promising research interventions in the field, such as dietary therapeutics, and discuss areas that provide exciting unexplored topics of study. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. "WHAT'S BUGGING THE GUT IN OCD?" A REVIEW OF THE GUT MICROBIOME IN OBSESSIVE-COMPULSIVE DISORDER.

    Science.gov (United States)

    Turna, Jasmine; Grosman Kaplan, Keren; Anglin, Rebecca; Van Ameringen, Michael

    2016-03-01

    The gut microbiome has become a topic of major interest as of late, with a new focus specifically on psychiatric disorders. Recent studies have revealed that variations in the composition of the gut microbiota may influence anxiety and mood and vice versa. Keeping the concept of this bidirectional "microbiota-gut-brain" axis in mind, this review aims to shed light on how these findings may also be implicated in obsessive-compulsive disorder (OCD); potentially outlining a novel etiological pathway of interest for future research in the field. © 2015 Wiley Periodicals, Inc.

  4. 11β-hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet.

    Science.gov (United States)

    Johnson, Jethro S; Opiyo, Monica N; Thomson, Marian; Gharbi, Karim; Seckl, Jonathan R; Heger, Andreas; Chapman, Karen E

    2017-02-01

    The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) interconverts active glucocorticoids and their intrinsically inert 11-keto forms. The type 1 isozyme, 11β-HSD1, predominantly reactivates glucocorticoids in vivo and can also metabolise bile acids. 11β-HSD1-deficient mice show altered inflammatory responses and are protected against the adverse metabolic effects of a high-fat diet. However, the impact of 11β-HSD1 on the composition of the gut microbiome has not previously been investigated. We used high-throughput 16S rDNA amplicon sequencing to characterise the gut microbiome of 11β-HSD1-deficient and C57Bl/6 control mice, fed either a standard chow diet or a cholesterol- and fat-enriched 'Western' diet. 11β-HSD1 deficiency significantly altered the composition of the gut microbiome, and did so in a diet-specific manner. On a Western diet, 11β-HSD1 deficiency increased the relative abundance of the family Bacteroidaceae, and on a chow diet, it altered relative abundance of the family Prevotellaceae Our results demonstrate that (i) genetic effects on host-microbiome interactions can depend upon diet and (ii) that alterations in the composition of the gut microbiome may contribute to the aspects of the metabolic and/or inflammatory phenotype observed with 11β-HSD1 deficiency. © 2017 The authors.

  5. Practical considerations for large-scale gut microbiome studies

    OpenAIRE

    Vandeputte, Doris; Tito, Raul Y.; Vanleeuwen, Rianne; Falony, Gwen; Raes, Jeroen

    2017-01-01

    Abstract: First insights on the human gut microbiome have been gained from medium-sized, cross-sectional studies. However, given the modest portion of explained variance of currently identified covariates and the small effect size of gut microbiota modulation strategies, upscaling seems essential for further discovery and characterisation of the multiple influencing factors and their relative contribution. In order to guide future research projects and standardisation efforts, we here review ...

  6. The Inuit gut microbiome is dynamic over time and shaped by traditional foods.

    Science.gov (United States)

    Dubois, Geneviève; Girard, Catherine; Lapointe, François-Joseph; Shapiro, B Jesse

    2017-11-16

    The human gut microbiome represents a diverse microbial community that varies across individuals and populations, and is influenced by factors such as host genetics and lifestyle. Diet is a major force shaping the gut microbiome, and the effects of dietary choices on microbiome composition are well documented. However, it remains poorly known how natural temporal variation in diet can affect the microbiome. The traditional Inuit diet is primarily based on animal products, which are thought to vary seasonally according to prey availability. We previously investigated the Inuit gut microbiome sampled at a single time point, and found no detectable differences in overall microbiome community composition attributable to the traditional Inuit diet. To determine whether seasonal changes in the Inuit diet might induce more pronounced changes in the microbiome, we collected stool and toilet paper samples, and dietary information from Inuit volunteers living in Resolute Bay (Nunavut, Canada), and compared them to individuals of European descent living in Montréal (Québec, Canada) consuming a typical Western diet. We sequenced the V4 region of the 16S rRNA gene to characterize microbiome diversity and composition, and compared samples collected with toilet paper or from stool. Our results show that these sampling methods provide similar, but non-identical portraits of the microbiome. Based on toilet paper samples, we found that much of the variation in microbiome community composition could be explained by individual identity (45-61% of variation explained, depending on the beta diversity metric used), with small but significant variation (3-5%) explained by sex or geography (Nunavut or Montréal). In contrast with our previous study at one time point, sampling over the course of a year revealed that diet explains 11% of variation in community composition across all participants, and 17% of variation specifically among Nunavut participants. However, we observed no clear

  7. An integrated catalog of reference genes in the human gut microbiome.

    Science.gov (United States)

    Li, Junhua; Jia, Huijue; Cai, Xianghang; Zhong, Huanzi; Feng, Qiang; Sunagawa, Shinichi; Arumugam, Manimozhiyan; Kultima, Jens Roat; Prifti, Edi; Nielsen, Trine; Juncker, Agnieszka Sierakowska; Manichanh, Chaysavanh; Chen, Bing; Zhang, Wenwei; Levenez, Florence; Wang, Juan; Xu, Xun; Xiao, Liang; Liang, Suisha; Zhang, Dongya; Zhang, Zhaoxi; Chen, Weineng; Zhao, Hailong; Al-Aama, Jumana Yousuf; Edris, Sherif; Yang, Huanming; Wang, Jian; Hansen, Torben; Nielsen, Henrik Bjørn; Brunak, Søren; Kristiansen, Karsten; Guarner, Francisco; Pedersen, Oluf; Doré, Joel; Ehrlich, S Dusko; Bork, Peer; Wang, Jun

    2014-08-01

    Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of global microbiome diversity. Here we combined 249 newly sequenced samples of the Metagenomics of the Human Intestinal Tract (MetaHit) project with 1,018 previously sequenced samples to create a cohort from three continents that is at least threefold larger than cohorts used for previous gene catalogs. From this we established the integrated gene catalog (IGC) comprising 9,879,896 genes. The catalog includes close-to-complete sets of genes for most gut microbes, which are also of considerably higher quality than in previous catalogs. Analyses of a group of samples from Chinese and Danish individuals using the catalog revealed country-specific gut microbial signatures. This expanded catalog should facilitate quantitative characterization of metagenomic, metatranscriptomic and metaproteomic data from the gut microbiome to understand its variation across populations in human health and disease.

  8. Population-level analysis of gut microbiome variation

    NARCIS (Netherlands)

    Falony, Gwen; Joossens, Marie; Vieira-Silva, Sara; Wang, Jun; Darzi, Youssef; Faust, Karoline; Kurilshchikov, Aleksandr; Bonder, Marc Jan; Valles-Colomer, Mireia; Vandeputte, Doris; Tito, Raul Y.; Chaffron, Samuel; Rymenans, Leen; Verspecht, Chlo; De Sutter, Lise; Lima-Mendez, Gipsi; D'hoe, Kevin; Jonckheere, Karl; Homola, Daniel; Garcia, Roberto; Tigchelaar, Ettje F.; Eeckhaudt, Linda; Fu, Jingyuan; Henckaerts, Liesbet; Zhernakova, Alexandra; Wijmenga, Cisca; Raes, Jeroen

    2016-01-01

    Fecal microbiome variation in the average, healthy population has remained under-investigated. Here, we analyzed two independent, extensively phenotyped cohorts: the Belgian Flemish Gut Flora Project (FGFP; discovery cohort; N = 1106) and the Dutch LifeLines-DEEP study (LLDeep; replication; N =

  9. Gut microbiome development along the colorectal adenoma-carcinoma sequence

    DEFF Research Database (Denmark)

    Feng, Qiang; Liang, Suisha; Jia, Huijue

    2015-01-01

    factors indicates that high intake of red meat relative to fruits and vegetables appears to associate with outgrowth of bacteria that might contribute to a more hostile gut environment. These findings suggest that faecal microbiome-based strategies may be useful for early diagnosis and treatment...

  10. Gut microbiome and depression: what we know and what we need to know.

    Science.gov (United States)

    Winter, Gal; Hart, Robert A; Charlesworth, Richard P G; Sharpley, Christopher F

    2018-02-05

    Gut microbiome diversity has been strongly associated with mood-relating behaviours, including major depressive disorder (MDD). This association stems from the recently characterised bi-directional communication system between the gut and the brain, mediated by neuroimmune, neuroendocrine and sensory neural pathways. While the link between gut microbiome and depression is well supported by research, a major question needing to be addressed is the causality in the connection between the two, which will support the understanding of the role that the gut microbiota play in depression. In this article, we address this question by examining a theoretical 'chronology', reviewing the evidence supporting two possible sequences of events. First, we discuss that alterations in the gut microbiota populations of specific species might contribute to depression, and secondly, that depressive states might induce modification of specific gut microbiota species and eventually contribute to more severe depression. The feasibility of both sequences is supported by pre-clinical trials. For instance, research in rodents has shown an onset of depressive behaviour following faecal transplantations from patients with MDD. On the other hand, mental induction of stress and depressive behaviour in rodents resulted in reduced gut microbiota richness and diversity. Synthesis of these chronology dynamics raises important research directions to further understand the role that gut microbiota play in mood-relating behaviours, which holds substantial potential clinical outcomes for persons who experience MDD or related depressive disorders.

  11. CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome

    Science.gov (United States)

    Stern, Adi; Mick, Eran; Tirosh, Itay; Sagy, Or; Sorek, Rotem

    2012-01-01

    The bacterial community in the human gut has crucial health roles both in metabolic functions and in protection against pathogens. Phages, which are known to significantly affect microbial community composition in many ecological niches, have the potential to impact the gut microbiota, yet thorough characterization of this relationship remains elusive. We have reconstructed the content of the CRISPR bacterial immune system in the human gut microbiomes of 124 European individuals and used it to identify a catalog of 991 phages targeted by CRISPR across all individuals. Our results show that 78% of these phages are shared among two or more individuals. Moreover, a significant fraction of phages found in our study are shown to exist in fecal samples previously derived from American and Japanese individuals, identifying a common reservoir of phages frequently associated with the human gut microbiome. We further inferred the bacterial hosts for more than 130 such phages, enabling a detailed analysis of phage–bacteria interactions across the 124 individuals by correlating patterns of phage abundance with bacterial abundance and resistance. A subset of phages demonstrated preferred association with host genomes as lysogenized prophages, with highly increased abundance in specific individuals. Overall, our results imply that phage–bacterial attack–resistance interactions occur within the human gut microbiome, possibly affecting microbiota composition and human health. Our finding of global sharing of gut phages is surprising in light of the extreme genetic diversity of phages found in other ecological niches. PMID:22732228

  12. Insect gut microbiome - An unexploited reserve for biotechnological application.

    Science.gov (United States)

    Krishnan, Muthukalingan; Bharathiraja, Chinnapandi; Pandiarajan, Jeyaraj; Prasanna, Vimalanathan Arun; Rajendhran, Jeyaprakash; Gunasekaran, Paramasamy

    2014-05-01

    Metagenomics research has been developed over the past decade to elucidate the genomes of the uncultured microorganisms with an aim of understanding microbial ecology. On the other hand, it has also been provoked by the increasing biotechnological demands for novel enzymes, antibiotic and signal mimics. The gut microbiota of insects plays crucial roles in the growth, development and environmental adaptation to the host insects. Very recently, the insect microbiota and their genomes (microbiome), isolated from insects were recognized as a major genetic resources for bio-processing industry. Consequently, the exploitation of insect gut microbiome using metagenomic approaches will enable us to find novel biocatalysts and to develop innovative strategies for identifying smart molecules for biotechnological applications. In this review, we discuss the critical footstep in extraction and purification of metagenomic DNA from insect gut, construction of metagenomic libraries and screening procedure for novel gene identification. Recent innovations and potential applications in bioprocess industries are highlighted.

  13. An integrated catalog of reference genes in the human gut microbiome

    NARCIS (Netherlands)

    Li, J.; Jia, H.; Cai, X.; Zhong, H.; Feng, Q.; Sunagawa, S.; Arumugam, M.; Kultima, J.R.; Prifti, E.; Nielsen, T.; Juncker, A.S.; Manichanh, C.; Chen, B.; Zhang, W.; Levenez, F.; Xu, X.; Xiao, L.; Liang, S.; Zhang, D.; Zhang, Z.; Chen, W.; Zhao, H.; Al-Aama, J.Y.; Edris, S.; Yang, H.; Hansen, H.; Nielsen, H.B.; Brunak, S.; Kristiansen, K.; Guarner, F.; Pedersen, O.; Doré, J.; Ehrlich, S.D.; Bork, P.; Wang, J.; Vos, de W.M.; Tims, S.; Zoetendal, E.G.; Kleerebezem, M.

    2014-01-01

    Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of global microbiome diversity. Here we combined 249 newly

  14. The influence of a short-term gluten-free diet on the human gut microbiome.

    Science.gov (United States)

    Bonder, Marc Jan; Tigchelaar, Ettje F; Cai, Xianghang; Trynka, Gosia; Cenit, Maria C; Hrdlickova, Barbara; Zhong, Huanzi; Vatanen, Tommi; Gevers, Dirk; Wijmenga, Cisca; Wang, Yang; Zhernakova, Alexandra

    2016-04-21

    A gluten-free diet (GFD) is the most commonly adopted special diet worldwide. It is an effective treatment for coeliac disease and is also often followed by individuals to alleviate gastrointestinal complaints. It is known there is an important link between diet and the gut microbiome, but it is largely unknown how a switch to a GFD affects the human gut microbiome. We studied changes in the gut microbiomes of 21 healthy volunteers who followed a GFD for four weeks. We collected nine stool samples from each participant: one at baseline, four during the GFD period, and four when they returned to their habitual diet (HD), making a total of 189 samples. We determined microbiome profiles using 16S rRNA sequencing and then processed the samples for taxonomic and imputed functional composition. Additionally, in all 189 samples, six gut health-related biomarkers were measured. Inter-individual variation in the gut microbiota remained stable during this short-term GFD intervention. A number of taxon-specific differences were seen during the GFD: the most striking shift was seen for the family Veillonellaceae (class Clostridia), which was significantly reduced during the intervention (p = 2.81 × 10(-05)). Seven other taxa also showed significant changes; the majority of them are known to play a role in starch metabolism. We saw stronger differences in pathway activities: 21 predicted pathway activity scores showed significant association to the change in diet. We observed strong relations between the predicted activity of pathways and biomarker measurements. A GFD changes the gut microbiome composition and alters the activity of microbial pathways.

  15. Impact of Dietary Resistant Starch on the Human Gut Microbiome, Metaproteome, and Metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Tanja V.; Lucio, Marianna; Lee, Lang Ho; VerBerkmoes, Nathan C.; Brislawn, Colin J.; Bernhardt, Jörg; Lamendella, Regina; McDermott, Jason E.; Bergeron, Nathalie; Heinzmann, Silke S.; Morton, James T.; González, Antonio; Ackermann, Gail; Knight, Rob; Riedel, Katharina; Krauss, Ronald M.; Schmitt-Kopplin, Philippe; Jansson, Janet K.; Moran, Mary Ann

    2017-10-17

    ABSTRACT

    Diet can influence the composition of the human microbiome, and yet relatively few dietary ingredients have been systematically investigated with respect to their impact on the functional potential of the microbiome. Dietary resistant starch (RS) has been shown to have health benefits, but we lack a mechanistic understanding of the metabolic processes that occur in the gut during digestion of RS. Here, we collected samples during a dietary crossover study with diets containing large or small amounts of RS. We determined the impact of RS on the gut microbiome and metabolic pathways in the gut, using a combination of “omics” approaches, including 16S rRNA gene sequencing, metaproteomics, and metabolomics. This multiomics approach captured changes in the abundance of specific bacterial species, proteins, and metabolites after a diet high in resistant starch (HRS), providing key insights into the influence of dietary interventions on the gut microbiome. The combined data showed that a high-RS diet caused an increase in the ratio ofFirmicutestoBacteroidetes, including increases in relative abundances of some specific members of theFirmicutesand concurrent increases in enzymatic pathways and metabolites involved in lipid metabolism in the gut.

    IMPORTANCEThis work was undertaken to obtain a mechanistic understanding of the complex interplay between diet and the microorganisms residing in the intestine. Although it is known that gut microbes play a key role in digestion of the food that we consume, the specific contributions of different microorganisms are not well understood. In addition, the metabolic pathways and resultant products of metabolism during digestion are highly complex. To address these knowledge gaps, we used a combination of molecular approaches to determine the identities of the microorganisms in the gut during digestion of dietary starch as well as the

  16. Effects of the Artificial Sweetener Neotame on the Gut Microbiome and Fecal Metabolites in Mice

    Directory of Open Access Journals (Sweden)

    Liang Chi

    2018-02-01

    Full Text Available Although artificial sweeteners are widely used in food industry, their effects on human health remain a controversy. It is known that the gut microbiota plays a key role in human metabolism and recent studies indicated that some artificial sweeteners such as saccharin could perturb gut microbiome and further affect host health, such as inducing glucose intolerance. Neotame is a relatively new low-caloric and high-intensity artificial sweetener, approved by FDA in 2002. However, the specific effects of neotame on gut bacteria are still unknown. In this study, we combined high-throughput sequencing and gas chromatography–mass spectrometry (GC-MS metabolomics to investigate the effects of neotame on the gut microbiome and fecal metabolite profiles of CD-1 mice. We found that a four-week neotame consumption reduced the alpha-diversity and altered the beta-diversity of the gut microbiome. Firmicutes was largely decreased while Bacteroidetes was significantly increased. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt analysis also indicated that the control mice and neotame-treated mice have different metabolic patterns and some key genes such as butyrate synthetic genes were decreased. Moreover, neotame consumption also changed the fecal metabolite profiles. Dramatically, the concentrations of multiple fatty acids, lipids as well as cholesterol in the feces of neotame-treated mice were consistently higher than controls. Other metabolites, such as malic acid and glyceric acid, however, were largely decreased. In conclusion, our study first explored the specific effects of neotame on mouse gut microbiota and the results may improve our understanding of the interaction between gut microbiome and neotame and how this interaction could influence the normal metabolism of host bodies.

  17. [Gut microbiome and psyche: paradigm shift in the concept of brain-gut axis].

    Science.gov (United States)

    Konturek, Peter C; Zopf, Yurdagül

    2016-05-25

    The concept of the brain-gut axis describes the communication between the central and enteric nervous system. The exchange of information takes place in both directions. The great advances in molecular medicine in recent years led to the discovery of an enormous number of microorganisms in the intestine (gut microbiome), which greatly affect the function of the brain-gut axis. Overview Numerous studies indicate that the dysfunction of the brain-gut axis could lead to both inflammatory and functional diseases of the gastrointestinal tract. Moreover, it was shown that a faulty composition of the gut microbiota in childhood influences the maturation of the central nervous system and thus may favor the development of mental disorders such as autism, depression, or other. An exact causal relationship between psyche and microbiome must be clarified by further studies in order to find new therapeutic options.

  18. Antibiotic resistance potential of the healthy preterm infant gut microbiome

    Directory of Open Access Journals (Sweden)

    Graham Rose

    2017-01-01

    Full Text Available Background Few studies have investigated the gut microbiome of infants, fewer still preterm infants. In this study we sought to quantify and interrogate the resistome within a cohort of premature infants using shotgun metagenomic sequencing. We describe the gut microbiomes from preterm but healthy infants, characterising the taxonomic diversity identified and frequency of antibiotic resistance genes detected. Results Dominant clinically important species identified within the microbiomes included C. perfringens, K. pneumoniae and members of the Staphylococci and Enterobacter genera. Screening at the gene level we identified an average of 13 antimicrobial resistance genes per preterm infant, ranging across eight different antibiotic classes, including aminoglycosides and fluoroquinolones. Some antibiotic resistance genes were associated with clinically relevant bacteria, including the identification of mecA and high levels of Staphylococci within some infants. We were able to demonstrate that in a third of the infants the S. aureus identified was unrelated using MLST or metagenome assembly, but low abundance prevented such analysis within the remaining samples. Conclusions We found that the healthy preterm infant gut microbiomes in this study harboured a significant diversity of antibiotic resistance genes. This broad picture of resistances and the wider taxonomic diversity identified raises further caution to the use of antibiotics without consideration of the resident microbial communities.

  19. The gut microbiome and diet in psychiatry: focus on depression.

    Science.gov (United States)

    Dash, Sarah; Clarke, Gerard; Berk, Michael; Jacka, Felice N

    2015-01-01

    With depressive disorders the leading source of disability globally, the identification of new targets for prevention and management is imperative. A rapidly emerging field of research suggests that the microbiome-gut-brain axis is of substantial relevance to mood and behaviour. Similarly, unhealthy diet has recently emerged as a significant correlate of and risk factor for depression. This review provides evidence for the gut microbiota as a key factor mediating the link between diet and depressive illness. The development of new technologies is affording a better understanding of how diet influences gut microbiota composition and activity and how this may, in turn, influence depressive illness. New interventions are also suggesting the possible utility of pre and probiotic formulations and fermented food in influencing mental health. Although in its early stages, the emerging field of research focused on the human microbiome suggests an important role for the gut microbiota in influencing brain development, behaviour and mood in humans. The recognition that the gut microbiota interacts bidirectionally with other environmental risk factors, such as diet and stress, suggests promise in the development of interventions targeting the gut microbiota for the prevention and treatment of common mental health disorders.

  20. Practical considerations for large-scale gut microbiome studies.

    Science.gov (United States)

    Vandeputte, Doris; Tito, Raul Y; Vanleeuwen, Rianne; Falony, Gwen; Raes, Jeroen

    2017-08-01

    First insights on the human gut microbiome have been gained from medium-sized, cross-sectional studies. However, given the modest portion of explained variance of currently identified covariates and the small effect size of gut microbiota modulation strategies, upscaling seems essential for further discovery and characterisation of the multiple influencing factors and their relative contribution. In order to guide future research projects and standardisation efforts, we here review currently applied collection and preservation methods for gut microbiome research. We discuss aspects such as sample quality, applicable omics techniques, user experience and time and cost efficiency. In addition, we evaluate the protocols of a large-scale microbiome cohort initiative, the Flemish Gut Flora Project, to give an idea of perspectives, and pitfalls of large-scale faecal sampling studies. Although cryopreservation can be regarded as the gold standard, freezing protocols generally require more resources due to cold chain management. However, here we show that much can be gained from an optimised transport chain and sample aliquoting before freezing. Other protocols can be useful as long as they preserve the microbial signature of a sample such that relevant conclusions can be drawn regarding the research question, and the obtained data are stable and reproducible over time. © FEMS 2017.

  1. Xenobiotics and the human gut microbiome: metatranscriptomics reveal the active players

    OpenAIRE

    Ursell, Luke K.; Knight, Rob

    2013-01-01

    The human gut microbiome plays an important role in the metabolism of xenobiotics. In a recent issue of Cell, Maurice et al. identify the active members of the gut microbiome and show how gene expression profiles change within the gut microbial community in response to antibiotics and host-targeted xenobiotics.

  2. Structure and function of the healthy pre-adolescent pediatric gut microbiome

    Science.gov (United States)

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limite...

  3. Variable responses of human and non-human primate gut microbiomes to a Western diet.

    Science.gov (United States)

    Amato, Katherine R; Yeoman, Carl J; Cerda, Gabriela; Schmitt, Christopher A; Cramer, Jennifer Danzy; Miller, Margret E Berg; Gomez, Andres; Turner, Trudy R; Wilson, Brenda A; Stumpf, Rebecca M; Nelson, Karen E; White, Bryan A; Knight, Rob; Leigh, Steven R

    2015-11-16

    The human gut microbiota interacts closely with human diet and physiology. To better understand the mechanisms behind this relationship, gut microbiome research relies on complementing human studies with manipulations of animal models, including non-human primates. However, due to unique aspects of human diet and physiology, it is likely that host-gut microbe interactions operate differently in humans and non-human primates. Here, we show that the human microbiome reacts differently to a high-protein, high-fat Western diet than that of a model primate, the African green monkey, or vervet (Chlorocebus aethiops sabaeus). Specifically, humans exhibit increased relative abundance of Firmicutes and reduced relative abundance of Prevotella on a Western diet while vervets show the opposite pattern. Predictive metagenomics demonstrate an increased relative abundance of genes associated with carbohydrate metabolism in the microbiome of only humans consuming a Western diet. These results suggest that the human gut microbiota has unique properties that are a result of changes in human diet and physiology across evolution or that may have contributed to the evolution of human physiology. Therefore, the role of animal models for understanding the relationship between the human gut microbiota and host metabolism must be re-focused.

  4. Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Liberia.

    Science.gov (United States)

    Rosa, Bruce A; Supali, Taniawati; Gankpala, Lincoln; Djuardi, Yenny; Sartono, Erliyani; Zhou, Yanjiao; Fischer, Kerstin; Martin, John; Tyagi, Rahul; Bolay, Fatorma K; Fischer, Peter U; Yazdanbakhsh, Maria; Mitreva, Makedonka

    2018-02-28

    The human intestine and its microbiota is the most common infection site for soil-transmitted helminths (STHs), which affect the well-being of ~ 1.5 billion people worldwide. The complex cross-kingdom interactions are not well understood. A cross-sectional analysis identified conserved microbial signatures positively or negatively associated with STH infections across Liberia and Indonesia, and longitudinal samples analysis from a double-blind randomized trial showed that the gut microbiota responds to deworming but does not transition closer to the uninfected state. The microbiomes of individuals able to self-clear the infection had more alike microbiome assemblages compared to individuals who remained infected. One bacterial taxon (Lachnospiracae) was negatively associated with infection in both countries, and 12 bacterial taxa were significantly associated with STH infection in both countries, including Olsenella (associated with reduced gut inflammation), which also significantly reduced in abundance following clearance of infection. Microbial community gene abundances were also affected by deworming. Functional categories identified as associated with STH infection included arachidonic acid metabolism; arachidonic acid is the precursor for pro-inflammatory leukotrienes that threaten helminth survival, and our findings suggest that some modulation of arachidonic acid activity in the STH-infected gut may occur through the increase of arachidonic acid metabolizing bacteria. For the first time, we identify specific members of the gut microbiome that discriminate between moderately/heavily STH-infected and non-infected states across very diverse geographical regions using two different statistical methods. We also identify microbiome-encoded biological functions associated with the STH infections, which are associated potentially with STH survival strategies, and changes in the host environment. These results provide a novel insight of the cross

  5. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    Science.gov (United States)

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  6. Impact of the Chromatin Remodeling Factor CHD1 on Gut Microbiome Composition of Drosophila melanogaster.

    Science.gov (United States)

    Sebald, Johanna; Willi, Michaela; Schoberleitner, Ines; Krogsdam, Anne; Orth-Höller, Dorothea; Trajanoski, Zlatko; Lusser, Alexandra

    2016-01-01

    The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.

  7. Impact of the Chromatin Remodeling Factor CHD1 on Gut Microbiome Composition of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Johanna Sebald

    Full Text Available The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.

  8. A hundred-year-old insight into the gut microbiome!

    Directory of Open Access Journals (Sweden)

    Aziz Ramy

    2009-12-01

    Full Text Available Abstract As the National Institutes of Health-funded Human Microbiome Project enters its second phase, and as a major part of this project focuses on the human gut microbiome and its effects on human health, it might help us to travel a century back in time and examine how microbiologists dealt with microbiome-related challenges similar to those of the 21st century using the tools of their time. An article by Arthur I. Kendall, published in The Journal of Biological Chemistry in November 1909 (Some observations on the study of the intestinal bacteria J Biol Chem 1909, 6:499-507, offers a visionary insight into many of today's hot research questions.

  9. Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome

    OpenAIRE

    Zarrinpar, Amir; Chaix, Amandine; Yooseph, Shibu; Panda, Satchidananda

    2014-01-01

    The gut microbiome and daily feeding/fasting cycle influence host metabolism and contributes to obesity and metabolic diseases. However, fundamental characteristics of this relationship between the feeding/fasting cycle and the gut microbiome is unknown. Our studies show that the gut microbiome is highly dynamic, exhibiting daily cyclical fluctuations in composition. Diet-induced obesity dampens the daily feeding/fasting rhythm and diminishes many of these cyclical fluctuations. Time restrict...

  10. Dynamics and stabilization of the human gut microbiome during the first year of life

    DEFF Research Database (Denmark)

    Bäckhed, Gert Fredrik; Roswall, Josefine; Peng, Yangqing

    2015-01-01

    The gut microbiota is central to human health, but its establishment in early life has not been quantitatively and functionally examined. Applying metagenomic analysis on fecal samples from a large cohort of Swedish infants and their mothers, we characterized the gut microbiome during the first...... of the microbiome. Our findings establish a framework for understanding the interplay between the gut microbiome and the human body in early life....

  11. New insight into the gut microbiome through metagenomics

    Directory of Open Access Journals (Sweden)

    Ji B

    2015-01-01

    Full Text Available Boyang Ji, Jens Nielsen Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden Abstract: The human gut is colonized by different types of microorganisms, which are known to play important roles in the human host by maintaining physiological homeostasis. The human host provides a nutrient-rich environment, and the microbiota provides some necessary functions that humans cannot perform. A comprehensive analysis of the human gut microbiome is thus important for revealing the mechanisms of these host–microbe interactions. The development of high-throughput sequencing technology and related computational frameworks enables exploration of the metabolic interactions and their roles in human health and diseases. Herein, we describe the metagenomic methods used in human gut microbiome studies and review the roles of gut microbiota as well as the integrative analyses of metagenomic data with other omics data. Finally, we discuss the application of constraint-based modeling to elucidate the microbe–microbe interaction and host–microbe interaction in the human gut microbiota. Keywords: dysbiosis, host–microbe interaction, metabolic modeling 

  12. Metatranscriptomics of the human gut microbiome

    DEFF Research Database (Denmark)

    Sicheritz-Pontén, Thomas

    2011-01-01

    Our ‘other’ genome is the collective genetic information in all of the microorganisms that are living on and within us. Collectively known as the microbiome, these microbial cells outnumber human cells in the body by more than 10 to 1, and the genes carried by these organisms outnumber the genes...... in the human genome by more than 100 to 1. How these organisms contribute to and affect human health is poorly understood, but the emerging field of metagenomics promises a more comprehensive and complete understanding of the human microbiome. In the European-funded Metagenomics of the Human Intestinal Tract...... (MetaHIT) project [1], we combined next-generation sequencing with high-density microarrays, generating metagenomic and metatranscriptomic data for more than 400 individuals. The combined data reveal clusters of coexisting species with differences in pathway and gene function activity, suggesting...

  13. Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change.

    Directory of Open Access Journals (Sweden)

    Cheng-Yu Chen

    Full Text Available Growing evidence points out that the capacity of organisms to acclimate or adapt to new habitat conditions basically depends on their phenomic plasticity attributes, of which their gut commensal microbiota might be an essential impact factor. Especially in aquatic organisms, which are in direct and continual contact with the aquatic environment, the complex and dynamic microbiota have significant effects on health and development. However, an understanding of the relative contribution of internal sorting (host genetic and colonization (environmental processes is still unclear. To understand how microbial communities differ in response to rapid environmental change, we surveyed and studied the environmental and gut microbiota of native and habitat-exchanged shrimp (Macrobrachium nipponense using 16S rRNA amplicon sequencing on the Illumina MiSeq platform. Corresponding with microbial diversity of their living water areas, the divergence in gut microbes of lake-to-river shrimp (CK increased, while that of river-to-lake shrimp (KC decreased. Importantly, among the candidate environment specific gut microbes in habitat-exchanged shrimp, over half of reads were associated with the indigenous bacteria in native shrimp gut, yet more candidates presented in CK may reflect the complexity of new environment. Our results suggest that shrimp gut microbiota has high plasticity when its host faces environmental changes, even over short timescales. Further, the changes in external environment might influence the gut microbiome not just by providing environment-associated microbes directly, but also by interfering with the composition of indigenous gut bacteria indirectly.

  14. Application of metagenomics in the human gut microbiome

    OpenAIRE

    Wang, Wei-Lin; Xu, Shao-Yan; Ren, Zhi-Gang; Tao, Liang; Jiang, Jian-Wen; Zheng, Shu-Sen

    2015-01-01

    There are more than 1000 microbial species living in the complex human intestine. The gut microbial community plays an important role in protecting the host against pathogenic microbes, modulating immunity, regulating metabolic processes, and is even regarded as an endocrine organ. However, traditional culture methods are very limited for identifying microbes. With the application of molecular biologic technology in the field of the intestinal microbiome, especially metagenomic sequencing of ...

  15. Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome.

    Science.gov (United States)

    Van den Abbeele, Pieter; Verstraete, Willy; El Aidy, Sahar; Geirnaert, Annelies; Van de Wiele, Tom

    2013-07-01

    Accumulating evidence demonstrates the intimate association between human hosts and the gut microbiome. Starting at birth, the sterile gut of the newborn acquires a diverse spectrum of microbes, needed for immunological priming. However, current practices (caesarean sections, use of formula milk) deprive newborns from being exposed to this broad spectrum of microbes. Unnecessary use of antibiotics and excessive hygienic precautions (e.g. natural versus chlorinated drinking water) together with the Western diet further contribute to a decreased microbial diversity in the adult gut. This has been correlated with recurrent Clostridium difficile infection, inflammatory bowel diseases and obesity, among others. A healthy gut microbiome is thus characterized by a diverse network of metabolically interacting microbial members. In this context, we review several existing and novel approaches to manage the gut microbiome. First, prebiotic compounds should be re-defined in the sense that they should enhance the ecological biodiversity rather than stimulating single species. Recent studies highlight that structurally different polysaccharides require specific primary degraders but also enhance a similar network of secondary degraders that benefit from cross-feeding. A faecal transplantation is a second approach to restore biodiversity when the microbiota is severely dysbiosed, with promising results regarding C. difficile-associated disease and obesity-related metabolic syndromes. A final strategy is the introduction of key microbial network units, i.e. pre-organized microbial associations, which strengthen the overall microbial network of the gut microbiome that supports human health. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Effects of Host Phylogeny and Habitats on Gut Microbiomes of Oriental River Prawn (Macrobrachium nipponense.

    Directory of Open Access Journals (Sweden)

    Tzong-Der Tzeng

    Full Text Available The gut microbial community is one of the richest and most complex ecosystems on earth, and the intestinal microbes play an important role in host development and health. Next generation sequencing approaches, which rapidly produce millions of short reads that enable the investigation on a culture independent basis, are now popular for exploring microbial community. Currently, the gut microbiome in fresh water shrimp is unexplored. To explore gut microbiomes of the oriental river prawn (Macrobrachium nipponense and investigate the effects of host genetics and habitats on the microbial composition, 454 pyrosequencing based on the 16S rRNA gene were performed. We collected six groups of samples, including M. nipponense shrimp from two populations, rivers and lakes, and one sister species (M. asperulum as an out group. We found that Proteobacteria is the major phylum in oriental river prawn, followed by Firmicutes and Actinobacteria. Compositional analysis showed microbial divergence between the two shrimp species is higher than that between the two populations of one shrimp species collected from river and lake. Hierarchical clustering also showed that host genetics had a greater impact on the divergence of gut microbiome than host habitats. This finding was also congruent with the functional prediction from the metagenomic data implying that the two shrimp species still shared the same type of biological functions, reflecting a similar metabolic profile in their gut environments. In conclusion, this study provides the first investigation of the gut microbiome of fresh water shrimp, and supports the hypothesis of host species-specific signatures of bacterial community composition.

  17. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter.

    Directory of Open Access Journals (Sweden)

    Mariel M Finucane

    Full Text Available Obesity is an important and intractable public health problem. In addition to the well-known risk factors of behavior, diet, and genetics, gut microbial communities were recently identified as another possible source of risk and a potential therapeutic target. However, human and animal-model studies have yielded conflicting results about the precise nature of associations between microbiome composition and obesity. In this paper, we use publicly available data from the Human Microbiome Project (HMP and MetaHIT, both surveys of healthy adults that include obese individuals, plus two smaller studies that specifically examined lean versus obese adults. We find that inter-study variability in the taxonomic composition of stool microbiomes far exceeds differences between lean and obese individuals within studies. Our analyses further reveal a high degree of variability in stool microbiome composition and diversity across individuals. While we confirm the previously published small, but statistically significant, differences in phylum-level taxonomic composition between lean and obese individuals in several cohorts, we find no association between BMI and taxonomic composition of stool microbiomes in the larger HMP and MetaHIT datasets. We explore a range of different statistical techniques and show that this result is robust to the choice of methodology. Differences between studies are likely due to a combination of technical and clinical factors. We conclude that there is no simple taxonomic signature of obesity in the microbiota of the human gut.

  18. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity

    OpenAIRE

    Gupta, Vinod K.; Paul, Sandip; Dutta, Chitra

    2017-01-01

    One of the fundamental issues in the microbiome research is characterization of the healthy human microbiota. Recent studies have elucidated substantial divergences in the microbiome structure between healthy individuals from different race and ethnicity. This review provides a comprehensive account of such geography, ethnicity or life-style-specific variations in healthy microbiome at five major body habitats—Gut, Oral-cavity, Respiratory Tract, Skin, and Urogenital Tract (UGT). The review f...

  19. Intrinsic association between diet and the gut microbiome: current evidence

    Directory of Open Access Journals (Sweden)

    Winglee K

    2015-10-01

    Full Text Available Kathryn Winglee, Anthony A Fodor Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA Abstract: The gut microbiome performs many crucial functions for the human host, but the molecular mechanisms by which host, microbe, and diet interact to mediate health and disease are only starting to be revealed. Here, we review the literature on how changes in the diet affect the microbiome. A number of studies have shown that within a geographic region, different diets (such as vegan vs omnivore are associated with differences in a modest number of taxa, but do not reliably produce radical differences within the gut microbial community. In contrast, studies that look across continents consistently find profoundly different microbial communities between Westernized and traditional populations, although it remains unclear to what extent diet or other differences in lifestyle drive these distinct microbial community structures. Furthermore, studies that place subjects on controlled short-term experimental diets have found the resulting alterations to the gut microbial community to generally be small in scope, with changes that do not overcome initial individual differences in microbial community structure. These results emphasize that the human gut microbial community is relatively stable over time. In contrast, short-term changes in diet can cause large changes in metabolite profiles, including metabolites processed by the gut microbial community. These results suggest that commensal gut microbes have a great deal of genetic plasticity and can activate different metabolic pathways independent of changes to microbial community composition. Thus, future studies of how the diet impacts host health via the microbiome may wish to focus on functional assays such as transcriptomics and metabolomics, in addition to 16S rRNA and whole-genome metagenome shotgun analyses of DNA. Taken together, the literature is most

  20. Gut Microbiome and Obesity: A Plausible Explanation for Obesity.

    Science.gov (United States)

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A

    2015-06-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host's adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity.

  1. Gut Microbiome and Obesity: A Plausible Explanation for Obesity

    Science.gov (United States)

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A.

    2015-01-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host’s adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity. PMID:26029487

  2. Disruptive physiology: olfaction and the microbiome-gut-brain axis.

    Science.gov (United States)

    Bienenstock, John; Kunze, Wolfgang A; Forsythe, Paul

    2018-02-01

    This review covers the field of olfaction and chemosensation of odorants and puts this information into the context of interactions between microbes and behaviour; the microbiome-gut-brain axis (MGBA). Recent emphasis has also been placed on the concept of the holobiome which states that no single aspect of an organism should be viewed separately and thus must include examination of their associated microbial populations and their influence. While it is known that the microbiome may be involved in the modulation of animal behaviour, there has been little systematized effort to incorporate into such studies the rapidly developing knowledge of the wide range of olfactory systems. The classical olfactory system is evolutionarily conserved in multiple taxa from insects through to fish, reptiles and mammals, and is represented by the largest gene families in vertebrates. Mice have over 1000 different olfactory receptors and humans about 400. They are distributed throughout the body and are even found in spermatozoa where they function in chemotaxis. Each olfactory receptor has the unique functional capability of high-affinity binding to several different molecular ligands. These and other properties render the cataloguing of odorants (odorome) with specific actions a difficult task. Some ectopic olfactory receptors have been shown to have functional effects in the gut and kidney, highlighting the complexity of the systems engaged by odorants. However, there are, in addition to classical olfactory receptors, at least two other families of receptors involved in olfaction that are also widely found expressed on tissues in many different organs in addition to the nervous system and brain: the trace-amine associated and formyl peptide receptors. Bacteria can make many if not most odorants and are responsible for recognition of species and relative relatedness, as well as predator presence, among many other examples. Activation of different combinations of olfactory receptors

  3. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

    Science.gov (United States)

    O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F

    2015-01-15

    The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases.

    Science.gov (United States)

    Ghaisas, Shivani; Maher, Joshua; Kanthasamy, Anumantha

    2016-02-01

    The gut microbiome comprises the collective genome of the trillions of microorganisms residing in our gastrointestinal ecosystem. The interaction between the host and its gut microbiome is a complex relationship whose manipulation could prove critical to preventing or treating not only various gut disorders, like irritable bowel syndrome (IBS) and ulcerative colitis (UC), but also central nervous system (CNS) disorders, such as Alzheimer's and Parkinson's diseases. The purpose of this review is to summarize what is known about the gut microbiome, how it is connected to the development of disease and to identify the bacterial and biochemical targets that should be the focus of future research. Understanding the mechanisms behind the activity and proliferation of the gut microbiome will provide us new insights that may pave the way for novel therapeutic strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Diet rapidly and reproducibly alters the human gut microbiome

    Science.gov (United States)

    David, Lawrence A.; Maurice, Corinne F.; Carmody, Rachel N.; Gootenberg, David B.; Button, Julie E.; Wolfe, Benjamin E.; Ling, Alisha V.; Devlin, A. Sloan; Varma, Yug; Fischbach, Michael A.; Biddinger, Sudha B.; Dutton, Rachel J.; Turnbaugh, Peter J.

    2013-01-01

    Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut1–5, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals2, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease6. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. PMID:24336217

  6. An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression.

    Science.gov (United States)

    Qin, Yufeng; Roberts, John D; Grimm, Sara A; Lih, Fred B; Deterding, Leesa J; Li, Ruifang; Chrysovergis, Kaliopi; Wade, Paul A

    2018-01-23

    The gut microbiome, a key constituent of the colonic environment, has been implicated as an important modulator of human health. The eukaryotic epigenome is postulated to respond to environmental stimuli through alterations in chromatin features and, ultimately, gene expression. How the host mediates epigenomic responses to gut microbiota is an emerging area of interest. Here, we profile the gut microbiome and chromatin characteristics in colon epithelium from mice fed either an obesogenic or control diet, followed by an analysis of the resultant changes in gene expression. The obesogenic diet shapes the microbiome prior to the development of obesity, leading to altered bacterial metabolite production which predisposes the host to obesity. This microbiota-diet interaction leads to changes in histone modification at active enhancers that are enriched for binding sites for signal responsive transcription factors. These alterations of histone methylation and acetylation are associated with signaling pathways integral to the development of colon cancer. The transplantation of obesogenic diet-conditioned microbiota into germ free mice, combined with an obesogenic diet, recapitulates the features of the long-term diet regimen. The diet/microbiome-dependent changes are reflected in both the composition of the recipient animals' microbiome as well as in the set of transcription factor motifs identified at diet-influenced enhancers. These findings suggest that the gut microbiome, under specific dietary exposures, stimulates a reprogramming of the enhancer landscape in the colon, with downstream effects on transcription factors. These chromatin changes may be associated with those seen during colon cancer development.

  7. Overweight and the feline gut microbiome - a pilot study

    DEFF Research Database (Denmark)

    Kieler, I. N.; Mølbak, Lars; Hansen, L. L.

    2016-01-01

    with obesity have not been studied. Consequently, the aim of this study was to compare the gut microbiota of lean cats, with that of overweight and obese cats. Seventy-seven rescue-shelter cats housed for ≥3 consecutive days were included in the study. Faecal samples were obtained by rectal swab and, when...... available, by a paired litter box sample. Body condition was assessed using a 9-point scoring system. DNA was extracted, and the 16S rRNA gene was amplified with a high-throughput quantitative real-time PCR chip. Overweight and obese cats had a significantly different gut microbiota compared to lean cats (p...... overweight and obese cats seem to have an altered gut microbiome as compared to lean cats....

  8. Whole gut microbiome composition of damselfish and cardinalfish before and after reef settlement

    Directory of Open Access Journals (Sweden)

    Darren J. Parris

    2016-08-01

    Full Text Available The Pomacentridae (damselfish and Apogonidae (cardinalfish are among the most common fish families on coral reefs and in the aquarium trade. Members of both families undergo a pelagic larvae phase prior to settlement on the reef, where adults play key roles in benthic habitat structuring and trophic interactions. Fish-associated microbial communities (microbiomes significantly influence fish health and ecology, yet little is known of how microbiomes change with life stage. We quantified the taxonomic (16S rRNA gene composition of whole gut microbiomes from ten species of damselfish and two species of cardinalfish from Lizard Island, Australia, focusing specifically on comparisons between pelagic larvae prior to settlement on the reef versus post-settlement juvenile and adult individuals. On average, microbiome phylogenetic diversity increased from pre- to post-settlement, and was unrelated to the microbial composition in the surrounding water column. However, this trend varied among species, suggesting stochasticity in fish microbiome assembly. Pre-settlement fish were enriched with bacteria of the Endozoicomonaceae, Shewanellaceae, and Fusobacteriaceae, whereas settled fish harbored higher abundances of Vibrionaceae and Pasteurellaceae. Several individual operational taxonomic units, including ones related to Vibrio harveyi, Shewanella sp., and uncultured Endozoicomonas bacteria, were shared between both pre and post-settlement stages and may be of central importance in the intestinal niche across development. Richness of the core microbiome shared among pre-settlement fish was comparable to that of settled individuals, suggesting that changes in diversity with adulthood are due to the acquisition or loss of host-specific microbes. These results identify a key transition in microbiome structure across host life stage, suggesting changes in the functional contribution of microbiomes over development in two ecologically dominant reef fish

  9. Whole gut microbiome composition of damselfish and cardinalfish before and after reef settlement.

    Science.gov (United States)

    Parris, Darren J; Brooker, Rohan M; Morgan, Michael A; Dixson, Danielle L; Stewart, Frank J

    2016-01-01

    The Pomacentridae (damselfish) and Apogonidae (cardinalfish) are among the most common fish families on coral reefs and in the aquarium trade. Members of both families undergo a pelagic larvae phase prior to settlement on the reef, where adults play key roles in benthic habitat structuring and trophic interactions. Fish-associated microbial communities (microbiomes) significantly influence fish health and ecology, yet little is known of how microbiomes change with life stage. We quantified the taxonomic (16S rRNA gene) composition of whole gut microbiomes from ten species of damselfish and two species of cardinalfish from Lizard Island, Australia, focusing specifically on comparisons between pelagic larvae prior to settlement on the reef versus post-settlement juvenile and adult individuals. On average, microbiome phylogenetic diversity increased from pre- to post-settlement, and was unrelated to the microbial composition in the surrounding water column. However, this trend varied among species, suggesting stochasticity in fish microbiome assembly. Pre-settlement fish were enriched with bacteria of the Endozoicomonaceae, Shewanellaceae, and Fusobacteriaceae, whereas settled fish harbored higher abundances of Vibrionaceae and Pasteurellaceae. Several individual operational taxonomic units, including ones related to Vibrio harveyi, Shewanella sp., and uncultured Endozoicomonas bacteria, were shared between both pre and post-settlement stages and may be of central importance in the intestinal niche across development. Richness of the core microbiome shared among pre-settlement fish was comparable to that of settled individuals, suggesting that changes in diversity with adulthood are due to the acquisition or loss of host-specific microbes. These results identify a key transition in microbiome structure across host life stage, suggesting changes in the functional contribution of microbiomes over development in two ecologically dominant reef fish families.

  10. Analysis of Stomach and Gut Microbiomes of the Eastern Oyster (Crassostrea virginica) from Coastal Louisiana, USA

    Science.gov (United States)

    King, Gary M.; Judd, Craig; Kuske, Cheryl R.; Smith, Conor

    2012-01-01

    We used high throughput pyrosequencing to characterize stomach and gut content microbiomes of Crassostrea virginica, the Easter oyster, obtained from two sites, one in Barataria Bay (Hackberry Bay) and the other in Terrebonne Bay (Lake Caillou), Louisiana, USA. Stomach microbiomes in oysters from Hackberry Bay were overwhelmingly dominated by Mollicutes most closely related to Mycoplasma; a more rich community dominated by Planctomyctes occurred in Lake Caillou oyster stomachs. Gut communities for oysters from both sites differed from stomach communities, and harbored a relatively diverse assemblage of phylotypes. Phylotypes most closely related to Shewanella and a Chloroflexi strain dominated the Lake Caillou and Hackberry Bay gut microbiota, respectively. While many members of the stomach and gut microbiomes appeared to be transients or opportunists, a putative core microbiome was identified based on phylotypes that occurred in all stomach or gut samples only. The putative core stomach microbiome comprised 5 OTUs in 3 phyla, while the putative core gut microbiome contained 44 OTUs in 12 phyla. These results collectively revealed novel microbial communities within the oyster digestive system, the functions of the oyster microbiome are largely unknown. A comparison of microbiomes from Louisiana oysters with bacterial communities reported for other marine invertebrates and fish indicated that molluscan microbiomes were more similar to each other than to microbiomes of polychaetes, decapods and fish. PMID:23251548

  11. Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome

    DEFF Research Database (Denmark)

    Shoaie, Saeed; Ghaffari, Pouyan; Kovatcheva-Datchary, Petia

    2015-01-01

    The human gut microbiome is known to be associated with various human disorders, but a major challenge is to go beyond association studies and elucidate causalities. Mathematical modeling of the human gut microbiome at a genome scale is a useful tool to decipher microbe-microbe, diet...

  12. Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome.

    Science.gov (United States)

    Casero, David; Gill, Kirandeep; Sridharan, Vijayalakshmi; Koturbash, Igor; Nelson, Gregory; Hauer-Jensen, Martin; Boerma, Marjan; Braun, Jonathan; Cheema, Amrita K

    2017-08-18

    Space travel is associated with continuous low dose rate exposure to high linear energy transfer (LET) radiation. Pathophysiological manifestations after low dose radiation exposure are strongly influenced by non-cytocidal radiation effects, including changes in the microbiome and host gene expression. Although the importance of the gut microbiome in the maintenance of human health is well established, little is known about the role of radiation in altering the microbiome during deep-space travel. Using a mouse model for exposure to high LET radiation, we observed substantial changes in the composition and functional potential of the gut microbiome. These were accompanied by changes in the abundance of multiple metabolites, which were related to the enzymatic activity of the predicted metagenome by means of metabolic network modeling. There was a complex dynamic in microbial and metabolic composition at different radiation doses, suggestive of transient, dose-dependent interactions between microbial ecology and signals from the host's cellular damage repair processes. The observed radiation-induced changes in microbiota diversity and composition were analyzed at the functional level. A constitutive change in activity was found for several pathways dominated by microbiome-specific enzymatic reactions like carbohydrate digestion and absorption and lipopolysaccharide biosynthesis, while the activity in other radiation-responsive pathways like phosphatidylinositol signaling could be linked to dose-dependent changes in the abundance of specific taxa. The implication of microbiome-mediated pathophysiology after low dose ionizing radiation may be an unappreciated biologic hazard of space travel and deserves experimental validation. This study provides a conceptual and analytical basis of further investigations to increase our understanding of the chronic effects of space radiation on human health, and points to potential new targets for intervention in adverse radiation

  13. Stress & the gut-brain axis: Regulation by the microbiome

    Directory of Open Access Journals (Sweden)

    Jane A. Foster

    2017-12-01

    Full Text Available The importance of the gut–brain axis in regulating stress-related responses has long been appreciated. More recently, the microbiota has emerged as a key player in the control of this axis, especially during conditions of stress provoked by real or perceived homeostatic challenge. Diet is one of the most important modifying factors of the microbiota-gut-brain axis. The routes of communication between the microbiota and brain are slowly being unravelled, and include the vagus nerve, gut hormone signaling, the immune system, tryptophan metabolism, and microbial metabolites such as short chain fatty acids. The importance of the early life gut microbiota in shaping later health outcomes also is emerging. Results from preclinical studies indicate that alterations of the early microbial composition by way of antibiotic exposure, lack of breastfeeding, birth by Caesarean section, infection, stress exposure, and other environmental influences - coupled with the influence of host genetics - can result in long-term modulation of stress-related physiology and behaviour. The gut microbiota has been implicated in a variety of stress-related conditions including anxiety, depression and irritable bowel syndrome, although this is largely based on animal studies or correlative analysis in patient populations. Additional research in humans is sorely needed to reveal the relative impact and causal contribution of the microbiome to stress-related disorders. In this regard, the concept of psychobiotics is being developed and refined to encompass methods of targeting the microbiota in order to positively impact mental health outcomes. At the 2016 Neurobiology of Stress Workshop in Newport Beach, CA, a group of experts presented the symposium “The Microbiome: Development, Stress, and Disease”. This report summarizes and builds upon some of the key concepts in that symposium within the context of how microbiota might influence the neurobiology of stress.

  14. Seasonal variation in nutrient utilization shapes gut microbiome structure and function in wild giant pandas.

    Science.gov (United States)

    Wu, Qi; Wang, Xiao; Ding, Yun; Hu, Yibo; Nie, Yonggang; Wei, Wei; Ma, Shuai; Yan, Li; Zhu, Lifeng; Wei, Fuwen

    2017-09-13

    Wild giant pandas use different parts of bamboo (shoots, leaves and stems) and different bamboo species at different times of the year. Their usage of bamboo can be classified temporally into a distinct leaf stage, shoot stage and transition stage. An association between this usage pattern and variation in the giant panda gut microbiome remains unknown. Here, we found associations using a gut metagenomic approach and nutritional analyses whereby diversity of the gut microbial community in the leaf and shoot stages was significantly different. Functional metagenomic analysis showed that in the leaf stage, bacteria species over-represented genes involved in raw fibre utilization and cell cycle control. Thus, raw fibre utilization by the gut microbiome was guaranteed during the nutrient-deficient leaf stage by reinforcing gut microbiome robustness. During the protein-abundant shoot stage, the functional capacity of the gut microbiome expanded to include prokaryotic secretion and signal transduction activity, suggesting active interactions between the gut microbiome and host. These results illustrate that seasonal nutrient variation in wild giant pandas substantially influences gut microbiome composition and function. Nutritional interactions between gut microbiomes and hosts appear to be complex and further work is needed. © 2017 The Author(s).

  15. Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes

    Directory of Open Access Journals (Sweden)

    Julia H. Kreznar

    2017-02-01

    Full Text Available Genetic variation drives phenotypic diversity and influences the predisposition to metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in diabetes-related phenotypes and gut microbiota composition among the different mouse strains in response to the dietary challenge and identified taxa associated with these traits. Follow-up microbiota transplant experiments showed that altering the composition of the gut microbiota modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring microbial communities with enhanced capacity for processing dietary sugars and for generating hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic and phenotypic diversity observed among mouse strains and provide a link between the gut microbiome and insulin secretion.

  16. Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes.

    Science.gov (United States)

    Kreznar, Julia H; Keller, Mark P; Traeger, Lindsay L; Rabaglia, Mary E; Schueler, Kathryn L; Stapleton, Donald S; Zhao, Wen; Vivas, Eugenio I; Yandell, Brian S; Broman, Aimee Teo; Hagenbuch, Bruno; Attie, Alan D; Rey, Federico E

    2017-02-14

    Genetic variation drives phenotypic diversity and influences the predisposition to metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in diabetes-related phenotypes and gut microbiota composition among the different mouse strains in response to the dietary challenge and identified taxa associated with these traits. Follow-up microbiota transplant experiments showed that altering the composition of the gut microbiota modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring microbial communities with enhanced capacity for processing dietary sugars and for generating hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic and phenotypic diversity observed among mouse strains and provide a link between the gut microbiome and insulin secretion. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo; Brislawn, Colin J.; Noecker, Cecilia; Zink, Erika M.; Fansler, Sarah J.; Casey, Cameron P.; Miller, Darla R.; Huang, Yurong; Karpen, Gary H.; Celniker, Susan E.; Brown, James B.; Borenstein, Elhanan; Jansson, Janet K.; Metz, Thomas O.; Mao, Jian-Hua

    2016-11-28

    Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes in the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.

  18. Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of Trinidadian guppies.

    Science.gov (United States)

    Sullam, Karen E; Rubin, Benjamin E R; Dalton, Christopher M; Kilham, Susan S; Flecker, Alexander S; Russell, Jacob A

    2015-07-01

    Diverse microbial consortia profoundly influence animal biology, necessitating an understanding of microbiome variation in studies of animal adaptation. Yet, little is known about such variability among fish, in spite of their importance in aquatic ecosystems. The Trinidadian guppy, Poecilia reticulata, is an intriguing candidate to test microbiome-related hypotheses on the drivers and consequences of animal adaptation, given the recent parallel origins of a similar ecotype across streams. To assess the relationships between the microbiome and host adaptation, we used 16S rRNA amplicon sequencing to characterize gut bacteria of two guppy ecotypes with known divergence in diet, life history, physiology and morphology collected from low-predation (LP) and high-predation (HP) habitats in four Trinidadian streams. Guts were populated by several recurring, core bacteria that are related to other fish associates and rarely detected in the environment. Although gut communities of lab-reared guppies differed from those in the wild, microbiome divergence between ecotypes from the same stream was evident under identical rearing conditions, suggesting host genetic divergence can affect associations with gut bacteria. In the field, gut communities varied over time, across streams and between ecotypes in a stream-specific manner. This latter finding, along with PICRUSt predictions of metagenome function, argues against strong parallelism of the gut microbiome in association with LP ecotype evolution. Thus, bacteria cannot be invoked in facilitating the heightened reliance of LP guppies on lower-quality diets. We argue that the macroevolutionary microbiome convergence seen across animals with similar diets may be a signature of secondary microbial shifts arising some time after host-driven adaptation.

  19. Opportunities and challenges for gut microbiome studies in the Indian population

    OpenAIRE

    Shetty, Sudarshan Anand; Marathe, Nachiket Prakash; Shouche, Yogesh S

    2013-01-01

    The gut microbiome is a complex ecosystem that affects the development, immunological responses and nutritional status of the host. Efforts are being made to unravel the complex interaction between the gut microbiome and host to have a greater understanding about its role in human health. Colonization of the gut by microbes begins at birth, but the succession and composition of the microbial community depends on a number of factors including, but not limited to, the age, diet, genetic composi...

  20. Early Life Experience and Gut Microbiome: the Brain-Gut-Microbiota Signaling System

    Science.gov (United States)

    Cong, Xiaomei; Henderson, Wendy A.; Graf, Joerg; McGrath, Jacqueline M.

    2015-01-01

    Background Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuro-immune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short and long term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. Purpose The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. Conclusions The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking; leading potentially to changes in practice and targeted interventions. PMID:26240939

  1. Irritable bowel syndrome: A microbiome-gut-brain axis disorder?

    Science.gov (United States)

    Kennedy, Paul J; Cryan, John F; Dinan, Timothy G; Clarke, Gerard

    2014-01-01

    Irritable bowel syndrome (IBS) is an extremely prevalent but poorly understood gastrointestinal disorder. Consequently, there are no clear diagnostic markers to help diagnose the disorder and treatment options are limited to management of the symptoms. The concept of a dysregulated gut-brain axis has been adopted as a suitable model for the disorder. The gut microbiome may play an important role in the onset and exacerbation of symptoms in the disorder and has been extensively studied in this context. Although a causal role cannot yet be inferred from the clinical studies which have attempted to characterise the gut microbiota in IBS, they do confirm alterations in both community stability and diversity. Moreover, it has been reliably demonstrated that manipulation of the microbiota can influence the key symptoms, including abdominal pain and bowel habit, and other prominent features of IBS. A variety of strategies have been taken to study these interactions, including probiotics, antibiotics, faecal transplantations and the use of germ-free animals. There are clear mechanisms through which the microbiota can produce these effects, both humoral and neural. Taken together, these findings firmly establish the microbiota as a critical node in the gut-brain axis and one which is amenable to therapeutic interventions. PMID:25339800

  2. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice.

    Directory of Open Access Journals (Sweden)

    Xiaoming Bian

    Full Text Available Artificial sweeteners have been widely used in the modern diet, and their observed effects on human health have been inconsistent, with both beneficial and adverse outcomes reported. Obesity and type 2 diabetes have dramatically increased in the U.S. and other countries over the last two decades. Numerous studies have indicated an important role of the gut microbiome in body weight control and glucose metabolism and regulation. Interestingly, the artificial sweetener saccharin could alter gut microbiota and induce glucose intolerance, raising questions about the contribution of artificial sweeteners to the global epidemic of obesity and diabetes. Acesulfame-potassium (Ace-K, a FDA-approved artificial sweetener, is commonly used, but its toxicity data reported to date are considered inadequate. In particular, the functional impact of Ace-K on the gut microbiome is largely unknown. In this study, we explored the effects of Ace-K on the gut microbiome and the changes in fecal metabolic profiles using 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS metabolomics. We found that Ace-K consumption perturbed the gut microbiome of CD-1 mice after a 4-week treatment. The observed body weight gain, shifts in the gut bacterial community composition, enrichment of functional bacterial genes related to energy metabolism, and fecal metabolomic changes were highly gender-specific, with differential effects observed for males and females. In particular, ace-K increased body weight gain of male but not female mice. Collectively, our results may provide a novel understanding of the interaction between artificial sweeteners and the gut microbiome, as well as the potential role of this interaction in the development of obesity and the associated chronic inflammation.

  3. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice.

    Science.gov (United States)

    Bian, Xiaoming; Chi, Liang; Gao, Bei; Tu, Pengcheng; Ru, Hongyu; Lu, Kun

    2017-01-01

    Artificial sweeteners have been widely used in the modern diet, and their observed effects on human health have been inconsistent, with both beneficial and adverse outcomes reported. Obesity and type 2 diabetes have dramatically increased in the U.S. and other countries over the last two decades. Numerous studies have indicated an important role of the gut microbiome in body weight control and glucose metabolism and regulation. Interestingly, the artificial sweetener saccharin could alter gut microbiota and induce glucose intolerance, raising questions about the contribution of artificial sweeteners to the global epidemic of obesity and diabetes. Acesulfame-potassium (Ace-K), a FDA-approved artificial sweetener, is commonly used, but its toxicity data reported to date are considered inadequate. In particular, the functional impact of Ace-K on the gut microbiome is largely unknown. In this study, we explored the effects of Ace-K on the gut microbiome and the changes in fecal metabolic profiles using 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS) metabolomics. We found that Ace-K consumption perturbed the gut microbiome of CD-1 mice after a 4-week treatment. The observed body weight gain, shifts in the gut bacterial community composition, enrichment of functional bacterial genes related to energy metabolism, and fecal metabolomic changes were highly gender-specific, with differential effects observed for males and females. In particular, ace-K increased body weight gain of male but not female mice. Collectively, our results may provide a novel understanding of the interaction between artificial sweeteners and the gut microbiome, as well as the potential role of this interaction in the development of obesity and the associated chronic inflammation.

  4. The Core Gut Microbiome of the American Cockroach, Periplaneta americana, Is Stable and Resilient to Dietary Shifts.

    Science.gov (United States)

    Tinker, Kara A; Ottesen, Elizabeth A

    2016-11-15

    The omnivorous cockroach Periplaneta americana hosts a diverse hindgut microbiota encompassing hundreds of microbial species. In this study, we used 16S rRNA gene sequencing to examine the effect of diet on the composition of the P. americana hindgut microbial community. Results show that the hindgut microbiota of P. americana exhibit a highly stable core microbial community with low variance in compositions between individuals and minimal community change in response to dietary shifts. This core hindgut microbiome is shared between laboratory-hosted and wild-caught individuals, although wild-caught specimens exhibited a higher diversity of low-abundance microbes that were lost following extended cultivation under laboratory conditions. This taxonomic stability strongly contrasts with observations of the gut microbiota of mammals, which have been shown to be highly responsive to dietary change. A comparison of P. americana hindgut samples with human fecal samples indicated that the cockroach hindgut community exhibited higher alpha diversity but a substantially lower beta diversity than the human gut microbiome. This suggests that cockroaches have evolved unique mechanisms for establishing and maintaining a diverse and stable core microbiome. The gut microbiome plays an important role in the overall health of its host. A healthy gut microbiota typically assists with defense against pathogens and the digestion and absorption of nutrients from food, while dysbiosis of the gut microbiota has been associated with reduced health. In this study, we examined the composition and stability of the gut microbiota from the omnivorous cockroach Periplaneta americana. We found that P. americana hosts a diverse core gut microbiome that remains stable after drastic long-term changes in diet. While other insects, notably ant and bee species, have evolved mechanisms for maintaining a stable association with specific gut microbiota, these insects typically host low-diversity gut

  5. Market Integration Predicts Human Gut Microbiome Attributes across a Gradient of Economic Development.

    Science.gov (United States)

    Stagaman, Keaton; Cepon-Robins, Tara J; Liebert, Melissa A; Gildner, Theresa E; Urlacher, Samuel S; Madimenos, Felicia C; Guillemin, Karen; Snodgrass, J Josh; Sugiyama, Lawrence S; Bohannan, Brendan J M

    2018-01-01

    Economic development is marked by dramatic increases in the incidence of microbiome-associated diseases, such as autoimmune diseases and metabolic syndromes, but the lifestyle changes that drive alterations in the human microbiome are not known. We measured market integration as a proxy for economically related lifestyle attributes, such as ownership of specific market goods that index degree of market integration and components of traditional and nontraditional (more modern) house structure and infrastructure, and profiled the fecal microbiomes of 213 participants from a contiguous, indigenous Ecuadorian population. Despite relatively modest differences in lifestyle across the population, greater economic development correlated with significantly lower within-host diversity, higher between-host dissimilarity, and a decrease in the relative abundance of the bacterium Prevotella . These microbiome shifts were most strongly associated with more modern housing, followed by reduced ownership of traditional subsistence lifestyle-associated items. IMPORTANCE Previous research has reported differences in the gut microbiome between populations residing in wealthy versus poorer countries, leading to the assertion that lifestyle changes associated with economic development promote changes in the gut microbiome that promote the proliferation of microbiome-associated diseases. However, a direct relationship between economic development and the gut microbiome has not previously been shown. We surveyed the gut microbiomes of a single indigenous population undergoing economic development and found significant associations between features of the gut microbiome and lifestyle changes associated with economic development. These findings suggest that even the earliest stages of economic development can drive changes in the gut microbiome, which may provide a warning sign for the development of microbiome-associated diseases.

  6. Multi-Omics Reveals that Lead Exposure Disturbs Gut Microbiome Development, Key Metabolites, and Metabolic Pathways.

    Science.gov (United States)

    Gao, Bei; Chi, Liang; Mahbub, Ridwan; Bian, Xiaoming; Tu, Pengcheng; Ru, Hongyu; Lu, Kun

    2017-04-17

    Lead exposure remains a global public health issue, and the recent Flint water crisis has renewed public concern about lead toxicity. The toxicity of lead has been well established in a variety of systems and organs. The gut microbiome has been shown to be highly involved in many critical physiological processes, including food digestion, immune system development, and metabolic homeostasis. However, despite the key role of the gut microbiome in human health, the functional impact of lead exposure on the gut microbiome has not been studied. The aim of this study is to define gut microbiome toxicity induced by lead exposure in C57BL/6 mice using multiomics approaches, including 16S rRNA sequencing, whole genome metagenomics sequencing, and gas chromatography-mass spectrometry (GC-MS) metabolomics. 16S rRNA sequencing revealed that lead exposure altered the gut microbiome trajectory and phylogenetic diversity. Metagenomics sequencing and metabolomics profiling showed that numerous metabolic pathways, including vitamin E, bile acids, nitrogen metabolism, energy metabolism, oxidative stress, and the defense/detoxification mechanism, were significantly disturbed by lead exposure. These perturbed molecules and pathways may have important implications for lead toxicity in the host. Taken together, these results demonstrated that lead exposure not only altered the gut microbiome community structures/diversity but also greatly affected metabolic functions, leading to gut microbiome toxicity.

  7. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome

    DEFF Research Database (Denmark)

    Xie, Hailiang; Guo, Ruijin; Zhong, Huanzi

    2016-01-01

    The gut microbiota has been typically viewed as an environmental factor for human health. Twins are well suited for investigating the concordance of their gut microbiomes and decomposing genetic and environmental influences. However, existing twin studies utilizing metagenomic shotgun sequencing...... have included only a few samples. Here, we sequenced fecal samples from 250 adult twins in the TwinsUK registry and constructed a comprehensive gut microbial reference gene catalog. We demonstrate heritability of many microbial taxa and functional modules in the gut microbiome, including those...... associated with diseases. Moreover, we identified 8 million SNPs in the gut microbiome and observe a high similarity in microbiome SNPs between twins that slowly decreases after decades of living apart. The results shed new light on the genetic and environmental influences on the composition and function...

  8. Structure, and culture of the gut microbiome of the Mormon cricket Anabrus simplex

    Science.gov (United States)

    The gut microbiome of insects plays an important role in their ecology and evolution, participating in nutrient acquisition, immunity, and behavior. Microbial community structure within the gut is heavily influenced by differences among gut regions in morphology and physiology, which determine the n...

  9. Rapidly expanding knowledge on the role of the gut microbiome in health and disease

    NARCIS (Netherlands)

    Cenit, M. C.; Matzaraki, V.; Tigchelaar-Feenstra, E. F.; Zhernakova, A.

    2014-01-01

    The human gut is colonized by a wide diversity of micro-organisms, which are now known to play a key role in the human host by regulating metabolic functions and immune homeostasis. Many studies have indicated that the genomes of our gut microbiota, known as the gut microbiome or our "other genome"

  10. Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis.

    Directory of Open Access Journals (Sweden)

    Christopher J Stewart

    Full Text Available The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM microbiome. Stool samples (n = 173 from 27 infants (12 twin pairs and 1 triplet set and EBM (n = 18 from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae. This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics.

  11. Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis.

    Science.gov (United States)

    Stewart, Christopher J; Marrs, Emma C L; Nelson, Andrew; Lanyon, Clare; Perry, John D; Embleton, Nicholas D; Cummings, Stephen P; Berrington, Janet E

    2013-01-01

    The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae. This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics.

  12. The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain.

    Science.gov (United States)

    Kanji, S; Fonseka, T M; Marshe, V S; Sriretnakumar, V; Hahn, M K; Müller, D J

    2018-02-01

    With the emergence of knowledge implicating the human gut microbiome in the development and regulation of several physiological systems, evidence has accumulated to suggest a role for the gut microbiome in psychiatric conditions and drug response. A complex relationship between the enteric nervous system, the gut microbiota and the central nervous system has been described which allows for the microbiota to influence and respond to a variety of behaviors and psychiatric conditions. Additionally, the use of pharmaceuticals may interact with and alter the microbiota to potentially contribute to adverse effects of the drug. The gut microbiota has been described in several psychiatric disorders including depression and anxiety, but only a few reports have discussed the role of the microbiome in schizophrenia. The following review examines the evidence surrounding the gut microbiota in behavior and psychiatric illness, the role of the microbiota in schizophrenia and the potential for antipsychotics to alter the gut microbiota and promote adverse metabolic events.

  13. The organophosphate malathion disturbs gut microbiome development and the quorum-Sensing system.

    Science.gov (United States)

    Gao, Bei; Chi, Liang; Tu, Pengcheng; Bian, Xiaoming; Thomas, Jesse; Ru, Hongyu; Lu, Kun

    2018-02-01

    The gut microbiome has tremendous potential to impact health and disease. Various environmental toxicants, including insecticides, have been shown to alter gut microbiome community structures. However, the mechanism that compositionally and functionally regulates gut microbiota remains unclear. Quorum sensing is known to modulate intra- and interspecies gene expression and coordinate population responses. It is unknown whether quorum sensing is disrupted when environmental toxicants cause perturbations in the gut microbiome community structure. To reveal the response of the quorum-sensing system to environmental exposure, we use a combination of Illumina-based 16S rRNA gene amplicon and shotgun metagenome sequencing to examine the impacts of a widely used organophosphate insecticide, malathion, on the gut microbiome trajectory, quorum sensing system and behaviors related to quorum sensing, such as motility and pathogenicity. Our results demonstrated that malathion perturbed the gut microbiome development, quorum sensing and quorum sensing related behaviors. These findings may provide a novel mechanistic understanding of the role of quorum-sensing in the gut microbiome toxicity of malathion. Copyright © 2017. Published by Elsevier B.V.

  14. The Gut Microbiome, Obesity, and Weight Control in Women's Reproductive Health.

    Science.gov (United States)

    Greathouse, K Leigh; Faucher, Mary Ann; Hastings-Tolsma, Marie

    2017-08-01

    The microbes residing in the human gut, referred to as the microbiome, are intricately linked to energy homeostasis and subsequently obesity. Integral to the origins of obesity, the microbiome is believed to affect not only health of the human gut but also overall health. This microbiome-obesity association is mediated through the process of energy extraction, metabolism, and cross talk between the brain and the gut microbiome. Host exposures, including diet, that potentially modify genetic predisposition to obesity and affect weight management are reviewed. The higher prevalence of obesity among women and recent evidence linking obesity during pregnancy with offspring health make this topic particularly relevant. Current limitations in microbiome research to address obesity and future advances in this field are described. Applications of this science with respect to applied nursing and overall health care in general are included, with emphasis on the reproductive health of women and their offspring.

  15. Regulation of host metabolism and immunity by the gut microbiome

    DEFF Research Database (Denmark)

    Laursen, Janne Marie

    During recent years, central roles of the gut microbiome in metabolic and immunological diseases have been uncovered, and multiple studies have shown that bacterial-derived components shape host physiology and immune responses via direct cellular interactions. The intestinal immune system...... is crucial for the induction of effective immune responses against invading pathogens while simultaneously being vital for maintenance of homeostatic conditions. This balancing act requires a tightly regulated system that might be influenced by bacterial metabolites such as butyrate, since reduced...... frequencies of butyrate-producing species associate with various lifestyle-associated disorders. In the present work, we used systems biology approaches to understand how bacterial components may associate with metabolic disease and mediate phenotypic shifts in pro-inflammatory immune cells. First, we...

  16. Human and rat gut microbiome composition is maintained following sleep restriction

    NARCIS (Netherlands)

    Zhang, Shirley L; Bai, Lei; Goel, Namni; Bailey, Aubrey; Jang, Christopher J; Bushman, Frederic D; Meerlo, Peter; Dinges, David F; Sehgal, Amita

    Insufficient sleep increasingly characterizes modern society, contributing to a host of serious medical problems. Loss of sleep is associated with metabolic diseases such as obesity and diabetes, cardiovascular disorders, and neurological and cognitive impairments. Shifts in gut microbiome

  17. The Brain-Gut-Microbiome Axis: What Role Does It Play in Autism Spectrum Disorder?

    Science.gov (United States)

    Luna, Ruth Ann; Savidge, Tor C; Williams, Kent C

    2016-03-01

    The brain-gut-microbiome axis refers to the interactions between the central nervous system, gastrointestinal system, and microorganisms that live in the gastrointestinal tract. Exploring these interactions provides a rationale for why gastrointestinal disorders commonly occur in children with Autism Spectrum Disorders (ASD). Signs of altered brain-gut interactions that are closely associated with functional GI disorders (FGIDs) commonly occur in children with ASD. Studies of microbiome in ASD suggest that changes in the gut microbiome may be associated with ASD and with GI disorders in children with ASD. Further studies into the brain-gut-microbiome axis could lead to new techniques for identifying GI disorders in children with ASD and novel therapies for treating ASD behaviors.

  18. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity

    NARCIS (Netherlands)

    Zhernakova, A.; Kurilshikov, A.; Bonder, M.J.; Tigchelaar, E.F.; Schirmer, M.; Vatanen, T.; Mujagic, Z.; Vila, A.V.; Falony, G.; Vieira-Silva, S.; Wang, J; Imhann, F.; Brandsma, E.; Jankipersadsing, S.A.; Joossens, M.; Cenit, M.C.; Deelen, P.; Swertz, M.A.; Weersma, R.K.; Feskens, E.J.M.; Netea, M.G.; Gevers, D.; Jonkers, D.; Franke, L.; Aulchenko, Y.S.; Huttenhower, C.; Raes, J.; Hofker, M.H.; Xavier, R.J.; Wijmenga, C.; Fu, J.

    2016-01-01

    Deep sequencing of the gut microbiomes of 1135 participants from a Dutch population-based cohort shows relations between the microbiome and 126 exogenous and intrinsic host factors, including 31 intrinsic factors, 12 diseases, 19 drug groups, 4 smoking categories, and 60 dietary factors. These

  19. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity

    Directory of Open Access Journals (Sweden)

    Vinod K. Gupta

    2017-06-01

    Full Text Available One of the fundamental issues in the microbiome research is characterization of the healthy human microbiota. Recent studies have elucidated substantial divergences in the microbiome structure between healthy individuals from different race and ethnicity. This review provides a comprehensive account of such geography, ethnicity or life-style-specific variations in healthy microbiome at five major body habitats—Gut, Oral-cavity, Respiratory Tract, Skin, and Urogenital Tract (UGT. The review focuses on the general trend in the human microbiome evolution—a gradual transition in the gross compositional structure along with a continual decrease in diversity of the microbiome, especially of the gut microbiome, as the human populations passed through three stages of subsistence like foraging, rural farming and industrialized urban western life. In general, gut microbiome of the hunter-gatherer populations is highly abundant with Prevotella, Proteobacteria, Spirochaetes, Clostridiales, Ruminobacter etc., while those of the urban communities are often enriched in Bacteroides, Bifidobacterium, and Firmicutes. The oral and skin microbiome are the next most diverse among different populations, while respiratory tract and UGT microbiome show lesser variations. Higher microbiome diversity is observed for oral-cavity in hunter-gatherer group with higher prevalence of Haemophilus than agricultural group. In case of skin microbiome, rural and urban Chinese populations show variation in abundance of Trabulsiella and Propionibacterium. On the basis of published data, we have characterized the core microbiota—the set of genera commonly found in all populations, irrespective of their geographic locations, ethnicity or mode of subsistence. We have also identified the major factors responsible for geography-based alterations in microbiota; though it is not yet clear which factor plays a dominant role in shaping the microbiome—nature or nurture, host genetics

  20. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity

    Science.gov (United States)

    Gupta, Vinod K.; Paul, Sandip; Dutta, Chitra

    2017-01-01

    One of the fundamental issues in the microbiome research is characterization of the healthy human microbiota. Recent studies have elucidated substantial divergences in the microbiome structure between healthy individuals from different race and ethnicity. This review provides a comprehensive account of such geography, ethnicity or life-style-specific variations in healthy microbiome at five major body habitats—Gut, Oral-cavity, Respiratory Tract, Skin, and Urogenital Tract (UGT). The review focuses on the general trend in the human microbiome evolution—a gradual transition in the gross compositional structure along with a continual decrease in diversity of the microbiome, especially of the gut microbiome, as the human populations passed through three stages of subsistence like foraging, rural farming and industrialized urban western life. In general, gut microbiome of the hunter-gatherer populations is highly abundant with Prevotella, Proteobacteria, Spirochaetes, Clostridiales, Ruminobacter etc., while those of the urban communities are often enriched in Bacteroides, Bifidobacterium, and Firmicutes. The oral and skin microbiome are the next most diverse among different populations, while respiratory tract and UGT microbiome show lesser variations. Higher microbiome diversity is observed for oral-cavity in hunter-gatherer group with higher prevalence of Haemophilus than agricultural group. In case of skin microbiome, rural and urban Chinese populations show variation in abundance of Trabulsiella and Propionibacterium. On the basis of published data, we have characterized the core microbiota—the set of genera commonly found in all populations, irrespective of their geographic locations, ethnicity or mode of subsistence. We have also identified the major factors responsible for geography-based alterations in microbiota; though it is not yet clear which factor plays a dominant role in shaping the microbiome—nature or nurture, host genetics or his environment

  1. Metabolic Modeling of Common Escherichia coli Strains in Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Yue-Dong Gao

    2014-01-01

    Full Text Available The recent high-throughput sequencing has enabled the composition of Escherichia coli strains in the human microbial community to be profiled en masse. However, there are two challenges to address: (1 exploring the genetic differences between E. coli strains in human gut and (2 dynamic responses of E. coli to diverse stress conditions. As a result, we investigated the E. coli strains in human gut microbiome using deep sequencing data and reconstructed genome-wide metabolic networks for the three most common E. coli strains, including E. coli HS, UTI89, and CFT073. The metabolic models show obvious strain-specific characteristics, both in network contents and in behaviors. We predicted optimal biomass production for three models on four different carbon sources (acetate, ethanol, glucose, and succinate and found that these stress-associated genes were involved in host-microbial interactions and increased in human obesity. Besides, it shows that the growth rates are similar among the models, but the flux distributions are different, even in E. coli core reactions. The correlations between human diabetes-associated metabolic reactions in the E. coli models were also predicted. The study provides a systems perspective on E. coli strains in human gut microbiome and will be helpful in integrating diverse data sources in the following study.

  2. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available The mosquito gut represents an ecosystem that accommodates a complex, intimately associated microbiome. It is increasingly clear that the gut microbiome influences a wide variety of host traits, such as fitness and immunity. Understanding the microbial community structure and its dynamics across mosquito life is a prerequisite for comprehending the symbiotic relationship between the mosquito and its gut microbial residents. Here we characterized gut bacterial communities across larvae, pupae and adults of Anopheles gambiae reared in semi-natural habitats in Kenya by pyrosequencing bacterial 16S rRNA fragments. Immatures and adults showed distinctive gut community structures. Photosynthetic Cyanobacteria were predominant in the larval and pupal guts while Proteobacteria and Bacteroidetes dominated the adult guts, with core taxa of Enterobacteriaceae and Flavobacteriaceae. At the adult stage, diet regime (sugar meal and blood meal significantly affects the microbial structure. Intriguingly, blood meals drastically reduced the community diversity and favored enteric bacteria. Comparative genomic analysis revealed that the enriched enteric bacteria possess large genetic redox capacity of coping with oxidative and nitrosative stresses that are associated with the catabolism of blood meal, suggesting a beneficial role in maintaining gut redox homeostasis. Interestingly, gut community structure was similar in the adult stage between the field and laboratory mosquitoes, indicating that mosquito gut is a selective eco-environment for its microbiome. This comprehensive gut metatgenomic profile suggests a concerted symbiotic genetic association between gut inhabitants and host.

  3. “I Am I and My Bacterial Circumstances”: Linking Gut Microbiome, Neurodevelopment, and Depression

    Directory of Open Access Journals (Sweden)

    Juan M. Lima-Ojeda

    2017-08-01

    Full Text Available Recently, there has been renewed interest in the role played by microbiome in both human health and human disease. A correct equilibrium between the human host and their microorganisms is important for an appropriate physiological function. Extensive research has shown that microbes that inhabit the gastrointestinal tract—or gut microbiota—are involved not only in both nutritive and digestive activities but also in immunological processes. Moreover, the gut microbiome influences both central nervous system and energy homeostasis. An altered gut microbiome has been associated with the pathophysiology of different diseases, including neuropsychiatric disorders. Apparently, both environmental—diet, exposition to antibiotics, and infections—and host-genetic factors have a strong influence on gut microbiome, modulating the risk for neuropsychiatric illness. Also, early life disruption of the microbiome–gut–brain (MGB axis has been associated with an increased risk of developing depression later in life, suggesting a link between gut microbiome, neurodevelopment, and depression. This review aims to contribute to this growing area of research by exploring the role played by the gut microbiome in neurodevelopment and in the etiology of the depressive syndrome, including nutritional, immunological, and energy homeostasis approaches.

  4. “I Am I and My Bacterial Circumstances”: Linking Gut Microbiome, Neurodevelopment, and Depression

    Science.gov (United States)

    Lima-Ojeda, Juan M.; Rupprecht, Rainer; Baghai, Thomas C.

    2017-01-01

    Recently, there has been renewed interest in the role played by microbiome in both human health and human disease. A correct equilibrium between the human host and their microorganisms is important for an appropriate physiological function. Extensive research has shown that microbes that inhabit the gastrointestinal tract—or gut microbiota—are involved not only in both nutritive and digestive activities but also in immunological processes. Moreover, the gut microbiome influences both central nervous system and energy homeostasis. An altered gut microbiome has been associated with the pathophysiology of different diseases, including neuropsychiatric disorders. Apparently, both environmental—diet, exposition to antibiotics, and infections—and host-genetic factors have a strong influence on gut microbiome, modulating the risk for neuropsychiatric illness. Also, early life disruption of the microbiome–gut–brain (MGB) axis has been associated with an increased risk of developing depression later in life, suggesting a link between gut microbiome, neurodevelopment, and depression. This review aims to contribute to this growing area of research by exploring the role played by the gut microbiome in neurodevelopment and in the etiology of the depressive syndrome, including nutritional, immunological, and energy homeostasis approaches. PMID:28878696

  5. Structure and function of the healthy pre-adolescent pediatric gut microbiome.

    Science.gov (United States)

    Hollister, Emily B; Riehle, Kevin; Luna, Ruth Ann; Weidler, Erica M; Rubio-Gonzales, Michelle; Mistretta, Toni-Ann; Raza, Sabeen; Doddapaneni, Harsha V; Metcalf, Ginger A; Muzny, Donna M; Gibbs, Richard A; Petrosino, Joseph F; Shulman, Robert J; Versalovic, James

    2015-08-26

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limited. Using 16S rRNA gene and shotgun metagenomic sequencing, we characterized the structure, function, and variation of the healthy pediatric gut microbiome in a cohort of school-aged, pre-adolescent children (ages 7-12 years). We compared the healthy pediatric gut microbiome with that of healthy adults previously recruited from the same region (Houston, TX, USA). Although healthy children and adults harbored similar numbers of taxa and functional genes, their composition and functional potential differed significantly. Children were enriched in Bifidobacterium spp., Faecalibacterium spp., and members of the Lachnospiraceae, while adults harbored greater abundances of Bacteroides spp. From a functional perspective, significant differences were detected with respect to the relative abundances of genes involved in vitamin synthesis, amino acid degradation, oxidative phosphorylation, and triggering mucosal inflammation. Children's gut communities were enriched in functions which may support ongoing development, while adult communities were enriched in functions associated with inflammation, obesity, and increased risk of adiposity. Previous studies suggest that the human gut microbiome is relatively stable and adult-like after the first 1 to 3 years of life. Our results suggest that the healthy pediatric gut microbiome harbors compositional and functional qualities that differ from those of healthy adults and that the gut microbiome may undergo a more prolonged development than previously suspected.

  6. Gut Microbiota and a Selectively Bred Taste Phenotype: A Novel Model of Microbiome-Behavior Relationships.

    Science.gov (United States)

    Lyte, Mark; Fodor, Anthony A; Chapman, Clinton D; Martin, Gary G; Perez-Chanona, Ernesto; Jobin, Christian; Dess, Nancy K

    2016-06-01

    The microbiota-gut-brain axis is increasingly implicated in obesity, anxiety, stress, and other health-related processes. Researchers have proposed that gut microbiota may influence dietary habits, and pathways through the microbiota-gut-brain axis make such a relationship feasible; however, few data bear on the hypothesis. As a first step in the development of a model system, the gut microbiome was examined in rat lines selectively outbred on a taste phenotype with biobehavioral profiles that have diverged with respect to energy regulation, anxiety, and stress. Occidental low and high-saccharin-consuming rats were assessed for body mass and chow, water, and saccharin intake; littermate controls had shared cages with rats in the experimental group but were not assessed. Cecum and colon microbial communities were profiled using Illumina 16S rRNA sequencing and multivariate analysis of microbial diversity and composition. The saccharin phenotype was confirmed (low-saccharin-consuming rats, 0.7Δ% [0.9Δ%]; high-saccharin-consuming rats, 28.1Δ% [3.6Δ%]). Regardless of saccharin exposure, gut microbiota differed between lines in terms of overall community similarity and taxa at lower phylogenetic levels. Specifically, 16 genera in three phyla distinguished the lines at a 10% false discovery rate. The study demonstrates for the first time that rodent lines created through selective pressure on taste and differing on functionally related correlates host different microbial communities. Whether the microbiota are causally related to the taste phenotype or its correlates remains to be determined. These findings encourage further inquiry on the relationship of the microbiome to taste, dietary habits, emotion, and health.

  7. Sex differences in the gut microbiome-brain axis across the lifespan.

    Science.gov (United States)

    Jašarević, Eldin; Morrison, Kathleen E; Bale, Tracy L

    2016-02-19

    In recent years, the bidirectional communication between the gut microbiome and the brain has emerged as a factor that influences immunity, metabolism, neurodevelopment and behaviour. Cross-talk between the gut and brain begins early in life immediately following the transition from a sterile in utero environment to one that is exposed to a changing and complex microbial milieu over a lifetime. Once established, communication between the gut and brain integrates information from the autonomic and enteric nervous systems, neuroendocrine and neuroimmune signals, and peripheral immune and metabolic signals. Importantly, the composition and functional potential of the gut microbiome undergoes many transitions that parallel dynamic periods of brain development and maturation for which distinct sex differences have been identified. Here, we discuss the sexually dimorphic development, maturation and maintenance of the gut microbiome-brain axis, and the sex differences therein important in disease risk and resilience throughout the lifespan. © 2016 The Author(s).

  8. Comparative metagenomic analysis of plasmid encoded functions in the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Marchesi Julian R

    2010-01-01

    Full Text Available Abstract Background Little is known regarding the pool of mobile genetic elements associated with the human gut microbiome. In this study we employed the culture independent TRACA system to isolate novel plasmids from the human gut microbiota, and a comparative metagenomic analysis to investigate the distribution and relative abundance of functions encoded by these plasmids in the human gut microbiome. Results Novel plasmids were acquired from the human gut microbiome, and homologous nucleotide sequences with high identity (>90% to two plasmids (pTRACA10 and pTRACA22 were identified in the multiple human gut microbiomes analysed here. However, no homologous nucleotide sequences to these plasmids were identified in the murine gut or environmental metagenomes. Functions encoded by the plasmids pTRACA10 and pTRACA22 were found to be more prevalent in the human gut microbiome when compared to microbial communities from other environments. Among the most prevalent functions identified was a putative RelBE toxin-antitoxin (TA addiction module, and subsequent analysis revealed that this was most closely related to putative TA modules from gut associated bacteria belonging to the Firmicutes. A broad phylogenetic distribution of RelE toxin genes was observed in gut associated bacterial species (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria, but no RelE homologues were identified in gut associated archaeal species. We also provide indirect evidence for the horizontal transfer of these genes between bacterial species belonging to disparate phylogenetic divisions, namely Gram negative Proteobacteria and Gram positive species from the Firmicutes division. Conclusions The application of a culture independent system to capture novel plasmids from the human gut mobile metagenome, coupled with subsequent comparative metagenomic analysis, highlighted the unexpected prevalence of plasmid encoded functions in the gut microbial ecosystem. In

  9. Diets Alter the Gut Microbiome of Crocodile Lizards

    Directory of Open Access Journals (Sweden)

    Hai-Ying Jiang

    2017-10-01

    Full Text Available The crocodile lizard is a critically endangered reptile, and serious diseases have been found in this species in recent years, especially in captive lizards. Whether these diseases are caused by changes in the gut microbiota and the effect of captivity on disease remains to be determined. Here, we examined the relationship between the gut microbiota and diet and disease by comparing the fecal microbiota of wild lizards with those of sick and healthy lizards in captivity. The gut microbiota in wild crocodile lizards was consistently dominated by Proteobacteria (∼56.4% and Bacteroidetes (∼19.1%. However, the abundance of Firmicutes (∼2.6% in the intestine of the wild crocodile lizards was distinctly lower than that in other vertebrates. In addition, the wild samples from Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve also had a high abundance of Deinococcus–Thermus while the wild samples from Guangxi Daguishan Crocodile Lizard National Nature Reserve had a high abundance of Tenericutes. The gut microbial community in loach-fed crocodile lizards was significantly different from the gut microbial community in the earthworm-fed and wild lizards. In addition, significant differences in specific bacteria were detected among groups. Notably, in the gut microbiota, the captive lizards fed earthworms resulted in enrichment of Fusobacterium, and the captive lizards fed loaches had higher abundances of Elizabethkingia, Halomonas, Morganella, and Salmonella, all of which are pathogens or opportunistic pathogens in human or other animals. However, there is no sufficient evidence that the gut microbiota contributes to either disease A or disease B. These results provide a reference for the conservation of endangered crocodile lizards and the first insight into the relationship between disease and the gut microbiota in lizards.

  10. Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses.

    Science.gov (United States)

    Korem, Tal; Zeevi, David; Zmora, Niv; Weissbrod, Omer; Bar, Noam; Lotan-Pompan, Maya; Avnit-Sagi, Tali; Kosower, Noa; Malka, Gal; Rein, Michal; Suez, Jotham; Goldberg, Ben Z; Weinberger, Adina; Levy, Avraham A; Elinav, Eran; Segal, Eran

    2017-06-06

    Bread is consumed daily by billions of people, yet evidence regarding its clinical effects is contradicting. Here, we performed a randomized crossover trial of two 1-week-long dietary interventions comprising consumption of either traditionally made sourdough-leavened whole-grain bread or industrially made white bread. We found no significant differential effects of bread type on multiple clinical parameters. The gut microbiota composition remained person specific throughout this trial and was generally resilient to the intervention. We demonstrate statistically significant interpersonal variability in the glycemic response to different bread types, suggesting that the lack of phenotypic difference between the bread types stems from a person-specific effect. We further show that the type of bread that induces the lower glycemic response in each person can be predicted based solely on microbiome data prior to the intervention. Together, we present marked personalization in both bread metabolism and the gut microbiome, suggesting that understanding dietary effects requires integration of person-specific factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The Emerging Role of the Gut Microbiome in Adult Patients With Multiple Sclerosis.

    Science.gov (United States)

    Newland, Pamela K; Heitkemper, Margaret; Zhou, Yanjiao

    2016-12-01

    Approximately 2.3 million people worldwide are currently living with multiple sclerosis (MS). The pathophysiologic mechanism of MS is not well known. It has been suggested that alterations in the normal gut flora may contribute to MS etiology and symptoms. The aims of this review are to describe the data suggesting a role for the gut microbiome in MS research and address its implications for practice. A literature search of the following databases (PubMed, CINAHL, Cochrane library database, MEDLINE, Scopus, and Psychology and Behavioral Sciences) was conducted to find published studies relevant to gut microbiome in patients with MS. Five articles met the inclusion criteria of research studies of human gut microbiome in adults in English language and those receiving disease-modifying medications. Exclusion criteria were case reports and reviews. Human studies found that the gut microbiome was different among patients with MS, patients with MS who were treated with glatiramer acetate, and healthy controls. There is beginning evidence to suggest that the gut microbiota is related to autoimmunity and the pathology of MS. However, more research is necessary to clarify these mechanisms. A better understanding of the role of the gut microbiota in MS may lead to the development of targeted individualized interventions affecting the gut microbiota. These interventions may emphasize symptom self-management strategies such as diet.

  12. Omics for Understanding the Gut-Liver-Microbiome Axis and Precision Medicine

    Science.gov (United States)

    Human metabolic disease opens a new view to understanding the contribution of the intestinal microbiome to drug metabolism and drug-induced toxicity in gut-liver function. Gut microbiota, a key determinant of intestinal inflammation, also plays a direct role in chronic inflammation and liver disease...

  13. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure.

    Science.gov (United States)

    Kim, Seungbum; Goel, Ruby; Kumar, Ashok; Qi, Yanfei; Lobaton, Gil; Hosaka, Koji; Mohammed, Mohammed; Handberg, Eileen M; Richards, Elaine M; Pepine, Carl J; Raizada, Mohan K

    2018-03-30

    Recent evidence indicates a link between gut pathology and microbiome with hypertension (HTN) in animal models. However, whether this association exists in humans is unknown. Thus, our objectives in the present study were to test the hypotheses that high blood pressure (BP) patients have distinct gut microbiomes and that gut-epithelial barrier function markers and microbiome composition could predict systolic BP (SBP). Fecal samples, analyzed by shotgun metagenomics, displayed taxonomic and functional changes, including altered butyrate production between patients with high BP and reference subjects. Significant increases in plasma of intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), and augmented gut-targetting proinflammatory T helper 17 (Th17) cells in high BP patients demonstrated increased intestinal inflammation and permeability. Zonulin, a gut epithelial tight junction protein regulator, was markedly elevated, further supporting gut barrier dysfunction in high BP. Zonulin strongly correlated with SBP (R 2 = 0.5301, P <0.0001). Two models predicting SBP were built using stepwise linear regression analysis of microbiome data and circulating markers of gut health, and validated in a separate cohort by prediction of SBP from zonulin in plasma (R 2 = 0.4608, P <0.0001). The mouse model of HTN, chronic angiotensin II (Ang II) infusion, was used to confirm the effects of butyrate and gut barrier function on the cardiovascular system and BP. These results support our conclusion that intestinal barrier dysfunction and microbiome function are linked to HTN in humans. They suggest that manipulation of gut microbiome and its barrier functions could be the new therapeutic and diagnostic avenues for HTN. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Gut microbiota and obesity: lessons from the microbiome.

    Science.gov (United States)

    Cani, Patrice D

    2013-07-01

    The distal gut harbours microbial communities that outnumber our own eukaryotic cells. The contribution of the gut microbiota to the development of several diseases (e.g. obesity, type 2 diabetes, steatosis, cardiovascular diseases and inflammatory bowel diseases) is becoming clear, although the causality remains to be proven in humans. Global changes in the gut microbiota have been observed by a number of culture-dependent and culture-independent methods, and while the latter have mostly included 16S ribosomal RNA gene analyses, more recent studies have utilized DNA sequencing of whole-microbial communities. Altogether, these high-throughput methods have facilitated the identification of novel candidate bacteria and, most importantly, metabolic functions that might be associated with obesity and type 2 diabetes. This review discusses the association between specific taxa and obesity, together with the techniques that are used to characterize the gut microbiota in the context of obesity and type 2 diabetes. Recent results are discussed in the framework of the interactions between gut microbiota and host metabolism.

  15. Gut microbiomes of mobile predators vary with landscape context and species identity

    OpenAIRE

    Tiede, Julia; Scherber, Christoph; Mutschler, James; McMahon, Katherine D.; Gratton, Claudio

    2017-01-01

    Abstract Landscape context affects predator–prey interactions and predator diet composition, yet little is known about landscape effects on insect gut microbiomes, a determinant of physiology and condition. Here, we combine laboratory and field experiments to examine the effects of landscape context on the gut bacterial community and body condition of predatory insects. Under laboratory conditions, we found that prey diversity increased bacterial richness in insect guts. In the field, we stud...

  16. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model.

    Science.gov (United States)

    Hu, Jianzhong; Raikhel, Vincent; Gopalakrishnan, Kalpana; Fernandez-Hernandez, Heriberto; Lambertini, Luca; Manservisi, Fabiana; Falcioni, Laura; Bua, Luciano; Belpoggi, Fiorella; L Teitelbaum, Susan; Chen, Jia

    2016-06-14

    This proof-of-principle study examines whether postnatal, low-dose exposure to environmental chemicals modifies the composition of gut microbiome. Three chemicals that are widely used in personal care products-diethyl phthalate (DEP), methylparaben (MPB), triclosan (TCS)-and their mixture (MIX) were administered at doses comparable to human exposure to Sprague-Dawley rats from birth through adulthood. Fecal samples were collected at two time points: postnatal day (PND) 62 (adolescence) and PND 181 (adulthood). The gut microbiome was profiled by 16S ribosomal RNA gene sequencing, taxonomically assigned and assessed for diversity. Metagenomic profiling revealed that the low-dose chemical exposure resulted in significant changes in the overall bacterial composition, but in adolescent rats only. Specifically, the individual taxon relative abundance for Bacteroidetes (Prevotella) was increased while the relative abundance of Firmicutes (Bacilli) was reduced in all treated rats compared to controls. Increased abundance was observed for Elusimicrobia in DEP and MPB groups, Betaproteobacteria in MPB and MIX groups, and Deltaproteobacteria in TCS group. Surprisingly, these differences diminished by adulthood (PND 181) despite continuous exposure, suggesting that exposure to the environmental chemicals produced a more profound effect on the gut microbiome in adolescents. We also observed a small but consistent reduction in the bodyweight of exposed rats in adolescence, especially with DEP and MPB treatment (p gut microbiota in adolescent rats; whether these changes lead to downstream health effects requires further investigation.

  17. The Gut Commensal Microbiome ofDrosophila melanogasterIs Modified by the EndosymbiontWolbachia.

    Science.gov (United States)

    Simhadri, Rama K; Fast, Eva M; Guo, Rong; Schultz, Michaela J; Vaisman, Natalie; Ortiz, Luis; Bybee, Joanna; Slatko, Barton E; Frydman, Horacio M

    2017-01-01

    Endosymbiotic Wolbachia bacteria and the gut microbiome have independently been shown to affect several aspects of insect biology, including reproduction, development, life span, stem cell activity, and resistance to human pathogens, in insect vectors. This work shows that Wolbachia bacteria, which reside mainly in the fly germline, affect the microbial species present in the fly gut in a lab-reared strain. Drosophila melanogaster hosts two main genera of commensal bacteria- Acetobacter and Lactobacillus . Wolbachia -infected flies have significantly reduced titers of Acetobacter . Sampling of the microbiome of axenic flies fed with equal proportions of both bacteria shows that the presence of Wolbachia bacteria is a significant determinant of the composition of the microbiome throughout fly development. However, this effect is host genotype dependent. To investigate the mechanism of microbiome modulation, the effect of Wolbachia bacteria on Imd and reactive oxygen species pathways, the main regulators of immune response in the fly gut, was measured. The presence of Wolbachia bacteria does not induce significant changes in the expression of the genes for the effector molecules in either pathway. Furthermore, microbiome modulation is not due to direct interaction between Wolbachia bacteria and gut microbes. Confocal analysis shows that Wolbachia bacteria are absent from the gut lumen. These results indicate that the mechanistic basis of the modulation of composition of the microbiome by Wolbachia bacteria is more complex than a direct bacterial interaction or the effect of Wolbachia bacteria on fly immunity. The findings reported here highlight the importance of considering the composition of the gut microbiome and host genetic background during Wolbachia -induced phenotypic studies and when formulating microbe-based disease vector control strategies. IMPORTANCE Wolbachia bacteria are intracellular bacteria present in the microbiome of a large fraction of insects

  18. The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes

    NARCIS (Netherlands)

    Kostic, Aleksandar D.; Gevers, Dirk; Siljander, Heli; Vatanen, Tommi; Hyotylainen, Tuulia; Hamalainen, Anu-Maaria; Peet, Aleksandr; Tillmann, Vallo; Poho, Paivi; Mattila, Ismo; Lahdesmaki, Harri; Franzosa, Eric A.; Vaarala, Outi; de Goffau, Marcus; Harmsen, Hermie; Ilonen, Jorma; Virtanen, Suvi M.; Clish, Clary B.; Oresic, Matej; Huttenhower, Curtis; Knip, Mikael; Xavier, Ramnik J.

    2015-01-01

    Colonization of the fetal and infant gut microbiome results in dynamic changes in diversity, which can impact disease susceptibility. To examine the relationship between human gut microbiome dynamics throughout infancy and type 1 diabetes (T1D), we examined a cohort of 33 infants genetically

  19. Insulin resistance as key factor for linking modulation of gut microbiome to health claims and dietary recommendations to tackle obesity

    NARCIS (Netherlands)

    Loman, S.; Kamp, J.W. van der

    2016-01-01

    Background: Current dietary and public health recommendations addressing obesity do not as yet include recommendations pertaining to the gut microbiome. As a corollary, no microbiome-related health claims made on foods have as yet been proposed. Scope: The MyNewGut project aims, amongst others, to

  20. The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists.

    Science.gov (United States)

    Lerner, Aaron; Neidhöfer, Sandra; Matthias, Torsten

    2017-10-12

    Objectives: To comprehensively review the scientific knowledge on the gut-brain axis. Methods: Various publications on the gut-brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: "gut-brain axis", "gut-microbiota-brain axis", "nutrition microbiome/microbiota", "enteric nervous system", "enteric glial cells/network", "gut-brain pathways", "microbiome immune system", "microbiome neuroendocrine system" and "intestinal/gut/enteric neuropeptides". Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium-enteric nervous, endocrine and immune systems and the brain. The basis of the gut-brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons), the neuroendocrine-hypothalamic-pituitary-adrenal (HPA) axis (represented by the gut hormones), immune routes (represented by multiple cytokines), microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and therapeutic strategies to combat these disorders. Nutritional approaches

  1. Gut Microbiome Diversity among Cheyenne and Arapaho Individuals from Western Oklahoma.

    Science.gov (United States)

    Sankaranarayanan, Krithivasan; Ozga, Andrew T; Warinner, Christina; Tito, Raul Y; Obregon-Tito, Alexandra J; Xu, Jiawu; Gaffney, Patrick M; Jervis, Lori L; Cox, Derrell; Stephens, Lancer; Foster, Morris; Tallbull, Gloria; Spicer, Paul; Lewis, Cecil M

    2015-12-21

    Existing studies characterizing gut microbiome variation in the United States suffer from population ascertainment biases, with individuals of American Indian ancestry being among the most underrepresented. Here, we describe the first gut microbiome diversity study of an American Indian community. We partnered with the Cheyenne and Arapaho (C&A), federally recognized American Indian tribes in Oklahoma, and compared gut microbiome diversity and metabolic function of C&A participants to individuals of non-native ancestry in Oklahoma (NNIs). While the C&A and NNI participants share microbiome features common to industrialized populations, the C&A participants had taxonomic profiles characterized by a reduced abundance of the anti-inflammatory bacterial genus Faecalibacterium, along with a fecal metabolite profile similar to dysbiotic states described for metabolic disorders. American Indians are known to be at elevated risk for metabolic disorders. While many aspects of this health disparity remain poorly understood, our results support the need to further study the microbiome as a contributing factor. As the field of microbiome research transitions to therapeutic interventions, it raises concerns that the continued exclusion and lack of participation of American Indian communities in these studies will further exacerbate health disparities. To increase momentum in fostering these much needed partnerships, it is essential that the scientific community actively engage in and recruit these vulnerable populations in basic research through a strategy that promotes mutual trust and understanding, as outlined in this study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Maternal obesity is associated with alterations in the gut microbiome in toddlers.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Galley

    Full Text Available Children born to obese mothers are at increased risk for obesity, but the mechanisms behind this association are not fully delineated. A novel possible pathway linking maternal and child weight is the transmission of obesogenic microbes from mother to child. The current study examined whether maternal obesity was associated with differences in the composition of the gut microbiome in children in early life. Fecal samples from children 18-27 months of age (n = 77 were analyzed by pyro-tag 16S sequencing. Significant effects of maternal obesity on the composition of the gut microbiome of offspring were observed among dyads of higher socioeconomic status (SES. In the higher SES group (n = 47, children of obese (BMI≥30 versus non-obese mothers clustered on a principle coordinate analysis (PCoA and exhibited greater homogeneity in the composition of their gut microbiomes as well as greater alpha diversity as indicated by the Shannon Diversity Index, and measures of richness and evenness. Also in the higher SES group, children born to obese versus non-obese mothers had differences in abundances of Faecalibacterium spp., Eubacterium spp., Oscillibacter spp., and Blautia spp. Prior studies have linked some of these bacterial groups to differences in weight and diet. This study provides novel evidence that maternal obesity is associated with differences in the gut microbiome in children in early life, particularly among those of higher SES. Among obese adults, the relative contribution of genetic versus behavioral factors may differ based on SES. Consequently, the extent to which maternal obesity confers measureable changes to the gut microbiome of offspring may differ based on the etiology of maternal obesity. Continued research is needed to examine this question as well as the relevance of the observed differences in gut microbiome composition for weight trajectory over the life course.

  3. [The microbiome of the gut in critically ill patients].

    Science.gov (United States)

    Salzberger, B; Rauscher, C

    2015-10-01

    The complexity and diversity of the human intestinal microbiome has only recently been characterized. The multiple metabolic and immunologic effects of the bacterial flora have demonstrated the symbiosis between the microbiome and its host. This symbiosis is disturbed in a multitude of diseases, especially in critically ill patients. A review of the changes in the intestinal microbiome of critically ill patients and the use of probiotics. Nonsystematic literature search in PubMed on the topics: (1) changes in the intestinal microbiome in critically ill patients, (2) interventions using probiotics in critically ill patients, and (3) use of fecal transplantation in Clostridium difficile colitis. Trauma, sepsis, systemic inflammatory response syndrome, and other conditions lead to shifts in the composition of the intestinal microbiome, which are correlated with clinical outcome. The most obvious change is a profound loss of obligate anaerobe bacteria, leading also to metabolic changes. Probiotics have been used in several studies and show efficacy in the reduction of infectious complication but not in overall mortality. C. difficile colitis as the model disease for a disturbed microbiome can be treated effectively by transfer of donor feces, which also restores the diversity of the microbiome. Taking into account the successful intervention of fecal transplantation on the intestinal microbiome, new products developed using the current knowledge of the intestinal microbiome could be more effective.

  4. Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure.

    Science.gov (United States)

    Bahr, Sarah M; Weidemann, Benjamin J; Castro, Ana N; Walsh, John W; deLeon, Orlando; Burnett, Colin M L; Pearson, Nicole A; Murry, Daryl J; Grobe, Justin L; Kirby, John R

    2015-11-01

    Risperidone is a second-generation antipsychotic that causes weight gain. We hypothesized that risperidone-induced shifts in the gut microbiome are mechanistically involved in its metabolic consequences. Wild-type female C57BL/6J mice treated with risperidone (80μg/day) exhibited significant excess weight gain, due to reduced energy expenditure, which correlated with an altered gut microbiome. Fecal transplant from risperidone-treated mice caused a 16% reduction in total resting metabolic rate in naïve recipients, attributable to suppression of non-aerobic metabolism. Risperidone inhibited growth of cultured fecal bacteria grown anaerobically more than those grown aerobically. Finally, transplant of the fecal phage fraction from risperidone-treated mice was sufficient to cause excess weight gain in naïve recipients, again through reduced energy expenditure. Collectively, these data highlight a major role for the gut microbiome in weight gain following chronic use of risperidone, and specifically implicates the modulation of non-aerobic resting metabolism in this mechanism. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure.

    Science.gov (United States)

    Bahra, Sarah M; Weidemann, Benjamin J; Castro, Ana N; Walsh, John W; deLeon, Orlando; Burnett, Colin M L; Pearson, Nicole A; Murry, Daryl J; Grobe, Justin L; Kirby, John R

    2015-11-01

    Risperidone is a second-generation antipsychotic that causes weight gain. We hypothesized that risperidone-induced shifts in the gut microbiome are mechanistically involved in its metabolic consequences. Wild-type female C57BL/6J mice treated with risperidone (80 μg/day) exhibited significant excess weight gain, due to reduced energy expenditure, which correlated with an altered gut microbiome. Fecal transplant from risperidone-treated mice caused a 16% reduction in total resting metabolic rate in naïve recipients, attributable to suppression of non-aerobic metabolism. Risperidone inhibited growth of cultured fecal bacteria grown anaerobically more than those grown aerobically. Finally, transplant of the fecal phage fraction from risperidone-treated mice was sufficient to cause excess weight gain in naïve recipients, again through reduced energy expenditure. Collectively, these data highlight a major role for the gut microbiome in weight gain following chronic use of risperidone, and specifically implicates the modulation of non-aerobic resting metabolism in this mechanism.

  6. Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure

    Directory of Open Access Journals (Sweden)

    Sarah M. Bahr

    2015-11-01

    Full Text Available Risperidone is a second-generation antipsychotic that causes weight gain. We hypothesized that risperidone-induced shifts in the gut microbiome are mechanistically involved in its metabolic consequences. Wild-type female C57BL/6J mice treated with risperidone (80 μg/day exhibited significant excess weight gain, due to reduced energy expenditure, which correlated with an altered gut microbiome. Fecal transplant from risperidone-treated mice caused a 16% reduction in total resting metabolic rate in naïve recipients, attributable to suppression of non-aerobic metabolism. Risperidone inhibited growth of cultured fecal bacteria grown anaerobically more than those grown aerobically. Finally, transplant of the fecal phage fraction from risperidone-treated mice was sufficient to cause excess weight gain in naïve recipients, again through reduced energy expenditure. Collectively, these data highlight a major role for the gut microbiome in weight gain following chronic use of risperidone, and specifically implicates the modulation of non-aerobic resting metabolism in this mechanism.

  7. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome.

    Science.gov (United States)

    Breton, Jérôme; Massart, Sébastien; Vandamme, Peter; De Brandt, Evie; Pot, Bruno; Foligné, Benoît

    2013-12-11

    The gut microbiota is critical for intestinal homeostasis. Recent studies have revealed the links between different types of dysbiosis and diseases inside and outside the intestine. Environmental exposure to pollutants (such as heavy metals) can also impair various physiological functions for good health. Here, we studied the impact of up to 8 weeks of oral lead and cadmium ingestion on the composition of the murine intestinal microbiome. Pyrosequencing of 16S RNA sequences revealed minor but specific changes in bacterial commensal communities (at both family and genus levels) following oral exposure to the heavy metals, with notably low numbers of Lachnospiraceae and high numbers levels of Lactobacillaceae and Erysipelotrichaceacae (mainly due to changes in Turicibacter spp), relative to control animals. Non-absorbed heavy metals have a direct impact on the gut microbiota. In turn, this may impact the alimentary tract and overall gut homeostasis. Our results may enable more accurate assessment of the risk of intestinal disease associated with heavy metal ingestion.

  8. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis.

    Science.gov (United States)

    Lu, Kun; Abo, Ryan Phillip; Schlieper, Katherine Ann; Graffam, Michelle E; Levine, Stuart; Wishnok, John S; Swenberg, James A; Tannenbaum, Steven R; Fox, James G

    2014-03-01

    The human intestine is host to an enormously complex, diverse, and vast microbial community-the gut microbiota. The gut microbiome plays a profound role in metabolic processing, energy production, immune and cognitive development, epithelial homeostasis, and so forth. However, the composition and diversity of the gut microbiome can be readily affected by external factors, which raises the possibility that exposure to toxic environmental chemicals leads to gut microbiome alteration, or dysbiosis. Arsenic exposure affects large human populations worldwide and has been linked to a number of diseases, including cancer, diabetes, and cardiovascular disorders. We investigated the impact of arsenic exposure on the gut microbiome composition and its metabolic profiles. We used an integrated approach combining 16S rRNA gene sequencing and mass spectrometry-based metabolomics profiling to examine the functional impact of arsenic exposure on the gut microbiome. 16S rRNA gene sequencing revealed that arsenic significantly perturbed the gut microbiome composition in C57BL/6 mice after exposure to 10 ppm arsenic for 4 weeks in drinking water. Moreover, metabolomics profiling revealed a concurrent effect, with a number of gut microflora-related metabolites being perturbed in multiple biological matrices. Arsenic exposure not only alters the gut microbiome community at the abundance level but also substantially disturbs its metabolic profiles at the function level. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism by which arsenic exposure leads to or exacerbates human diseases. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. 2014. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284-291; http://dx.doi.org/10.1289/ehp.1307429.

  9. The gills of reef fish support a distinct microbiome influenced by host-specific factors.

    Science.gov (United States)

    Pratte, Zoe A; Besson, Marc; Hollman, Rebecca D; Stewart, Frank J

    2018-02-16

    Teleost fish represent the most diverse of the vertebrate groups and play important roles in food webs, as ecosystem engineers, and as vectors for microorganisms. However, the microbial ecology of fishes remains underexplored for most host taxa, and for certain niches on the fish body. This is particularly true for the gills, the key sites for respiration and waste exchange in fishes. Here, we provide a comprehensive analysis of the gill microbiome. We focus on ecologically diverse taxa from coral reefs around Moorea, sampling the gill and intestines of adults and juveniles representing 15 families. Gill microbiome composition differed significantly from that of the gut in both adults and juveniles, with fish-associated niches having lower alpha diversity and higher beta diversity compared to seawater, sediment, and algae-associated microbiomes. Of ∼45,000 operational taxonomic units (OTUs) detected across all samples, 11% and 13% were detected only in the gill and intestine, respectively. OTUs most enriched in the gill included members of the gammaproteobacterial genus Shewanella and family Endozoicimonaceae. In adult fish, both gill and intestinal microbiomes varied significantly among host species grouped by diet category. Gill and intestinal microbiomes from the same individual were more similar to one another compared to gill and intestinal microbiomes from different individuals. These results demonstrate that distinct body sites are jointly influenced by host-specific organizing factors operating at the level of the host individual. The results also identify taxonomic signatures unique to the gill and intestine, confirming fish-associated niches as distinct reservoirs of marine microbial diversity. Importance Fish breath and excrete waste through their gills. The gills are also potential sites of pathogen invasion and colonization by other microbes. However, we know little about the microbial communities that live on the gill and the factors shaping their

  10. Gut Microbiome Developmental Patterns in Early Life of Preterm Infants: Impacts of Feeding and Gender.

    Science.gov (United States)

    Cong, Xiaomei; Xu, Wanli; Janton, Susan; Henderson, Wendy A; Matson, Adam; McGrath, Jacqueline M; Maas, Kendra; Graf, Joerg

    2016-01-01

    Gut microbiota plays a key role in multiple aspects of human health and disease, particularly in early life. Distortions of the gut microbiota have been found to correlate with fatal diseases in preterm infants, however, developmental patterns of gut microbiome and factors affecting the colonization progress in preterm infants remain unclear. The purpose of this prospective longitudinal study was to explore day-to-day gut microbiome patterns in preterm infants during their first 30 days of life in the neonatal intensive care unit (NICU) and investigate potential factors related to the development of the infant gut microbiome. A total of 378 stool samples were collected daily from 29 stable/healthy preterm infants. DNA extracted from stool was used to sequence the V4 region of the 16S rRNA gene region for community analysis. Operational taxonomic units (OTUs) and α-diversity of the community were determined using QIIME software. Proteobacteria was the most abundant phylum, accounting for 54.3% of the total reads. Result showed shift patterns of increasing Clostridium and Bacteroides, and decreasing Staphylococcus and Haemophilus over time during early life. Alpha-diversity significantly increased daily in preterm infants after birth and linear mixed-effects models showed that postnatal days, feeding types and gender were associated with the α-diversity, pdiversity, whereas females tended to have a higher diversity shortly after birth. Female infants were more likely to have higher abundance of Clostridiates, and lower abundance of Enterobacteriales than males during early life. Infants fed mother's own breastmilk (MBM) had a higher diversity of gut microbiome and significantly higher abundance in Clostridiales and Lactobacillales than infants fed non-MBM. Permanova also showed that bacterial compositions were different between males and females and between MBM and non-MBM feeding types. In conclusion, infant postnatal age, gender and feeding type significantly

  11. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity.

    Science.gov (United States)

    Kasselman, Lora J; Vernice, Nicholas A; DeLeon, Joshua; Reiss, Allison B

    2018-03-02

    Cardiovascular disease associated with obesity and autoimmunity is the leading cause of death in these populations and significant residual risk remains despite current treatment approaches. Obesity, type 1 diabetes mellitus (T1DM), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) are linked to chronic inflammation, and subjects with these disorders have characteristic shifts in their gut microbiome composition. Recent data suggest that alterations in gut microbial and metabolic composition may be responsible, in part, for induction of chronic inflammation, thus promoting cardiovascular disease. Common microbiome changes observed in obesity, T1DM, RA, and SLE include a decrease in the ratio of bacteria, such as Gram-positive Firmicutes to Gram-negative Bacteroidetes, as well as an overabundance or depletion of certain species, including Prevotella copri. The consequent effects of these shifts include alterations in the metabolic composition of the gut, hyper-activation of toll-like receptor 4 (TLR-4), upregulation of inflammatory pathways, e.g. c-Jun N-terminal kinase and nuclear factor-kappa B (NFκB), increased intestinal permeability, increased C-reactive protein, and increased levels of trimethylamine N-oxide (TMAO). Differential microbiome compositions may also explain sex differences observed in autoimmunity, where a male gut microbiome promotes anti-inflammatory processes as compared to a female pro-inflammatory gut microbiome. Intervention at the level of the microbiota appears to attenuate symptoms in these inflammatory syndromes with probiotic treatment, such as Lactobacilli, playing a uniquely beneficial role in restoring intestinal health, decreasing inflammation, and reducing cardiovascular disease. This review will discuss obesity, T1DM, RA, and SLE in the context of how each unique microbiome profile contributes to elevated cardiovascular risk. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome

    OpenAIRE

    Van den Abbeele, Pieter; Verstraete, Willy; El Aidy, Sahar; Geirnaert, Annelies; Van de Wiele, Tom

    2013-01-01

    Summary Accumulating evidence demonstrates the intimate association between human hosts and the gut microbiome. Starting at birth, the sterile gut of the newborn acquires a diverse spectrum of microbes, needed for immunological priming. However, current practices (caesarean sections, use of formula milk) deprive newborns from being exposed to this broad spectrum of microbes. Unnecessary use of antibiotics and excessive hygienic precautions (e.g. natural versus chlorinated drinking water) toge...

  13. Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes

    OpenAIRE

    Kurokawa, Ken; Itoh, Takehiko; Kuwahara, Tomomi; Oshima, Kenshiro; Toh, Hidehiro; Toyoda, Atsushi; Takami, Hideto; Morita, Hidetoshi; Vineet K. Sharma; Tulika P. Srivastava; Todd D. Taylor; Noguchi, Hideki; Mori, Hiroshi; Ogura, Yoshitoshi; Dusko S. Ehrlich

    2007-01-01

    Numerous microbes inhabit the human intestine, many of which are uncharacterized or uncultivable. They form a complex microbial community that deeply affects human physiology. To identify the genomic features common to all human gut microbiomes as well as those variable among them, we performed a large-scale comparative metagenomic analysis of fecal samples from 13 healthy individuals of various ages, including unweaned infants. We found that, while the gut microbiota from unweaned infants we...

  14. Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies

    Directory of Open Access Journals (Sweden)

    Tasha M. Santiago-Rodriguez

    2017-11-01

    Full Text Available Little is still known about the microbiome resulting from the process of mummification of the human gut. In the present study, the gut microbiota, genes associated with metabolism, and putative resistome of Inca and Italian nobility mummies were characterized by using high-throughput sequencing. The Italian nobility mummies exhibited a higher bacterial diversity as compared to the Inca mummies when using 16S ribosomal (rRNA gene amplicon sequencing, but both groups showed bacterial and fungal taxa when using shotgun metagenomic sequencing that may resemble both the thanatomicrobiome and extant human gut microbiomes. Identification of sequences associated with plants, animals, and carbohydrate-active enzymes (CAZymes may provide further insights into the dietary habits of Inca and Italian nobility mummies. Putative antibiotic-resistance genes in the Inca and Italian nobility mummies support a human gut resistome prior to the antibiotic therapy era. The higher proportion of putative antibiotic-resistance genes in the Inca compared to Italian nobility mummies may support the hypotheses that a greater exposure to the environment may result in a greater acquisition of antibiotic-resistance genes. The present study adds knowledge of the microbiome resulting from the process of mummification of the human gut, insights of ancient dietary habits, and the preserved putative human gut resistome prior the antibiotic therapy era.

  15. Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome.

    Science.gov (United States)

    Mallory, Emily K; Acharya, Ambika; Rensi, Stefano E; Turnbaugh, Peter J; Bright, Roselie A; Altman, Russ B

    2018-01-01

    Bacteria in the human gut have the ability to activate, inactivate, and reactivate drugs with both intended and unintended effects. For example, the drug digoxin is reduced to the inactive metabolite dihydrodigoxin by the gut Actinobacterium E. lenta, and patients colonized with high levels of drug metabolizing strains may have limited response to the drug. Understanding the complete space of drugs that are metabolized by the human gut microbiome is critical for predicting bacteria-drug relationships and their effects on individual patient response. Discovery and validation of drug metabolism via bacterial enzymes has yielded >50 drugs after nearly a century of experimental research. However, there are limited computational tools for screening drugs for potential metabolism by the gut microbiome. We developed a pipeline for comparing and characterizing chemical transformations using continuous vector representations of molecular structure learned using unsupervised representation learning. We applied this pipeline to chemical reaction data from MetaCyc to characterize the utility of vector representations for chemical reaction transformations. After clustering molecular and reaction vectors, we performed enrichment analyses and queries to characterize the space. We detected enriched enzyme names, Gene Ontology terms, and Enzyme Consortium (EC) classes within reaction clusters. In addition, we queried reactions against drug-metabolite transformations known to be metabolized by the human gut microbiome. The top results for these known drug transformations contained similar substructure modifications to the original drug pair. This work enables high throughput screening of drugs and their resulting metabolites against chemical reactions common to gut bacteria.

  16. Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies.

    Science.gov (United States)

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Toranzos, Gary A; Marota, Isolina; Giuffra, Valentina; Cano, Raul J

    2017-11-07

    Little is still known about the microbiome resulting from the process of mummification of the human gut. In the present study, the gut microbiota, genes associated with metabolism, and putative resistome of Inca and Italian nobility mummies were characterized by using high-throughput sequencing. The Italian nobility mummies exhibited a higher bacterial diversity as compared to the Inca mummies when using 16S ribosomal (rRNA) gene amplicon sequencing, but both groups showed bacterial and fungal taxa when using shotgun metagenomic sequencing that may resemble both the thanatomicrobiome and extant human gut microbiomes. Identification of sequences associated with plants, animals, and carbohydrate-active enzymes (CAZymes) may provide further insights into the dietary habits of Inca and Italian nobility mummies. Putative antibiotic-resistance genes in the Inca and Italian nobility mummies support a human gut resistome prior to the antibiotic therapy era. The higher proportion of putative antibiotic-resistance genes in the Inca compared to Italian nobility mummies may support the hypotheses that a greater exposure to the environment may result in a greater acquisition of antibiotic-resistance genes. The present study adds knowledge of the microbiome resulting from the process of mummification of the human gut, insights of ancient dietary habits, and the preserved putative human gut resistome prior the antibiotic therapy era.

  17. Gut microbiomes of mobile predators vary with landscape context and species identity.

    Science.gov (United States)

    Tiede, Julia; Scherber, Christoph; Mutschler, James; McMahon, Katherine D; Gratton, Claudio

    2017-10-01

    Landscape context affects predator-prey interactions and predator diet composition, yet little is known about landscape effects on insect gut microbiomes, a determinant of physiology and condition. Here, we combine laboratory and field experiments to examine the effects of landscape context on the gut bacterial community and body condition of predatory insects. Under laboratory conditions, we found that prey diversity increased bacterial richness in insect guts. In the field, we studied the performance and gut microbiota of six predatory insect species along a landscape complexity gradient in two local habitat types (soybean fields vs. prairie). Insects from soy fields had richer gut bacteria and lower fat content than those from prairies, suggesting better feeding conditions in prairies. Species origin mediated landscape context effects, suggesting differences in foraging of exotic and native predators on a landscape scale. Overall, our study highlights complex interactions among gut microbiota, predator identity, and landscape context.

  18. The gut microbiome composition associates with bipolar disorder and illness severity.

    Science.gov (United States)

    Evans, Simon J; Bassis, Christine M; Hein, Robert; Assari, Shervin; Flowers, Stephanie A; Kelly, Marisa B; Young, Vince B; Ellingrod, Vicky E; McInnis, Melvin G

    2017-04-01

    The gut microbiome is emerging as an important factor in regulating mental health yet it remains unclear what the target should be for psychiatric treatment. We aimed to elucidate the complement of the gut-microbiome community for individuals with bipolar disorder relative to controls; and test for relationships with burden of disease measures. We compared the stool microbiome from individuals with bipolar disorder (n = 115) and control subjects (n = 64) using 16S ribosomal RNA (rRNA) gene sequence analysis. Analysis of molecular variance (AMOVA) revealed global community case-control differences (AMOVA p = 0.047). Operational Taxonomical Unit (OTU) level analysis revealed significantly decreased fractional representation (p bipolar disorder, the fractional representation of Faecalibacterium associated with better self-reported health outcomes based on the Short Form Health Survey (SF12); the Patient Health Questionnaire (PHQ9); the Pittsburg Sleep Quality Index (PSQI); the Generalized Anxiety Disorder scale (GAD7); and the Altman Mania Rating Scale (ASRM), independent of covariates. This study provides the first detailed analysis of the gut microbiome relationships with multiple psychiatric domains from a bipolar population. The data support the hypothesis that targeting the microbiome may be an effective treatment paradigm for bipolar disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Rifaximin ameliorates hepatic encephalopathy and endotoxemia without affecting the gut microbiome diversity.

    Science.gov (United States)

    Kaji, Kosuke; Takaya, Hiroaki; Saikawa, Soichiro; Furukawa, Masanori; Sato, Shinya; Kawaratani, Hideto; Kitade, Mitsuteru; Moriya, Kei; Namisaki, Tadashi; Akahane, Takemi; Mitoro, Akira; Yoshiji, Hitoshi

    2017-12-21

    To determine the efficacy of rifaximin for hepatic encephalopathy (HE) with the linkage of gut microbiome in decompensated cirrhotic patients. Twenty patients (12 men and 8 women; median age, 66.8 years; range, 46-81 years) with decompensated cirrhosis (Child-pugh score > 7) underwent cognitive neuropsychological testing, endotoxin analysis, and fecal microbiome assessment at baseline and after 4 wk of treatment with rifaximin 400 mg thrice a day. HE was determined by serum ammonia level and number connection test (NCT)-A. Changes in whole blood endotoxin activity (EA) was analyzed by endotoxin activity assay. Fecal microbiome was assessed by 16S ribosome RNA (rRNA) gene sequencing. Treatment with rifaximin for 4 wk improved hyperammonemia (from 90.6 ± 23.9 μg/dL to 73.1 ± 33.1 μg/dL; P diversity estimator (Shannon diversity index) and major components of the gut microbiome between the baseline and after treatment groups (3.948 ± 0.548 at baseline vs 3.980 ± 0.968 after treatment; P = 0.544), but the relative abundances of genus Veillonella and Streptococcus were lowered. Rifaximin significantly improved cognition and reduced endotoxin activity without significantly affecting the composition of the gut microbiome in patients with decompensated cirrhosis.

  20. Microbial endocrinology: host-bacteria communication within the gut microbiome.

    Science.gov (United States)

    Sandrini, Sara; Aldriwesh, Marwh; Alruways, Mashael; Freestone, Primrose

    2015-05-01

    The human body is home to trillions of micro-organisms, which are increasingly being shown to have significant effects on a variety of disease states. Evidence exists that a bidirectional communication is taking place between us and our microbiome co-habitants, and that this dialogue is capable of influencing our health in a variety of ways. This review considers how host hormonal signals shape the microbiome, and what in return the microbiome residents may be signalling to their hosts. © 2015 Society for Endocrinology.

  1. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids

    NARCIS (Netherlands)

    Fu, Jingyuan; Bonder, Marc Jan; Cenit, Maria Carmen; Tigchelaar-Feenstra, Ettje; Maatman, Astrid; Dekens, Jackie A. M.; Brandsma, Eelke; Marczynska, Joanna; Imhann, Floris; Weersma, Rinse K.; Franke, Lude; Poon, Tiffany W.; Xavier, Ramnik J.; Gevers, Dirk; Hofker, Marten H.; Wijmenga, Cisca; Zhernakova, Alexandra

    2015-01-01

    Rationale: Evidence suggests that the gut microbiome is involved in the development of cardiovascular disease, with the host-microbe interaction regulating immune and metabolic pathways. However, there was no firm evidence for associations between microbiota and metabolic risk factors for

  2. The influence of a short-term gluten-free diet on the human gut microbiome

    NARCIS (Netherlands)

    Bonder, Marc Jan; Tigchelaar, Ettje F.; Cai, Xianghang; Trynka, Gosia; Cenit, Maria C; Hrdlickova, Barbara; Zhong, Huanzi; Vatanen, Tommi; Gevers, Dirk; Wijmenga, Cisca; Wang, Yang; Zhernakova, Alexandra

    2016-01-01

    Background: A gluten-free diet (GFD) is the most commonly adopted special diet worldwide. It is an effective treatment for coeliac disease and is also often followed by individuals to alleviate gastrointestinal complaints. It is known there is an important link between diet and the gut microbiome,

  3. Individuality and temporal stability of the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Shinichi Sunagawa

    2014-03-01

    Full Text Available Introduction: The breakthrough of next generation sequencing-technologies has enabled large-scale studies of natural microbial communities and the 16S rRNA genes have been widely used as a phylogenetic marker to study community structure. However, major limitations of this approach are that neither strain-level resolution nor genomic context of microorganisms can be provided. This information, however, is crucial to answer fundamental questions about the temporal stability and distinctiveness of natural microbial communities.Material and methods: We developed a methodological framework for metagenomic single nucleotide polymorphism (SNP variation analysis and applied it to publicly available data from 252 human fecal samples from 207 European and North American individuals. We further analyzed samples from 43 healthy subjects that were sampled at least twice over time intervals of up to one year and measured population similarities of dominant gut species.Results: We detected 10.3 million SNPs in 101 species, which nearly amounts to the number identified in more than 1,000 humans. Conclusion: The most striking result was that host-specific strains appear to be retained over long time periods. This indicates that individual-specific strains are not easily exchanged with the environment and furthermore, that an individuals appear to have a unique metagenomic genotype. This, in turn, is linked to implications for human gut physiology, such as the stability of antibiotic resistance potential.

  4. Spatial structure of the Mormon cricket gut microbiome and its predicted contribution to nutrition and immune function

    Science.gov (United States)

    The gut microbiome of insects plays an important role in their ecology and evolution, participating in nutrient acquisition, immunity, and behavior. Microbial community structure within the gut is heavily influenced by differences among gut regions in morphology and physiology, which determine the n...

  5. Influence of Feeding Type on Gut Microbiome Development in Hospitalized Preterm Infants.

    Science.gov (United States)

    Cong, Xiaomei; Judge, Michelle; Xu, Wanli; Diallo, Ana; Janton, Susan; Brownell, Elizabeth A; Maas, Kendra; Graf, Joerg

    Premature infants have a high risk for dysbiosis of the gut microbiome. Mother's own milk (MOM) has been found to favorably alter gut microbiome composition in infants born at term. Evidence about the influence of feeding type on gut microbial colonization of preterm infants is limited. The purpose of this study was to explore the effect of feeding types on gut microbial colonization of preterm infants in the neonatal intensive care unit. Thirty-three stable preterm infants were recruited at birth and followed up for the first 30 days of life. Daily feeding information was used to classify infants into six groups (MOM, human donor milk [HDM], Formula, MOM + HDM, MOM + Formula, and HDM + Formula) during postnatal days 0-10, 11-20, and 21-30. Stool samples were collected daily. DNA extracted from stool was used to sequence the 16S rRNA gene. Exploratory data analysis was conducted with a focus on temporal changes of microbial patterns and diversities among infants from different feeding cohorts. Prediction of gut microbial diversity from feeding type was estimated using linear mixed models. Preterm infants fed MOM (at least 70% of the total diet) had highest abundance of Clostridiales, Lactobacillales, and Bacillales compared to infants in other feeding groups, whereas infants fed primarily HDM or formula had a high abundance of Enterobacteriales compared to infants fed MOM. After controlling for gender, postnatal age, weight, and birth gestational age, the diversity of gut microbiome increased over time and was constantly higher in infants fed MOM relative to infants with other feeding types (p gut microbiome development of preterm infants, including balanced microbial community pattern and increased microbial diversity in early life.

  6. Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management.

    Science.gov (United States)

    McIlroy, J; Ianiro, G; Mukhopadhya, I; Hansen, R; Hold, G L

    2018-01-01

    The concept of an altered collective gut microbiota rather than identification of a single culprit is possibly the most significant development in inflammatory bowel disease research. We have entered the "omics" era, which now allows us to undertake large-scale/high-throughput microbiota analysis which may well define how we approach diagnosis and treatment of inflammatory bowel disease (IBD) in the future, with a strong steer towards personalised therapeutics. To assess current epidemiological, experimental and clinical evidence of the current status of knowledge relating to the gut microbiome, and its role in IBD, with emphasis on reviewing the evidence relating to microbial therapeutics and future microbiome modulating therapeutics. A Medline search including items 'intestinal microbiota/microbiome', 'inflammatory bowel disease', 'ulcerative colitis', 'Crohn's disease', 'faecal microbial transplantation', 'dietary manipulation' was performed. Disease remission and relapse are associated with microbial changes in both mucosal and luminal samples. In particular, a loss of species richness in Crohn's disease has been widely observed. Existing therapeutic approaches broadly fall into 3 categories, namely: accession, reduction or indirect modulation of the microbiome. In terms of microbial therapeutics, faecal microbial transplantation appears to hold the most promise; however, differences in study design/methodology mean it is currently challenging to elegantly translate results into clinical practice. Existing approaches to modulate the gut microbiome are relatively unrefined. Looking forward, the future of microbiome-modulating therapeutics looks bright with several novel strategies/technologies on the horizon. Taken collectively, it is clear that ignoring the microbiome in IBD is not an option. © 2017 John Wiley & Sons Ltd.

  7. The Microbiome-Gut-Brain Axis in Health and Disease.

    Science.gov (United States)

    Dinan, Timothy G; Cryan, John F

    2017-03-01

    Gut microbes are capable of producing most neurotransmitters found in the human brain. Evidence is accumulating to support the view that gut microbes influence central neurochemistry and behavior. Irritable bowel syndrome is regarded as the prototypic disorder of the brain-gut-microbiota axis that can be responsive to probiotic therapy. Translational studies indicate that certain bacteria may have an impact on stress responses and cognitive functioning. Manipulating the gut microbiota with psychobiotics, prebiotics, or even antibiotics offers a novel approach to altering brain function and treating gut-brain axis disorders, such as depression and autism. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists

    Directory of Open Access Journals (Sweden)

    Aaron Lerner

    2017-10-01

    Full Text Available Objectives: To comprehensively review the scientific knowledge on the gut–brain axis. Methods: Various publications on the gut–brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: “gut-brain axis”, “gut-microbiota-brain axis”, “nutrition microbiome/microbiota”, “enteric nervous system”, “enteric glial cells/network”, “gut-brain pathways”, “microbiome immune system”, “microbiome neuroendocrine system” and “intestinal/gut/enteric neuropeptides”. Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium–enteric nervous, endocrine and immune systems and the brain. The basis of the gut–brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons, the neuroendocrine–hypothalamic–pituitary–adrenal (HPA axis (represented by the gut hormones, immune routes (represented by multiple cytokines, microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and

  9. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery.

    Science.gov (United States)

    Guo, Yan; Huang, Zhi-Ping; Liu, Chao-Qian; Qi, Lin; Sheng, Yuan; Zou, Da-Jin

    2018-01-01

    Bariatric surgery is recommended for patients with obesity and type 2 diabetes. Recent evidence suggested a strong connection between gut microbiota and bariatric surgery. Systematic review. The PubMed and OVID EMBASE were used, and articles concerning bariatric surgery and gut microbiota were screened. The main outcome measures were alterations of gut microbiota after bariatric surgery and correlations between gut microbiota and host metabolism. We applied the system of evidence level to evaluate the alteration of microbiota. Modulation of short-chain fatty acid and gut genetic content was also investigated. Totally 12 animal experiments and 9 clinical studies were included. Based on strong evidence, 4 phyla (Bacteroidetes, Fusobacteria, Verrucomicrobia and Proteobacteria) increased after surgery; within the phylum Firmicutes, Lactobacillales and Enterococcus increased; and within the phylum Proteobacteria, Gammaproteobacteria, Enterobacteriales Enterobacteriaceae and several genera and species increased. Decreased microbial groups were Firmicutes, Clostridiales, Clostridiaceae, Blautia and Dorea. However, the change in microbial diversity is still under debate. Faecalibacterium prausnitzii, Lactobacillus and Coprococcus comes are implicated in many of the outcomes, including body composition and glucose homeostasis. There is strong evidence to support a considerable alteration of the gut microbiome after bariatric surgery. Deeper investigations are required to confirm the mechanisms that link the gut microbiome and metabolic alterations in human metabolism. © 2018 European Society of Endocrinology.

  10. Maturation of the gut microbiome and risk of asthma in childhood

    DEFF Research Database (Denmark)

    Stokholm, Jakob; Blaser, Martin J.; Thorsen, Jonathan

    2018-01-01

    The composition of the human gut microbiome matures within the first years of life. It has been hypothesized that microbial compositions in this period can cause immune dysregulations and potentially cause asthma. Here we show, by associating gut microbial composition from 16S rRNA gene amplicon...... sequencing during the first year of life with subsequent risk of asthma in 690 participants, that 1-year-old children with an immature microbial composition have an increased risk of asthma at age 5 years. This association is only apparent among children born to asthmatic mothers, suggesting that lacking...... microbial stimulation during the first year of life can trigger their inherited asthma risk. Conversely, adequate maturation of the gut microbiome in this period may protect these pre-disposed children....

  11. Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities.

    Directory of Open Access Journals (Sweden)

    Suleyman Yildirim

    Full Text Available BACKGROUND: Host-associated microbes comprise an integral part of animal digestive systems and these interactions have a long evolutionary history. It has been hypothesized that the gastrointestinal microbiome of humans and other non-human primates may have played significant roles in host evolution by facilitating a range of dietary adaptations. We have undertaken a comparative sequencing survey of the gastrointestinal microbiomes of several non-human primate species, with the goal of better understanding how these microbiomes relate to the evolution of non-human primate diversity. Here we present a comparative analysis of gastrointestinal microbial communities from three different species of Old World wild monkeys. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed fecal samples from three different wild non-human primate species (black-and-white colobus [Colubus guereza], red colobus [Piliocolobus tephrosceles], and red-tailed guenon [Cercopithecus ascanius]. Three samples from each species were subjected to small subunit rRNA tag pyrosequencing. Firmicutes comprised the vast majority of the phyla in each sample. Other phyla represented were Bacterioidetes, Proteobacteria, Spirochaetes, Actinobacteria, Verrucomicrobia, Lentisphaerae, Tenericutes, Planctomycetes, Fibrobacateres, and TM7. Bray-Curtis similarity analysis of these microbiomes indicated that microbial community composition within the same primate species are more similar to each other than to those of different primate species. Comparison of fecal microbiota from non-human primates with microbiota of human stool samples obtained in previous studies revealed that the gut microbiota of these primates are distinct and reflect host phylogeny. CONCLUSION/SIGNIFICANCE: Our analysis provides evidence that the fecal microbiomes of wild primates co-vary with their hosts, and that this is manifested in higher intraspecies similarity among wild primate species, perhaps reflecting species

  12. Drunk bugs: Chronic vapour alcohol exposure induces marked changes in the gut microbiome in mice.

    Science.gov (United States)

    Peterson, Veronica L; Jury, Nicholas J; Cabrera-Rubio, Raúl; Draper, Lorraine A; Crispie, Fiona; Cotter, Paul D; Dinan, Timothy G; Holmes, Andrew; Cryan, John F

    2017-04-14

    The gut microbiota includes a community of bacteria that play an integral part in host health and biological processes. Pronounced and repeated findings have linked gut microbiome to stress, anxiety, and depression. Currently, however, there remains only a limited set of studies focusing on microbiota change in substance abuse, including alcohol use disorder. To date, no studies have investigated the impact of vapour alcohol administration on the gut microbiome. For research on gut microbiota and addiction to proceed, an understanding of how route of drug administration affects gut microbiota must first be established. Animal models of alcohol abuse have proven valuable for elucidating the biological processes involved in addiction and alcohol-related diseases. This is the first study to investigate the effect of vapour route of ethanol administration on gut microbiota in mice. Adult male C57BL/6J mice were exposed to 4 weeks of chronic intermittent vapourized ethanol (CIE, N=10) or air (Control, N=9). Faecal samples were collected at the end of exposure followed by 16S sequencing and bioinformatic analysis. Robust separation between CIE and Control was seen in the microbiome, as assessed by alpha (p<0.05) and beta (p<0.001) diversity, with a notable decrease in alpha diversity in CIE. These results demonstrate that CIE exposure markedly alters the gut microbiota in mice. Significant increases in genus Alistipes (p<0.001) and significant reductions in genra Clostridium IV and XIVb (p<0.001), Dorea (p<0.01), and Coprococcus (p<0.01) were seen between CIE mice and Control. These findings support the viability of the CIE method for studies investigating the microbiota-gut-brain axis and align with previous research showing similar microbiota alterations in inflammatory states during alcoholic hepatitis and psychological stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The microbiome-gut-brain axis in health and disease

    OpenAIRE

    Dinan, Timothy G.; Cryan, John F.

    2017-01-01

    Gut microbes are capable of producing most neurotransmitters found in the human brain. While these neurotransmitters primarily act locally in the gut, modulating the enteric nervous system, evidence is now accumulating to support the view that gut microbes through multiple mechanisms can influence central neurochemistry and behavior. This has been described as a fundamental paradigm shift in neuroscience. Bifidobacteria for example can produce and increase plasma levels of the serotonin precu...

  14. High-fat diet determines the composition of the murine gut microbiome independently of obesity.

    Science.gov (United States)

    Hildebrandt, Marie A; Hoffmann, Christian; Sherrill-Mix, Scott A; Keilbaugh, Sue A; Hamady, Micah; Chen, Ying-Yu; Knight, Rob; Ahima, Rexford S; Bushman, Frederic; Wu, Gary D

    2009-11-01

    The composition of the gut microbiome is affected by host phenotype, genotype, immune function, and diet. Here, we used the phenotype of RELMbeta knockout (KO) mice to assess the influence of these factors. Both wild-type and RELMbeta KO mice were lean on a standard chow diet, but, upon switching to a high-fat diet, wild-type mice became obese, whereas RELMbeta KO mice remained comparatively lean. To investigate the influence of diet, genotype, and obesity on microbiome composition, we used deep sequencing to characterize 25,790 16S rDNA sequences from uncultured bacterial communities from both genotypes on both diets. We found large alterations associated with switching to the high-fat diet, including a decrease in Bacteroidetes and an increase in both Firmicutes and Proteobacteria. This was seen for both genotypes (ie, in the presence and absence of obesity), indicating that the high-fat diet itself, and not the obese state, mainly accounted for the observed changes in the gut microbiota. The RELMbeta genotype also modestly influenced microbiome composition independently of diet. Metagenomic analysis of 537,604 sequence reads documented extensive changes in gene content because of a high-fat diet, including an increase in transporters and 2-component sensor responders as well as a general decrease in metabolic genes. Unexpectedly, we found a substantial amount of murine DNA in our samples that increased in proportion on a high-fat diet. These results demonstrate the importance of diet as a determinant of gut microbiome composition and suggest the need to control for dietary variation when evaluating the composition of the human gut microbiome.

  15. Richness of human gut microbiome correlates with metabolic markers

    DEFF Research Database (Denmark)

    Le Chatelier, Emmanuelle; Nielsen, Trine; Qin, Junjie

    2013-01-01

    We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus...

  16. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity

    NARCIS (Netherlands)

    Schirmer, M.; Smeekens, S.P.; Vlamakis, H.; Jaeger, M.; Oosting, M.; Franzosa, E.A.; Jansen, T.; Jacobs, L.; Bonder, M.J.; Kurilshikov, A.; Fu, J.; Joosten, L.A.; Zhernakova, A.; Huttenhower, C.; Wijmenga, C.; Netea, M.G.; Xavier, R.J.

    2016-01-01

    Gut microbial dysbioses are linked to aberrant immune responses, which are often accompanied by abnormal production of inflammatory cytokines. As part of the Human Functional Genomics Project (HFGP), we investigate how differences in composition and function of gut microbial communities may

  17. The Microbiome in Mental Health: Potential Contribution of Gut Microbiota in Disease and Pharmacotherapy Management.

    Science.gov (United States)

    Flowers, Stephanie A; Ellingrod, Vicki L

    2015-10-01

    The gut microbiome is composed of ~10(13) -10(14) microbial cells and viruses that exist in a symbiotic bidirectional communicative relationship with the host. Bacterial functions in the gut have an important role in healthy host metabolic function, and dysbiosis can contribute to the pathology of many medical conditions. Alterations in the relationship between gut microbiota and host have gained some attention in mental health because new evidence supports the association of gut bacteria to cognitive and emotional processes. Of interest, illnesses such as major depressive disorder are disproportionately prevalent in patients with gastrointestinal illnesses such as inflammatory bowel disease, which pathologically has been strongly linked to microbiome function. Not only is the microbiome associated with the disease itself, but it may also influence the effectiveness or adverse effects associated with pharmacologic agents used to treat these disorders. This field of study may also provide new insights on how dietary agents may help manage mental illness both directly as well as though their influence on the therapeutic and adverse effects of psychotropic agents. © 2015 Pharmacotherapy Publications, Inc.

  18. A geographically-diverse collection of 418 human gut microbiome pathway genome databases

    KAUST Repository

    Hahn, Aria S.

    2017-04-11

    Advances in high-throughput sequencing are reshaping how we perceive microbial communities inhabiting the human body, with implications for therapeutic interventions. Several large-scale datasets derived from hundreds of human microbiome samples sourced from multiple studies are now publicly available. However, idiosyncratic data processing methods between studies introduce systematic differences that confound comparative analyses. To overcome these challenges, we developed GutCyc, a compendium of environmental pathway genome databases (ePGDBs) constructed from 418 assembled human microbiome datasets using MetaPathways, enabling reproducible functional metagenomic annotation. We also generated metabolic network reconstructions for each metagenome using the Pathway Tools software, empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways encoded by the human gut microbiome. For the first time, GutCyc provides consistent annotations and metabolic pathway predictions, making possible comparative community analyses between health and disease states in inflammatory bowel disease, Crohn’s disease, and type 2 diabetes. GutCyc data products are searchable online, or may be downloaded and explored locally using MetaPathways and Pathway Tools.

  19. Genomic variation landscape of the human gut microbiome

    DEFF Research Database (Denmark)

    Schloissnig, Siegfried; Arumugam, Manimozhiyan; Sunagawa, Shinichi

    2013-01-01

    Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal...

  20. The gut microbiome and mucosal defenses in cats with coronaviruses: a pilot study

    Directory of Open Access Journals (Sweden)

    Sara Meazzi

    2017-05-01

    Full Text Available Feline Infectious Peritonitis (FIP develops from a mutation of enteric feline coronaviruses (FCoVs and an imbalance of the host immune response. The wide polymorphism of FCoVs is associated with the viral replication rate (Licitra et al. 2013.  Changes in the composition of the gut microbiota may induce quali-quantitative modifications in FCoVs and/or different immune profiles (Weese et al., 2015. Few information is available on feline gut microbiome and the association between microbiota and the predisposition to pathological conditions (Ramadan et al., 2014. The aim of this study is to provide preliminary data about the composition of gut microbiota in healthy cats compared with FCoV infected cats (with and without  FIP, in order to evaluate whether changes of gut microbiota may induce changes in FCoV, in its genetic polymorphism and in the mucosal immunity. Screening analyses have been performed on 22 cats: - Routine hematology and biochemistry on EDTA and serum (included electrophoresis and alpha-1-acid glycoprotein measurement for cats suspected with FIP - Nested RT-PCR-3’UTR on frozen faeces - Effusion evaluation - FIV/FeLV serology Due to strict inclusion criteria (cats younger than 2.5 years old, indoor and not assuming antibiotics in the previous two months and based on the results obtained from the complete set of analysis, only 15 cats, specifically 5 cats for each of the following 3 groups: FIP- affected, healthy negative and positive for FCoV, have been recruited to perform the following analyses:  - microbiota analysis through NGS of 16S rRNA gene (V4 region amplicons followed by bioinformatic analysis  -  evaluation of secretory IgA (ELISA kit - phylogenetic analysis of FCoVs S gene sequences Innovative results will be provided on the feline gut microbiota composition. These will be correlated with the presence and genetic polymorphisms of FCoV and mucosal defenses to establish significant correlations between the analysed

  1. Gut Microbiome Developmental Patterns in Early Life of Preterm Infants: Impacts of Feeding and Gender.

    Directory of Open Access Journals (Sweden)

    Xiaomei Cong

    Full Text Available Gut microbiota plays a key role in multiple aspects of human health and disease, particularly in early life. Distortions of the gut microbiota have been found to correlate with fatal diseases in preterm infants, however, developmental patterns of gut microbiome and factors affecting the colonization progress in preterm infants remain unclear. The purpose of this prospective longitudinal study was to explore day-to-day gut microbiome patterns in preterm infants during their first 30 days of life in the neonatal intensive care unit (NICU and investigate potential factors related to the development of the infant gut microbiome. A total of 378 stool samples were collected daily from 29 stable/healthy preterm infants. DNA extracted from stool was used to sequence the V4 region of the 16S rRNA gene region for community analysis. Operational taxonomic units (OTUs and α-diversity of the community were determined using QIIME software. Proteobacteria was the most abundant phylum, accounting for 54.3% of the total reads. Result showed shift patterns of increasing Clostridium and Bacteroides, and decreasing Staphylococcus and Haemophilus over time during early life. Alpha-diversity significantly increased daily in preterm infants after birth and linear mixed-effects models showed that postnatal days, feeding types and gender were associated with the α-diversity, p< 0.05-0.01. Male infants were found to begin with a low α-diversity, whereas females tended to have a higher diversity shortly after birth. Female infants were more likely to have higher abundance of Clostridiates, and lower abundance of Enterobacteriales than males during early life. Infants fed mother's own breastmilk (MBM had a higher diversity of gut microbiome and significantly higher abundance in Clostridiales and Lactobacillales than infants fed non-MBM. Permanova also showed that bacterial compositions were different between males and females and between MBM and non-MBM feeding types

  2. About the gut microbiome as a pharmacological target in atherosclerosis

    NARCIS (Netherlands)

    Witjes, Julia J.; van Raalte, Daniel H.; Nieuwdorp, Max

    2015-01-01

    The contribution of intestinal bacterial strains (gut microbiota) in the development of cardiometabolic disease is increasingly recognized as potential diagnostic and pharmacological target. Changes in the intestinal bacterial composition and subsequent altered diversity has been associated with

  3. Pathophysiology of the Gut and the Microbiome in the Host Response.

    Science.gov (United States)

    Lyons, John D; Coopersmith, Craig M

    2017-03-01

    To describe and summarize the data supporting the gut as the motor driving critical illness and multiple organ dysfunction syndrome presented at the National Institute of Child Health and Human Development MODS Workshop (March 26-27, 2015). Summary of workshop keynote presentation. Not applicable. Presented by an expert in the field, the data assessing the role of gastrointestinal dysfunction driving critical illness were described with a focus on identifying knowledge gaps and research priorities. Summary of presentation and discussion supported and supplemented by relevant literature. The understanding of gut dysfunction in critical illness has evolved greatly over time, and the gut is now often considered as the "motor" of critical illness. The association of the gut with critical illness is supported by both animal models and clinical studies. Initially, the association between gut dysfunction and critical illness focused primarily on bacterial translocation into the bloodstream. However, that work has evolved to include other gut-derived products causing distant injury via other routes (e.g., lymphatics). Additionally, alterations in the gut epithelium may be associated with critical illness and influence outcomes. Gut epithelial apoptosis, intestinal hyperpermeability, and perturbations in the intestinal mucus layer have all been associated with critical illness. Finally, there is growing evidence that the intestinal microbiome plays a crucial role in mediating pathology in critical illness. Further research is needed to better understand the role of each of these mechanisms and their contribution to multiple organ dysfunction syndrome in children.

  4. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis.

    Science.gov (United States)

    Westfall, Susan; Lomis, Nikita; Kahouli, Imen; Dia, Si Yuan; Singh, Surya Pratap; Prakash, Satya

    2017-10-01

    The gut microbiota is essential to health and has recently become a target for live bacterial cell biotherapies for various chronic diseases including metabolic syndrome, diabetes, obesity and neurodegenerative disease. Probiotic biotherapies are known to create a healthy gut environment by balancing bacterial populations and promoting their favorable metabolic action. The microbiota and its respective metabolites communicate to the host through a series of biochemical and functional links thereby affecting host homeostasis and health. In particular, the gastrointestinal tract communicates with the central nervous system through the gut-brain axis to support neuronal development and maintenance while gut dysbiosis manifests in neurological disease. There are three basic mechanisms that mediate the communication between the gut and the brain: direct neuronal communication, endocrine signaling mediators and the immune system. Together, these systems create a highly integrated molecular communication network that link systemic imbalances with the development of neurodegeneration including insulin regulation, fat metabolism, oxidative markers and immune signaling. Age is a common factor in the development of neurodegenerative disease and probiotics prevent many harmful effects of aging such as decreased neurotransmitter levels, chronic inflammation, oxidative stress and apoptosis-all factors that are proven aggravators of neurodegenerative disease. Indeed patients with Parkinson's and Alzheimer's diseases have a high rate of gastrointestinal comorbidities and it has be proposed by some the management of the gut microbiota may prevent or alleviate the symptoms of these chronic diseases.

  5. Prebiotics Mediate Microbial Interactions in a Consortium of the Infant Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Daniel A. Medina

    2017-10-01

    Full Text Available Composition of the gut microbiome is influenced by diet. Milk or formula oligosaccharides act as prebiotics, bioactives that promote the growth of beneficial gut microbes. The influence of prebiotics on microbial interactions is not well understood. Here we investigated the transformation of prebiotics by a consortium of four representative species of the infant gut microbiome, and how their interactions changed with dietary substrates. First, we optimized a culture medium resembling certain infant gut parameters. A consortium containing Bifidobacterium longum subsp. infantis, Bacteroides vulgatus, Escherichia coli and Lactobacillus acidophilus was grown on fructooligosaccharides (FOS or 2′-fucosyllactose (2FL in mono- or co-culture. While Bi. infantis and Ba. vulgatus dominated growth on 2FL, their combined growth was reduced. Besides, interaction coefficients indicated strong competition, especially on FOS. While FOS was rapidly consumed by the consortium, B. infantis was the only microbe displaying significant consumption of 2FL. Acid production by the consortium resembled the metabolism of microorganisms dominating growth in each substrate. Finally, the consortium was tested in a bioreactor, observing similar predominance but more pronounced acid production and substrate consumption. This study indicates that the chemical nature of prebiotics modulate microbial interactions in a consortium of infant gut species.

  6. Capturing One of the Human Gut Microbiome's Most Wanted

    DEFF Research Database (Denmark)

    Jeraldo, Patricio; Hernandez, Alvaro; Nielsen, Henrik Bjørn

    2016-01-01

    The role of the microbiome in health and disease is attracting great attention, yet we still know little about some of the most prevalent microorganisms inside our bodies. Several years ago, Human Microbiome Project (HMP) researchers generated a list of "most wanted" taxa: bacteria both prevalent...... allowed us to assemble "most wanted" genomes from metagenomic data collected from four stool samples. Using a combination of both de novo and guided assembly methods, we assembled and binned over 100 genomes from an initial data set of over 1,300 Gbp. One of these genome bins, which met HMP's criteria...... for a "most wanted" taxa, contained three essentially complete genomes belonging to a previously uncultivated species. This species is most closely related to Eubacterium desmolans and the clostridial cluster IV/CIostridium leptum subgroup species Butyncicoccus pullicaecorum (71-76% average nucleotide...

  7. The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum

    Science.gov (United States)

    Kelly, Patrick H.; Bahr, Sarah M.; Serafim, Tiago D.; Ajami, Nadim J.; Petrosino, Joseph F.; Meneses, Claudio; Kirby, John R.; Valenzuela, Jesus G.; Kamhawi, Shaden

    2017-01-01

    ABSTRACT The vector-borne disease leishmaniasis, caused by Leishmania species protozoa, is transmitted to humans by phlebotomine sand flies. Development of Leishmania to infective metacyclic promastigotes in the insect gut, a process termed metacyclogenesis, is an essential prerequisite for transmission. Based on the hypothesis that vector gut microbiota influence the development of virulent parasites, we sequenced midgut microbiomes in the sand fly Lutzomyia longipalpis with or without Leishmania infantum infection. Sucrose-fed sand flies contained a highly diverse, stable midgut microbiome. Blood feeding caused a decrease in microbial richness that eventually recovered. However, bacterial richness progressively decreased in L. infantum-infected sand flies. Acetobacteraceae spp. became dominant and numbers of Pseudomonadaceae spp. diminished coordinately as the parasite underwent metacyclogenesis and parasite numbers increased. Importantly, antibiotic-mediated perturbation of the midgut microbiome rendered sand flies unable to support parasite growth and metacyclogenesis. Together, these data suggest that the sand fly midgut microbiome is a critical factor for Leishmania growth and differentiation to its infective state prior to disease transmission. PMID:28096483

  8. Evaluating in Vitro Culture Medium of Gut Microbiome with Orthogonal Experimental Design and a Metaproteomics Approach.

    Science.gov (United States)

    Li, Leyuan; Zhang, Xu; Ning, Zhibin; Mayne, Janice; Moore, Jasmine I; Butcher, James; Chiang, Cheng-Kang; Mack, David; Stintzi, Alain; Figeys, Daniel

    2018-01-05

    In vitro culture based approaches are time- and cost-effective solutions for rapidly evaluating the effects of drugs or natural compounds against microbiomes. The nutritional composition of the culture medium is an important determinant for effectively maintaining the gut microbiome in vitro. This study combines orthogonal experimental design and a metaproteomics approach to obtaining functional insights into the effects of different medium components on the microbiome. Our results show that the metaproteomic profile respond differently to medium components, including inorganic salts, bile salts, mucin, and short-chain fatty acids. Multifactor analysis of variance further revealed significant main and interaction effects of inorganic salts, bile salts, and mucin on the different functional groups of gut microbial proteins. While a broad regulating effect was observed on basic metabolic pathways, different medium components also showed significant modulations on cell wall, membrane, and envelope biogenesis and cell motility related functions. In particular, flagellar assembly related proteins were significantly responsive to the presence of mucin. This study provides information on the functional influences of medium components on the in vitro growth of microbiome communities and gives insight on the key components that must be considered when selecting and optimizing media for culturing ex vivo microbiotas.

  9. The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Patrick H. Kelly

    2017-01-01

    Full Text Available The vector-borne disease leishmaniasis, caused by Leishmania species protozoa, is transmitted to humans by phlebotomine sand flies. Development of Leishmania to infective metacyclic promastigotes in the insect gut, a process termed metacyclogenesis, is an essential prerequisite for transmission. Based on the hypothesis that vector gut microbiota influence the development of virulent parasites, we sequenced midgut microbiomes in the sand fly Lutzomyia longipalpis with or without Leishmania infantum infection. Sucrose-fed sand flies contained a highly diverse, stable midgut microbiome. Blood feeding caused a decrease in microbial richness that eventually recovered. However, bacterial richness progressively decreased in L. infantum-infected sand flies. Acetobacteraceae spp. became dominant and numbers of Pseudomonadaceae spp. diminished coordinately as the parasite underwent metacyclogenesis and parasite numbers increased. Importantly, antibiotic-mediated perturbation of the midgut microbiome rendered sand flies unable to support parasite growth and metacyclogenesis. Together, these data suggest that the sand fly midgut microbiome is a critical factor for Leishmania growth and differentiation to its infective state prior to disease transmission.

  10. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome.

    Science.gov (United States)

    Raymann, Kasie; Bobay, Louis-Marie; Moran, Nancy A

    2017-11-22

    The gut microbiome plays a key role in animal health, and perturbing it can have detrimental effects. One major source of perturbation to microbiomes, in humans and human-associated animals, is exposure to antibiotics. Most studies of how antibiotics affect the microbiome have used amplicon sequencing of highly conserved 16S rRNA sequences, as in a recent study showing that antibiotic treatment severely alters the species-level composition of the honeybee gut microbiome. But because the standard 16S rRNA-based methods cannot resolve closely related strains, strain-level changes could not be evaluated. To address this gap, we used amplicon sequencing of protein-coding genes to assess effects of antibiotics on fine-scale genetic diversity of the honeybee gut microbiota. We followed the population dynamics of alleles within two dominant core species of the bee gut community, Gilliamella apicola and Snodgrassella alvi, following antibiotic perturbation. Whereas we observed a large reduction in genetic diversity in G. apicola, S. alvi diversity was mostly unaffected. The reduction in G. apicola diversity accompanied an increase in the frequency of several alleles, suggesting resistance to antibiotic treatment. We find that antibiotic perturbation can cause major shifts in diversity and that the extent of these shifts can vary substantially across species. Thus, antibiotics impact not only species composition, but also allelic diversity within species, potentially affecting hosts if variants with particular functions are reduced or eliminated. Overall, we show that amplicon sequencing of protein-coding genes, without clustering into operational taxonomic units, provides an accurate picture of the fine-scale dynamics of microbial communities over time. © 2017 John Wiley & Sons Ltd.

  11. The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum.

    Science.gov (United States)

    Kelly, Patrick H; Bahr, Sarah M; Serafim, Tiago D; Ajami, Nadim J; Petrosino, Joseph F; Meneses, Claudio; Kirby, John R; Valenzuela, Jesus G; Kamhawi, Shaden; Wilson, Mary E

    2017-01-17

    The vector-borne disease leishmaniasis, caused by Leishmania species protozoa, is transmitted to humans by phlebotomine sand flies. Development of Leishmania to infective metacyclic promastigotes in the insect gut, a process termed metacyclogenesis, is an essential prerequisite for transmission. Based on the hypothesis that vector gut microbiota influence the development of virulent parasites, we sequenced midgut microbiomes in the sand fly Lutzomyia longipalpis with or without Leishmania infantum infection. Sucrose-fed sand flies contained a highly diverse, stable midgut microbiome. Blood feeding caused a decrease in microbial richness that eventually recovered. However, bacterial richness progressively decreased in L. infantum-infected sand flies. Acetobacteraceae spp. became dominant and numbers of Pseudomonadaceae spp. diminished coordinately as the parasite underwent metacyclogenesis and parasite numbers increased. Importantly, antibiotic-mediated perturbation of the midgut microbiome rendered sand flies unable to support parasite growth and metacyclogenesis. Together, these data suggest that the sand fly midgut microbiome is a critical factor for Leishmania growth and differentiation to its infective state prior to disease transmission. Leishmania infantum, a parasitic protozoan causing fatal visceral leishmaniasis, is transmitted to humans through the bite of the sand fly Lutzomyia longipalpis Development of the parasite to its virulent metacyclic state occurs in the sand fly gut. In this study, the microbiota within the Lu. longipalpis midgut was delineated by 16S ribosomal DNA (rDNA) sequencing, revealing a highly diverse community composition that lost diversity as parasites developed to their metacyclic state and increased in abundance in infected flies. Perturbing sand fly gut microbiota with an antibiotic cocktail, which alone had no effect on either the parasite or the fly, arrested both the development of virulent parasites and parasite expansion

  12. Recovery of the gut microbiome following fecal microbiota transplantation.

    Science.gov (United States)

    Seekatz, Anna M; Aas, Johannes; Gessert, Charles E; Rubin, Timothy A; Saman, Daniel M; Bakken, Johan S; Young, Vincent B

    2014-06-17

    Clostridium difficile infection is one of the most common health care-associated infections, and up to 40% of patients suffer from recurrence of disease following standard antibiotic therapy. Recently, fecal microbiota transplantation (FMT) has been successfully used to treat recurrent C. difficile infection. It is hypothesized that FMT aids in recovery of a microbiota capable of colonization resistance to C. difficile. However, it is not fully understood how this occurs. Here we investigated changes in the fecal microbiota structure following FMT in patients with recurrent C. difficile infection, and imputed a hypothetical functional profile based on the 16S rRNA profile using a predictive metagenomic tool. Increased relative abundance of Bacteroidetes and decreased abundance of Proteobacteria were observed following FMT. The fecal microbiota of recipients following transplantation was more diverse and more similar to the donor profile than the microbiota prior to transplantation. Additionally, we observed differences in the imputed metagenomic profile. In particular, amino acid transport systems were overrepresented in samples collected prior to transplantation. These results suggest that functional changes accompany microbial structural changes following this therapy. Further identification of the specific community members and functions that promote colonization resistance may aid in the development of improved treatment methods for C. difficile infection. Within the last decade, Clostridium difficile infection has surpassed other bacterial infections to become the leading cause of nosocomial infections. Antibiotic use, which disrupts the gut microbiota and its capability in providing colonization resistance against C. difficile, is a known risk factor in C. difficile infection. In particular, recurrent C. difficile remains difficult to treat with standard antibiotic therapy. Fecal microbiota transplantation (FMT) has provided a successful treatment method for

  13. Evaluating the impact of domestication and captivity on the horse gut microbiome.

    Science.gov (United States)

    Metcalf, Jessica L; Song, Se Jin; Morton, James T; Weiss, Sophie; Seguin-Orlando, Andaine; Joly, Frédéric; Feh, Claudia; Taberlet, Pierre; Coissac, Eric; Amir, Amnon; Willerslev, Eske; Knight, Rob; McKenzie, Valerie; Orlando, Ludovic

    2017-11-14

    The mammal gut microbiome, which includes host microbes and their respective genes, is now recognized as an essential second genome that provides critical functions to the host. In humans, studies have revealed that lifestyle strongly influences the composition and diversity of the gastrointestinal microbiome. We hypothesized that these trends in humans may be paralleled in mammals subjected to anthropogenic forces such as domestication and captivity, in which diets and natural life histories are often greatly modified. We investigated fecal microbiomes of Przewalski's horse (PH; Equus ferus przewalskii), the only horses alive today not successfully domesticated by humans, and herded, domestic horse (E. f. caballus) living in adjacent natural grasslands. We discovered PH fecal microbiomes hosted a distinct and more diverse community of bacteria compared to domestic horses, which is likely partly explained by different plant diets as revealed by trnL maker data. Within the PH population, four individuals were born in captivity in European zoos and hosted a strikingly low diversity of fecal microbiota compared to individuals born in natural reserves in France and Mongolia. These results suggest that anthropogenic forces can dramatically reshape equid gastrointestinal microbiomes, which has broader implications for the conservation management of endangered mammals.

  14. On Growth and Form of the Zebrafish Gut Microbiome

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael; Rolig, Annah; Burns, Adam; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-03-01

    The vertebrate gut is home to a diverse microbial community whose composition has a strong influence on the development and health of the host organism. Researchers can identify the members of the microbiota, yet little is known about the spatial and temporal dynamics of these microbial communities, including the mechanisms guiding their nucleation, growth, and interactions. We address these issues using the larval zebrafish (Danio rerio) as a model organism, which are raised microbe-free and then inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging using light sheet fluorescence microscopy enables visualization of the gut's entire microbial population over the first 24 hours of colonization. Image analysis allows us to quantify microbial populations that range from a few individuals to tens of thousands of microbes, and analyze the structure and growth kinetics of gut bacterial communities. We find that genetically-identical microbes can show surprisingly different growth rates and colonization abilities depending on their order of arrival. This demonstrates that knowing only the constituents of the gut community is insufficient to determine their dynamics; rather, the history of colonization matters.

  15. Bisphenol A alters gut microbiome: Comparative metagenomics analysis.

    Science.gov (United States)

    Lai, Keng-Po; Chung, Yan-Tung; Li, Rong; Wan, Hin-Ting; Wong, Chris Kong-Chu

    2016-11-01

    Mounting evidence has shown that an alteration of the gut microbiota is associated with diet, and plays an important role in animal health and metabolic diseases. However, little is known about the influence of environmental contaminants on the gut microbial community. Bisphenol A (BPA), which is widely used for manufacturing plastic products, has recently been classified as an environmental obesogen. Although many studies have demonstrated the metabolic-disrupting effects of BPA on liver and pancreatic functions, the possible effects of this synthetic compound on the metabolic diversity of the intestinal microbiota is unknown. Using 16S rRNA gene sequencing analysis on caecum samples of CD-1 mice, the present study aimed to test the hypothesis that dietary BPA intake may influence the gut microbiota composition and functions, an important attributing factor to development of the metabolic syndrome. A high-fat diet (HFD) and high-sucrose diet (HSD) were included as the positive controls for comparing the changes in the intestinal microbial profiles. Our results demonstrated a significant reduction of species diversity in the gut microbiota of BPA-fed mice. Alpha and beta diversity analyses showed that dietary BPA intake led to a similar gut microbial community structure as that induced by HFD and HSD in mice. In addition, comparative analysis of the microbial communities revealed that both BPA and a HFD favored the growth of Proteobacteria, a microbial marker of dysbiosis. Consistently, growth induction of the family Helicobacteraceae and reduction of the Firmicutes and Clostridia populations were observed in the mice fed BPA or a HFD. Collectively, our study highlighted that the effects of dietary BPA intake on the shift of microbial community structure were similar to those of a HFD and HSD, and revealed microbial markers for the development of diseases associated with an unstable microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Xenobiotics shape the physiology and gene expression of the active human gut microbiome.

    Science.gov (United States)

    Maurice, Corinne Ferrier; Haiser, Henry Joseph; Turnbaugh, Peter James

    2013-01-17

    The human gut contains trillions of microorganisms that influence our health by metabolizing xenobiotics, including host-targeted drugs and antibiotics. Recent efforts have characterized the diversity of this host-associated community, but it remains unclear which microorganisms are active and what perturbations influence this activity. Here, we combine flow cytometry, 16S rRNA gene sequencing, and metatranscriptomics to demonstrate that the gut contains a distinctive set of active microorganisms, primarily Firmicutes. Short-term exposure to a panel of xenobiotics significantly affected the physiology, structure, and gene expression of this active gut microbiome. Xenobiotic-responsive genes were found across multiple bacterial phyla, encoding antibiotic resistance, drug metabolism, and stress response pathways. These results demonstrate the power of moving beyond surveys of microbial diversity to better understand metabolic activity, highlight the unintended consequences of xenobiotics, and suggest that attempts at personalized medicine should consider interindividual variations in the active human gut microbiome. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Therapeutic Effect of Cucumis melo L. Extract on Insulin Resistance and the Gut Microbiome in Lepob/Lepob Mice

    Directory of Open Access Journals (Sweden)

    Daeun Lee

    2018-01-01

    Full Text Available Obesity results in the progression of metabolic disorders, especially type 2 diabetes (T2DM. Obesity-induced insulin resistance (IR is a causative factor of T2DM morbidity in obese people. It is generally held by clinicians that IR is caused by adiposity-related inflammation that is mediated by changes in composite ions in the gut microbiome. This experimental study was designed to investigate the effects of Cucumis melo L. (Cucumis on obesity-induced IR in genetically leptin-deficient Lepob/Lepob mice. Specifically, we examined the anti-inflammatory effects of Cucumis and the effects of Cucumis on the gut microbiota. We evaluated glucose control by measuring FBS, performing the OGTT, quantifying serum IR, calculating the HOMA-IR, and determining the lipid profiles. To see whether inflammation was reduced, we analyzed adipose tissue macrophages as well as monocytes in the blood. We also profiled the gut microbiota to determine whether the ratios of microbial phyla changed. We found that Cucumis improved IR in obese mice and relieved inflammation in adipose tissue and blood. Simultaneously, the microbiota composition ratios changed. In conclusion, administration of Cucumis improved IR by reducing inflammation, thereby changing the gut microbiota composition. Cucumis is thus a promising treatment for obesity-induced insulin resistance and the inflammatory state.

  18. Lateral gene transfer of an ABC transporter complex between major constituents of the human gut microbiome

    Directory of Open Access Journals (Sweden)

    Meehan Conor J

    2012-11-01

    Full Text Available Abstract Background Several links have been established between the human gut microbiome and conditions such as obesity and inflammatory bowel syndrome. This highlights the importance of understanding what properties of the gut microbiome can affect the health of the human host. Studies have been undertaken to determine the species composition of this microbiome and infer functional profiles associated with such host properties. However, lateral gene transfer (LGT between community members may result in misleading taxonomic attributions for the recipient organisms, thus making species-function links difficult to establish. Results We identified a peptides/nickel transport complex whose components differed in abundance based upon levels of host obesity, and assigned the encoded proteins to members of the microbial community. Each protein was assigned to several distinct taxonomic groups, with moderate levels of agreement observed among different proteins in the complex. Phylogenetic trees of these proteins produced clusters that differed greatly from taxonomic attributions and indicated that habitat-directed LGT of this complex is likely to have occurred, though not always between the same partners. Conclusions These findings demonstrate that certain membrane transport systems may be an important factor within an obese-associated gut microbiome and that such complexes may be acquired several times by different strains of the same species. Additionally, an example of individual proteins from different organisms being transferred into one operon was observed, potentially demonstrating a functional complex despite the donors of the subunits being taxonomically disparate. Our results also highlight the potential impact of habitat-directed LGT on the resident microbiota.

  19. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology.

    Science.gov (United States)

    Gomez, Andres; Petrzelkova, Klara; Yeoman, Carl J; Vlckova, Klara; Mrázek, Jakub; Koppova, Ingrid; Carbonero, Franck; Ulanov, Alexander; Modry, David; Todd, Angelique; Torralba, Manolito; Nelson, Karen E; Gaskins, H Rex; Wilson, Brenda; Stumpf, Rebecca M; White, Bryan A; Leigh, Steven R

    2015-05-01

    The metabolic activities of gut microbes significantly influence host physiology; thus, characterizing the forces that modulate this micro-ecosystem is key to understanding mammalian biology and fitness. To investigate the gut microbiome of wild primates and determine how these microbial communities respond to the host's external environment, we characterized faecal bacterial communities and, for the first time, gut metabolomes of four wild lowland gorilla groups in the Dzanga-Sangha Protected Areas, Central African Republic. Results show that geographical range may be an important modulator of the gut microbiomes and metabolomes of these gorilla groups. Distinctions seemed to relate to feeding behaviour, implying energy harvest through increased fruit consumption or fermentation of highly fibrous foods. These observations were supported by differential abundance of metabolites and bacterial taxa associated with the metabolism of cellulose, phenolics, organic acids, simple sugars, lipids and sterols between gorillas occupying different geographical ranges. Additionally, the gut microbiomes of a gorilla group under increased anthropogenic pressure could always be distinguished from that of all other groups. By characterizing the interplay between environment, behaviour, diet and symbiotic gut microbes, we present an alternative perspective on primate ecology and on the forces that shape the gut microbiomes of wild primates from an evolutionary context. © 2015 John Wiley & Sons Ltd.

  20. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention.

    Science.gov (United States)

    Liu, Ruixin; Hong, Jie; Xu, Xiaoqiang; Feng, Qiang; Zhang, Dongya; Gu, Yanyun; Shi, Juan; Zhao, Shaoqian; Liu, Wen; Wang, Xiaokai; Xia, Huihua; Liu, Zhipeng; Cui, Bin; Liang, Peiwen; Xi, Liuqing; Jin, Jiabin; Ying, Xiayang; Wang, Xiaolin; Zhao, Xinjie; Li, Wanyu; Jia, Huijue; Lan, Zhou; Li, Fengyu; Wang, Rui; Sun, Yingkai; Yang, Minglan; Shen, Yuxin; Jie, Zhuye; Li, Junhua; Chen, Xiaomin; Zhong, Huanzi; Xie, Hailiang; Zhang, Yifei; Gu, Weiqiong; Deng, Xiaxing; Shen, Baiyong; Xu, Xun; Yang, Huanming; Xu, Guowang; Bi, Yufang; Lai, Shenghan; Wang, Jian; Qi, Lu; Madsen, Lise; Wang, Jiqiu; Ning, Guang; Kristiansen, Karsten; Wang, Weiqing

    2017-07-01

    Emerging evidence has linked the gut microbiome to human obesity. We performed a metagenome-wide association study and serum metabolomics profiling in a cohort of lean and obese, young, Chinese individuals. We identified obesity-associated gut microbial species linked to changes in circulating metabolites. The abundance of Bacteroides thetaiotaomicron, a glutamate-fermenting commensal, was markedly decreased in obese individuals and was inversely correlated with serum glutamate concentration. Consistently, gavage with B. thetaiotaomicron reduced plasma glutamate concentration and alleviated diet-induced body-weight gain and adiposity in mice. Furthermore, weight-loss intervention by bariatric surgery partially reversed obesity-associated microbial and metabolic alterations in obese individuals, including the decreased abundance of B. thetaiotaomicron and the elevated serum glutamate concentration. Our findings identify previously unknown links between intestinal microbiota alterations, circulating amino acids and obesity, suggesting that it may be possible to intervene in obesity by targeting the gut microbiota.

  1. The mouse gut microbiome revisited: From complex diversity to model ecosystems.

    Science.gov (United States)

    Clavel, Thomas; Lagkouvardos, Ilias; Blaut, Michael; Stecher, Bärbel

    2016-08-01

    Laboratory mice are the most commonly used animal model in translational medical research. In recent years, the impact of the gut microbiota (i.e. communities of microorganisms in the intestine) on host physiology and the onset of diseases, including metabolic and neuronal disorders, cancers, gastrointestinal infections and chronic inflammation, became a focal point of interest. There is abundant evidence that mouse phenotypes in disease models vary greatly between animal facilities or commercial providers, and that this variation is associated with differences in the microbiota. Hence, there is a clear discrepancy between the widespread use of mouse models in research and the patchwork knowledge on the mouse gut microbiome. In the present manuscript, we summarize data pertaining to the diversity and functions of the mouse gut microbiota, review existing work on gnotobiotic mouse models, and discuss challenges and opportunities for current and future research in the field. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Diet, Gut Microbiome and Epigenetics: Emerging Links with Inflammatory Bowel Diseases and Prospects for Management and Prevention

    Directory of Open Access Journals (Sweden)

    Krasimira Aleksandrova

    2017-08-01

    Full Text Available Inflammatory bowel diseases (IBD represent a growing public health concern due to increasing incidence worldwide. The current notion on the pathogenesis of IBD is that genetically susceptible individuals develop intolerance to dysregulated gut microflora (dysbiosis and chronic inflammation develops as a result of environmental triggers. Among the environmental factors associated with IBD, diet plays an important role in modulating the gut microbiome, influencing epigenetic changes, and, therefore, could be applied as a therapeutic tool to improve the disease course. Nevertheless, the current dietary recommendations for disease prevention and management are scarce and have weak evidence. This review summarises the current knowledge on the complex interactions between diet, microbiome and epigenetics in IBD. Whereas an overabundance of calories and some macronutrients increase gut inflammation, several micronutrients have the potential to modulate it. Immunonutrition has emerged as a new concept putting forward the importance of vitamins such as vitamins A, C, E, and D, folic acid, beta carotene and trace elements such as zinc, selenium, manganese and iron. However, when assessed in clinical trials, specific micronutrients exerted a limited benefit. Beyond nutrients, an anti-inflammatory dietary pattern as a complex intervention approach has become popular in recent years. Hence, exclusive enteral nutrition in paediatric Crohn’s disease is the only nutritional intervention currently recommended as a first-line therapy. Other nutritional interventions or specific diets including the Specific Carbohydrate Diet (SCD, the low fermentable oligosaccharides, disaccharides, monosaccharides, and polyol (FODMAP diet and, most recently, the Mediterranean diet have shown strong anti-inflammatory properties and show promise for improving disease symptoms. More work is required to evaluate the role of individual food compounds and complex nutritional

  3. Moderate-Intensity Exercise Affects Gut Microbiome Composition and Influences Cardiac Function in Myocardial Infarction Mice

    Directory of Open Access Journals (Sweden)

    Zuheng Liu

    2017-09-01

    Full Text Available Physical exercise is commonly regarded as protective against cardiovascular disease (CVD. Recent studies have reported that exercise alters the gut microbiota and that modification of the gut microbiota can influence cardiac function. Here, we focused on the relationships among exercise, the gut microbiota and cardiac function after myocardial infarction (MI. Four-week-old C57BL/6J mice were exercised on a treadmill for 4 weeks before undergoing left coronary artery ligation. Cardiac function was assessed using echocardiography. Gut microbiomes were evaluated post-exercise and post-MI using 16S rRNA gene sequencing on an Illumina HiSeq platform. Exercise training inhibited declines in cardiac output and stroke volume in post-MI mice. In addition, physical exercise and MI led to alterations in gut microbial composition. Exercise training increased the relative abundance of Butyricimonas and Akkermansia. Additionally, key operational taxonomic units were identified, including 24 lineages (mainly from Bacteroidetes, Barnesiella, Helicobacter, Parabacteroides, Porphyromonadaceae, Ruminococcaceae, and Ureaplasma that were closely related to exercise and cardiac function. These results suggested that exercise training improved cardiac function to some extent in addition to altering the gut microbiota; therefore, they could provide new insights into the use of exercise training for the treatment of CVD.

  4. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome.

    Science.gov (United States)

    Fujimura, Kei E; Lynch, Susan V

    2015-05-13

    Asthma and atopy, classically associated with hyper-activation of the T helper 2 (Th2) arm of adaptive immunity, are among the most common chronic illnesses worldwide. Emerging evidence relates atopy and asthma to the composition and function of the human microbiome, the collection of microbes that reside in and on and interact with the human body. The ability to interrogate microbial ecology of the human host is due in large part to recent technological developments that permit identification of microbes and their products using culture-independent molecular detection techniques. In this review we explore the roles of respiratory, gut, and environmental microbiomes in asthma and allergic disease development, manifestation, and attenuation. Though still a relatively nascent field of research, evidence to date suggests that the airway and/or gut microbiome may represent fertile targets for prevention or management of allergic asthma and other diseases in which adaptive immune dysfunction is a prominent feature. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design

    Science.gov (United States)

    Laukens, Debby; Brinkman, Brigitta M.; Raes, Jeroen; De Vos, Martine; Vandenabeele, Peter

    2015-01-01

    Targeted manipulation of the gut flora is increasingly being recognized as a means to improve human health. Yet, the temporal dynamics and intra- and interindividual heterogeneity of the microbiome represent experimental limitations, especially in human cross-sectional studies. Therefore, rodent models represent an invaluable tool to study the host–microbiota interface. Progress in technical and computational tools to investigate the composition and function of the microbiome has opened a new era of research and we gradually begin to understand the parameters that influence variation of host-associated microbial communities. To isolate true effects from confounding factors, it is essential to include such parameters in model intervention studies. Also, explicit journal instructions to include essential information on animal experiments are mandatory. The purpose of this review is to summarize the factors that influence microbiota composition in mice and to provide guidelines to improve the reproducibility of animal experiments. PMID:26323480

  6. Characterization of oral and gut microbiome temporal variability in hospitalized cancer patients.

    Science.gov (United States)

    Galloway-Peña, Jessica R; Smith, Daniel P; Sahasrabhojane, Pranoti; Wadsworth, W Duncan; Fellman, Bryan M; Ajami, Nadim J; Shpall, Elizabeth J; Daver, Naval; Guindani, Michele; Petrosino, Joseph F; Kontoyiannis, Dimitrios P; Shelburne, Samuel A

    2017-02-28

    temporal variability of both oral microbial diversity (P = 0.03) and community structure (P = 0.002). These data quantify the longitudinal variability of the oral and gut microbiota in AML patients, show that increased variability was correlated with adverse clinical outcomes, and offer the possibility of using stabilizing taxa as a method of focused microbiome repletion. Furthermore, these results support the importance of longitudinal microbiome sampling and analyses, rather than one time measurements, in research and future clinical practice.

  7. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome.

    Science.gov (United States)

    Giloteaux, Ludovic; Goodrich, Julia K; Walters, William A; Levine, Susan M; Ley, Ruth E; Hanson, Maureen R

    2016-06-23

    Gastrointestinal disturbances are among symptoms commonly reported by individuals diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). However, whether ME/CFS is associated with an altered microbiome has remained uncertain. Here, we profiled gut microbial diversity by sequencing 16S ribosomal ribonucleic acid (rRNA) genes from stool as well as inflammatory markers from serum for cases (n = 48) and controls (n = 39). We also examined a set of inflammatory markers in blood: C-reactive protein (CRP), intestinal fatty acid-binding protein (I-FABP), lipopolysaccharide (LPS), LPS-binding protein (LBP), and soluble CD14 (sCD14). We observed elevated levels of some blood markers for microbial translocation in ME/CFS patients; levels of LPS, LBP, and sCD14 were elevated in ME/CFS subjects. Levels of LBP correlated with LPS and sCD14 and LPS levels correlated with sCD14. Through deep sequencing of bacterial rRNA markers, we identified differences between the gut microbiomes of healthy individuals and patients with ME/CFS. We observed that bacterial diversity was decreased in the ME/CFS specimens compared to controls, in particular, a reduction in the relative abundance and diversity of members belonging to the Firmicutes phylum. In the patient cohort, we find less diversity as well as increases in specific species often reported to be pro-inflammatory species and reduction in species frequently described as anti-inflammatory. Using a machine learning approach trained on the data obtained from 16S rRNA and inflammatory markers, individuals were classified correctly as ME/CFS with a cross-validation accuracy of 82.93 %. Our results indicate dysbiosis of the gut microbiota in this disease and further suggest an increased incidence of microbial translocation, which may play a role in inflammatory symptoms in ME/CFS.

  8. Systematic Review: The Impact of Cancer Treatment on the Gut and Vaginal Microbiome in Women With a Gynecological Malignancy.

    Science.gov (United States)

    Muls, Ann; Andreyev, Jervoise; Lalondrelle, Susan; Taylor, Alexandra; Norton, Christine; Hart, Ailsa

    2017-09-01

    Worldwide, 1,470,900 women are diagnosed yearly with a gynecological malignancy (21,000 in the UK). Some patients treated with pelvic radiotherapy develop chronic changes in their bowel function. This systematic review summarizes current research on the impact of cancer treatment on the gut and vaginal microbiome in women with a gynecological malignancy. The Preferred reporting Items for Systematic Reviews and Meta-analyses guidelines for systematic reviews were used to ensure transparent and complete reporting. Quantitative studies exploring the gut or vaginal microbiome in this patient cohort were included. Animal studies were excluded. There were no language restrictions. No studies examined the possible effects of surgery or chemotherapy for gynecological cancers on the gut or vaginal microbiome.Three prospective cohort studies were identified using sequencing of changes in the gut microbiome reporting on a total of 23 women treated for gynecological cancer. All studies included patients treated with radiotherapy with a dosage ranging from 43.0 to 54.0 Gy. Two studies assessed gastrointestinal toxicity formally; 8 women (57%) developed grade 2 or 3 diarrhea during radiotherapy. The outcomes suggest a correlation between changes in the intestinal microbiome and receiving radiotherapy and showed a decrease in abundance and diversity of the intestinal bacterial species. Before radiotherapy, those who developed diarrhea had an increased abundance of Bacteroides, Dialister, and Veillonella (P vaginal and gut microbiome in women treated for a gynecological malignancy are warranted to explore the impact of cancer treatments on the microbiome and its relation to developing long-term gastrointestinal toxicity. This may lead to new avenues to stratify those at risk and explore personalized treatment options and prevention of gastrointestinal consequences of cancer treatments.

  9. Effects of the Dietary Protein and Carbohydrate Ratio on Gut Microbiomes in Dogs of Different Body Conditions.

    Science.gov (United States)

    Li, Qinghong; Lauber, Christian L; Czarnecki-Maulden, Gail; Pan, Yuanlong; Hannah, Steven S

    2017-01-24

    Obesity has become a health epidemic in both humans and pets. A dysbiotic gut microbiota has been associated with obesity and other metabolic disorders. High-protein, low-carbohydrate (HPLC) diets have been recommended for body weight loss, but little is known about their effects on the canine gut microbiome. Sixty-three obese and lean Labrador retrievers and Beagles (mean age, 5.72 years) were fed a common baseline diet for 4 weeks in phase 1, followed by 4 weeks of a treatment diet, specifically, the HPLC diet (49.4% protein, 10.9% carbohydrate) or a low-protein, high-carbohydrate (LPHC) diet (25.5% protein, 38.8% carbohydrate) in phase 2. 16S rRNA gene profiling revealed that dietary protein and carbohydrate ratios have significant impacts on gut microbial compositions. This effect appeared to be more evident in obese dogs than in lean dogs but was independent of breed. Consumption of either diet increased the bacterial evenness, but not the richness, of the gut compared to that after consumption of the baseline diet. Macronutrient composition affected taxon abundances, mainly within the predominant phyla, Firmicutes and Bacteroidetes The LPHC diet appeared to favor the growth of Bacteroides uniformis and Clostridium butyricum, while the HPLC diet increased the abundances of Clostridium hiranonis, Clostridium perfringens, and Ruminococcus gnavus and enriched microbial gene networks associated with weight maintenance. In addition, we observed a decrease in the Bacteroidetes to Firmicutes ratio and an increase in the Bacteroides to Prevotella ratio in the HPLC diet-fed dogs compared to these ratios in dogs fed other diets. Finally, analysis of the effect of diet on the predicted microbial gene network was performed using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt). More than 50% of dogs are either overweight or obese in the United States. A dysbiotic gut microbiota is associated with obesity and other

  10. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression.

    Science.gov (United States)

    Fisher, Charles K; Mehta, Pankaj

    2014-01-01

    Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is now possible to follow the relative abundance of microbes in a community over time. These microbial communities exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the ecological interactions between species directly from sequence data. Any algorithm for inferring ecological interactions must overcome three major obstacles: 1) a correlation between the abundances of two species does not imply that those species are interacting, 2) the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3) errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions due to a statistical problem called "errors-in-variables". Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS), that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct "keystone species", Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in the human gut

  11. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression.

    Directory of Open Access Journals (Sweden)

    Charles K Fisher

    Full Text Available Human associated microbial communities exert tremendous influence over human health and disease. With modern metagenomic sequencing methods it is now possible to follow the relative abundance of microbes in a community over time. These microbial communities exhibit rich ecological dynamics and an important goal of microbial ecology is to infer the ecological interactions between species directly from sequence data. Any algorithm for inferring ecological interactions must overcome three major obstacles: 1 a correlation between the abundances of two species does not imply that those species are interacting, 2 the sum constraint on the relative abundances obtained from metagenomic studies makes it difficult to infer the parameters in timeseries models, and 3 errors due to experimental uncertainty, or mis-assignment of sequencing reads into operational taxonomic units, bias inferences of species interactions due to a statistical problem called "errors-in-variables". Here we introduce an approach, Learning Interactions from MIcrobial Time Series (LIMITS, that overcomes these obstacles. LIMITS uses sparse linear regression with boostrap aggregation to infer a discrete-time Lotka-Volterra model for microbial dynamics. We tested LIMITS on synthetic data and showed that it could reliably infer the topology of the inter-species ecological interactions. We then used LIMITS to characterize the species interactions in the gut microbiomes of two individuals and found that the interaction networks varied significantly between individuals. Furthermore, we found that the interaction networks of the two individuals are dominated by distinct "keystone species", Bacteroides fragilis and Bacteroided stercosis, that have a disproportionate influence on the structure of the gut microbiome even though they are only found in moderate abundance. Based on our results, we hypothesize that the abundances of certain keystone species may be responsible for individuality in

  12. New frontiers in nanotoxicology: Gut microbiota/microbiome-mediated effects of engineered nanomaterials.

    Science.gov (United States)

    Pietroiusti, Antonio; Magrini, Andrea; Campagnolo, Luisa

    2016-05-15

    It has been recently recognized that the gut microbiota, the community of organisms living within the gastrointestinal tract is an integral part of the human body, and that its genoma (the microbiome) interacts with the genes expressed by the cells of the host organism. Several important physiological functions require the cooperation of microbiota/microbiome, whose alterations play an important role in several human diseases. On this basis, it is probable that microbiota/microbiome may in part be involved in many biological effects of engineered nanomaterials (ENMs). There are still few reports on the possible toxicological effects of ENMs on microbiota/microbiome, and on their possible clinical consequences. Available data suggest that several ENMs, including carbon nanotubes (CNTs), titanium dioxide, cerium dioxide, zinc oxide, nanosilica and nanosilver may affect the microbiota and that clinical disorders such as colitis, obesity and immunological dysfunctions might follow. On the other hand, other ENMs such as iron nanoparticles may show advantages over traditional iron-based supplemental treatment because they do not interfere with the microbiota/microbiome, and some ENM-based therapeutic interventions might be employed for treating intestinal infections, while sparing the microbiota. The final section of the review is focused on the possible future developments of the research in this field: new in vitro and in vivo models, possible biomarkers and new pathophysiological pathways are proposed and discussed, as well as the possibility that metabolic changes following ENMs/microbiota interactions might be exploited as a fingerprint of ENM exposure. The potential toxicological relevance of physico-chemical modifications of ENMs induced by the microbiota is also highlighted. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cellular metabolism in colorectal carcinogenesis: Influence of lifestyle, gut microbiome and metabolic pathways.

    Science.gov (United States)

    Hagland, Hanne R; Søreide, Kjetil

    2015-01-28

    The interconnectivity between diet, gut microbiota and cell molecular responses is well known; however, only recently has technology allowed the identification of strains of microorganisms harbored in the gastrointestinal tract that may increase susceptibility to cancer. The colonic environment appears to play a role in the development of colon cancer, which is influenced by the human metabolic lifestyle and changes in the gut microbiome. Studying metabolic changes at the cellular level in cancer be useful for developing novel improved preventative measures, such as screening through metabolic breath-tests or treatment options that directly affect the metabolic pathways responsible for the carcinogenicity. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer's Mouse Model.

    Science.gov (United States)

    Brandscheid, Carolin; Schuck, Florian; Reinhardt, Sven; Schäfer, Karl-Herbert; Pietrzik, Claus U; Grimm, Marcus; Hartmann, Tobias; Schwiertz, Andreas; Endres, Kristina

    2017-01-01

    The regulation of physiological gut functions such as peristalsis or secretion of digestive enzymes by the central nervous system via the Nervus vagus is well known. Recent investigations highlight that pathological conditions of neurological or psychiatric disorders might directly interfere with the autonomous neuronal network of the gut - the enteric nervous system, or even derive from there. By using a murine Alzheimer's disease model, we investigated a potential influence of disease-associated changes on gastrointestinal properties. 5xFAD mice at three different ages were compared to wild type littermates in regard to metabolic parameters and enzymes of the gut by fluorimetric enzyme assay and western blotting. Overexpression of human amyloid-β protein precursor (AβPP) within the gut was assessed by qPCR and IHC; fecal microbiome analysis was conducted by 16SrRNA quantitation of selected phyla and species. While general composition of fecal samples, locomotion, and food consumption of male 5xFAD animals were not changed, we observed a reduced body weight occurring at early pathological stages. Human AβPP was not only expressed within the brain of these mice but also in gut tissue. Analysis of fecal proteins revealed a reduced trypsin amount in the 5xFAD model mice as compared to the wild type. In addition, we observed changes in fecal microbiota composition along with age. We therefore suggest that the presence of the mutated transgenes (AβPP and PS1), which are per se the basis for the genetic form of Alzheimer's disease in humans, directly interferes with gut function as shown here for the disease model mice.

  15. The Kynurenine Pathway As a Novel Link between Allergy and the Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Aaron P. Van der Leek

    2017-11-01

    Full Text Available In the past few decades, the indoleamine 2,3 dioxygenase (IDO subset of the kynurenine (KYN pathway of tryptophan (TRP metabolism has been the subject of much research in the area of immune tolerance. In this review, we aim to incorporate new findings on this pathway in relation to allergy and the gut microbiome, while providing a comprehensive overview of the pathway itself. Stimulated by interferon gamma, IDO acts as a tolerogenic, immunosuppressive enzyme to attenuate allergic responses by the induction of the KYN-IDO pathway, resultant depletion of TRP, and elevation in KYN metabolites. Acting through the aryl hydrocarbon receptor, KYN metabolites cause T-cell anergy and apoptosis, proliferation of Treg and Th17 cells, and deviation of the Th1/Th2 response, although the outcome is highly dependent on the microenvironment. Moreover, new evidence from germ-free mice and human infants shows that gut microbiota and breast milk are key in determining the functioning of the KYN-IDO pathway. As such, we recommend further research on how this pathway may be a critical link between the microbiome and development of allergy.

  16. Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers: a randomized clinical trial.

    Science.gov (United States)

    Pallav, Kumar; Dowd, Scot E; Villafuerte, Javier; Yang, Xiaotong; Kabbani, Toufic; Hansen, Joshua; Dennis, Melinda; Leffler, Daniel A; Newburg, David S; Kelly, Ciarán P

    2014-07-01

    Interactions between the microbial flora of the intestine and the human host play a critical role inmaintaining intestinal health and in the pathophysiology of a wide variety of disorders such as antibiotic associated diarrhea, Clostridium difficile infection, and inflammatory bowel disease. Prebiotics can confer health benefits by beneficial effects on the intestinal microbiome, whereas antibiotics can disrupt the microbiome leading to diarrhea andother side effects. To compare the effects of the prebiotic, polysaccharopeptide from Trametes versicolor, to those of the antibiotic,amoxicillin, on the human gut microbiome Twenty-four healthy volunteers were randomized to receive PSP, amoxicillin, or no treatment (control).Stool specimens were analyzed using bTEFAP microbial ecology methods on seven occasions over 8 weeks from each participant in the active treatment groups and on three occasions for the controls. Twenty-two of 24 participants completed the protocol. PSP led to clear and consistent microbiome changes consistent with its activity as a prebiotic. Despite the diversity of the human microbiome we noted strong microbiome clustering among subjects. Baseline microbiomes tended to remain stable and to overshadow the treatment effects.Amoxicillin treatment caused substantial microbiome changes most notably an increase in Escherichia/Shigella. Antibiotic associated changes persisted to the end of the study, 42 days after antibiotic therapy ended. The microbiomes of healthy individuals show substantial diversity but remain stable over time.The antibiotic amoxicillin alters the microbiome and recovery from this disruption can take several weeks. PSP from T. versicolor acts as a prebiotic to modulate human intestinal microbiome composition.

  17. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism

    Science.gov (United States)

    2015-01-01

    Background Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. Results ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids

  18. Effects of the Dietary Protein and Carbohydrate Ratio on Gut Microbiomes in Dogs of Different Body Conditions

    Directory of Open Access Journals (Sweden)

    Qinghong Li

    2017-01-01

    Full Text Available Obesity has become a health epidemic in both humans and pets. A dysbiotic gut microbiota has been associated with obesity and other metabolic disorders. High-protein, low-carbohydrate (HPLC diets have been recommended for body weight loss, but little is known about their effects on the canine gut microbiome. Sixty-three obese and lean Labrador retrievers and Beagles (mean age, 5.72 years were fed a common baseline diet for 4 weeks in phase 1, followed by 4 weeks of a treatment diet, specifically, the HPLC diet (49.4% protein, 10.9% carbohydrate or a low-protein, high-carbohydrate (LPHC diet (25.5% protein, 38.8% carbohydrate in phase 2. 16S rRNA gene profiling revealed that dietary protein and carbohydrate ratios have significant impacts on gut microbial compositions. This effect appeared to be more evident in obese dogs than in lean dogs but was independent of breed. Consumption of either diet increased the bacterial evenness, but not the richness, of the gut compared to that after consumption of the baseline diet. Macronutrient composition affected taxon abundances, mainly within the predominant phyla, Firmicutes and Bacteroidetes. The LPHC diet appeared to favor the growth of Bacteroides uniformis and Clostridium butyricum, while the HPLC diet increased the abundances of Clostridium hiranonis, Clostridium perfringens, and Ruminococcus gnavus and enriched microbial gene networks associated with weight maintenance. In addition, we observed a decrease in the Bacteroidetes to Firmicutes ratio and an increase in the Bacteroides to Prevotella ratio in the HPLC diet-fed dogs compared to these ratios in dogs fed other diets. Finally, analysis of the effect of diet on the predicted microbial gene network was performed using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt.

  19. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes.

    Science.gov (United States)

    Hehemann, Jan-Hendrik; Kelly, Amelia G; Pudlo, Nicholas A; Martens, Eric C; Boraston, Alisdair B

    2012-11-27

    Humans host an intestinal population of microbes--collectively referred to as the gut microbiome--which encode the carbohydrate active enzymes, or CAZymes, that are absent from the human genome. These CAZymes help to extract energy from recalcitrant polysaccharides. The question then arises as to if and how the microbiome adapts to new carbohydrate sources when modern humans change eating habits. Recent metagenome analysis of microbiomes from healthy American, Japanese, and Spanish populations identified putative CAZymes obtained by horizontal gene transfer from marine bacteria, which suggested that human gut bacteria evolved to degrade algal carbohydrates-for example, consumed in form of sushi. We approached this hypothesis by studying such a polysaccharide utilization locus (PUL) obtained by horizontal gene transfer by the gut bacterium Bacteroides plebeius. Transcriptomic and growth experiments revealed that the PUL responds to the polysaccharide porphyran from red algae, enabling growth on this carbohydrate but not related substrates like agarose and carrageenan. The X-ray crystallographic and biochemical analysis of two proteins encoded by this PUL, BACPLE_01689 and BACPLE_01693, showed that they are β-porphyranases belonging to glycoside hydrolase families 16 and 86, respectively. The product complex of the GH86 at 1.3 Å resolution highlights the molecular details of porphyran hydrolysis by this new porphyranase. Combined, these data establish experimental support for the argument that CAZymes and associated genes obtained from extrinsic microbes add new catabolic functions to the human gut microbiome.

  20. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome.

    Directory of Open Access Journals (Sweden)

    Lisa Kish

    Full Text Available Particulate matter (PM is a key pollutant in ambient air that has been associated with negative health conditions in urban environments. The aim of this study was to examine the effects of orally administered PM on the gut microbiome and immune function under normal and inflammatory conditions.Wild-type 129/SvEv mice were gavaged with Ottawa urban PM10 (EHC-93 for 7-14 days and mucosal gene expression analyzed using Ingenuity Pathways software. Intestinal permeability was measured by lactulose/mannitol excretion in urine. At sacrifice, segments of small and large intestine were cultured and cytokine secretion measured. Splenocytes were isolated and incubated with PM10 for measurement of proliferation. Long-term effects of exposure (35 days on intestinal cytokine expression were measured in wild-type and IL-10 deficient (IL-10(-/- mice. Microbial composition of stool samples was assessed using terminal restriction fragment length polymorphism. Short chain fatty acids were measured in caecum.Short-term treatment of wild-type mice with PM10 altered immune gene expression, enhanced pro-inflammatory cytokine secretion in the small intestine, increased gut permeability, and induced hyporesponsiveness in splenocytes. Long-term treatment of wild-type and IL-10(-/- mice increased pro-inflammatory cytokine expression in the colon and altered short chain fatty acid concentrations and microbial composition. IL-10(-/- mice had increased disease as evidenced by enhanced histological damage.Ingestion of airborne particulate matter alters the gut microbiome and induces acute and chronic inflammatory responses in the intestine.

  1. Spatial Structure of the Mormon Cricket Gut Microbiome and its Predicted Contribution to Nutrition and Immune Function

    Directory of Open Access Journals (Sweden)

    Chad C. Smith

    2017-05-01

    Full Text Available The gut microbiome of insects plays an important role in their ecology and evolution, participating in nutrient acquisition, immunity, and behavior. Microbial community structure within the gut is heavily influenced by differences among gut regions in morphology and physiology, which determine the niches available for microbes to colonize. We present a high-resolution analysis of the structure of the gut microbiome in the Mormon cricket Anabrus simplex, an insect known for its periodic outbreaks in the western United States and nutrition-dependent mating system. The Mormon cricket microbiome was dominated by 11 taxa from the Lactobacillaceae, Enterobacteriaceae, and Streptococcaceae. While most of these were represented in all gut regions, there were marked differences in their relative abundance, with lactic-acid bacteria (Lactobacillaceae more common in the foregut and midgut and enteric (Enterobacteriaceae bacteria more common in the hindgut. Differences in community structure were driven by variation in the relative prevalence of three groups: a Lactobacillus in the foregut, Pediococcus lactic-acid bacteria in the midgut, and Pantoea agglomerans, an enteric bacterium, in the hindgut. These taxa have been shown to have beneficial effects on their hosts in insects and other animals by improving nutrition, increasing resistance to pathogens, and modulating social behavior. Using PICRUSt to predict gene content from our 16S rRNA sequences, we found enzymes that participate in carbohydrate metabolism and pathogen defense in other orthopterans. These were predominately represented in the hindgut and midgut, the most important sites for nutrition and pathogen defense. Phylogenetic analysis of 16S rRNA sequences from cultured isolates indicated low levels of divergence from sequences derived from plants and other insects, suggesting that these bacteria are likely to be exchanged between Mormon crickets and the environment. Our study shows strong

  2. Spatial Structure of the Mormon Cricket Gut Microbiome and its Predicted Contribution to Nutrition and Immune Function.

    Science.gov (United States)

    Smith, Chad C; Srygley, Robert B; Healy, Frank; Swaminath, Karthikeyan; Mueller, Ulrich G

    2017-01-01

    The gut microbiome of insects plays an important role in their ecology and evolution, participating in nutrient acquisition, immunity, and behavior. Microbial community structure within the gut is heavily influenced by differences among gut regions in morphology and physiology, which determine the niches available for microbes to colonize. We present a high-resolution analysis of the structure of the gut microbiome in the Mormon cricket Anabrus simplex , an insect known for its periodic outbreaks in the western United States and nutrition-dependent mating system. The Mormon cricket microbiome was dominated by 11 taxa from the Lactobacillaceae, Enterobacteriaceae, and Streptococcaceae. While most of these were represented in all gut regions, there were marked differences in their relative abundance, with lactic-acid bacteria (Lactobacillaceae) more common in the foregut and midgut and enteric (Enterobacteriaceae) bacteria more common in the hindgut. Differences in community structure were driven by variation in the relative prevalence of three groups: a Lactobacillus in the foregut, Pediococcus lactic-acid bacteria in the midgut, and Pantoea agglomerans , an enteric bacterium, in the hindgut. These taxa have been shown to have beneficial effects on their hosts in insects and other animals by improving nutrition, increasing resistance to pathogens, and modulating social behavior. Using PICRUSt to predict gene content from our 16S rRNA sequences, we found enzymes that participate in carbohydrate metabolism and pathogen defense in other orthopterans. These were predominately represented in the hindgut and midgut, the most important sites for nutrition and pathogen defense. Phylogenetic analysis of 16S rRNA sequences from cultured isolates indicated low levels of divergence from sequences derived from plants and other insects, suggesting that these bacteria are likely to be exchanged between Mormon crickets and the environment. Our study shows strong spatial variation

  3. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain.

    Science.gov (United States)

    Menni, C; Jackson, M A; Pallister, T; Steves, C J; Spector, T D; Valdes, A M

    2017-07-01

    Cross-sectional studies suggest that the microbes in the human gut have a role in obesity by influencing the human body's ability to extract and store calories. The aim of this study was to assess if there is a correlation between change in body weight over time and gut microbiome composition. We analysed 16S ribosomal RNA gene sequence data derived from the faecal samples of 1632 healthy females from TwinsUK to investigate the association between gut microbiome measured cross-sectionally and longitudinal weight gain (adjusted for caloric intake and baseline body mass index). Dietary fibre intake was investigated as a possible modifier. Less than half of the variation in long-term weight change was found to be heritable (h 2 =0.41 (0.31, 0.47)). Gut microbiota diversity was negatively associated with long-term weight gain, whereas it was positively correlated with fibre intake. Nine bacterial operational taxonomic units (OTUs) were significantly associated with weight gain after adjusting for covariates, family relatedness and multiple testing (false discovery rate diversity. High gut microbiome diversity, high-fibre intake and OTUs implicated in animal models of improved energy metabolism are all correlated with lower term weight gain in humans independently of calorie intake and other confounders.

  4. Relationships between diet-related changes in the gut microbiome and cognitive flexibility.

    Science.gov (United States)

    Magnusson, K R; Hauck, L; Jeffrey, B M; Elias, V; Humphrey, A; Nath, R; Perrone, A; Bermudez, L E

    2015-08-06

    Western diets are high in fat and sucrose and can influence behavior and gut microbiota. There is growing evidence that altering the microbiome can influence the brain and behavior. This study was designed to determine whether diet-induced changes in the gut microbiota could contribute to alterations in anxiety, memory or cognitive flexibility. Two-month-old, male C57BL/6 mice were randomly assigned high-fat (42% fat, 43% carbohydrate (CHO), high-sucrose (12% fat, 70% CHO (primarily sucrose) or normal chow (13% kcal fat, 62% CHO) diets. Fecal microbiome analysis, step-down latency, novel object and novel location tasks were performed prior to and 2weeks after diet change. Water maze testing for long- and short-term memory and cognitive flexibility was conducted during weeks 5-6 post-diet change. Some similarities in alterations in the microbiome were seen in both the high-fat and high-sucrose diets (e.g., increased Clostridiales), as compared to the normal diet, but the percentage decreases in Bacteroidales were greater in the high-sucrose diet mice. Lactobacillales was only significantly increased in the high-sucrose diet group and Erysipelotrichales was only significantly affected by the high-fat diet. The high-sucrose diet group was significantly impaired in early development of a spatial bias for long-term memory, short-term memory and reversal training, compared to mice on normal diet. An increased focus on the former platform position was seen in both high-sucrose and high-fat groups during the reversal probe trials. There was no significant effect of diet on step-down, exploration or novel recognitions. Higher percentages of Clostridiales and lower expression of Bacteroidales in high-energy diets were related to the poorer cognitive flexibility in the reversal trials. These results suggest that changes in the microbiome may contribute to cognitive changes associated with eating a Western diet. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights

  5. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics

    Directory of Open Access Journals (Sweden)

    Jason M. Ridlon

    2015-03-01

    Full Text Available The human body is now viewed as a complex ecosystem that on a cellular and gene level is mainly prokaryotic. The mammalian liver synthesizes and secretes hydrophilic primary bile acids, some of which enter the colon during the enterohepatic circulation, and are converted into numerous hydrophobic metabolites which are capable of entering the portal circulation, returned to the liver, and in humans, accumulating in the biliary pool. Bile acids are hormones that regulate their own synthesis, transport, in addition to glucose and lipid homeostasis, and energy balance. The gut microbial community through their capacity to produce bile acid metabolites distinct from the liver can be thought of as an “endocrine organ” with potential to alter host physiology, perhaps to their own favor. We propose the term “sterolbiome” to describe the genetic potential of the gut microbiome to produce endocrine molecules from endogenous and exogenous steroids in the mammalian gut. The affinity of secondary bile acid metabolites to host nuclear receptors is described, the potential of secondary bile acids to promote tumors, and the potential of bile acids to serve as therapeutic agents are discussed.

  6. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis.

    Science.gov (United States)

    Jiao, Na; Baker, Susan S; Nugent, Colleen A; Tsompana, Maria; Cai, Liting; Wang, Yong; Buck, Michael J; Genco, Robert J; Baker, Robert D; Zhu, Ruixin; Zhu, Lixin

    2018-01-26

    A number of studies have associated obesity with altered gut microbiota, although results are discordant regarding compositional changes in the gut microbiota of obese animals. Herein we aimed to obtain an unbiased evaluation of structural and functional changes of the gut microbiota in diet-induced obese rodents using a meta-analysis. The raw sequencing data of nine studies generated with high-fat diet (HFD)-induced obese rodent models were processed with QIIME to obtain gut microbiota compositions. Biological functions were predicted and annotated with KEGG pathways using PICRUSt. No significant difference was observed for alpha diversity and Bacteroidetes to Firmicutes (B/F) ratio between obese and lean rodents. Bacteroidia, Clostridia, Bacilli and Erysipelotrichi were dominant classes but gut microbiota compositions varied among studies. Meta-analysis of the nine microbiome datasets identified 15 differential taxa and 57 differential pathways between obese and lean rodents. In obese rodents, increased abundance was observed for Dorea, Oscillospira, and Ruminococcus, known for fermenting polysaccharide into short chain fatty acids (SCFAs). Decreased Turicibacter and increased Lactococcus are consistent with elevated inflammation in the obese status. Differential functional pathways of the gut microbiome in obese rodents included enriched pyruvate metabolism, butanoate metabolism, propanoate metabolism, pentose phosphate pathway, fatty acid biosynthesis and glycerolipid metabolism pathways. These pathways converge in the function of carbohydrate metabolism, SCFAs metabolism and biosynthesis of lipid. HFD-induced obesity results in structural and functional dysbiosis of gut microbiota. The altered gut microbiome may contribute to obesity development by promoting insulin resistance and systemic inflammation.

  7. The human gut chip "HuGChip", an explorative phylogenetic microarray for determining gut microbiome diversity at family level.

    Science.gov (United States)

    Tottey, William; Denonfoux, Jeremie; Jaziri, Faouzi; Parisot, Nicolas; Missaoui, Mohiedine; Hill, David; Borrel, Guillaume; Peyretaillade, Eric; Alric, Monique; Harris, Hugh M B; Jeffery, Ian B; Claesson, Marcus J; O'Toole, Paul W; Peyret, Pierre; Brugère, Jean-François

    2013-01-01

    Evaluating the composition of the human gut microbiota greatly facilitates studies on its role in human pathophysiology, and is heavily reliant on culture-independent molecular methods. A microarray designated the Human Gut Chip (HuGChip) was developed to analyze and compare human gut microbiota samples. The PhylArray software was used to design specific and sensitive probes. The DNA chip was composed of 4,441 probes (2,442 specific and 1,919 explorative probes) targeting 66 bacterial families. A mock community composed of 16S rRNA gene sequences from intestinal species was used to define the threshold criteria to be used to analyze complex samples. This was then experimentally verified with three human faecal samples and results were compared (i) with pyrosequencing of the V4 hypervariable region of the 16S rRNA gene, (ii) metagenomic data, and (iii) qPCR analysis of three phyla. When compared at both the phylum and the family level, high Pearson's correlation coefficients were obtained between data from all methods. The HuGChip development and validation showed that it is not only able to assess the known human gut microbiota but could also detect unknown species with the explorative probes to reveal the large number of bacterial sequences not yet described in the human gut microbiota, overcoming the main inconvenience encountered when developing microarrays.

  8. Pyrosequencing Reveals the Predominance of Pseudomonadaceae in Gut Microbiome of a Gall Midge

    Directory of Open Access Journals (Sweden)

    Raman Bansal

    2014-06-01

    Full Text Available Gut microbes are known to play various roles in insects such as digestion of inaccessible nutrients, synthesis of deficient amino acids, and interaction with ecological environments, including host plants. Here, we analyzed the gut microbiome in Hessian fly, a serious pest of wheat. A total of 3,654 high quality sequences of the V3 hypervariable region of the 16S rRNA gene were obtained through 454-pyrosequencing. From these sequences, 311 operational taxonomic units (OTUs were obtained at the >97% similarity cutoff. In the gut of 1st instar, otu01, a member of Pseudomonas, was predominant, representing 90.2% of total sequences. otu13, an unidentified genus in the Pseudomonadaceae family, represented 1.9% of total sequences. The remaining OTUs were each less than 1%. In the gut of the 2nd instar, otu01 and otu13 decreased to 85.5% and 1.5%, respectively. otu04, a member of Buttiauxella, represented 9.7% of total sequences. The remaining OTUs were each less than 1%. In the gut of the 3rd instar, otu01 and otu13 further decreased to 29.0% and 0%, respectively. otu06, otu08, and otu16, also three members of the Pseudomonadaceae family were 13.2%, 8.6%, and 2.3%, respectively. In addition, otu04 and otu14, two members of the Enterobacteriaceae family, were 4.7% and 2.5%; otu18 and otu20, two members of the Xanthomonadaceae family, were 1.3% and 1.2%, respectively; otu12, a member of Achromobacter, was 4.2%; otu19, a member of Undibacterium, was 1.4%; and otu9, otu10, and otu15, members of various families, were 6.1%, 6.3%, and 1.9%, respectively. The investigation into dynamics of Pseudomonas, the most abundant genera, revealed that its population level was at peak in freshly hatched or 1 day larvae as well as in later developmental stages, thus suggesting a prominent role for this bacterium in Hessian fly development and in its interaction with host plants. This study is the first comprehensive survey on bacteria associated with the gut of a gall

  9. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice

    DEFF Research Database (Denmark)

    Livanos, Alexandra E; Greiner, Thomas U; Vangay, Pajau

    2016-01-01

    The early life microbiome plays important roles in host immunological and metabolic development. Because the incidence of type 1 diabetes (T1D) has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota, which predisposes to disease....... Using non-obese diabetic mice that are genetically susceptible to T1D, we examined the effects of exposure to either continuous low-dose antibiotics or pulsed therapeutic antibiotics (PAT) early in life, mimicking childhood exposures. We found that in mice receiving PAT, T1D incidence was significantly...... higher, and microbial community composition and structure differed compared with controls. In pre-diabetic male PAT mice, the intestinal lamina propria had lower Th17 and Treg proportions and intestinal SAA expression than in controls, suggesting key roles in transducing the altered microbiota signals...

  10. Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Priscilla A. Johanesen

    2015-12-01

    Full Text Available Clostridium difficile is well recognized as the leading cause of antibiotic-associated diarrhea, having a significant impact in both health-care and community settings. Central to predisposition to C. difficile infection is disruption of the gut microbiome by antibiotics. Being a Gram-positive anaerobe, C. difficile is intrinsically resistant to a number of antibiotics. Mobile elements encoding antibiotic resistance determinants have also been characterized in this pathogen. While resistance to antibiotics currently used to treat C. difficile infection has not yet been detected, it may be only a matter of time before this occurs, as has been seen with other bacterial pathogens. This review will discuss C. difficile disease pathogenesis, the impact of antibiotic use on inducing disease susceptibility, and the role of antibiotic resistance and mobile elements in C. difficile epidemiology.

  11. Plasmid metagenomics reveals multiple antibiotic resistance gene classes among the gut microbiomes of hospitalised patients

    DEFF Research Database (Denmark)

    Jitwasinkul, Tossawan; Suriyaphol, Prapat; Tangphatsornruang, Sithichoke

    2016-01-01

    Antibiotic resistance genes are rapidly spread between pathogens and the normal flora, with plasmids playing an important role in their circulation. This study aimed to investigate antibiotic resistance plasmids in the gut microbiome of hospitalised patients. Stool samples were collected from seven...... sequences (using >80% alignment length as the cut-off), and ResFinder was used to classify the antibiotic resistance gene pools. Plasmid replicon modules were used for plasmid typing. Forty-six genes conferring resistance to several classes of antibiotics were identified in the stool samples. Several...... antibiotic resistance genes were shared by the patients; interestingly, most were reported previously in food animals and healthy humans. Four antibiotic resistance genes were found in the healthy subject. One gene (aph3-III) was identified in the patients and the healthy subject and was related...

  12. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

    Science.gov (United States)

    MacFabe, Derrick F.

    2012-01-01

    Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs). Propionic acid (PPA) and its related short-chain fatty acids (SCFAs) are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio). SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible environmental

  13. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Derrick F. MacFabe

    2012-08-01

    Full Text Available Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs. Propionic acid (PPA and its related short-chain fatty acids (SCFAs are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio. SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible

  14. Gut microbiome in gestational diabetes: a cross-sectional study of mothers and offspring 5 years postpartum.

    Science.gov (United States)

    Hasan, Sayyid; Aho, Velma; Pereira, Pedro; Paulin, Lars; Koivusalo, Saila B; Auvinen, Petri; Eriksson, Johan G

    2018-01-01

    An altered gut microbiome composition is shown to be associated with various diseases and health outcomes. We compare the gut microbiota of women who developed gestational diabetes mellitus (GDM) with that of those who did not, and the gut microbiota of their offspring, to determine any differences in the composition and diversity of their gut microbiota, which may be correlated with their GDM state. All women were at high risk for GDM and participated in the Finnish Gestational Diabetes Prevention Study (RADIEL). Stool samples were obtained, 5 years postpartum, from 60 GDM-positive women, 68 non-GDM control women, and their children (n = 109), 237 individuals in total. 16S ribosomal RNA gene sequencing was employed to determine the composition of bacterial communities present. Statistical correlations were inferred between clinical variables and microbiota, while taking into account potential confounders. In mothers, no significant differences were observed in microbiota composition between the two groups. Genus Anaerotruncus was increased in children of women with GDM (p microbiome composition when compared with unrelated children, other mothers, or the children compared with each other (p microbiome basis to GDM susceptibility in high-risk women, whereas microbiome differences between the offspring could be of greater biological significance. The heterogeneous nature of the disease could be obscuring potential differences between women. A longer time-series study, with carefully defined subject subgroups, may be an appropriate course of future investigation into GDM and the microbiome. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  15. Gut Microbiome of an 11th Century A.D. Pre-Columbian Andean Mummy.

    Directory of Open Access Journals (Sweden)

    Tasha M Santiago-Rodriguez

    Full Text Available The process of natural mummification is a rare and unique process from which little is known about the resulting microbial community structure. In the present study, we characterized the microbiome of paleofeces, and ascending, transverse and descending colon of an 11th century A.D. pre-Columbian Andean mummy by 16S rRNA gene high-throughput sequencing and metagenomics. Firmicutes were the most abundant bacterial group, with Clostridium spp. comprising up to 96.2% of the mummified gut, while Turicibacter spp. represented 89.2% of the bacteria identified in the paleofeces. Microbiome profile of the paleofeces was unique when compared to previously characterized coprolites that did not undergo natural mummification. We identified DNA sequences homologous to Clostridium botulinum, Trypanosoma cruzi and human papillomaviruses (HPVs. Unexpectedly, putative antibiotic-resistance genes including beta-lactamases, penicillin-binding proteins, resistance to fosfomycin, chloramphenicol, aminoglycosides, macrolides, sulfa, quinolones, tetracycline and vancomycin, and multi-drug transporters, were also identified. The presence of putative antibiotic-resistance genes suggests that resistance may not necessarily be associated with a selective pressure of antibiotics or contact with European cultures. Identification of pathogens and antibiotic-resistance genes in ancient human specimens will aid in the understanding of the evolution of pathogens as a way to treat and prevent diseases caused by bacteria, microbial eukaryotes and viruses.

  16. The Gut Microbiome and HIV-1 Pathogenesis: A Two Way Street

    Science.gov (United States)

    Dillon, Stephanie M.; Frank, Daniel N.; Wilson, Cara C.

    2016-01-01

    HIV-1 infection is associated with substantial damage to the gastrointestinal (GI) tract resulting in structural impairment of the epithelial barrier and a disruption of intestinal homeostasis. The accompanying translocation of microbial products and potentially microbes themselves from the lumen into systemic circulation has been linked to immune activation, inflammation, and HIV-1 disease progression. The importance of microbial translocation in the setting of HIV-1 infection has led to a recent focus on understanding how the communities of microbes that make up the intestinal microbiome are altered during HIV-1 infection and how they interact with mucosal immune cells to contribute to inflammation. This review details the dysbiotic intestinal communities associated with HIV-1 infection and their potential link to HIV-1 pathogenesis. We detail studies that begin to address the mechanisms driving microbiota-associated immune activation and inflammation and the various treatment strategies aimed at correcting dysbiosis and improving the overall health of HIV-1 infected individuals. Finally, we discuss how this relatively new field of research can advance to provide a more comprehensive understanding of the contribution of the gut microbiome to HIV-1 pathogenesis. PMID:27755100

  17. Differential Ecological Specificity of Protist and Bacterial Microbiomes across a Set of Termite Species

    Directory of Open Access Journals (Sweden)

    Lena Waidele

    2017-12-01

    Full Text Available The gut microbiome of lower termites comprises protists and bacteria that help these insects to digest cellulose and to thrive on wood. The composition of the termite gut microbiome correlates with phylogenetic distance of the animal host and host ecology (diet in termites collected from their natural environment. However, carryover of transient microbes from host collection sites are an experimental concern and might contribute to the ecological imprints on the termite gut microbiome. Here, we set out to test whether an ecological imprint on the termite gut microbiome remains, when focusing on the persistent microbiome. Therefore, we kept five termite species under strictly controlled dietary conditions and subsequently profiled their protist and bacterial gut microbial communities using 18S and 16S rRNA gene amplicon sequencing. The species differed in their ecology; while three of the investigated species were wood-dwellers that feed on the piece of wood they live in and never leave except for the mating flight, the other two species were foragers that regularly leave their nests to forage for food. Despite these prominent ecological differences, protist microbiome structure aligned with phylogenetic relatedness of termite host species. Conversely, bacterial communities seemed more flexible, suggesting that microbiome structure aligned more strongly with the foraging and wood-dwelling ecologies. Interestingly, protist and bacterial community alpha-diversity correlated, suggesting either putative interactions between protists and bacteria, or that both types of microbes in the termite gut follow shared structuring principles. Taken together, our results add to the notion that bacterial communities are more variable over evolutionary time than protist communities and might react more flexibly to changes in host ecology.

  18. Differential Ecological Specificity of Protist and Bacterial Microbiomes across a Set of Termite Species.

    Science.gov (United States)

    Waidele, Lena; Korb, Judith; Voolstra, Christian R; Künzel, Sven; Dedeine, Franck; Staubach, Fabian

    2017-01-01

    The gut microbiome of lower termites comprises protists and bacteria that help these insects to digest cellulose and to thrive on wood. The composition of the termite gut microbiome correlates with phylogenetic distance of the animal host and host ecology (diet) in termites collected from their natural environment. However, carryover of transient microbes from host collection sites are an experimental concern and might contribute to the ecological imprints on the termite gut microbiome. Here, we set out to test whether an ecological imprint on the termite gut microbiome remains, when focusing on the persistent microbiome. Therefore, we kept five termite species under strictly controlled dietary conditions and subsequently profiled their protist and bacterial gut microbial communities using 18S and 16S rRNA gene amplicon sequencing. The species differed in their ecology; while three of the investigated species were wood-dwellers that feed on the piece of wood they live in and never leave except for the mating flight, the other two species were foragers that regularly leave their nests to forage for food. Despite these prominent ecological differences, protist microbiome structure aligned with phylogenetic relatedness of termite host species. Conversely, bacterial communities seemed more flexible, suggesting that microbiome structure aligned more strongly with the foraging and wood-dwelling ecologies. Interestingly, protist and bacterial community alpha-diversity correlated, suggesting either putative interactions between protists and bacteria, or that both types of microbes in the termite gut follow shared structuring principles. Taken together, our results add to the notion that bacterial communities are more variable over evolutionary time than protist communities and might react more flexibly to changes in host ecology.

  19. Differential Ecological Specificity of Protist and Bacterial Microbiomes across a Set of Termite Species

    KAUST Repository

    Waidele, Lena

    2017-12-19

    The gut microbiome of lower termites comprises protists and bacteria that help these insects to digest cellulose and to thrive on wood. The composition of the termite gut microbiome correlates with phylogenetic distance of the animal host and host ecology (diet) in termites collected from their natural environment. However, carryover of transient microbes from host collection sites are an experimental concern and might contribute to the ecological imprints on the termite gut microbiome. Here, we set out to test whether an ecological imprint on the termite gut microbiome remains, when focusing on the persistent microbiome. Therefore, we kept five termite species under strictly controlled dietary conditions and subsequently profiled their protist and bacterial gut microbial communities using 18S and 16S rRNA gene amplicon sequencing. The species differed in their ecology; while three of the investigated species were wood-dwellers that feed on the piece of wood they live in and never leave except for the mating flight, the other two species were foragers that regularly leave their nests to forage for food. Despite these prominent ecological differences, protist microbiome structure aligned with phylogenetic relatedness of termite host species. Conversely, bacterial communities seemed more flexible, suggesting that microbiome structure aligned more strongly with the foraging and wood-dwelling ecologies. Interestingly, protist and bacterial community alpha-diversity correlated, suggesting either putative interactions between protists and bacteria, or that both types of microbes in the termite gut follow shared structuring principles. Taken together, our results add to the notion that bacterial communities are more variable over evolutionary time than protist communities and might react more flexibly to changes in host ecology.

  20. Food matters: how the microbiome and gut-brain interaction might impact the development and course of anorexia nervosa.

    Science.gov (United States)

    Herpertz-Dahlmann, Beate; Seitz, Jochen; Baines, John

    2017-09-01

    Anorexia nervosa (AN) is one of the most common chronic illnesses in female adolescents and exhibits the highest mortality risk of all psychiatric disorders. Evidence for the effectiveness of psychotherapeutic or psychopharmacological interventions is weak. Mounting data indicate that the gut microbiome interacts with the central nervous system and the immune system by neuroendocrine, neurotransmitter, neurotrophic and neuroinflammatory afferent and efferent pathways. There is growing evidence that the gut microbiota influences weight regulation and psychopathology, such as anxiety and depression. This article reviews how the gut-brain interaction may impact the development and course of AN. A "leaky gut", characterized by antigens traversing the intestinal wall, was demonstrated in an animal model of AN, and could underlie the low-grade inflammation and increased risk of autoimmune diseases found in AN. Moreover, starvation has a substantial impact on the gut microbiome, and diets used for re-nutrition based on animal products may support the growth of bacteria capable of triggering inflammation. As there is currently no empirically derived agreement on therapeutic re-nourishment in AN, this review discusses how consideration of gut-brain interactions may be important for treatment regarding the determination of target weight, rapidity of weight gain, refeeding methods and composition of the diet which might all be of importance to improve long-term outcome of one of the most chronic psychiatric disorders of adolescence.

  1. Novel Interactions between Gut Microbiome and Host Drug-Processing Genes Modify the Hepatic Metabolism of the Environmental Chemicals Polybrominated Diphenyl Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cindy Yanfei; Lee, Soowan; Cade, Sara; Kuo, Li-Jung; Schultz, Irvin R.; Bhatt, Deepak K.; Prasad, Bhagwat; Bammler, Theo K.; Cui, Julia Yue

    2017-09-01

    The gut microbiome is a novel frontier in xenobiotic metabolism. Polybrominated diphenyl ethers (PBDEs), especially BDE-47 and BDE-99, are among the most abundant and persistent environmental contaminants that produce a variety of toxicities. Little is known about how the gut microbiome affects the hepatic metabolism of PBDEs and the PBDE-mediated regulation of drug-processing genes (DPGs) in vivo. The goal of this study was to determine the role of gut microbiome in modulating the hepatic biotransformation of PBDEs. Nine-week-old male C57BL/6J conventional (CV) or germ free (GF) mice were treated with vehicle, BDE-47 or BDE-99 (100 μmol/kg) for four days. Following BDE-47 treatment, GF mice had higher level of 5-OH-BDE-47 but lower levels of 4 other metabolites in liver than CV mice; whereas following BDE-99 treatment, GF mice had lower levels of 4 minor metabolites in liver than CV mice. RNA- Seq demonstrated that the hepatic expression of DPGs was regulated by both PBDEs and enterotypes. Under basal condition, the lack of gut microbiome up-regulated the Cyp2c subfamily but down-regulated the Cyp3a subfamily. Following PBDE exposure, certain DPGs were differentially regulated by PBDEs in a gut microbiome-dependent manner. Interestingly, the lack of gut microbiome augmented PBDE-mediated up- regulation of many DPGs, such as Cyp1a2 and Cyp3a11 in mouse liver, which was further confirmed by targeted metabolomics. The lack of gut microbiome also augmented the Cyp3a enzyme activity in liver. In conclusion, our study has unveiled a novel interaction between gut microbiome and the hepatic biotransformation of PBDEs.

  2. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability.

    Science.gov (United States)

    Yassour, Moran; Vatanen, Tommi; Siljander, Heli; Hämäläinen, Anu-Maaria; Härkönen, Taina; Ryhänen, Samppa J; Franzosa, Eric A; Vlamakis, Hera; Huttenhower, Curtis; Gevers, Dirk; Lander, Eric S; Knip, Mikael; Xavier, Ramnik J

    2016-06-15

    The gut microbial community is dynamic during the first 3 years of life, before stabilizing to an adult-like state. However, little is known about the impact of environmental factors on the developing human gut microbiome. We report a longitudinal study of the gut microbiome based on DNA sequence analysis of monthly stool samples and clinical information from 39 children, about half of whom received multiple courses of antibiotics during the first 3 years of life. Whereas the gut microbiome of most children born by vaginal delivery was dominated by Bacteroides species, the four children born by cesarean section and about 20% of vaginally born children lacked Bacteroides in the first 6 to 18 months of life. Longitudinal sampling, coupled with whole-genome shotgun sequencing, allowed detection of strain-level variation as well as the abundance of antibiotic resistance genes. The microbiota of antibiotic-treated children was less diverse in terms of both bacterial species and strains, with some species often dominated by single strains. In addition, we observed short-term composition changes between consecutive samples from children treated with antibiotics. Antibiotic resistance genes carried on microbial chromosomes showed a peak in abundance after antibiotic treatment followed by a sharp decline, whereas some genes carried on mobile elements persisted longer after antibiotic therapy ended. Our results highlight the value of high-density longitudinal sampling studies with high-resolution strain profiling for studying the establishment and response to perturbation of the infant gut microbiome. Copyright © 2016, American Association for the Advancement of Science.

  3. The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures.

    Science.gov (United States)

    Michl, Stéphanie Céline; Ratten, Jenni-Marie; Beyer, Matt; Hasler, Mario; LaRoche, Julie; Schulz, Carsten

    2017-01-01

    Plant-derived protein sources are the most relevant substitutes for fishmeal in aquafeeds. Nevertheless, the effects of plant based diets on the intestinal microbiome especially of juvenile Rainbow trout (Oncorhynchus mykiss) are yet to be fully investigated. The present study demonstrates, based on 16S rDNA bacterial community profiling, that the intestinal microbiome of juvenile Rainbow trout is strongly affected by dietary plant protein inclusion levels. After first feeding of juveniles with either 0%, 50% or 97% of total dietary protein content derived from plants, statistically significant differences of the bacterial gut community for the three diet-types were detected, both at phylum and order level. The microbiome of juvenile fish consisted mainly of the phyla Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria, and thus fits the salmonid core microbiome suggested in previous studies. Dietary plant proteins significantly enhanced the relative abundance of the orders Lactobacillales, Bacillales and Pseudomonadales. Animal proteins in contrast significantly promoted Bacteroidales, Clostridiales, Vibrionales, Fusobacteriales and Alteromonadales. The overall alpha diversity significantly decreased with increasing plant protein inclusion levels and with age of experimental animals. In order to investigate permanent effects of the first feeding diet-type on the early development of the microbiome, a diet change was included in the study after 54 days, but no such effects could be detected. Instead, the microbiome of juvenile trout fry was highly dependent on the actual diet fed at the time of sampling.

  4. Butyrate, Neuroepigenetics and the Gut Microbiome: Can a High Fiber Diet Improve Brain Health?

    Science.gov (United States)

    Bourassa, Megan W.; Alim, Ishraq; Bultman, Scott J.; Ratan, Rajiv R.

    2016-01-01

    As interest in the gut microbiome has grown in recent years, attention has turned to the impact of our diet on our brain. The benefits of a high fiber diet in the colon have been well documented in epidemiological studies, but its potential impact on the brain has largely been understudied. Here, we will review evidence that butyrate, a short-chain fatty acid (SCFA) produced by bacterial fermentation of fiber in the colon, can improve brain health. Butyrate has been extensively studied as a histone deacetylase (HDAC) inhibitor but also functions as a ligand for a subset of G protein-coupled receptors and as an energy metabolite. These diverse modes of action make it well suited for solving the wide array of imbalances frequently encountered in neurological disorders. In this review, we will integrate evidence from the disparate fields of gastroenterology and neuroscience to hypothesize that the metabolism of a high fiber diet in the gut can alter gene expression in the brain to prevent neurodegeneration and promote regeneration. PMID:26868600

  5. Succession in the gut microbiome following antibiotic and antibody therapies for Clostridium difficile.

    Science.gov (United States)

    Peterfreund, Gregory L; Vandivier, Lee E; Sinha, Rohini; Marozsan, Andre J; Olson, William C; Zhu, Jun; Bushman, Frederic D

    2012-01-01

    Antibiotic disruption of the intestinal microbiota may cause susceptibility to pathogens that is resolved by progressive bacterial outgrowth and colonization. Succession is central to ecological theory but not widely documented in studies of the vertebrate microbiome. Here, we study succession in the hamster gut after treatment with antibiotics and exposure to Clostridium difficile. C. difficile infection is typically lethal in hamsters, but protection can be conferred with neutralizing antibodies against the A and B toxins. We compare treatment with neutralizing monoclonal antibodies (mAb) to treatment with vancomycin, which prolongs the lives of animals but ultimately fails to protect them from death. We carried out longitudinal deep sequencing analysis and found distinctive waves of succession associated with each form of treatment. Clindamycin sensitization prior to infection was associated with the temporary suppression of the previously dominant Bacteroidales and the fungus Saccinobaculus in favor of Proteobacteria. In mAb-treated animals, C. difficile proliferated before joining Proteobacteria in giving way to re-expanding Bacteroidales and the fungus Wickerhamomyces. However, the Bacteroidales lineages returning by day 7 were different from those that were present initially, and they persisted for the duration of the experiment. Animals treated with vancomycin showed a different set of late-stage lineages that were dominated by Proteobacteria as well as increased disparity between the tissue-associated and luminal cecal communities. The control animals showed no change in their gut microbiota. These data thus suggest different patterns of ecological succession following antibiotic treatment and C. difficile infection.

  6. Succession in the gut microbiome following antibiotic and antibody therapies for Clostridium difficile.

    Directory of Open Access Journals (Sweden)

    Gregory L Peterfreund

    Full Text Available Antibiotic disruption of the intestinal microbiota may cause susceptibility to pathogens that is resolved by progressive bacterial outgrowth and colonization. Succession is central to ecological theory but not widely documented in studies of the vertebrate microbiome. Here, we study succession in the hamster gut after treatment with antibiotics and exposure to Clostridium difficile. C. difficile infection is typically lethal in hamsters, but protection can be conferred with neutralizing antibodies against the A and B toxins. We compare treatment with neutralizing monoclonal antibodies (mAb to treatment with vancomycin, which prolongs the lives of animals but ultimately fails to protect them from death. We carried out longitudinal deep sequencing analysis and found distinctive waves of succession associated with each form of treatment. Clindamycin sensitization prior to infection was associated with the temporary suppression of the previously dominant Bacteroidales and the fungus Saccinobaculus in favor of Proteobacteria. In mAb-treated animals, C. difficile proliferated before joining Proteobacteria in giving way to re-expanding Bacteroidales and the fungus Wickerhamomyces. However, the Bacteroidales lineages returning by day 7 were different from those that were present initially, and they persisted for the duration of the experiment. Animals treated with vancomycin showed a different set of late-stage lineages that were dominated by Proteobacteria as well as increased disparity between the tissue-associated and luminal cecal communities. The control animals showed no change in their gut microbiota. These data thus suggest different patterns of ecological succession following antibiotic treatment and C. difficile infection.

  7. Comparison of antimicrobial resistant genes in chicken gut microbiome grown on organic and conventional diet

    Directory of Open Access Journals (Sweden)

    Narasimha V. Hegde

    2016-12-01

    Full Text Available Antibiotics are widely used in chicken production for therapeutic purposes, disease prevention and growth promotion, and this may select for drug resistant microorganisms known to spread to humans through consumption of contaminated food. Raising chickens on an organic feed regimen, without the use of antibiotics, is increasingly popular with the consumers. In order to determine the effects of diet regimen on antibiotic resistant genes in the gut microbiome, we analyzed the phylotypes and identified the antimicrobial resistant genes in chicken, grown under conventional and organic dietary regimens. Phylotypes were analyzed from DNA extracted from fecal samples from chickens grown under these dietary conditions. While gut microbiota of chicken raised in both conventional and organic diet exhibited the presence of DNA from members of Proteobacteria and Bacteroidetes, organic diet favored the growth of members of Fusobacteria. Antimicrobial resistance genes were identified from metagenomic libraries following cloning and sequencing of DNA fragments from fecal samples and selecting for the resistant clones (n=340 on media containing different concentrations of eight antibiotics. The antimicrobial resistant genes exhibited diversity in their host distribution among the microbial population and expressed more in samples from chicken grown on a conventional diet at higher concentrations of certain antimicrobials than samples from chicken grown on organic diet. Further studies will elucidate if this phenomena is widespread and whether the antimicrobial resistance is indeed modulated by diet. This may potentially assist in defining strategies for intervention to reduce the prevalence and dissemination of antibiotic resistance genes in the production environment.

  8. Motivations of participants in the citizen science of microbiomics: data from the British Gut Project.

    Science.gov (United States)

    Del Savio, Lorenzo; Prainsack, Barbara; Buyx, Alena

    2017-08-01

    The establishment of databases for research in human microbiomics is dependent on the recruitment of sufficient numbers and diversity of participants. Factors that support or impede participant recruitment in studies of this type have not yet been studied. We report the results of a survey aimed at establishing the motivations of participants in the British Gut Project, a research project that relies on volunteers to provide samples and to help fund the project. The two most frequently reported motivations for participation were altruism and solidarity. Low education levels appeared to be a recruitment obstacle. More than half of our 151 respondents said they would participate in further citizen-science projects; 38% said they would not participate in a similar project if it was for-profit or in a project that did not release data sets in repositories accessible to scientists (30%). The desire to take part in research was reported as a key motivation for participation in the British Gut Project (BGP). Such prosocial motivations can be mobilized for the establishment of large data sets for research.Genet Med advance online publication 26 January 2017.

  9. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    Science.gov (United States)

    Tajkarimi, Mehrdad; Wexler, Hannah M.

    2017-01-01

    Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT) of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation. Results: Clustered regularly interspaced short palindromic repeats (CRISPR) elements in all strains of B. fragilis (n = 109) with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR) with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes. Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B. fragilis strains

  10. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Mehrdad Tajkarimi

    2017-11-01

    Full Text Available Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation.Results: Clustered regularly interspaced short palindromic repeats (CRISPR elements in all strains of B. fragilis (n = 109 with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes.Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B

  11. The Gut-Brain Axis, Including the Microbiome, Leaky Gut and Bacterial Translocation: Mechanisms and Pathophysiological Role in Alzheimer's Disease.

    Science.gov (United States)

    Köhler, Cristiano A; Maes, Michael; Slyepchenko, Anastasiya; Berk, Michael; Solmi, Marco; Lanctôt, Krista L; Carvalho, André F

    2016-01-01

    Alzheimer's disease (AD), the most common form of dementia, is a progressive disorder manifested by gradual memory loss and subsequent impairment in mental and behavioral functions. Though the primary risk factor for AD is advancing age, other factors such as diabetes mellitus, hyperlipidemia, obesity, vascular factors and depression play a role in its pathogenesis. The human gastrointestinal tract has a diverse commensal microbial population, which has bidirectional interactions with the human host that are symbiotic in health, and in addition to nutrition, digestion, plays major roles in inflammation and immunity. The most prevalent hypothesis for AD is the amyloid hypothesis, which states that changes in the proteolytic processing of the amyloid precursor protein leads to the accumulation of the amyloid beta (Aβ) peptide. Aβ then triggers an immune response that drives neuroinflammation and neurodegeneration in AD. The specific role of gut microbiota in modulating neuro-immune functions well beyond the gastrointestinal tract may constitute an important influence on the process of neurodegeneration. We first review the main mechanisms involved in AD physiopathology. Then, we review the alterations in gut microbiota and gut-brain axis that might be relevant to mediate or otherwise affect AD pathogenesis, especially those associated with aging. We finally summarize possible mechanisms that could mediate the involvement of gut-brain axis in AD physiopathology, and propose an integrative model.

  12. The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: a review.

    Science.gov (United States)

    Paganini, Daniela; Zimmermann, Michael B

    2017-12-01

    In infants and young children in Sub-Saharan Africa, iron-deficiency anemia (IDA) is common, and many complementary foods are low in bioavailable iron. In-home fortification of complementary foods using iron-containing micronutrient powders (MNPs) and oral iron supplementation are both effective strategies to increase iron intakes and reduce IDA at this age. However, these interventions produce large increases in colonic iron because the absorption of their high iron dose (≥12.5 mg) is typically iron supplements and iron fortification with MNPs on the gut microbiome and diarrhea. Iron-containing MNPs and iron supplements can modestly increase diarrhea risk, and in vitro and in vivo studies have suggested that this occurs because increases in colonic iron adversely affect the gut microbiome in that they decrease abundances of beneficial barrier commensal gut bacteria (e.g., bifidobacteria and lactobacilli) and increase the abundance of enterobacteria including entropathogenic Escherichia coli These changes are associated with increased gut inflammation. Therefore, safer formulations of iron-containing supplements and MNPs are needed. To improve MNP safety, the iron dose of these formulations should be reduced while maximizing absorption to retain efficacy. Also, the addition of prebiotics to MNPs is a promising approach to mitigate the adverse effects of iron on the infant gut. © 2017 American Society for Nutrition.

  13. Evaluating the accuracy of amplicon-based microbiome computational pipelines on simulated human gut microbial communities.

    Science.gov (United States)

    Golob, Jonathan L; Margolis, Elisa; Hoffman, Noah G; Fredricks, David N

    2017-05-30

    Microbiome studies commonly use 16S rRNA gene amplicon sequencing to characterize microbial communities. Errors introduced at multiple steps in this process can affect the interpretation of the data. Here we evaluate the accuracy of operational taxonomic unit (OTU) generation, taxonomic classification, alpha- and beta-diversity measures for different settings in QIIME, MOTHUR and a pplacer-based classification pipeline, using a novel software package: DECARD. In-silico we generated 100 synthetic bacterial communities approximating human stool microbiomes to be used as a gold-standard for evaluating the colligative performance of microbiome analysis software. Our synthetic data closely matched the composition and complexity of actual healthy human stool microbiomes. Genus-level taxonomic classification was correctly done for only 50.4-74.8% of the source organisms. Miscall rates varied from 11.9 to 23.5%. Species-level classification was less successful, (6.9-18.9% correct); miscall rates were comparable to those of genus-level targets (12.5-26.2%). The degree of miscall varied by clade of organism, pipeline and specific settings used. OTU generation accuracy varied by strategy (closed, de novo or subsampling), reference database, algorithm and software implementation. Shannon diversity estimation accuracy correlated generally with OTU-generation accuracy. Beta-diversity estimates with Double Principle Coordinate Analysis (DPCoA) were more robust against errors introduced in processing than Weighted UniFrac. The settings suggested in the tutorials were among the worst performing in all outcomes tested. Even when using the same classification pipeline, the specific OTU-generation strategy, reference database and downstream analysis methods selection can have a dramatic effect on the accuracy of taxonomic classification, and alpha- and beta-diversity estimation. Even minor changes in settings adversely affected the accuracy of the results, bringing them far from the

  14. Profound perturbation induced by triclosan exposure in mouse gut microbiome: a less resilient microbial community with elevated antibiotic and metal resistomes.

    Science.gov (United States)

    Gao, Bei; Tu, Pengcheng; Bian, Xiaoming; Chi, Liang; Ru, Hongyu; Lu, Kun

    2017-06-12

    Environmental chemical-induced perturbations of gut microbiome are associated with a series of adverse health outcomes. The effects of triclosan on human health have been controversial in recent years. The purpose of this study is to investigate the functional impact of triclosan on the mouse gut microbiome and the link between triclosan exposure and resistomes in gut bacteria. We combined 16S rRNA gene sequencing and shotgun metagenomics sequencing to examine the compositional and functional impact of triclosan exposure on the gut microbiota of C57BL/6 mice. 16S rRNA sequencing results revealed that 13-week triclosan exposure in drinking water induced significant perturbations in mouse gut bacterial assemblages with distinct trajectories compared to controls. Metagenomics sequencing results indicated a remarkable enrichment of gut bacterial genes related to triclosan resistance, stress response, antibiotic resistance and heavy metal resistance. Triclosan exposure has a profound impact on the mouse gut microbiome by inducing perturbations at both compositional and functional levels. To our best knowledge, this is the first evidence regarding the functional alterations of gut microbiome induced by triclosan exposure, which may provide novel mechanistic insights into triclosan exposure and associated diseases.

  15. Alternative Growth Promoters Modulate Broiler Gut Microbiome and Enhance Body Weight Gain

    Directory of Open Access Journals (Sweden)

    Serajus Salaheen

    2017-10-01

    Full Text Available Antibiotic growth promoters (AGPs are frequently used to enhance weight-gain in poultry production. However, there has been increasing concern over the impact of AGP on the emergence of antibiotic resistance in zoonotic bacterial pathogens in the microbial community of the poultry gut. In this study, we adopted mass-spectrophotometric, phylogenetic, and shotgun-metagenomic approaches to evaluate bioactive phenolic extracts (BPE from blueberry (Vaccinium corymbosum and blackberry (Rubus fruticosus pomaces as AGP alternatives in broilers. We conducted two trials with 100 Cobb-500 broiler chicks (in each trial in four equal groups that were provided water with no supplementation, supplemented with AGP (tylosin, neomycin sulfate, bacitracin, erythromycin, and oxytetracycline, or supplemented with 0.1 g Gallic acid equivalent (GAE/L or 1.0 g GAE/L (during the last 72 h before euthanasia of BPE for 6 weeks. When compared with the control group (water only, the chickens supplemented with AGP and 0.1 g GAE/L of BPE gained 9.5 and 5.8% more body weight, respectively. The microbiomes of both the AGP- and BPE-treated chickens had higher Firmicutes to Bacteroidetes ratios. AGP supplementation appeared to be associated with higher relative abundance of bacteriophages and unique cecal resistomes compared with BPE supplementation or control. Functional characterization of cecal microbiomes revealed significant animal-to-animal variation in the relative abundance of genes involved in energy and carbohydrate metabolism. These findings established a baseline upon which mechanisms of plant-based performance enhancers in regulation of animal growth can be investigated. In addition, the data will aid in designing alternate strategies to improve animal growth performance and consequently production.

  16. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease.

    Science.gov (United States)

    Greenblum, Sharon; Turnbaugh, Peter J; Borenstein, Elhanan

    2012-01-10

    The human microbiome plays a key role in a wide range of host-related processes and has a profound effect on human health. Comparative analyses of the human microbiome have revealed substantial variation in species and gene composition associated with a variety of disease states but may fall short of providing a comprehensive understanding of the impact of this variation on the community and on the host. Here, we introduce a metagenomic systems biology computational framework, integrating metagenomic data with an in silico systems-level analysis of metabolic networks. Focusing on the gut microbiome, we analyze fecal metagenomic data from 124 unrelated individuals, as well as six monozygotic twin pairs and their mothers, and generate community-level metabolic networks of the microbiome. Placing variations in gene abundance in the context of these networks, we identify both gene-level and network-level topological differences associated with obesity and inflammatory bowel disease (IBD). We show that genes associated with either of these host states tend to be located at the periphery of the metabolic network and are enriched for topologically derived metabolic "inputs." These findings may indicate that lean and obese microbiomes differ primarily in their interface with the host and in the way they interact with host metabolism. We further demonstrate that obese microbiomes are less modular, a hallmark of adaptation to low-diversity environments. We additionally link these topological variations to community species composition. The system-level approach presented here lays the foundation for a unique framework for studying the human microbiome, its organization, and its impact on human health.

  17. Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation.

    Directory of Open Access Journals (Sweden)

    Firas Alhasson

    Full Text Available Many of the symptoms of Gulf War Illness (GWI that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4 activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1β and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.

  18. The In-Feed Antibiotic Carbadox Induces Phage Gene Transcription in the Swine Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Timothy A. Johnson

    2017-08-01

    Full Text Available Carbadox is a quinoxaline-di-N-oxide antibiotic fed to over 40% of young pigs in the United States that has been shown to induce phage DNA transduction in vitro; however, the effects of carbadox on swine microbiome functions are poorly understood. We investigated the in vivo longitudinal effects of carbadox on swine gut microbial gene expression (fecal metatranscriptome and phage population dynamics (fecal dsDNA viromes. Microbial metagenome, transcriptome, and virome sequences were annotated for taxonomic inference and gene function by using FIGfam (isofunctional homolog sequences and SEED subsystems databases. When the beta diversities of microbial FIGfam annotations were compared, the control and carbadox communities were distinct 2 days after carbadox introduction. This effect was driven by carbadox-associated lower expression of FIGfams (n = 66 related to microbial respiration, carbohydrate utilization, and RNA metabolism (q < 0.1, suggesting bacteriostatic or bactericidal effects within certain populations. Interestingly, carbadox treatment caused greater expression of FIGfams related to all stages of the phage lytic cycle 2 days following the introduction of carbadox (q ≤0.07, suggesting the carbadox-mediated induction of prophages and phage DNA recombination. These effects were diminished by 7 days of continuous carbadox in the feed, suggesting an acute impact. Additionally, the viromes included a few genes that encoded resistance to tetracycline, aminoglycoside, and beta-lactam antibiotics but these did not change in frequency over time or with treatment. The results show decreased bacterial growth and metabolism, prophage induction, and potential transduction of bacterial fitness genes in swine gut bacterial communities as a result of carbadox administration.

  19. The In-Feed Antibiotic Carbadox Induces Phage Gene Transcription in the Swine Gut Microbiome

    Science.gov (United States)

    Johnson, Timothy A.; Severin, Andrew J.; Bayles, Darrell O.; Nasko, Daniel J.; Wommack, K. Eric; Howe, Adina

    2017-01-01

    ABSTRACT Carbadox is a quinoxaline-di-N-oxide antibiotic fed to over 40% of young pigs in the United States that has been shown to induce phage DNA transduction in vitro; however, the effects of carbadox on swine microbiome functions are poorly understood. We investigated the in vivo longitudinal effects of carbadox on swine gut microbial gene expression (fecal metatranscriptome) and phage population dynamics (fecal dsDNA viromes). Microbial metagenome, transcriptome, and virome sequences were annotated for taxonomic inference and gene function by using FIGfam (isofunctional homolog sequences) and SEED subsystems databases. When the beta diversities of microbial FIGfam annotations were compared, the control and carbadox communities were distinct 2 days after carbadox introduction. This effect was driven by carbadox-associated lower expression of FIGfams (n = 66) related to microbial respiration, carbohydrate utilization, and RNA metabolism (q < 0.1), suggesting bacteriostatic or bactericidal effects within certain populations. Interestingly, carbadox treatment caused greater expression of FIGfams related to all stages of the phage lytic cycle 2 days following the introduction of carbadox (q ≤0.07), suggesting the carbadox-mediated induction of prophages and phage DNA recombination. These effects were diminished by 7 days of continuous carbadox in the feed, suggesting an acute impact. Additionally, the viromes included a few genes that encoded resistance to tetracycline, aminoglycoside, and beta-lactam antibiotics but these did not change in frequency over time or with treatment. The results show decreased bacterial growth and metabolism, prophage induction, and potential transduction of bacterial fitness genes in swine gut bacterial communities as a result of carbadox administration. PMID:28790203

  20. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model

    Science.gov (United States)

    Martin, Francois-Pierre J; Wang, Yulan; Sprenger, Norbert; Yap, Ivan K S; Lundstedt, Torbjörn; Lek, Per; Rezzi, Serge; Ramadan, Ziad; van Bladeren, Peter; Fay, Laurent B; Kochhar, Sunil; Lindon, John C; Holmes, Elaine; Nicholson, Jeremy K

    2008-01-01

    The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ-free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short-chain fatty acids (SCFAs) in relation to microbial population modulation generated a novel top-down systems biology view of the host response to probiotic intervention. Probiotic exposure exerted microbiome modification and resulted in altered hepatic lipid metabolism coupled with lowered plasma lipoprotein levels and apparent stimulated glycolysis. Probiotic treatments also altered a diverse range of pathways outcomes, including amino-acid metabolism, methylamines and SCFAs. The novel application of hierarchical-principal component analysis allowed visualization of multicompartmental transgenomic metabolic interactions that could also be resolved at the compartment and pathway level. These integrated system investigations demonstrate the potential of metabolic profiling as a top-down systems biology driver for investigating the mechanistic basis of probiotic action and the therapeutic surveillance of the gut microbial activity related to dietary supplementation of probiotics. PMID:18197175

  1. Genomic analysis of the human gut microbiome suggests novel enzymes involved in quinone biosynthesis

    Directory of Open Access Journals (Sweden)

    Dmitry A Ravcheev

    2016-02-01

    Full Text Available Ubiquinone and menaquinone are membrane lipid-soluble carriers of electrons that are essential for cellular respiration. Eukaryotic cells can synthesize ubiquinone but not menaquinone, whereas prokaryotes can synthesize both quinones. So far, most of the human gut microbiome (HGM studies have been based on metagenomic analysis. Here, we applied an analysis of individual HGM genomes to the identification of ubiquinone and menaquinone biosynthetic pathways. In our opinion, the shift from metagenomics to analysis of individual genomes is a pivotal milestone in investigation of bacterial communities, including the HGM. The key results of this study are as follows. (i The distribution of the canonical pathways in the HGM genomes was consistent with previous reports and with the distribution of the quinone-dependent reductases for electron acceptors. (ii The comparative genomics analysis identified four alternative forms of the previously known enzymes for quinone biosynthesis. (iii Genes for the previously unknown part of the futalosine pathway were identified, and the corresponding biochemical reactions were proposed. We discuss the remaining gaps in the menaquinone and ubiquinone pathways in some of the microbes, which indicate the existence of further alternate genes or routes. Together, these findings provide further insight into the biosynthesis of quinones in bacteria and the physiology of the HGM.

  2. An abundance of Epsilonproteobacteria revealed in the gut microbiome of the laboratory cultured sea urchin, Lytechinus variegatus

    Directory of Open Access Journals (Sweden)

    Joseph Antoine Hakim

    2015-10-01

    Full Text Available In this study, we have examined the bacterial community composition in the laboratory cultured sea urchin Lytechinus variegatus gut microbiome and its culture environment using NextGen amplicon sequencing of the V4 segment of the 16S rRNA gene, and downstream bioinformatics tools. Overall, the gut and tank water was dominated by Proteobacteria, whereas the feed consisted of a co-occurrence of Proteobacteria and Firmicutes at a high abundance. The gut tissue represented Epsilonproteobacteria as dominant, with order Campylobacterales at the highest relative abundance (>95%. However, the pharynx tissue was dominated by class Alphaproteobacteria. The gut digesta and egested fecal pellets had a high abundance of class Gammaproteobacteria, from which Vibrio was found to be the primary genus, and Epsilonproteobacteria, with genus Arcobacter occurring at a moderate level. At the class level, the tank water was dominated by Gammaproteobacteria, and the feed by Alphaproteobacteria. Multi-Dimensional Scaling analysis showed that the microbial community of the gut tissue clustered together, as did the pharynx tissue to the feed. The gut digesta and egested fecal pellets showed a similar relationship to the tank water. Further analysis of Campylobacterales at a lower taxonomic level using the oligotyping method revealed 37 unique types across the ten samples, where Oligotype 1 was primarily represented in the gut tissue. BLAST analysis identified Oligotype 1 to be Arcobacter sp., Sulfuricurvum sp., and Arcobacter bivalviorum at an identity level >90%. This study showed that although distinct microbial communities were evident across multiple components of the sea urchin gut ecosystem, there is a noticeable correlation between the overall microbial communities of the gut with the sea urchin L. variegatus culture environment.

  3. An abundance of Epsilonproteobacteria revealed in the gut microbiome of the laboratory cultured sea urchin, Lytechinus variegatus

    Science.gov (United States)

    Hakim, Joseph A.; Koo, Hyunmin; Dennis, Lacey N.; Kumar, Ranjit; Ptacek, Travis; Morrow, Casey D.; Lefkowitz, Elliot J.; Powell, Mickie L.; Bej, Asim K.; Watts, Stephen A.

    2015-01-01

    In this study, we have examined the bacterial community composition of the laboratory cultured sea urchin Lytechinus variegatus gut microbiome and its culture environment using NextGen amplicon sequencing of the V4 segment of the 16S rRNA gene, and downstream bioinformatics tools. Overall, the gut and tank water was dominated by Proteobacteria, whereas the feed consisted of a co-occurrence of Proteobacteria and Firmicutes at a high abundance. The gut tissue represented Epsilonproteobacteria as dominant, with order Campylobacterales at the highest relative abundance (>95%). However, the pharynx tissue was dominated by class Alphaproteobacteria. The gut digesta and egested fecal pellets had a high abundance of class Gammaproteobacteria, from which Vibrio was found to be the primary genus, and Epsilonproteobacteria, with genus Arcobacter occurring at a moderate level. At the class level, the tank water was dominated by Gammaproteobacteria, and the feed by Alphaproteobacteria. Multi-Dimensional Scaling analysis showed that the microbial community of the gut tissue clustered together, as did the pharynx tissue to the feed. The gut digesta and egested fecal pellets showed a similarity relationship to the tank water. Further analysis of Campylobacterales at a lower taxonomic level using the oligotyping method revealed 37 unique types across the 10 samples, where Oligotype 1 was primarily represented in the gut tissue. BLAST analysis identified Oligotype 1 to be Arcobacter sp., Sulfuricurvum sp., and Arcobacter bivalviorum at an identity level >90%. This study showed that although distinct microbial communities are evident across multiple components of the sea urchin gut ecosystem, there is a noticeable correlation between the overall microbial communities of the gut with the sea urchin L. variegatus culture environment. PMID:26528245

  4. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins.

    Science.gov (United States)

    McNulty, Nathan P; Yatsunenko, Tanya; Hsiao, Ansel; Faith, Jeremiah J; Muegge, Brian D; Goodman, Andrew L; Henrissat, Bernard; Oozeer, Raish; Cools-Portier, Stéphanie; Gobert, Guillaume; Chervaux, Christian; Knights, Dan; Lozupone, Catherine A; Knight, Rob; Duncan, Alexis E; Bain, James R; Muehlbauer, Michael J; Newgard, Christopher B; Heath, Andrew C; Gordon, Jeffrey I

    2011-10-26

    Understanding how the human gut microbiota and host are affected by probiotic bacterial strains requires carefully controlled studies in humans and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks before, 7 weeks during, and 4 weeks after consumption of a commercially available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied before and after gavage with all five sequenced FMP strains. No significant changes in bacterial species composition or in the proportional representation of genes encoding known enzymes were observed in the feces of humans consuming the FMP. Only minimal changes in microbiota configuration were noted in mice after single or repeated gavage with the FMP consortium. However, RNA-Seq analysis of fecal samples and follow-up mass spectrometry of urinary metabolites disclosed that introducing the FMP strains into mice results in significant changes in expression of microbiome-encoded enzymes involved in numerous metabolic pathways, most prominently those related to carbohydrate metabolism. B. animalis subsp. lactis, the dominant persistent member of the FMP consortium in gnotobiotic mice, up-regulates a locus in vivo that is involved in the catabolism of xylooligosaccharides, a class of glycans widely distributed in fruits, vegetables, and other foods, underscoring the importance of these sugars to this bacterial species. The human fecal metatranscriptome exhibited significant changes

  5. The role of microbiome in central nervous system disorders

    Science.gov (United States)

    Wang, Yan; Kasper, Lloyd H.

    2014-01-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders. PMID:24370461

  6. Comparative (metagenomic analysis and ecological profiling of human gut-specific bacteriophage φB124-14.

    Directory of Open Access Journals (Sweden)

    Lesley A Ogilvie

    Full Text Available Bacteriophage associated with the human gut microbiome are likely to have an important impact on community structure and function, and provide a wealth of biotechnological opportunities. Despite this, knowledge of the ecology and composition of bacteriophage in the gut bacterial community remains poor, with few well characterized gut-associated phage genomes currently available. Here we describe the identification and in-depth (metagenomic, proteomic, and ecological analysis of a human gut-specific bacteriophage (designated φB124-14. In doing so we illuminate a fraction of the biological dark matter extant in this ecosystem and its surrounding eco-genomic landscape, identifying a novel and uncharted bacteriophage gene-space in this community. φB124-14 infects only a subset of closely related gut-associated Bacteroides fragilis strains, and the circular genome encodes functions previously found to be rare in viral genomes and human gut viral metagenome sequences, including those which potentially confer advantages upon phage and/or host bacteria. Comparative genomic analyses revealed φB124-14 is most closely related to φB40-8, the only other publically available Bacteroides sp. phage genome, whilst comparative metagenomic analysis of both phage failed to identify any homologous sequences in 136 non-human gut metagenomic datasets searched, supporting the human gut-specific nature of this phage. Moreover, a potential geographic variation in the carriage of these and related phage was revealed by analysis of their distribution and prevalence within 151 human gut microbiomes and viromes from Europe, America and Japan. Finally, ecological profiling of φB124-14 and φB40-8, using both gene-centric alignment-driven phylogenetic analyses, as well as alignment-free gene-independent approaches was undertaken. This not only verified the human gut-specific nature of both phage, but also indicated that these phage populate a distinct and unexplored

  7. Geriatric Respondents and Non-Respondents To Probiotic Intervention Can Be Differentiated By Inherent Gut Microbiome Composition

    Directory of Open Access Journals (Sweden)

    Suja eSenan

    2015-09-01

    Full Text Available Scope: Probiotic interventions are known to have been shown to influence the composition of the intestinal microbiota in geriatrics. The growing concern is the apparent variation in response to identical strain dosage among human volunteers. One factor that governs this variation is the host gut microbiome. In this study, we attempted to define a core gut metagenome which could act as a predisposition signature marker of inherent bacterial community that can help predict the success of a probiotic intervention. Methods and Results: To characterize the geriatric gut microbiome we designed primers targeting the 16S rRNA hypervariable region V2-V3 followed by semiconductor sequencing using Ion Torrent PGM. Among respondents and non- respondents the chief genera of phylum Firmicutes that showed significant differences are Lactobacillus, Clostridium, Eubacterium, and Blautia (q< 0.002 while in the genera of phylum Proteobacteria included Shigella, Escherichia, Burkholderia and Camphylobacter (q <0.002. Conclusion: We have identified potential microbial biomarkers and taxonomic patterns that correlate with a positive response to probiotic intervention in geriatric volunteers. Future work with larger cohorts of geriatrics with diverse dietary influences could reveal the potential of the signature patterns of microbiota for personalized nutrition.

  8. Gut microbiome composition is associated with cardiac disease in zoo-housed western lowland gorillas (Gorilla gorilla gorilla).

    Science.gov (United States)

    Krynak, Katherine L; Burke, David J; Martin, Ryan A; Dennis, Patricia M

    2017-08-15

    Cardiac disease is a leading cause of mortality in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). The gut microbiome is associated with cardiac disease in humans and similarly the gut microbiome may be associated with cardiac diseases in close relatives of humans, such as gorillas. We assessed the relationship between cardiac disease and gut bacterial composition in eight zoo-housed male western lowland gorillas (N = 4 with and N = 4 without cardiac disease) utilizing 16S rRNA gene analysis on the Illumina MiSeq sequencing platform. We found bacterial composition differences between gorillas with and without cardiac disease. Bacterial operational taxonomic units from phyla Bacteroidetes, Spirochaetes, Proteobacteria and Firmicutes were significant indicators of cardiac disease. Our results suggest that further investigations between diet and cardiac disease could improve the management and health of zoo-housed populations of this endangered species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Changes in the Functional Potential of the Gut Microbiome Following Probiotic Supplementation during Helicobacter Pylori Treatment.

    Science.gov (United States)

    Oh, Bumjo; Kim, Ji Won; Kim, Bong-Soo

    2016-12-01

    Probiotic supplementation is utilized to alleviate the side effects associated with antibiotic therapy for Helicobacter pylori infection. Several studies have described the effects of administration of probiotics on the gut microbiota during antibiotic therapy. However, most of these studies have focused on specific bacteria, thereby providing limited information on the functional roles of the altered microbiota. Therefore, we examined the impact of probiotic supplementation on the structure and functional dynamics of the gut microbiota during H. pylori eradication, using whole-metagenomic sequence analysis. Subjects were divided into two groups: the antibiotics group, which received only antibiotics, and the probiotics group, which received antibiotics with probiotic supplementation. The structural and functional profiles of gut microbiota was analyzed using metagenomic DNA extracted from the feces during treatment by Illumina MiSeq system. The overall alterations in microbiota, as revealed by whole metagenome sequencing, were similar with results from our previous 16S rRNA gene-based analysis. The proportional shift in functional gene families was greater in the antibiotics group than in the probiotics group. In particular, the proportion of genes related to selenocompound metabolism was reduced in the probiotics group, whereas genes associated with the metabolism of nucleotide sugars were increased. The functional alterations of gut microbiota may link to the reduction in intestinal irritation and maintenance of bacterial diversity observed following probiotic supplementation with antibiotic therapy. The potential beneficial roles of altered gut microbiota following probiotic supplementation are expected a reduction in side effects such as intestinal irritation and antibiotics resistance. © 2016 John Wiley & Sons Ltd.

  10. Lactobacillus rhamnosus GG probiotic enteric regimen does not appreciably alter the gut microbiome or provide protection against GVHD after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Gorshein, Elan; Wei, Catherine; Ambrosy, Susan; Budney, Shanna; Vivas, Juliana; Shenkerman, Angelika; Manago, Jacqueline; McGrath, Mary Kate; Tyno, Anne; Lin, Yong; Patel, Vimal; Gharibo, Mecide; Schaar, Dale; Jenq, Robert R; Khiabanian, Hossein; Strair, Roger

    2017-05-01

    Graft-versus-host disease (GVHD) is a major adverse effect associated with allogeneic stem cell transplant. Previous studies in mice indicated that administration of the probiotic Lactobacillus rhamnosus GG can reduce the incidence of GVHD after hematopoietic stem cell transplant. Here we report results from the first randomized probiotic enteric regimen trial in which allogenic hematopoietic stem cell patients were supplemented with Lactobacillus rhamnosus GG. Gut microbiome analysis confirmed a previously reported gut microbiome association with GVHD. However, the clinical trial was terminated when interim analysis did not detect an appreciable probiotic-related change in the gut microbiome or incidence of GVHD. Additional studies are necessary to determine whether probiotics can alter the incidence of GVHD after allogeneic stem cell transplant. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Evolutionary Biology Needs Wild Microbiomes.

    Science.gov (United States)

    Hird, Sarah M

    2017-01-01

    The microbiome is a vital component to the evolution of a host and much of what we know about the microbiome derives from studies on humans and captive animals. But captivity alters the microbiome and mammals have unique biological adaptations that affect their microbiomes (e.g., milk). Birds represent over 30% of known tetrapod diversity and possess their own suite of adaptations relevant to the microbiome. In a previous study, we showed that 59 species of birds displayed immense variation in their microbiomes and host (bird) taxonomy and ecology were most correlated with the gut microbiome. In this Frontiers Focused Review, I put those results in a broader context by discussing how collecting and analyzing wild microbiomes contributes to the main goals of evolutionary biology and the specific ways that birds are unique microbial hosts. Finally, I outline some of the methodological considerations for adding microbiome sampling to the research of wild animals and urge researchers to do so. To truly understand the evolution of a host, we need to understand the millions of microorganisms that inhabit it as well: evolutionary biology needs wild microbiomes.

  12. Systems Modeling of Interactions between Mucosal Immunity and the Gut Microbiome during Clostridium difficile Infection

    Science.gov (United States)

    Leber, Andrew; Viladomiu, Monica; Hontecillas, Raquel; Abedi, Vida; Philipson, Casandra; Hoops, Stefan; Howard, Brad; Bassaganya-Riera, Josep

    2015-01-01

    Clostridium difficile infections are associated with the use of broad-spectrum antibiotics and result in an exuberant inflammatory response, leading to nosocomial diarrhea, colitis and even death. To better understand the dynamics of mucosal immunity during C. difficile infection from initiation through expansion to resolution, we built a computational model of the mucosal immune response to the bacterium. The model was calibrated using data from a mouse model of C. difficile infection. The model demonstrates a crucial role of T helper 17 (Th17) effector responses in the colonic lamina propria and luminal commensal bacteria populations in the clearance of C. difficile and colonic pathology, whereas regulatory T (Treg) cells responses are associated with the recovery phase. In addition, the production of anti-microbial peptides by inflamed epithelial cells and activated neutrophils in response to C. difficile infection inhibit the re-growth of beneficial commensal bacterial species. Computational simulations suggest that the removal of neutrophil and epithelial cell derived anti-microbial inhibitions, separately and together, on commensal bacterial regrowth promote recovery and minimize colonic inflammatory pathology. Simulation results predict a decrease in colonic inflammatory markers, such as neutrophilic influx and Th17 cells in the colonic lamina propria, and length of infection with accelerated commensal bacteria re-growth through altered anti-microbial inhibition. Computational modeling provides novel insights on the therapeutic value of repopulating the colonic microbiome and inducing regulatory mucosal immune responses during C. difficile infection. Thus, modeling mucosal immunity-gut microbiota interactions has the potential to guide the development of targeted fecal transplantation therapies in the context of precision medicine interventions. PMID:26230099

  13. Specific microbiome changes in a mouse model of parenteral nutrition associated liver injury and intestinal inflammation.

    Science.gov (United States)

    Harris, J Kirk; El Kasmi, Karim C; Anderson, Aimee L; Devereaux, Michael W; Fillon, Sophie A; Robertson, Charles E; Wagner, Brandie D; Stevens, Mark J; Pace, Norman R; Sokol, Ronald J

    2014-01-01

    Parenteral nutrition (PN) has been a life-saving treatment in infants intolerant of enteral feedings. However, PN is associated with liver injury (PN Associated Liver Injury: PNALI) in a significant number of PN-dependent infants. We have previously reported a novel PNALI mouse model in which PN infusion combined with intestinal injury results in liver injury. In this model, lipopolysaccharide activation of toll-like receptor 4 signaling, soy oil-derived plant sterols, and pro-inflammatory activation of Kupffer cells (KCs) played key roles. The objective of this study was to explore changes in the intestinal microbiome associated with PNALI. Microbiome analysis in the PNALI mouse identified specific alterations within colonic microbiota associated with PNALI and further association of these communities with the lipid composition of the PN solution. Intestinal inflammation or soy oil-based PN infusion alone (in the absence of enteral feeds) caused shifts within the gut microbiota. However, the combination resulted in accumulation of a specific taxon, Erysipelotrichaceae (23.8% vs. 1.7% in saline infused controls), in PNALI mice. Moreover, PNALI was markedly attenuated by enteral antibiotic treatment, which also was associated with significant reduction of Erysipelotrichaceae (0.6%) and a Gram-negative constituent, the S24-7 lineage of Bacteroidetes (53.5% in PNALI vs. 0.8%). Importantly, removal of soy oil based-lipid emulsion from the PN solution resulted in significant reduction of Erysipelotrichaceae as well as attenuation of PNALI. Finally, addition of soy-derived plant sterol (stigmasterol) to fish oil-based PN restored Erysipelotrichaceae abundance and PNALI. Soy oil-derived plant sterols and the associated specific bacterial groups in the colonic microbiota are associated with PNALI. Products from these bacteria may directly trigger activation of KCs and promote PNALI. Furthermore, the results indicate that lipid modification of PN solutions may alter

  14. Turning Participatory Microbiome Research into Usable Data: Lessons from the American Gut Project

    Directory of Open Access Journals (Sweden)

    Justine W. Debelius

    2015-10-01

    Full Text Available The role of the human microbiome is the subject of continued investigation resulting in increased understanding. However, current microbiome research has only scratched the surface of the variety of healthy microbiomes. Public participation in science through crowdsourcing and crowdfunding microbiome research provides a novel opportunity for both participants and investigators. However, turning participatory science into publishable data can be challenging. Clear communication with the participant base and among researchers can ameliorate some challenges. Three major aspects need to be considered: recruitment and ongoing interaction, sample collection, and data analysis. Usable data can be maximized through diligent participant interaction, careful survey design, and maintaining an open source pipeline. While participatory science will complement rather than replace traditional avenues, it presents new opportunities for studies in the microbiome and beyond.

  15. Turning Participatory Microbiome Research into Usable Data: Lessons from the American Gut Project.

    Science.gov (United States)

    Debelius, Justine W; Vázquez-Baeza, Yoshiki; McDonald, Daniel; Xu, Zhenjiang; Wolfe, Elaine; Knight, Rob

    2016-03-01

    The role of the human microbiome is the subject of continued investigation resulting in increased understanding. However, current microbiome research has only scratched the surface of the variety of healthy microbiomes. Public participation in science through crowdsourcing and crowdfunding microbiome research provides a novel opportunity for both participants and investigators. However, turning participatory science into publishable data can be challenging. Clear communication with the participant base and among researchers can ameliorate some challenges. Three major aspects need to be considered: recruitment and ongoing interaction, sample collection, and data analysis. Usable data can be maximized through diligent participant interaction, careful survey design, and maintaining an open source pipeline. While participatory science will complement rather than replace traditional avenues, it presents new opportunities for studies in the microbiome and beyond.

  16. Gut microbiome of mothers delivering prematurely shows reduced diversity and lower relative abundance of Bifidobacterium and Streptococcus.

    Science.gov (United States)

    Dahl, Cecilie; Stanislawski, Maggie; Iszatt, Nina; Mandal, Siddhartha; Lozupone, Catherine; Clemente, Jose C; Knight, Rob; Stigum, Hein; Eggesbø, Merete

    2017-01-01

    Preterm birth is the main reason for neonatal deaths worldwide. We investigate whether maternal gut microbiota may play a previously overlooked role. The Norwegian Microbiota Study (NoMIC) is a case control study on preterm birth (diversity (Shannon, Phylogenetic Diversity and Observed Operational Taxonomic Units) and microbiome composition were combined with information from the Medical Birth Registry, pregnancy journals, and questionnaires. The association between maternal gut diversity and preterm delivery was examined using logistic regression. One IQR increase in Shannon diversity was significantly associated with 38% lower odds of spontaneous preterm birth, (95% confident interval (CI): 1%, 61%), and the association was stronger when adjusting for maternal age, marital status, ethnicity, parity, BMI, education, antibiotic use, pets in the household, income and smoking (48% lower odds, 95% CI: 4.2%, 72%). Mothers delivering prematurely also had lower abundance of OTUs belonging to Bifidobacterium and Streptococcus, and of the Clostridiales order. Analysis of maternal gut microbiota using next-generation sequencing shows that low gut diversity, with a distinct microbial composition, is associated with spontaneous preterm delivery.

  17. Gene expression profiling gut microbiota in different races of humans

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  18. Towards an Integrative Understanding of tRNA Aminoacylation–Diet–Host–Gut Microbiome Interactions in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Elena L. Paley

    2018-03-01

    Full Text Available Transgenic mice used for Alzheimer’s disease (AD preclinical experiments do not recapitulate the human disease. In our models, the dietary tryptophan metabolite tryptamine produced by human gut microbiome induces tryptophanyl-tRNA synthetase (TrpRS deficiency with consequent neurodegeneration in cells and mice. Dietary supplements, antibiotics and certain drugs increase tryptamine content in vivo. TrpRS catalyzes tryptophan attachment to tRNAtrp at initial step of protein biosynthesis. Tryptamine that easily crosses the blood–brain barrier induces vasculopathies, neurodegeneration and cell death via TrpRS competitive inhibition. TrpRS inhibitor tryptophanol produced by gut microbiome also induces neurodegeneration. TrpRS inhibition by tryptamine and its metabolites preventing tryptophan incorporation into proteins lead to protein biosynthesis impairment. Tryptophan, a least amino acid in food and proteins that cannot be synthesized by humans competes with frequent amino acids for the transport from blood to brain. Tryptophan is a vulnerable amino acid, which can be easily lost to protein biosynthesis. Some proteins marking neurodegenerative pathology, such as tau lack tryptophan. TrpRS exists in cytoplasmic (WARS and mitochondrial (WARS2 forms. Pathogenic gene variants of both forms cause TrpRS deficiency with consequent intellectual and motor disabilities in humans. The diminished tryptophan-dependent protein biosynthesis in AD patients is a proof of our model-based disease concept.

  19. Towards an Integrative Understanding of tRNA Aminoacylation-Diet-Host-Gut Microbiome Interactions in Neurodegeneration.

    Science.gov (United States)

    Paley, Elena L; Perry, George

    2018-03-26

    Transgenic mice used for Alzheimer's disease (AD) preclinical experiments do not recapitulate the human disease. In our models, the dietary tryptophan metabolite tryptamine produced by human gut microbiome induces tryptophanyl-tRNA synthetase (TrpRS) deficiency with consequent neurodegeneration in cells and mice. Dietary supplements, antibiotics and certain drugs increase tryptamine content in vivo. TrpRS catalyzes tryptophan attachment to tRNA trp at initial step of protein biosynthesis. Tryptamine that easily crosses the blood-brain barrier induces vasculopathies, neurodegeneration and cell death via TrpRS competitive inhibition. TrpRS inhibitor tryptophanol produced by gut microbiome also induces neurodegeneration. TrpRS inhibition by tryptamine and its metabolites preventing tryptophan incorporation into proteins lead to protein biosynthesis impairment. Tryptophan, a least amino acid in food and proteins that cannot be synthesized by humans competes with frequent amino acids for the transport from blood to brain. Tryptophan is a vulnerable amino acid, which can be easily lost to protein biosynthesis. Some proteins marking neurodegenerative pathology, such as tau lack tryptophan. TrpRS exists in cytoplasmic (WARS) and mitochondrial (WARS2) forms. Pathogenic gene variants of both forms cause TrpRS deficiency with consequent intellectual and motor disabilities in humans. The diminished tryptophan-dependent protein biosynthesis in AD patients is a proof of our model-based disease concept.

  20. Changes in Composition of the Gut Bacterial Microbiome after Fecal Microbiota Transplantation for RecurrentClostridium difficileInfection in a Pediatric Heart Transplant Patient.

    Science.gov (United States)

    Flannigan, Kyle L; Rajbar, Taylor; Moffat, Andrew; McKenzie, Leanna S; Dicke, Frank; Rioux, Kevin; Workentine, Matthew L; Louie, Thomas J; Hirota, Simon A; Greenway, Steven C

    2017-01-01

    The microbiome is increasingly recognized as an important influence on human health and many of the comorbidities that affect patients after solid organ transplantation (SOT) have been shown to involve changes in gut bacterial populations. Thus, microbiome changes in an individual patient may have important health implications after SOT but this area remains understudied. We describe changes in the composition of the fecal microbiome from a pediatric heart transplant recipient before and >2.5 years after he underwent repeated fecal microbiota transplantation (FMT) for recurrent Clostridium difficile infection (CDI). With both documented episodes of CDI, there was marked loss of bacterial diversity with overgrowth of Proteobacteria (>98.9% of phyla identified) associated with symptomatic colitis that was corrected after FMT. We hypothesize that a second CDI occurring after FMT was related to incomplete restoration of normal bowel flora post-FMT with relative deficiencies of the phyla Firmicutes and Bacteroidetes and the families Lachnospiraceae and Ruminococcaceae . Following the second FMT, there was a gradual shift in gut bacterial composition coincident with the recipient developing lymphonodular hyperplasia of the colon and painless hematochezia that resolved with discontinuation of mycophenolate mofetil (MMF). This case documents dynamic changes in the bacterial microbiome after FMT and suggests that MMF may influence the gut microbiome with consequences for the patient.

  1. Beneficial Effects of a Dietary Weight Loss Intervention on Human Gut Microbiome Diversity and Metabolism Are Not Sustained during Weight Maintenance.

    Science.gov (United States)

    Heinsen, Femke-Anouska; Fangmann, Daniela; Müller, Nike; Schulte, Dominik M; Rühlemann, Malte C; Türk, Kathrin; Settgast, Ute; Lieb, Wolfgang; Baines, John F; Schreiber, Stefan; Franke, Andre; Laudes, Matthias

    2016-01-01

    In the present study, we examined the effect of a very low-calorie diet(VLCD)-based obesity program on human gut microbiome diversity and metabolism during weight loss and weight maintenance. Obese subjects underwent 3 months of VLCD followed by 3 months of weight maintenance. A lean and an obese control group were included. The microbiome was characterized by performing high-throughput dual-indexed 16S rDNA amplicon sequencing. At baseline, a significant difference in the Firmicutes/Bacteroidetes ratio between the lean and obese individuals was observed (p = 0.047). The VLCD resulted in significant alterations in gut microbiome diversity from baseline to 3 months (p = 0.0053). Acinetobacter represented an indicator species for the observed effect (indicator value = 0.998, p = 0.006). Metabolic analyses revealed alterations of the bacterial riboflavin pathway from baseline to 3 months (pnom = 0.0078). These changes in diversity and bacterial metabolism induced by VLCD diminished during the weight maintenance phase, despite sustained reductions in body weight and sustained improvements of insulin sensitivity. The present data show that a VLCD is able to beneficially alter both gut microbiome diversity and metabolism in obese humans, but that these changes are not sustained during weight maintenance. This finding might suggest that the microbiome should be targeted during obesity programs. © 2016 The Author(s) Published by S. Karger GmbH, Freiburg.

  2. Oligotyping reveals differences between gut microbiomes of free-ranging sympatric Namibian carnivores (Acinonyx jubatus, Canis mesomelas) on a bacterial species-like level

    Czech Academy of Sciences Publication Activity Database

    Menke, S.; Wasimuddin, Wasimuddin; Meier, M.; Melzheimer, J.; Mfune, J. K. E.; Heinrich, S.; Thalwitzer, S.; Wachter, B.; Sommer, S.

    2014-01-01

    Roč. 5, č. 526 (2014), s. 526 ISSN 1664-302X R&D Projects: GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 Keywords : gut microbiome * bacteria * oligotyping * carnivores * cheetah (Acinonyx jubatus) * black-backed jackal (Canis mesomelas) * Namibia Subject RIV: EG - Zoology Impact factor: 3.989, year: 2014

  3. Alterations of the murine gut microbiome in allergic airway disease are independent of surfactant protein D

    Directory of Open Access Journals (Sweden)

    Kenneth K. Barfod

    2017-03-01

    Conclusions: Our results show that the composition of the microbiota is not influenced by the SP-D deficient genotype under naïve or OVA induced airway disease. However, OVA sensitization and pulmonary challenge did alter the gut microbiota, supporting a bidirectional lung-gut crosstalk. Future mechanistic investigations of the influence of induced allergic airway disease on gut microbiota are warranted.

  4. Microbiome-Gut-Brain Axis: A Pathway for Improving Brainstem Serotonin Homeostasis and Successful Autoresuscitation in SIDS-A Novel Hypothesis.

    Science.gov (United States)

    Praveen, Vijayakumar; Praveen, Shama

    2016-01-01

    Sudden infant death syndrome (SIDS) continues to be a major public health issue. Following its major decline since the "Back to Sleep" campaign, the incidence of SIDS has plateaued, with an annual incidence of about 1,500 SIDS-related deaths in the United States and thousands more throughout the world. The etiology of SIDS, the major cause of postneonatal mortality in the western world, is still poorly understood. Although sleeping in prone position is a major risk factor, SIDS continues to occur even in the supine sleeping position. The triple-risk model of Filiano and Kinney emphasizes the interaction between a susceptible infant during a critical developmental period and stressor/s in the pathogenesis of SIDS. Recent evidence ranges from dysregulated autonomic control to findings of altered neurochemistry, especially the serotonergic system that plays an important role in brainstem cardiorespiratory/thermoregulatory centers. Brainstem serotonin (5-HT) and tryptophan hydroxylase-2 (TPH-2) levels have been shown to be lower in SIDS, supporting the evidence that defects in the medullary serotonergic system play a significant role in SIDS. Pathogenic bacteria and their enterotoxins have been associated with SIDS, although no direct evidence has been established. We present a new hypothesis that the infant's gut microbiome, and/or its metabolites, by its direct effects on the gut enterochromaffin cells, stimulates the afferent gut vagal endings by releasing serotonin (paracrine effect), optimizing autoresuscitation by modulating brainstem 5-HT levels through the microbiome-gut-brain axis, thus playing a significant role in SIDS during the critical period of gut flora development and vulnerability to SIDS. The shared similarities between various risk factors for SIDS and their relationship with the infant gut microbiome support our hypothesis. Comprehensive gut-microbiome studies are required to test our hypothesis.

  5. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers.

    Directory of Open Access Journals (Sweden)

    Brian L Weiss

    Full Text Available Tsetse flies (Glossina spp. vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host's physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of challenge. These factors include host age, density of maternally-derived trypanolytic effector molecules present in the gut, and symbiont status during development. In this study, we investigated the molecular mechanisms that result in tsetse's resistance to trypanosomes. We found that following parasite challenge, young susceptible tsetse present a highly attenuated immune response. In contrast, mature refractory flies express higher levels of genes associated with humoral (attacin and pgrp-lb and epithelial (inducible nitric oxide synthase and dual oxidase immunity. Additionally, we discovered that tsetse must harbor its endogenous microbiome during intrauterine larval development in order to present a parasite refractory phenotype during adulthood. Interestingly, mature aposymbiotic flies (Gmm(Apo present a strong immune response earlier in the infection process than do WT flies that harbor symbiotic bacteria throughout their entire lifecycle. However, this early response fails to confer significant resistance to trypanosomes. Gmm(Apo adults present a structurally compromised peritrophic matrix (PM, which lines the fly midgut and serves as a physical barrier that separates luminal contents from immune responsive epithelial cells. We propose that the early immune response we observe in Gmm(Apo flies following parasite challenge results from the premature exposure of gut epithelia to parasite-derived immunogens in the absence of a robust PM. Thus, tsetse's PM appears to regulate the timing of host immune induction following parasite challenge. Our results

  6. Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome.

    Science.gov (United States)

    Thompson, Amanda L; Monteagudo-Mera, Andrea; Cadenas, Maria B; Lampl, Michelle L; Azcarate-Peril, M A

    2015-01-01

    The development of the infant intestinal microbiome in response to dietary and other exposures may shape long-term metabolic and immune function. We examined differences in the community structure and function of the intestinal microbiome between four feeding groups, exclusively breastfed infants before introduction of solid foods (EBF), non-exclusively breastfed infants before introduction of solid foods (non-EBF), EBF infants after introduction of solid foods (EBF+S), and non-EBF infants after introduction of solid foods (non-EBF+S), and tested whether out-of-home daycare attendance was associated with differences in relative abundance of gut bacteria. Bacterial 16S rRNA amplicon sequencing was performed on 49 stool samples collected longitudinally from a cohort of 9 infants (5 male, 4 female). PICRUSt metabolic inference analysis was used to identify metabolic impacts of feeding practices on the infant gut microbiome. Sequencing data identified significant differences across groups defined by feeding and daycare attendance. Non-EBF and daycare-attending infants had higher diversity and species richness than EBF and non-daycare attending infants. The gut microbiome of EBF infants showed increased proportions of Bifidobacterium and lower abundance of Bacteroidetes and Clostridiales than non-EBF infants. PICRUSt analysis indicated that introduction of solid foods had a marginal impact on the microbiome of EBF infants (24 enzymes overrepresented in EBF+S infants). In contrast, over 200 bacterial gene categories were overrepresented in non-EBF+S compared to non-EBF infants including several bacterial methyl-accepting chemotaxis proteins (MCP) involved in signal transduction. The identified differences between EBF and non-EBF infants suggest that breast milk may provide the gut microbiome with a greater plasticity (despite having a lower phylogenetic diversity) that eases the transition into solid foods.

  7. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Siegfried Ussar

    2016-09-01

    Major conclusions: Understanding these complex interactions will help in the development of novel treatments for microbiome-related metabolic diseases. This article is part of a special issue on microbiota.

  8. Optimization of a metatranscriptomic approach to study the lignocellulolytic potential of the higher termite gut microbiome.

    Science.gov (United States)

    Marynowska, Martyna; Goux, Xavier; Sillam-Dussès, David; Rouland-Lefèvre, Corinne; Roisin, Yves; Delfosse, Philippe; Calusinska, Magdalena

    2017-09-01

    Thanks to specific adaptations developed over millions of years, the efficiency of lignin, cellulose and hemicellulose decomposition of higher termite symbiotic system exceeds that of many other lignocellulose utilizing environments. Especially, the examination of its symbiotic microbes should reveal interesting carbohydrate-active enzymes, which are of primary interest for the industry. Previous metatranscriptomic reports (high-throughput mRNA sequencing) highlight the high representation and overexpression of cellulose and hemicelluloses degrading genes in the termite hindgut digestomes, indicating the potential of this technology in search for new enzymes. Nevertheless, several factors associated with the material sampling and library preparation steps make the metatranscriptomic studies of termite gut prokaryotic symbionts challenging. In this study, we first examined the influence of the sampling strategy, including the whole termite gut and luminal fluid, on the diversity and the metatranscriptomic profiles of the higher termite gut symbiotic bacteria. Secondly, we evaluated different commercially available kits combined in two library preparative pipelines for the best bacterial mRNA enrichment strategy. We showed that the sampling strategy did not significantly impact the generated results, both in terms of the representation of the microbes and their transcriptomic profiles. Nevertheless collecting luminal fluid reduces the co-amplification of unwanted RNA species of host origin. Furthermore, for the four studied higher termite species, the library preparative pipeline employing Ribo-Zero Gold rRNA Removal Kit "Epidemiology" in combination with Poly(A) Purist MAG kit resulted in a more efficient rRNA and poly-A-mRNAdepletion (up to 98.44% rRNA removed) than the pipeline utilizing MICROBExpress and MICROBEnrich kits. High correlation of both Ribo-Zero and MICROBExpresse depleted gene expression profiles with total non-depleted RNA-seq data has been shown

  9. Exercise Prevents Enhanced Postoperative Neuroinflammation and Cognitive Decline and Rectifies the Gut Microbiome in a Rat Model of Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Xiaomei Feng

    2017-12-01

    Full Text Available IntroductionPostoperative cognitive decline (PCD can affect in excess of 10% of surgical patients and can be considerably higher with risk factors including advanced age, perioperative infection, and metabolic conditions such as obesity and insulin resistance. To define underlying pathophysiologic processes, we used animal models including a rat model of metabolic syndrome generated by breeding for a trait of low aerobic exercise tolerance. After 35 generations, the low capacity runner (LCR rats differ 10-fold in their aerobic exercise capacity from high capacity runner (HCR rats. The LCR rats respond to surgical procedure with an abnormal phenotype consisting of exaggerated and persistent PCD and failure to resolve neuroinflammation. We determined whether preoperative exercise can rectify the abnormal surgical phenotype.Materials and methodsFollowing institutional approval of the protocol each of male LCR and male HCR rats were randomly assigned to four groups and subjected to isoflurane anesthesia and tibia fracture with internal fixation (surgery or anesthesia alone (sham surgery and to a preoperative exercise regimen that involved walking for 10 km on a treadmill over 6 weeks (exercise or being placed on a stationary treadmill (no exercise. Feces were collected before and after exercise for assessment of gut microbiome. Three days following surgery or sham surgery the rats were tested for ability to recall a contextual aversive stimulus in a trace fear conditioning paradigm. Thereafter some rats were euthanized and the hippocampus harvested for analysis of inflammatory mediators. At 3 months, the remainder of the rats were tested for memory recall by the probe test in a Morris Water Maze.ResultsPostoperatively, LCR rats exhibited exaggerated cognitive decline both at 3 days and at 3 months that was prevented by preoperative exercise. Similarly, LCR rats had excessive postoperative neuroinflammation that was normalized by

  10. Gut microbiome of mothers delivering prematurely shows reduced diversity and lower relative abundance of Bifidobacterium and Streptococcus.

    Directory of Open Access Journals (Sweden)

    Cecilie Dahl

    Full Text Available Preterm birth is the main reason for neonatal deaths worldwide. We investigate whether maternal gut microbiota may play a previously overlooked role.The Norwegian Microbiota Study (NoMIC is a case control study on preterm birth (<259 days of gestation, calculated primarily based on the last menstrual period, including two consecutively born term infants per infant born prematurely. Eligible mothers were fluent in Norwegian and recruited from the maternity ward at a county hospital in Eastern Norway in the period 2002-2005. Fecal samples were collected at day 4 postpartum, and analyzed using 16S ribosomal RNA gene sequencing. We used samples from 121 mothers giving birth vaginally. Measures of alpha diversity (Shannon, Phylogenetic Diversity and Observed Operational Taxonomic Units and microbiome composition were combined with information from the Medical Birth Registry, pregnancy journals, and questionnaires.The association between maternal gut diversity and preterm delivery was examined using logistic regression. One IQR increase in Shannon diversity was significantly associated with 38% lower odds of spontaneous preterm birth, (95% confident interval (CI: 1%, 61%, and the association was stronger when adjusting for maternal age, marital status, ethnicity, parity, BMI, education, antibiotic use, pets in the household, income and smoking (48% lower odds, 95% CI: 4.2%, 72%. Mothers delivering prematurely also had lower abundance of OTUs belonging to Bifidobacterium and Streptococcus, and of the Clostridiales order.Analysis of maternal gut microbiota using next-generation sequencing shows that low gut diversity, with a distinct microbial composition, is associated with spontaneous preterm delivery.

  11. Metagenomic Analysis of the Gut Microbiome of the Common Black Slug Arion ater in Search of Novel Lignocellulose Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Ryan Joynson

    2017-11-01

    Full Text Available Some eukaryotes are able to gain access to well-protected carbon sources in plant biomass by exploiting microorganisms in the environment or harbored in their digestive system. One is the land pulmonate Arion ater, which takes advantage of a gut microbial consortium that can break down the widely available, but difficult to digest, carbohydrate polymers in lignocellulose, enabling them to digest a broad range of fresh and partially degraded plant material efficiently. This ability is considered one of the major factors that have enabled A. ater to become one of the most widespread plant pest species in Western Europe and North America. Using metagenomic techniques we have characterized the bacterial diversity and functional capability of the gut microbiome of this notorious agricultural pest. Analysis of gut metagenomic community sequences identified abundant populations of known lignocellulose-degrading bacteria, along with well-characterized bacterial plant pathogens. This also revealed a repertoire of more than 3,383 carbohydrate active enzymes (CAZymes including multiple enzymes associated with lignin degradation, demonstrating a microbial consortium capable of degradation of all components of lignocellulose. This would allow A. ater to make extensive use of plant biomass as a source of nutrients through exploitation of the enzymatic capabilities of the gut microbial consortia. From this metagenome assembly we also demonstrate the successful amplification of multiple predicted gene sequences from metagenomic DNA subjected to whole genome amplification and expression of functional proteins, facilitating the low cost acquisition and biochemical testing of the many thousands of novel genes identified in metagenomics studies. These findings demonstrate the importance of studying Gastropod microbial communities. Firstly, with respect to understanding links between feeding and evolutionary success and, secondly, as sources of novel enzymes with

  12. An integrative study on biologically recovered polyhydroxyalkanoates (PHAs) and simultaneous assessment of gut microbiome in yellow mealworm.

    Science.gov (United States)

    Ong, Su Yean; Kho, Hui-Pheng; Riedel, Sebastian L; Kim, Seok-Won; Gan, Chee-Yuen; Taylor, Todd D; Sudesh, Kumar

    2018-01-10

    Polyhydroxyalkanoates (PHAs) are produced in microbes as a source of carbon and energy storage. They are biodegradable and have properties similar to synthetic plastics, which make them an interesting alternative to petroleum-based plastics. In this study, a refined method of recovering PHA from Cupriavidus necator biomass was proposed by incorporating the use of the yellow mealworm (the larval phase of the mealworm beetle, Tenebrio molitor) as partial purification machinery, followed by washing of the fecal pellets with distilled water and sodium hydroxide. The PHA contents of the cells used in this study were 55wt% (produced from palm olein) and 60 wt% (produced from waste animal fats). The treatment of distilled water and NaOH further increased the purity of PHA to 94%. In parallel, analysis of the 16S rRNA metagenomic sequencing of the mealworm gut microbiome has revealed remarkable changes in the bacterial diversity, especially between the mealworms fed with cells produced from palm olein and waste animal fats. This biological recovery of PHA from cells is an attempt to move towards a green and sustainable process with the aim of reducing the use of harmful solvents and strong chemicals during polymer purification. The results obtained show that - purities of >90%, without a reduction in the molecular weight, can be obtained through this integrative biological recovery approach. In addition, this study has successfully shown that the cells, regardless of their origins, were readily consumed by the mealworms, and there is a correlation between the feed type and the mealworm gut microbiome. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Gut-microbiome-related LCT genotype and 2-year changes in body composition and fat distribution: the POUNDS Lost Trial.

    Science.gov (United States)

    Heianza, Yoriko; Sun, Dianjianyi; Ma, Wenjie; Zheng, Yan; Champagne, Catherine M; Bray, George A; Sacks, Frank M; Qi, Lu

    2018-02-26

    Gut microbiome regulates host energy metabolism and adiposity. A recent study identified a genome-wide significant variant in the lactase (LCT) gene that determines gut-microbiome abundance. We investigated whether the LCT variant influenced long-term changes in adiposity among overweight and obese individuals. We included 583 whites with LCT variant rs4988235 (G allele as Bifidobacterium-abundance-increasing allele) who were randomly assigned to one of four weight-loss diets varying in macronutrient contents. Two-year changes in adiposity measures were assessed according to the LCT genotype and weight-loss diets. We observed a significant interaction between the LCT genotype and dietary protein intake on changes in whole body total fat mass %, trunk fat %, superficial adipose tissue mass (SAT), visceral adipose tissue mass (VAT), and total adipose tissue mass (TAT) (P interaction  < 0.05 for all). In response to high-protein diet, carrying the G allele of LCT variant rs4988235 was associated with greater reduction of whole body total fat mass % (β [SE] -0.9 [0.43], P = 0.04), trunk fat % (-1.06 [0.58], P = 0.07), SAT (-0.89 [0.42], P = 0.04), VAT (-0.63 [0.27], P = 0.03), and TAT (-1.69 [0.76], P = 0.03). Conversely, increasing numbers of the G allele tended to be related to less reduction of these outcomes in response to low-protein diet. Long-term improvement of body fat composition and distribution was significantly influenced by the Bifidobacterium-related LCT genotype and dietary protein intake. Overweight and obese individuals with the G allele of LCT variant rs4988235 may benefit improving adiposity by eating a low-calorie, high-protein diet.

  14. Oligotyping reveals differences between gut microbiomes of free-ranging sympatric Namibian carnivores (Acinonyx jubatus, Canis mesomelas) on a bacterial species-like level.

    Science.gov (United States)

    Menke, Sebastian; Wasimuddin; Meier, Matthias; Melzheimer, Jörg; Mfune, John K E; Heinrich, Sonja; Thalwitzer, Susanne; Wachter, Bettina; Sommer, Simone

    2014-01-01

    Recent gut microbiome studies in model organisms emphasize the effects of intrinsic and extrinsic factors on the variation of the bacterial composition and its impact on the overall health status of the host. Species occurring in the same habitat might share a similar microbiome, especially if they overlap in ecological and behavioral traits. So far, the natural variation in microbiomes of free-ranging wildlife species has not been thoroughly investigated. The few existing studies exploring microbiomes through 16S rRNA gene reads clustered sequencing reads into operational taxonomic units (OTUs) based on a similarity threshold (e.g., 97%). This approach, in combination with the low resolution of target databases, generally limits the level of taxonomic assignments to the genus level. However, distinguishing natural variation of microbiomes in healthy individuals from "abnormal" microbial compositions that affect host health requires knowledge of the "normal" microbial flora at a high taxonomic resolution. This gap can now be addressed using the recently published oligotyping approach, which can resolve closely related organisms into distinct oligotypes by utilizing subtle nucleotide variation. Here, we used Illumina MiSeq to sequence amplicons generated from the V4 region of the 16S rRNA gene to investigate the gut microbiome of two free-ranging sympatric Namibian carnivore species, the cheetah (Acinonyx jubatus) and the black-backed jackal (Canis mesomelas). Bacterial phyla with proportions >0.2% were identical for both species and included Firmicutes, Fusobacteria, Bacteroidetes, Proteobacteria and Actinobacteria. At a finer taxonomic resolution, black-backed jackals exhibited 69 bacterial taxa with proportions ≥0.1%, whereas cheetahs had only 42. Finally, oligotyping revealed that shared bacterial taxa consisted of distinct oligotype profiles. Thus, in contrast to 3% OTUs, oligotyping can detect fine-scale taxonomic differences between microbiomes.

  15. Oligotyping reveals differences between gut-microbiomes of free-ranging sympatric Namibian carnivores (Acinonyx jubatus, Canis mesomelas on a bacterial species-like level

    Directory of Open Access Journals (Sweden)

    Sebastian eMenke

    2014-10-01

    Full Text Available Recent gut microbiome studies in model organisms emphasize the effects of intrinsic and extrinsic factors on the variation of the bacterial composition and its impact on the overall health status of the host. Species occurring in the same habitat might share a similar microbiome, especially if they overlap in ecological and behavioral traits. So far, the natural variation in microbiomes of free-ranging wildlife species has not been thoroughly investigated. The few existing studies exploring microbiomes through 16S rRNA gene reads clustered sequencing reads into operational taxonomic units (OTUs based on a similarity threshold (e.g. 97%. This approach, in combination with the low resolution of target databases, generally limits the level of taxonomic assignments to the genus level. However, distinguishing natural variation of microbiomes in healthy individuals from abnormal microbial compositions that affect host health requires knowledge of the normal microbial flora at a high taxonomic resolution. This gap can now be addressed using the recently published oligotyping approach, which can resolve closely related organisms into distinct oligotypes by utilizing subtle nucleotide variation. Here, we used Illumina MiSeq to sequence amplicons generated from the V4 region of the 16S rRNA gene to investigate the gut microbiome of two free-ranging sympatric Namibian carnivore species, the cheetah (Acinonyx jubatus and the black-backed jackal (Canis mesomelas. Bacterial phyla with proportions > 0.2 % were identical for both species and included Firmicutes, Fusobacteria, Bacteroidetes, Proteobacteria and Actinobacteria. At a finer taxonomic resolution, black-backed jackals exhibited 69 bacterial taxa with proportions ≥ 0.1 %, whereas cheetahs had only 42. Finally, oligotyping revealed that shared bacterial taxa consisted of distinct oligotype profiles. Thus, in contrast to 3 % OTUs, oligotyping can detect fine-scale taxonomic differences between

  16. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health.

    Science.gov (United States)

    Donovan, Sharon M

    2017-03-04

    Over the past decade, application of culture-independent, next generation DNA sequencing has dramatically enhanced our understanding of the composition of the gut microbiome and its association with human states of health and disease. Host genetics, age, and environmental factors such as where and who you live with, use of pre-, pro- and antibiotics, exercise and diet influence the short- and long-term composition of the microbiome. Dietary intake is a key determinant of microbiome composition and diversity and studies to date have linked long-term dietary patterns as well as short-term dietary interventions to the composition and diversity of the gut microbiome. The goal of this special focus issue was to review the role of diet in regulating the composition and function of the gut microbiota across the lifespan, from pregnancy to old age. Overall dietary patterns, as well as perturbations such as undernutrition and obesity, as well as the effects of dietary fiber/prebiotics and fat composition are explored.

  17. Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Lisa Lindheim

    Full Text Available Polycystic ovary syndrome (PCOS is a common female endocrinopathy of unclear origin characterized by hyperandrogenism, oligo-/anovulation, and ovarian cysts. Women with PCOS frequently display overweight, insulin resistance, and systemic low-grade inflammation. We hypothesized that endotoxemia resulting from a leaky gut is associated with inflammation, insulin resistance, fat accumulation, and hyperandrogenemia in PCOS. In this pilot study, we compared the stool microbiome, gut permeability, and inflammatory status of women with PCOS and healthy controls.16S rRNA gene amplicon sequencing was performed on stool samples from 24 PCOS patients and 19 healthy controls. Data processing and microbiome analysis were conducted in mothur and QIIME using different relative abundance cut-offs. Gut barrier integrity, endotoxemia, and inflammatory status were evaluated using serum and stool markers and associations with reproductive, metabolic, and anthropometric parameters were investigated.The stool microbiome of PCOS patients showed a lower diversity and an altered phylogenetic composition compared to controls. We did not observe significant differences in any taxa with a relative abundance>1%. When looking at rare taxa, the relative abundance of bacteria from the phylum Tenericutes, the order ML615J-28 (phylum Tenericutes and the family S24-7 (phylum Bacteroidetes was significantly lower and associated with reproductive parameters in PCOS patients. Patients showed alterations in some, but not all markers of gut barrier function and endotoxemia.Patients with PCOS have a lower diversity and an altered phylogenetic profile in their stool microbiome, which is associated with clinical parameters. Gut barrier dysfunction and endotoxemia were not driving factors in this patient cohort, but may contribute to the clinical phenotype in certain PCOS patients.

  18. Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS): A Pilot Study.

    Science.gov (United States)

    Lindheim, Lisa; Bashir, Mina; Münzker, Julia; Trummer, Christian; Zachhuber, Verena; Leber, Bettina; Horvath, Angela; Pieber, Thomas R; Gorkiewicz, Gregor; Stadlbauer, Vanessa; Obermayer-Pietsch, Barbara

    2017-01-01

    Polycystic ovary syndrome (PCOS) is a common female endocrinopathy of unclear origin characterized by hyperandrogenism, oligo-/anovulation, and ovarian cysts. Women with PCOS frequently display overweight, insulin resistance, and systemic low-grade inflammation. We hypothesized that endotoxemia resulting from a leaky gut is associated with inflammation, insulin resistance, fat accumulation, and hyperandrogenemia in PCOS. In this pilot study, we compared the stool microbiome, gut permeability, and inflammatory status of women with PCOS and healthy controls. 16S rRNA gene amplicon sequencing was performed on stool samples from 24 PCOS patients and 19 healthy controls. Data processing and microbiome analysis were conducted in mothur and QIIME using different relative abundance cut-offs. Gut barrier integrity, endotoxemia, and inflammatory status were evaluated using serum and stool markers and associations with reproductive, metabolic, and anthropometric parameters were investigated. The stool microbiome of PCOS patients showed a lower diversity and an altered phylogenetic composition compared to controls. We did not observe significant differences in any taxa with a relative abundance>1%. When looking at rare taxa, the relative abundance of bacteria from the phylum Tenericutes, the order ML615J-28 (phylum Tenericutes) and the family S24-7 (phylum Bacteroidetes) was significantly lower and associated with reproductive parameters in PCOS patients. Patients showed alterations in some, but not all markers of gut barrier function and endotoxemia. Patients with PCOS have a lower diversity and an altered phylogenetic profile in their stool microbiome, which is associated with clinical parameters. Gut barrier dysfunction and endotoxemia were not driving factors in this patient cohort, but may contribute to the clinical phenotype in certain PCOS patients.

  19. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime.

    Science.gov (United States)

    Greenhalgh, Kacy; Meyer, Kristen M; Aagaard, Kjersti M; Wilmes, Paul

    2016-07-01

    With technological advances in culture-independent molecular methods, we are uncovering a new facet of our natural history by accounting for the vast diversity of microbial life which colonizes the human body. The human microbiome contributes functional genes and metabolites which affect human physiology and are, therefore, considered an important factor for maintaining health. Much has been described in the past decade based primarily on 16S rRNA gene amplicon sequencing regarding the diversity, structure, stability and dynamics of human microbiota in their various body habitats, most notably within the gastrointestinal tract (GIT). Relatively high levels of variation have been described across different stages of life and geographical locations for the GIT microbiome. These observations may prove helpful for the future contextualization of patterns in other body habitats especially in relation to identifying generalizable trends over human lifetime. Given the large degree of complexity and variability, a key challenge will be how to define baseline healthy microbiomes and how to identify features which reflect deviations therefrom in the future. In this context, metagenomics and functional omics will likely play a central role as they will allow resolution of microbiome-conferred functionalities associated with health. Such information will be vital for formulating therapeutic interventions aimed at managing microbiota-mediated health particularly in the GIT over the course of a human lifetime. © 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Significant Correlation Between the Infant Gut Microbiome and Rotavirus Vaccine Response in Rural Ghana

    NARCIS (Netherlands)

    Harris, Vanessa C.; Armah, George; Fuentes Enriquez de Salamanca, Susana; Korpela, Katri E.; Parashar, Umesh; Victor, John C.; Tate, Jacqueline; Weerth, de Carolina; Giaquinto, Carlo; Wiersinga, Willem Joost; Lewis, Kristen D.C.; Vos, de Willem M.

    2017-01-01

    BACKGROUND:  Rotavirus (RV) is the leading cause of diarrhea-related death in children worldwide and 95% of RV-associated deaths occur in Africa and Asia where RV vaccines (RVVs) have lower efficacy. We hypothesize that differences in intestinal microbiome composition correlate with the decreased

  1. The in-feed antibiotic carbadox induces phage gene transcription in the swine gut microbiome

    Science.gov (United States)

    Carbadox is a quinoxaline-di-N-oxide antibiotic fed to over 40 percent of young pigs in the U.S. and has been shown to induce phage DNA transduction in vitro; however, the effects of carbadox on swine microbiome functions are poorly understood. We investigated the in vivo effects of carbadox on swin...

  2. Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns

    Czech Academy of Sciences Publication Activity Database

    Gomez, A.; Petrželková, Klára Judita; Burns, M. B.; Yeoman, C. J.; Amato, K. R.; Vlčková, K.; Modrý, D.; Todd, A.; Robinson, C. A. J.; Remis, M. J.; Torralba, M.; Morton, E.; Umana, J. D.; Carbonero, F.; Gaskins, H. R.; Nelson, K.; Wilson, B. A.; Stumpf, R. M.; White, B. A.; Leigh, S. R.; Blekhman, R.

    2016-01-01

    Roč. 14, č. 9 (2016), s. 2142-2153 ISSN 2211-1247 R&D Projects: GA ČR GA206/09/0927 Institutional support: RVO:68081766 Keywords : western lowland gorillas * microbiome * metabolomics * foraging ecology * anthropogenic interactions Subject RIV: EG - Zoology Impact factor: 8.282, year: 2016

  3. Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns

    Czech Academy of Sciences Publication Activity Database

    Gomez, A.; Petrželková, Klára Judita; Burns, M. B.; Yeoman, C. J.; Amato, K. R.; Vlčková, K.; Modrý, David; Todd, A.; Robinson, C. A. J.; Remis, M. J.; Torralba, M.; Morton, E.; Umana, J. D.; Carbonero, F.; Gaskins, H. R.; Nelson, K. E.; Wilson, B. A.; Stumpf, R. M.; White, B. A.; Leigh, S. R.; Blekhman, R.

    2016-01-01

    Roč. 14, č. 9 (2016), s. 2142-2153 ISSN 2211-1247 Institutional support: RVO:60077344 Keywords : western lowland gorillas * microbiome * metabolomics * foraging ecology * anthropogenic interactions Subject RIV: EE - Microbiology, Virology Impact factor: 8.282, year: 2016

  4. Impact of stress on the gut microbiome of free-ranging western lowland gorillas

    Czech Academy of Sciences Publication Activity Database

    Vlčková, Klára; Shutt-Phillips, K. A.; Heistermann, M.; Pafčo, B.; Petrželková, Klára Judita; Todd, A.; Modrý, D.; Nelson, K. E.; Wilson, B. A.; Stumpf, R. M.; White, B. A.; Leigh, S. R.; Gomez, A.

    2018-01-01

    Roč. 164, č. 1 (2018), s. 40-44 ISSN 1350-0872 Institutional support: RVO:68081766 Keywords : gastrointestinal-tract * disease * habituation * clostridium * disrupts * health * organ * flora * gastrointestinal microbiome * bacteria * stress * western lowland gorilla * faecal glucocorticoid metabolites Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.151, year: 2016

  5. Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification.

    Science.gov (United States)

    Schmedes, Sarah E; Woerner, August E; Novroski, Nicole M M; Wendt, Frank R; King, Jonathan L; Stephens, Kathryn M; Budowle, Bruce

    2018-01-01

    The human skin microbiome is comprised of diverse communities of bacterial, eukaryotic, and viral taxa and contributes millions of additional genes to the repertoire of human genes, affecting human metabolism and immune response. Numerous genetic and environmental factors influence the microbiome composition and as such contribute to individual-specific microbial signatures which may be exploited for forensic applications. Previous studies have demonstrated the potential to associate skin microbial profiles collected from touched items to their individual owner, mainly using unsupervised methods from samples collected over short time intervals. Those studies utilize either targeted 16S rRNA or shotgun metagenomic sequencing to characterize skin microbiomes; however, these approaches have limited species and strain resolution and susceptibility to stochastic effects, respectively. Clade-specific markers from the skin microbiome, using supervised learning, can predict individual identity using skin microbiomes from their respective donors with high accuracy. In this study the hidSkinPlex is presented, a novel targeted sequencing method using skin microbiome markers developed for human identification. The hidSkinPlex (comprised of 286 bacterial (and phage) family-, genus-, species-, and subspecies-level markers), initially was evaluated on three bacterial control samples represented in the panel (i.e., Propionibacterium acnes, Propionibacterium granulosum, and Rothia dentocariosa) to assess the performance of the multiplex. The hidSkinPlex was further evaluated for prediction purposes. The hidSkinPlex markers were used to attribute skin microbiomes collected from eight individuals from three body sites (i.e., foot (Fb), hand (Hp) and manubrium (Mb)) to their host donor. Supervised learning, specifically regularized multinomial logistic regression and 1-nearest-neighbor classification were used to classify skin microbiomes to their hosts with up to 92% (Fb), 96% (Mb

  6. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    Science.gov (United States)

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  7. Gut microbiome and anticancer immune response: really hot Sh(star)t!

    OpenAIRE

    Viaud, S.; Daillere, R.; Boneca, I. G.; Lepage, Patricia; Langella, Philippe; Chamaillard, M.; Pittet, M. J.; Ghiringhelli, F.; Trinchieri, G.; Goldszmid, R.; Zitvogel, L.

    2015-01-01

    The impact of gut microbiota in eliciting innate and adaptive immune responses beneficial for the host in the context of effective therapies against cancer has been highlighted recently. Chemotherapeutic agents, by compromising, to some extent, the intestinal integrity, increase the gut permeability and selective translocation of Gram-positive bacteria in secondary lymphoid organs. There, anticommensal pathogenic Th17 T-cell responses are primed, facilitating the accumulation of Th1 helper T ...

  8. Comparative Gut Microbiomes of Four Species Representing the Higher and the Lower Termites.

    Science.gov (United States)

    Su, LiJuan; Yang, LeLe; Huang, Shi; Su, XiaoQuan; Li, Yan; Wang, FengQin; Wang, EnTao; Kang, Ning; Xu, Jian; Song, AnDong

    2016-01-01

    Aiming at learning the association between the gut microbiota and termites with different diet habits and phylogenetic positions, the gut bacteria of three populations for each of the two higher termites (wood-feeding Mironasutitermes shangchengensis and fungus-feeding Odontotermes formosanus) and two wood-feeding lower termites (Tsaitermes ampliceps and Reticulitermes flaviceps) were analyzed by high-throughput 454 pyrosequencing of 16S V1-V3 amplicons. As results, 132 bacterial genera and some unidentified operational taxonomic units within 29 phyla in the gut bacteria were detected, with Spirochaetes (11-55%), Firmicutes (7-18%), Bacteroidetes (7-31%), and Proteobacteria (8-14%) as the main phyla, and Treponema, TG5, Dysgonomonas, Tannerella, za29, Lactococcus, Pseudomonas, and SJA-88 as the common genera in all the four termites. The diversity of gut bacterial communities in the higher termite guts was significantly greater than that in the lower termites; while the gut microbiota in M. shangchengensis (wood-feeding higher termite) was more similar to those of the wood-feeding lower termites rather than that of O. formosanus (fungus-feeding higher termite), and phylum Spirochaetes and nitrogen-fixing bacteria were super-dominant in the wood-feeding termites, despite of their phylogenetic relations. This study reported for the first time the gut bacterial communities for the termites of M. shangchengensis and T. ampliceps and the comparative analyses showed that the gut microbial communities varied according to the phylogeny and the diet habits of termites. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  9. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry.

    Science.gov (United States)

    Sandhu, Kiran V; Sherwin, Eoin; Schellekens, Harriët; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-01-01

    The microbial population residing within the human gut represents one of the most densely populated microbial niche in the human body with growing evidence showing it playing a key role in the regulation of behavior and brain function. The bidirectional communication between the gut microbiota and the brain, the microbiota-gut-brain axis, occurs through various pathways including the vagus nerve, the immune system, neuroendocrine pathways, and bacteria-derived metabolites. This axis has been shown to influence neurotransmission and the behavior that are often associated with neuropsychiatric conditions. Therefore, research targeting the modulation of this gut microbiota as a novel therapy for the treatment of various neuropsychiatric conditions is gaining interest. Numerous factors have been highlighted to influence gut microbiota composition, including genetics, health status, mode of birth, and environment. However, it is diet composition and nutritional status that has repeatedly been shown to be one of the most critical modifiable factors regulating the gut microbiota at different time points across the lifespan and under various health conditions. Thus the microbiota is poised to play a key role in nutritional interventions for maintaining brain health. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome

    Science.gov (United States)

    Kaska, Lukasz; Sledzinski, Tomasz; Chomiczewska, Agnieszka; Dettlaff-Pokora, Agnieszka; Swierczynski, Julian

    2016-01-01

    Clinical studies have indicated that circulating bile acid (BA) concentrations increase following bariatric surgery, especially following malabsorptive procedures such as Roux-en-Y gastric bypasses (RYGB). Moreover, total circulating BA concentrations in patients following RYGB are positively correlated with serum glucagon-like peptide-1 concentrations and inversely correlated with postprandial glucose concentrations. Overall, these data suggest that the increased circulating BA concentrations following bariatric surgery - independently of calorie restriction and body-weight loss - could contribute, at least in part, to improvements in insulin sensitivity, incretin hormone secretion, and postprandial glycemia, leading to the remission of type-2 diabetes (T2DM). In humans, the primary and secondary BA pool size is dependent on the rate of biosynthesis and the enterohepatic circulation of BAs, as well as on the gut microbiota, which play a crucial role in BA biotransformation. Moreover, BAs and gut microbiota are closely integrated and affect each other. Thus, the alterations in bile flow that result from anatomical changes caused by bariatric surgery and changes in gut microbiome may influence circulating BA concentrations and could subsequently contribute to T2DM remission following RYGB. Research data coming largely from animal and cell culture models suggest that BAs can contribute, via nuclear farnezoid X receptor (FXR) and membrane G-protein-receptor (TGR-5), to beneficial effects on glucose metabolism. It is therefore likely that FXR, TGR-5, and BAs play a similar role in glucose metabolism following bariatric surgery in humans. The objective of this review is to discuss in detail the results of published studies that show how bariatric surgery affects glucose metabolism and subsequently T2DM remission. PMID:27818587

  11. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome.

    Science.gov (United States)

    Kaska, Lukasz; Sledzinski, Tomasz; Chomiczewska, Agnieszka; Dettlaff-Pokora, Agnieszka; Swierczynski, Julian

    2016-10-21

    Clinical studies have indicated that circulating bile acid (BA) concentrations increase following bariatric surgery, especially following malabsorptive procedures such as Roux-en-Y gastric bypasses (RYGB). Moreover, total circulating BA concentrations in patients following RYGB are positively correlated with serum glucagon-like peptide-1 concentrations and inversely correlated with postprandial glucose concentrations. Overall, these data suggest that the increased circulating BA concentrations following bariatric surgery - independently of calorie restriction and body-weight loss - could contribute, at least in part, to improvements in insulin sensitivity, incretin hormone secretion, and postprandial glycemia, leading to the remission of type-2 diabetes (T2DM). In humans, the primary and secondary BA pool size is dependent on the rate of biosynthesis and the enterohepatic circulation of BAs, as well as on the gut microbiota, which play a crucial role in BA biotransformation. Moreover, BAs and gut microbiota are closely integrated and affect each other. Thus, the alterations in bile flow that result from anatomical changes caused by bariatric surgery and changes in gut microbiome may influence circulating BA concentrations and could subsequently contribute to T2DM remission following RYGB. Research data coming largely from animal and cell culture models suggest that BAs can contribute, via nuclear farnezoid X receptor (FXR) and membrane G-protein-receptor (TGR-5), to beneficial effects on glucose metabolism. It is therefore likely that FXR, TGR-5, and BAs play a similar role in glucose metabolism following bariatric surgery in humans. The objective of this review is to discuss in detail the results of published studies that show how bariatric surgery affects glucose metabolism and subsequently T2DM remission.

  12. Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation

    DEFF Research Database (Denmark)

    Tremaroli, Valentina; Karlsson, Fredrik; Werling, Malin

    2015-01-01

    or vertical banded gastroplasty and matched for weight and fat mass loss. The two surgical procedures induced similar and durable changes on the gut microbiome that were not dependent on body mass index and resulted in altered levels of fecal and circulating metabolites compared with obese controls....... By colonizing germ-free mice with stools from the patients, we demonstrated that the surgically altered microbiota promoted reduced fat deposition in recipient mice. These mice also had a lower respiratory quotient, indicating decreased utilization of carbohydrates as fuel. Our results suggest that the gut...

  13. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota

    DEFF Research Database (Denmark)

    Lagkouvardos, Ilias; Pukall, Rüdiger; Abt, Birte

    2016-01-01

    BC), a public repository of bacterial strains and associated genomes from the mouse gut, and studied host-specificity of colonization and sequence-based relevance of the resource. The collection includes several strains representing novel species, genera and even one family. Genomic analyses showed that certain...... of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (mi...... and molecular studies. The resource is available at www.dsmz.de/miBC....

  14. Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis.

    Science.gov (United States)

    Bajaj, J S; Heuman, D M; Hylemon, P B; Sanyal, A J; Puri, P; Sterling, R K; Luketic, V; Stravitz, R T; Siddiqui, M S; Fuchs, M; Thacker, L R; Wade, J B; Daita, K; Sistrun, S; White, M B; Noble, N A; Thorpe, C; Kakiyama, G; Pandak, W M; Sikaroodi, M; Gillevet, P M

    2014-05-01

    Safety of individual probiotic strains approved under Investigational New Drug (IND) policies in cirrhosis with minimal hepatic encephalopathy (MHE) is not clear. The primary aim of this phase I study was to evaluate the safety, tolerability of probiotic Lactobacillus GG (LGG) compared to placebo, while secondary ones were to explore its mechanism of action using cognitive, microbiome, metabolome and endotoxin analysis in MHE patients. Cirrhotic patients with MHE patients were randomised 1:1 into LGG or placebo BID after being prescribed a standard diet and multi-vitamin regimen and were followed up for 8 weeks. Serum, urine and stool samples were collected at baseline and study end. Safety was assessed at Weeks 4 and 8. Endotoxin and systemic inflammation, microbiome using multi-tagged pyrosequencing, serum/urine metabolome were analysed between groups using correlation networks. Thirty MHE patients (14 LGG and 16 placebo) completed the study without any differences in serious adverse events. However, self-limited diarrhoea was more frequent in LGG patients. A standard diet was maintained and LGG batches were comparable throughout. Only in the LGG-randomised group, endotoxemia and TNF-α decreased, microbiome changed (reduced Enterobacteriaceae and increased Clostridiales Incertae Sedis XIV and Lachnospiraceae relative abundance) with changes in metabolite/microbiome correlations pertaining to amino acid, vitamin and secondary BA metabolism. No change in cognition was found. In this phase I study, Lactobacillus GG is safe and well-tolerated in cirrhosis and is associated with a reduction in endotoxemia and dysbiosis. © 2014 John Wiley & Sons Ltd.

  15. The methylome of the gut microbiome: disparate Dam methylation patterns in intestinal Bacteroides dorei

    Directory of Open Access Journals (Sweden)

    Michael T. Leonard

    2014-07-01

    Full Text Available Despite the large interest in the human microbiome in recent years, there are no reports of bacterial DNA methylation in the microbiome. Here metagenomic sequencing using the Pacific Biosciences platform allowed for rapid identification of bacterial GATC methylation status of a bacterial species in human stool samples. For this work, two stool samples were chosen that were dominated by a single species, Bacteroides dorei. Based on 16S rRNA analysis, this species represented over 45% of the bacteria present in these two samples. The B. dorei genome sequence from these samples was determined and the GATC methylation sites mapped. The Bacteroides dorei genome from one subject lacked any GATC methylation and lacked the DNA adenine methyltransferase genes. In contrast, B. dorei from another subject contained 20,551 methylated GATC sites. Of the 4,970 open reading frames identified in the GATC methylated B. dorei genome, 3,184 genes were methylated as well as 1,735 GATC methylations in intergenic regions. These results suggest that DNA methylation patterns are important to consider in multi-omic analyses of microbiome samples seeking to discover the diversity of bacterial functions and may differ between disease states.

  16. Host-specific functional significance of Caenorhabditis gut commensals

    Directory of Open Access Journals (Sweden)

    Maureen Berg

    2016-10-01

    Full Text Available The gut microbiota is an important contributor to host health and fitness. Given its importance, microbiota composition should not be left to chance. However, what determines this composition is far from clear, with results supporting contributions of both environmental factors and host genetics. To gauge the relative contributions of host genetics and environment, specifically the microbial diversity, we characterized the gut microbiotas of Caenorhabditis species spanning 200-300 million years of evolution, and raised on different composted soil environments. Comparisons were based on 16S rDNA deep sequencing data, as well as on functional evaluation of gut isolates. Worm microbiotas were distinct from those in their respective soil environment, and included bacteria previously identified as part of the C. elegans core microbiota. Microbiotas differed between experiments initiated with different soil communities, but within each experiment, worm microbiotas clustered according to host identity, demonstrating a dominant contribution of environmental diversity, but also a contribution of host genetics. The dominance of environmental contributions hindered identification of host-associated microbial taxa from 16S data. Characterization of gut isolates from C. elegans and C. briggsae, focusing on the core family Enterobacteriaceae, were also unable to expose phylogenetic distinctions between microbiotas of the two species. However, functional evaluation of the isolates revealed host-specific contributions, wherein gut commensals protected their own host from infection, but not a non-host. Identification of commensal host-specificity at the functional level, otherwise overlooked in standard sequence-based analyses, suggests that the contribution of host genetics to shaping of gut microbiotas may be greater than previously realized.

  17. Dietary Alteration of the Gut Microbiome and Its Impact on Weight and Fat Mass: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    George Kunnackal John

    2018-03-01

    Full Text Available Dietary alteration of the gut microbiome is an important target in the treatment of obesity. Animal and human studies have shown bidirectional weight modulation based on the probiotic formulation used. In this study, we systematically reviewed the literature and performed a meta-analysis to assess the impact of prebiotics, probiotics and synbiotics on body weight, body mass index (BMI and fat mass in adult human subjects. We searched Medline (PubMed, Embase, the Cochrane Library and the Web of Science to identify 4721 articles, of which 41 were subjected to full-text screening, yielding 21 included studies with 33 study arms. Probiotic use was associated with significant decreases in BMI, weight and fat mass. Studies of subjects consuming prebiotics demonstrated a significant reduction in body weight, whereas synbiotics did not show an effect. Overall, when the utilization of gut microbiome-modulating dietary agents (prebiotic/probiotic/synbiotic was compared to placebo, there were significant decreases in BMI, weight and fat mass. In summary, dietary agents for the modulation of the gut microbiome are essential tools in the treatment of obesity and can lead to significant decreases in BMI, weight and fat mass. Further studies are needed to identify the ideal dose and duration of supplementation and to assess the durability of this effect.

  18. Human microbiomics

    OpenAIRE

    Rajendhran, J.; Gunasekaran, P.

    2010-01-01

    The sequencing of the human genome has driven the study of human biology in a significant way and enabled the genome-wide study to elucidate the molecular basis of complex human diseases. Recently, the role of microbiota on human physiology and health has received much attention. The influence of gut microbiome (the collective genomes of the gut microbiota) in obesity has been demonstrated, which may pave the way for new prophylactic and therapeutic strategies such as bacteriotherapy. The sig...

  19. Th17 Cells in Type 1 Diabetes: Role in the Pathogenesis and Regulation by Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Yangyang Li

    2015-01-01

    Full Text Available Type 1 diabetes (T1D is an autoimmune disease which is characterized by progressive destruction of insulin producing pancreatic islet β cells. The risk of developing T1D is determined by both genetic and environmental factors. A growing body of evidence supports an important role of T helper type 17 (Th17 cells along with impaired T regulatory (Treg cells in the development of T1D in animal models and humans. Alteration of gut microbiota has been implicated to be responsible for the imbalance between Th17 and Treg cells. However, there is controversy concerning a pathogenic versus protective role of Th17 cells in murine models of diabetes in the context of influence of gut microbiota. In this review we will summarize current knowledge about Th17 cells and gut microbiota involved in T1D and propose Th17 targeted therapy in children with islet autoimmunity to prevent progression to overt diabetes.

  20. Composition, Diversity and Abundance of Gut Microbiome in Prediabetes and Type 2 Diabetes

    OpenAIRE

    Lambeth, Stacey M; Carson, Trechelle; Lowe, Janae; Ramaraj, Thiruvarangan; Leff, Jonathan W.; Luo, Li; Bell, Callum J; Shah, Vallabh O

    2015-01-01

    Association between type 2 diabetes (T2DM) and compositional changes in the gut micro biota is established, however little is known about the dysbiosis in early stages of Prediabetes (preDM). The purpose of this investigation is to elucidate the characteristics of the gut micro biome in preDM and T2DM, compared to Non-Diabetic (nonDM) subjects. Forty nine subjects were recruited for this study, 15 nonDM, 20 preDM and 14 T2DM. Bacterial community composition and diversity were investigated in ...

  1. The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect?

    Science.gov (United States)

    Doré, Joël; Multon, Marie-Christine; Béhier, Jehan-Michel

    2017-02-01

    From the moment of birth, each human being builds a microbe-host symbiosis which is key for the preservation of its health and well-being. This personal symbiotic coexistence is the result of progressive enrichments in microorganism diversity through external supplies. This diversity is nowadays massively overthrown by drastic changes related to clinical practice in birth management, environmental exposure, nutrition and healthcare behaviors. The last two generations have been the frame of massive modifications in life and food habits, with people being more and more sedentary, overfed and permeated with drugs and pollutants. We are now able to measure the impact of these changes on the gut microbiota diversity. Concomitantly, these modifications of lifestyle were associated with a dramatic increase in incidence of immune-mediated diseases including metabolic, allergic and inflammatory diseases and most likely neurodegenerative and psychiatric disorders. Microbiota is becoming a hot topic in the scientific community and in the mainstream media. The number of scientific publications increased by up to a factor three over the last five years, with gastrointestinal and metabolic diseases being the most productive areas. In the intellectual property landscape, the patent families on microbiota have more than doubled in the meantime. In parallel, funding either from National Institutes (e.g. from NIH which funds research mainly in the field of allergies, infections, cancer and cardiovascular diseases, from the White House which launched the national microbiome initiative) or by pharmaceutical companies follow the same trend, showing a boost and a strong support in the research field on microbiota. All major health players are investing in microbiome research as shown by the number of deals signed and by funding during 2015. The Giens round table addressed how the medicine of tomorrow, considering human beings as a human-microbe symbiotic supraorganism, could leverage

  2. A bitter aftertaste: unintended effects of artificial sweeteners on the gut microbiome.

    Science.gov (United States)

    Bokulich, Nicholas A; Blaser, Martin J

    2014-11-04

    Intestinal microbial communities regulate a range of host physiological functions, from energy harvest and glucose homeostasis to immune development and regulation. Suez et al. (2014) recently demonstrated that artificial sweeteners alter gut microbial communities, leading to glucose intolerance in both mice and humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders.

    Science.gov (United States)

    Israelyan, Narek; Margolis, Kara Gross

    2018-03-31

    Autism-spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and repetitive patterns of behavior. ASD is, however, often associated with medical comorbidities and gastrointestinal (GI) dysfunction is among the most common. Studies have demonstrated a correlation between GI dysfunction and the degree of social impairment in ASD. The etiology of GI abnormalities in ASD is unclear, though the association between GI dysfunction and ASD-associated behaviors suggest that overlapping developmental defects in the brain and the intestine and/or a defect in communication between the enteric and central nervous systems (ENS and CNS, respectively), known as the gut-brain axis, could be responsible for the observed phenotypes. Brain-gut abnormalities have been increasingly implicated in several disease processes, including ASD. As a critical modulator of ENS and CNS development and function, serotonin may be a nexus for the gut-brain axis in ASD. This paper reviews the role of serotonin in ASD from the perspective of the ENS. A murine model that has been demonstrated to possess brain, behavioral and GI abnormalities mimicking those seen in ASD harbors the most common serotonin transporter (SERT) based mutation (SERT Ala56) found in children with ASD. Discussion of the gut-brain manifestations in the SERT Ala56 mice, and their correction with developmental administration of a 5-HT 4 agonist, are also addressed in conjunction with other future directions for diagnosis and treatment. Copyright © 2018. Published by Elsevier Ltd.

  4. Alterations of the murine gut microbiome in allergic airway disease are independent of surfactant protein D

    DEFF Research Database (Denmark)

    Barfod, Kenneth Klingenberg; Roggenbuck, Michael; Al-Shuweli, Suzan

    2017-01-01

    with the lack of SP-D protein and presence of allergic airway disease in the widely used SP-D-deficient mouse model. Results We describe here for the first time the lung and gut microbiota of the SP-D mouse model with OVA induced allergic airway disease. After the challenge animals were killed and fecal samples...

  5. Preservation of three-dimensional spatial structure in the gut microbiome.

    Directory of Open Access Journals (Sweden)

    Yuko Hasegawa

    Full Text Available Preservation of three-dimensional structure in the gut is necessary in order to analyze the spatial organization of the gut microbiota and gut luminal contents. In this study, we evaluated preparation methods for mouse gut with the goal of preserving micron-scale spatial structure while performing fluorescence imaging assays. Our evaluation of embedding methods showed that commonly used media such as Tissue-Tek Optimal Cutting Temperature (OCT compound, paraffin, and polyester waxes resulted in redistribution of luminal contents. By contrast, a hydrophilic methacrylate resin, Technovit H8100, preserved three-dimensional organization. Our mouse intestinal preparation protocol optimized using the Technovit H8100 embedding method was compatible with microbial fluorescence in situ hybridization (FISH and other labeling techniques, including immunostaining and staining with both wheat germ agglutinin (WGA and 4', 6-diamidino-2-phenylindole (DAPI. Mucus could be visualized whether the sample was fixed with paraformaldehyde (PFA or with Carnoy's fixative. The protocol optimized in this study enabled simultaneous visualization of micron-scale spatial patterns formed by microbial cells in the mouse intestines along with biogeographical landmarks such as host-derived mucus and food particles.

  6. Host-Specific and pH-Dependent Microbiomes of Copepods in an Extensive Rearing System.

    Directory of Open Access Journals (Sweden)

    Alf Skovgaard

    Full Text Available Copepods are to an increasing extent cultivated as feed for mariculture fish larvae with variable production success. In the temperate climate zone, this production faces seasonal limitation due to changing abiotic factors, in particular temperature and light. Furthermore, the production of copepods may be influenced by biotic factors of the culture systems, such as competing microorganisms, harmful algae, or other eukaryotes and prokaryotes that may be non-beneficial for the copepods. In this study, the composition of bacteria associated with copepods was investigated in an extensive outdoor copepod production system. Light microscopy and scanning electron microscopy revealed that bacteria were primarily found attached to the exoskeleton of copepods although a few bacteria were also found in the gut as well as internally in skeletal muscle tissue. Through 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE analysis, a clear difference was found between the microbiomes of the two copepod species, Acartia tonsa and Centropages hamatus, present in the system. This pattern was corroborated through 454/FLX-based 16S rRNA gene amplicon sequencing of copepod microbiomes, which furthermore showed that the abiotic parameters pH and oxygen concentration in rearing tank water were the key factors influencing composition of copepod microbiomes.

  7. Host-Specific and pH-Dependent Microbiomes of Copepods in an Extensive Rearing System.

    Science.gov (United States)

    Skovgaard, Alf; Castro-Mejia, Josue Leonardo; Hansen, Lars Hestbjerg; Nielsen, Dennis Sandris

    2015-01-01

    Copepods are to an increasing extent cultivated as feed for mariculture fish larvae with variable production success. In the temperate climate zone, this production faces seasonal limitation due to changing abiotic factors, in particular temperature and light. Furthermore, the production of copepods may be influenced by biotic factors of the culture systems, such as competing microorganisms, harmful algae, or other eukaryotes and prokaryotes that may be non-beneficial for the copepods. In this study, the composition of bacteria associated with copepods was investigated in an extensive outdoor copepod production system. Light microscopy and scanning electron microscopy revealed that bacteria were primarily found attached to the exoskeleton of copepods although a few bacteria were also found in the gut as well as internally in skeletal muscle tissue. Through 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE) analysis, a clear difference was found between the microbiomes of the two copepod species, Acartia tonsa and Centropages hamatus, present in the system. This pattern was corroborated through 454/FLX-based 16S rRNA gene amplicon sequencing of copepod microbiomes, which furthermore showed that the abiotic parameters pH and oxygen concentration in rearing tank water were the key factors influencing composition of copepod microbiomes.

  8. The gut and oral microbiome in HIV disease: a workshop report.

    Science.gov (United States)

    Moyes, D L; Saxena, D; John, M D; Malamud, D

    2016-04-01

    Recent years have seen a massive expansion in our understanding of how we interact with our microbial colonists. The development of new, rapid sequencing techniques such as pyrosequencing and other next-generation sequencing systems have enabled us to begin to characterise the constituents of our diverse microbial communities, revealing the astonishing genetic richness that is our microbiome. Despite this, our ignorance of how these communities change over the course of an HIV infection is profound. Whilst some steps have been made to characterise the HIV microbiome at selected sites, these reports are still limited and much remains to be done. It has become apparent, however, that host-microbiota interactions are perturbed during HIV infections, with microbial translocation of potential pathogens linked to a variety of different HIV complications, including more rapid progression of disease. The use of probiotics and prebiotics has been investigated as treatments to alleviate symptoms for a variety of conditions, and is now being proposed for the treatment of symptoms associated with HIV. However, this is a new area of investigations and many questions remain unanswered. What we know about both of these topics is a drop in the ocean compared with what we need to know. In this article, we report on a workshop where these two major under-investigated research areas were presented, and future directions explored and discussed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals.

    Science.gov (United States)

    Azcarate-Peril, M Andrea; Ritter, Andrew J; Savaiano, Dennis; Monteagudo-Mera, Andrea; Anderson, Carlton; Magness, Scott T; Klaenhammer, Todd R

    2017-01-17

    Directed modulation of the colonic bacteria to metabolize lactose effectively is a potentially useful approach to improve lactose digestion and tolerance. A randomized, double-blind, multisite placebo-controlled trial conducted in human subjects demonstrated that administration of a highly purified (>95%) short-chain galactooligosaccharide (GOS), designated "RP-G28," significantly improved clinical outcomes for lactose digestion and tolerance. In these individuals, stool samples were collected pretreatment (day 0), after GOS treatment (day 36), and 30 d after GOS feeding stopped and consumption of dairy products was encouraged (day 66). In this study, changes in the fecal microbiome were investigated using 16S rRNA amplicon pyrosequencing and high-throughput quantitative PCR. At day 36, bifidobacterial populations were increased in 27 of 30 of GOS subjects (90%), demonstrating a bifidogenic response in vivo. Relative abundance of lactose-fermenting Bifidobacterium, Faecalibacterium, and Lactobacillus were significantly increased in response to GOS. When dairy was introduced into the diet, lactose-fermenting Roseburia species increased from day 36 to day 66. The results indicated a definitive change in the fecal microbiome of lactose-intolerant individuals, increasing the abundance of lactose-metabolizing bacteria that were responsive to dietary adaptation to GOS. This change correlated with clinical outcomes of improved lactose tolerance.

  10. Changes of the human gut microbiome induced by a fermented milk product.

    Science.gov (United States)

    Veiga, Patrick; Pons, Nicolas; Agrawal, Anurag; Oozeer, Raish; Guyonnet, Denis; Brazeilles, Rémi; Faurie, Jean-Michel; van Hylckama Vlieg, Johan E T; Houghton, Lesley A; Whorwell, Peter J; Ehrlich, S Dusko; Kennedy, Sean P

    2014-09-11

    The gut microbiota (GM) consists of resident commensals and transient microbes conveyed by the diet but little is known about the role of the latter on GM homeostasis. Here we show, by a conjunction of quantitative metagenomics, in silico genome reconstruction and metabolic modeling, that consumption of a fermented milk product containing dairy starters and Bifidobacterium animalis potentiates colonic short chain fatty acids production and decreases abundance of a pathobiont Bilophila wadsworthia compared to a milk product in subjects with irritable bowel syndrome (IBS, n = 28). The GM changes parallel improvement of IBS state, suggesting a role of the fermented milk bacteria in gut homeostasis. Our data challenge the view that microbes ingested with food have little impact on the human GM functioning and rather provide support for beneficial health effects.

  11. Gut microbiome and anticancer immune response: really hot Sh*t!

    Science.gov (United States)

    Viaud, S; Daillère, R; Boneca, I G; Lepage, P; Langella, P; Chamaillard, M; Pittet, M J; Ghiringhelli, F; Trinchieri, G; Goldszmid, R; Zitvogel, L

    2015-02-01

    The impact of gut microbiota in eliciting innate and adaptive immune responses beneficial for the host in the context of effective therapies against cancer has been highlighted recently. Chemotherapeutic agents, by compromising, to some extent, the intestinal integrity, increase the gut permeability and selective translocation of Gram-positive bacteria in secondary lymphoid organs. There, anticommensal pathogenic Th17 T-cell responses are primed, facilitating the accumulation of Th1 helper T cells in tumor beds after chemotherapy as well as tumor regression. Importantly, the redox equilibrium of myeloid cells contained in the tumor microenvironment is also influenced by the intestinal microbiota. Hence, the anticancer efficacy of alkylating agents (such as cyclophosphamide) and platinum salts (oxaliplatin, cis-platin) is compromised in germ-free mice or animals treated with antibiotics. These findings represent a paradigm shift in our understanding of the mode of action of many compounds having an impact on the host-microbe mutualism.

  12. The antipsychotic olanzapine interacts with the gut microbiome to cause weight gain in mouse.

    Directory of Open Access Journals (Sweden)

    Andrew P Morgan

    Full Text Available The second-generation antipsychotic olanzapine is effective in reducing psychotic symptoms but can cause extreme weight gain in human patients. We investigated the role of the gut microbiota in this adverse drug effect using a mouse model. First, we used germ-free C57BL/6J mice to demonstrate that gut bacteria are necessary and sufficient for weight gain caused by oral delivery of olanzapine. Second, we surveyed fecal microbiota before, during, and after treatment and found that olanzapine potentiated a shift towards an "obesogenic" bacterial profile. Finally, we demonstrated that olanzapine has antimicrobial activity in vitro against resident enteric bacterial strains. These results collectively provide strong evidence for a mechanism underlying olanzapine-induced weight gain in mouse and a hypothesis for clinical translation in human patients.

  13. A Multidisciplinary Approach to Study the Role of the Gut Microbiome in Relapsing and Progressive MS

    Science.gov (United States)

    2016-10-01

    eligible participants, bacterial DNA is being purified from stool samples, quality control is being performed and Tob1/2D2 mice are currently being...inflammatory and regulatory immune cell populations thus leading to disease in genetically susceptible hosts. Furthermore, we hypothesize that gut...microbiota from subjects with RMS and PPMS is fundamentally different and can elicit distinguishable effects when transferred into susceptible animal

  14. Discovery of α-L-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42

    DEFF Research Database (Denmark)

    Viborg, Alexander Holm; Katayama, Takane; Arakawa, Takatoshi

    2017-01-01

    docking of paeonolide revealed that it can fit into the BlArap42B active site. The Glcp moiety of paeonolide stacks onto the aromatic ring of the Trp252 at subsite +1 and C4-OH is hydrogen bonded with Asp249. Moreover, the aglycone stacks against Phe421 from the neighboring monomer in the BlArap42B trimer......Enzymes of the glycoside hydrolase family 42 (GH42) are widespread in bacteria of the human gut microbiome and play fundamental roles in the decomposition of both milk and plant oligosaccharides. All GH42 enzymes characterized so far have β-galactosidase activity. Here, we report the existence...... and ginsenoside Rb2, plant glycosides containing an aromatic aglycone conjugated to α-L-arabinopyranosyl-(1,6)-β-D-glucopyranoside. Paeonolide, a natural glycoside from the roots of the plant genus Paeonia, is not hydrolyzed by classical GH42 β-galactosidases. X-ray crystallography revealed a unique Trp345-X12...

  15. Does our food (environment) change our gut microbiome ('in-vironment'): a potential role for inflammatory bowel disease?

    Science.gov (United States)

    de Wouters, Tomas; Doré, Joël; Lepage, Patricia

    2012-01-01

    Human biology can only be fully assessed by combining an analysis of both the host and its surrounding environment. As a part of the environment, the human gastrointestinal tract hosts more than 100 trillion bacteria making up the gut microbiota. The human host provides a nutrient-rich environment while the microbiota provides indispensable functions that humans cannot exert themselves. Shifts in the bacterial makeup of the human gut microbiota have been associated with disorders such as inflammatory bowel disease (IBD), irritable bowel syndrome and obesity. However, since most bacteria inhabiting our gut are not cultivable to date, until recently little was known about their individual functions. Metagenomics, i.e. the analysis of the collective genomes present in a defined ecosystem, gives insight into these specific functions. The first extensive catalogue of the intestinal metagenome outnumbers the size of the human genome by a factor of 150. Recently, 3 distinct 'types' of gut composition within the human population have been highlighted. These so-called 'enterotypes' are characterized by the dominant genera (Bacteroides, Prevotella and Ruminococcus) and their co-occurring phylogenetic groups. In accordance with the previously described impact of nutritional behavior (diet, probiotics and prebiotics) on specific bacterial populations, an association has been observed between long-term dietary habits and enterotypes. This recent discovery, i.e. that belonging to one or the other enterotype might be modulated by the diet opens up new perspectives in the fields of IBD, nutrition and therapeutic strategies. Copyright © 2012 S. Karger AG, Basel.

  16. The Gut-Brain Axis and the Microbiome: Clues to Pathophysiology and Opportunities for Novel Management Strategies in Irritable Bowel Syndrome (IBS

    Directory of Open Access Journals (Sweden)

    Eamonn M.M. Quigley

    2018-01-01

    Full Text Available Irritable bowel syndrome (IBS is one of the most common of all medical disorders worldwide and, while for some it represents no more than a nuisance, for others it imposes significant negative impacts on daily life and activities. IBS is a heterogeneous disorder and may well have a number of causes which may lie anywhere from the external environment to the contents of the gut lumen and from the enteric neuromuscular apparatus and the gut immune system to the central nervous system. Consequently, the paradigm of the gut-brain axis, which includes the participation of these various factors, has proven a useful model to assist clinicians and patients alike in understanding the genesis of symptoms in IBS. Now, given the widespread interest in the gut microbiome in health and disease, in general, reports of disordered enteric bacterial communities in IBS, and experimental data to indicate that components of the gut microbiota can influence brain morphology and function, as well as behavior and cognition, this concept has been extended to encompass the microbiota-gut-brain axis. The implications of this novel concept to the assessment and management of IBS will be explored in this review.

  17. The Gut-Brain Axis and the Microbiome: Clues to Pathophysiology and Opportunities for Novel Management Strategies in Irritable Bowel Syndrome (IBS).

    Science.gov (United States)

    Quigley, Eamonn M M

    2018-01-03

    Irritable bowel syndrome (IBS) is one of the most common of all medical disorders worldwide and, while for some it represents no more than a nuisance, for others it imposes significant negative impacts on daily life and activities. IBS is a heterogeneous disorder and may well have a number of causes which may lie anywhere from the external environment to the contents of the gut lumen and from the enteric neuromuscular apparatus and the gut immune system to the central nervous system. Consequently, the paradigm of the gut-brain axis, which includes the participation of these various factors, has proven a useful model to assist clinicians and patients alike in understanding the genesis of symptoms in IBS. Now, given the widespread interest in the gut microbiome in health and disease, in general, reports of disordered enteric bacterial communities in IBS, and experimental data to indicate that components of the gut microbiota can influence brain morphology and function, as well as behavior and cognition, this concept has been extended to encompass the microbiota-gut-brain axis. The implications of this novel concept to the assessment and management of IBS will be explored in this review.

  18. Gut microbiome diversity influenced more by the Westernized dietary regime than the body mass index as assessed using effect size statistic.

    Science.gov (United States)

    Davis, Shannon C; Yadav, Jagjit S; Barrow, Stephanie D; Robertson, Boakai K

    2017-08-01

    Human gut microbiome dysbiosis has been associated with the onset of metabolic diseases and disorders. However, the critical factors leading to dysbiosis are poorly understood. In this study, we provide increasing evidence of the association of diet type and body mass index (BMI) and how they relatively influence the taxonomic structure of the gut microbiota with respect to the causation of gut microbiome dysbiosis. The study included randomly selected Alabama residents (n = 81), including females (n = 45) and males (n = 36). The demographics data included age (33 ± 13.3 years), height (1.7 ± 0.11 meters), and weight (82.3 ± 20.6 kg). The mean BMI was 28.3 ± 7.01, equating to an overweight BMI category. A cross-sectional case-control design encompassing the newly recognized effect size approach to bioinformatics analysis was used to analyze data from donated stool samples and accompanying nutrition surveys. We investigated the microbiome variations in the Bacteroidetes-Firmicutes ratio relative to BMI, food categories, and dietary groups at stratified abundance percentages of diversity indices was used to test the hypothesis (H 0 ): increased BMI has greater effect on taxonomic diversity than Westernized diet type, (H a ): increased BMI does not have a greater effect on taxonomic diversity than Westernized diet type. In conclusion, we rejected the (H 0 ) as our results demonstrated that Westernized diet type had an effect size of 0.22 posing a greater impact upon the gut microbiota diversity than an increased BMI with an effect size of 0.16. This implied Westernized diet as a critical factor in causing dysbiosis as compared to an overweight or obese body mass index. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  19. Dietary pomegranate extract and inulin affect gut microbiome differentially in mice fed an obesogenic diet.

    Science.gov (United States)

    Zhang, Song; Yang, Jieping; Henning, Susanne M; Lee, Rupo; Hsu, Mark; Grojean, Emma; Pisegna, Rita; Ly, Austin; Heber, David; Li, Zhaoping

    2017-12-01

    Growing evidence suggests that dysbiosis of gut microbiota is associated with pathogenesis of a variety of human diseases. Using dietary intervention to shape the composition and metabolism of the gut microbiota is increasingly recognized. In the present study, we investigated the effects of polysaccharide inulin and polyphenol-rich pomegranate extract (PomX) alone or in combination on the cecal microbiota composition and function in a diet induced obesity mouse model. Male C57BL/6 mice were randomly divided into four experimental groups and consumed either high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose, 17% energy from protein)] diet, HF/HS diet supplemented with PomX (0.25%), or inulin (9%) or PomX and inulin in combination for 4 weeks. In mice fed the PomX-diet the proportion of Turicibacteraceae and Ruminococcaceae was significantly increased compared to the control HF/HS diet. Supplementation with inulin alone and inulin + PomX combination significantly increased the proportion of Verrucomicrobiaceae (A. muciniphila) and decreased Clostridiaceae. Only mice fed the inulin diet experienced an increase in serum lipopolysaccharide (LPS) and monocyte chemoattractant protein 1 (MCP-1), which was reversed when feeding the inulin + PomX diet. Feeding the inulin + PomX diet was associated with a significant increase in Bifidobacteriaceae and Rikenellaceae, which may have contributed to the reduction of endotoxemia markers. Inulin supplementation showed lower species richness of gut microbiota compared to mice fed with HF/HS or HF/HS/PomX, and the reduction was reversed by the addition of PomX. Inulin alone and in combination with PomX had distinct microbial clusters determined by both weighted and unweighted UniFrac Beta-Diversity principle coordinate analysis. A total of 19 KEGG biological pathways were significantly regulated in the gut microbiota with PomX and inulin alone or combined treatment. Inulin significantly enhanced KEGG

  20. Distinct distal gut microbiome diversity and composition in healthy children from Bangladesh and the United States.

    Directory of Open Access Journals (Sweden)

    Audrie Lin

    Full Text Available Our current understanding of the composition and stability of the human distal gut microbiota is based largely on studies of infants and adults living in developed countries. In contrast, little is known about the gut microbiota and its variation over time in older children and adolescents, especially in developing countries.We compared the diversity, composition, and temporal stability of the fecal microbiota of healthy children, ages 9 to 14 years, living in an urban slum in Bangladesh with that of children of the same age range in an upper-middle class suburban community in the United States. We analyzed >8,000 near full-length 16S rRNA gene sequences and over 845,000 pyrosequencing reads of the 16S rRNA V1-V3 region. The distal gut of Bangladeshi children harbored significantly greater bacterial diversity than that of U.S. children, including novel lineages from several bacterial phyla. Bangladeshi and U.S. children had distinct fecal bacterial community membership and structure; the microbiota of Bangladeshi children was enriched in Prevotella, Butyrivibrio, and Oscillospira and depleted in Bacteroides relative to U.S. children (although similar to Bangladeshi adults. Furthermore, community membership and structure in Bangladeshi children was significantly less stable month-to-month than U.S. children.Together, these results suggest that differing environmental or genetic factors may shape the microbiota of healthy children in the two countries. Further investigation is necessary to understand the mechanisms and factors that underlie these differences, and to incorporate these findings into new strategies for the prevention and treatment of childhood and adolescent diseases.

  1. pH of Drinking Water Influences the Composition of Gut Microbiome and Type 1 Diabetes Incidence

    Science.gov (United States)

    Sofi, M. Hanief; Gudi, Radhika; Karumuthil-Melethil, Subha; Perez, Nicolas; Johnson, Benjamin M.; Vasu, Chenthamarakshan

    2014-01-01

    Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA–targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice. PMID:24194504

  2. Recent advances in Entamoeba biology: RNA interference, drug discovery, and gut microbiome

    Science.gov (United States)

    Singh, Upinder

    2016-01-01

    In recent years, substantial progress has been made in understanding the molecular and cell biology of the human parasite Entamoeba histolytica, an important pathogen with significant global impact. This review outlines some recent advances in the Entamoeba field in the last five years, focusing on areas that have not recently been discussed in detail: (i) molecular mechanisms regulating parasite gene expression, (ii) new efforts at drug discovery using high-throughput drug screens, and (iii) the effect of gut microbiota on amoebiasis. PMID:27853522

  3. An Investigation of Cellulose Digesting Bacteria in the Panda Gut Microbiome

    Science.gov (United States)

    Lu, M.; Leung, F. C.

    2014-12-01

    The Giant Panda (Ailuropoda melanoleuca) diet consists primarily of bamboo leaves, stems and shoots. However, the Giant Panda lacks genes for the enzymes needed to digest cellulose, the core component of bamboo. Thus, it is hypothesized that the cellulolytic digestion necessary for maintaining the Giant Panda diet is carried out by microbial symbionts in the panda gut microbiota. Fecal microbiota is used as surrogate index for gut microbiota since the Giant Panda is listed by the World Conservation Union as a Threatened Species. Two bacterial isolates with potential cellulolytic activity were isolated from Giant Panda fecal samples and cultured on selective media CMC (carboxymethyl cellulose) agar and CMC-Congo Red agar using various methods of inoculation. After incubation, clearance zones around colonies were observed and used as qualitative assays for cellulose digestion. Polymerase chain reaction amplification of the 16S rRNA gene was completed and species identification was done based on the BLAST result of 16S rRNA sequence obtained using Sanger sequencing. Once the cellulase activity is confirmed, genomic DNA of the bacteria will be extracted and used for whole genome shotgun sequencing. Illumina next generation sequencing platform will be adopted as it yields high-throughput information, providing a better understanding of cellulose digestion and the molecular genetic pathways to renewable sources of biofuels. Researchers have identified multiple cellulose-digesting microbes in the Giant Panda gut, but few have applied such bacteria in converting cellulose into glucose to create biofuel. Cellulosic ethanol, a biofuel, is produced through the fermentation of lignocellulosic biomasses. This anaerobic process is aided by cellulose-digesting enzymes. Certain microbes, such as those present in the Giant Panda gut, can produce enzymes that cleave the glycosidic bonds of cellulose (C6H10O5) into glucose molecules (C6H12O6), which can then be fermented into ethanol

  4. Role of the Gut Microbiome in Obstructive Sleep Apnea-Induced Hypertension.

    Science.gov (United States)

    Durgan, David J; Ganesh, Bhanu P; Cope, Julia L; Ajami, Nadim J; Phillips, Sharon C; Petrosino, Joseph F; Hollister, Emily B; Bryan, Robert M

    2016-02-01

    Individuals suffering from obstructive sleep apnea (OSA) are at increased risk for systemic hypertension. The importance of a healthy gut microbiota, and detriment of a dysbiotic microbiota, on host physiology is becoming increasingly evident. We tested the hypothesis that gut dysbiosis contributes to hypertension observed with OSA. OSA was modeled in rats by inflating a tracheal balloon during the sleep cycle (10-s inflations, 60 per hour). On normal chow diet, OSA had no effect on blood pressure; however, in rats fed a high-fat diet, blood pressure increased 24 and 29 mm Hg after 7 and 14 days of OSA, respectively (Phypertensive OSA rats on high-fat diet into OSA recipient rats on normal chow diet (shown to be normotensive) resulted in hypertension similar to that of the donor (increased 14 and 32 mm Hg after 7 and 14 days of OSA, respectively; Phypertension, and suggest that manipulation of the microbiota may be a viable treatment for OSA-induced, and possibly other forms of, hypertension. © 2015 American Heart Association, Inc.

  5. D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease.

    Science.gov (United States)

    Kepert, Inge; Fonseca, Juliano; Müller, Constanze; Milger, Katrin; Hochwind, Kerstin; Kostric, Matea; Fedoseeva, Maria; Ohnmacht, Caspar; Dehmel, Stefan; Nathan, Petra; Bartel, Sabine; Eickelberg, Oliver; Schloter, Michael; Hartmann, Anton; Schmitt-Kopplin, Philippe; Krauss-Etschmann, Susanne

    2017-05-01

    Chronic immune diseases, such as asthma, are highly prevalent. Currently available pharmaceuticals improve symptoms but cannot cure the disease. This prompted demands for alternatives to pharmaceuticals, such as probiotics, for the prevention of allergic disease. However, clinical trials have produced inconsistent results. This is at least partly explained by the highly complex crosstalk among probiotic bacteria, the host's microbiota, and immune cells. The identification of a bioactive substance from probiotic bacteria could circumvent this difficulty. We sought to identify and characterize a bioactive probiotic metabolite for potential prevention of allergic airway disease. Probiotic supernatants were screened for their ability to concordantly decrease the constitutive CCL17 secretion of a human Hodgkin lymphoma cell line and prevent upregulation of costimulatory molecules of LPS-stimulated human dendritic cells. Supernatants from 13 of 37 tested probiotic strains showed immunoactivity. Bioassay-guided chromatographic fractionation of 2 supernatants according to polarity, followed by total ion chromatography and mass spectrometry, yielded C 11 H 12 N 2 O 2 as the molecular formula of a bioactive substance. Proton nuclear magnetic resonance and enantiomeric separation identified D-tryptophan. In contrast, L-tryptophan and 11 other D-amino acids were inactive. Feeding D-tryptophan to mice before experimental asthma induction increased numbers of lung and gut regulatory T cells, decreased lung T H 2 responses, and ameliorated allergic airway inflammation and hyperresponsiveness. Allergic airway inflammation reduced gut microbial diversity, which was increased by D-tryptophan. D-tryptophan is a newly identified product from probiotic bacteria. Our findings support the concept that defined bacterial products can be exploited in novel preventative strategies for chronic immune diseases. Copyright © 2016. Published by Elsevier Inc.

  6. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  7. Factors influencing the infant gut microbiome at age 3-6 months: Findings from the ethnically diverse Vitamin D Antenatal Asthma Reduction Trial (VDAART).

    Science.gov (United States)

    Sordillo, Joanne E; Zhou, Yanjiao; McGeachie, Michael J; Ziniti, John; Lange, Nancy; Laranjo, Nancy; Savage, Jessica R; Carey, Vincent; O'Connor, George; Sandel, Megan; Strunk, Robert; Bacharier, Leonard; Zeiger, Robert; Weiss, Scott T; Weinstock, George; Gold, Diane R; Litonjua, Augusto A

    2017-02-01

    The gut microbiome in infancy influences immune system maturation, and may have an important impact on allergic disease risk. We sought to determine how prenatal and early life factors impact the gut microbiome in a relatively large, ethnically diverse study population of infants at age 3 to 6 months, who were enrolled in Vitamin D Antenatal Asthma Reduction Trial, a clinical trial of vitamin D supplementation in pregnancy to prevent asthma and allergies in offspring. We performed 16S rRNA gene sequencing on 333 infants' stool samples. Microbial diversity was computed using the Shannon index. Factor analysis applied to the top 25 most abundant taxa revealed 4 underlying bacterial coabundance groups; the first dominated by Firmicutes (Lachnospiraceae/Clostridiales), the second by Proteobacteria (Klebsiella/Enterobacter), the third by Bacteriodetes, and the fourth by Veillonella. Scores for coabundance groups were used as outcomes in regression models, with prenatal/birth and demographic characteristics as independent predictors. Multivariate analysis, using all microbial community members, was also conducted. White race/ethnicity was associated with lower diversity but higher Bacteroidetes coabundance scores. C-section birth was associated with higher diversity, but decreased Bacteroidetes coabundance scores. Firmicutes scores were higher for infants born by C-section. Breast-fed infants had lower proportions of Clostridiales. Cord blood vitamin D was linked to increased Lachnobacterium, but decreased Lactococcus. The findings presented here suggest that race, mode of delivery, breast-feeding, and cord blood vitamin D levels are associated with infant gut microbiome composition, with possible long-term implications for immune system modulation and asthma/allergic disease incidence. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Gut microbiome of the critically endangered New Zealand parrot, the kakapo (Strigops habroptilus.

    Directory of Open Access Journals (Sweden)

    David W Waite

    Full Text Available The kakapo, a parrot endemic to New Zealand, is currently the focus of intense research and conservation efforts with the aim of boosting its population above the current 'critically endangered' status. While virtually nothing is known about the microbiology of the kakapo, given the acknowledged importance of gut-associated microbes in vertebrate nutrition and pathogen defense, it should be of great conservation value to analyze the microbes associated with kakapo. Here we describe the first study of the bacterial communities that reside within the gastrointestinal tract (GIT of both juvenile and adult kakapo. Samples from along the GIT, taken from the choana (≈ throat, crop and faeces, were subjected to 16 S rRNA gene library analysis. Phylogenetic analysis of >1000 16 S rRNA gene clones, derived from six birds, revealed low phylum-level diversity, consisting almost exclusively of Firmicutes (including lactic acid bacteria and Gammaproteobacteria. The relative proportions of Firmicutes and Gammaproteobacteria were highly consistent among individual juveniles, irrespective of sampling location, but differed markedly among adult birds. Diversity at a finer phylogenetic resolution (i.e. operational taxonomic units (OTUs of 99% sequence identity was also low in all samples, with only one or two OTUs dominating each sample. These data represent the first analysis of the bacterial communities associated with the kakapo GIT, providing a baseline for further microbiological study, and facilitating conservation efforts for this unique bird.

  9. Disease Severity and Immune Activity Relate to Distinct Interkingdom Gut Microbiome States in Ethnically Distinct Ulcerative Colitis Patients

    Directory of Open Access Journals (Sweden)

    Jordan S. Mar

    2016-08-01

    Full Text Available Significant gut microbiota heterogeneity exists among ulcerative colitis (UC patients, though the clinical implications of this variance are unknown. We hypothesized that ethnically distinct UC patients exhibit discrete gut microbiotas with unique metabolic programming that differentially influence immune activity and clinical status. Using parallel 16S rRNA and internal transcribed spacer 2 sequencing of fecal samples (UC, 30; healthy, 13, we corroborated previous observations of UC-associated bacterial diversity depletion and demonstrated significant Saccharomycetales expansion as characteristic of UC gut dysbiosis. Furthermore, we identified four distinct microbial community states (MCSs within our cohort, confirmed their existence in an independent UC cohort, and demonstrated their coassociation with both patient ethnicity and disease severity. Each MCS was uniquely enriched for specific amino acid, carbohydrate, and lipid metabolism pathways and exhibited significant luminal enrichment of the metabolic products of these pathways. Using a novel ex vivo human dendritic cell and T-cell coculture assay, we showed that exposure to fecal water from UC patients caused significant Th2 skewing in CD4+ T-cell populations compared to that of healthy participants. In addition, fecal water from patients in whom their MCS was associated with the highest level of disease severity induced the most dramatic Th2 skewing. Combined with future investigations, these observations could lead to the identification of highly resolved UC subsets based on defined microbial gradients or discrete microbial features that may be exploited for the development of novel, more effective therapies.

  10. Disease Severity and Immune Activity Relate to Distinct Interkingdom Gut Microbiome States in Ethnically Distinct Ulcerative Colitis Patients

    Science.gov (United States)

    Mar, Jordan S.; LaMere, Brandon J.; Lin, Din L.; Levan, Sophia; Nazareth, Michelle; Mahadevan, Uma

    2016-01-01

    ABSTRACT Significant gut microbiota heterogeneity exists among ulcerative colitis (UC) patients, though the clinical implications of this variance are unknown. We hypothesized that ethnically distinct UC patients exhibit discrete gut microbiotas with unique metabolic programming that differentially influence immune activity and clinical status. Using parallel 16S rRNA and internal transcribed spacer 2 sequencing of fecal samples (UC, 30; healthy, 13), we corroborated previous observations of UC-associated bacterial diversity depletion and demonstrated significant Saccharomycetales expansion as characteristic of UC gut dysbiosis. Furthermore, we identified four distinct microbial community states (MCSs) within our cohort, confirmed their existence in an independent UC cohort, and demonstrated their coassociation with both patient ethnicity and disease severity. Each MCS was uniquely enriched for specific amino acid, carbohydrate, and lipid metabolism pathways and exhibited significant luminal enrichment of the metabolic products of these pathways. Using a novel ex vivo human dendritic cell and T-cell coculture assay, we showed that exposure to fecal water from UC patients caused significant Th2 skewing in CD4+ T-cell populations compared to that of healthy participants. In addition, fecal water from patients in whom their MCS was associated with the highest level of disease severity induced the most dramatic Th2 skewing. Combined with future investigations, these observations could lead to the identification of highly resolved UC subsets based on defined microbial gradients or discrete microbial features that may be exploited for the development of novel, more effective therapies. PMID:27531910

  11. The impact of gut microbiota on gender-specific differences in immunity

    NARCIS (Netherlands)

    Fransen, Floris; Beek, van Adriaan A.; Borghuis, Theo; Meijer, Ben; Hugenholtz, Floor; Gaast-de Jongh, van der Christa; Savelkoul, Huub F.; Jonge, de Marien I.; Faas, Marijke M.; Boekschoten, Mark V.; Smidt, Hauke; Aidy, Sahar El; Vos, de Paul

    2017-01-01

    Males and females are known to have gender-specific differences in their immune system and gut microbiota composition. Whether these differences in gut microbiota composition are a cause or consequence of differences in the immune system is not known. To investigate this issue, gut microbiota

  12. The Impact of Gut Microbiota on Gender-Specific Differences in Immunity

    NARCIS (Netherlands)

    Fransen, Floris; van Beek, Adriaan A; Borghuis, Theo; Meijer, Ben; Hugenholtz, Floor; van der Gaast-de Jongh, Christa; Savelkoul, Huub F; de Jonge, Marien I; Faas, Marijke M; Boekschoten, Mark V; Smidt, Hauke; El Aidy, Sahar; de Vos, Paul

    2017-01-01

    Males and females are known to have gender-specific differences in their immune system and gut microbiota composition. Whether these differences in gut microbiota composition are a cause or consequence of differences in the immune system is not known. To investigate this issue, gut microbiota from

  13. Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota.

    Science.gov (United States)

    Aksoy, Emre; Telleria, Erich L; Echodu, Richard; Wu, Yineng; Okedi, Loyce M; Weiss, Brian L; Aksoy, Serap; Caccone, Adalgisa

    2014-07-01

    The invertebrate microbiome contributes to multiple aspects of host physiology, including nutrient supplementation and immune maturation processes. We identified and compared gut microbial abundance and diversity in natural tsetse flies from Uganda using five genetically distinct populations of Glossina fuscipes fuscipes and multiple tsetse species (Glossina morsitans morsitans, G. f. fuscipes, and Glossina pallidipes) that occur in sympatry in one location. We used multiple approaches, including deep sequencing of the V4 hypervariable region of the 16S rRNA gene, 16S rRNA gene clone libraries, and bacterium-specific quantitative PCR (qPCR), to investigate the levels and patterns of gut microbial diversity from a total of 151 individuals. Our results show extremely limited diversity in field flies of different tsetse species. The obligate endosymbiont Wigglesworthia dominated all samples (>99%), but we also observed wide prevalence of low-density Sodalis (tsetse's commensal endosymbiont) infections (microbiota composition among the genetically distinct G. f. fuscipes flies and between different sympatric species. Interestingly, Wigglesworthia density varied in different species (10(4) to 10(6) normalized genomes), with G. f. fuscipes having the highest levels. We describe the factors that may be responsible for the reduced diversity of tsetse's gut microbiota compared to those of other insects. Additionally, we discuss the implications of Wigglesworthia and Sodalis density variations as they relate to trypanosome transmission dynamics and vector competence variations associated with different tsetse species. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. A yeast fermentate improves gastrointestinal discomfort and constipation by modulation of the gut microbiome: results from a randomized double-blind placebo-controlled pilot trial.

    Science.gov (United States)

    Pinheiro, Iris; Robinson, Larry; Verhelst, An; Marzorati, Massimo; Winkens, Björn; den Abbeele, Pieter Van; Possemiers, Sam

    2017-09-04

    Constipation and symptoms of gastrointestinal discomfort such as bloating are common among otherwise healthy individuals, but with significant impact on quality of life. Despite the recognized contribution of the gut microbiome to this pathology, little is known about which group(s) of microorganism(s) are playing a role. A previous study performed in vitro suggests that EpiCor® fermentate has prebiotic-like properties, being able to favorably modulate the composition of the gut microbiome. Therefore, the aim of this study was to investigate the effects of EpiCor fermentate in a population with symptoms of gastrointestinal discomfort and reduced bowel movements and to evaluate its effect at the level of the gut microbiome. This pilot study was performed according to a randomized, double-blind, placebo-controlled parallel design. Eighty subjects with symptoms of gastrointestinal discomfort and constipation were allocated to one of two trial arms (placebo or EpiCor fermentate). Randomization was done in a stratified manner according to symptom severity, resulting in two subgroups of patients: severe and moderate. Daily records of gastrointestinal symptoms were assessed on a 5-point scale, and also stool frequency and consistency were documented during a 2-week run-in and a 6-week intervention phases. Averages over two-week intervals were calculated. Constipation-associated quality of life and general perceived stress were assessed at baseline and after 3 and 6 weeks of intervention. Fecal samples were also collected at these same time points. EpiCor fermentate led to a significant improvement of symptoms such as bloating/distension (p = 0.033 and p = 0.024 after 2 and 4 weeks of intervention, respectively), feeling of fullness (p = 0.004 and p = 0.023 after 2 and 4 weeks of intervention, respectively) and general daily scores (p = 0.046 after 2 weeks of intervention) in the moderate subgroup. A significant improvement in stool consistency was observed

  15. Comparative Metagenomic Analysis of Human Gut Microbiome Composition Using Two Different Bioinformatic Pipelines

    Directory of Open Access Journals (Sweden)

    Valeria D’Argenio

    2014-01-01

    Full Text Available Technological advances in next-generation sequencing-based approaches have greatly impacted the analysis of microbial community composition. In particular, 16S rRNA-based methods have been widely used to analyze the whole set of bacteria present in a target environment. As a consequence, several specific bioinformatic pipelines have been developed to manage these data. MetaGenome Rapid Annotation using Subsystem Technology (MG-RAST and Quantitative Insights Into Microbial Ecology (QIIME are two freely available tools for metagenomic analyses that have been used in a wide range of studies. Here, we report the comparative analysis of the same dataset with both QIIME and MG-RAST in order to evaluate their accuracy in taxonomic assignment and in diversity analysis. We found that taxonomic assignment was more accurate with QIIME which, at family level, assigned a significantly higher number of reads. Thus, QIIME generated a more accurate BIOM file, which in turn improved the diversity analysis output. Finally, although informatics skills are needed to install QIIME, it offers a wide range of metrics that are useful for downstream applications and, not less important, it is not dependent on server times.

  16. Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: A prospective pilot study.

    Science.gov (United States)

    Duarte, S M B; Stefano, J T; Miele, L; Ponziani, F R; Souza-Basqueira, M; Okada, L S R R; de Barros Costa, F G; Toda, K; Mazo, D F C; Sabino, E C; Carrilho, F J; Gasbarrini, A; Oliveira, C P

    2018-04-01

    The aim of the study was to compare the gut microbiomes from obese and lean patients with or without NASH to outline phenotypic differences. We performed a cross-sectional pilot study comprising biopsy-proven NASH patients grouped according to BMI. Microbiome DNA was extracted from stool samples, and PCR amplification was performed using primers for the V4 region of the 16S rRNA gene. The amplicons were sequenced using the Ion PGM Torrent platform, and data were analyzed using QIIME software. Macronutrient consumption was analyzed by a 7-day food record. Liver fibrosis ≥ F2 was associated with increased abundance of Lactobacilli (p = 0.0007). NASH patients showed differences in Faecalibacterium, Ruminococcus, Lactobacillus and Bifidobacterium abundance compared with the control group. Lean NASH patients had a 3-fold lower abundance of Faecalibacterium and Ruminococcus (p = 0.004), obese NASH patients were enriched in Lactobacilli (p = 0.002), and overweight NASH patients had reduced Bifidobacterium (p = 0.018). Moreover, lean NASH patients showed a deficiency in Lactobacillus compared with overweight and obese NASH patients. This group also appeared similar to the control group with regard to gut microbiome alpha diversity. Although there were qualitative differences between lean NASH and overweight/obese NASH, they were not statistically significant (p = 0.618). The study limitations included a small sample size, a food questionnaire that collected only qualitative and semi-quantitative data, and variations in group gender composition that may influence differences in FXR signaling, bile acids metabolism and the composition of gut microbiota. Our preliminary finding of a different pathogenetic process in lean NASH patients needs to be confirmed by larger studies, including those with patient populations stratified by sex and dietary habits. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the

  17. Gut Microbiome and Health

    Indian Academy of Sciences (India)

    PPM

    Coined by: Joshua Lederberg (2001). • “the ecological community of commensal, symbiotic, and pathogenic microorganisms that literally share our body space and have been all but ignored as determinants of health and disease.” Page 4. Page 5. Diversity across body regions. Page 6. No Nucleus. With Nucleus. Includes ...

  18. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States.

    Science.gov (United States)

    Frankenfeld, Cara L; Sikaroodi, Masoumeh; Lamb, Evan; Shoemaker, Sarah; Gillevet, Patrick M

    2015-10-01

    To evaluate gut microbiome in relation to recent high-intensity sweetener consumption in healthy adults. Thirty-one adults completed a four-day food record and provided a fecal sample on the fifth day. Bacterial community in the samples was analyzed using multitag pyrosequencing. Across consumers and nonconsumers of aspartame and acesulfame-K, bacterial abundance was compared using nonparametric statistics, and bacterial diversity was compared using UniFrac analysis. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to predict mean relative abundance of gene function. There were seven aspartame consumers and seven acesulfame-K consumers. Three individuals overlapped groups, consuming both sweeteners. There were no differences in median bacterial abundance (class or order) across consumers and nonconsumers of either sweetener. Overall bacterial diversity was different across nonconsumers and consumers of aspartame (P Bacterial abundance profiles and predicted gene function were not associated with recent dietary high-intensity sweetener consumption. However, bacterial diversity differed across consumers and nonconsumers. Given the increasing consumption of sweeteners and the role that the microbiome may have in chronic disease outcomes, work in further studies is warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Nonclinical Safety Assessment of SYN-004: An Oral β-lactamase for the Protection of the Gut Microbiome From Disruption by Biliary-Excreted, Intravenously Administered Antibiotics.

    Science.gov (United States)

    Kokai-Kun, John F; Bristol, J Andrew; Setser, John; Schlosser, Michael

    2016-05-01

    SYN-004 is a first in class, recombinant β-lactamase that degrades β-lactam antibiotics and has been formulated to be administered orally to patients receiving intravenous β-lactam antibiotics including cephalosporins. SYN-004 is intended to degrade unmetabolized antibiotics excreted into the intestines and thus has the potential to protect the gut microbiome from disruption by these antibiotics. Protection of the gut microbiome is expected to protect against opportunistic enteric infections such as Clostridium difficile infection as well as antibiotic-associated diarrhea. In order to demonstrate that oral SYN-004 is safe for human clinical trials, 2 Good Laboratory Practice-compliant toxicity studies were conducted in Beagle dogs. In both studies, SYN-004 was administered orally 3 times per day up to the maximum tolerated dose of the formulation. In the first study, doses of SYN-004 administered over 28 days were safe and well tolerated in dogs with the no-observed-adverse-effect level at the high dose of 57 mg/kg/day. Systemic absorption of SYN-004 was minimal and sporadic and showed no accumulation during the study. In the second study, doses up to 57 mg/kg/day were administered to dogs in combination with an intravenous dose of ceftriaxone (300 mg/kg) given once per day for 14 days. Coadministration of oral SYN-004 with intravenous ceftriaxone was safe and well tolerated, with SYN-004 having no noticeable effect on the plasma pharmacokinetics of ceftriaxone. These preclinical studies demonstrate that SYN-004 is well tolerated and, when coadministered with ceftriaxone, does not interfere with its systemic pharmacokinetics. These data supported advancing SYN-004 into human clinical trials. © The Author(s) 2015.

  20. Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose.

    Science.gov (United States)

    Volynets, Valentina; Louis, Sandrine; Pretz, Dominik; Lang, Lisa; Ostaff, Maureen J; Wehkamp, Jan; Bischoff, Stephan C

    2017-05-01

    Background: The consumption of a Western-style diet (WSD) and high fructose intake are risk factors for metabolic diseases. The underlying mechanisms are largely unclear. Objective: To unravel the mechanisms by which a WSD and fructose promote metabolic disease, we investigated their effects on the gut microbiome and barrier function. Methods: Adult female C57BL/6J mice were fed a sugar- and fat-rich WSD or control diet (CD) for 12 wk and given access to tap water or fructose-supplemented water. The microbiota was analyzed with the use of 16S rRNA gene sequencing. Barrier function was studied with the use of permeability tests, and endotoxin, mucus thickness, and gene expressions were measured. Results: The WSD increased body weight gain but not endotoxin translocation compared with the CD. In contrast, high fructose intake increased endotoxin translocation 2.6- and 3.8-fold in the groups fed the CD + fructose and WSD + fructose, respectively, compared with the CD group. The WSD + fructose treatment also induced a loss of mucus thickness in the colon (-46%) and reduced defensin expression in the ileum and colon. The lactulose:mannitol ratio in the WSD + fructose mice was 1.8-fold higher than in the CD mice. Microbiota analysis revealed that fructose, but not the WSD, increased the Firmicutes:Bacteroidetes ratio by 88% for CD + fructose and 63% for WSD + fructose compared with the CD group. Bifidobacterium abundance was greater in the WSD mice than in the CD mice (63-fold) and in the WSD + fructose mice than in the CD + fructose mice (330-fold). Conclusions: The consumption of a WSD or high fructose intake differentially affects gut permeability and the microbiome. Whether these differences are related to the distinct clinical outcomes, whereby the WSD primarily promotes weight gain and high fructose intake causes barrier dysfunction, needs to be investigated in future studies. © 2017 American Society for Nutrition.

  1. Molecular characterization and meta-analysis of gut microbial communities illustrate enrichment of prevotella and megasphaera in Indian subjects

    NARCIS (Netherlands)

    Bhute, Shrikant; Pande, Pranav; Shetty, Sudarshan A.; Shelar, Rahul; Mane, Sachin; Kumbhare, Shreyas V.; Gawali, Ashwini; Makhani, Hemal; Navandar, Mohit; Dhotre, Dhiraj; Lubree, Himangi; Agarwal, Dhiraj; Patil, Rutuja; Ozarkar, Shantanu; Ghaskadbi, Saroj; Yajnik, Chittaranjan; Juvekar, Sanjay; Makharia, Govind K.; Shouche, Yogesh S.

    2016-01-01

    The gut microbiome has varied impact on the wellbeing of humans. It is influenced by different factors such as age, dietary habits, socio-economic status, geographic location, and genetic makeup of individuals. For devising microbiome-based therapies, it is crucial to identify population specific

  2. Dietary intervention modulates the gut microbiome and improves insulin resistance - a randomized controlled trial in obese postmenopausal women

    DEFF Research Database (Denmark)

    K. Brahe, Lena; Le Chatelier, Emmanuelle; Prifti, Edi

    2015-01-01

    The gut microbiota has been implicated in obesity and its progression towards metabolic disease. Dietary interventions that target the gut microbiota have been suggested to improve metabolic health. The aim of the present study was to investigate the effect of interventions with Lactobacillus par...

  3. Resistant starch alters gut microbiome and metabolomics profiles concurrent with amelioration of chronic kidney disease in rats

    Science.gov (United States)

    Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xeno-metabolites). The fermentable dietary fiber—high amylose maize...

  4. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology

    Czech Academy of Sciences Publication Activity Database

    Gomez, A.; Petrželková, Klára Judita; Yeoman, C. J.; Vlčková, K.; Mrázek, Jakub; Koppová, Ingrid; Carbonero, F.; Ulanov, A.; Modrý, D.; Todd, A.; Torralba, M.; Nelson, K.; Gaskins, H. R.; Wilson, B.; Stumpf, R. M.; White, B. A.; Leigh, S. R.

    2015-01-01

    Roč. 24, č. 10 (2015), s. 2551-2565 ISSN 0962-1083 R&D Projects: GA ČR GA206/09/0927 Institutional support: RVO:68081766 ; RVO:67985904 Keywords : western lowland gorillas * microbiome * metabolomics * foraging ecology * anthropogenic interactions Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 5.947, year: 2015

  5. Gut microbiome composition and metabolomic profiles/nof wild western lowland gorillas (Gorilla gorilla gorilla)/nreflect host ecology

    Czech Academy of Sciences Publication Activity Database

    Gomez, A.; Petrželková, Klára Judita; Yeoman, C. J.; Vlčková, K.; Mrázek, J.; Koppova, I.; Carbonero, F.; Ulanov, A.; Modrý, David; Todd, A.; Torralba, M.; Nelson, K. E.; Gaskins, H. R.; Wilson, B.; Stumpf, R. M.; White, B. A.; Leigh, S. R.

    2015-01-01

    Roč. 24, č. 10 (2015), s. 2551-2565 ISSN 0962-1083 R&D Projects: GA ČR GA206/09/0927 Institutional support: RVO:60077344 Keywords : anthropogenic interactions * foraging ecology * metabolomics * microbiome * western lowland gorillas Subject RIV: EG - Zoology Impact factor: 5.947, year: 2015

  6. MALDI-TOF identification of the human Gut microbiome in people with and without diarrhea in Senegal.

    Directory of Open Access Journals (Sweden)

    Bissoume Samb-Ba

    Full Text Available BACKGROUND: In Africa, there are several problems with the specific identification of bacteria. Recently, MALDI-TOF mass spectrometry has become a powerful tool for the routine microbial identification in many clinical laboratories. METHODOLOGY/PRINCIPAL FINDINGS: This study was conducted using feces from 347 individuals (162 with diarrhea and 185 without diarrhea sampled in health centers in Dakar, Senegal. Feces were transported from Dakar to Marseille, France, where they were cultured using different culture conditions. The isolated colonies were identified using MALDI-TOF. If a colony was unidentified, 16S rRNA sequencing was performed. Overall, 2,753 isolates were tested, allowing for the identification of 189 bacteria from 5 phyla, including 2 previously unknown species, 11 species not previously reported in the human gut, 10 species not previously reported in humans, and 3 fungi. 2,718 bacterial isolates (98.8% out of 2,750 yielded an accurate identification using mass spectrometry, as did the 3 Candida albicans isolates. Thirty-two bacterial isolates not identified by MALDI-TOF (1.2% were identified by sequencing, allowing for the identification of 2 new species. The number of bacterial species per fecal sample was significantly higher among patients without diarrhea (8.6±3 than in those with diarrhea (7.3±3.4; P = 0.0003. A modification of the gut microbiota was observed between the two groups. In individuals with diarrhea, major commensal bacterial species such as E. coli were significantly decreased (85% versus 64%, as were several Enterococcus spp. (E. faecium and E. casseliflavus and anaerobes, such as Bacteroides spp. (B. uniformis and B. vulgatus and Clostridium spp. (C. bifermentans, C. orbiscindens, C. perfringens, and C. symbosium. Conversely, several Bacillus spp. (B. licheniformis, B. mojavensis, and B. pumilus were significantly more frequent among patients with diarrhea. CONCLUSIONS/SIGNIFICANCE: MALDI-TOF is a

  7. Gut microbiome in children with enthesitis-related arthritis in a developing country and the effect of probiotic administration.

    Science.gov (United States)

    Aggarwal, A; Sarangi, A N; Gaur, P; Shukla, A; Aggarwal, R

    2017-03-01

    In Asia, enthesitis-related arthritis (ERA) is the most frequent category of juvenile idiopathic arthritis. ERA has a strong association with human leucocyte antigen (HLA)-B27 and subclinical gut inflammation. In an HLA-B27 transgenic rat model, the presence of Bacteroides bacteria in the gut appears to cause spondyloarthropathy (SpA). Thus, we studied gut microbiota in children with ERA. Stool specimens from 33 patients with ERA and 14 age-matched healthy controls were studied; none had any gastrointestinal symptom, or had received a drug known to affect gut motility or microbiota in the preceding 6 weeks. From each specimen, a cDNA library for the V3 region of bacterial 16S rRNA was subjected to high-throughput, massively parallel sequencing. Relationship of the specimens was studied using principal co-ordinate analysis (PCoA), and abundances of various bacterial taxa and alpha diversity were compared between groups. In eight patients, a repeat faecal specimen was studied after 12 weeks of probiotic therapy. The 55 specimens yielded a median (range) of 397 315 (102 093-1 502 380) high-quality reads each. In PCoA, gut microbiota from ERA showed a wider dispersion than those from controls. In patients, families Bacteroidaceae and Enterobacteriaceae were more abundant and Prevotellaceae were less abundant than in controls. Also, genera Bacteroides, Entercoccus and Klebsiella were over-represented and genus Prevotella was under-represented in ERA patients. Probiotic therapy led to a non-significant increase in Prevotellaceae. Patients with ERA have a dysbiosis in the gut, with increased abundance of Bacteroides and reduction of Prevotella. Probiotic supplementation in a subset of patients did not reverse these changes significantly. © 2016 British Society for Immunology.

  8. Active migration is associated with specific and consistent changes to gut microbiota in Calidris shorebirds.

    Science.gov (United States)

    Risely, Alice; Waite, David W; Ujvari, Beata; Hoye, Bethany J; Klaassen, Marcel

    2018-03-01

    Gut microbes are increasingly recognised for their role in regulating an animal's metabolism and immunity. However, identifying repeatable associations between host physiological processes and their gut microbiota has proved challenging, in part because microbial communities often respond stochastically to host physiological stress (e.g. fasting, forced exercise or infection). Migratory birds provide a valuable system in which to test host-microbe interactions under physiological extremes because these hosts are adapted to predictable metabolic and immunological challenges as they undergo seasonal migrations, including temporary gut atrophy during long-distance flights. These physiological challenges may either temporarily disrupt gut microbial ecosystems, or, alternatively, promote predictable host-microbe associations during migration. To determine the relationship between migration and gut microbiota, we compared gut microbiota composition between migrating and non-migrating ("resident") conspecific shorebirds sharing a flock. We performed this across two sandpiper species, Calidris ferruginea and Calidris ruficollis, in north-western Australia, and an additional C. ruficollis population 3,000 km away in southern Australia. We found that migrants consistently had higher abundances of the bacterial genus Corynebacterium (average 28% abundance) compared to conspecific residents (average migration status accounting for only 1% of gut community variation when excluding Corynebacterium. Our findings suggest a consistent relationship between Corynebacterium and Calidris shorebirds during migration, with further research required to identify causal mechanisms behind the association, and to elucidate functionality to the host. However, outside this specific association, migrating shorebirds broadly maintained gut community structure, which may allow them to quickly recover gut function after a migratory flight. This study provides a rare example of a repeatable and

  9. Relevance of gut microbiome and endogenous phosphatases on phytate breakdown in poultry – implications on phosphorus utilisation

    DEFF Research Database (Denmark)

    Jozefiak, D; Engberg, Ricarda Greuel; Ptak, A

    2016-01-01

    or directly affected by the presence of the phytate as well as phytase supplementation. However, it is not clear which bacteria play a key role in phytate degradation and how significant for microbiota is dietary phytase, even though proliferation of some important pathogens as Clostridium perfringens seem...... to inhibited. In conclusion, poultry GIT microbiota can utilize 10-25% of dietary phytate. Phytase supplementation significantly affects the microbiome but the mode of action is mainly indirect, through changes in the buffering capacity of the digesta and release of IP6 isomers as well as myo-inositol....

  10. Manipulation of Gut Microbiota Reveals Shifting Community Structure Shaped by Host Developmental Windows in Amphibian Larvae.

    Science.gov (United States)

    Warne, Robin W; Kirschman, Lucas; Zeglin, Lydia

    2017-10-01

    Exploration of the importance of developmental windows for microbial colonization in diverse animal taxa, and tests of how these shape both animal microbiomes as well as host phenotypes promise to shed needed light on host-microbe interactions. The aims of this study were to explore how gut microbiota diversity of larval amphibians varies among species and across ontogeny, and to test if manipulation of gut colonization can reveal how microbiomes develop. We found that gut microbiomes differ among species and change across larval ontogeny, with distinctive differences between larvae, metamorphic animals, and juvenile frogs. Through applying a gnotobiotic protocol to eggs and cross-inoculating gut microbiomes between species, we demonstrated that microbiota can be transplanted among species and developmental stages. These results also demonstrated that microbial colonization at hatching is potentially formative for long term composition and function of amphibian gut microbiomes, suggesting that hatching may be a critical developmental window for colonization, similar to the effects of birth mode on human microbiomes. Specifically, our results suggest that either the egg jelly and/or capsules surrounding amphibian eggs are likely important sources for initial microbiome inoculation. Furthermore, we speculate these results suggest that vertical transmission may be important to amphibian microbiome establishment and development, as is common among many animal taxa. Taken together, our results suggest that explicit tests of how host developmental windows influence microbial colonization, and shape amphibian microbiomes across life stages promise to provide insight into the ecological and evolutionary dynamics of host-microbe interactions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  11. The Willow Microbiome is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects

    Directory of Open Access Journals (Sweden)

    Stacie Tardif

    2016-09-01

    Full Text Available The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and, after two growing seasons, bulk soil, rhizosphere soil, roots and stems samples of two willow cultivars (Salix purpurea cv. FishCreek and Salix miyabeana cv. SX67 growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS regions were amplified and sequenced using an Ion Torrent Personal Genome Machine. Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment and thus protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology.

  12. Knock down of Whitefly Gut Gene Expression and Mortality by Orally Delivered Gut Gene-Specific dsRNAs.

    Science.gov (United States)

    Vyas, Meenal; Raza, Amir; Ali, Muhammad Yousaf; Ashraf, Muhammad Aleem; Mansoor, Shahid; Shahid, Ahmad Ali; Brown, Judith K

    2017-01-01

    Control of the whitefly Bemisia tabaci (Genn.) agricultural pest and plant virus vector relies on the use of chemical insecticides. RNA-interference (RNAi) is a homology-dependent innate immune response in eukaryotes, including insects, which results in degradation of the corresponding transcript following its recognition by a double-stranded RNA (dsRNA) that shares 100% sequence homology. In this study, six whitefly 'gut' genes were selected from an in silico-annotated transcriptome library constructed from the whitefly alimentary canal or 'gut' of the B biotype of B. tabaci, and tested for knock down efficacy, post-ingestion of dsRNAs that share 100% sequence homology to each respective gene target. Candidate genes were: Acetylcholine receptor subunit α, Alpha glucosidase 1, Aquaporin 1, Heat shock protein 70, Trehalase1, and Trehalose transporter1. The efficacy of RNAi knock down was further tested in a gene-specific functional bioassay, and mortality was recorded in 24 hr intervals, six days, post-treatment. Based on qPCR analysis, all six genes tested showed significantly reduced gene expression. Moderate-to-high whitefly mortality was associated with the down-regulation of osmoregulation, sugar metabolism and sugar transport-associated genes, demonstrating that whitefly survivability was linked with RNAi results. Silenced Acetylcholine receptor subunit α and Heat shock protein 70 genes showed an initial low whitefly mortality, however, following insecticide or high temperature treatments, respectively, significantly increased knockdown efficacy and death was observed, indicating enhanced post-knockdown sensitivity perhaps related to systemic silencing. The oral delivery of gut-specific dsRNAs, when combined with qPCR analysis of gene expression and a corresponding gene-specific bioassay that relates knockdown and mortality, offers a viable approach for functional genomics analysis and the discovery of prospective dsRNA biopesticide targets. The approach can

  13. Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources.

    Science.gov (United States)

    Rimoldi, Simona; Terova, Genciana; Ascione, Chiara; Giannico, Riccardo; Brambilla, Fabio

    2018-01-01

    Animal by-product meals from the rendering industry could provide a sustainable and commercially viable alternative to fishmeal (FM) in aquaculture, as they are rich in most essential amino acids and contain important amounts of water-soluble proteins that improve feed digestibility and palatability. Among them, poultry by-product meal (PBM) have given encouraging results in rainbow trout (Oncorhynchus mykiss). However, the introduction of new ingredients in the diet needs to be carefully evaluated since diet is one of the main factors affecting the gut microbiota, which is a complex community that contributes to host metabolism, nutrition, growth, and disease resistance. Accordingly, we investigated the effects of partial replacement of dietary FM with a mix of animal by-product meals and plant proteins on intestinal microbiota composition of rainbow trout in relation to growth and feeding efficiency parameters. We used 1540 trout with an initial mean body weight of 94.6 ± 14.2 g. Fish were fed for 12 weeks with 7 different feed formulations. The growth data showed that trout fed on diets rich in animal by-product meals grew as well as fish fed on control diet, which was rich in FM (37.3%) and PBM-free. High-throughput 16S rRNA gene amplicon sequencing (MiSeq platform, Illumina) was utilised to study the gut microbial community profile. After discarding Cyanobacteria (class Chloroplast) and mitochondria reads a total of 2,701,274 of reads taxonomically classified, corresponding to a mean of 96,474 ± 68,056 reads per sample, were obtained. Five thousand three hundred ninety-nine operational taxonomic units (OTUs) were identified, which predominantly mapped to the phyla of Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. The ratio between vegetable and animal proteins proved to play a central role in determining microbiome profiles and Firmicutes and Proteobacteria phyla were particularly discriminatory for diet type in trout. Plant ingredients

  14. Interactions between Obesity Status and Dietary Intake of Monounsaturated and Polyunsaturated Oils on Human Gut Microbiome Profiles in the Canola Oil Multicenter Intervention Trial (COMIT

    Directory of Open Access Journals (Sweden)

    Shuaihua Pu

    2016-10-01

    Full Text Available Long-term dietary fatty acid intake is believed to induce changes in the human gut microbiome which might be associated with human health or obesity status; however, considerable debate remains regarding the most favorable ratios of fatty acids to optimize these processes. The objective of this sub-study of a double-blinded randomized crossover clinical study, the canola oil multi-center intervention trial (COMIT, was to investigate effects of five different novel oil blends fed for 30 days each on the intestinal microbiota in 25 volunteers with risk of metabolic syndrome. The 60 g treatments included three MUFA-rich diets: 1 conventional canola oil (Canola; 2 DHA-enriched high oleic canola oil (CanolaDHA; 3 high oleic canola oil (CanolaOleic; and two PUFA-rich diets: 4 a blend of corn/safflower oil (25:75 (CornSaff; and 5 a blend of flax/safflower oil (60:40 (FlaxSaff. Stool samples were collected at the end of each period. DNA was extracted and amplified for pyrosequencing. A total of 17 phyla and 187 genera were identified. While five novel oil treatments failed to alter bacterial phyla composition, obese participants produced a higher proportion of Firmicutes to Bacteroidetes than overweight or normal weight groups (P = 0.01. Similarly at the genus level, overall bacterial distribution was highly associated with subjects’ body mass index (BMI. Treatment effects were observed between MUFA- and PUFA-rich diets, with the three MUFA diets elevating Parabacteroides, Prevotella, Turicibacter, and Enterobacteriaceae (F’s populations, while the two PUFA-rich diets favored the abundance of Isobaculum. High MUFA content feedings also resulted in an increase of Parabacteroides and a decrease of Isobaculum in obese, but not overweight subjects. Data suggest that BMI is a predominant factor in characterization of human gut microbiota profiles, and that MUFA-rich and PUFA-rich diets impact the composition of gut microbiota at lower taxonomical levels

  15. Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources

    Science.gov (United States)

    Rimoldi, Simona; Ascione, Chiara; Giannico, Riccardo; Brambilla, Fabio

    2018-01-01

    Animal by-product meals from the rendering industry could provide a sustainable and commercially viable alternative to fishmeal (FM) in aquaculture, as they are rich in most essential amino acids and contain important amounts of water-soluble proteins that improve feed digestibility and palatability. Among them, poultry by-product meal (PBM) have given encouraging results in rainbow trout (Oncorhynchus mykiss). However, the introduction of new ingredients in the diet needs to be carefully evaluated since diet is one of the main factors affecting the gut microbiota, which is a complex community that contributes to host metabolism, nutrition, growth, and disease resistance. Accordingly, we investigated the effects of partial replacement of dietary FM with a mix of animal by-product meals and plant proteins on intestinal microbiota composition of rainbow trout in relation to growth and feeding efficiency parameters. We used 1540 trout with an initial mean body weight of 94.6 ± 14.2 g. Fish were fed for 12 weeks with 7 different feed formulations. The growth data showed that trout fed on diets rich in animal by-product meals grew as well as fish fed on control diet, which was rich in FM (37.3%) and PBM-free. High-throughput 16S rRNA gene amplicon sequencing (MiSeq platform, Illumina) was utilised to study the gut microbial community profile. After discarding Cyanobacteria (class Chloroplast) and mitochondria reads a total of 2,701,274 of reads taxonomically classified, corresponding to a mean of 96,474 ± 68,056 reads per sample, were obtained. Five thousand three hundred ninety-nine operational taxonomic units (OTUs) were identified, which predominantly mapped to the phyla of Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. The ratio between vegetable and animal proteins proved to play a central role in determining microbiome profiles and Firmicutes and Proteobacteria phyla were particularly discriminatory for diet type in trout. Plant ingredients

  16. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity

    DEFF Research Database (Denmark)

    Brahe, Lena Kirchner; Le Chatelier, E; Prifti, E

    2015-01-01

    BACKGROUND: Gut microbial gene richness and specific bacterial species are associated with metabolic risk markers in humans, but the impact of host physiology and dietary habits on the link between the gut microbiota and metabolic markers remain unclear. The objective of this study was to identify...... gut metagenomic markers associated with estimates of insulin resistance, lipid metabolism and inflammation in obesity, and to explore whether the associations between metagenomic and metabolic markers persisted after adjustment for body fat, age and habitual dietary intake. METHODS: Faecal DNA from 53......; however, the negative correlation with insulin resistance observed for B. longum and F. prausnitzii appeared to be modified by the intake of dietary fibre and fat, respectively. CONCLUSIONS: This study shows that several gut bacterial species are linked to metabolic risk markers in obesity, also after...

  17. Nutrimetabonomics:applications for nutritional sciences, with specific reference to gut microbial interactions.

    Science.gov (United States)

    Claus, Sandrine P; Swann, Jonathan R

    2013-01-01

    Understanding the role of the diet in determining human health and disease is one major objective of modern nutrition. Mammalian biocomplexity necessitates the incorporation of systems biology technologies into contemporary nutritional research. Metabonomics is a powerful approach that simultaneously measures the low-molecular-weight compounds in a biological sample, enabling the metabolic status of a biological system to be characterized. Such biochemical profiles contain latent information relating to inherent parameters, such as the genotype, and environmental factors, including the diet and gut microbiota. Nutritional metabonomics, or nutrimetabonomics, is being increasingly applied to study molecular interactions between the diet and the global metabolic system. This review discusses three primary areas in which nutrimetabonomics has enjoyed successful application in nutritional research: the illumination of molecular relationships between nutrition and biochemical processes; elucidation of biomarker signatures of food components for use in dietary surveillance; and the study of complex trans-genomic interactions between the mammalian host and its resident gut microbiome. Finally, this review illustrates the potential for nutrimetabonomics in nutritional science as an indispensable tool to achieve personalized nutrition.

  18. Next-Generation Immune Repertoire Sequencing as a Clue to Elucidate the Landscape of Immune Modulation by Host–Gut Microbiome Interactions

    Directory of Open Access Journals (Sweden)

    Tatsuo Ichinohe

    2018-04-01

    Full Text Available The human immune system is a fine network consisted of the innumerable numbers of functional cells that balance the immunity and tolerance against various endogenous and environmental challenges. Although advances in modern immunology have revealed a role of many unique immune cell subsets, technologies that enable us to capture the whole landscape of immune responses against specific antigens have been not available to date. Acquired immunity against various microorganisms including host microbiome is principally founded on T cell and B cell populations, each of which expresses antigen-specific receptors that define a unique clonotype. Over the past several years, high-throughput next-generation sequencing has been developed as a powerful tool to profile T- and B-cell receptor repertoires in a given individual at the single-cell level. Sophisticated immuno-bioinformatic analyses by use of this innovative methodology have been already implemented in clinical development of antibody engineering, vaccine design, and cellular immunotherapy. In this article, we aim to discuss the possible application of high-throughput immune receptor sequencing in the field of nutritional and intestinal immunology. Although there are still unsolved caveats, this emerging technology combined with single-cell transcriptomics/proteomics provides a critical tool to unveil the previously unrecognized principle of host–microbiome immune homeostasis. Accumulation of such knowledge will lead to the development of effective ways for personalized immune modulation through deeper understanding of the mechanisms by which the intestinal environment affects our immune ecosystem.

  19. Recent advances in Entamoeba biology: RNA interference, drug discovery, and gut microbiome [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Pedro Morgado

    2016-10-01

    Full Text Available In recent years, substantial progress has been made in understanding the molecular and cell biology of the human parasite Entamoeba histolytica, an important pathogen with significant global impact. This review outlines some recent advances in the Entamoeba field in the last five years, focusing on areas that have not recently been discussed in detail: (i molecular mechanisms regulating parasite gene expression, (ii new efforts at drug discovery using high-throughput drug screens, and (iii the effect of gut microbiota on amoebiasis.

  20. Diversity of the cultivable human gut microbiome involved in gluten metabolism: isolation of microorganisms with potential interest for coeliac disease.

    Science.gov (United States)

    Caminero, Alberto; Herrán, Alexandra R; Nistal, Esther; Pérez-Andrés, Jenifer; Vaquero, Luis; Vivas, Santiago; Ruiz de Morales, José María G; Albillos, Silvia M; Casqueiro, Javier

    2014-05-01

    Gluten, a common component in the human diet, is capable of triggering coeliac disease pathogenesis in genetically predisposed individuals. Although the function of human digestive proteases in gluten proteins is quite well known, the role of intestinal microbiota in the metabolism of proteins is frequently underestimated. The aim of this study was the isolation and characterisation of the human gut bacteria involved in the metabolism of gluten proteins. Twenty-two human faecal samples were cultured with gluten as the principal nitrogen source, and 144 strains belonging to 35 bacterial species that may be involved in gluten metabolism in the human gut were isolated. Interestingly, 94 strains were able to metabolise gluten, 61 strains showed an extracellular proteolytic activity against gluten proteins, and several strains showed a peptidasic activity towards the 33-mer peptide, an immunogenic peptide in patients with coeliac disease. Most of the strains were classified within the phyla Firmicutes and Actinobacteria, mainly from the genera Lactobacillus, Streptococcus, Staphylococcus, Clostridium and Bifidobacterium. In conclusion, the human intestine exhibits a large variety of bacteria capable of utilising gluten proteins and peptides as nutrients. These bacteria could have an important role in gluten metabolism and could offer promising new treatment modalities for coeliac disease. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  1. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children.

    Science.gov (United States)

    Bisanz, Jordan E; Enos, Megan K; Mwanga, Joseph R; Changalucha, John; Burton, Jeremy P; Gloor, Gregory B; Reid, Gregor

    2014-10-07

    Exposure to environmental toxins is a 21st century global health problem that is often the result of dietary intake. Although efforts are made to reduce dietary toxin levels, they are often unsuccessful, warranting research into novel methods to reduce host exposure. Food-grade microbes that can be delivered to the gastrointestinal tract and that are capable of sequestering toxins present a safe and cost-effective intervention. We sought to investigate the potential for probiotic-supplemented yogurt to lower heavy metal levels in at-risk populations of pregnant women and in children in Mwanza, Tanzania, and to examine the microbiome in relation to toxin levels. Two populations suspected to have high toxic metal exposures were studied. A group of 44 school-aged children was followed over 25 days, and 60 pregnant women were followed over their last two trimesters until birth. A yogurt containing 10(10) CFU Lactobacillus rhamnosus GR-1 per 250 g was administered, while control groups received either whole milk or no intervention. Changes in blood metal levels were assessed, and the gut microbiomes of the children were profiled by analyzing 16S rRNA sequencing via the Ion Torrent platform. The children and pregnant women in the study were found to have elevated blood levels of lead and mercury compared to age- and sex-matched Canadians. Consumption of probiotic yogurt had a protective effect against further increases in mercury (3.2 nmol/liter; P = 0.035) and arsenic (2.3 nmol/liter; P = 0.011) blood levels in the pregnant women, but this trend was not statistically significant in the children. Elevated blood lead was associated with increases in Succinivibrionaceae and Gammaproteobacteria relative abundance levels in stool. Importance: Probiotic food produced locally represents a nutritious and affordable means for people in some developing countries to counter exposures to toxic metals. Further research and field trials are warranted to explore this approach in

  2. Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes.

    Science.gov (United States)

    Santos-Medellín, Christian; Edwards, Joseph; Liechty, Zachary; Nguyen, Bao; Sundaresan, Venkatesan

    2017-07-18

    Plant roots support complex microbial communities that can influence plant growth, nutrition, and health. While extensive characterizations of the composition and spatial compartmentalization of these communities have been performed in different plant species, there is relatively little known about the impact of abiotic stresses on the root microbiota. Here, we have used rice as a model to explore the responses of root microbiomes to drought stress. Using four distinct genotypes, grown in soils from three different fields, we tracked the drought-induced changes in microbial composition in the rhizosphere (the soil immediately surrounding the root), the endosphere (the root interior), and unplanted soils. Drought significantly altered the overall bacterial and fungal compositions of all three communities, with the endosphere and rhizosphere compartments showing the greatest divergence from well-watered controls. The overall response of the bacterial microbiota to drought stress was taxonomically consistent across soils and cultivars and was primarily driven by an enrichment of multiple Actinobacteria and Chloroflexi , as well as a depletion of several Acidobacteria and Deltaproteobacteria While there was some overlap in the changes observed in the rhizosphere and endosphere communities, several drought-responsive taxa were compartment specific, a pattern likely arising from preexisting compositional differences, as well as plant-mediated processes affecting individual compartments. These results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in restructuring of root microbial communities and suggest the possibility that constituents of the altered plant microbiota might contribute to plant survival under extreme environmental conditions. IMPORTANCE With the likelihood that changes in global climate will adversely affect crop yields, the potential role of microbial communities in enhancing plant performance

  3. In Silico Analysis of Antibiotic Resistance Genes in the Gut Microflora of Individuals from Diverse Geographies and Age-Groups

    Science.gov (United States)

    Ghosh, Tarini Shankar; Gupta, Sourav Sen; Nair, Gopinath Balakrish; Mande, Sharmila S.

    2013-01-01

    The spread of antibiotic resistance, originating from the rampant and unrestrictive use of antibiotics in humans and livestock over the past few decades has emerged as a global health problem. This problem has been further compounded by recent reports implicating the gut microbial communities to act as reservoirs of antibiotic resistance. We have profiled the presence of probable antibiotic resistance genes in the gut flora of 275 individuals from eight different nationalities. For this purpose, available metagenomic data sets corresponding to 275 gut microbiomes were analyzed. Sequence similarity searches of the genomic fragments constituting each of these metagenomes were performed against genes conferring resistance to around 240 antibiotics. Potential antibiotic resistance genes conferring resistance against 53 different antibiotics were detected in the human gut microflora analysed in this study. In addition to several geography/country-specific patterns, four distinct clusters of gut microbiomes, referred to as ‘Resistotypes’, exhibiting similarities in their antibiotic resistance profiles, were identified. Groups of antibiotics having similarities in their resistance patterns within each of these clusters were also detected. Apart from this, mobile multi-drug resistance gene operons were detected in certain gut microbiomes. The study highlighted an alarmingly high abundance of antibiotic resistance genes in two infant gut microbiomes. The results obtained in the present study presents a holistic ‘big picture’ on the spectra of antibiotic resistance within our gut microbiota across different geographies. Such insights may help in implementation of new regulations and stringency on the existing ones. PMID:24391833

  4. GUTSS: An Alignment-Free Sequence Comparison Method for Use in Human Intestinal Microbiome and Fecal Microbiota Transplantation Analysis.

    Directory of Open Access Journals (Sweden)

    Mitchell J Brittnacher

    Full Text Available Comparative analysis of gut microbiomes in clinical studies of human diseases typically rely on identification and quantification of species or genes. In addition to exploring specific functional characteristics of the microbiome and potential significance of species diversity or expansion, microbiome similarity is also calculated to study change in response to therapies directed at altering the microbiome. Established ecological measures of similarity can be constructed from species abundances, however methods for calculating these commonly used ecological measures of similarity directly from whole genome shotgun (WGS metagenomic sequence are lacking.We present an alignment-free method for calculating similarity of WGS metagenomic sequences that is analogous to the Bray-Curtis index for species, implemented by the General Utility for Testing Sequence Similarity (GUTSS software application. This method was applied to intestinal microbiomes of healthy young children to measure developmental changes toward an adult microbiome during the first 3 years of life. We also calculate similarity of donor and recipient microbiomes to measure establishment, or engraftment, of donor microbiota in fecal microbiota transplantation (FMT studies focused on mild to moderate Crohn's disease. We show how a relative index of similarity to donor can be calculated as a measure of change in a patient's microbiome toward that of the donor in response to FMT.Because clinical efficacy of the transplant procedure cannot be fully evaluated without analysis methods to quantify actual FMT engraftment, we developed a method for detecting change in the gut microbiome that is independent of species identification and database bias, sensitive to changes in relative abundance of the microbial constituents, and can be formulated as an index for correlating engraftment success with clinical measures of disease. More generally, this method may be applied to clinical evaluation of

  5. GUTSS: An Alignment-Free Sequence Comparison Method for Use in Human Intestinal Microbiome and Fecal Microbiota Transplantation Analysis.

    Science.gov (United States)

    Brittnacher, Mitchell J; Heltshe, Sonya L; Hayden, Hillary S; Radey, Matthew C; Weiss, Eli J; Damman, Christopher J; Zisman, Timothy L; Suskind, David L; Miller, Samuel I

    2016-01-01

    Comparative analysis of gut microbiomes in clinical studies of human diseases typically rely on identification and quantification of species or genes. In addition to exploring specific functional characteristics of the microbiome and potential significance of species diversity or expansion, microbiome similarity is also calculated to study change in response to therapies directed at altering the microbiome. Established ecological measures of similarity can be constructed from species abundances, however methods for calculating these commonly used ecological measures of similarity directly from whole genome shotgun (WGS) metagenomic sequence are lacking. We present an alignment-free method for calculating similarity of WGS metagenomic sequences that is analogous to the Bray-Curtis index for species, implemented by the General Utility for Testing Sequence Similarity (GUTSS) software application. This method was applied to intestinal microbiomes of healthy young children to measure developmental changes toward an adult microbiome during the first 3 years of life. We also calculate similarity of donor and recipient microbiomes to measure establishment, or engraftment, of donor microbiota in fecal microbiota transplantation (FMT) studies focused on mild to moderate Crohn's disease. We show how a relative index of similarity to donor can be calculated as a measure of change in a patient's microbiome toward that of the donor in response to FMT. Because clinical efficacy of the transplant procedure cannot be fully evaluated without analysis methods to quantify actual FMT engraftment, we developed a method for detecting change in the gut microbiome that is independent of species identification and database bias, sensitive to changes in relative abundance of the microbial constituents, and can be formulated as an index for correlating engraftment success with clinical measures of disease. More generally, this method may be applied to clinical evaluation of human microbiomes

  6. Stability of the Gorilla Microbiome Despite SIV Infection

    Science.gov (United States)

    Moeller, Andrew H.; Peeters, Martine; Ayouba, Ahidjo; Ngole, Eitel Mpoudi; Esteban, Amadine; Hahn, Beatrice H.; Ochman, Howard

    2015-01-01

    Simian Immunodeficiency Viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in fecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. Here, we examine the effects of SIVgor, a close relative of SIVcpz of chimpanzees and HIV-1 of humans, on the gut bacterial communities residing within wild gorillas, revealing that gorilla gut microbiomes are exceptionally robust to SIV infection. In contrast to the microbiomes of HIV-1 infected humans and SIVcpz-infected chimpanzees, SIVgor-infected gorilla microbiomes exhibit neither rises in the frequencies of opportunistic pathogens nor elevated rates of microbial turnover within individual hosts. Regardless of SIV infection status, gorilla microbiomes assort into enterotypes, one of which is compositionally analogous to those identified in humans and chimpanzees. The other gorilla enterotype appears specialized for a leaf-based diet and is enriched in environmentally derived bacterial genera. We hypothesize that the acquisition of this gorilla-specific enterotype was enabled by lowered immune-system control over the composition of the microbiome. Our results indicate differences between the pathology of SIVgor and SIVcpz/HIV-1 infections, demonstrating the utility of investigating host microbial ecology as a means for studying disease in wild primates of high conservation priority. PMID:25545295

  7. Stability of the gorilla microbiome despite simian immunodeficiency virus infection.

    Science.gov (United States)

    Moeller, Andrew H; Peeters, Martine; Ayouba, Ahidjo; Ngole, Eitel Mpoudi; Esteban, Amadine; Hahn, Beatrice H; Ochman, Howard

    2015-02-01

    Simian immunodeficiency viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in faecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. Here, we examine the effects of SIVgor, a close relative of SIVcpz of chimpanzees and HIV-1 of humans, on the gut bacterial communities residing within wild gorillas, revealing that gorilla gut microbiomes are exceptionally robust to SIV infection. In contrast to the microbiomes of HIV-1-infected humans and SIVcpz-infected chimpanzees, SIVgor-infected gorilla microbiomes exhibit neither rises in the frequencies of opportunistic pathogens nor elevated rates of microbial turnover within individual hosts. Regardless of SIV infection status, gorilla microbiomes assort into enterotypes, one of which is compositionally analogous to those identified in humans and chimpanzees. The other gorilla enterotype appears specialized for a leaf-based diet and is enriched in environmentally derived bacterial genera. We hypothesize that the acquisition of this gorilla-specific enterotype was enabled by lowered immune system control over the composition of the microbiome. Our results indicate differences between the pathology of SIVgor and SIVcpz/HIV-1 infections, demonstrating the utility of investigating host microbial ecology as a means for studying disease in wild primates of high conservation priority. © 2014 John Wiley & Sons Ltd.

  8. Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants.

    Science.gov (United States)

    Samad, Abdul; Trognitz, Friederike; Compant, Stéphane; Antonielli, Livio; Sessitsch, Angela

    2017-04-01

    Weeds and crop plants select their microbiota from the same pool of soil microorganisms, however, the ecology of weed microbiomes is poorly understood. We analysed the microbiomes associated with roots and rhizospheres of grapevine and four weed species (Lamium amplexicaule L., Veronica arvensis L., Lepidium draba L. and Stellaria media L.) growing in proximity in the same vineyard using 16S rRNA gene sequencing. We also isolated and characterized 500 rhizobacteria and root endophytes from L. draba and grapevine. Microbiome data analysis revealed that all plants hosted significantly different microbiomes in the rhizosphere as well as in root compartment, however, differences were more pronounced in the root compartment. The shared microbiome of grapevine and the four weed species contained 145 OTUs (54.2%) in the rhizosphere, but only nine OTUs (13.2%) in the root compartment. Seven OTUs (12.3%) were shared in all plants and compartments. Approximately 56% of the major OTUs (>1%) showed more than 98% identity to bacteria isolated in this study. Moreover, weed-associated bacteria generally showed a higher species richness in the rhizosphere, whereas the root-associated bacteria were more diverse in the perennial plants grapevine and L. draba. Overall, weed isolates showed more plant growth-promoting characteristics compared with grapevine isolates. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. The past, present and future of microbiome analyses

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard A.; Callister, Stephen J.; Moore, Ronald J.; Baker, Erin M.; Jansson, Janet K.

    2016-09-29

    Microbes evolved on Earth approximately 3.5 billion years ago and eventually occupied every habitable environment in its biosphere. While microorganisms are responsible for key functions on Earth including carbon and nutrient cycling and determining the health and disease of its inhabitants (i.e. plants and animals), >99% of the estimated trillions of microbes have yet to be discovered.1 In addition, high microbial diversity has made it difficult to study specific functions carried out by complex microbial communities within "microbiomes", such as those inhabiting the soil and human gut.2,3 Fortunately, technological advances over the last few decades have greatly facilitated studies of complex microbiomes and their functions. Here we will specifically discuss advances related to nucleic acid sequencing and mass spectrometry analyses that have enabled exploration and understanding of complex microbiomes in a range of environments and our own bodies.4,5,6,7

  10. The Gut Microbiota in Immune-Mediated Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Jessica D Forbes

    2016-07-01

    Full Text Available The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID including inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMIDKeywords: gut microbiome, systems microbiology gut metagenome, chronic immune mediated inflammatory diseases

  11. Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle.

    Science.gov (United States)

    Thomas, Milton; Webb, Megan; Ghimire, Sudeep; Blair, Amanda; Olson, Kenneth; Fenske, Gavin John; Fonder, Alex Thomas; Christopher-Hennings, Jane; Brake, Derek; Scaria, Joy

    2017-09-25

    In North America, antibiotic feed additives such as monensin and tylosin are added to the finishing diets of feedlot cattle to counter the ill-effects of feeding diets with rapidly digestible carbohydrates. While these feed additives have been proven to improve feed efficiency and reduce liver abscess incidence, how these products impact the gastrointestinal microbiota is not completely understood. In this study, we analyzed the impact of providing antibiotic feed additives to feedlot cattle using metagenome sequencing of treated and control animals. Our results indicate that use of antibiotic feed additives does not produce discernable changes at the phylum level. However, treated cattle had reduced abundance of gram-positive bacteria at the genus level. The abundance of Ruminococcus, Erysipelotrichaceae and Lachnospiraceae in the gut of treated steers was reduced. Functional analysis of the data indicates that there was only minimal impact due to the treatment in the rumen. Genes involved in detoxification were significantly increased in the rumen of AB steers. But the relative abundance of these genes was additives.

  12. Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes

    Directory of Open Access Journals (Sweden)

    Christian Santos-Medellín

    2017-07-01

    Full Text Available Plant roots support complex microbial communities that can influence plant growth, nutrition, and health. While extensive characterizations of the composition and spatial compartmentalization of these communities have been performed in different plant species, there is relatively little known about the impact of abiotic stresses on the root microbiota. Here, we have used rice as a model to explore the responses of root microbiomes to drought stress. Using four distinct genotypes, grown in soils from three different fields, we tracked the drought-induced changes in microbial composition in the rhizosphere (the soil immediately surrounding the root, the endosphere (the root interior, and unplanted soils. Drought significantly altered the overall bacterial and fungal compositions of all three communities, with the endosphere and rhizosphere compartments showing the greatest divergence from well-watered controls. The overall response of the bacterial microbiota to drought stress was taxonomically consistent across soils and cultivars and was primarily driven by an enrichment of multiple Actinobacteria and Chloroflexi, as well as a depletion of several Acidobacteria and Deltaproteobacteria. While there was some overlap in the changes observed in the rhizosphere and endosphere communities, several drought-responsive taxa were compartment specific, a pattern likely arising from preexisting compositional differences, as well as plant-mediated processes affecting individual compartments. These results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in restructuring of root microbial communities and suggest the possibility that constituents of the altered plant microbiota might contribute to plant survival under extreme environmental conditions.

  13. Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish.

    Directory of Open Access Journals (Sweden)

    Christopher A Gaulke

    Full Text Available Growing evidence indicates that disrupting the microbial community that comprises the intestinal tract, known as the gut microbiome, can contribute to the development or severity of disease. As a result, it is important to discern the agents responsible for microbiome disruption. While animals are frequently exposed to a diverse array of environmental chemicals, little is known about their effects on gut microbiome stability and structure. Here, we demonstrate how zebrafish can be used to glean insight into the effects of environmental chemical exposure on the structure and ecological dynamics of the gut microbiome. Specifically, we exposed forty-five adult zebrafish to triclosan-laden food for four or seven days or a control diet, and analyzed their microbial communities using 16S rRNA amplicon sequencing. Triclosan exposure was associated with rapid shifts in microbiome structure and diversity. We find evidence that several operational taxonomic units (OTUs associated with the family Enterobacteriaceae appear to be susceptible to triclosan exposure, while OTUs associated with the genus Pseudomonas appeared to be more resilient and resistant to exposure. We also found that triclosan exposure is associated with topological alterations to microbial interaction networks and results in an overall increase in the number of negative interactions per microbe in these networks. Together these data indicate that triclosan exposure results in altered composition and ecological dynamics of microbial communities in the gut. Our work demonstrates that because zebrafish afford rapid and inexpensive interrogation of a large number of individuals, it is a useful experimental system for the discovery of the gut microbiome's interaction with environmental chemicals.

  14. Triclosan Exposure Is Associated with Rapid Restructuring of the Microbiome in Adult Zebrafish.

    Science.gov (United States)

    Gaulke, Christopher A; Barton, Carrie L; Proffitt, Sarah; Tanguay, Robert L; Sharpton, Thomas J

    2016-01-01

    Growing evidence indicates that disrupting the microbial community that comprises the intestinal tract, known as the gut microbiome, can contribute to the development or severity of disease. As a result, it is important to discern the agents responsible for microbiome disruption. While animals are frequently exposed to a diverse array of environmental chemicals, little is known about their effects on gut microbiome stability and structure. Here, we demonstrate how zebrafish can be used to glean insight into the effects of environmental chemical exposure on the structure and ecological dynamics of the gut microbiome. Specifically, we exposed forty-five adult zebrafish to triclosan-laden food for four or seven days or a control diet, and analyzed their microbial communities using 16S rRNA amplicon sequencing. Triclosan exposure was associated with rapid shifts in microbiome structure and diversity. We find evidence that several operational taxonomic units (OTUs) associated with the family Enterobacteriaceae appear to be susceptible to triclosan exposure, while OTUs associated with the genus Pseudomonas appeared to be more resilient and resistant to exposure. We also found that triclosan exposure is associated with topological alterations to microbial interaction networks and results in an overall increase in the number of negative interactions per microbe in these networks. Together these data indicate that triclosan exposure results in altered composition and ecological dynamics of microbial communities in the gut. Our work demonstrates that because zebrafish afford rapid and inexpensive interrogation of a large number of individuals, it is a useful experimental system for the discovery of the gut microbiome's interaction with environmental chemicals.

  15. Immunological and Clinical Effect of Diet Modulation of the Gut Microbiome in Multiple Sclerosis Patients: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Marina Saresella

    2017-10-01

    Full Text Available Pathogenesis of autoimmune disorders, including multiple sclerosis (MS, has been linked to an alteration of the resident microbial commensal community and of the interplay between the microbiota and the immune system. Dietary components such as fiber, acting on microbiota composition, could, in principle, result in immune modulation and, thus, could be used to obtain beneficial outcomes for patients. We verified this hypothesis in a pilot study involving two groups of clinically similar relapsing-remitting (RR MS patients who had undergone either a high-vegetable/low-protein diet (HV/LP diet group; N = 10 or a “Western Diet” (WD group; N = 10 for at least 12 months. Gut microbiota composition, analyzed by 16 S V4 rRNA gene sequencing and immunological profiles, was examined after a minimum of 12 months of diet. Results showed that, in the HV/LP diet group compared to the WD group: (1 Lachnospiraceae family was significantly more abundant; (2 IL-17-producing T CD4+ lymphocytes (p = 0.04 and PD-1 expressing T CD4+ lymphocytes (p = 0.0004 were significantly decreased; and (3 PD-L1 expressing monocytes (p = 0.009 were significantly increased. In the HV/LP diet group, positive correlations between Lachnospiraceae and both CD14+/IL-10+ and CD14+/TGFβ+monocytes (RSp = 0.707, p = 0.05, and RSp = 0.73, p = 0.04, respectively, as well as between Lachnospiraceae and CD4+/CD25+/FoxP3+ T lymphocytes (RSp = 0.68, p = 0.02 were observed. Evaluation of clinical parameters showed that in the HV/LP diet group alone the relapse rate during the 12 months follow-up period and the Expanded Disability Status Scale score at the end of the study period were significantly reduced. Diet modulates dysbiosis and improves clinical parameters in MS patients by increasing anti-inflammatory circuits. Because Lachnospiraceae favor Treg differentiation as well as TGFβ and IL-10 production this effect could be associated

  16. The Impact of Gut Microbiota on Gender-Specific Differences in Immunity

    Science.gov (United States)

    Fransen, Floris; van Beek, Adriaan A.; Borghuis, Theo; Meijer, Ben; Hugenholtz, Floor; van der Gaast-de Jongh, Christa; Savelkoul, Huub F.; de Jonge, Marien I.; Faas, Marijke M.; Boekschoten, Mark V.; Smidt, Hauke; El Aidy, Sahar; de Vos, Paul

    2017-01-01

    Males and females are known to have gender-specific differences in their immune system and gut microbiota composition. Whether these differences in gut microbiota composition are a cause or consequence of differences in the immune system is not known. To investigate this issue, gut microbiota from conventional males or females was transferred to germ-free (GF) animals of the same or opposing gender. We demonstrate that microbiota-independent gender differences in immunity are already present in GF mice. In particular, type I interferon signaling was enhanced in the intestine of GF females. Presumably, due to these immune differences bacterial groups, such as Alistipes, Rikenella, and Porphyromonadaceae, known to expand in the absence of innate immune defense mechanism were overrepresented in the male microbiota. The presence of these bacterial groups was associated with induction of weight loss, inflammation, and DNA damage upon transfer of the male microbiota to female GF recipients. In summary, our data suggest that microbiota-independent gender differences in the immune system select a gender-specific gut microbiota composition, which in turn further contributes to gender differences in the immune system. PMID:28713378

  17. The Impact of Gut Microbiota on Gender-Specific Differences in Immunity

    Directory of Open Access Journals (Sweden)

    Floris Fransen

    2017-06-01

    Full Text Available Males and females are known to have gender-specific differences in their immune system and gut microbiota composition. Whether these differences in gut microbiota composition are a cause or consequence of differences in the immune system is not known. To investigate this issue, gut microbiota from conventional males or females was transferred to germ-free (GF animals of the same or opposing gender. We demonstrate that microbiota-independent gender differences in immunity are already present in GF mice. In particular, type I interferon signaling was enhanced in the intestine of GF females. Presumably, due to these immune differences bacterial groups, such as Alistipes, Rikenella, and Porphyromonadaceae, known to expand in the absence of innate immune defense mechanism were overrepresented in the male microbiota. The presence of these bacterial groups was associated with induction of weight loss, inflammation, and DNA damage upon transfer of the male microbiota to female GF recipients. In summary, our data suggest that microbiota-independent gender differences in the immune system select a gender-specific gut microbiota composition, which in turn further contributes to gender differences in the immune system.

  18. Soluble Corn Fiber Increases Calcium Absorption Associated with Shifts in the Gut Microbiome: A Randomized Dose-Response Trial in Free-Living Pubertal Females.

    Science.gov (United States)

    Whisner, Corrie M; Martin, Berdine R; Nakatsu, Cindy H; Story, Jon A; MacDonald-Clarke, Claire J; McCabe, Linda D; McCabe, George P; Weaver, Connie M

    2016-07-01

    Soluble corn fiber (SCF; 12 g fiber/d) is shown to increase calcium absorption efficiency, associated with shifts in the gut microbiota in adolescent males and females who participated in a controlled feeding study. We evaluated the dose response of 0, 10, and 20 g fiber/d delivered by PROMITOR SCF 85 (85% fiber) on calcium absorption, biochemical bone properties, and the fecal microbiome in free-living adolescents. Healthy adolescent females (n = 28; aged 11-14 y) randomly assigned into a 3-phase, double-blind, crossover study consumed SCF for 4 wk at each dose (0, 10, and 20 g fiber/d from SCF) alongside their habitual diet and were followed by 3-d clinical visits and 3-wk washout periods. Stable isotope ((44)Ca and (43)Ca) enrichment in pooled urine was measured by inductively coupled plasma mass spectrometry. Fecal microbial community composition was assessed by high-throughput sequencing (Illumina) of polymerase chain reaction-amplified 16S rRNA genes. Mixed model ANOVA and Friedman analysis were used to determine effects of SCF on calcium absorption and to compare mean microbial proportions, respectively. Calcium absorption increased significantly with 10 (13.3% ± 5.3%; P = 0.042) and 20 g fiber/d (12.9% ± 3.6%; P = 0.026) from SCF relative to control. Significant differences in fecal microbial community diversity were found after consuming SCF (operational taxonomic unit measures of 601.4 ± 83.5, 634.5 ± 83.8, and 649.6 ± 75.5 for 0, 10, and 20 g fiber/d, respectively; P fiber/d from SCF, respectively; P < 0.05). Increases in calcium absorption positively correlated with increases in Clostridium (r = 0.44, P = 0.023) and unclassified Clostridiaceae (r = 0.40, P = 0.040). SCF, a nondigestible carbohydrate, increased calcium absorption in free-living adolescent females. Two groups of bacteria may be involved, one directly fermenting SCF and the second fermenting SCF metabolites further, thereby promoting increased calcium absorption. This trial was

  19. Site-specific programming of the host epithelial transcriptome by the gut microbiota

    DEFF Research Database (Denmark)

    Sommer, Felix; Nookaew, Intawat; Sommer, Nina

    2015-01-01

    BACKGROUND: The intestinal epithelium separates us from the microbiota but also interacts with it and thus affects host immune status and physiology. Previous studies investigated microbiota-induced responses in the gut using intact tissues or unfractionated epithelial cells, thereby limiting....... The microbial impact on host gene expression was highly site specific, as epithelial responses to the microbiota differed between cell fractions. Specific transcriptional regulators were enriched in each fraction. In general, the gut microbiota induced a more rapid response in the colon than in the ileum...... conclusions about regional differences in the epithelium. Here, we sought to investigate microbiota-induced transcriptional responses in specific fractions of intestinal epithelial cells. To this end, we used microarray analysis of laser capture microdissection (LCM)-harvested ileal and colonic tip and crypt...

  20. Patient-specific analysis of periodontal and peri-implant microbiomes.

    Science.gov (United States)

    Dabdoub, S M; Tsigarida, A A; Kumar, P S

    2013-12-01

    Periodontally involved teeth have been implicated as 'microbial reservoirs' in the etiology of peri-implant diseases. Therefore, the purpose of this investigation was to use a deep-sequencing approach to identify the degree of congruence between adjacent peri-implant and periodontal microbiomes in states of health and disease. Subgingival and peri-implant biofilm samples were collected from 81 partially edentulous individuals with periodontal and peri-implant health and disease. Bacterial DNA was isolated, and the 16S rRNA gene was amplified and sequenced by pyrotag sequencing. Chimera-depleted sequences were compared against a locally hosted curated database for bacterial identification. Statistical significance was determined by paired Student's t tests between tooth-implant pairs. The 1.9 million sequences identified represented 523 species. Sixty percent of individuals shared less than 50% of all species between their periodontal and peri-implant biofilms, and 85% of individuals shared less than 8% of abundant species between tooth and implant. Additionally, the periodontal microbiome demonstrated significantly higher diversity than the implant, and distinct bacterial lineages were associated with health and disease in each ecosystem. Analysis of our data suggests that simple geographic proximity is not a sufficient determinant of colonization of topographically distinct niches, and that the peri-implant and periodontal microbiomes represent microbiologically distinct ecosystems.

  1. Analysis of the Small Intestinal Microbiome of Children With Autism

    Science.gov (United States)

    2013-05-01

    were performed by two-sided t-test or ANOVA. P values < 0.05 were considered statistically significant. 5 Microbiome diversity was examined...appears to be some indication of the gut microflora differing between the autistic and control groups. On Figure 6, the whole microbiome of...Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. (2006). Metagenomic analysis of the human distal gut microbiome

  2. Specific gut commensal flora locally alters T cell tuning to endogenous ligands.

    Science.gov (United States)

    Chappert, Pascal; Bouladoux, Nicolas; Naik, Shruti; Schwartz, Ronald H

    2013-06-27

    Differences in gut commensal flora can dramatically influence autoimmune responses, but the mechanisms behind this are still unclear. We report, in a Th1-cell-driven murine model of autoimmune arthritis, that specific gut commensals, such as segmented filamentous bacteria, have the ability to modulate the activation threshold of self-reactive T cells. In the local microenvironment of gut-associated lymphoid tissues, inflammatory cytokines elicited by the commensal flora dynamically enhanced the antigen responsiveness of T cells that were otherwise tuned down to a systemic self-antigen. Together with subtle differences in early lineage differentiation, this ultimately led to an enhanced recruitment of pathogenic Th1 cells and the development of a more severe form of autoimmune arthritis. These findings define a key role for the gut commensal flora in sustaining ongoing autoimmune responses through the local fine tuning of T-cell-receptor-proximal activation events in autoreactive T cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Phylogenetic diversity of 'Endomicrobia' and their specific affiliation with termite gut flagellates.

    Science.gov (United States)

    Ikeda-Ohtsubo, Wakako; Desai, Mahesh; Stingl, Ulrich; Brune, Andreas

    2007-10-01

    'Endomicrobia', a distinct and diverse group of uncultivated bacteria in the candidate phylum Termite Group I (TG-1), have been found exclusively in the gut of lower termites and wood-feeding cockroaches. In a previous study, we had demonstrated that the 'Endomicrobia' clones retrieved from Reticulitermes santonensis represent intracellular symbionts of the two major gut flagellates of this termite. Here, we document that 'Endomicrobia' are present also in many other gut flagellates of lower termites. Phylogeny and host specificity of 'Endomicrobia' were investigated by cloning and sequencing of the small subunit rRNA genes of the flagellate and the symbionts, which originated from suspensions of individual flagellates isolated by micropipette. Each flagellate harboured a distinct phylogenetic lineage of 'Endomicrobia'. The results of fluorescent in situ hybridization with 'Endomicrobia'-specific oligonucleotide probes corroborated that 'Endomicrobia' are intracellular symbionts specifically affiliated with their flagellate hosts. Interestingly, the 'Endomicrobia' sequences obtained from flagellates belonging to the genus Trichonympha formed a monophyletic group, suggesting co-speciation between symbiont and host.

  4. Significance of the microbiome in obstructive lung disease.

    Science.gov (United States)

    Han, Meilan K; Huang, Yvonne J; Lipuma, John J; Boushey, Homer A; Boucher, Richard C; Cookson, William O; Curtis, Jeffrey L; Erb-Downward, John; Lynch, Susan V; Sethi, Sanjay; Toews, Galen B; Young, Vincent B; Wolfgang, Matthew C; Huffnagle, Gary B; Martinez, Fernando J

    2012-05-01

    The composition of the lung microbiome contributes to both health and disease, including obstructive lung disease. Because it has been estimated that over 70% of the bacterial species on body surfaces cannot be cultured by currently available techniques, traditional culture techniques are no longer the gold standard for microbial investigation. Advanced techniques that identify bacterial sequences, including the 16S ribosomal RNA gene, have provided new insights into the depth and breadth of microbiota present both in the diseased and normal lung. In asthma, the composition of the microbiome of the lung and gut during early childhood development may play a key role in the development of asthma, while specific airway microbiota are associated with chronic asthma in adults. Early bacterial stimulation appears to reduce asthma susceptibility by helping the immune system develop lifelong tolerance to innocuous antigens. By contrast, perturbations in the microbiome from antibiotic use may increase the risk for asthma development. In chronic obstructive pulmonary disease, bacterial colonisation has been associated with a chronic bronchitic phenotype, increased risk of exacerbations, and accelerated loss of lung function. In cystic fibrosis, studies utilising culture-independent methods have identified associations between decreased bacterial community diversity and reduced lung function; colonisation with Pseudomonas aeruginosa has been associated with the presence of certain CFTR mutations. Genomic analysis of the lung microbiome is a young field, but has the potential to define the relationship between lung microbiome composition and disease course. Whether we can manipulate bacterial communities to improve clinical outcomes remains to be seen.

  5. A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance through an Enteric NO-Dependent and Gut-Brain Axis Mechanism.

    Science.gov (United States)

    Grasset, Estelle; Puel, Anthony; Charpentier, Julie; Collet, Xavier; Christensen, Jeffrey E; Tercé, François; Burcelin, Rémy

    2017-05-02

    Glucagon-like peptide-1 (GLP-1)-based therapies control glycemia in type 2 diabetic (T2D) patients. However, in some patients the treatment must be discontinued, defining a state of GLP-1 resistance. In animal models we identified a specific set of ileum bacteria impairing the GLP-1-activated gut-brain axis for the control of insulin secretion and gastric emptying. Using prediction algorithms, we identified bacterial pathways related to amino acid metabolism and transport system modules associated to GLP-1 resistance. The conventionalization of germ-free mice demonstrated their role in enteric neuron biology and the gut-brain-periphery axis. Altogether, insulin secretion and gastric emptying require functional GLP-1 receptor and neuronal nitric oxide synthase in the enteric nervous system within a eubiotic gut microbiota environment. Our data open a novel route to improve GLP-1-based therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Antibiotic use and microbiome function.

    Science.gov (United States)

    Ferrer, Manuel; Méndez-García, Celia; Rojo, David; Barbas, Coral; Moya, Andrés

    2017-06-15

    Our microbiome should be understood as one of the most complex components of the human body. The use of β-lactam antibiotics is one of the microbiome covariates that influence its composition. The extent to which our microbiota changes after an antibiotic intervention depends not only on the chemical nature of the antibiotic or cocktail of antibiotics used to treat specific infections, but also on the type of administration, duration and dose, as well as the level of resistance that each microbiota develops. We have begun to appreciate that not all bacteria within our microbiota are vulnerable or reactive to different antibiotic interventions, and that their influence on both microbial composition and metabolism may differ. Antibiotics are being used worldwide on a huge scale and the prescription of antibiotics is continuing to rise; however, their effects on our microbiota have been reported for only a limited number of them. This article presents a critical review of the antibiotics or antibiotic cocktails whose use in humans has been linked to changes in the composition of our microbial communities, with a particular focus on the gut, oral, respiratory, skin and vaginal microbiota, and on their molecular agents (genes, proteins and metabolites). We review the state of the art as of June 2016, and cover a total of circa 68 different antibiotics. The data herein are the first to compile information about the bacteria, fungi, archaea and viruses most influenced by the main antibiotic treatments prescribed nowadays. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Host-specific and pH-dependent microbiomes of copepods in an extensive rearing system

    DEFF Research Database (Denmark)

    Skovgaard, Alf; Castro Mejia, Josue Leonardo; Hansen, Lars Hestbjerg

    2015-01-01

    Copepods are to an increasing extent cultivated as feed for mariculture fish larvae with variable production success. In the temperate climate zone, this production faces seasonal limitation due to changing abiotic factors, in particular temperature and light. Furthermore, the production of copep...... furthermore showed that the abiotic parameters pH and oxygen concentration in rearing tank water were the key factors influencing composition of copepod microbiomes.......Copepods are to an increasing extent cultivated as feed for mariculture fish larvae with variable production success. In the temperate climate zone, this production faces seasonal limitation due to changing abiotic factors, in particular temperature and light. Furthermore, the production...... of copepods may be influenced by biotic factors of the culture systems, such as competing microorganisms, harmful algae, or other eukaryotes and prokaryotes that may be non-beneficial for the copepods. In this study, the composition of bacteria associated with copepods was investigated in an extensive outdoor...

  8. Review: Maternal health and the placental microbiome.

    Science.gov (United States)

    Pelzer, Elise; Gomez-Arango, Luisa F; Barrett, Helen L; Nitert, Marloes Dekker

    2017-06-01

    Over the past decade, the role of the microbiome in regulating metabolism, immune function and behavior in humans has become apparent. It has become clear that the placenta is not a sterile organ, but rather has its own endogenous microbiome. The composition of the placental microbiome is distinct from that of the vagina and has been reported to resemble the oral microbiome. Compared to the gut microbiome, the placental microbiome exhibits limited microbial diversity. This review will focus on the current understanding of the placental microbiota in normal healthy pregnancy and also in disease states including preterm birth, chorioamnionitis and maternal conditions such as obesity, gestational diabetes mellitus and preeclampsia. Factors known to alter the composition of the placental microbiota will be discussed in the final part of this review. Copyright © 2016. Published by Elsevier Ltd.

  9. The functional microbiome of arthropods

    Science.gov (United States)

    Martinez Romero, Esperanza

    2017-01-01

    Many studies on the microbiome of animals have been reported but a comprehensive analysis is lacking. Here we present a meta-analysis on the microbiomes of arthropods and their terrestrial habitat, focusing on the functional profile of bacterial communities derived from metabolic traits that are essential for microbial life. We report a detailed analysis of probably the largest set of biochemically defined functional traits ever examined in microbiome studies. This work deals with the phylum proteobacteria, which is usually dominant in marine and terrestrial environments and covers all functions associated with microbiomes. The considerable variation in the distribution and abundance of proteobacteria in microbiomes has remained fundamentally unexplained. This analysis reveals discrete functional groups characteristic for adaptation to anaerobic conditions, which appear to be defined by environmental filtering of taxonomically related taxa. The biochemical diversification of the functional groups suggests an evolutionary trajectory in the structure of arthropods’ microbiome, from metabolically versatile to specialized proteobacterial organisms that are adapted to complex environments such as the gut of social insects. Bacterial distribution in arthropods’ microbiomes also shows taxonomic clusters that do not correspond to functional groups and may derive from other factors, including common contaminants of soil and reagents. PMID:28475624

  10. The functional microbiome of arthropods.

    Science.gov (United States)

    Degli Esposti, Mauro; Martinez Romero, Esperanza

    2017-01-01

    Many studies on the microbiome of animals have been reported but a comprehensive analysis is lacking. Here we present a meta-analysis on the microbiomes of arthropods and their terrestrial habitat, focusing on the functional profile of bacterial communities derived from metabolic traits that are essential for microbial life. We report a detailed analysis of probably the largest set of biochemically defined functional traits ever examined in microbiome studies. This work deals with the phylum proteobacteria, which is usually dominant in marine and terrestrial environments and covers all functions associated with microbiomes. The considerable variation in the distribution and abundance of proteobacteria in microbiomes has remained fundamentally unexplained. This analysis reveals discrete functional groups characteristic for adaptation to anaerobic conditions, which appear to be defined by environmental filtering of taxonomically related taxa. The biochemical diversification of the functional groups suggests an evolutionary trajectory in the structure of arthropods' microbiome, from metabolically versatile to specialized proteobacterial organisms that are adapted to complex environments such as the gut of social insects. Bacterial distribution in arthropods' microbiomes also shows taxonomic clusters that do not correspond to functional groups and may derive from other factors, including common contaminants of soil and reagents.

  11. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Vogt, Josef Korbinian; Kristensen, Mette

    2017-01-01

    .0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did...

  12. A catalog of the mouse gut metagenome.

    Science.gov (United States)

    Xiao, Liang; Feng, Qiang; Liang, Suisha; Sonne, Si Brask; Xia, Zhongkui; Qiu, Xinmin; Li, Xiaoping; Long, Hua; Zhang, Jianfeng; Zhang, Dongya; Liu, Chuan; Fang, Zhiwei; Chou, Joyce; Glanville, Jacob; Hao, Qin; Kotowska, Dorota; Colding, Camilla; Licht, Tine Rask; Wu, Donghai; Yu, Jun; Sung, Joseph Jao Yiu; Liang, Qiaoyi; Li, Junhua; Jia, Huijue; Lan, Zhou; Tremaroli, Valentina; Dworzynski, Piotr; Nielsen, H Bjørn; Bäckhed, Fredrik; Doré, Joël; Le Chatelier, Emmanuelle; Ehrlich, S Dusko; Lin, John C; Arumugam, Manimozhiyan; Wang, Jun; Madsen, Lise; Kristiansen, Karsten

    2015-10-01

    We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies.

  13. Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys.

    Science.gov (United States)

    Kieffer, Dorothy A; Martin, Roy J; Adams, Sean H

    2016-11-01

    Increased dietary fiber (DF) intake elicits a wide range of physiologic effects, not just locally in the gut, but systemically. DFs can greatly alter the gut milieu by affecting the gut microbiome, which in turn influences the gut barrier, gastrointestinal immune and endocrine responses, and nitrogen cycling and microbial metabolism. These gut-associated changes can then alter the physiology and biochemistry of the body's other main nutrient management and detoxification organs, the liver and kidneys. The molecular mechanisms by which DF alters the physiology of the gut, liver, and kidneys is likely through gut-localized events (i.e., bacterial nitrogen metabolism, microbe-microbe, and microbe-host cell interactions) coupled with specific factors that emanate from the gut in response to DF, which signal to or affect the physiology of the liver and kidneys. The latter may include microbe-derived xenometabolites, peptides, or bioactive food components made available by gut microbes, inflammation signals, and gut hormones. The intent of this review is to summarize how DF alters the gut milieu to specifically affect intestinal, liver, and kidney functions and to discuss the potential local and systemic signaling networks that are involved. © 2016 American Society for Nutrition.

  14. Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys12

    Science.gov (United States)

    Kieffer, Dorothy A; Martin, Roy J; Adams, Sean H

    2016-01-01

    Increased dietary fiber (DF) intake elicits a wide range of physiologic effects, not just locally in the gut, but systemically. DFs can greatly alter the gut milieu by affecting the gut microbiome, which in turn influences the gut barrier, gastrointestinal immune and endocrine responses, and nitrogen cycling and microbial metabolism. These gut-associated changes can then alter the physiology and biochemistry of the body’s other main nutrient management and detoxification organs, the liver and kidneys. The molecular mechanisms by which DF alters the physiology of the gut, liver, and kidneys is likely through gut-localized events (i.e., bacterial nitrogen metabolism, microbe-microbe, and microbe–host cell interactions) coupled with specific factors that emanate from the gut in response to DF, which signal to or affect the physiology of the liver and kidneys. The latter may include microbe-derived xenometabolites, peptides, or bioactive food components made available by gut microbes, inflammation signals, and gut hormones. The intent of this review is to summarize how DF alters the gut milieu to specifically affect intestinal, liver, and kidney functions and to discuss the potential local and systemic signaling networks that are involved. PMID:28140328

  15. Gut Microbiota-brain Axis.

    Science.gov (United States)

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-10-05

    To systematically review the updated information about the gut microbiota-brain axis. All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of "gut microbiota", "gut-brain axis", and "neuroscience". All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future.

  16. The fecal microbiome of ALS patients.

    Science.gov (United States)

    Brenner, David; Hiergeist, Andreas; Adis, Carolin; Mayer, Benjamin; Gessner, André; Ludolph, Albert C; Weishaupt, Jochen H

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative motor neuron disease accompanied by both systemic and central nervous system-specific inflammation as well as deregulated energy metabolism. These potential pathogenetic factors have recently been found to mutually interact with the gut microbiota, raising the hypothesis of a link between microbiome alterations and ALS pathogenesis. The aim of our study was to assess whether ALS is associated with an altered composition of the fecal microbiota. We compared the fecal microbiota of 25 ALS patients with 32 age- and gender-matched healthy persons using 16S rRNA gene sequencing analysis. Confounding factors and secondary disease effects on the microbiome were minimized by selection of patients without dysphagia, gastrostomy, noninvasive ventilation, or reduced body mass index. Comparing the 2 carefully matched groups, the diversity and the abundance of the bacterial taxa on the different taxonomic levels as well as PICRUSt-predicted metagenomes were almost indistinguishable. Significant differences between ALS patients and healthy controls were only observed with regard to the overall number of microbial species (operational taxonomic units) and in the abundance of uncultured Ruminococcaceae. Conclusively, ALS patients do not exhibit a substantial alteration of the gut microbiota composition. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Extending breath analysis to the cellular level: current thoughts on the human microbiome and the expression of organic compounds in the human exposome

    Science.gov (United States)

    Human biomarkers are comprised of compounds from cellular metabolism, oxidative stress, and the microbiome of bacteria in the gut, genitourinary, and pulmonary tracts. When we examine patterns in human biomarkers to discern human health state or diagnose specific diseases, it is...

  18. Microbiome sharing between children, livestock and household surfaces in western Kenya.

    Directory of Open Access Journals (Sweden)

    Emily Mosites

    Full Text Available The gut microbiome community structure and development are associated with several health outcomes in young children. To determine the household influences of gut microbiome structure, we assessed microbial sharing within households in western Kenya by sequencing 16S rRNA libraries of fecal samples from children and cattle, cloacal swabs from chickens, and swabs of household surfaces. Among the 156 households studied, children within the same household significantly shared their gut microbiome with each other, although we did not find significant sharing of gut microbiome across host species or household surfaces. Higher gut microbiome diversity among children was associated with lower wealth status and involvement in livestock feeding chores. Although more research is necessary to identify further drivers of microbiota development, these results suggest that the household should be considered as a unit. Livestock activities, health and microbiome perturbations among an individual child may have implications for other children in the household.

  19. The intestinal microbiome of fish under starvation.

    Science.gov (United States)

    Xia, Jun Hong; Lin, Grace; Fu, Gui Hong; Wan, Zi Yi; Lee, May; Wang, Le; Liu, Xiao Jun; Yue, Gen Hua

    2014-04-05

    Starvation not only affects the nutritional and health status of the animals, but also the microbial composition in the host's intestine. Next-generation sequencing provides a unique opportunity to explore gut microbial communities and their interactions with hosts. However, studies on gut microbiomes have been conducted predominantly in humans and land animals. Not much is known on gut microbiomes of aquatic animals and their changes under changing environmental conditions. To address this shortcoming, we determined the microbial gene catalogue, and investigated changes in the microbial composition and host-microbe interactions in the intestine of Asian seabass in response to starvation. We found 33 phyla, 66 classes, 130 orders and 278 families in the intestinal microbiome. Proteobacteria (48.8%), Firmicutes (15.3%) and Bacteroidetes (8.2%) were the three most abundant bacteria taxa. Comparative analyses of the microbiome revealed shifts in bacteria communities, with dramatic enrichment of Bacteroidetes, but significant depletion of Betaproteobacteria in starved intestines. In addition, significant differences in clusters of orthologous groups (COG) functional categories and orthologous groups were observed. Genes related to antibiotic activity in the microbiome were significantly enriched in response to starvation, and host genes related to the immune response were generally up-regulated. This study provides the first insights into the fish intestinal microbiome and its changes under starvation. Further detailed study on interactions between intestinal microbiomes and hosts under dynamic conditions will shed new light on how the hosts and microbes respond to the changing environment.

  20. Western Indian rural gut microbial diversity in extreme Prakriti endo-phenotypes reveals signature microbes

    DEFF Research Database (Denmark)

    Chauhan, Narsingh; Pandey, Rajesh; Mondal, Anupam Kumar

    2018-01-01

    of Ayurvedic way (ancient Indian system of medicine) of endo-phenotyping individuals into distinct constitution types termed “Prakriti”, which forms the basis of personalized treatment. In this study, we explored and analyzed the healthy human gut microbiome structure within three predominant Prakriti groups...... microbiome showed differential abundance within Prakriti types, with gender specific signature taxons. Our study reveals that despite overall uniform composition of gut microbial community, healthy individuals belonging to different Prakriti groups have enrichment of specific bacteria. It highlights...... from a genetically homogenous cohort to discover differentially abundant taxa, using 16S rRNA gene based microbial community profiling. We found Bacteroidetes and Firmicutes as major gut microbial components in varying composition, albeit with similar trend across Prakriti. Multiple species of the core...

  1. Discovery of Azurin-Like Anticancer Bacteriocins from Human Gut Microbiome through Homology Modeling and Molecular Docking against the Tumor Suppressor p53

    Directory of Open Access Journals (Sweden)

    Chuong Nguyen

    2016-01-01

    Full Text Available Azurin from Pseudomonas aeruginosa is known anticancer bacteriocin, which can specifically penetrate human cancer cells and induce apoptosis. We hypothesized that pathogenic and commensal bacteria with long term residence in human body can produce azurin-like bacteriocins as a weapon against the invasion of cancers. In our previous work, putative bacteriocins have been screened from complete genomes of 66 dominant bacteria species in human gut microbiota and subsequently characterized by subjecting them as functional annotation algorithms with azurin as control. We have qualitatively predicted 14 putative bacteriocins that possessed functional properties very similar to those of azurin. In this work, we perform a number of quantitative and structure-based analyses including hydrophobic percentage calculation, structural modeling, and molecular docking study of bacteriocins of interest against protein p53, a cancer target. Finally, we have identified 8 putative bacteriocins that bind p53 in a same manner as p28-azurin and azurin, in which 3 peptides (p1seq16, p2seq20, and p3seq24 shared with our previous study and 5 novel ones (p1seq09, p2seq05, p2seq08, p3seq02, and p3seq17 discovered in the first time. These bacteriocins are suggested for further in vitro tests in different neoplastic line cells.

  2. Healthy human gut phageome

    NARCIS (Netherlands)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T.; Oost, van der John; Vos, de Willem M.; Young, Mark J.

    2016-01-01

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of

  3. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont.

    Directory of Open Access Journals (Sweden)

    Steven A Frese

    Full Text Available Although vertebrates harbor bacterial communities in their gastrointestinal tract whose composition is host-specific, little is known about the mechanisms by which bacterial lineages become selected. The goal of this study was to characterize the ecological processes that mediate host-specificity of the vertebrate gut symbiont Lactobacillus reuteri, and to systematically identify the bacterial factors that are involved. Experiments with monoassociated mice revealed that the ability of L. reuteri to form epithelial biofilms in the mouse forestomach is strictly dependent on the strain's host origin. To unravel the molecular basis for this host-specific biofilm formation, we applied a combination of transcriptome analysis and comparative genomics and identified eleven genes of L. reuteri 100-23 that were predicted to play a role. We then determined expression and importance of these genes during in vivo biofilm formation in monoassociated mice. This analysis revealed that six of the genes were upregulated in vivo, and that genes encoding for proteins involved in epithelial adherence, specialized protein transport, cell aggregation, environmental sensing, and cell lysis contributed to biofilm formation. Inactivation of a serine-rich surface adhesin with a devoted transport system (the SecA2-SecY2 pathway completely abrogated biofilm formation, indicating that initial adhesion represented the most significant step in biofilm formation, likely conferring host specificity. In summary, this study established that the epithelial selection of bacterial symbionts in the vertebrate gut can be both specific and highly efficient, resulting in biofilms that are exclusively formed by the coevolved strains, and it allowed insight into the bacterial effectors of this process.

  4. Importance of the fat content within the cheese-matrix for blood lipid profile, faecal fat excretion, and gut microbiome in growing pigs

    DEFF Research Database (Denmark)

    Thorning, Tanja K.; Raben, Anne; Bendsen, Nathalie T.

    2016-01-01

    higher faecal fat excretion. Faecal energy excretion was only higher in REG, and this correlated with a lower microbiome Firmicutes-to-Bacteroidetes ratio. In conclusion, dairy fat consumed as cheese or butter caused different metabolic effects. Differences between reduced-fat cheese+butter and butter...... were less pronounced than differences between regular-fat cheese and butter, suggesting an impact of the dairy matrix....

  5. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases.

    Science.gov (United States)

    Brulc, Jennifer M; Antonopoulos, Dionysios A; Miller, Margret E Berg; Wilson, Melissa K; Yannarell, Anthony C; Dinsdale, Elizabeth A; Edwards, Robert E; Frank, Edward D; Emerson, Joanne B; Wacklin, Pirjo; Coutinho, Pedro M; Henrissat, Bernard; Nelson, Karen E; White, Bryan A

    2009-02-10

    The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut